Building Algorithm-Hiding FHE Systems from Exotic Number Representations

P. Martins ${ }^{1} \quad$ L. Sousa ${ }^{1}$

${ }^{1}$ INESC-ID
Instituto Superior Técnico, Univ. Lisboa

Workshop on Randomness and Arithmetics for Cryptography on Hardware

Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion

Motivation

Motivation

- Data disclosure is prevented
- What about algorithm disclosure?

Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion

Solution \#1

Describe GP-CPU as Homomorphic Circuit

M. Brenner, J. Wiebelitz, G. von Voigt, M. Smith, Secret program execution in the cloud applying homomorphic encryption, in: IEEE DEST 2011, pp. 114-119. doi:10.1109/DEST.2011.5936608.

Solution \#1

- The evaluator does not know which instruction is being executed
- All the CPU circuitry needs to be evaluated at each cycle
- Including memory accesses, ALU operations, etc

Solution \#1

- The evaluator does not know which instruction is being executed
- All the CPU circuitry needs to be evaluated at each cycle
- Including memory accesses, ALU operations, etc
\Rightarrow Impractical
- Ring: $R=\mathbb{Z}[X] /\left(\phi_{m}(X)\right)$ $\phi_{m}(X)$ is a cyclotomic polynomial of degree $\varphi(m)$
- Ciphertexts: $\boldsymbol{c}_{\mathbf{0}}+\boldsymbol{c}_{\mathbf{1}} Y \in R_{q}[Y]$
- Decryption: $\left[\boldsymbol{c}_{\mathbf{0}}+\boldsymbol{c}_{\mathbf{1}} \boldsymbol{s}\right]_{q}=\left[[\boldsymbol{m}]_{2}+2 \boldsymbol{v}\right]_{q}$ $\boldsymbol{m} \in R_{2}$
- Addition: $\left(c_{0}+c_{0}^{\prime}\right)+\left(c_{1}+c_{1}^{\prime}\right) Y$ evaluated at $Y=\boldsymbol{s}$ leads to $\approx\left[\left[\boldsymbol{m}+\boldsymbol{m}^{\prime}\right]_{2}+2\left(\boldsymbol{v}+\boldsymbol{v}^{\prime}\right)\right]_{q}$
Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) Fully Homomorphic Encryption Without Bootstrapping, ACM Trans. Comput.
Theory 6 (3) (2014) 13:1-13:36
- Multiplication: $\left(c_{0}+\boldsymbol{c}_{\mathbf{1}} Y\right) \times\left(\boldsymbol{c}_{\mathbf{0}}^{\prime}+\boldsymbol{c}_{\mathbf{1}}^{\prime} Y\right)=$ $c t_{\text {mult }, 0}+c t_{\text {mult }, 1} Y+c t_{\text {mult }, 2} Y^{2}$ evaluated at $Y=\boldsymbol{s}$ leads to $\approx\left[\left[\boldsymbol{m} \times \boldsymbol{m}^{\prime}\right]_{2}+2 \boldsymbol{v}^{\prime \prime}\right]_{q}$
- Relinearisation: Multiply $c t_{m u l t, 2}$ by pseudo-encryption of \boldsymbol{s}^{2} and add to ($\mathrm{ct}_{\text {mult }, 0}, \mathrm{ct}_{\text {mult }, 1}$)
- Modulus-switching:

$$
\begin{aligned}
\delta_{i} \leftarrow & 2 \cdot\left[-c \mathrm{t}_{\text {mult }, i} / 2\right]_{q / q^{\prime}} \text { for } i=0,1 \\
\mathrm{ct} \leftarrow & \left(\left[q^{\prime} / q \cdot\left(\mathrm{ct}_{\mathrm{mult}, 0}+\delta_{0}\right)\right]_{q^{\prime}}\right. \\
& {\left.\left[q^{\prime} / q \cdot\left(\mathrm{ct}_{\mathrm{mult}, 1}+\delta_{1}\right)\right]_{q^{\prime}}\right) }
\end{aligned}
$$

Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion

Proposed Solution

Analyse "Natural"
 Homomorphic Structures

Homomorphically Evaluate ASIP

P. Martins, L. Sousa, A methodical FHE-based cloud computing model, in Future Generation Computer Systems, Volume 95, 2019, pp. 639-648, doi:10.1016/j.future.2019.01.046.

"Natural" Homomorphic Structure \#1

- Binary plaintext space

$$
\mathcal{P}=\mathbb{Z}[X] /\left(\phi_{m}(X), 2\right)
$$

with $\phi_{m}=F_{0} \times \ldots \times F_{l-1} \bmod 2$

- Exploit factorisation to encrypt multiple bits in a single ciphertext
- Bits m_{0}, \ldots, m_{l-1} are encoded as

$$
m_{i}=m(x) \bmod \left(F_{i}(x), 2\right) \forall_{0 \leq i<1}
$$

- Hom. additions and multiplications operate on them in parallel

"Natural" Homomorphic Structure \#1

- Represent $x \in[0,1]$ as $x_{0}, \ldots, x_{I-1} \in\{0,1\}$ s.t.

$$
P\left(x_{i}=1\right)=x
$$

- Batch-encrypt x_{0}, \ldots, x_{I-1}
- Coefficient-wise multiplications and scaled additions

$$
\begin{gathered}
z_{i}=x_{i} \wedge y_{i} \Rightarrow z=x y \\
z_{i}=\left(\left(1 \oplus s_{i}\right) \wedge x_{i}\right) \oplus\left(s_{i} \wedge y_{i}\right) \Rightarrow z=(1-s) x+s y
\end{gathered}
$$

P. Martins, L. Sousa, A Stochastic Number Representation for Fully Homomorphic Cryptography, in: 2017 IEEE SiPS, 2017, pp. 1-6. doi:10.1109/SiPS.2017.8109973.

"Natural" Homomorphic Structure \#1

Require: $B(x)=\sum_{i=0}^{d}\binom{d}{i} b_{i} x^{i}(1-x)^{d-i}$
Require: x_{0}
1: for $i \in\{0, \ldots, d\}$ do
2: $\quad b_{i}^{(0)}:=b_{i}$
3: end for
4: for $j \in\{1, \ldots, d\}$ do
5: \quad for $i \in\{0, \ldots, d-j\}$ do
6: $\quad b_{i}^{(j)}:=b_{i}^{(j-1)}\left(1-x_{0}\right)+b_{i+1}^{(j-1)} x_{0}$
7: end for
8: end for
9: return $B\left(x_{0}\right)=b_{0}^{(d)}$
De Casteljau's algorithm for the evaluation of a polynomial in
Bernstein form

"Natural" Homomorphic Structure \#2

- Modify BGV with the following decryption

$$
\left[\boldsymbol{c}_{\mathbf{0}}+\boldsymbol{c}_{\mathbf{1}} \boldsymbol{s}\right]_{q}=[\boldsymbol{m}+\boldsymbol{v}]_{q}
$$

- A number $x \in \mathbb{R}$ is represented as a polynomial

$$
\boldsymbol{x}=\lfloor\Delta x\rceil+\boldsymbol{v}
$$

- After multiplications, rescale

$$
\mathrm{ct} \leftarrow\left(\left[\left\lfloor q^{\prime} / q \cdot c t_{\mathrm{mult}, 0}\right]\right]_{q^{\prime}},\left[\left\lfloor q^{\prime} / q \cdot c t_{\mathrm{mult}, 1}\right]\right]_{q^{\prime}}\right)
$$

J. H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic Encryption for Arithmetic of Approximate Numbers, Cryptology ePrint Archive, Report 2016/421 (2016).

"Natural" Homomorphic Structure \#2

Require: $P(x)=\sum_{i=0}^{d} a_{i} x^{i}$
Require: x_{0}
1: $s:=a_{d}$
2: for $i \in\{d-1, \ldots, 0\}$ do
3: $\quad s:=a_{i}+x_{0} s$
4: end for
5: return $P\left(x_{0}\right)=s$

Horner's method for the evaluation of a polynomial in power form

ASIP Design

- Approximate continuous functions with Bernstein polynomials through Weierstrass theorem
- If necessary, convert Bernstein polynomials to power form
- Factorise multivariate polynomials into univariate polynomials
- Use de Casteljau algorithm or Horner's method

ASIP Design

Approximate continuous functions with Bernstein polynomials through Weierstrass theorem

$$
\begin{gathered}
\beta_{f, k_{1}, \ldots, k_{m}}^{\left(n_{1}, \ldots, n_{m}\right)}=f\left(\frac{k_{1}}{n_{1}}, \ldots, \frac{k_{m}}{n_{m}}\right) \\
B_{f}^{\left(n_{1}, \ldots, n_{m}\right)}\left(x_{1}, \ldots, x_{m}\right)=\sum_{\substack{0 \leq k_{1} \leq n_{l} \\
I \in\{1, \ldots, m\}}} \beta_{f, k_{1}, \ldots, k_{m}}^{\left(n_{1}, \ldots, n_{m}\right)} \prod_{j=1}^{m}\binom{n_{j}}{k_{j}} x_{j}^{k_{j}}\left(1-x_{j}\right)^{n_{j}-k_{j}}
\end{gathered}
$$

ASIP Design

If necessary, convert Bernstein polynomials to power form

$$
\begin{aligned}
x_{1}^{j_{1}} \ldots x_{m}^{j_{m}}= & \sum_{k_{1}=j_{1}}^{n_{1}} \frac{\binom{k_{1}}{j_{1}}}{\binom{n_{1}}{j_{1}}}\binom{n_{1}}{k_{1}} x_{1}^{k_{1}}\left(1-x_{1}\right)^{n_{1}-k_{1}} \times \\
& \ldots \times \sum_{k_{m}=j_{m}}^{n_{m}} \frac{\binom{k_{m}}{j_{m}}}{\binom{n_{m}}{j_{m}}}\binom{n_{m}}{k_{m}} x_{m}^{k_{m}}\left(1-x_{m}\right)^{n_{m}-k_{m}}= \\
& \sum_{\substack{j_{I} \leq k_{1} \leq n_{l} \\
l \in\{1, \ldots, m\}}} \prod_{h=1}^{m} \frac{\binom{k_{h}}{j_{h}}}{\binom{n_{h}}{j_{h}}}\binom{n_{h}}{k_{h}} x_{h}^{k_{h}}\left(1-x_{h}\right)^{n_{h}-k_{h}}
\end{aligned}
$$

ASIP Design

Factorise multivariate polynomials into univariate polynomials

$$
\begin{aligned}
& B_{f}^{\left(n_{1}, \ldots, n_{m}\right)}\left(x_{1}, \ldots, x_{m}\right)= \\
& \sum_{k_{1}=0}^{n_{1}}\binom{n_{1}}{k_{1}} x_{1}^{k_{1}}\left(1-x_{1}\right)^{n_{1}-k_{1}}\left(\sum_{k_{2}=0}^{n_{2}}\binom{n_{2}}{k_{2}} x_{2}^{k_{2}}\left(1-x_{2}\right)^{n_{2}-k_{2}}\right. \\
& \left.\ldots\left(\sum_{k_{m}=0}^{n_{m}} \beta_{f, k_{1}, \ldots, k_{m}}^{\left(n_{1}, \ldots, n_{m}\right)}\binom{n_{m}}{k_{m}} x_{m}^{k_{m}}\left(1-x_{m}\right)^{n_{m}-k_{m}}\right) \ldots\right) \\
& P\left(x_{1}, \ldots, x_{m}\right)= \\
& \sum_{k_{1}=0}^{n_{1}} x_{1}^{k_{1}}\left(\sum_{k_{2}=0}^{n_{2}} x_{1}^{k_{2}} \ldots\left(\sum_{k_{m}=0}^{n_{m}} \alpha_{k_{1}, \ldots, k_{m}}^{\left(n_{1}, \ldots, n_{m}\right)} x_{m}^{k_{m}}\right) \ldots\right)
\end{aligned}
$$

Proposed Computing Model

$\operatorname{Encrypt}_{\mathcal{E}}\left(f\left(x_{1}, \ldots, x_{m}\right)\right)$

Table of Contents

Motivation
Background
Proposed Solution

Experimental Results

Related Art

Conclusion

Example \#1

Require: $z \in \mathbb{R}^{K}$
1: Sort $\left(z_{1}, \ldots, z_{K}\right)$ as $\left(z^{(1)}, \ldots, z^{(K)}\right)$ s.t. $z^{(1)} \geq \ldots \geq z^{(K)}$
2: $k(z):=\max \left\{k \in\{1, \ldots, K\} \mid 1+k z^{(k)}>\sum_{j \leq k} z^{(j)}\right\}$
3: $\tau(z):=\frac{\left(\sum_{j \leq k(z)} z^{(j)}\right)-1}{k(z)}$
4: return \boldsymbol{p} s.t. $p_{i}:=\max \left(0, z_{i}-\tau(z)\right)$
Sparsemax function for mapping scores to probabilities

Example \#1

Function	Scheme	\# slots	n_{1}	n_{2}	m	$\log _{2} q$	MAE	Sequential Execution Time [s]	Parallel Execution Time [s]	Speedup
$\operatorname{sparsemax}_{1}\left(x_{1}, 0\right)$	Fixed-point		5		2^{15}	744	0.0843	0.489	-	-
$\operatorname{sparsemax}_{1}\left(x_{1}, 0\right)$	Fixed-point		10		2^{15}	744	0.0495	0.689	-	-
$\operatorname{sparsemax}_{1}\left(x_{1}, 0\right)$	Fixed-point		15		2^{16}	1550	0.0336	9.00	-	-
$\operatorname{sparsemax}_{1}\left(x_{1}, x_{2}, 0\right)$	Fixed-point		2	2	2^{15}	744	0.181	0.902	0.543	1.7
$\operatorname{sparsemax}_{1}\left(x_{1}, x_{2}, 0\right)$	Fixed-point		3	3	2^{15}	744	0.133	1.57	0.687	2.3
$\operatorname{sparsemax}_{1}\left(x_{1}, x_{2}, 0\right)$	Fixed-point		4	4	2^{16}	1550	0.120	20.7	6.87	3.0
$\operatorname{sparsemax}_{1}\left(x_{1}, 0\right)$	Stochastic	630	5		8191	327	0.104	0.409	0.272	1.5
$\operatorname{sparsemax}_{1}\left(x_{1}, 0\right)$	Stochastic	1024	10		21845	1440	0.063	16.2	6.40	2.5
$\operatorname{sparsemax}_{1}\left(x_{1}, 0\right)$	Stochastic	2160	15		55831	2592	0.036	83.0	19.5	4.3
sparsemax $_{1}\left(x_{1}, x_{2}, 0\right)$	Stochastic	630	2	2	8191	327	0.151	0.301	0.254	1.1
$\operatorname{sparsemax}_{1}\left(x_{1}, x_{2}, 0\right)$	Stochastic	1024	3	3	21845	985	0.129	9.46	3.58	2.6
sparsemax $_{1}\left(x_{1}, x_{2}, 0\right)$	Stochastic	2160	4	4	55831	2592	0.112	39.6	9.78	4.0

The functions sparsemax ${ }_{1}\left(x_{1}, 0\right)$ and sparsemax $_{1}\left(x_{1}, x_{2}, 0\right)$ were approximated and homomorphically evaluated on a i7-5960X, using both a fixed-point approach with Horner's scheme and a stochastic number representation with de Casteljau's algorithm

Example \#2

Example \#2

System	Encryption [s] Intel / Arm	Filter [s] Intel	Decryption [s] Intel / Arm
Grey Stretching - Fixed-point	$52.5 / 685$	341	$6.9 / 134$
Blending - Fixed-point	$52.7 / 684$	885	$5.3 / 88$
Grey Stretching - Stochastic	$34.5 / 914$	1340	$61.7 / 1172$
Blending - Stochastic	$47.7 / 1273$	2103	$89.4 / 1468$
Grey Stretching - Floating-point	$324 / 7935$	95.9	$92.7 / 2630$

Average execution time for homomorphic image processing operations on an i7-5960X (Intel) and on a Cortex-A53 (Arm). The last implementation corresponds to an adaption of \dagger to the proposed system. \dagger uses the Paillier cryptosystem
\dagger M. Ziad, A. Alanwar, M. Alzantot, M. Srivastava, Cryptolmg: Privacy preserving processing over encrypted images, in: 2016 IEEE CNS, pp. 570-576

Table of Contents

Motivation
Background
Proposed Solution
Experimental Results

Related Art

Conclusion

Related Art

Computing Model	Performance	Development Effort	Scope	Privacy
Traditional	Directly exploits CPU architecture	Traditional programming techniques	Supports any application	Vulnerable to attacks like Meltdown and Spectre
PHE libraries	Overhead associated with PHE	Intricate development. Requires strong familiarity with PHE	Limited support of applications	Hides data
FHE w/ application specific circuits	Overhead associated with FHE	Intricate development. Requires strong familiarity with FHE	Supports most applications	Hides data
Proposed model	Limited set of FHE operations	Traditional programming techniques	Continuous functions	Hides data and algorithm
FHE w/ encrypted computer architecture	Impractical	Halting problem may cause development issues	Supports most applications	Hides data and algorithm
		Best	Worst	

Table of Contents

Motivation
Background
Proposed Solution
Experimental Results
Related Art

Conclusion

Conclusion

- Current cloud computing models vulnerable to data and algorithm disclosure
- While FHE prevents data leaking, achieving algorithm secrecy has been impractical so far
- Herein, we focus on a wide range of functions whose approximations can be efficiently evaluated with homomorphic operations
- All approximations are evaluated in the same manner \Rightarrow an evaluator has no way to distinguish them

Thank you!

Any questions?

