Resilience of randomized RNS arithmetic with respect to side-channel leaks of cryptographic computation

Jérôme Courtois

jerome.courtois@lip6.fr

May 5, 2019

In collaboration with Lokmane Abbas-Turki and Jean-Claude Bajard

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $\mathcal{B}_n = \{m_1, ..., m_n\}$, m_i pairwise coprime.
- Chinese Remainder theorem
 - \rightarrow unique representation of integers in [0;M[, $M = \prod_{i=1}^{n} m_i$, with theirs residues in \mathcal{B}_n
- X is denoted $\{x_1, ..., x_n\}$ in \mathcal{B}_n with $x_i = X \mod m_i$

(日) (同) (三) (

Jérôme Courtois (LIP6)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Find K from Hamming distances

Side Channel Leakage proportional to Hamming distances.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Find K from Hamming distances

J.C. Bajard & al.(2004) "Leak Resistant Arithmetic".

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Scalar Multiplication on ECC

Denote RNSn an RNS representation with n moduli.

Algorithm Montgomery Powering Ladder (MPL) for ECC in RNSn

Require: A point G in RNSn representation

A key K with a binary representation $K = 2^{d-1}b_0 + 2^{d-2}b_1 + \ldots + 2b_{d-2} + b_{d-1}$ Ensure:

 $A_0 = [K]G$ $(H_i)_{i \in \{0,..,d-1\}}$, the Hamming distances

function

 $A_1 = [2]A_0$

for i=1 to d-1 do $A_{\overline{b_i}} = A_{\overline{b_i}} + A_{b_i}$ $A_{b_i} = [2]A_{b_i}$

end for end function

・ロト ・四ト ・ヨト ・ヨト

Scalar Multiplication on ECC

Denote RNSn an RNS representation with n moduli.

Algorithm Montgomery Powering Ladder (MPL) for ECC in RNSn

Require: A point G in RNSn representation

A key K with a binary representation $K = 2^{d-1}b_0 + 2^{d-2}b_1 + \ldots + 2b_{d-2} + b_{d-1}$ Ensure:

 $A_0 = [K]G$ $(H_i)_{i \in \{0,...,d-1\}}$, the Hamming distances

function

Random Moduli configuration C $A_1 = [2]A_0$

for i=1 to d-1 do

$$A_{\overline{b_i}} = A_{\overline{b_i}} + A_{b_i}$$

 $A_{b_i} = [2]A_{b_i}$

end for end function

・ロト ・四ト ・ヨト ・ヨト

Scalar Multiplication on ECC

Denote RNSn an RNS representation with n moduli.

Algorithm Montgomery Powering Ladder (MPL) for ECC in RNSn **Require:** A point G in RNSn representation A key K with a binary representation $K = 2^{d-1}b_0 + 2^{d-2}b_1 + ... + 2b_{d-2} + b_{d-1}$ Ensure: $A_0 = [K]G$ $(H_i)_{i \in \{0, \dots, d-1\}}$, the Hamming distances function Random Moduli configuration C $A_1 = [2]A_0$ $H_0 =$ Hamming Weight of (A_0, A_1) for i=1 to d-1 do $A_{\overline{b_i}} = A_{\overline{b_i}} + A_{b_i}$ $A_{b_i} = [2]A_{b_i}$ H_i = Hamming distance between actual (A_0, A_1) and previous (A_0, A_1) end for end function

We obtain a vector of Hamming distances $H = (H_0, ..., H_{d-1})$.

Question!

Can we find K if we know the sequence H?

Algorithm RNS modular multiplication

Require:

A base $\mathcal{B}_n = \{m_1, ..., m_n\}$ where $M = \prod_{i=0}^n m_i$ A base $\widetilde{\mathcal{B}}_n = \{\widetilde{m}_1, ..., \widetilde{m}_n\}$ where $\widetilde{M} = \prod_{i=0}^n \widetilde{m}_i$ N in \mathcal{B}_n and $\widetilde{\mathcal{B}}_n$ with gcd(N,M)=1 and 0<2N<M $A, B \in \mathbb{Z}$ in \mathcal{B}_n and $\widetilde{\mathcal{B}}_n$ with $A \times B < NM$ function $Q \leftarrow (-A \times B) \times N^{-1}$ in base \mathcal{B}_n Extension 1 of Q, from \mathcal{B}_n to $\widetilde{\mathcal{B}}_n$ $R \leftarrow (A \times B + Q \times N) \times M^{-1}$ in base $\widetilde{\mathcal{B}}_n$ Extension 2 of R, from $\widetilde{\mathcal{B}}_n$ to \mathcal{B}_n end function Ensure: $R \equiv ABM^{-1}$ mod N with R<2N

J.C. Bajard & al.(2004) "Leak Resistant Arithmetic".

- Choose 2n fixed moduli $\{\mu_1, ..., \mu_{2n}\}$ pairwise coprime.
- Draw $\{m_1, ..., m_n\}$ among $\{\mu_1, ..., \mu_{2n}\}$ for \mathcal{B}_n , the remaining $\{\widetilde{m}_1, ..., \widetilde{m}_n\}$ for \mathcal{B}_n .

< 口 > < 同 > < 回 > < 国 > < 国

Algorithm RNS modular multiplication

Require:

A base $\mathcal{B}_n = \{m_1, ..., m_n\}$ where $M = \prod_{i=0}^n m_i$ A base $\widetilde{\mathcal{B}}_n = \{\widetilde{m}_1, ..., \widetilde{m}_n\}$ where $\widetilde{M} = \prod_{i=0}^n \widetilde{m}_i$ N in \mathcal{B}_n and $\widetilde{\mathcal{B}}_n$ with gcd(N,M)=1 and 0<2N<M $A, B \in \mathbb{Z}$ in \mathcal{B}_n and $\widetilde{\mathcal{B}}_n$ with $A \times B < NM$ function $Q \leftarrow (-A \times B) \times N^{-1}$ in base \mathcal{B}_n Extension 1 of Q, from \mathcal{B}_n to $\widetilde{\mathcal{B}}_n$ $R \leftarrow (A \times B + Q \times N) \times M^{-1}$ in base $\widetilde{\mathcal{B}}_n$ Extension 2 of R, from $\widetilde{\mathcal{B}}_n$ to \mathcal{B}_n end function Ensure: $R \equiv ABM^{-1}$ mod N with R<2N

J.C. Bajard & al.(2004) "Leak Resistant Arithmetic".

- Choose 2n fixed moduli $\{\mu_1, ..., \mu_{2n}\}$ pairwise coprime.
- Draw $\{m_1, ..., m_n\}$ among $\{\mu_1, ..., \mu_{2n}\}$ for \mathcal{B}_n , the remaining $\{\widetilde{m}_1, ..., \widetilde{m}_n\}$ for \mathcal{B}_n .

Question

What is the level of protection ensured by random moduli?

- L(H, K) the joint distribution of (H, K),
- L(H|K) the conditional distribution of H given K,
- L(H) and L(K) the marginal distributions of H and K.

The perfect noise must fulfill L(H, K) = L(H|K)L(K) = L(H)L(K).

Said differently

$$L(H) - L(H|K) = 0$$

<ロト <四ト < 回ト < 国

Total Variation to Independence (TVI) with Monte Carlo Method

Evaluation of the distance between L(H) and L(H|K)

$$I = [0, 2^p[= \bigcup_{k=0}^{2^{p'}-1} I_k \text{ and } \mathcal{H}^i = [min(H_i), max(H_i)] = \bigcup_{j=0}^{q-1} \mathcal{H}^i_j$$

$$\mathsf{TVI}_{i} = \frac{1}{2} \sum_{k=0}^{\mathbf{2}P'-\mathbf{1}} \sum_{j=0}^{\mathbf{q}-\mathbf{1}} \left| P\left(H_{i} \in \mathcal{H}_{j}^{i}\right) - P\left(H_{i} \in \mathcal{H}_{j}^{i}|K \in I_{k}\right) \right|$$

Given values of $H = (H_0, ..., H_{d-1})$, what can be done to evaluate the quality of randomization?

- Nist Statistical Tests
 Issue: the vector H has a multivariate Gaussian distribution.
- Leakage Analysis
 - Total Variation to Independence (TVI).
 - Mutual Information Analysis (MIA).
 - Differential Power Analysis (DPA).
 - Correlation Power Analysis (CPA).
 - Maximum Likelihood Estimator (MLE) used for Template Attack.

<ロト <問ト < 注ト < 注

Mutual Information Analysis (MIA) for randomized moduli

$$MIA_i = \sum_{k=0}^{2^{p^i}-1} P(K \in I_k) \sum_{j=0}^{q-1} P(H_i \in \mathcal{H}_j^i | K \in I_k) \log\left(\frac{P(H_i \in \mathcal{H}_j^i | K \in I_k)}{P(H_i \in \mathcal{H}_j^i)}\right).$$

• Using Mean Square Error *MSE* = *variance*(*P*)

$$MSE_{P(H_i \in \mathcal{H}_j^i | K \in I_k)} \approx \frac{\sigma^2 \left(\mathbf{1}_{\{H_i \in \mathcal{H}_j^i | K \in I_k\}} \right)}{S}.$$

・ロト ・回ト ・ヨト ・

Mutual Information Analysis (MIA) for randomized moduli

$$MIA_i = \sum_{k=0}^{2^{p'}-1} P(K \in I_k) \sum_{j=0}^{q-1} P(H_i \in \mathcal{H}_j^i | K \in I_k) \log \left(\frac{P(H_i \in \mathcal{H}_j^i | K \in I_k)}{P(H_i \in \mathcal{H}_j^i)} \right).$$

• Using Mean Square Error *MSE* = *variance*(*P*)

$$MSE_{P(H_i \in \mathcal{H}_j^i | K \in I_k)} \approx \frac{\sigma^2 \left(\mathbf{1}_{\{H_i \in \mathcal{H}_j^i | K \in I_k\}}\right)}{S}.$$

• $\log\left(P\left(H_{i} \in \mathcal{H}_{j}^{i}\right)\right)$ and $\log\left(P\left(H_{i} \in \mathcal{H}_{j}^{i}|K \in I_{k}\right)\right)$ have biased Monte Carlo estimators.

Using Mean Square Error MSE = bias²(log(P)) + variance(log(P))

$$MSE_{\log\left(P\left(H_{i}\in\mathcal{H}_{j}^{i}\right)\right)} \approx \frac{\sigma^{2}\left(\mathbf{1}_{\{H_{j}\in\mathcal{H}_{j}^{i}\}}\right)}{SP^{2}(H_{i}\in\mathcal{H}_{j}^{i})} \quad \text{and} \quad MSE_{\log\left(P\left(H_{i}\in\mathcal{H}_{j}^{i}|K\in I_{k}\right)\right)} \approx \frac{\sigma^{2}\left(\mathbf{1}_{\{H_{i}\in\mathcal{H}_{j}^{i}|K\in I_{k}\}}\right)}{SP^{2}(H_{i}\in\mathcal{H}_{j}^{i}|K\in I_{k})}$$

Conclusion

For quantities smaller than one, the logarithm increases the distances but amplifies significantly the variance. It becomes difficult to use MIA_i as a distinguisher.

Jérôme Courtois (LIP6)

Resilience of Randomize RNS Arithmetic

Denote

$$\overline{H}_i(K,C) = \frac{1}{S} \sum_{l=1}^S H_i(K,C^l) \quad \text{and} \quad \overline{H}_i(K_j',C^l) = \frac{1}{S} \sum_{l=1}^S H_i(K_j',C^{l+S}).$$

We use the difference:

$$\mathsf{DIFF}_i = \overline{H}_i(K, C) - \overline{H}_i(K'_j, C').$$

For example, when $K = 110111101110_2$:

- We get 1^{st} zero from $K = 110111101110_2$ and $K'_1 = 11111111111_2$.
- We get 2^{de} zero from $K = 110111101110_2$ and $K'_2 = 11011111111_2$.
- We get 3^{rd} zero from $K = 110111101110_2$ and $K'_3 = 110111101111_2$.

・ロト ・回ト ・ヨト ・

DPA for randomized moduli

RNS6 and RNS7: DPA between $0 \times fffffff$ and $0 \times deeefbf7$ with respectively a sample of size S = 1000000 and S = 90000.

 $0 \times deeefbf7 = 110111101110111101111101111_2$

Image: A mathematical states and a mathem

CPA for randomized moduli

CPA use the correlation at step i between observations $H_i(K, C^l)$ and simulations $H_i(K', C^{l+S})$.

$$\xi_{i} = \frac{\frac{1}{S} \sum_{l=1}^{S} \left[H_{i}(K, C^{l}) - \overline{H}_{i}(K, C) \right] \left[H_{i}(K^{\prime}, C^{l+S}) - \overline{H}_{i}(K^{\prime}, C) \right]}{\sqrt{\frac{1}{S} \sum_{l_{2}=1}^{S} \left[H_{i}(K, C^{l_{1}}) - \overline{H}_{i}(K, C) \right]^{2} \frac{1}{S} \sum_{l_{2}=1}^{S} \left[H_{i}(K^{\prime}, C^{l_{2}+S}) - \overline{H}_{i}(K^{\prime}, C) \right]^{2}}}$$

RNS5, Correlation between $0 \times deeefbf7$ and $0 \times deeefbf7$ for a sample of size S = 100000.

Jérôme Courtois (LIP6)

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cross Information

CPA and DPA do not consider cross information between calculation steps.

Cov(Hj,Hi) with j fixed and i variable

Step of calculation in Montgomery Ladder. Fixed moduli

RNS10, $Cov(H_j, H_i)_{j=1,4,8,10}$.

Jérôme Courtois (LIP6)

Assume $H^i = (H_0, ..., H_i)$ has a multivariate Gaussian distribution

・ロト ・回ト ・ヨト ・

$$p_{k,i}(x^{i}) = \frac{1}{\left(\sqrt{2\pi}\right)^{i+1}\sqrt{\det(\Gamma_{k,i})}} \exp\left(-\frac{{}^{t}(x^{i}-m^{k,i})\Gamma_{k,i}^{-1}(x^{i}-m^{k,i})}{2}\right),$$

where $x^i = (x_0, ..., x_i)$ and $(m^{k,i}, \Gamma_{k,i})$ are the mean and the covariance matrix of $H^i = (H_0, ..., H_i)$.

$$p_{k,i}(x^{i}) = \frac{1}{\left(\sqrt{2\pi}\right)^{i+1}\sqrt{\det(\Gamma_{k,i})}} \exp\left(-\frac{{}^{t}(x^{i}-m^{k,i})\Gamma_{k,i}^{-1}(x^{i}-m^{k,i})}{2}\right),$$

where $x^i = (x_0, ..., x_i)$ and $(m^{k,i}, \Gamma_{k,i})$ are the mean and the covariance matrix of $H^i = (H_0, ..., H_i)$.

• Learning Phase

Jérôme Courtois (LIP6)

$$p_{k,i}(x^{i}) = \frac{1}{\left(\sqrt{2\pi}\right)^{i+1}\sqrt{\det(\Gamma_{k,i})}} \exp\left(-\frac{{}^{t}(x^{i}-m^{k,i})\Gamma_{k,i}^{-1}(x^{i}-m^{k,i})}{2}\right),$$

where $x^i = (x_0, ..., x_i)$ and $(m^{k,i}, \Gamma_{k,i})$ are the mean and the covariance matrix of $H^i = (H_0, ..., H_i)$.

- Learning Phase
- Estimation Phase

Jérôme Courtois (LIP6)

・ロト ・回ト ・ヨト ・ヨ

$$p_{k,i}(x^{i}) = \frac{1}{\left(\sqrt{2\pi}\right)^{i+1}\sqrt{\det(\Gamma_{k,i})}} \exp\left(-\frac{{}^{t}(x^{i}-m^{k,i})\Gamma_{k,i}^{-1}(x^{i}-m^{k,i})}{2}\right),$$

where $x^i = (x_0, ..., x_i)$ and $(m^{k,i}, \Gamma_{k,i})$ are the mean and the covariance matrix of $H^i = (H_0, ..., H_i)$.

• Learning Phase

Learning of $(m^{k,i}, \Gamma_{k,i})$ with a sample of size L.

Estimation Phase

Jérôme Courtois (LIP6)

$$p_{k,i}(x^{i}) = \frac{1}{\left(\sqrt{2\pi}\right)^{i+1}\sqrt{\det(\Gamma_{k,i})}} \exp\left(-\frac{{}^{t}(x^{i}-m^{k,i})\Gamma_{k,i}^{-1}(x^{i}-m^{k,i})}{2}\right),$$

where $x^i = (x_0, ..., x_i)$ and $(m^{k,i}, \Gamma_{k,i})$ are the mean and the covariance matrix of $H^i = (H_0, ..., H_i)$.

Learning Phase

Learning of $(m^{k,i}, \Gamma_{k,i})$ with a sample of size L.

Estimation Phase

We observe S realizations
$$\left(x_{j}^{i}
ight)_{1\leq j\leq S}$$
 of $H^{i}=(H_{0},...,H_{i}).$

$$p_{k,i}(x^{i}) = \frac{1}{\left(\sqrt{2\pi}\right)^{i+1}\sqrt{\det(\Gamma_{k,i})}} \exp\left(-\frac{{}^{t}(x^{i}-m^{k,i})\Gamma_{k,i}^{-1}(x^{i}-m^{k,i})}{2}\right),$$

where $x^i = (x_0, ..., x_i)$ and $(m^{k,i}, \Gamma_{k,i})$ are the mean and the covariance matrix of $H^i = (H_0, ..., H_i)$.

Learning Phase

Learning of $(m^{k,i}, \Gamma_{k,i})$ with a sample of size L.

Estimation Phase

We observe S realizations
$$(x_j^i)_{1 \le j \le S}$$
 of $H^i = (H_0, ..., H_i)$.
We choose $K = \arg \max_k \left\{ \prod_{j=1}^S p_{k,i}(x_j^i) \right\}$.

Maximum Likelihood Estimator (MLE)

Comparaison between different RNS*n* with i = 10 i.e. $H^{10} = (H_0, ..., H_{10})$.

Probability of success to find a 10-bits key with MLE on ECC 112 Montgomery in Jacobian coordinates.

< 口 > < 同?

Maximum Likelihood Estimator (MLE)

What happen when i < 11 in $H^i = (H_0, H_1, H_2, H_3, H_4, H_5, H_6)$?

Maximum Likelihood Estimator (MLE)

Maximum Likelihood Estimator

What happen when i < 11 in $H^i = (H_0, ..., H_i)$? probability of success 0.9 0.8 0.7 = 6= 8 0.6 <u>S</u> 252 i = 10i = 11 $\left(\begin{array}{c} 2 \times 5 \\ 5 \end{array} \right)$ 0.5 0.1 0.2 0.3 0 0.4 0.5 0.6

• Considering success rate < 0.1, what is the minimum *n* to protect an attack based on *S* traces?

	#ECC			
Number of traces S	112	256	384	521
2 ³⁰	16	15	15	18

• The learning phase costs more than the estimation phase even with Monte Carlo.

• From which level we loose random behaviour? We have to use *n* > 7 to avoid an attack with a single trace With a 95% prediction interval for an error<0.1%.

< A

Conclusion

- Maximum Information in ten first steps of calculation.
- DPA is possible but inconsistent.
- CPA is unreliable.
- MIA is difficult to be used as distinguisher.
- MLE give strong information on leakage. Modelisation of success as a function of $\frac{S}{\binom{2n}{2}}$ invariant with *n*.

Future Work

- Is there sufficient information in only one trace? Few traces?
- A template with conditional desintegration could give more information on the key?
- Can we find a better template with the Monte Carlo method using variance reduction?

Thanks for your attention. Do you have any questions?

jerome.courtois@lip6.fr

A B > A B >

Maximum Likelihood Estimator

	#ECC				
$S imes rac{\#ECC-1}{9}$	112	256	384	521	
2 ¹⁰	6	9	13	18	
2 ¹⁵	8	9	13	18	
2 ²⁰	11	10	13	18	
2 ²⁵	13	13	13	18	
2 ³⁰	16	15	15	18	
2 ³⁵	19	18	18	18	
2 ⁴⁰	21	20	20	20	
2 ⁴⁵	24	23	23	22	
2 ⁵⁰	26	26	25	25	

Table: Minimum *n* to protect the whole key till $S \times \frac{\#ECC-1}{9}$ traces of the target key.($m^{k,10}, \Gamma_{k,10}$) is the exact value. $p_t = 0.1$.

・ロト ・四ト ・ヨト ・ヨト

Elliptic Curves for Cryptography (ECC)

・ロト ・回ト ・ヨト

The domain of an ECC denoted $E(F_p)$ is defined by:

- A finite field F_p with p a prime number
- Two elements a and b belonging to F_p
- An equation $E: y^2 \equiv x^3 + ax + b \mod p$
- $G(x_G, y_G)$ a base point of $E(F_p)$ and *n* prime number is the order of G on $E(F_p)$
- Four types of curve are implemented: 112, 256, 384 et 521 bits
- Implementation in Jacobian coordinates.
- Scalar Multiplication with Montgomery or Co-Z Scale.

In addition we test on an Edward curve 25219 in affine coordinates.

- Shaw method, only for first extension. But we obtain $\widetilde{X} = X + \alpha \times M$.
- Shenoy-Kamuresan for the second extension.
 Correction of the error with using an extra modulo and large choice of moduli.
- Mix-Radix to have an exact computation.

Distribution of Hamming distances

ECC 112 RNS 10, with random moduli

Figure: Frequency of H_{10} , 2 × 10⁶ computations.

Jérôme Courtois (LIP6)

Resilience of Randomize RNS Arithmetic

Not hollow moduli=as many as 1 as 0 Hollow moduli=a maximum of 1 $2^{32} - \epsilon =$ many 1 as most significant bit

moduli type	size	special	succes	9 and 10 bits found
Not hollow moduli	\leq 32	random	62.89%	77.53%
Hollow moduli	=32	$2^{32} - \epsilon$	62.30% (61.32%)	74.6% (75.78%)
Not hollow moduli	=32	$2^{32} - \epsilon$	59.57%	73.82%
Any	=27	random	58.98%	72.85%
Not hollow moduli	=32	random	52.73% (60.93%)	68.75% (73.4%)
Any	\leq 32	random	62.5.50 % (54.10%)	75.78% (70.31%)
Any	= 32	random	54.29%	69.53%

ECC 112, RNS5, 1000 for template, 100 for MLE

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let us denote the null hypothesis

 H_0 : "We obtain 10 bits of the key with a probability equal to 2⁻⁹" We calculate the 95% prediction interval with $p = 2^{-9}$:

$$\mathcal{I}_{p} = \left[p - 1.96\sqrt{\frac{p(1-p)}{SE}}; p + 1.96\sqrt{\frac{p(1-p)}{SE}}\right]$$

SE is a sample size. If $f \in \mathcal{I}_p$, we do not reject H_0 otherwise we reject H_0 .

We can notice in Table that we have to use n > 7 to avoid an attack with a single trace. This confirms the suggestion of [?].

n	5	6	7	8	9	10	11
S	1	1	1	5	7	16	130

Minimum size to reject H_0 with a sample size

(日) (同) (三) (三)

SE = 32256 (error < 0.1% for a 95% prediction interval)