
The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Efficient and secure modular operations using the
Polynomial Modular Number System

(Part 1)

Laurent-Stéphane Didier1, Fangan Yssouf Dosso1, Nadia El
Mrabet2, Jérémy Marrez3, Pascal Véron1

1 IMATH, University of Toulon
2École des mines de Saint-Étienne, Gardanne

3LIP6, Sorbonne University

Workshop on Randomness and Arithmetics for Cryptography
on Hardware

Roscoff, April 19 2019

1 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Introduction

About the PMNS (Polynomial Modular Number System):

Goal: Perform efficiently and safely modular arithmetic
operations on big integers.

Main feature: Uses polynomial representation for its elements.

Motivations:

Construction of PMNS for any (prime) integer.

Study the efficiency of these PMNS.

Use PMNS as tool against (some) side channel attacks.

2 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Plan

1 The Polynomial modular number system (PMNS)
Definitions and example
Arithmetic operations in the PMNS

2 Randomisation with the PMNS
The external randomisation
The internal randomisation

3 Internal randomisation using the Montgomery-like method
Randomisation of the conversion process
Randomisation of the multiplication

3 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Definitions and example
Arithmetic operations in the PMNS

Definition: MNS (Modular Number System)

Let p be an integer.

Definition

A MNS for p is defined by a tuple B = (p, n, γ, ρ) such that for
every integer 0 6 y < p, there exists a polynomial
V (X) = v0 + v1.X + · · ·+ vn−1.X

n−1 which satisfies:

|vi | < ρ

y ≡ V (γ) (mod p)

where 0 < γ < p and ρ ≈ n
√
p

4 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Definitions and example
Arithmetic operations in the PMNS

Example of MNS

0 1 2 3 4

0 1 −X 2 1− X 2 −1 + X + X 2

5 6 7 8 9 10

X + X 2 −1 + X X 1 + X −X − 1 −X

11 12 13 14 15 16

−X + 1 −X − X 2 1− X − X 2 −1 + X 2 X 2 −1

Table: The elements of Z/17Z in B = (p, n, γ, ρ) = (17, 3, 7, 2).

5 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Definitions and example
Arithmetic operations in the PMNS

Arithmetic operations

Main operations:

Addition: a simple polynomial addition.
But, result infinity norm can be greater than ρ. (1)

Multiplication: a simple polynomial multiplication.
But, result infinity norm can be greater than ρ (1)
and result degree can be greater than n − 1. (2)

In case 1, an internal reduction must be done.

In case 2, an external reduction must be done.

6 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Definitions and example
Arithmetic operations in the PMNS

The Polynomial Modular Number Systems (PMNS)

Introduced to perform the internal and external reductions
efficiently.

Let p be an integer.

Definition

A PMNS for p is defined by a tuple B = (p, n, γ, ρ, E) such that:

(p, n, γ, ρ) is a MNS,

E is a monic polynomial such that:

deg(E) = n,
E (γ) ≡ 0 (mod p),
‖E‖∞ is small.

7 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Definitions and example
Arithmetic operations in the PMNS

Arithmetic operation: the external reduction

Let B = (p, n, γ, ρ, E) be a PMNS and A,B ∈ B.

Let C = A.B be a polynomial, then deg(C)< 2n − 1.

Goal: Compute a polynomial R such that: R(γ) ≡ C (γ) (mod p)
and deg(R)< n.

How it works

There exists Q ∈ Z[X] and R ∈ Z[X] such that:
C = Q.E + R, where deg(R)< n.
As E (γ) ≡ 0 (mod p), R(γ) ≡ C (γ) (mod p).

External reduction: R = C (mod E)

8 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Definitions and example
Arithmetic operations in the PMNS

Arithmetic operation: the internal reduction

Let B = (p, n, γ, ρ, E) be a PMNS.
Let C ∈ Z[X] be a polynomial such that deg(C)< n.

Goal: Compute a polynomial R such that: R(γ) ≡ C (γ) (mod p)
and R ∈ B.

Can be done in several ways.
When p can’t be chosen freely, the best proposal is a
Montgomery-like method; (by C. Nègre and T. Plantard).

9 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Definitions and example
Arithmetic operations in the PMNS

The internal reduction: a Montgomery-like method

Let B = (p, n, γ, ρ, E) be a PMNS.
It requires two polynomials M and M ′ such that: M ∈ B,
M(γ) ≡ 0 (mod p) and M ′ = −M−1 mod(E , φ), with φ ∈ N \ {0}.

Algorithm: RedCoeff

1: Input: a polynomial V , such that: deg(V) < n

2: Ensure: S(γ) = V (γ)φ−1 mod p

3: Q ← V ×M ′mod (E , φ)

4: T ← Q ×M modE

5: S ← (V + T)/φ # exact divisions

6: return S

For optimal efficiency, φ should be taken as power of two.

10 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Definitions and example
Arithmetic operations in the PMNS

About the parameters M and M ′

The polynomial M ′ is such that M ′ = −M−1 mod(E , φ), with
φ ∈ N \ {0}. So, M−1 mod(E , φ) must exist.

In 2012, Nadia El Mrabet and Nicolas Gama showed how to
generate the polynomial M such that M−1 mod(E , φ), with
E = X n + 1 and φ as a power of two.

Recently (in 2018), Laurent-Stephane Didier, Pascal Véron
and Yssouf Dosso showed how to generate the polynomial M
such that M−1 mod(E , φ), with E = X n − λ (λ ∈ Z \ {0})
and φ as a power of two.

11 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Definitions and example
Arithmetic operations in the PMNS

Some advantages of the PMNS

High parallelization capability, because elements are
polynomials.

No carry propagation to deal with, because elements
coefficients are independent.

There is no conditional branching.

12 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Definitions and example
Arithmetic operations in the PMNS

Additional works on PMNS

PMNS can be an interesting alternative to the usual number
system. Example of ratios for cryptographic size integers
(implementation in C without parallelization):

(p size, n) (192, 4) (224, 4) (256, 5) (384, 7) (521, 10)

ratio 1 0.86 0.57 0.98 0.98 0.95
ratio 2 0.10 0.08 0.14 0.19 0.25

ratio 3 0.21 0.16 0.30 0.43 0.56

ratio 4 0.36 0.23 0.45 0.61 0.69

Table: Relative performances of PMNS vs GNU MP and OpenSSL, for
modular multiplication

ratio 1: PMNS/OpenSSL Montgomery modular mult.
ratio 2: PMNS/OpenSSL default modular mult.
ratio 3: PMNS/GNU MP mult. + modular reduction.
ratio 4: PMNS/GNU MP mult. + modular reduction, using low level functions.

13 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

The external randomisation
The internal randomisation

Randomisation using the PMNS

Let p > 0 be a (prime) integer.

Main idea: provide many distinct representations for each element
in Z/pZ.

Two types of randomisation:

The external randomisation: uses the existence of many
PMNS for given an integer.

The internal randomisation: uses the redundancy in the
PMNS.

14 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

The external randomisation
The internal randomisation

The external randomisation

It is a randomisation from PMNS to PMNS.

We showed that it is always possible to generate many PMNS,
given a prime p.

How it works:

1 Generate a set Ω of PMNS for the required modulus.

2 Each time a protocol using that modulus is executed,
randomly select a PMNS in Ω to perform arithmetic
operations.

We call this the external randomisation.

15 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

The external randomisation
The internal randomisation

The internal randomisation

It is a randomisation inside the PMNS.

Goals:

Randomise conversion process in the PMNS.

Randomise the modular multiplication in the PMNS.

We call this the internal randomisation.

16 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

The external randomisation
The internal randomisation

General idea:

We introduce a parameter z ∈ N.

Let H = {Z ∈ Z[X], such that: deg(Z) < n and ‖Z‖∞ 6 z}.
We have: #H = (2 z + 1)n.

We generate the PMNS B = (p, n, γ, ρ, E) such that:

Given x ∈ Z/pZ, each element Zi ∈ H allows to compute a
representation Ai ∈ B of x .

If Zi 6= Zj , then Ai 6= Aj .

So, each element in Z/pZ has at least #H distinct
representations in B.

17 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

The external randomisation
The internal randomisation

Requirements

Let B = (p, n, γ, ρ, E) be a PMNS and A ∈ B.

For the internal randomisation to work, three requirements have to
be met:

The randomisation must not modify A(γ) (mod p).

Randomised operations should output result in B.

If Zi 6= Zj , then randomisations using Zi and Zj should output
different representations; i.e: guarantee that there is no
collision.

18 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Randomisation of the conversion process
Randomisation of the multiplication

Randomisation of the conversion process: the algorithm

For consistency, a conversion to Montgomery domain is done. We
need to precompute representations Pi (X) of (ρiφ2) in B.

Algorithm: RandConv

1: Input: a ∈ Z/pZ
2: Ensure: A ≡ (a.φ)B

3: Z ← RandPoly(z) # randomly generate an element of H
4: t = (an−1, ..., a0)ρ # radix-ρ decomposition of a

5: U ←
n−1∑
i=0

ti Pi

6: V ← U + ((φ+ 1)Z ×M) mod E # V (γ) ≡ U(γ) (mod p)

7: A← RedCoeff(V)

8: return A

19 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Randomisation of the conversion process
Randomisation of the multiplication

Randomisation of the conversion process

Conditions on ρ and φ for the three requirements to be met:

ρ > 2.n.s.‖M‖∞.
(

1 + z + z
φ

)
and φ > 2.n.s.ρ

Without randomisation, we need:

ρ > 2.n.s.‖M‖∞ and φ > 2.n.s.ρ

The factor s is due to reductions modulo E . It can be easy
computed once E is known.

20 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Randomisation of the conversion process
Randomisation of the multiplication

Randomisation of the multiplication: the algorithm

One input is randomised so that all the operations are randomised too.

Algorithm: RandMult

1: Input: A ∈ B and B ∈ B
2: Ensure: R(γ) = A(γ)B(γ)φ−1 mod p

3: Z ← RandPoly(z) # randomly generate an element of H
4: J ← Z ×M mod E

5: B ′ ← B + J

6: C ← (A× B ′) mod E

7: Q ← (C ×M ′) mod (E , φ)

8: R ′ ← C + (Q ×M) mod E

9: R ← R ′/φ+ 2× J

10: return R

21 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Randomisation of the conversion process
Randomisation of the multiplication

Randomisation of the multiplication

Conditions on ρ and φ for the three requirements to be met:

ρ > 2.n.s.‖M‖∞.(2z + 1) and φ > 2.n.s.ρ.max
(
z , 5

4

)
Allow to randomise both the conversion and the multiplication.

Remarks:

Without randomisation, we need:

ρ > 2.n.s.‖M‖∞ and φ > 2.n.s.ρ

For randomised conversion only, we need:

ρ > 2.n.s.‖M‖∞.
(

1 + z + z
φ

)
and φ > 2.n.s.ρ

22 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Randomisation of the conversion process
Randomisation of the multiplication

Cost evaluation: theoretical costs

In table below, we compare the non-randomised Montgomery-like
modular multiplication to the randomised one.
We assume: φ = 2j , ρ = 2w , E (X) = X n − λ with λ = ±2u.

Mult. Method Montgomery-like
Polynomial Mult. n2M + (2n2 − 4n + 2)A
External reduct. 2(n − 1)A + (n − 1)Sul
Internal reduct. 2n2M + (3n2 − n)A + nSjr
Total 3n2M + (5n2 − 3n)A + (n − 1)Sul + nSjr

Mult. Method Randomised Montgomery-like
Polynomial Mult. 2n2M + (3n2 − 4n + 2)A + R

External reduct. 2(n − 1)A + (n − 1)Sul
Internal reduct. 2n2M + 3n2A + n(Sjr + S1

l)
Total 4n2M + (6n2 − 2n)A + (n − 1)Sul + n(S1

l + S
j
r) + R

M and A respectively denote the multiplication and the sum of two w -bits integers. R is the cost of one call to

the RandPoly function. Si
l and Si

r are respectively a left shift and a right shift of i bits.

23 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Randomisation of the conversion process
Randomisation of the multiplication

Conclusion

We have shown that:

For any (prime) integer, it is possible to generate many
PMNS.

The PMNS can be an interesting alternative to classical
methods like Montgomery modular multiplication.

The PMNS can be used to randomise modular operations.

Some perspectives:

Implement PMNS using its high parallelization capability.

For side channel attacks, make a deeper study to establish the
relevance of these proposals with regard to existing
countermeasures.

24 / 24

The Polynomial modular number system (PMNS)
Randomisation with the PMNS

Internal randomisation using the Montgomery-like method

Randomisation of the conversion process
Randomisation of the multiplication

Thank you for your attention.

Questions ?

24 / 24

References

1 Mrabet, N.E., Gama, N.: Efficient multiplication over
extension fields. In: WAIFI. Lecture Notes in Computer
Science, vol. 7369, pp. 136–151. Springer (2012)

2 Nègre, C., Plantard, T.: Efficient modular arithmetic in
adapted modular number system using lagrange
representation. In: Information Security and Privacy, 13th
Australasian Conference, ACISP 2008, Wollongong, Australia.
pp. 463–477 (2008)

3 Plantard, T.: Arithmétique modulaire pour la cryptographie.
Ph.D. thesis, Montpellier 2 University, France (2005)

1 / 1

	The Polynomial modular number system (PMNS)
	Definitions and example
	Arithmetic operations in the PMNS

	Randomisation with the PMNS
	The external randomisation
	The internal randomisation

	Internal randomisation using the Montgomery-like method
	Randomisation of the conversion process
	Randomisation of the multiplication

	Appendix

