Théorie de Galois

Examen du 17 mai 2023. Durée 2h00. Pas de documents autorisés.

- **Exercice 1.** i. Soit $\alpha := \sqrt{5 + \sqrt{21}}$. Quel est le degré de $\mathbb{Q}(\alpha)$ sur \mathbb{Q} ? Quels sont les conjugués de α dans $\overline{\mathbb{Q}}$? Montrer que $\mathbb{Q}(\alpha)$ est une extension Galoisienne de \mathbb{Q} et calculer son groupe de Galois.
 - ii. Soit $\beta := \sqrt{5 + \sqrt{37}}$. Montrer que $\mathbb{Q}(\beta)$ n'est pas Galoisienne sur \mathbb{Q} .
 - iii. Soit $\gamma := \sqrt{5 + \sqrt{15}}$. Est-ce que $\mathbb{Q}(\gamma)$ est Galoisienne sur \mathbb{Q} ?

Exercice 2. Montrer que le groupe de Galois sur \mathbb{Q} de $f = X^5 - 6X + 2$ est isomorphe à \mathfrak{S}_5 .

Exercice 3. Soit p un nombre premier et $k := \mathbb{F}_p(T)$. On considère le polynôme $f = X^p - X + T \in k[X]$ et on note K un corps de décomposition de f sur k.

- i. Montrer que f est séparable et que l'extension $K \supset k$ est Galoisienne.
- ii. Montrer que f est irréductible dans k[X].
- iii. Soit S une racine de f dans K. Montrer que l'ensemble des racines de f dans K est $\{S+a, a \in \mathbb{F}_p\}$. En déduire que K est aussi un corps de rupture de f.
- iv. Pour $\sigma \in \operatorname{Gal}(K/k)$, définissons $a_{\sigma} \in \mathbb{F}_p$ par $\sigma(S) = S + a_{\sigma}$. Montrer que l'application $\sigma \mapsto a_{\sigma}$ induit un isomorphisme de groupes $\operatorname{Gal}(K/k) \xrightarrow{\sim} \mathbb{F}_p$.

Exercice 4. Soit n un entier non nul. Une partition de n est une suite finie décroissante $n_1 \ge n_2 \ge \cdots \ge n_r$ d'entiers non nuls, dont la somme $\sum_{i=1}^r n_i$ vaut n (le nombre de parts r n'est pas fixé).

A une permutation $\sigma \in \mathfrak{S}_n$, on associe la partition de n formée par les longueurs $\ell(c_i)$ dans une décomposition $\sigma = \prod_{i=1}^r c_i$ de σ en produit de cycles à supports disjoints de longueurs décroissantes.

À un polynôme $f \in k[X]$, on associe la partition de n formée par les degrés deg f_i dans une décomposition $f = \prod_{i=1}^r f_i$ de f en produit de diviseurs irréductibles de degrés décroissants.

- i. Montrer que deux permutations sont conjuguées dans \mathfrak{S}_n si, et seulement si, leur partitions associées sont égales.
- ii. Soit p premier. Montrer qu'il existe des éléments irréductibles de tout degré dans $\mathbb{F}_p[X]$, et en déduire que toute partition de n est associée à au moins un polynôme $f \in \mathbb{F}_p[X]$ de degré n.
- iii. Soient $C_1, \dots, C_m \subset \mathfrak{S}_n$ des classes de conjugaison d'éléments de \mathfrak{S}_n . Montrer qu'il existe $f \in \mathbb{Z}[X]$ unitaire irréductible de degré n tel que, pour toute numérotation des racines de f, on ait $G_f \cap C_i \neq \emptyset$ pour tout $i = 1, \dots, m$.
- iv. Lorsque n est premier, en déduire l'existence de $f \in \mathbb{Z}[X]$ tel que $G_f = \mathfrak{S}_n$. Essayer de généraliser à n quelconque.