Efficient and secure modular operations using the Polynomial Modular Number System (Part 1)

Laurent-Stéphane Didier¹, **Fangan Yssouf Dosso**¹, Nadia El Mrabet², Jérémy Marrez³, Pascal Véron¹

¹ IMATH, University of Toulon
 ²École des mines de Saint-Étienne, Gardanne
 ³LIP6, Sorbonne University

Workshop on Randomness and Arithmetics for Cryptography on Hardware Roscoff, April 19 2019

Introduction

About the PMNS (Polynomial Modular Number System):

- Goal: Perform efficiently and safely modular arithmetic operations on big integers.
- Main feature: Uses polynomial representation for its elements.

Motivations:

- Construction of PMNS for any (prime) integer.
- Study the efficiency of these PMNS.
- Use PMNS as tool against (some) side channel attacks.

Plan

The Polynomial modular number system (PMNS)

- Definitions and example
- Arithmetic operations in the PMNS
- 2 Randomisation with the PMNS
 - The external randomisation
 - The internal randomisation
- 3 Internal randomisation using the Montgomery-like method
 - Randomisation of the conversion process
 - Randomisation of the multiplication

Definitions and example Arithmetic operations in the PMNS

Definition: MNS (Modular Number System)

Let p be an integer.

Definition

A MNS for p is defined by a tuple $\mathcal{B} = (p, n, \gamma, \rho)$ such that for every integer $0 \leq y < p$, there exists a polynomial $V(X) = v_0 + v_1.X + \dots + v_{n-1}.X^{n-1}$ which satisfies: • $|v_i| < \rho$ • $y \equiv V(\gamma) \pmod{p}$

where $0 < \gamma < p$ and $\rho \approx \sqrt[n]{p}$

Definitions and example Arithmetic operations in the PMNS

Example of MNS

0	1	2	3	4
0	1	$-X^2$	$1 - X^{2}$	$-1 + X + X^2$

5	6	7	8	9	10
$X + X^2$	-1 + X	X	1 + X	-X-1	-X

11	12	13	14	15	16
-X + 1	$-X - X^2$	$1 - X - X^2$	$-1 + X^2$	<i>X</i> ²	-1

Table: The elements of $\mathbb{Z}/17\mathbb{Z}$ in $\mathcal{B} = (p, n, \gamma, \rho) = (17, 3, 7, 2)$.

Definitions and example Arithmetic operations in the PMNS

Arithmetic operations

Main operations:

- Addition: a simple polynomial addition.
 But, result infinity norm can be greater than ρ. (1)
- Multiplication: a simple polynomial multiplication. But, result infinity norm can be greater than ρ (1) and result degree can be greater than n - 1. (2)
- In case 1, an internal reduction must be done.
- In case 2, an external reduction must be done.

Definitions and example Arithmetic operations in the PMNS

The Polynomial Modular Number Systems (PMNS)

Introduced to perform the internal and external reductions efficiently.

Let p be an integer.

Definition

A PMNS for p is defined by a tuple $\mathcal{B} = (p, n, \gamma, \rho, E)$ such that:

- (p, n, γ, ρ) is a MNS,
- *E* is a monic polynomial such that:

•
$$\deg(E) = n$$
,

•
$$E(\gamma) \equiv 0 \pmod{p}$$
,

• $||E||_{\infty}$ is small.

Arithmetic operation: the external reduction

Let
$$\mathcal{B} = (p, n, \gamma, \rho, E)$$
 be a PMNS and $A, B \in \mathcal{B}$.

Let C = A.B be a polynomial, then deg(C) < 2n - 1.

Goal: Compute a polynomial R such that: $R(\gamma) \equiv C(\gamma) \pmod{p}$ and $\deg(R) < n$.

How it works

• There exists $Q \in \mathbb{Z}[X]$ and $R \in \mathbb{Z}[X]$ such that: C = Q.E + R, where deg(R) < n. As $E(\gamma) \equiv 0 \pmod{p}$, $R(\gamma) \equiv C(\gamma) \pmod{p}$.

• External reduction: $R = C \pmod{E}$

Arithmetic operation: the internal reduction

Let $\mathcal{B} = (p, n, \gamma, \rho, E)$ be a PMNS. Let $C \in \mathbb{Z}[X]$ be a polynomial such that deg(C) < n.

Goal: Compute a polynomial R such that: $R(\gamma) \equiv C(\gamma) \pmod{p}$ and $R \in \mathcal{B}$.

Can be done in several ways. When p can't be chosen freely, the best proposal is a Montgomery-like method; (by C. Nègre and T. Plantard).

The internal reduction: a Montgomery-like method

Let $\mathcal{B} = (p, n, \gamma, \rho, E)$ be a PMNS. It requires two polynomials M and M' such that: $M \in \mathcal{B}$, $M(\gamma) \equiv 0 \pmod{p}$ and $M' = -M^{-1} \mod(E, \phi)$, with $\phi \in \mathbb{N} \setminus \{0\}$.

Algorithm: RedCoeff

- 1: Input: a polynomial V, such that: deg(V) < n
- 2: Ensure: $S(\gamma) = V(\gamma)\phi^{-1} \mod p$
- 3: $Q \leftarrow V \times M' \mod (E, \phi)$
- 4: $T \leftarrow Q \times M \mod E$
- 5: $S \leftarrow (V + T)/\phi \#$ exact divisions
- 6: **return** *S*

For optimal efficiency, ϕ should be taken as power of two.

About the parameters M and M'

- The polynomial M' is such that $M' = -M^{-1} \mod(E, \phi)$, with $\phi \in \mathbb{N} \setminus \{0\}$. So, $M^{-1} \mod(E, \phi)$ must exist.
- In 2012, Nadia El Mrabet and Nicolas Gama showed how to generate the polynomial M such that M⁻¹ mod(E, φ), with E = Xⁿ + 1 and φ as a power of two.
- Recently (in 2018), Laurent-Stephane Didier, Pascal Véron and Yssouf Dosso showed how to generate the polynomial Msuch that $M^{-1} \mod(E, \phi)$, with $E = X^n - \lambda$ ($\lambda \in \mathbb{Z} \setminus \{0\}$) and ϕ as a power of two.

Definitions and example Arithmetic operations in the PMNS

Some advantages of the PMNS

- High parallelization capability, because elements are polynomials.
- No carry propagation to deal with, because elements coefficients are independent.
- There is no conditional branching.

Definitions and example Arithmetic operations in the PMNS

Additional works on PMNS

PMNS can be an interesting alternative to the usual number system. Example of ratios for cryptographic size integers (implementation in C without parallelization):

(<i>p</i> size, <i>n</i>)	(192, 4)	(224, 4)	(256, 5)	(384, 7)	(521, 10)
ratio 1	0.86	0.57	0.98	0.98	0.95
ratio 2	0.10	0.08	0.14	0.19	0.25
ratio 3	0.21	0.16	0.30	0.43	0.56
ratio 4	0.36	0.23	0.45	0.61	0.69

Table: Relative performances of PMNS vs GNU MP and OpenSSL, for modular multiplication

- ratio 1: PMNS/OpenSSL Montgomery modular mult.
- ratio 2: PMNS/OpenSSL default modular mult.
- ratio 3: PMNS/GNU MP mult. + modular reduction.
- ratio 4: PMNS/GNU MP mult. + modular reduction, using low level functions.

The external randomisation The internal randomisation

Randomisation using the PMNS

Let p > 0 be a (prime) integer.

Main idea: provide many distinct representations for each element in $\mathbb{Z}/p\mathbb{Z}.$

Two types of randomisation:

- The external randomisation: uses the existence of many PMNS for given an integer.
- The internal randomisation: uses the redundancy in the PMNS.

The external randomisation The internal randomisation

The external randomisation

It is a randomisation from PMNS to PMNS.

We showed that it is always possible to generate many PMNS, given a prime p.

How it works:

- **(**) Generate a set Ω of PMNS for the required modulus.
- Each time a protocol using that modulus is executed, randomly select a PMNS in Ω to perform arithmetic operations.

We call this the **external randomisation**.

The external randomisation The internal randomisation

The internal randomisation

It is a randomisation inside the PMNS.

Goals:

- Randomise conversion process in the PMNS.
- Randomise the modular multiplication in the PMNS.

We call this the internal randomisation.

General idea:

We introduce a parameter $z \in \mathbb{N}$.

Let $\mathcal{H} = \{Z \in \mathbb{Z}[X]$, such that: deg(Z) < n and $||Z||_{\infty} \leq z\}$. We have: $\#\mathcal{H} = (2z+1)^n$.

We generate the PMNS $\mathcal{B} = (p, n, \gamma, \rho, E)$ such that:

• Given $x \in \mathbb{Z}/p\mathbb{Z}$, each element $Z_i \in \mathcal{H}$ allows to compute a representation $A_i \in \mathcal{B}$ of x.

• If
$$Z_i \neq Z_j$$
, then $A_i \neq A_j$.

So, each element in $\mathbb{Z}/p\mathbb{Z}$ has at least $\#\mathcal{H}$ distinct representations in \mathcal{B} .

Requirements

Let
$$\mathcal{B} = (p, n, \gamma, \rho, E)$$
 be a PMNS and $A \in \mathcal{B}$.

For the internal randomisation to work, three requirements have to be met:

- The randomisation must not modify $A(\gamma) \pmod{p}$.
- \bullet Randomised operations should output result in $\mathcal B.$
- If Z_i ≠ Z_j, then randomisations using Z_i and Z_j should output different representations; i.e: guarantee that there is no collision.

Randomisation of the conversion process: the algorithm

For consistency, a conversion to Montgomery domain is done. We need to precompute representations $P_i(X)$ of $(\rho^i \phi^2)$ in \mathcal{B} .

Algorithm: RandConv

- 1: Input: $a \in \mathbb{Z}/p\mathbb{Z}$
- 2: Ensure: $A \equiv (a.\phi)_{\mathcal{B}}$
- 3: $Z \leftarrow \text{RandPoly}(z) \ \#$ randomly generate an element of \mathcal{H}
- 4: $t = (a_{n-1}, ..., a_0)_{\rho} \#$ radix- ρ decomposition of a

• 5:
$$U \leftarrow \sum_{i=0}^{n-1} t_i P_i$$

- 6: $V \leftarrow U + ((\phi + 1)Z \times M) \mod E \ \# V(\gamma) \equiv U(\gamma) \pmod{p}$
- 7: $A \leftarrow \text{RedCoeff}(V)$
- 8: **return** A

Randomisation of the conversion process Randomisation of the multiplication

Randomisation of the conversion process

Conditions on ρ and ϕ for the three requirements to be met:

$$ho \geqslant 2.n.s. \|M\|_{\infty}. \left(1 + z + rac{z}{\phi}
ight)$$
 and $\phi \geqslant 2.n.s.
ho$

Without randomisation, we need:

$$\rho \ge 2.n.s. \|M\|_{\infty}$$
 and $\phi \ge 2.n.s.\rho$

The factor s is due to reductions modulo E. It can be easy computed once E is known.

Randomisation of the multiplication: the algorithm

One input is randomised so that all the operations are randomised too.

Algorithm: RandMult

- 1: Input: $A \in \mathcal{B}$ and $B \in \mathcal{B}$
- 2: Ensure: $R(\gamma) = A(\gamma)B(\gamma)\phi^{-1} \mod p$
- 3: $Z \leftarrow \text{RandPoly}(z) \#$ randomly generate an element of \mathcal{H}
- 4: $J \leftarrow Z \times M \mod E$
- 5: $B' \leftarrow B + J$
- 6: $C \leftarrow (A \times B') \mod E$
- 7: $Q \leftarrow (C \times M') \mod (E, \phi)$
- 8: $R' \leftarrow C + (Q \times M) \mod E$
- 9: $R \leftarrow R'/\phi + 2 \times J$
- 10: **return** *R*

Randomisation of the multiplication

Conditions on ρ and ϕ for the three requirements to be met:

 $\rho \ge 2.n.s. \|M\|_{\infty}.(2z+1)$ and $\phi \ge 2.n.s.\rho.max\left(z,\frac{5}{4}\right)$

Allow to randomise both the conversion and the multiplication.

Remarks:

• Without randomisation, we need:

$$\rho \geqslant 2.n.s. \|M\|_{\infty} \quad \text{and} \quad \phi \geqslant 2.n.s. \rho$$

• For randomised conversion only, we need:

$$ho \geqslant 2.n.s. \|M\|_{\infty}. \left(1 + z + rac{z}{\phi}
ight)$$
 and $\phi \geqslant 2.n.s.
ho$

Cost evaluation: theoretical costs

In table below, we compare the non-randomised Montgomery-like modular multiplication to the randomised one. We assume: $\phi = 2^{j}$, $\rho = 2^{w}$, $F(X) = X^{n} - \lambda$ with $\lambda = \pm 2^{u}$

Ve	assume:	$\phi = 2^{j}$,	$\rho = 2^{w}$,	E(X)	= X'' -	λ with .	$\lambda = \pm 2^{u}.$
----	---------	------------------	------------------	------	---------	------------------	------------------------

Mult. Method	Montgomery-like
Polynomial Mult.	$n^2\mathcal{M} + (2n^2 - 4n + 2)\mathcal{A}$
External reduct.	$2(n-1)\mathcal{A} + (n-1)\mathcal{S}_l^u$
Internal reduct.	$2n^2\mathcal{M} + (3n^2 - n)\mathcal{A} + n\mathcal{S}_r^j$
Total	$3n^2\mathcal{M} + (5n^2 - 3n)\mathcal{A} + (n-1)\mathcal{S}^u_l + n\mathcal{S}^j_r$
Mult. Method	Randomised Montgomery-like
Polynomial Mult.	$2n^2\mathcal{M}+(3n^2-4n+2)\mathcal{A}+\mathcal{R}$
External reduct.	$2(n-1)\mathcal{A} + (n-1)\mathcal{S}^u_l$
Internal reduct.	$2n^2\mathcal{M}+3n^2\mathcal{A}+n(\mathcal{S}^j_r+\mathcal{S}^1_l)$
Total	$4n^2\mathcal{M} + (6n^2 - 2n)\mathcal{A} + (n-1)\mathcal{S}_l^u + n(\mathcal{S}_l^1 + \mathcal{S}_r^j) + \mathcal{R}$

 \mathcal{M} and \mathcal{A} respectively denote the multiplication and the sum of two *w*-bits integers. \mathcal{R} is the cost of one call to the RandPoly function. S_i^i and S_r^j are respectively a left shift and a right shift of *i* bits.

Conclusion

We have shown that:

- For any (prime) integer, it is possible to generate many PMNS.
- The PMNS can be an interesting alternative to classical methods like Montgomery modular multiplication.
- The PMNS can be used to randomise modular operations.

Some perspectives:

- Implement PMNS using its high parallelization capability.
- For side channel attacks, make a deeper study to establish the relevance of these proposals with regard to existing countermeasures.

Thank you for your attention.

Questions ?

- Mrabet, N.E., Gama, N.: Efficient multiplication over extension fields. In: WAIFI. Lecture Notes in Computer Science, vol. 7369, pp. 136–151. Springer (2012)
- Nègre, C., Plantard, T.: Efficient modular arithmetic in adapted modular number system using lagrange representation. In: Information Security and Privacy, 13th Australasian Conference, ACISP 2008, Wollongong, Australia. pp. 463–477 (2008)
- Plantard, T.: Arithmétique modulaire pour la cryptographie.
 Ph.D. thesis, Montpellier 2 University, France (2005)