Resilience of randomized RNS arithmetic with respect to side-channel leaks of cryptographic computation

Jérôme Courtois
jerome.courtois@lip6.fr

May 5, 2019

In collaboration with Lokmane Abbas-Turki and Jean-Claude Bajard

The context

- $\mathcal{B}_{n}=\left\{m_{1}, \ldots, m_{n}\right\}, m_{i}$ pairwise coprime.
- Chinese Remainder theorem
\rightarrow unique representation of integers in $\left[0 ; \mathrm{M}\left[, M=\prod_{i=1}^{n} m_{i}\right.\right.$, with theirs residues in \mathcal{B}_{n}
- X is denoted $\left\{x_{1}, \ldots, x_{n}\right\}$ in \mathcal{B}_{n} with $x_{i}=X \bmod m_{i}$

Find K from leakage

Find K from Hamming distances

Side Channel Leakage proportional to Hamming distances.

Find K from Hamming distances

J.C. Bajard \& al.(2004) "Leak Resistant Arithmetic".

Scalar Multiplication on ECC

Denote RNSn an RNS representation with n moduli.

```
Algorithm Montgomery Powering Ladder (MPL) for ECC in RNSn
Require: A point \(G\) in RNSn representation
    A key \(K\) with a binary representation \(K=2^{d-1} b_{0}+2^{d-2} b_{1}+\ldots+2 b_{d-2}+b_{d-1}\)
```


Ensure:

$A_{0}=[K] G$
$\left(H_{i}\right)_{i \in\{0, . ., d-1\}}$, the Hamming distances
function

$$
A_{1}=[2] A_{0}
$$

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{d}-1 \text { do }
$$

$$
A_{\overline{b_{i}}}=A_{\overline{b_{i}}}+A_{b_{i}}
$$

$$
A_{b_{i}}=[2] A_{b_{i}}
$$

end for
end function

Scalar Multiplication on ECC

Denote RNSn an RNS representation with n moduli.

```
Algorithm Montgomery Powering Ladder (MPL) for ECC in RNSn
Require: A point \(G\) in RNSn representation
    A key \(K\) with a binary representation \(K=2^{d-1} b_{0}+2^{d-2} b_{1}+\ldots+2 b_{d-2}+b_{d-1}\)
Ensure:
    \(A_{0}=[K] G\)
    \(\left(H_{i}\right)_{i \in\{0, . ., d-1\}}\), the Hamming distances
    function
    Random Moduli configuration C
    \(A_{1}=[2] A_{0}\)
        for \(\mathrm{i}=1\) to \(\mathrm{d}-1\) do
        \(A_{\overline{b_{i}}}=A_{\overline{b_{i}}}+A_{b_{i}}\)
        \(A_{b_{i}}=[2] A_{b_{i}}\)
    end for
    end function
```


Scalar Multiplication on ECC

Denote RNSn an RNS representation with n moduli.

```
Algorithm Montgomery Powering Ladder (MPL) for ECC in RNSn
Require: A point \(G\) in RNSn representation
    A key \(K\) with a binary representation \(K=2^{d-1} b_{0}+2^{d-2} b_{1}+\ldots+2 b_{d-2}+b_{d-1}\)
```


Ensure:

```
\(A_{0}=[K] G\)
\(\left(H_{i}\right)_{i \in\{0, . ., d-1\}}\), the Hamming distances
```


function

```
Random Moduli configuration C
\(A_{1}=[2] A_{0}\)
\(H_{0}=\) Hamming Weight of \(\left(A_{0}, A_{1}\right)\)
for \(\mathrm{i}=1\) to \(\mathrm{d}-1\) do
\(A_{\overline{b_{i}}}=A_{\overline{b_{i}}}+A_{b_{i}}\)
\(A_{b_{i}}=[2] A_{b_{i}}\)
\(H_{i}=\) Hamming distance between actual \(\left(A_{0}, A_{1}\right)\) and previous \(\left(A_{0}, A_{1}\right)\)
end for
end function
```

We obtain a vector of Hamming distances $H=\left(H_{0}, \ldots, H_{d-1}\right)$.

Question!

Can we find K if we know the sequence H ?

Modular multiplication Montgomery Algorithm

Algorithm RNS modular multiplication
Require:
A base $\mathcal{B}_{n}=\left\{m_{1}, \ldots, m_{n}\right\}$ where $\underset{\sim}{M}=\prod_{i=0}^{n} m_{i}$
A base $\widetilde{\mathcal{B}}_{n}=\left\{\widetilde{m}_{1}, \ldots, \widetilde{m}_{n}\right\}$ where $\widetilde{M}=\prod_{i=0}^{n} \widetilde{m}_{i}$
N in \mathcal{B}_{n} and $\widetilde{\mathcal{B}}_{n}$ with $\operatorname{gcd}(\mathrm{N}, \mathrm{M})=1$ and $0<2 \mathrm{~N}<\mathrm{M}$
$A, B \in \mathbb{Z}$ in \mathcal{B}_{n} and $\widetilde{\mathcal{B}}_{n}$ with $A \times B<N M$

function

$Q \leftarrow(-A \times B) \times N^{-1}$ in base \mathcal{B}_{n}
Extension 1 of Q, from \mathcal{B}_{n} to $\widetilde{\mathcal{B}}_{n}$
$R \leftarrow(A \times B+Q \times N) \times M^{-1}$ in base $\widetilde{\mathcal{B}}_{n}$
Extension 2 of R , from $\widetilde{\mathcal{B}}_{n}$ to \mathcal{B}_{n}
end function
Ensure: $R \equiv A B M^{-1} \bmod N$ with $\mathrm{R}<2 \mathrm{~N}$
J.C. Bajard \& al.(2004) "Leak Resistant Arithmetic".

- Choose $2 n$ fixed moduli $\left\{\mu_{1}, . ., \mu_{2 n}\right\}$ pairwise coprime.
- Draw $\left\{m_{1}, \ldots, m_{n}\right\}$ among $\left\{\mu_{1}, . ., \mu_{2 n}\right\}$ for \mathcal{B}_{n}, the remaining $\left\{\widetilde{m}_{1}, \ldots, \widetilde{m}_{n}\right\}$ for $\widetilde{\mathcal{B}}_{n}$.

Modular multiplication Montgomery Algorithm

Algorithm RNS modular multiplication

Require:

A base $\mathcal{B}_{n}=\left\{m_{1}, \ldots, m_{n}\right\}$ where $M=\prod_{i=0}^{n} m_{i}$
A base $\widetilde{\mathcal{B}}_{n}=\left\{\widetilde{m}_{1}, \ldots, \widetilde{m}_{n}\right\}$ where $\widetilde{M}=\prod_{i=0}^{n} \widetilde{m}_{i}$
N in \mathcal{B}_{n} and $\widetilde{\mathcal{B}}_{n}$ with $\operatorname{gcd}(\mathrm{N}, \mathrm{M})=1$ and $0<2 \mathrm{~N}<\mathrm{M}$
$A, B \in \mathbb{Z}$ in \mathcal{B}_{n} and $\widetilde{\mathcal{B}}_{n}$ with $A \times B<N M$

function

$Q \leftarrow(-A \times B) \times N^{-1}$ in base \mathcal{B}_{n}
Extension 1 of Q, from \mathcal{B}_{n} to $\widetilde{\mathcal{B}}_{n}$
$R \leftarrow(A \times B+Q \times N) \times M^{-1}$ in base $\widetilde{\mathcal{B}}_{n}$
Extension 2 of R , from $\widetilde{\mathcal{B}}_{n}$ to \mathcal{B}_{n}
end function
Ensure: $R \equiv A B M^{-1} \bmod N$ with $\mathrm{R}<2 \mathrm{~N}$
J.C. Bajard \& al.(2004) "Leak Resistant Arithmetic".

- Choose $2 n$ fixed moduli $\left\{\mu_{1}, . ., \mu_{2 n}\right\}$ pairwise coprime.
- Draw $\left\{m_{1}, \ldots, m_{n}\right\}$ among $\left\{\mu_{1}, . ., \mu_{2 n}\right\}$ for \mathcal{B}_{n}, the remaining $\left\{\widetilde{m}_{1}, \ldots, \widetilde{m}_{n}\right\}$ for $\widetilde{\mathcal{B}}_{n}$.

Question

What is the level of protection ensured by random moduli?

Perfect Noise

- $L(H, K)$ the joint distribution of (H, K),
- $L(H \mid K)$ the conditional distribution of H given K,
- $L(H)$ and $L(K)$ the marginal distributions of H and K.

The perfect noise must fulfill $L(H, K)=L(H \mid K) L(K)=L(H) L(K)$.
Said differently

$$
L(H)-L(H \mid K)=0
$$

Total Variation to Independence (TVI) with Monte Carlo Method

Evaluation of the distance between $L(H)$ and $L(H \mid K)$
$I=\left[0,2^{p}\left[=\bigcup_{k=0}^{2^{p^{\prime}}} \bigcup_{k}-1 I_{k}\right.\right.$ and $\mathcal{H}^{i}=\left[\min \left(H_{i}\right), \max \left(H_{i}\right)\right]=\bigcup_{j=0}^{q-1} \mathcal{H}_{j}^{i}$

$$
\mathrm{TVI}_{i}=\frac{1}{2} \sum_{k=0}^{2^{p^{\prime}}} \sum_{j=\mathbf{0}}^{\mathbf{1}}\left|P\left(H_{i} \in \mathcal{H}_{j}^{i}\right)-P\left(H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right)\right| .
$$

Total Variation ECC 112 RNS 10, 8000000 keys

Total Variation, ECC Edward RNS 9, 1000000 keys

Total Variation as a function of the calculation step.

Testing tools

Given values of $H=\left(H_{0}, \ldots, H_{d-1}\right)$, what can be done to evaluate the quality of randomization?
(1) Nist Statistical Tests

Issue: the vector H has a multivariate Gaussian distribution.
(2) Leakage Analysis

- Total Variation to Independence (TVI).
- Mutual Information Analysis (MIA).
- Differential Power Analysis (DPA).
- Correlation Power Analysis (CPA).
- Maximum Likelihood Estimator (MLE) used for Template Attack.

Mutual Information Analysis (MIA) for randomized moduli

$$
M I A_{i}=\sum_{k=0}^{2^{p^{\prime}}-1} P\left(K \in I_{k}\right) \sum_{j=0}^{q-1} P\left(H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right) \log \left(\frac{P\left(H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right)}{P\left(H_{i} \in \mathcal{H}_{j}^{i}\right)}\right)
$$

- Using Mean Square Error MSE = variance((P)

$$
\operatorname{MSE}_{P\left(H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right)} \approx \frac{\sigma^{2}\left(\mathbf{1}_{\left\{H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right\}}\right)}{S} .
$$

Mutual Information Analysis (MIA) for randomized moduli

$$
M I A_{i}=\sum_{k=0}^{2^{p^{\prime}}-1} P\left(K \in I_{k}\right) \sum_{j=0}^{q-1} P\left(H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right) \log \left(\frac{P\left(H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right)}{P\left(H_{i} \in \mathcal{H}_{j}^{i}\right)}\right) .
$$

- Using Mean Square Error MSE = variance(P)

$$
\operatorname{MSE}_{P\left(H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right)} \approx \frac{\sigma^{2}\left(\mathbf{1}_{\left\{H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right\}}\right)}{S} .
$$

- $\log \left(P\left(H_{i} \in \mathcal{H}_{j}^{i}\right)\right)$ and $\log \left(P\left(H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right)\right)$ have biased Monte Carlo estimators.
- Using Mean Square Error MSE $=$ bias $^{2}(\log (P))+$ variance $(\log (P))$

$$
M S E_{\log \left(P\left(H_{i} \in \mathcal{H}_{j}^{i}\right)\right)} \approx \frac{\sigma^{2}\left(\mathbf{1}_{\left\{H_{i} \in \mathcal{H}_{j}^{i}\right\}}\right)}{S P^{2}\left(H_{i} \in \mathcal{H}_{j}^{i}\right)} \quad \text { and } \quad M S E_{\log \left(P\left(H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right)\right.} \approx \frac{\sigma^{\mathbf{2}}\left(\mathbf{1}_{\left\{H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right\}}\right)}{S P^{2}\left(H_{i} \in \mathcal{H}_{j}^{i} \mid K \in I_{k}\right)} .
$$

Conclusion

For quantities smaller than one, the logarithm increases the distances but amplifies significantly the variance. It becomes difficult to use $M I A_{i}$ as a distinguisher.

DPA for randomized moduli

Denote

$$
\bar{H}_{i}(K, C)=\frac{1}{S} \sum_{l=1}^{S} H_{i}\left(K, C^{\prime}\right) \quad \text { and } \quad \bar{H}_{i}\left(K_{j}^{\prime}, C^{\prime}\right)=\frac{1}{S} \sum_{l=1}^{S} H_{i}\left(K_{j}^{\prime}, C^{l+S}\right)
$$

We use the difference:

$$
\operatorname{DIFF}_{i}=\bar{H}_{i}(K, C)-\bar{H}_{i}\left(K_{j}^{\prime}, C^{\prime}\right)
$$

For example, when $K=110111101110_{2}$:

- We get $1^{\text {st }}$ zero from $K=110111101110_{2}$ and $K_{1}^{\prime}=111111111111_{2}$.
- We get $2^{d e}$ zero from $K=110111101110_{2}$ and $K_{2}^{\prime}=110111111111_{2}$.
- We get $3^{\text {rd }}$ zero from $K=110111101110_{2}$ and $K_{3}^{\prime}=110111101111_{2}$.

DPA for randomized moduli

RNS6 and RNS7: DPA between 0xfffffff and 0xdeeefbf7 with respectively a sample of size $S=1000000$ and $S=90000$.
$0 x d e e e f b f 7=11011110111011101111101111110111_{2}$

CPA for randomized moduli

CPA use the correlation at step i between observations $H_{i}\left(K, C^{\prime}\right)$ and simulations $H_{i}\left(K^{\prime}, C^{1+S}\right)$.

$$
\xi_{i}=\frac{\frac{1}{S} \sum_{l=\mathbf{1}}^{S}\left[H_{i}\left(K, C^{\prime}\right)-\bar{H}_{i}(K, C)\right]\left[H_{i}\left(K^{\prime}, C^{l+S}\right)-\bar{H}_{i}\left(K^{\prime}, C\right)\right]}{\sqrt{\frac{1}{S} \sum_{l_{\mathbf{1}}=\mathbf{1}}^{S}\left[H_{i}\left(K, C^{l_{\mathbf{1}}}\right)-\bar{H}_{i}(K, C)\right]^{\mathbf{2}} \frac{1}{S} \sum_{l_{\mathbf{2}}=\mathbf{1}}^{S}\left[H_{i}\left(K^{\prime}, C^{l_{\mathbf{2}}+S}\right)-\bar{H}_{i}\left(K^{\prime}, C\right)\right]^{2}}}
$$

RNS5, Correlation between $0 \times$ deeefbf7 and $0 \times$ deeefbf7 for a sample of size $S=100000$.

Cross Information

CPA and DPA do not consider cross information between calculation steps.
$\operatorname{Cov}(\mathrm{Hj}, \mathrm{Hi})$ with j fixed and i variable

Step of calculation in Montgomery Ladder. Fixed moduli RNS10, $\operatorname{Cov}\left(H_{j}, H_{i}\right)_{j=1,4,8,10}$.

Marginal Distribution of Hamming distances

ECC 112 RNS 10, with random moduli

Frequency of $H_{10}, S=2 \times 10^{6}$.

Maximum Likelihood Estimator (MLE)

Assume $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$ has a multivariate Gaussian distribution

Maximum Likelihood Estimator (MLE)

Assume $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$ has a multivariate Gaussian distribution with a density

$$
p_{k, i}\left(x^{i}\right)=\frac{1}{(\sqrt{2 \pi})^{i+1} \sqrt{\operatorname{det}\left(\Gamma_{k, i}\right)}} \exp \left(-\frac{{ }^{t}\left(x^{i}-m^{k, i}\right) \Gamma_{k, i}^{-1}\left(x^{i}-m^{k, i}\right)}{2}\right)
$$

where $x^{i}=\left(x_{0}, \ldots, x_{i}\right)$ and $\left(m^{k, i}, \Gamma_{k, i}\right)$ are the mean and the covariance matrix of $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$.

Maximum Likelihood Estimator (MLE)

Assume $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$ has a multivariate Gaussian distribution with a density

$$
p_{k, i}\left(x^{i}\right)=\frac{1}{(\sqrt{2 \pi})^{i+1} \sqrt{\operatorname{det}\left(\Gamma_{k, i}\right)}} \exp \left(-\frac{{ }^{t}\left(x^{i}-m^{k, i}\right) \Gamma_{k, i}^{-1}\left(x^{i}-m^{k, i}\right)}{2}\right)
$$

where $x^{i}=\left(x_{0}, \ldots, x_{i}\right)$ and $\left(m^{k, i}, \Gamma_{k, i}\right)$ are the mean and the covariance matrix of $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$.

- Learning Phase

Maximum Likelihood Estimator (MLE)

Assume $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$ has a multivariate Gaussian distribution with a density

$$
p_{k, i}\left(x^{i}\right)=\frac{1}{(\sqrt{2 \pi})^{i+1} \sqrt{\operatorname{det}\left(\Gamma_{k, i}\right)}} \exp \left(-\frac{{ }^{t}\left(x^{i}-m^{k, i}\right) \Gamma_{k, i}^{-1}\left(x^{i}-m^{k, i}\right)}{2}\right)
$$

where $x^{i}=\left(x_{0}, \ldots, x_{i}\right)$ and $\left(m^{k, i}, \Gamma_{k, i}\right)$ are the mean and the covariance matrix of $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$.

- Learning Phase
- Estimation Phase

Maximum Likelihood Estimator (MLE)

Assume $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$ has a multivariate Gaussian distribution with a density

$$
p_{k, i}\left(x^{i}\right)=\frac{1}{(\sqrt{2 \pi})^{i+1} \sqrt{\operatorname{det}\left(\Gamma_{k, i}\right)}} \exp \left(-\frac{{ }^{t}\left(x^{i}-m^{k, i}\right) \Gamma_{k, i}^{-1}\left(x^{i}-m^{k, i}\right)}{2}\right)
$$

where $x^{i}=\left(x_{0}, \ldots, x_{i}\right)$ and $\left(m^{k, i}, \Gamma_{k, i}\right)$ are the mean and the covariance matrix of $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$.

- Learning Phase

Learning of $\left(m^{k, i}, \Gamma_{k, i}\right)$ with a sample of size L.

- Estimation Phase

Maximum Likelihood Estimator (MLE)

Assume $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$ has a multivariate Gaussian distribution with a density

$$
p_{k, i}\left(x^{i}\right)=\frac{1}{(\sqrt{2 \pi})^{i+1} \sqrt{\operatorname{det}\left(\Gamma_{k, i}\right)}} \exp \left(-\frac{{ }^{t}\left(x^{i}-m^{k, i}\right) \Gamma_{k, i}^{-1}\left(x^{i}-m^{k, i}\right)}{2}\right)
$$

where $x^{i}=\left(x_{0}, \ldots, x_{i}\right)$ and $\left(m^{k, i}, \Gamma_{k, i}\right)$ are the mean and the covariance matrix of $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$.

- Learning Phase

Learning of $\left(m^{k, i}, \Gamma_{k, i}\right)$ with a sample of size L.

- Estimation Phase

We observe S realizations $\left(x_{j}^{i}\right)_{1 \leq j \leq S}$ of $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$.

Maximum Likelihood Estimator (MLE)

Assume $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$ has a multivariate Gaussian distribution with a density

$$
p_{k, i}\left(x^{i}\right)=\frac{1}{(\sqrt{2 \pi})^{i+1} \sqrt{\operatorname{det}\left(\Gamma_{k, i}\right)}} \exp \left(-\frac{{ }^{t}\left(x^{i}-m^{k, i}\right) \Gamma_{k, i}^{-1}\left(x^{i}-m^{k, i}\right)}{2}\right)
$$

where $x^{i}=\left(x_{0}, \ldots, x_{i}\right)$ and $\left(m^{k, i}, \Gamma_{k, i}\right)$ are the mean and the covariance matrix of $H^{i}=\left(H_{0}, \ldots, H_{i}\right)$.

- Learning Phase

Learning of $\left(m^{k, i}, \Gamma_{k, i}\right)$ with a sample of size L.

- Estimation Phase

$$
\begin{aligned}
& \text { We observe } S \text { realizations }\left(x_{j}^{i}\right)_{1 \leq j \leq S} \text { of } H^{i}=\left(H_{0}, \ldots, H_{i}\right) \text {. } \\
& \text { We choose } K=\arg \max _{k}\left\{\prod_{j=1}^{S} p_{k, i}\left(x_{j}^{i}\right)\right\} .
\end{aligned}
$$

Maximum Likelihood Estimator (MLE)

Comparaison between different RNSn with $i=10$ i.e. $H^{10}=\left(H_{0}, \ldots, H_{10}\right)$.

Probability of success to find a 10-bits key with MLE on ECC 112 Montgomery in Jacobian coordinates.

Maximum Likelihood Estimator (MLE)

What happen when $i<11$ in $H^{i}=\left(H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right)$?

Probability of success to find the second bit of the key with MLE on ECC 112 in RNS5.

Maximum Likelihood Estimator (MLE)

What happen when $i<11$ in $H^{i}=\left(H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}, H_{7}, H_{8}\right)$?

Probability of success to find the second bit of the key with MLE on ECC 112 in RNS5.

Maximum Likelihood Estimator (MLE)

What happen when $i<11$ in $H^{i}=\left(H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}, H_{7}, H_{8}, H_{9}\right)$?

Probability of success to find the second bit of the key with MLE on ECC 112 in RNS5.

Maximum Likelihood Estimator (MLE)

What happen when $i<11$ in $\quad H^{i}=\left(H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}, H_{7}, H_{8}, H_{10}\right)$?

Probability of success to find the second bit of the key with MLE on ECC 112 in RNS5.

Maximum Likelihood Estimator (MLE)

What happen when $i<11$ in $\quad H^{i}=\left(H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}, H_{7}, H_{8}, H_{10}, H_{11}\right)$?

Probability of success to find the second bit of the key with MLE on ECC 112 in RNS5.

Maximum Likelihood Estimator

Probability of success to find the second bit of the key with MLE on ECC 112 in RNS5.

Maximum Likelihood Estimator

- Considering success rate <0.1, what is the minimum n to protect an attack based on S traces?

	\#Ecc			
Number of traces S	112	256	384	521
2^{30}	16	15	15	18

- The learning phase costs more than the estimation phase even with Monte Carlo.

- From which level we loose random behaviour?

We have to use $n>7$ to avoid an attack with a single trace With a 95% prediction interval for an error $<0.1 \%$.

Conclusion and future work

Conclusion

- Maximum Information in ten first steps of calculation.
- DPA is possible but inconsistent.
- CPA is unreliable.
- MIA is difficult to be used as distinguisher.
- MLE give strong information on leakage. Modelisation of success as a function of $\frac{S}{\binom{2 n}{n}}$ invariant with n.
Future Work
- Is there sufficient information in only one trace? Few traces?
- A template with conditional desintegration could give more information on the key?
- Can we find a better template with the Monte Carlo method using variance reduction?

Thanks for your attention. Do you have any questions?
 jerome.courtois@lip6.fr

Maximum Likelihood Estimator

	$\# E C C$			
$S \times \frac{\# E C C-1}{9}$	112	256	384	521
	2^{10}	6	9	13
2^{15}	8	9	13	18
2^{20}	11	10	13	18
2^{25}	13	13	13	18
2^{30}	16	15	15	18
2^{35}	19	18	18	18
2^{40}	21	20	20	20
2^{45}	24	23	23	22
2^{50}	26	26	25	25

Table: Minimum n to protect the whole key till $S \times \frac{\# E C C-\mathbf{1}}{\mathbf{9}}$ traces of the target key. $\left(m^{k, 10}, \Gamma_{k, 10}\right)$ is the exact value. $p_{t}=0.1$.

Elliptic Curves for Cryptography (ECC)

Elliptic Curves for Cryptography(ECC)

The domain of an ECC denoted $E\left(F_{p}\right)$ is defined by:

- A finite field F_{p} with p a prime number
- Two elements a and b belonging to F_{p}
- An equation $\mathrm{E}: y^{2} \equiv x^{3}+a x+b \bmod \mathrm{p}$
- $G\left(x_{G}, y_{G}\right)$ a base point of $E\left(F_{p}\right)$ and n prime number is the order of G on $E\left(F_{p}\right)$
- Four types of curve are implemented: 112, 256, 384 et 521 bits
- Implementation in Jacobian coordinates.
- Scalar Multiplication with Montgomery or Co-Z Scale.

In addition we test on an Edward curve 25219 in affine coordinates.

Extensions

(1) Raw method, only for first extension.

But we obtain $X=X+\alpha \times M$.
(2) Shenoy-Kamuresan for the second extension.

Correction of the error with using an extra modulo and large choice of moduli.
(3) Mix-Radix to have an exact computation.

Distribution of Hamming distances

ECC 112 RNS 10, with random moduli

Figure: Frequency of $H_{10}, 2 \times 10^{6}$ computations.

Evaluation of moduli MLE

Not hollow moduli=as many as 1 as 0 Hollow moduli=a maximum of 1 $2^{32}-\epsilon=$ many 1 as most significant bit

moduli type	size	special	succes	9 and 10 bits found
Not hollow moduli	≤ 32	random	62.89%	77.53%
Hollow moduli	$=32$	$2^{32}-\epsilon$	$62.30 \%(61.32 \%)$	$74.6 \%(75.78 \%)$
Not hollow moduli	$=32$	$2^{32}-\epsilon$	59.57%	73.82%
Any	$=27$	random	58.98%	72.85%
Not hollow moduli	$=32$	random	$52.73 \%(60.93 \%)$	$68.75 \%(73.4 \%)$
Any	≤ 32	random	$62.5 .50 \%(54.10 \%)$	$75.78 \%(70.31 \%)$
Any	$=32$	random	54.29%	69.53%

ECC 112, RNS5, 1000 for template, 100 for MLE

From which level we loose the random behaviour?

Let us denote the null hypothesis
\mathbf{H}_{0} : "We obtain 10 bits of the key with a probability equal to 2^{-9} "
We calculate the 95% prediction interval with $p=2^{-9}$:

$$
\mathcal{I}_{p}=\left[p-1.96 \sqrt{\frac{p(1-p)}{S E}} ; p+1.96 \sqrt{\frac{p(1-p)}{S E}}\right] .
$$

$S E$ is a sample size. If $f \in \mathcal{I}_{p}$, we do not reject \mathbf{H}_{0} otherwise we reject \mathbf{H}_{0}.
We can notice in Table that we have to use $n>7$ to avoid an attack with a single trace. This confirms the suggestion of [?].

n	5	6	7	8	9	10	11
S	1	1	1	5	7	16	130

