Improved Deep-Learning Side-Channel Attacks using Normalization Layers

Damien Robissout, Gabriel Zaid, Lilian Bossuet, Amaury Habrard

damien.robissout@univ-st-etienne.fr

Université Jean Monnet

16/04/2019

- Good performance of neural networks in side-channel analysis
- Improvement possible using batch normalization and regularization
- No deep learning metric usable to evaluate networks for SCA
- Proposition of a **metric** to tell how well a given architecture could perform

2 $\Delta_{train,val}$: an SCA metric to evaluate performances

3 Regularization

Robissout, D. (LabHC)

3 ×

$\Delta_{train,val}$: an SCA metric to evaluate performances

3 Regularization

4 Conclusion

Robissout, D. (LabHC)

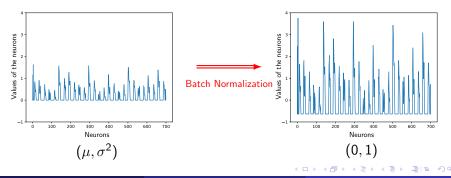
< ≣ > <

Goal

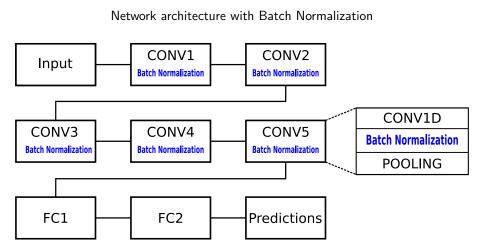
Standardize the data representation across all layers

Consequence

The network focuses on the relative differences of the values rather than on the numerical values



Robissout, D. (LabHC)

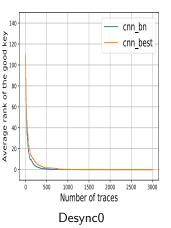


EL OQA

イロト イヨト イヨト

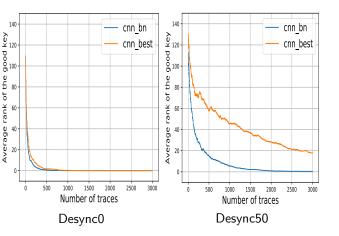
Training on ASCAD desynchronized traces

• DesyncN: random shift between 0 and N applied to the 700 points of the traces



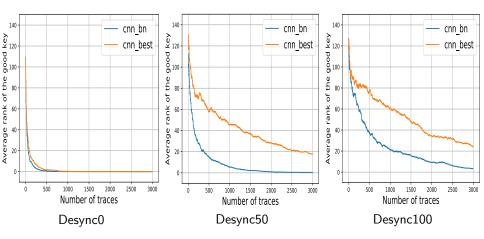
Training on ASCAD desynchronized traces

 DesyncN: random shift between 0 and N applied to the 700 points of the traces

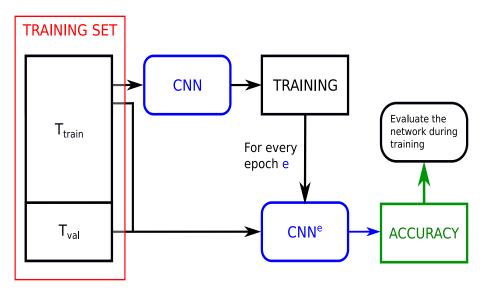


Training on ASCAD desynchronized traces

 DesyncN: random shift between 0 and N applied to the 700 points of the traces



Evaluate the performance of a network



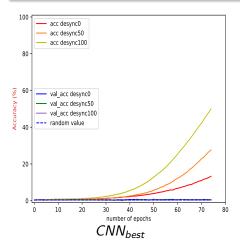
= nac

< ロ > < 同 > < 三 > < 三

Training Acc. vs. Validation Acc.

Goal

Evaluate the networks during training



Robissout, D. (LabHC)

- < A

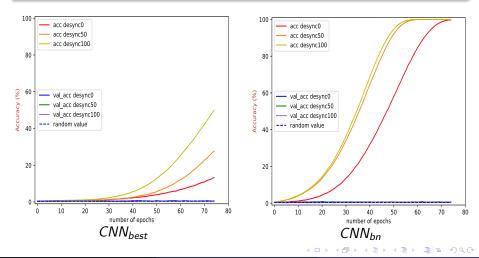
3 🕨 🖌 3

= 200

Training Acc. vs. Validation Acc.

Goal

Evaluate the networks during training



Robissout, D. (LabHC)

2 $\Delta_{train,val}$: an SCA metric to evaluate performances

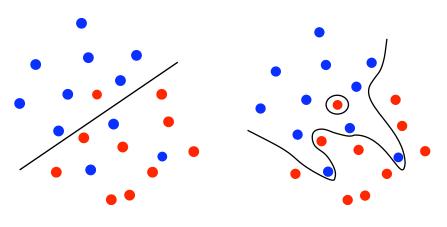
3 Regularization

Robissout, D. (LabHC)

-

< ∃ >

The overfitting phenomena



Good estimation

Overfitting

ъ

$\Delta_{train,val}$: evaluation of the generalization capacity

Goal

Have a clear indication if the network is overfitting/underfitting and if the performance of the network can be improved

Notations

- $T_{train} =$ Set of traces the network used to train
- T_{val} = Set of traces the network has never seen
- $N_{train}(model) := min\{n_{train} \mid \forall n \ge n_{train}, SR^1_{train}(model(n)) = 90\%\}$
- $N_{val}(model) := min\{n_{val} \mid \forall n \ge n_{val}, SR^1_{val}(model(n)) = 90\%\}$

Metric

$$\Delta_{\textit{train},\textit{val}}(\textit{model}) = \mid \textit{N}_{\textit{val}}(\textit{model}) - \textit{N}_{\textit{train}}(\textit{model}) \mid$$

(日) (周) (三) (三)

How to use the metric



Representation of $\Delta_{train.att}$ for CNN_{bn}

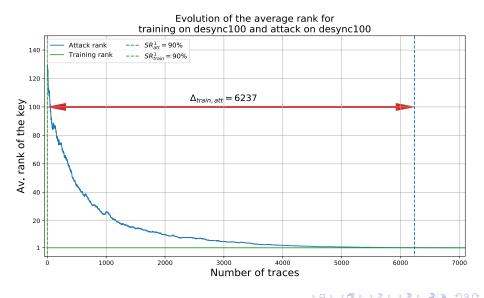


Image: Image:

< ∃ >

$\Delta_{train,val}$: an SCA metric to evaluate performances

3 Regularization

4 Conclusion

Robissout, D. (LabHC)

3 ×

Goal

Reduce $\Delta_{train,att}$ even further using regularization

Means

- Dropout with parameter λ_{D}
- L_2 -Norm regularization with parameter λ_{L_2}

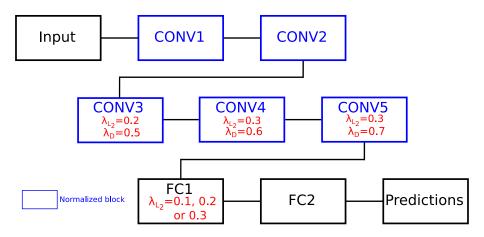
Goal

Reduce $\Delta_{train,att}$ even further using regularization

Means

- Dropout with parameter λ_{D}
- L_2 -Norm regularization with parameter λ_{L_2}

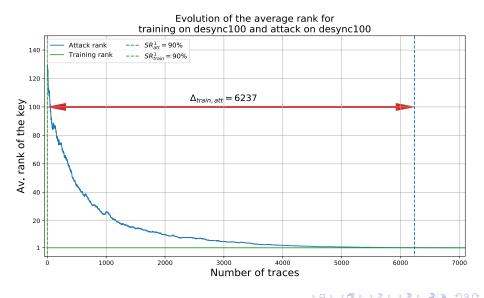
	Test (<i>ste</i>	p = 0.1)	Choice for desync100		
	λ_{D}	λ_{L_2}	λ_{D}	λ_{L_2}	
CONV1&2	[0,, 0.3]	[0,, 0.3]	0	0	
CONV3	[0,, 0.8]	[0,, 0.3]	0.5	0.2	
CONV4	[0,, 0.8]	[0,, 0.3]	0.6	0.3	
CONV5	[0,, 0.8]	[0,, 0.3]	0.7	0.3	
FC1	[0,, 0.8]	[0,, 0.3]	0	0.3	
FC2	[0,,0.3]	[0,, 0.3]	0	0	



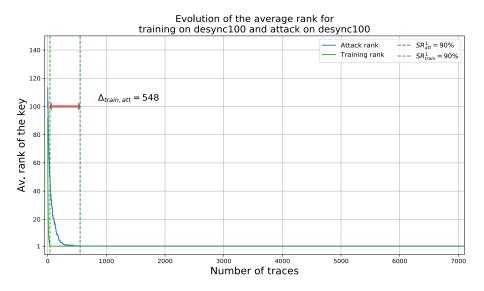
EL OQA

イロト イヨト イヨト

Results without regularization: CNN_{bn}



Results with regularization: CNN_{bn+reg}



< A

-

= 200

Results with regularization: CNN_{bn+reg}

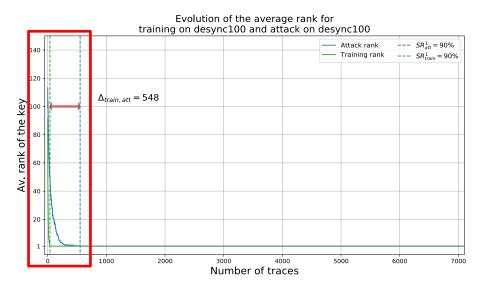


Image: Image:

< ∃ ►

= 990

Attack on desync100 using $\lambda_{L_2} = 0.1$ for CNN_{bn+reg}

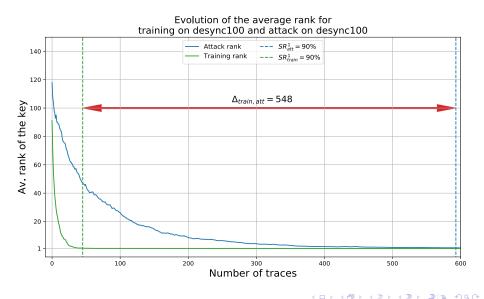
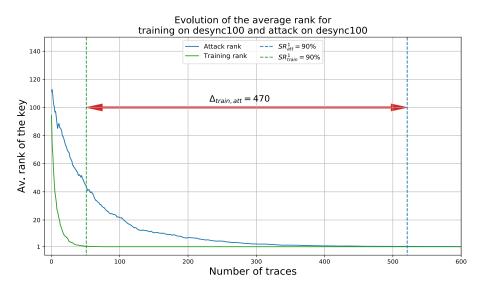


Image: Image:

- **→ →** •

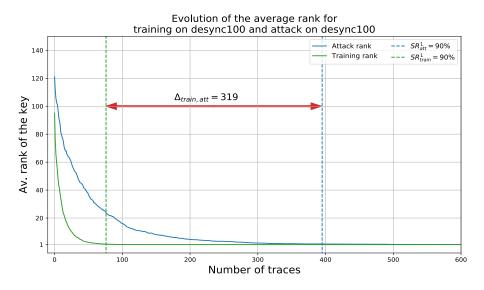
Attack on desync100 using $\lambda_{L_2} = 0.2$ for CNN_{bn+reg}



-

= nac

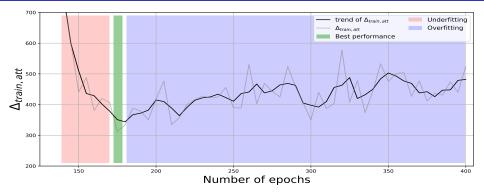
Attack on desync100 using $\lambda_{L_2} = 0.3$ for CNN_{bn+reg}



- < A

= 900

Evolution of $\Delta_{train,att}$ for different numbers of epochs



Best results on other desynchronizations

	N _{train}	N _{att}	$\Delta_{train,att}$	FC1: λ_{L_2}	Nb epochs
Desync0	104	272	168	0.1	125
Desync50	21	279	258	0.1	200
Desync100	76	395	319	0.3	175

$\Delta_{train,val}$: an SCA metric to evaluate performances

3 Regularization

Robissout, D. (LabHC)

ъ.

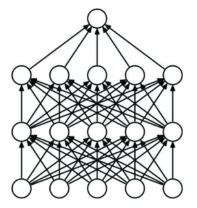
∃ > <</p>

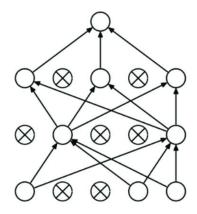
- New metric to evaluate the possible improvement of an architecture
- Normalization and regularization improve CNN performance in SCA
- Given the amount of regularization needed to obtain those results, **a better architecture probably exists**
- Apply this technique to other networks

Improved Deep-Learning Side-Channel Attacks using Normalization Layers

Thank you for listening. Do you have questions ?

Dropout example





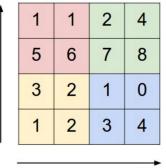
(a) Standard Neural Network

(b) Neural Net with Dropout

Ref.: Roffo, Giorgio. (2017). Ranking to Learn and Learning to Rank: On the Role of Ranking in Pattern Recognition Applications.

X

Single depth slice



max pool with 2x2 filters and stride 2

6	8	
3	4	

Ref.: Max pooling in CNN. Source: http://cs231n.github.io/convolutional-networks/

v