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Breaking provable crypto is hard

▸ Most crypto proposed in the last 15–20 years: provably secure

µ
Scheme

8
Hard problem

Reduction

▸ Breaking it = provably as hard as solving some algorithmic
problem like integer factorization, computing discrete
logarithms(classical crypto) or SVP, CVP, LWE, (lattice
based), ...

▸ Cryptanalysis = major algorithmic advance?
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Yet, many attacks against deployed crypto

The crypto protocol that is perhaps most used in everyday life,
TLS, is attacked all the time!
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So how do people actually break crypto?

▸ Very rarely: major algorithmic improvement
▸ Big one recently: progress on small characteristic discrete

logarithms/pairings [BaGaJoTh13]

▸ More commonly: non-provably secure schemes shown to be
insecure

▸ Several of the TLS attacks
▸ Many legacy scheme still in use could be broken (e.g.

PKCS#1v1.5 signatures?)

▸ Most importantly: implementation attacks!

6/42 WRACH 2019 – Physical Attacks Against Lattice-Based Schemes



So how do people actually break crypto?

▸ Very rarely: major algorithmic improvement
▸ Big one recently: progress on small characteristic discrete

logarithms/pairings [BaGaJoTh13]

▸ More commonly: non-provably secure schemes shown to be
insecure

▸ Several of the TLS attacks
▸ Many legacy scheme still in use could be broken (e.g.

PKCS#1v1.5 signatures?)

▸ Most importantly: implementation attacks!

6/42 WRACH 2019 – Physical Attacks Against Lattice-Based Schemes



So how do people actually break crypto?

▸ Very rarely: major algorithmic improvement
▸ Big one recently: progress on small characteristic discrete

logarithms/pairings [BaGaJoTh13]

▸ More commonly: non-provably secure schemes shown to be
insecure

▸ Several of the TLS attacks
▸ Many legacy scheme still in use could be broken (e.g.

PKCS#1v1.5 signatures?)

▸ Most importantly: implementation attacks!

6/42 WRACH 2019 – Physical Attacks Against Lattice-Based Schemes



Implementation attacks

▸ To break a real-world crypto implementation, no need to play
by the rules of black-box security

▸ In particular, provably secure schemes can be broken by
bypassing the (usually black-box) security model

▸ Remark: some attempts to also capture non black-box attacks
in security proofs (e.g. leakage-resilient crypto...)

▸ These are implementation attacks
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Various types of implementation attacks

▸ Correctness attacks: use the implementation as a black box,
but send malformed/incorrect/invalid/malicious inputs

▸ think of fuzzing in software security for instance

▸ Side-channel attacks: passive physical attacks, exploiting
information leakage about the computation or the keys

▸ timing, electromagnetic emanations, heat production, power
supply

▸ Fault attacks: active physical attacks, trying to extract secret
information by tampering with the device to cause errors
during the cryptographic computation

▸ power tampering, laser beams
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Towards postquantum cryptography

▸ Quantum computers would break all currently deployed
public-key crypto: RSA, discrete logs, elliptic curves

▸ Agencies warn that we should prepare the transition to
quantum-resistant crypto

▸ NSA deprecating Suite B (elliptic curves)
▸ NIST is pursuing their postquantum competition (round 2 is

going on)

▸ In theory, plenty of known schemes are quantum-resistant
▸ Some primitives achieved with codes, hash trees, multivariate

crypto, knapsacks, isogenies...
▸ Almost everything possible with lattices
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Towards postquantum cryptography

▸ In practice, very few actual implementations
▸ Secure parameters often unclear
▸ Concrete software/hardware implementation papers quite rare
▸ Almost no consideration for implementation attacks

▸ Serious issue if we want practical postquantum crypto
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Implementations of lattice-based schemes (I)

▸ Implementation work on lattice-based crypto is limited and
mostly academic, usually targeted towards efficiency

▸ Things tends to move a bit with NIST competition, but efforts
are still made on efficiency rather than on code protection
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Implementations of lattice-based schemes (II)

▸ One scheme has “industry” backing and quite a bit of code:
NTRU

▸ NTRUEncrypt is an ANSI standard, and believed to be okay
▸ NTRUSign is a trainwreck that has been patched and broken

many times

▸ In terms of practical schemes, other than NTRU, main efforts
on signatures

▸ GLP: improvement of Lyubashevsky signatures, efficient in SW
and HW (CHES’12)

▸ BLISS: improvement of GPL, even better (CRYPTO’13,
CHES’14), and Dilithium (TCHES ’18, NIST submitted)

▸ DLP: hash-and-sign scheme using GPV sampling on NTRU
lattices (AC’14)

▸ A few others: PASSSign (ACNS’14), (q)TESLA
(AFRICACRYPT’16), FALCON (NIST submitted)
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Implementation attacks on lattice-based schemes

▸ Survey by Taha and Eisenbarth (eprint 2015/1083) on
implementation attacks against postquantum schemes;
thorough literature review

▸ Up to 2016, for lattice-based schemes, only referenced attacks
are against NTRU

▸ NTRUEncrypt: a few papers about timing attacks
(CT-RSA’07), power analysis (RFIDSec’08+journals) and
faults (JCEN, IEICE Trans.)

▸ NTRUSign: one paper about faults (Cryptogr. and Comm.)

▸ On signatures: fault attacks (SAC 2016), side-channel
analysis on lattice-based signatures (Groot Bruinderink et al.
CHES 2016, CCS 2017, Pessl et al. CCS 2017),

▸ Impulsion in this direction with all the new NIST candidates.
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Shortest vector problem

Given as any (=ugly) basis

SVP

Find shortest vector
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Closest vector problem

Given as any (=ugly) basis

and point outside the lattice

CVP

Find closest vector
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BLISS: the basics

▸ Introduced by Ducas, Durmus, Lepoint and Lyubashevsky at
CRYPTO’13

▸ Improvement of the earlier Ring-SIS-based scheme of
Lyubashevsky (EC’12)

▸ Still following the structure of “Fiat–Shamir with aborts”

▸ Still defined over some ring R = Z[x]/(xn + 1)

▸ Main improvement: use bimodal Gaussian distributions to
reduce the size of parameters
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BLISS: key generation

1: function KeyGen()
2: choose f,g as uniform polynomials with exactly d1 = ⌈δ1n⌉

entries in {±1} and d2 = ⌈δ2n⌉ entries in {±2}
3: S = (s1, s2)

T ← (f,2g + 1)T

4: if Nκ(S) ≥ C 2 ⋅ 5 ⋅ (⌈δ1n⌉ + 4⌈δ2n⌉) ⋅ κ then restart
5: if f is not invertible then restart
6: aq = (2g + 1)/f mod q
7: return (pk = A, sk = S) where A = (a1 = 2aq,q − 2) mod 2q
8: end function
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BLISS: signature

1: function Sign(µ,pk = A, sk = S)
2: y1,y2 ← Dn

Z,σ ▷ Gaussian sampling
3: u = ζ ⋅ a1 ⋅ y1 + y2 mod 2q ▷ ζ = 1/(q − 2)
4: c← H(⌊u⌉d mod p, µ) ▷ special hashing
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: continue with probability

1/(M exp(−∥Sc∥/(2σ2)) cosh(⟨z,Sc⟩/σ2) otherwise restart

9: z†
2 ← (⌊u⌉d − ⌊u − z2⌉d) mod p

10: return (z1, z
†
2, c)

11: end function
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BLISS: verification

1: function Verify(µ,A, (z1, z
†
2, c))

2: if ∥(z1∣2
d ⋅ z†

2)∥2 > B2 then reject

3: if ∥(z1∣2
d ⋅ z†

2)∥∞ > B∞ then reject

4: accept iff c = H(⌊ζ ⋅ a1 ⋅ z1 + ζ ⋅ q ⋅ c⌉d + z†
2 mod p, µ)

5: end function
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BLISS: parameters

▸ Parameters proposed by Ducas et al. for 128-bit security
(BLISS–I & BLISS–II)

▸ n = 512, q = 12289
▸ (δ1, δ2) = (0.3,0) (density of f,g)
▸ σ = 215 for BLISS–I, 107 for BLISS–II
▸ κ = 23 (number of 1’s in c)
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Attacking y

▸ The ring element y1, which acts as additive mask in the
relation:

z1 ≡ y1 + (−1)bs1c (mod q)

is sampled according to a discrete Gaussian

▸ Sampling carried out coefficient by coefficient

. . . y
(0)
1 y

(1)
1 y

(2)
1 y

(3)
1 y

(4)
1 y

(5)
1 0 0 . . . Memory

deg

for i = 0 to n do y
(i)
1 ← ⋯ end
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Attacking y

▸ Idea of the attack: use fault injection to abort the sampling
early, so that a faulty signature will be generated with a
low-degree y1

. . . . . .

y1

▸ Can be done by attacking the branching test of the loop
(voltage spike, clock variation...), or the contents of the loop
counter (lasers, x-rays...)
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Attack details (I)

▸ So let’s say we get a signature generated with y1 of degree
m ≪ n

▸ If c is invertible (probability around (1 − 1/q)n ≈ 96%), we can
compute:

▸

z1 ≡ y1 + (−1)bs1c (mod q)

▸

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

▸

v = c−1z1 ≡ c−1y1 + s1 (mod q)

▸ WLOG, b = 0 (equivalent keys)

27/42 WRACH 2019 – Physical Attacks Against Lattice-Based Schemes



Attack details (I)

▸ So let’s say we get a signature generated with y1 of degree
m ≪ n

▸ If c is invertible (probability around (1 − 1/q)n ≈ 96%), we can
compute:

▸

z1 ≡ y1 + (−1)bs1c (mod q)

▸

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

▸

v = c−1z1 ≡ c−1y1 + s1 (mod q)

▸ WLOG, b = 0 (equivalent keys)

27/42 WRACH 2019 – Physical Attacks Against Lattice-Based Schemes



Attack details (I)

▸ So let’s say we get a signature generated with y1 of degree
m ≪ n

▸ If c is invertible (probability around (1 − 1/q)n ≈ 96%), we can
compute:

▸

z1 ≡ y1 + (−1)bs1c (mod q)

▸

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

▸

v = c−1z1 ≡ c−1y1 + s1 (mod q)

▸ WLOG, b = 0 (equivalent keys)

27/42 WRACH 2019 – Physical Attacks Against Lattice-Based Schemes



Attack details (I)

▸ So let’s say we get a signature generated with y1 of degree
m ≪ n

▸ If c is invertible (probability around (1 − 1/q)n ≈ 96%), we can
compute:

▸

z1 ≡ y1 + (−1)bs1c (mod q)

▸

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

▸

v = c−1z1 ≡ c−1y1 + s1 (mod q)

▸ WLOG, b = 0 (equivalent keys)

27/42 WRACH 2019 – Physical Attacks Against Lattice-Based Schemes



Attack details (I)

▸ So let’s say we get a signature generated with y1 of degree
m ≪ n

▸ If c is invertible (probability around (1 − 1/q)n ≈ 96%), we can
compute:

▸

z1 ≡ y1 + (−1)bs1c (mod q)

▸

v = c−1z1 ≡ c−1y1 + (−1)bs1 (mod q)

▸

v = c−1z1 ≡ c−1y1 + s1 (mod q)

▸ WLOG, b = 0 (equivalent keys)

27/42 WRACH 2019 – Physical Attacks Against Lattice-Based Schemes



Attack details (I)

v = c−1z1 ≡ c−1

∈Z[xi ]
©
y1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Z[c−1xi ]=Z[wi ]

+ s1 (mod q)

▸ Since s1 is very short, v very close to the lattice L generated
by qZn and wi = c−1xi , i = 0, . . . ,m

v
s1
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Attack details (I)

▸ L of dimension n: too large to apply lattice reduction

▸ However, we have the same relation on arbitrary subset of
coefficients: we can reduce the dimension
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Attack details (II)

▸ More precisely, fix a subset I ⊂ {0, . . . ,n − 1} of ` indices, and
let ϕI ∶Zn → ZI be the obvious projection

▸ ϕI (v) is close to the lattice generated by ϕI (wi) and qZI ,
and if ` is large enough, the difference should be ϕI (s1).

▸ Solve this close vector problem using Babai nearest plane
algorithm. Condition on ` to recover ϕI (s1):

` + 1 ≳
m + 2 + log

√

δ1+4δ2

log q

1 −
log

√

2πe(δ1+4δ2)

log q
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and if ` is large enough, the difference should be ϕI (s1).

▸ Solve this close vector problem using Babai nearest plane
algorithm. Condition on ` to recover ϕI (s1):

` + 1 ≳
m + 2 + log

√

δ1+4δ2

log q

1 −
log

√

2πe(δ1+4δ2)

log q
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Attack details (III)

▸ For BLISS–I and BLISS–II, this says ` ≈ 1.09 ⋅m

▸ In practice: works fine with LLL for m ≲ 60 and with BKZ
with m ≲ 100

▸ Just apply the attack for several choices of I to recover all of
s1, and subsequently s2: full key recovery with one faulty
signature!
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Implementation results

Fault after iteration number m = 5 10 20 40 80 100
Theoretical minimum dimension `min 6 11 22 44 88 110

Dimension ` in our experiment 6 12 24 50 110 150
Lattice reduction algorithm LLL LLL LLL BKZ–20 BKZ–25 BKZ–25
Avg. CPU time to recover ` coeffs. (s) 0.005 0.022 0.23 7.3 941 33655
Avg. CPU time for full key recovery 0.5 s 1 s 5 s 80 s 80 min 38 h
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Attack overview

▸ The rejection sampling step is the cornerstone of BLISS
security (difference with NTRUSign) and efficient (the
bimodal aspect)

▸ In practice: difficult to implement on constrained devices, so
some tricks have to be used

▸ The optimized version of the rejection sampling used iterated
Bernoulli trials on each of the bits of ∥Sc∥2; as a result, we
can read that value on an SPA trace

▸ This yields to the recovery of the relative algebraic norm s ⋅ s̄
of the secret key. Algorithmic number theoretic techniques
(Howgrave-Graham–Szydlo) can then be used to retrieve s!
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BLISS rejection sampling

1: function SampleBernExp(x ∈
[0,2`) ∩Z)

2: for i = 0 to ` − 1 do
3: if xi = 1 then
4: Sample a ←Bci

5: if a = 0 then return 0
6: end if
7: end for
8: return 1
9: end function ▷ x = K − ∥Sc∥2

1: functionSampleBernCosh(x)
2: if a = 1 then return 1
3: Sample b ←B1/2

4: if b = 1 then restart
5: Sample c ←Bexp(−x/f )

6: if c = 1 then restart
7: return 0
8: end function ▷ x = 2 ⋅ ⟨z,Sc⟩

Sampling algorithms for the distributions Bexp(−x/f ) and

B1/ cosh(x/f ) (ci = 2i/f precomputed)
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Experimental leakage
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Electromagnetic measure of BLISS rejection sampling for norm
∥Sc∥2 = 14404. One reads the value:

K − ∥Sc∥2
= 46539 − 14404 = 111000011011112
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Exploiting the leakage

▸ After collecting around 1024 traces, one obtains the value of
S ⋅ S

▸ Algorithmic number theory (HGS) allows to deduce S itself
(up to a root of unity):

▸ Compute the norm of S over Z, factor it.
▸ Construct part of candidates secrets from the prime factors.
▸ Combine each of them to get a candidate.
▸ Enumerate the candidates.
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Exploiting the leakage

▸ Attack is in polynomial time IF the (absolute) algebraic norm
of S is easy to factor (e.g. semismooth: happens in a
significant fraction of cases!)

▸ This is a full key recovery!

Security of BLISS implementation (PQ scheme) ... relies on
integer factorization problem
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Efficiency of the attack

Field size n 32 64 128 256 512

CPU time 0.6 s 13 s 21 min. 17h 22 min. 1.2 months (est.)
Clock cycles ≈ 230 ≈ 235 ≈ 241 ≈ 247 ≈ 253

Average running time of the attack for various field sizes n
BLISS parameters: n = 256 or 512
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Cosh is also leaking... (WIP)

1: function SampleBernExp(x ∈
[0,2`) ∩Z)

2: for i = 0 to ` − 1 do
3: if xi = 1 then
4: Sample a ←Bci

5: if a = 0 then return 0
6: end if
7: end for
8: return 1
9: end function

1: function SampleBern-
Cosh(x)

2: Sample a ←Bexp(−x/f )

3: if a = 1 then return 1
4: Sample b ←B1/2

5: if b = 1 then restart
6: Sample c ←Bexp(−x/f )

7: if c = 1 then restart
8: return 0
9: end function ▷ x = 2 ⋅ ⟨z,Sc⟩

Sampling algorithms for the distributions Bexp(−x/f ) and

B1/ cosh(x/f ) (ci = 2i/f precomputed)
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Conclusion and countermeasures

▸ Important to investigate implementation attacks on lattice
schemes

▸ Physical attack resistance should be part of the design goals
for practical schemes

▸ We described faults and SCA against BLISS signatures,
implementation is vulnerable to various leakage (timing, SPA)
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Conclusion and countermeasures

▸ Possible countermeasures?

▸ Against faults:
▸ check that the result has > (1 − ε) ⋅ n non zero coeffs.
▸ randomize the order of generation of the coefficients? (still

risky)
▸ use double loop counters!

▸ Against side-channels:
▸ compute rejection probability with floating point arithmetic

(slow)
▸ use a constant-time Bernoulli sampling (doable)
▸ prefer a scheme with simpler structure (GLP) and use masking
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