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The context

Cryptographic System
with RNSnKey K

Plaintext

Cyphertext

Side Channel leakage
Power Consumption
Electromagnetic leaks
Sound

H0 H1 ...................Hd−1

Hamming Distances

Moduli configuration

Bn = {m1, ...,mn} , mi pairwise coprime.

Chinese Remainder theorem
→ unique representation of integers in [0;M[, M =

n∏
i=1

mi , with theirs residues in Bn

X is denoted {x1, ..., xn} in Bn with xi = X mod mi

Side Channel Leakage proportional to Hamming distances.
J.C. Bajard & al.(2004) “Leak Resistant Arithmetic”.
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Find K from leakage
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Find K from Hamming distances
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Scalar Multiplication on ECC

Denote RNSn an RNS representation with n moduli.

Algorithm Montgomery Powering Ladder (MPL) for ECC in RNSn

Require: A point G in RNSn representation
A key K with a binary representation K = 2d−1b0 + 2d−2b1 + ...+ 2bd−2 + bd−1

Ensure:
A0 = [K ]G
(Hi )i∈{0,..,d−1}, the Hamming distances

function

Random Moduli configuration C

A1 = [2]A0

H0 = Hamming Weight of (A0,A1)

for i=1 to d-1 do
Abi

= Abi
+ Abi

Abi
= [2]Abi

Hi = Hamming distance between actual (A0,A1) and previous (A0,A1)

end for
end function

We obtain a vector of Hamming distances H = (H0, ...,Hd−1).

Question!
Can we find K if we know the sequence H?
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Modular multiplication Montgomery Algorithm

Algorithm RNS modular multiplication
Require:

A base Bn = {m1, ...,mn} where M =
∏n

i=0 mi

A base B̃n = {m̃1, ..., m̃n} where M̃ =
∏n

i=0 m̃i

N in Bn and B̃n with gcd(N,M)=1 and 0<2N<M
A,B ∈ Z in Bn and B̃n with A× B < NM

function
Q ← (−A× B)× N−1 in base Bn

Extension 1 of Q, from Bn to B̃n

R ← (A× B + Q × N)×M−1 in base B̃n

Extension 2 of R, from B̃n to Bn

end function
Ensure: R ≡ ABM−1 mod N with R<2N

J.C. Bajard & al.(2004) “Leak Resistant Arithmetic”.
Choose 2n fixed moduli {µ1, .., µ2n} pairwise coprime.

Draw {m1, ...,mn} among {µ1, .., µ2n} for Bn, the remaining {m̃1, ..., m̃n} for B̃n.

Question
What is the level of protection ensured by random moduli?
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Perfect Noise

Cryptographic System
with RNSnKey K

Plaintext

Cyphertext

Random? H = (H0 H1 ...................Hd−1)

Hamming Distances

Random
Moduli configuration C

L(H,K) the joint distribution of (H,K),
L(H|K) the conditional distribution of H given K ,
L(H) and L(K) the marginal distributions of H and K .

The perfect noise must fulfill L(H,K) = L(H|K)L(K) = L(H)L(K).

Said differently
L(H)− L(H|K) = 0

.
Jérôme Courtois (LIP6) Resilience of Randomize RNS Arithmetic May 5, 2019 5 / 20



Total Variation to Independence (TVI) with Monte Carlo Method

Evaluation of the distance between L(H) and L(H|K)

I = [0, 2p [=
2p′−1⋃

k=0
Ik and Hi = [min(Hi ),max(Hi )] =

q−1⋃
j=0
Hi

j

TVIi =
1
2

2p′−1∑
k=0

q−1∑
j=0

∣∣∣∣P (Hi ∈ Hi
j

)
− P

(
Hi ∈ Hi

j |K ∈ Ik

) ∣∣∣∣.

Total Variation as a function of the calculation step.
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Testing tools

Given values of H = (H0, ...,Hd−1), what can be done to evaluate the quality of randomization?

1 Nist Statistical Tests
Issue: the vector H has a multivariate Gaussian distribution.

2 Leakage Analysis
Total Variation to Independence (TVI).
Mutual Information Analysis (MIA).
Differential Power Analysis (DPA).
Correlation Power Analysis (CPA).
Maximum Likelihood Estimator (MLE) used for Template Attack.
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Mutual Information Analysis (MIA) for randomized moduli

MIAi =

2p′−1∑
k=0

P(K ∈ Ik )

q−1∑
j=0

P(Hi ∈ Hi
j |K ∈ Ik ) log

(
P(Hi ∈ Hi

j |K ∈ Ik )

P(Hi ∈ Hi
j )

)
.

Using Mean Square Error MSE = variance(P)

MSE
P
(

Hi∈H
i
j
|K∈Ik

) ≈
σ2
(

1{Hi∈H
i
j
|K∈Ik}

)
S

.

log
(

P
(

Hi ∈ Hi
j

))
and log

(
P
(

Hi ∈ Hi
j |K ∈ Ik

))
have biased Monte Carlo estimators.

Using Mean Square Error MSE = bias2(log(P)) + variance(log(P))

MSE
log
(

P
(

Hi∈H
i
j

)) ≈
σ2
(

1{Hi∈H
i
j
}

)
SP2(Hi ∈ Hi

j )
and MSE

log
(

P
(

Hi∈H
i
j
|K∈Ik

)) ≈
σ2
(

1{Hi∈H
i
j
|K∈Ik}

)
SP2(Hi ∈ Hi

j |K ∈ Ik )
.

Conclusion
For quantities smaller than one, the logarithm increases the distances but amplifies significantly
the variance. It becomes difficult to use MIAi as a distinguisher.
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DPA for randomized moduli

Denote

H i (K ,C) =
1
S

S∑
l=1

Hi (K ,C l ) and H i (K ′j ,C
′) =

1
S

S∑
l=1

Hi (K ′j ,C
l+S ).

We use the difference:

DIFFi = H i (K ,C)− H i (K ′j ,C
′).

For example, when K = 1101111011102:

We get 1st zero from K = 1101111011102 and K ′1 = 1111111111112.

We get 2de zero from K = 1101111011102 and K ′2 = 1101111111112.

We get 3rd zero from K = 1101111011102 and K ′3 = 1101111011112.
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DPA for randomized moduli

RNS6 and RNS7: DPA between 0xfffffff and 0xdeeefbf 7 with respectively a sample of size
S = 1000000 and S = 90000.

0xdeeefbf 7 = 110111101110111011111011111101112
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CPA for randomized moduli

CPA use the correlation at step i between observations Hi (K ,C l ) and simulations Hi (K ′,C l+S ).

ξi =

1
S

S∑
l=1

[
Hi (K ,C l )− H i (K ,C)

] [
Hi (K ′,C l+S )− H i (K ′,C)

]
√√√√ 1

S

S∑
l1=1

[
Hi (K ,C l1 )− H i (K ,C)

]2 1
S

S∑
l2=1

[
Hi (K ′,C l2+S )− H i (K ′,C)

]2

RNS5, Correlation between 0× deeefbf 7 and 0× deeefbf 7 for a sample of size S = 100000.
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Cross Information

CPA and DPA do not consider cross information between calculation steps.

RNS10, Cov(Hj ,Hi )j=1,4,8,10.
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Marginal Distribution of Hamming distances

Frequency of H10, S=2× 106.
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Maximum Likelihood Estimator (MLE)

Assume H i = (H0, ...,Hi ) has a multivariate Gaussian distribution

with a density

pk,i (x i ) =
1(√

2π
)i+1√

det(Γk,i )
exp

(
−

t (x i −mk,i )Γ−1
k,i (x i −mk,i )

2

)
,

where x i = (x0, ..., xi ) and (mk,i , Γk,i ) are the mean and the covariance matrix of
H i = (H0, ...,Hi ).

Learning Phase

Learning of (mk,i , Γk,i ) with a sample of size L.

Estimation Phase

We observe S realizations
(

x i
j

)
1≤j≤S

of H i = (H0, ...,Hi ).

We choose K = arg max
k

{
S∏

j=1
pk,i (x i

j )

}
.
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Maximum Likelihood Estimator (MLE)

Comparaison between different RNSn with i = 10 i.e. H10 = (H0, ...,H10).

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

S

(2n
n )

pr
ob

ab
ili

ty
of

su
cc

es
s

n = 6
n = 9

n = 11

Probability of success to find a 10-bits key with MLE on ECC 112 Montgomery in Jacobian
coordinates.
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Maximum Likelihood Estimator (MLE)

What happen when i < 11 in H i = (H0,H1,H2,H3,H4,H5,H6)?
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i = 6

Probability of success to find the second bit of the key with MLE on ECC 112 in RNS5.
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Maximum Likelihood Estimator (MLE)
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Maximum Likelihood Estimator (MLE)

What happen when i < 11 in H i = (H0,H1,H2,H3,H4,H5,H6,H7,H8,H9)?
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Maximum Likelihood Estimator

What happen when i < 11 in H i = (H0, ...,Hi )?
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Probability of success to find the second bit of the key with MLE on ECC 112 in RNS5.
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Maximum Likelihood Estimator

Considering success rate < 0.1, what is the minimum n to protect an attack based on S
traces?

#ECC

Number of traces S 112 256 384 521
230 16 15 15 18

The learning phase costs more than the estimation phase even with Monte Carlo.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

S

(2n
n )of

su
pr

ob
ab

ili
ty

of
su

cc
es

s

template exact for n = 7
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for n = 7

From which level we loose random behaviour?
We have to use n > 7 to avoid an attack with a single trace
With a 95% prediction interval for an error<0.1%.
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Conclusion and future work

Conclusion

Maximum Information in ten first steps of calculation.

DPA is possible but inconsistent.

CPA is unreliable.

MIA is difficult to be used as distinguisher.

MLE give strong information on leakage.
Modelisation of success as a function of S(

2n
n

) invariant with n.

Future Work

Is there sufficient information in only one trace? Few traces?

A template with conditional desintegration could give more information on the key?

Can we find a better template with the Monte Carlo method using variance reduction?
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The end

Thanks for your attention.
Do you have any questions?

jerome.courtois@lip6.fr
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Maximum Likelihood Estimator

#ECC
S × #ECC−1

9 112 256 384 521

210 6 9 13 18
215 8 9 13 18
220 11 10 13 18
225 13 13 13 18
230 16 15 15 18
235 19 18 18 18
240 21 20 20 20
245 24 23 23 22
250 26 26 25 25

Table: Minimum n to protect the whole key till S × #ECC−1
9 traces of the target key.(mk,10, Γk,10) is the

exact value. pt = 0.1.
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Elliptic Curves for Cryptography (ECC)

Jérôme Courtois (LIP6) Resilience of Randomize RNS Arithmetic May 5, 2019 22 / 20



Elliptic Curves for Cryptography(ECC)

The domain of an ECC denoted E(Fp) is defined by:

A finite field Fp with p a prime number

Two elements a and b belonging to Fp

An equation E : y2 ≡ x3 + ax + b mod p

G(xG , yG ) a base point of E(Fp) and n prime number is the order of G on E(Fp)

Four types of curve are implemented: 112, 256, 384 et 521 bits

Implementation in Jacobian coordinates.

Scalar Multiplication with Montgomery or Co-Z Scale.

In addition we test on an Edward curve 25219 in affine coordinates.
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Extensions

1 Raw method, only for first extension.
But we obtain X̃ = X + α×M.

2 Shenoy-Kamuresan for the second extension.
Correction of the error with using an extra modulo and large choice of moduli.

3 Mix-Radix to have an exact computation.
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Distribution of Hamming distances

Figure: Frequency of H10, 2× 106 computations.
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Evaluation of moduli MLE

Not hollow moduli=as many as 1 as 0
Hollow moduli=a maximum of 1
232 − ε= many 1 as most significant bit

moduli type size special succes 9 and 10 bits found
Not hollow moduli ≤ 32 random 62.89% 77.53%
Hollow moduli =32 232 − ε 62.30% (61.32%) 74.6% (75.78%)
Not hollow moduli =32 232 − ε 59.57% 73.82%
Any =27 random 58.98% 72.85%
Not hollow moduli =32 random 52.73% (60.93%) 68.75% (73.4%)
Any ≤ 32 random 62.5.50 % (54.10%) 75.78% (70.31%)
Any = 32 random 54.29% 69.53%

ECC 112, RNS5, 1000 for template, 100 for MLE
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From which level we loose the random behaviour?

Let us denote the null hypothesis
H0 : "We obtain 10 bits of the key with a probability equal to 2−9"
We calculate the 95% prediction interval with p = 2−9:

Ip =

[
p − 1.96

√
p(1− p)

SE
; p + 1.96

√
p(1− p)

SE

]
.

SE is a sample size. If f ∈ Ip , we do not reject H0 otherwise we reject H0 .
We can notice in Table that we have to use n > 7 to avoid an attack with a single trace. This
confirms the suggestion of [?].

n 5 6 7 8 9 10 11
S 1 1 1 5 7 16 130 Minimum size to reject H0 with a sample size

SE = 32256 (error < 0.1% for a 95% prediction interval)
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