
Building Algorithm-Hiding FHE Systems
from Exotic Number Representations

P. Martins1 L. Sousa1

1INESC-ID
Instituto Superior Técnico, Univ. Lisboa

Workshop on Randomness and Arithmetics for Cryptography on
Hardware



Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion



Motivation

Client 1 Client 2

Process
Client 1

Process
Client 2

Hypervisor

Meltdown, Spectre



Motivation

Client 1 Client 2

Process
Client 1
with FHE

Process
Client 2

Hypervisor

Meltdown, Spectre

I Data disclosure is prevented
I What about algorithm disclosure?



Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion



Solution #1

Describe GP-CPU as
Homomorphic Circuit

Convert Algorithm to
Instruction Memory

Homomorphically
Evaluate GP-CPU

M. Brenner, J. Wiebelitz, G. von Voigt, M. Smith, Secret program
execution in the cloud applying homomorphic encryption, in: IEEE DEST
2011, pp. 114–119. doi:10.1109/DEST.2011.5936608.



Solution #1

I The evaluator does not know which instruction is being
executed

I All the CPU circuitry needs to be evaluated at each cycle

I Including memory accesses, ALU operations, etc

⇒ Impractical



Solution #1

I The evaluator does not know which instruction is being
executed

I All the CPU circuitry needs to be evaluated at each cycle

I Including memory accesses, ALU operations, etc

⇒ Impractical



BGV

I Ring: R = Z[X ]/(φm(X ))
φm(X ) is a cyclotomic polynomial of degree ϕ(m)

I Ciphertexts: c0 + c1Y ∈ Rq[Y ]

I Decryption: [c0 + c1s]q = [[m]2 + 2v ]q
m ∈ R2

I Addition: (c0 + c ′0) + (c1 + c ′1)Y
evaluated at Y = s leads to ≈ [[m + m′]2 + 2(v + v ′)]q

Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) Fully
Homomorphic Encryption Without Bootstrapping, ACM Trans. Comput.
Theory 6 (3) (2014) 13:1–13:36



BGV

I Multiplication: (c0 + c1Y )× (c ′0 + c ′1Y ) =
ctmult,0 + ctmult,1Y + ctmult,2Y

2

evaluated at Y = s leads to ≈ [[m ×m′]2 + 2v ′′]q

I Relinearisation: Multiply ctmult,2 by pseudo-encryption of s2

and add to (ctmult,0, ctmult,1)

I Modulus-switching:

δi ← 2 · [−ctmult,i/2]q/q′ for i = 0, 1

ct ←
(

[q′/q · (ctmult,0 + δ0)]q′ ,

[q′/q · (ctmult,1 + δ1)]q′
)



Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion



Proposed Solution

Analyse “Natural”
Homomorphic Structures

Design Efficient
“Application-Specific In-
struction Set Processor”

Homomorphically
Evaluate ASIP

P. Martins, L. Sousa, A methodical FHE-based cloud computing model,
in Future Generation Computer Systems, Volume 95, 2019, pp. 639-648,
doi:10.1016/j.future.2019.01.046.



“Natural” Homomorphic Structure #1

I Binary plaintext space

P = Z[X ]/(φm(X ), 2)

with φm = F0 × . . .× Fl−1 mod 2
I Exploit factorisation to encrypt multiple bits in a single

ciphertext
I Bits m0, . . . ,ml−1 are encoded as

mi = m(x) mod (Fi (x), 2) ∀0≤i<l

I Hom. additions and multiplications operate on them in parallel



“Natural” Homomorphic Structure #1

I Represent x ∈ [0, 1] as x0, . . . , xl−1 ∈ {0, 1} s.t.

P(xi = 1) = x

I Batch-encrypt x0, . . . , xl−1

I Coefficient-wise multiplications and scaled additions

zi = xi ∧ yi ⇒ z = xy

zi = ((1⊕ si ) ∧ xi )⊕ (si ∧ yi ) ⇒ z = (1− s)x + sy

P. Martins, L. Sousa, A Stochastic Number Representation for Fully
Homomorphic Cryptography, in: 2017 IEEE SiPS, 2017, pp. 1–6.
doi:10.1109/SiPS.2017.8109973.



“Natural” Homomorphic Structure #1

Require: B(x) =
∑d

i=0
(d
i

)
bix

i (1− x)d−i

Require: x0
1: for i ∈ {0, . . . , d} do
2: b

(0)
i := bi

3: end for
4: for j ∈ {1, . . . , d} do
5: for i ∈ {0, . . . , d − j} do
6: b

(j)
i := b

(j−1)
i (1− x0) + b

(j−1)
i+1 x0

7: end for
8: end for
9: return B(x0) = b

(d)
0

De Casteljau’s algorithm for the evaluation of a polynomial in
Bernstein form



“Natural” Homomorphic Structure #2

I Modify BGV with the following decryption

[c0 + c1s]q = [m + v ]q

I A number x ∈ R is represented as a polynomial

x = b∆xe+ v

I After multiplications, rescale

ct←
([⌊

q′/q · ctmult,0
⌉]

q′
,
[⌊
q′/q · ctmult,1

⌉]
q′

)
J. H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic Encryption for
Arithmetic of Approximate Numbers, Cryptology ePrint Archive, Report
2016/421 (2016).



“Natural” Homomorphic Structure #2

Require: P(x) =
∑d

i=0 aix
i

Require: x0
1: s := ad
2: for i ∈ {d − 1, . . . , 0} do
3: s := ai + x0s
4: end for
5: return P(x0) = s

Horner’s method for the evaluation of a polynomial in power form



ASIP Design

I Approximate continuous functions with Bernstein polynomials
through Weierstrass theorem

I If necessary, convert Bernstein polynomials to power form

I Factorise multivariate polynomials into univariate polynomials

I Use de Casteljau algorithm or Horner’s method



ASIP Design

Approximate continuous functions with Bernstein
polynomials through Weierstrass theorem

β
(n1,...,nm)
f ,k1,...,km

= f

(
k1

n1
, . . . ,

km
nm

)

B
(n1,...,nm)
f (x1, . . . , xm) =

∑
0≤kl≤nl

l∈{1,...,m}

β
(n1,...,nm)
f ,k1,...,km

m∏
j=1

(
nj
kj

)
x
kj
j (1−xj)nj−kj



ASIP Design

If necessary, convert Bernstein polynomials to power form

x j11 . . . x
jm
m =

n1∑
k1=j1

(k1
j1

)(n1
j1

)(n1

k1

)
xk1
1 (1− x1)n1−k1×

. . .×
nm∑

km=jm

(km
jm

)(nm
jm

)(nm
km

)
xkmm (1− xm)nm−km =

∑
jl≤kl≤nl

l∈{1,...,m}

m∏
h=1

(kh
jh

)(nh
jh

)(nh
kh

)
xkhh (1− xh)nh−kh



ASIP Design

Factorise multivariate polynomials into univariate
polynomials

B
(n1,...,nm)
f (x1, . . . , xm) =

n1∑
k1=0

(
n1

k1

)
xk1
1 (1− x1)n1−k1

 n2∑
k2=0

(
n2

k2

)
xk2
2 (1− x2)n2−k2

. . .

 nm∑
km=0

β
(n1,...,nm)
f ,k1,...,km

(
nm
km

)
xkmm (1− xm)nm−km

 . . .



P(x1, . . . , xm) =

n1∑
k1=0

xk1
1

 n2∑
k2=0

xk2
1 . . .

 nm∑
km=0

α
(n1,...,nm)
k1,...,km

xkmm

 . . .





Proposed Computing Model

f

EncryptE
(
β
(n1,...,nm)
f ,k1,...,km

)
or

EncryptE
(
α
(n1,...,nm)
f ,k1,...,km

)

x1, . . . , xm

EncryptE(xi )

Homomorphic
Evaluator

de Casteljau or
Horner

EncryptE (f (x1, . . . , xm))



Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion



Example #1

Require: z ∈ RK

1: Sort (z1, . . . , zK ) as (z(1), . . . , z(K)) s.t. z(1) ≥ . . . ≥ z(K)

2: k(z) := max
{
k ∈ {1, . . . ,K}|1 + kz(k) >

∑
j≤k z

(j)
}

3: τ(z) :=
(
∑

j≤k(z) z
(j))−1

k(z)
4: return p s.t. pi := max(0, zi − τ(z))

Sparsemax function for mapping scores to probabilities



Example #1

Function Scheme # slots n1 n2 m log2 q MAE
Sequential
Execution
Time [s]

Parallel Exe-
cution Time
[s]

Speedup

sparsemax1(x1, 0) Fixed-point 5 215 744 0.0843 0.489 - -
sparsemax1(x1, 0) Fixed-point 10 215 744 0.0495 0.689 - -
sparsemax1(x1, 0) Fixed-point 15 216 1550 0.0336 9.00 - -

sparsemax1(x1, x2, 0) Fixed-point 2 2 215 744 0.181 0.902 0.543 1.7
sparsemax1(x1, x2, 0) Fixed-point 3 3 215 744 0.133 1.57 0.687 2.3
sparsemax1(x1, x2, 0) Fixed-point 4 4 216 1550 0.120 20.7 6.87 3.0
sparsemax1(x1, 0) Stochastic 630 5 8191 327 0.104 0.409 0.272 1.5
sparsemax1(x1, 0) Stochastic 1024 10 21845 1440 0.063 16.2 6.40 2.5
sparsemax1(x1, 0) Stochastic 2160 15 55831 2592 0.036 83.0 19.5 4.3

sparsemax1(x1, x2, 0) Stochastic 630 2 2 8191 327 0.151 0.301 0.254 1.1
sparsemax1(x1, x2, 0) Stochastic 1024 3 3 21845 985 0.129 9.46 3.58 2.6
sparsemax1(x1, x2, 0) Stochastic 2160 4 4 55831 2592 0.112 39.6 9.78 4.0

The functions sparsemax1(x1, 0) and sparsemax1(x1, x2, 0) were
approximated and homomorphically evaluated on a i7-5960X, using
both a fixed-point approach with Horner’s scheme and a stochastic
number representation with de Casteljau’s algorithm



Example #2



Example #2

System Encryption [s] Filter [s] Decryption [s]
Intel / Arm Intel Intel / Arm

Grey Stretching – Fixed-point 52.5 / 685 341 6.9 / 134
Blending – Fixed-point 52.7 / 684 885 5.3 / 88

Grey Stretching – Stochastic 34.5 / 914 1340 61.7 / 1172
Blending – Stochastic 47.7 / 1273 2103 89.4 / 1468

Grey Stretching – Floating-point 324 / 7935 95.9 92.7 / 2630

Average execution time for homomorphic image processing
operations on an i7-5960X (Intel) and on a Cortex-A53 (Arm). The
last implementation corresponds to an adaption of † to the
proposed system. † uses the Paillier cryptosystem

† M. Ziad, A. Alanwar, M. Alzantot, M. Srivastava, CryptoImg: Privacy
preserving processing over encrypted images, in: 2016 IEEE CNS, pp.
570–576



Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion



Related Art

Computing
Model Performance

Development
Effort

Scope Privacy

Traditional

Directly
exploits
CPU

architecture

Traditional
program-
ming

techniques

Supports
any

application

Vulnerable
to attacks

like
Meltdown
and Spectre

PHE
libraries

Overhead
associated
with PHE

Intricate de-
velopment.
Requires
strong

familiarity
with PHE

Limited
support of
applications

Hides data

FHE w/
application
specific
circuits

Overhead
associated
with FHE

Intricate de-
velopment.
Requires
strong

familiarity
with FHE

Supports
most

applications
Hides data

Proposed
model

Limited
set of FHE
operations

Traditional
program-
ming

techniques

Continuous
functions

Hides
data and
algorithm

FHE w/
encrypted
computer
architecture

Impractical

Halting
problem
may cause
development

issues

Supports
most

applications

Hides
data and
algorithm

Best Worst



Table of Contents

Motivation

Background

Proposed Solution

Experimental Results

Related Art

Conclusion



Conclusion

I Current cloud computing models vulnerable to data and
algorithm disclosure

I While FHE prevents data leaking, achieving algorithm secrecy
has been impractical so far

I Herein, we focus on a wide range of functions whose
approximations can be efficiently evaluated with homomorphic
operations

I All approximations are evaluated in the same manner ⇒ an
evaluator has no way to distinguish them



Thank you!
Any questions?


	Motivation
	Background
	Proposed Solution
	Experimental Results
	Related Art
	Conclusion

