Enhanced Digital Signature using Splitted Exponent Digit Representation

Christophe Nègre⁽¹⁾, Thomas Plantard⁽²⁾, Jean-Marc Robert^(1,3)

1: Team DALI/LIRMM, University of Perpignan, France 2: CCISR, SCIT, University of Wollongong, Australia 3: IMATH, Université de Toulon

le 18 avril 2019

WRACH 2019, Roscoff, France

Institut de mathématiques de Toulon Université de Toulon

Table des matières

State of The Art

• State of the Art for Modular Exponentiation

Contributions

- Summary
- Radix-R and RNS Digit representation
- Radix-R and R-splitting representation
- Software Implementation and Performances

3 Conclusion

Table des matières

State of The Art

• State of the Art for Modular Exponentiation

Contributions

- Summary
- Radix-R and RNS Digit representation
- Radix-R and R-splitting representation
- Software Implementation and Performances

Conclusion

Square-and-Multiply

Left-to-Right Square-and-Multiply Modular Exponentiation

```
Require: k = (k_{t-1}, ..., k_0), the DSA modulus p, g a generator of \mathbb{Z}/p\mathbb{Z} of order q.

Ensure: X = g^k \mod p

X \leftarrow 1

for i from t - 1 downto 0 do

X \leftarrow X^2 \mod p

if k_i = 1 then

X \leftarrow X \cdot g \mod p

end if

end for

return (X)
```

Square-and-Multiply

Left-to-Right Square-and-Multiply Modular Exponentiation

```
Require: k = (k_{t-1}, \ldots, k_0), the DSA modulus p, g a generator of \mathbb{Z}/p\mathbb{Z} of
  order q.
Ensure: X = g^k \mod p
  X \leftarrow 1
  for i from t - 1 downto 0 do
     X \leftarrow X^2 \mod p
     if k_i = 1 then
        X \leftarrow X \cdot g \mod p
     end if
  end for
  return (X)
```

No storage, t - 1 squarings, $\approx \frac{t}{2}$ multiplications. \Rightarrow One takes no advantage of the reuse of the exponent (i.e. when one needs to compute a lot of signature with the same public key) C. Nègre, Th. Plantard, J.-M. Robert 4 / 26

Radix-*R*

Radix-R Exponentiation Method (Gordon, 1998)

```
Require: k = (k_{\ell-1}, ..., k_0)_R, the DSA modulus p, g a generator of \mathbb{Z}/p\mathbb{Z} of order q.

Ensure: X = g^k \mod p

Precomputation. Store G_{i,j} \leftarrow g^{j \cdot R^i}, with j \in [1, ..., R-1] and 0 \le i < \ell.

X \leftarrow 1

for i from \ell - 1 downto 0 do

X \leftarrow X \cdot G_{i,k_i} \mod p

end for

return (X)
```

Radix-*R*

Radix-R Exponentiation Method (Gordon, 1998)

Require: $k = (k_{\ell-1}, ..., k_0)_R$, the DSA modulus p, g a generator of $\mathbb{Z}/p\mathbb{Z}$ of order q. Ensure: $X = g^k \mod p$ Precomputation. Store $G_{i,j} \leftarrow g^{j \cdot R^i}$, with $j \in [1, ..., R-1]$ and $0 \le i < \ell$. $X \leftarrow 1$ for i from $\ell - 1$ downto 0 do $X \leftarrow X \cdot G_{i,k_i} \mod p$ end for return (X)

With
$$w \leftarrow \log_2(R) \rightarrow \text{Storage of } \lceil t/w \rceil \cdot (R-1) \text{ values } \in \mathbb{F}_p,$$

no squarings, $\ell = \lceil t/w \rceil$ multiplications.

Fixed-base Comb Method

In this method, the exponent k is written in w rows, and the colums are processed one at a time. Thus, $d = \lfloor t/w \rfloor$ is the column size.

$$k = K^{w-1} \| \dots \| K^1 \| K^0$$

Each K^j is a bit string of length d. Let K_i^j denote the i^{th} bit of K^j . One sets: $g^{[K_i^{w-1},...,K_i^1,K_i^0]} = g^{K_i^{w-1}2^{(w-1)d}+...+K_i^22^{2d}+K_i^12^d+K_i^0}$

Fixed-base Comb Method

One sets:
$$g^{[K_i^{w-1},...,K_i^1,K_i^0]} = g^{K_i^{w-1}2^{(w-1)d}+...+K_i^22^{2d}+K_i^12^d+K_i^0}$$

Fixed-base Comb Method (Lim & Lee, Crypto '94)

```
Require: k = (k_{t-1}, \ldots, k_1, k_0)_2, the DSA modulus p, g a generator of \mathbb{Z}/p\mathbb{Z} of order q, window width w, d = \lceil t/w \rceil.

Ensure: X = g^k \mod p

Precomputation. Compute and store g^{[a_{w-1}, \ldots, a_0]} \mod p, \forall (a_{w-1}, \ldots, a_0) \in \mathbb{Z}_2^w.

X \leftarrow 1

for i from d - 1 downto 0 do

X \leftarrow X^2 \mod p

X \leftarrow X \cdot g^{[K_i^{w-1}, \ldots, K_i^1, K_i^0]} \mod p

end for

return (X)
```

Fixed-base Comb Method

One sets:
$$g^{[K_i^{w-1},...,K_i^1,K_i^0]} = g^{K_i^{w-1}2^{(w-1)d}+...+K_i^22^{2d}+K_i^12^d+K_i^0}$$

Fixed-base Comb Method (Lim & Lee, Crypto '94)

Require:
$$k = (k_{t-1}, \ldots, k_1, k_0)_2$$
, the DSA modulus p, g a generator of $\mathbb{Z}/p\mathbb{Z}$ of order q , window width $w, d = \lceil t/w \rceil$.
Ensure: $X = g^k \mod p$
Precomputation. Compute and store $g^{[a_{w-1}, \ldots, a_0]} \mod p$, $\forall (a_{w-1}, \ldots, a_0) \in \mathbb{Z}_2^w$.
 $X \leftarrow 1$
for *i* from $d - 1$ downto 0 do
 $X \leftarrow X^2 \mod p$
 $X \leftarrow X \cdot g^{[K_i^{w-1}, \ldots, K_i^1, K_i^0]} \mod p$
end for
return (X)

With
$$d \leftarrow \lceil t/w \rceil \rightarrow$$
 Storage of $2^w - 1$ values $\in \mathbb{F}_p$,
 $d - 1$ squarings, d multiplications.

Synthesis

Complexities and storage amounts of state of the art methods, average case.								
	$\begin{array}{ c c c } \# \ MM & \# \ MS & \begin{array}{c} storage \\ (\# \ values \in \mathbb{F}_p) \end{array} \end{array}$							
	Square-and-multiply	t/2	t-1	-				
	Radix- <i>R</i> method	$\lceil t/w \rceil$	-	$\lceil t/w \rceil \cdot (R-1)$				
	Fixed-base Comb	$d = \lceil t/w \rceil$	d-1	$2^{w} - 1$				

Synthesis

Complexities and storage amounts	of state of the art methods,	average case.
----------------------------------	------------------------------	---------------

	# MM	# MS	storage $(\# \text{ values} \in \mathbb{F}_p)$
Square-and-multiply	t/2	t-1	-
Radix- <i>R</i> method	$\lceil t/w \rceil$	-	$\lceil t/w \rceil \cdot (R-1)$
Fixed-base Comb	$d = \lceil t/w \rceil$	d-1	$2^{w} - 1$

key size t = 512 bits (MS = $0.86 \times MM$).

Table des matières

State of The Art

• State of the Art for Modular Exponentiation

Contributions

- Summary
- Radix-R and RNS Digit representation
- Radix-R and R-splitting representation
- Software Implementation and Performances

Conclusion

Contributions

Starting from the Radix-*R* method:

• Digit recoding for exponent, using a multiplicative splitting (2 approaches);

Summary

Contributions

Starting from the Radix-*R* method:

- Digit recoding for exponent, using a multiplicative splitting (2) approaches);
- Enhanced algorithm for Modular Exponentiation and Elliptic Curve Scalar Multiplication;

Summary

Contributions

Starting from the Radix-*R* method:

- Digit recoding for exponent, using a multiplicative splitting (2) approaches);
- Enhanced algorithm for Modular Exponentiation and Elliptic Curve Scalar Multiplication;
- Complexity and storage requirements evaluation;

Summarv

Contributions

Starting from the Radix-*R* method:

- Digit recoding for exponent, using a multiplicative splitting (2) approaches);
- Enhanced algorithm for Modular Exponentiation and Elliptic Curve Scalar Multiplication;
- Complexity and storage requirements evaluation;
- Software implementations, showing performance improvements.

Recoding Algorithm

The Radix- $R = m_0 \cdot m_1$ representation is as follows $(gcd(m_0, m_1) = 1)$:

$$k = \sum_{i=0}^{\ell-1} k_i R^i$$
, with $\ell = \lceil t/\log_2(R) \rceil$,

and we represent the digits k_i using RNS with base $\mathcal{B} = \{m_0, m_1\}$:

$$\begin{cases} k_i^{(0)} = k_i \mod m_0 = |k_i|_{m_0}, \\ k_i^{(1)} = k_i \mod m_1 = |k_i|_{m_1}. \end{cases}$$

Recoding Algorithm

The Radix- $R = m_0 \cdot m_1$ representation is as follows $(gcd(m_0, m_1) = 1)$:

$$k = \sum_{i=0}^{\ell-1} k_i R^i$$
, with $\ell = \lceil t/\log_2(R) \rceil$,

and we represent the digits k_i using RNS with base $\mathcal{B} = \{m_0, m_1\}$:

$$\begin{cases} k_i^{(0)} = k_i \mod m_0 = |k_i|_{m_0}, \\ k_i^{(1)} = k_i \mod m_1 = |k_i|_{m_1}. \end{cases}$$

Chinese Remainder Theorem

Using the CRT, one can retrieve k_i :

$$k_i = \left| k_i^{(0)} \cdot m_1 \cdot |m_1^{-1}|_{m_0} + k_i^{(1)} \cdot m_0 \cdot |m_0^{-1}|_{m_1} \right|_R.$$

In the sequel, let's denote (when $k_i^{(1)} \neq 0$)

$$\left. \begin{array}{l} m_0' = m_1 \cdot |m_1^{-1}|_{m_0}, \\ m_1' = m_0 \cdot |m_0^{-1}|_{m_1}, \\ k_i' = |k_i^{(0)} \cdot (k_i^{(1)})^{-1}|_{m_0}. \end{array} \right\}$$

In the sequel, let's denote (when $k_i^{(1)} \neq 0$)

$$\left. \begin{array}{l} m'_0 = m_1 \cdot |m_1^{-1}|_{m_0}, \\ m'_1 = m_0 \cdot |m_0^{-1}|_{m_1}, \\ k'_i = |k_i^{(0)} \cdot (k_i^{(1)})^{-1}|_{m_0}. \end{array} \right\} \text{ Recoding: } \rightarrow \kappa_i \leftarrow (k'_i, k_i^{(1)})$$

We then rewrite the CRT, with the modular reduction mod R, as follows:

"New" Chinese Remainder Theorem

$$k_i = k_i^{(1)} |k_i' \cdot m_0' + m_1'|_R - \lfloor k_i^{(1)} \cdot |k_i' \cdot m_0' + m_1'|_R / R \rfloor \cdot R.$$

In the sequel, let's denote (when $k_i^{(1)} \neq 0$)

$$\left. \begin{array}{l} m'_0 = m_1 \cdot |m_1^{-1}|_{m_0}, \\ m'_1 = m_0 \cdot |m_0^{-1}|_{m_1}, \\ k'_i = |k_i^{(0)} \cdot (k_i^{(1)})^{-1}|_{m_0}. \end{array} \right\} \text{ Recoding: } \rightarrow \kappa_i \leftarrow (k'_i, k_i^{(1)})$$

We then rewrite the CRT, with the modular reduction mod R, as follows:

"New" Chinese Remainder Theorem

$$k_i = k_i^{(1)} |k'_i \cdot m'_0 + m'_1|_R - \overbrace{\lfloor k_i^{(1)} \cdot |k'_i \cdot m'_0 + m'_1|_R / R \rfloor}^C \cdot R.$$

In the sequel, let's denote (when $k_i^{(1)} \neq 0$)

$$\left. \begin{array}{l} m'_0 = m_1 \cdot |m_1^{-1}|_{m_0}, \\ m'_1 = m_0 \cdot |m_0^{-1}|_{m_1}, \\ k'_i = |k_i^{(0)} \cdot (k_i^{(1)})^{-1}|_{m_0}. \end{array} \right\} \text{ Recoding: } \rightarrow \kappa_i \leftarrow (k'_i, k_i^{(1)})$$

We then rewrite the CRT, with the modular reduction mod R, as follows:

"New" Chinese Remainder Theorem

$$k_i = k_i^{(1)} |k'_i \cdot m'_0 + m'_1|_R - \overbrace{\lfloor k_i^{(1)} \cdot |k'_i \cdot m'_0 + m'_1|_R / R \rfloor}^C \cdot R.$$

C is a carry $(0 < C < m_1)$:

$$\left\{\begin{array}{ll} \text{if } k_{i+1} \geq C \quad \text{ then } \quad k_{i+1} \leftarrow k_{i+1} - C, C \leftarrow 0, \\ \text{else} \quad k_{i+1} \leftarrow k_{i+1} + R - C, C \leftarrow 1, \end{array}\right.$$

and one gets $k_{i+1} > 0$.

General Idea for Modular Exponentiation \rightarrow RNS splitting

 $\begin{array}{c} \underline{\text{Radix-}R \text{ method:}}\\ \text{Stores } G_{i,j} \leftarrow g^{j \cdot R^{i}}, \ (0 \leq j < R)\\ \text{Computes } \prod_{i=0}^{\ell-1} G_{i,k_{i}}. \end{array}$

 \Rightarrow \approx Low complexity, large storage

 $\begin{array}{c} \underline{\text{Variant:}}\\ \text{Stores } G_i \leftarrow g^{R^i};\\ \text{Computes:}\\ \prod_{j=0}^{R-1} \left(\prod_{\forall i, 0 \leq i < \ell-1, k_i = j} G_i \right)^j. \end{array}$

 \Rightarrow \approx Low storage, large complexity

General Idea for Modular Exponentiation \rightarrow RNS splitting

 $\begin{array}{c} \underline{\text{Radix-}R \text{ method:}}\\ \text{Stores } G_{i,j} \leftarrow g^{j \cdot R^i}, \ (0 \leq j < R)\\ \text{Computes } \prod_{i=0}^{\ell-1} G_{i,k_i}. \end{array}$

 \Rightarrow \approx Low complexity, large storage

$$\begin{array}{c} \underline{\text{Variant:}}\\ \text{Stores } G_i \leftarrow g^{R^i};\\ \text{Computes:}\\ \prod_{j=0}^{R-1} \left(\prod_{\forall i, 0 \leq i < \ell-1, k_i = j} G_i \right)^j. \end{array}$$

 \Rightarrow \approx Low storage, large complexity

Our method $(m_0 m_1 \text{ RNS})$:

Stores
$$G_{i,\widetilde{j}} \leftarrow g^{f(\widetilde{j}) \cdot R^i}$$
, $(0 \leq \widetilde{j} < m_0)$

Computes $K_0 \times \prod_{i=1}^{m_1} K_i^i$ with

$$K_i = \prod_{j=1, \tilde{k}_j^{(1)}=i}^{\ell-1} G_{i, \tilde{k}_j^{(0)}=i}^{\tilde{k}_j^{(1)}}$$

$$ightarrow pprox pprox$$
 Better trade-off.

Exponentiation Algorithm \rightarrow RNS splitting

Fixed-base mom1 method modular exponentiation

Require:
$$k = \sum_{i=0}^{\ell-1} k_i R^i$$
 and $\kappa = \{\kappa_i, 0 \le i < \ell, (C)\}$ the $m_0 m_1$ recoding of k.
Ensure: $X = g^k \mod p$
Precomputation. Store $G_{i,j} \leftarrow g^{R^i \cdot |j \cdot m'_0 + m'_1|}_{R, G_{\ell,1}} \leftarrow g^{R^\ell \cdot |m'_0 + m'_1|}_{R, G_{\ell,-1}} \leftarrow g^{-R^i \cdot |m'_0 + m'_1|}_{R}$

 $\begin{array}{l} \text{Computation of the } K_j, 0 \leq j < m_1 \\ A \leftarrow 1, K_j \leftarrow 1 \text{ for } 0 \leq j < m_1 \\ \text{for } i \text{ from } 0 \text{ to } \ell - 1 \text{ do} \\ \text{ if } k_i^{(1)} = 0 \text{ then} \\ K_0 \leftarrow K_0 \times G_{i,(k_i^{(0)})+1} \times G_{i,-1} \\ \text{ else} \\ K_{k_i^{(1)}} \leftarrow K_{k_i^{(1)}} \times G_{i,k_i^{\prime}}(0) \\ \text{ end if} \\ \text{ end for} \\ K_{|C|} \leftarrow K_{|C|} \times G_{\ell,sign(C)1} \end{array}$

Final Re	construction	
return	$(\mathbf{K_0} \times \prod_{j=1}^{m_1} \mathbf{K}_j^j)$	
_		

Exponentiation Algorithm \rightarrow RNS splitting

Fixed-base $m_0 m_1$ method modular exponentiation

Require:
$$k = \sum_{i=0}^{\ell-1} k_i R^i$$
 and $\kappa = \{\kappa_i, 0 \le i < \ell, (C)\}$ the $m_0 m_1$ recoding of k .
Ensure: $X = g^k \mod p$
Precomputation. Store $G_{i,j} \leftarrow g^{R^i \cdot |j \cdot m'_0 + m'_1|_R}$, $G_{\ell,1} \leftarrow g^{R^\ell \cdot |m'_0 + m'_1|_R}$, $G_{i,-1} \leftarrow g^{-R^i \cdot |m'_0 + m'_1|_R}$

$\mathsf{TOTAL} \; \mathsf{STORAGE} \quad : \quad (m_0+1) \times \ell + m_1 + 2 \; \mathsf{elements} \; \mathsf{of} \; \mathbb{Z}/p\mathbb{Z}$

Computation of the K_j , $0 \leq j < m_1$

$$\begin{array}{l} A \leftarrow \mathbf{1}, K_j \leftarrow \mathbf{1} \text{ for } \mathbf{0} \leq j < m_{\mathbf{1}} \\ \text{for } i \text{ from 0 to } \ell - \mathbf{1} \text{ do} \\ \text{if } k_i^{(\mathbf{1})} = \mathbf{0} \text{ then} \\ K_\mathbf{0} \leftarrow K_\mathbf{0} \times G_{i, (k_i^{(\mathbf{0})} + \mathbf{1})} \times G_{i, -\mathbf{1}} \\ \text{else} \\ K_{k_i^{(\mathbf{1})}} \leftarrow K_{k_i^{(\mathbf{1})}} \times G_{i, k_i^{\prime}}(\mathbf{0}) \\ \text{end if} \\ \text{end or} \\ K_{|C|} \leftarrow K_{|C|} \times \mathcal{G}_{\ell, sign(C)\mathbf{1}} \end{array}$$

F	inal Rec	onstruction	
	return	$(\mathbf{K_0} \times \prod_{j=1}^{m_1} \mathbf{K}_j^j)$	

Exponentiation Algorithm \rightarrow RNS splitting

Fixed-base mom1 method modular exponentiation

Require:
$$k = \sum_{i=0}^{\ell-1} k_i R^i$$
 and $\kappa = \{\kappa_i, 0 \le i < \ell, (C)\}$ the $m_0 m_1$ recoding of k.
Ensure: $X = g^k \mod p$
Precomputation. Store $G_{i,j} \leftarrow g^{R^i \cdot |j \cdot m'_0 + m'_1|_R}, G_{\ell,1} \leftarrow g^{R^\ell \cdot |m'_0 + m'_1|_R}, G_{i,-1} \leftarrow g^{-R^i \cdot |m'_0 + m'_1|_R}$

$\mathsf{TOTAL} \; \mathsf{STORAGE} \quad : \quad (m_0+1) \times \ell + m_1 + 2 \; \mathsf{elements} \; \mathsf{of} \; \mathbb{Z}/p\mathbb{Z}$

Computation of the K_j , $0 \leq j < m_1$

$$\begin{array}{l} A \leftarrow \mathbf{1}, K_j \leftarrow \mathbf{1} \text{ for } \mathbf{0} \leq j < m_{\mathbf{1}} \\ \text{for } i \text{ from 0 to } \ell - \mathbf{1} \text{ do} \\ \text{if } k_i^{(\mathbf{1})} = \mathbf{0} \text{ then} \\ K_\mathbf{0} \leftarrow K_\mathbf{0} \times G_{i, (k_i^{(\mathbf{0})} + \mathbf{1})} \times G_{i, -\mathbf{1}} \\ \text{else} \\ K_{k_i^{(\mathbf{1})}} \leftarrow K_{k_i^{(\mathbf{1})}} \times G_{i, k_i'^{(\mathbf{0})}} \\ \text{end if} \\ \text{end for} \\ K_{|C|} \leftarrow K_{|C|} \times G_{\ell, sign(C)\mathbf{1}} \end{array}$$

Final Reconstruction
return
$$(K_0 \times \prod_{j=1}^{m_1} K_j^j)$$

Complexity : $(\ell \frac{m_1+1}{m_1} - m_1)$ MM

 $+\mathcal{H} MM + (W-1) MS$

C. Nègre, Th. Plantard, J.-M. Robert

13 / 26

Complexity of the Exponentiation Algorithm

Application of the m_0m_1 method to Elliptic Curve Cryptography

• Is the m_0m_1 recoding suitable for ECC?

The m_0m_1 recoding does not perform better than the S-o-A algorithms in the ECC case : how to devise a suitable recoding?

 $\Rightarrow NO^{\dagger}$

Application of the m_0m_1 method to Elliptic Curve Cryptography

• Is the m_0m_1 recoding suitable for ECC?

The m_0m_1 recoding does not perform better than the S-o-A algorithms in the ECC case : how to devise a suitable recoding?

 $\Rightarrow NO^{\dagger}$

• Drawback of the m_0m_1 based exponentiation :

not constant time computation (see the algorithm).

Is it possible to improve the algorithm to render it side-channel attack resistant?

k is the scalar, represented in radix R, prime integer:

$$k = \sum_{i=0}^{\ell-1} k_i R^i$$
, with $\ell = \lceil t / \log_2(R) \rceil$,

 \Rightarrow Extended Euclidean Algorithm: (EEA, r_j is the sequence of Euclidean remainders):

$$r_j = u_j \times R + v_j \times k_i. \tag{1}$$

One sets *c* the upper bound of r_j , to terminate the EEA (and $\lceil R/c \rceil$ is the upper bound of $|v_j|$). We then keep $k_i^{(0)} = r_j$ and $k_i^{(1)} = v_j$.

After (1), since R is prime, one stops the EEA such as $k_i = |k_i^{(0)} \times (k_i^{(1)})^{-1}|_R$, with $k_i^{(0)} < c$ and $|k_i^{(1)}| \le \lceil R/c \rceil$.

C. Nègre, Th. Plantard, J.-M. Robert

16 / 26

After (1), since
$$R$$
 is prime, one stops the EEA such as
 $k_i = |k_i^{(0)} \times (k_i^{(1)})^{-1}|_R$, with $k_i^{(0)} < c$ and $|k_i^{(1)}| \le \lceil R/c \rceil$.

Modular reduction mod R: one distinguishes the cases $k_i^{(1)} > 0$ and $k_i^{(1)} < 0$

After (1), since R is prime, one stops the EEA such as

$$k_i = |k_i^{(0)} \times (k_i^{(1)})^{-1}|_R$$
, with $k_i^{(0)} < c$ and $|k_i^{(1)}| \le \lceil R/c \rceil$.

Modular reduction mod R: one distinguishes the cases $k_i^{(1)} > 0$ and $k_i^{(1)} < 0$

• if $k_i^{(1)} > 0$, one proceeds as previously: $k_i = k_i^{(0)} \cdot |(k_i^{(1)})^{-1}|_R - \left\lfloor \frac{k_i^{(0)} \cdot |(k_i^{(1)})^{-1}|_R}{R} \right\rfloor \cdot R.$ Let us denote $C = \left\lfloor \frac{k_i^{(0)} \cdot |(k_i^{(1)})^{-1}|_R}{R} \right\rfloor (0 \le C \le c < R)$ if $k_{i+1} \ge C$ then $k_{i+1} \leftarrow k_{i+1} - C, C \leftarrow 0$, else $k_{i+1} \leftarrow k_{i+1} + R - C, C \leftarrow 1$.

C. Nègre, Th. Plantard, J.-M. Robert

17 / 26

After (1), since R is prime, one stops the EEA such as

$$k_i = |k_i^{(0)} \times (k_i^{(1)})^{-1}|_R$$
, with $k_i^{(0)} < c$ and $|k_i^{(1)}| \le \lceil R/c \rceil$.

Modular reduction mod R: one distinguishes the cases $k_i^{(1)} > 0$ and $k_i^{(1)} < 0$

• if $k_i^{(1)} < 0$, one proceeds slightly differently: $k_i = k_i^{(0)} \cdot (R - |(-k_i^{(1)})^{-1}|_R) - \left[\frac{k_i^{(0)} \cdot |(k_i^{(1)})^{-1}|_R}{R}\right] \cdot R.$ Let us denote $C = \left|\frac{k_i^{(0)} \cdot |(k_i^{(1)})^{-1}|_R}{R}\right| - k_i^{(0)} (-c \le C \le c < R)$

$$k_{i+1} \leftarrow k_{i+1} - C, C \leftarrow -\lfloor k_{i+1}/R \rfloor, k_{i+1} \leftarrow |k_{i+1}|_R$$

One notices:

- The case $k_i^{(1)} = 0$ does <u>not</u> need to be taken into account;
- it might be necessary to process a last carry C.

→ The sequence of the $\kappa_i \leftarrow (k'_i, k^{(1)}_i)$ is the *R*-splitting recoding of *k*.

Back to the General Idea for ECC \rightarrow *R*-splitting

 $\begin{array}{c} \displaystyle \frac{\text{Radix-}R \text{ method:}}{\text{Stores }} \\ \text{Stores } M_{i,j} \leftarrow j \cdot R^i \cdot P, \ (0 \leq j < R) \\ \text{Computes } \sum_{i=0}^{\ell-1} M_{i,k_i}. \end{array}$

 \Rightarrow \approx Low complexity, large storage

$$\begin{array}{c} \frac{\text{Variant:}}{\text{Stores } M_i \leftarrow R^i \cdot P;} \\ \text{Computes:} \\ \sum_{j=0}^{R-1} \left(\sum_{\forall i, 0 \leq i < \ell-1, k_i = j} j \cdot M_i \right). \end{array}$$

 \Rightarrow \approx Low storage, large complexity

Back to the General Idea for ECC \rightarrow *R*-splitting

 $\begin{array}{c} \displaystyle \frac{\text{Radix-}R \text{ method:}}{\text{Stores }} \\ \text{Stores } M_{i,j} \leftarrow j \cdot R^i \cdot P, \ (0 \leq j < R) \\ \text{Computes } \sum_{i=0}^{\ell-1} M_{i,k_i}. \end{array}$

 \Rightarrow \sim Low complexity, large storage

$$\begin{array}{c} \frac{\text{Variant:}}{\text{Stores } M_i \leftarrow R^i \cdot P;} \\ \text{Computes:} \\ \sum_{j=0}^{R-1} \left(\sum_{\forall i, 0 \leq i < \ell-1, k_i = j} j \cdot M_i \right). \end{array}$$

 \Rightarrow \approx Low storage, large complexity

Our method (*R*-splitting):

Stores $M_{i,\tilde{j}} \leftarrow f(\tilde{j}) \cdot R^i \cdot P$, $(0 \leq \tilde{j} < c)$ Computes $\sum_{i=1}^{c} i \cdot K_i$ with $K_i = \sum_{j=1,\tilde{k}_j^{(1)}=i}^{\ell-1} \tilde{k}_j^{(1)} \cdot M_{i,\tilde{k}_j^{(0)}}$ $\Rightarrow \approx$ Better trade-off.

$ECSM \rightarrow R$ -splitting

We can now take into account the Side-channel resistance:

Fixed-base *R*-splitting method ECSM

Require: A prime integer R ,a scalar $k = \sum_{i=0}^{\ell-1} k_i R^i$ with $= \{(s_i, k_i^{(0)}, k_i^{(1)}), 0 \le i < \ell, (k_{\ell}')\}$ its multiplicative splitting recoding using W-bit split c and a fixed point $P \in E(\mathbb{F}_p)$. Ensure: $X = k \cdot P$ Precomputation. Store $T[i][j] \leftarrow (|j^{-1}|_R \cdot R^i) \cdot P$ for $i = 0, \ldots, \ell-1, j = 1, \ldots, \lceil R/c \rceil$ and $T[\ell][1] \leftarrow R^{\ell} \cdot P$ and $T[i][0] \leftarrow \mathcal{O}$ for $i = 0, \ldots, \ell-1$.

Computation of the Y_j , $1 \le j \le c$

 $\begin{array}{l} X \leftarrow \mathcal{O}, Y_j \leftarrow \mathcal{O} \text{ for } 1 \leq j \leq c \\ \text{for } i \text{ from 0 to } \ell - 1 \text{ do} \\ Y_{k_i^{(0)}} \leftarrow Y_{k_i^{(0)}}(0) + (s_i) \cdot T[i][k_i^{(1)}] \\ \text{end for } // \text{regular loop.} \\ Y_{|k_\ell'|} \leftarrow Y_{|k_\ell'|} + (\text{sign}(k_\ell')) \cdot T[\ell][1] \end{array}$

Final Reconstruction return $(X \leftarrow \sum_{j=1}^{W} j \cdot Y_j)$

$ECSM \rightarrow R$ -splitting

We can now take into account the Side-channel resistance:

Fixed-base *R*-splitting method ECSM

Require: A prime integer R, a scalar $k = \sum_{i=0}^{\ell-1} k_i R^i$ with $= \{(s_i, k_i^{(0)}, k_i^{(1)}), 0 \le i < \ell, (k_{\ell}')\}$ its multiplicative splitting recoding using W-bit split c and a fixed point $P \in E(\mathbb{F}_p)$. Ensure: $X = k \cdot P$ Precomputation. Store $T[i][j] \leftarrow (|j^{-1}|_R \cdot R^i) \cdot P$ for $i = 0, \ldots, \ell-1, j = 1, \ldots, \lceil R/c \rceil$ and $T[\ell][1] \leftarrow R^{\ell} \cdot P$ and $T[i][0] \leftarrow \mathcal{O}$ for $i = 0, \ldots, \ell-1$.

Computation of the $Y_j, 1 \leq j \leq c$

 $\begin{array}{l} X \leftarrow \mathcal{O}, Y_j \leftarrow \mathcal{O} \text{ for } 1 \leq j \leq c \\ \text{for } i \text{ from 0 to } \ell - 1 \text{ do} \\ Y_{k_i^{(0)}} \leftarrow Y_{k_i^{(0)}} + (s_i) \cdot T[i][k_i^{(1)}] \\ \text{end for } // \text{regular loop.} \\ Y_{|k_\ell'|} \leftarrow Y_{|k_\ell'|} + (\text{sign}(k_\ell')) \cdot T[\ell][1] \end{array}$

TOTAL STORAGE: $(\ell \times \lceil R/c \rceil + c)$ EC points

Final Reconstruction

return $(X \leftarrow \sum_{j=1}^{W} j \cdot Y_j)$

$ECSM \rightarrow R$ -splitting

We can now take into account the Side-channel resistance:

Fixed-base *R*-splitting method ECSM

Require: A prime integer R ,a scalar $k = \sum_{i=0}^{\ell-1} k_i R^i$ with $= \{(s_i, k_i^{(0)}, k_i^{(1)}), 0 \le i < \ell, (k_{\ell}')\}$ its multiplicative splitting recoding using W-bit split c and $k_i R^i$ dived point $P \in E(\mathbb{F}_p)$. Ensure: $X = k \cdot P$ Precomputation. Store $T[i][j] \leftarrow (|j^{-1}|_R \cdot R^i) \cdot P$ for $i = 0, \ldots, \ell-1, j = 1, \ldots, \lceil R/c \rceil$ and $T[\ell][1] \leftarrow R^{\ell} \cdot P$ and $T[i][0] \leftarrow \mathcal{O}$ for $i = 0, \ldots, \ell-1$.

$\begin{array}{l} \text{Computation of the } Y_j, 1 \leq j \leq c \\ X \leftarrow \mathcal{O}, Y_j \leftarrow \mathcal{O} \text{ for } 1 \leq j \leq c \\ \text{for } i \text{ from 0 to } \ell - 1 \text{ do} \\ & Y_{k_i^{(0)}} \leftarrow Y_{k_i^{(0)}} + (s_i) \cdot T[i][k_i^{(1)}] \\ \text{ end for } //\text{regular loop.} \\ & Y_{|k_\ell'|} \leftarrow Y_{|k_\ell'|} + (\text{sign}(k_\ell')) \cdot T[\ell][1] \end{array}$

TOTAL STORAGE: $(\ell \times \lceil R/c \rceil + c)$ EC points

Final Reconstruction

return $(X \leftarrow \sum_{j=1}^{W} j \cdot Y_j)$

 $\mathsf{Complexity} \hspace{0.2cm}:\hspace{0.2cm} \ell \times \textit{MixedAdd} + (\mathit{W}-1) \times \textit{Dbl} + \mathcal{H} \times \textit{Add}$

C. Nègre, Th. Plantard, J.-M. Robert

20 / 26

Complexity of the ECSM Algorithm \rightarrow *R*-splitting

Radix-R and R-splitting representation

Complexity of the ECSM Algorithm $\rightarrow R$ -splitting

Complexity of the ECSM Algorithm \rightarrow *R*-splitting

Implementation of the m_0m_1 exponentiation algorithm

For the three considered exponentiation algorithms:

- C language, compiled with gcc 4.8.3;
- Multiprecision Integer Operations: low-level functions of the GMP library;
- Modular Reduction: block Montgomery approach;
- Test processing : a few hundred of dataset for each size, with multiple run and averaging of the minimum of every dataset;
- The timings in clock cycles include the recoding;
- Tests for the following standards (fips 186-4):

NIST key size (bits)	224	256	384	512
field element size (bits)	2048	3072	7680	15360

Modular Exponentiation						
State of the	Art methods					
Fixed-base Comb	radix R	m ₀ , m ₁ rec.	ratio			
# <i>CC</i>	#CC	#CC	m ₀ , m ₁			
Storage	Storage	Storage	/Best S.o.A.			
key si	key size 224 bits, field size 2048 bits (level of security: 112 bits)					
221108 CC	227838 CC	219864 CC	×0.994			
1023.5 kB (w = 12)	829 kB (R = 91)	580 kB ($m_0 = 89, m_1 = 6$)	×0.700			
210074 CC	206888 CC	207072 CC	×0.985			
2047.5 kB (w = 13)	1324 kB ($R = 163$)	766 kB ($m_0 = 127, m_1 = 7$)	×0.579			
149690 CC	147877 CC	146156 CC	×0.988			
65535 kB (w = 18)	7289kB (<i>R</i> = 1223)	21599 kB ($m_0 = 5417, m_1 = 6$)	×2.96			

Storage Comparison kB (t=224 bits)

Modular Exponentiation							
State of the	Art methods						
Fixed-base Comb	radix R	m ₀ , m ₁ rec.	ratio				
# <i>CC</i>	#CC	#CC	m ₀ , m ₁				
Storage	Storage	Storage	/Best S.o.A.				
key s	ize 256 bits, field size 30	072 bits (level of security: 128 bits)					
524539 CC	502981 CC	501466 CC	×0.997				
1535 kB (w = 12)	1411 kB (R = 91)	897 kB ($m_0 = 79, m_1 = 6$)	×0.636				
449397 CC	445871 CC	446444 CC	×1.001				
6143 kB (w = 14)	2251 kB (<i>R</i> = 163)	2056 kB ($m_0 = 211, m_1 = 6$)	×0.913				
356892 CC	354640 CC	354071 CC	×0.998				
98303 kB (w = 18)	6414 kB ($R = 571$)	12843 kB ($m_0 = 1721, m_1 = 7$)	×2.002				

Storage Comparison kB (t=256 bits)

[Modular Exponentiation							
State of the	Art methods							
Fixed-base Comb	radix <i>R</i>	m ₀ , m ₁ rec.	ratio					
# <i>CC</i>	#CC	#CC	m ₀ , m ₁					
Storage	Storage	Storage	/Best S.o.A.					
key size 384 bits, field size 7680 bits (level of security: 192 bits)								
4442590 CC	4492191 CC	4409584 CC	×0.993					
1918 kB (w = 11)	3430 kB (R = 53)	1134 kB ($m_0 = 23, m_1 = 10$)	×0.591					
3554339 CC	3524896 CC	3551437 CC	×1.008					
15358 kB (w = 14)	8290 kB (R = 163)	4164 kB ($m_0 = 113, m_1 = 10$)	×0.502					
2736341 CC	2543480 CC	2743399 CC	×1.079					
245758 kB (w = 18)	45221 kB (R = 1223)	29961 kB ($m_0 = 1031, m_1 = 7$)	×0.662					

Storage Comparison kB (t=384 bits)

Modular Exponentiation							
State of the	e Art methods						
Fixed-base Comb radix R		<i>m</i> ₀ , <i>m</i> ₁ rec.	ratio				
# <i>CC</i>	# <i>CC</i>	#CC	m ₀ , m ₁				
Storage	Storage	Storage	/Best S.o.A.				
key s	key size 512 bits, field size 15360 bits (level of security: 256 bits)						
18632429 CC	19260731 CC	18550238 CC	×0.996				
15536 kB (w = 13)	13765 kB (R = 91)	4745 kB ($m_0 = 41, m_1 = 10$)	×0.345				
14848261 CC	15401002 CC	14813453 CC	×0.998				
122876 kB ($w = 16$)	34418 kB (R = 163)	22109 kB ($m_0 = 257, m_1 = 11$)	×0.642				
12477816 CC	12193232 CC	12499600 CC	×1.025				
983036 kB (w = 19)	119061 kB (R = 1223)	102820 kB ($m_0 = 1381, m_1 = 7$)	×0.863				

	Security level: 128 bits (NIST curve P256)								
		Scalar multiplication							
		State	e of the	art method	ls		Pro	posed appr	oach
Level of	Fixed-base Comb			radix R			R-splitting rec.		
Clock-cycles	Time	Storage	W	Time	Storage	R	Time	Storage	(R, c)
	(#CC)	(kB)		(#CC)	(kB)		(#CC)	(kB)	
370000	378184	64	12	376370	74	19	366057	37	(71,5)
276000	275230	1024	14	276917	231	89	276660	170	(257,3)
205000	207456	32768	19	206777	1120	641	203414	1012	(1699,2)

Storage Comparison kB (t=P256 bits)

	Security level: 192 bits (NIST curve P384)								
		Scalar multiplication							
		State	e of the	art method	ds		Pro	oposed appr	oach
Level of	Fixed-base Comb			radix R			R-splitting rec.		
Clock-cycles	Time	Storage	w	Time	Storage	R	Time	Storage	(R, c)
	(#CC)	(kB)		(#CC)	(kB)		(#CC)	(kB)	
575000	575854	192	11	571975	283	41	583590	86	(79,5)
460000	461271	1536	14	470537	547	97	451846	354	(233,3)
375000	376114	24576	18	372952	1861	433	378733	1214	(997,3)
349000	359578	49151	19	360786	2069	491	354919	1911	(1699,3)

Storage Comparison kB (t=P384 bits)

	Security level: 256 bits (NIST curve P521) Scalar multiplication								
	State of the art methods						Proposed approach		
Level of	Fixed-base Comb			radix R			R-splitting rec.		
Clock-cycles	Time	Storage	w	Time	Storage	R	Time	Storage	(R, c)
	(#CC)	(kB)		(#CC)	(kB)		(#CC)	(kB)	
450000	446633	288	11	451280	572	41	449550	146	(97,7)
364000	363615	2304	14	362166	1621	157	367299	726	(433,5)
289000	289085	73728	19	288394	7217	937	290146	6243	(2897,3)

Storage Comparison kB (t=P521 bits)

Table des matières

State of The Art

• State of the Art for Modular Exponentiation

Contributions

- Summary
- Radix-R and RNS Digit representation
- Radix-R and R-splitting representation
- Software Implementation and Performances

3 Conclusion

Conclusion

 \rightarrowtail We have presented:

- Main State of the Art approaches for modular exponentiation;
- Our Contributions:
 - $m_0 m_1$ RNS digit recoding for exponent;
 - Enhanced algorithms for modular exponentiation;
 - *R*-splitting (alternative to the *m*₀*m*₁ recoding);
 - Improvements to thwart side-channel analysis (timing attacks...);
 - Application to ECDSA (Elliptic Curve Digital Signature Algorithm);
 - Software implementations;
- This work has been accepted for publication in the JCEN.

Je vous remercie de votre attention,

et suis à l'écoute de vos questions ?

C. Nègre, Th. Plantard, J.-M. Robert

26 / 26