Building Algorithm-Hiding FHE Systems from Exotic Number Representations

P. Martins¹ L. Sousa¹

¹INESC-ID Instituto Superior Técnico, Univ. Lisboa

Workshop on Randomness and Arithmetics for Cryptography on Hardware

Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Motivation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Motivation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Data disclosure is prevented
- What about algorithm disclosure?

Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion

Solution #1

M. Brenner, J. Wiebelitz, G. von Voigt, M. Smith, Secret program execution in the cloud applying homomorphic encryption, in: IEEE DEST 2011, pp. 114–119. doi:10.1109/DEST.2011.5936608.

Solution #1

- The evaluator does not know which instruction is being executed
- ▶ All the CPU circuitry needs to be evaluated at each cycle

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Including memory accesses, ALU operations, etc

Solution #1

- The evaluator does not know which instruction is being executed
- ► All the CPU circuitry needs to be evaluated at each cycle
- Including memory accesses, ALU operations, etc

 \Rightarrow Impractical

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

BGV

• Ciphertexts:
$$c_0 + c_1 Y \in R_q[Y]$$

• Decryption:
$$[c_0 + c_1 s]_q = [[m]_2 + 2v]_q$$

 $m \in R_2$

Addition:
$$(c_0 + c'_0) + (c_1 + c'_1)Y$$

evaluated at $Y = s$ leads to $\approx [[m + m']_2 + 2(v + v')]_q$

Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) Fully Homomorphic Encryption Without Bootstrapping, ACM Trans. Comput. Theory 6 (3) (2014) 13:1–13:36

- ► Multiplication: $(c_0 + c_1 Y) \times (c'_0 + c'_1 Y) = \operatorname{ct}_{mult,0} + \operatorname{ct}_{mult,1} Y + \operatorname{ct}_{mult,2} Y^2$ evaluated at Y = s leads to $\approx [[m \times m']_2 + 2v'']_q$
- Relinearisation: Multiply ct_{mult,2} by pseudo-encryption of s² and add to (ct_{mult,0}, ct_{mult,1})

Modulus-switching:

$$\begin{array}{lll} \delta_i & \leftarrow & 2 \cdot [-\mathtt{ct}_{\mathtt{mult},i}/2]_{q/q'} \text{ for } i = 0,1 \\ \mathtt{ct} & \leftarrow & \left(\left[q'/q \cdot (\mathtt{ct}_{\mathtt{mult},0} + \delta_0) \right]_{q'}, \\ & & \left[q'/q \cdot (\mathtt{ct}_{\mathtt{mult},1} + \delta_1) \right]_{q'} \right) \end{array}$$

Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion

★□>
★□>
★□>
■

Proposed Solution

P. Martins, L. Sousa, A methodical FHE-based cloud computing model, in Future Generation Computer Systems, Volume 95, 2019, pp. 639-648, doi:10.1016/j.future.2019.01.046.

Binary plaintext space

$$\mathcal{P} = \mathbb{Z}[X]/(\phi_m(X), 2)$$

with $\phi_m = F_0 imes \ldots imes F_{l-1} \mod 2$

- Exploit factorisation to encrypt multiple bits in a single ciphertext
- ▶ Bits m_0, \ldots, m_{l-1} are encoded as

$$m_i = m(x) \bmod (F_i(x), 2) \forall_{0 \le i < I}$$

Hom. additions and multiplications operate on them in parallel

• Represent
$$x \in [0, 1]$$
 as $x_0, \ldots, x_{l-1} \in \{0, 1\}$ s.t.

$$P(x_i=1)=x$$

Batch-encrypt x₀,..., x_{l-1}
 Coefficient-wise multiplications and scaled additions

$$egin{aligned} & z_i = x_i \wedge y_i \Rightarrow z = xy \ & z_i = ((1 \oplus s_i) \wedge x_i) \oplus (s_i \wedge y_i) \Rightarrow z = (1-s)x + sy \end{aligned}$$

P. Martins, L. Sousa, A Stochastic Number Representation for Fully Homomorphic Cryptography, in: 2017 IEEE SiPS, 2017, pp. 1–6. doi:10.1109/SiPS.2017.8109973.

Require:
$$B(x) = \sum_{i=0}^{d} {d \choose i} b_i x^i (1-x)^{d-i}$$

Require: x_0
1: for $i \in \{0, ..., d\}$ do
2: $b_i^{(0)} := b_i$
3: end for
4: for $j \in \{1, ..., d\}$ do
5: for $i \in \{0, ..., d-j\}$ do
6: $b_i^{(j)} := b_i^{(j-1)}(1-x_0) + b_{i+1}^{(j-1)}x_0$
7: end for
8: end for
8: end for

9: return
$$B(x_0) = b_0^{(d)}$$

De Casteljau's algorithm for the evaluation of a polynomial in Bernstein form

◆□ → < @ → < ≥ → < ≥ → < ≥ → < </p>

Modify BGV with the following decryption

$$[\mathbf{c_0} + \mathbf{c_1}\mathbf{s}]_q = [\mathbf{m} + \mathbf{v}]_q$$

A number $x \in \mathbb{R}$ is represented as a polynomial

$$\mathbf{x} = \lfloor \Delta x
ceil + \mathbf{v}$$

After multiplications, rescale

$$\texttt{ct} \leftarrow \left(\left[\left\lfloor q'/q \cdot \texttt{ct}_{\texttt{mult},0} \right\rceil \right]_{q'}, \left[\left\lfloor q'/q \cdot \texttt{ct}_{\texttt{mult},1} \right\rceil \right]_{q'} \right)$$

J. H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic Encryption for Arithmetic of Approximate Numbers, Cryptology ePrint Archive, Report 2016/421 (2016).

Require: $P(x) = \sum_{i=0}^{d} a_i x^i$ Require: x_0 1: $s := a_d$ 2: for $i \in \{d - 1, ..., 0\}$ do 3: $s := a_i + x_0 s$ 4: end for 5: return $P(x_0) = s$

Horner's method for the evaluation of a polynomial in power form

- Approximate continuous functions with Bernstein polynomials through Weierstrass theorem
- ▶ If necessary, convert Bernstein polynomials to power form
- Factorise multivariate polynomials into univariate polynomials

Use de Casteljau algorithm or Horner's method

Approximate continuous functions with Bernstein polynomials through Weierstrass theorem

$$\beta_{f,k_1,\ldots,k_m}^{(n_1,\ldots,n_m)} = f\left(\frac{k_1}{n_1},\ldots,\frac{k_m}{n_m}\right)$$

$$B_{f}^{(n_{1},...,n_{m})}(x_{1},...,x_{m}) = \sum_{\substack{0 \leq k_{l} \leq n_{l} \\ l \in \{1,...,m\}}} \beta_{f,k_{1},...,k_{m}}^{(n_{1},...,n_{m})} \prod_{j=1}^{m} {n_{j} \choose k_{j}} x_{j}^{k_{j}} (1-x_{j})^{n_{j}-k_{j}}$$

If necessary, convert Bernstein polynomials to power form

$$\begin{aligned} x_1^{j_1} \dots x_m^{j_m} &= \sum_{k_1=j_1}^{n_1} \frac{\binom{k_1}{j_1}}{\binom{n_1}{j_1}} \binom{n_1}{k_1} x_1^{k_1} (1-x_1)^{n_1-k_1} \times \\ \dots &\times \sum_{k_m=j_m}^{n_m} \frac{\binom{k_m}{j_m}}{\binom{n_m}{j_m}} \binom{n_m}{k_m} x_m^{k_m} (1-x_m)^{n_m-k_m} = \\ &\sum_{\substack{j_l \leq k_l \leq n_l \\ l \in \{1,\dots,m\}}} \prod_{h=1}^m \frac{\binom{k_h}{j_h}}{\binom{n_h}{j_h}} \binom{n_h}{k_h} x_h^{k_h} (1-x_h)^{n_h-k_h} \end{aligned}$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

Factorise multivariate polynomials into univariate polynomials

 $B_{f}^{(n_{1},...,n_{m})}(x_{1},...,x_{m}) = \sum_{k_{1}=0}^{n_{1}} {n_{1} \choose k_{1}} x_{1}^{k_{1}} (1-x_{1})^{n_{1}-k_{1}} \left(\sum_{k_{2}=0}^{n_{2}} {n_{2} \choose k_{2}} x_{2}^{k_{2}} (1-x_{2})^{n_{2}-k_{2}} \right)$ $\dots \left(\sum_{k_{m}=0}^{n_{m}} \beta_{f,k_{1},...,k_{m}}^{(n_{1},...,n_{m})} {n_{m} \choose k_{m}} x_{m}^{k_{m}} (1-x_{m})^{n_{m}-k_{m}} \right) \dots \right)$

$$P(x_1,\ldots,x_m) = \sum_{k_1=0}^{n_1} x_1^{k_1} \left(\sum_{k_2=0}^{n_2} x_1^{k_2} \ldots \left(\sum_{k_m=0}^{n_m} \alpha_{k_1,\ldots,k_m}^{(n_1,\ldots,n_m)} x_m^{k_m} \right) \ldots \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Proposed Computing Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion

<□> <団> < 団> < 豆> < 豆> < 豆> < 豆</p>

Require:
$$z \in \mathbb{R}^{K}$$

1: Sort $(z_{1},...,z_{K})$ as $(z^{(1)},...,z^{(K)})$ s.t. $z^{(1)} \ge ... \ge z^{(K)}$
2: $k(z) := \max \left\{ k \in \{1,...,K\} | 1 + kz^{(k)} > \sum_{j \le k} z^{(j)} \right\}$
3: $\tau(z) := \frac{(\sum_{j \le k(z)} z^{(j)}) - 1}{k(z)}$
4: return p s.t. $p_{i} := \max(0, z_{i} - \tau(z))$

・ロト・4日ト・4日ト・4日・9000

Sparsemax function for mapping scores to probabilities

Function	Scheme	# slots	<i>n</i> 1	<i>n</i> 2	т	log ₂ q	MAE	Sequential Execution Time [s]	Parallel Exe- cution Time [s]	Speedup
sparsemax ₁ (x_1 , 0)	Fixed-point		5		2 ¹⁵	744	0.0843	0.489	-	-
$sparsemax_1(x_1, 0)$	Fixed-point		10		2 ¹⁵	744	0.0495	0.689	-	-
$sparsemax_1(x_1, 0)$	Fixed-point		15		2 ¹⁶	1550	0.0336	9.00	-	-
sparsemax ₁ ($x_1, x_2, 0$)	Fixed-point		2	2	2 ¹⁵	744	0.181	0.902	0.543	1.7
sparsemax ₁ ($x_1, x_2, 0$)	Fixed-point		3	3	2 ¹⁵	744	0.133	1.57	0.687	2.3
sparsemax ₁ ($x_1, x_2, 0$)	Fixed-point		4	4	2 ¹⁶	1550	0.120	20.7	6.87	3.0
sparsemax ₁ (x_1 , 0)	Stochastic	630	5		8191	327	0.104	0.409	0.272	1.5
sparsemax ₁ (x_1 , 0)	Stochastic	1024	10		21845	1440	0.063	16.2	6.40	2.5
$sparsemax_1(x_1, 0)$	Stochastic	2160	15		55831	2592	0.036	83.0	19.5	4.3
sparsemax ₁ ($x_1, x_2, 0$)	Stochastic	630	2	2	8191	327	0.151	0.301	0.254	1.1
sparsemax ₁ ($x_1, x_2, 0$)	Stochastic	1024	3	3	21845	985	0.129	9.46	3.58	2.6
$sparsemax_1(x_1, x_2, 0)$	Stochastic	2160	4	4	55831	2592	0.112	39.6	9.78	4.0

The functions sparsemax₁(x_1 , 0) and sparsemax₁(x_1 , x_2 , 0) were approximated and homomorphically evaluated on a i7-5960X, using both a fixed-point approach with Horner's scheme and a stochastic number representation with de Casteljau's algorithm

◆□> ◆□> ◆三> ◆三> ● □ ● ● ●

System	Encryption [s] Intel / Arm	Filter [s] Intel	Decryption [s] Intel / Arm
Grey Stretching – Fixed-point	52.5 / 685	341	6.9 / 134
Blending – Fixed-point	52.7 / 684	885	5.3 / 88
Grey Stretching – Stochastic	34.5 / 914	1340	61.7 / 1172
Blending – Stochastic	47.7 / 1273	2103	89.4 / 1468
Grey Stretching – Floating-point	324 / 7935	95.9	92.7 / 2630

Average execution time for homomorphic image processing operations on an i7-5960X (Intel) and on a Cortex-A53 (Arm). The last implementation corresponds to an adaption of † to the proposed system. † uses the Paillier cryptosystem

[†] M. Ziad, A. Alanwar, M. Alzantot, M. Srivastava, CryptoImg: Privacy preserving processing over encrypted images, in: 2016 IEEE CNS, pp. 570–576

Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion

Related Art

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion

Conclusion

- Current cloud computing models vulnerable to data and algorithm disclosure
- While FHE prevents data leaking, achieving algorithm secrecy has been impractical so far
- Herein, we focus on a wide range of functions whose approximations can be efficiently evaluated with homomorphic operations
- ► All approximations are evaluated in the same manner ⇒ an evaluator has no way to distinguish them

Thank you! Any questions?