Efficient and secure modular operations using the Polynomial Modular Number System (Part 1)

Laurent-Stéphane Didier ${ }^{1}$, Fangan Yssouf Dosso ${ }^{1}$, Nadia El Mrabet ${ }^{2}$, Jérémy Marrez ${ }^{3}$, Pascal Véron ${ }^{1}$
${ }^{1}$ IMATH, University of Toulon
${ }^{2}$ École des mines de Saint-Étienne, Gardanne
${ }^{3}$ LIP6, Sorbonne University
Workshop on Randomness and Arithmetics for Cryptography on Hardware
Roscoff, April 192019

Introduction

About the PMNS (Polynomial Modular Number System):

- Goal: Perform efficiently and safely modular arithmetic operations on big integers.
- Main feature: Uses polynomial representation for its elements.

Motivations:

- Construction of PMNS for any (prime) integer.
- Study the efficiency of these PMNS.
- Use PMNS as tool against (some) side channel attacks.

Plan

(1) The Polynomial modular number system (PMNS)

- Definitions and example
- Arithmetic operations in the PMNS
(2) Randomisation with the PMNS
- The external randomisation
- The internal randomisation
(3) Internal randomisation using the Montgomery-like method
- Randomisation of the conversion process
- Randomisation of the multiplication

Definition: MNS (Modular Number System)

Let p be an integer.

Definition

A MNS for p is defined by a tuple $\mathcal{B}=(p, n, \gamma, \rho)$ such that for every integer $0 \leqslant y<p$, there exists a polynomial $V(X)=v_{0}+v_{1} \cdot X+\cdots+v_{n-1} \cdot X^{n-1}$ which satisfies:

- $\left|v_{i}\right|<\rho$
- $y \equiv V(\gamma)(\bmod p)$
where $0<\gamma<p$ and $\rho \approx \sqrt[n]{p}$

Example of MNS

0	1	2	3	4
0	1	$-X^{2}$	$1-X^{2}$	$-1+X+X^{2}$

5	6	7	8	9	10
$X+X^{2}$	$-1+X$	X	$1+X$	$-X-1$	$-X$

11	12	13	14	15	16
$-X+1$	$-X-X^{2}$	$1-X-X^{2}$	$-1+X^{2}$	X^{2}	-1

Table: The elements of $\mathbb{Z} / 17 \mathbb{Z}$ in $\mathcal{B}=(p, n, \gamma, \rho)=(17,3,7,2)$.

Arithmetic operations

Main operations:

- Addition: a simple polynomial addition.

But, result infinity norm can be greater than ρ.

- Multiplication: a simple polynomial multiplication. But, result infinity norm can be greater than ρ (1) and result degree can be greater than $n-1$. (2)
- In case 1, an internal reduction must be done.
- In case 2 , an external reduction must be done.

The Polynomial Modular Number Systems (PMNS)

Introduced to perform the internal and external reductions efficiently.

Let p be an integer.

Definition

A PMNS for p is defined by a tuple $\mathcal{B}=(p, n, \gamma, \rho, E)$ such that:

- (p, n, γ, ρ) is a MNS,
- E is a monic polynomial such that:
- $\operatorname{deg}(E)=n$,
- $E(\gamma) \equiv 0(\bmod p)$,
- $\|E\|_{\infty}$ is small.

Arithmetic operation: the external reduction

Let $\mathcal{B}=(p, n, \gamma, \rho, E)$ be a PMNS and $A, B \in \mathcal{B}$.
Let $C=A . B$ be a polynomial, then $\operatorname{deg}(C)<2 n-1$.

Goal: Compute a polynomial R such that: $R(\gamma) \equiv C(\gamma)(\bmod p)$ and $\operatorname{deg}(R)<n$.

How it works

- There exists $Q \in \mathbb{Z}[X]$ and $R \in \mathbb{Z}[X]$ such that:
$C=Q . E+R$, where $\operatorname{deg}(R)<n$.
As $E(\gamma) \equiv 0(\bmod p), R(\gamma) \equiv C(\gamma)(\bmod p)$.
- External reduction: $R=C(\bmod E)$

Arithmetic operation: the internal reduction

Let $\mathcal{B}=(p, n, \gamma, \rho, E)$ be a PMNS.
Let $C \in \mathbb{Z}[X]$ be a polynomial such that $\operatorname{deg}(C)<n$.
Goal: Compute a polynomial R such that: $R(\gamma) \equiv C(\gamma)(\bmod p)$ and $R \in \mathcal{B}$.

Can be done in several ways.
When p can't be chosen freely, the best proposal is a Montgomery-like method; (by C. Nègre and T. Plantard).

The internal reduction: a Montgomery-like method

Let $\mathcal{B}=(p, n, \gamma, \rho, E)$ be a PMNS.
It requires two polynomials M and M^{\prime} such that: $M \in \mathcal{B}$, $M(\gamma) \equiv 0(\bmod p)$ and $M^{\prime}=-M^{-1} \bmod (E, \phi)$, with $\phi \in \mathbb{N} \backslash\{0\}$.

Algorithm: RedCoeff

- 1: Input: a polynomial V, such that: $\operatorname{deg}(V)<n$
- 2: Ensure: $S(\gamma)=V(\gamma) \phi^{-1} \bmod p$
- 3: $Q \leftarrow V \times M^{\prime} \bmod (E, \phi)$
- 4: $T \leftarrow Q \times M \bmod E$
- 5: $S \leftarrow(V+T) / \phi$ \# exact divisions
- 6: return S

For optimal efficiency, ϕ should be taken as power of two.

About the parameters M and M^{\prime}

- The polynomial M^{\prime} is such that $M^{\prime}=-M^{-1} \bmod (E, \phi)$, with $\phi \in \mathbb{N} \backslash\{0\}$. So, $M^{-1} \bmod (E, \phi)$ must exist.
- In 2012, Nadia El Mrabet and Nicolas Gama showed how to generate the polynomial M such that $M^{-1} \bmod (E, \phi)$, with $E=X^{n}+1$ and ϕ as a power of two.
- Recently (in 2018), Laurent-Stephane Didier, Pascal Véron and Yssouf Dosso showed how to generate the polynomial M such that $M^{-1} \bmod (E, \phi)$, with $E=X^{n}-\lambda(\lambda \in \mathbb{Z} \backslash\{0\})$ and ϕ as a power of two.

Some advantages of the PMNS

- High parallelization capability, because elements are polynomials.
- No carry propagation to deal with, because elements coefficients are independent.
- There is no conditional branching.

Additional works on PMNS

PMNS can be an interesting alternative to the usual number system. Example of ratios for cryptographic size integers (implementation in C without parallelization):

$(p$ size, $n)$	$(192,4)$	$(224,4)$	$(256,5)$	$(384,7)$	$(521,10)$
ratio 1	$\mathbf{0 . 8 6}$	$\mathbf{0 . 5 7}$	$\mathbf{0 . 9 8}$	$\mathbf{0 . 9 8}$	$\mathbf{0 . 9 5}$
ratio 2	0.10	0.08	0.14	0.19	0.25
ratio 3	0.21	0.16	0.30	0.43	0.56
ratio 4	0.36	0.23	0.45	0.61	0.69

Table: Relative performances of PMNS vs GNU MP and OpenSSL, for modular multiplication
ratio 1: PMNS/OpenSSL Montgomery modular mult.
ratio 2: PMNS/OpenSSL default modular mult.
ratio 3: PMNS/GNU MP mult. + modular reduction.
ratio 4: PMNS/GNU MP mult. + modular reduction, using low level functions.

Randomisation using the PMNS

Let $p>0$ be a (prime) integer.
Main idea: provide many distinct representations for each element in $\mathbb{Z} / p \mathbb{Z}$.

Two types of randomisation:

- The external randomisation: uses the existence of many PMNS for given an integer.
- The internal randomisation: uses the redundancy in the PMNS.

The external randomisation

It is a randomisation from PMNS to PMNS.

We showed that it is always possible to generate many PMNS, given a prime p.

How it works:
(1) Generate a set Ω of PMNS for the required modulus.
(2) Each time a protocol using that modulus is executed, randomly select a PMNS in Ω to perform arithmetic operations.

We call this the external randomisation.

The internal randomisation

It is a randomisation inside the PMNS.

Goals:

- Randomise conversion process in the PMNS.
- Randomise the modular multiplication in the PMNS.

We call this the internal randomisation.

General idea:

We introduce a parameter $z \in \mathbb{N}$.
Let $\mathcal{H}=\left\{Z \in \mathbb{Z}[X]\right.$, such that: $\operatorname{deg}(Z)<n$ and $\left.\|Z\|_{\infty} \leqslant z\right\}$. We have: $\# \mathcal{H}=(2 z+1)^{n}$.

We generate the PMNS $\mathcal{B}=(p, n, \gamma, \rho, E)$ such that:

- Given $x \in \mathbb{Z} / p \mathbb{Z}$, each element $Z_{i} \in \mathcal{H}$ allows to compute a representation $A_{i} \in \mathcal{B}$ of x.
- If $Z_{i} \neq Z_{j}$, then $A_{i} \neq A_{j}$.

So, each element in $\mathbb{Z} / p \mathbb{Z}$ has at least $\# \mathcal{H}$ distinct representations in \mathcal{B}.

Requirements

Let $\mathcal{B}=(p, n, \gamma, \rho, E)$ be a PMNS and $A \in \mathcal{B}$.
For the internal randomisation to work, three requirements have to be met:

- The randomisation must not modify $A(\gamma)(\bmod p)$.
- Randomised operations should output result in \mathcal{B}.
- If $Z_{i} \neq Z_{j}$, then randomisations using Z_{i} and Z_{j} should output different representations; i.e: guarantee that there is no collision.

Randomisation of the conversion process: the algorithm

For consistency, a conversion to Montgomery domain is done. We need to precompute representations $P_{i}(X)$ of $\left(\rho^{i} \phi^{2}\right)$ in \mathcal{B}.

Algorithm: RandConv

- 1: Input: $a \in \mathbb{Z} / p \mathbb{Z}$
- 2: Ensure: $A \equiv(a . \phi)_{\mathcal{B}}$
- 3: $Z \leftarrow \operatorname{RandPoly}(z) \#$ randomly generate an element of \mathcal{H}
- 4: $t=\left(a_{n-1}, \ldots, a_{0}\right)_{\rho}$ \# radix- ρ decomposition of a
- 5: $U \leftarrow \sum_{i=0}^{n-1} t_{i} P_{i}$
- 6: $V \leftarrow U+((\phi+1) Z \times M) \bmod E \# V(\gamma) \equiv U(\gamma)(\bmod p)$
- 7: $A \leftarrow \operatorname{RedCoeff}(V)$
- 8: return A

Randomisation of the conversion process

Conditions on ρ and ϕ for the three requirements to be met:

$$
\rho \geqslant 2 . n . s .\|M\|_{\infty} \cdot\left(1+z+\frac{z}{\phi}\right) \quad \text { and } \quad \phi \geqslant 2 . n . s . \rho
$$

Without randomisation, we need:

$$
\rho \geqslant 2 . n . s .\|M\|_{\infty} \quad \text { and } \quad \phi \geqslant 2 . n . s . \rho
$$

The factor s is due to reductions modulo E. It can be easy computed once E is known.

Randomisation of the multiplication: the algorithm

One input is randomised so that all the operations are randomised too.

Algorithm: RandMult

- 1: Input: $A \in \mathcal{B}$ and $B \in \mathcal{B}$
- 2: Ensure: $R(\gamma)=A(\gamma) B(\gamma) \phi^{-1} \bmod p$
- 3: $Z \leftarrow \operatorname{RandPoly}(z)$ \# randomly generate an element of \mathcal{H}
- 4: $J \leftarrow Z \times M \bmod E$
- 5: $B^{\prime} \leftarrow B+J$
- 6: $C \leftarrow\left(A \times B^{\prime}\right) \bmod E$
- 7: $Q \leftarrow\left(C \times M^{\prime}\right) \bmod (E, \phi)$
- 8: $R^{\prime} \leftarrow C+(Q \times M) \bmod E$
- 9: $R \leftarrow R^{\prime} / \phi+2 \times J$
- 10: return R

Randomisation of the multiplication

Conditions on ρ and ϕ for the three requirements to be met:

$$
\rho \geqslant 2 . n . s .\|M\|_{\infty} .(2 z+1) \quad \text { and } \quad \phi \geqslant 2 . n . s . \rho . \max \left(z, \frac{5}{4}\right)
$$

Allow to randomise both the conversion and the multiplication.
Remarks:

- Without randomisation, we need:

$$
\rho \geqslant 2 . n . s .\|M\|_{\infty} \quad \text { and } \quad \phi \geqslant 2 . n . s . \rho
$$

- For randomised conversion only, we need:

$$
\rho \geqslant 2 . n . s .\|M\|_{\infty} \cdot\left(1+z+\frac{z}{\phi}\right) \quad \text { and } \quad \phi \geqslant 2 . n . s . \rho
$$

Cost evaluation: theoretical costs

In table below, we compare the non-randomised Montgomery-like modular multiplication to the randomised one.
We assume: $\phi=2^{j}, \rho=2^{w}, E(X)=X^{n}-\lambda$ with $\lambda= \pm 2^{u}$.

Mult. Method	Montgomery-like
Polynomial Mult.	$n^{2} \mathcal{M}+\left(2 n^{2}-4 n+2\right) \mathcal{A}$
External reduct.	$2(n-1) \mathcal{A}+(n-1) \mathcal{S}_{l}^{U}$
Internal reduct.	$2 n^{2} \mathcal{M}+\left(3 n^{2}-n\right) \mathcal{A}+n \mathcal{S}_{r}^{j}$
Total	$3 n^{2} \mathcal{M}+\left(5 n^{2}-3 n\right) \mathcal{A}+(n-1) \mathcal{S}_{l}^{u}+n \mathcal{S}_{r}^{j}$
Mult. Method	Randomised Montgomery-like
Polynomial Mult.	$2 n^{2} \mathcal{M}+\left(3 n^{2}-4 n+2\right) \mathcal{A}+\mathcal{R}$
External reduct.	$2(n-1) \mathcal{A}+(n-1) \mathcal{S}_{l}^{u}$
Internal reduct.	$2 n^{2} \mathcal{M}+3 n^{2} \mathcal{A}+n\left(\mathcal{S}_{r}^{j}+\mathcal{S}_{l}^{1}\right)$
Total	$4 n^{2} \mathcal{M}+\left(6 n^{2}-2 n\right) \mathcal{A}+(n-1) \mathcal{S}_{l}^{u}+n\left(\mathcal{S}_{l}^{1}+\mathcal{S}_{r}^{j}\right)+\mathcal{R}$

\mathcal{M} and \mathcal{A} respectively denote the multiplication and the sum of two w-bits integers. \mathcal{R} is the cost of one call to the RandPoly function. \mathcal{S}_{l}^{i} and \mathcal{S}_{r}^{i} are respectively a left shift and a right shift of i bits.

Conclusion

We have shown that:

- For any (prime) integer, it is possible to generate many PMNS.
- The PMNS can be an interesting alternative to classical methods like Montgomery modular multiplication.
- The PMNS can be used to randomise modular operations.

Some perspectives:

- Implement PMNS using its high parallelization capability.
- For side channel attacks, make a deeper study to establish the relevance of these proposals with regard to existing countermeasures.

Thank you for your attention.

Questions ?

References

(1) Mrabet, N.E., Gama, N.: Efficient multiplication over extension fields. In: WAIFI. Lecture Notes in Computer Science, vol. 7369, pp. 136-151. Springer (2012)
(2) Nègre, C., Plantard, T.: Efficient modular arithmetic in adapted modular number system using lagrange representation. In: Information Security and Privacy, 13th Australasian Conference, ACISP 2008, Wollongong, Australia. pp. 463-477 (2008)
(3) Plantard, T.: Arithmétique modulaire pour la cryptographie. Ph.D. thesis, Montpellier 2 University, France (2005)

