INTRODUCTION À LA THÉORIE ALGÉBRIQUE DES NOMBRES

TN 1 Set $f_{n}(X)=X^{n}-X+1$.
(1) Show that $\operatorname{disc}\left(f_{n}\right)= \pm\left(n^{n}-(n-1)^{n-1}\right)$.
(2) Suppose $n=p$ is prime. Then show that f_{p} is irreducible in $\mathbb{F}_{p}[X]$. [hint : prove that no root of f_{p} belongs to $\mathbb{F}_{p^{i}}$ for $i<p$.]
(3) Now, let $n=5$ and put $K:=\mathbb{Q}[X] /\left(f_{5}\right)$.
(a) Show that $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(f_{5}\right)$ hint : $\left.2869=19 \times 151\right]$.
(b) Decompose (2) as a product of prime ideals of \mathcal{O}_{K} and provide generators of each factor.
(c) Determine r_{1} and r_{2}. Then prove that $M_{K} \sqrt{\left|D_{K}\right|}<4$.
(d) Prove that in fact \mathcal{O}_{K} is principal.

TN 2

Let K be a number field of degree n and discriminant $D_{K} \in \mathbb{Z}$.
(1) Let $\sigma: K \hookrightarrow \mathbb{C}$ be a complex embedding.
(a) Assume $\sigma(K) \subset \mathbb{R}$. Show that there exists $\alpha \in \mathcal{O}_{K}$ non zero such that $-|\sigma(\alpha)| \leqslant 2 \sqrt{\left|D_{K}\right|}$, and

- $\left|\sigma^{\prime}(\alpha)\right|<1$ for any other $\sigma^{\prime}: K \hookrightarrow \mathbb{C}$ distinct from σ.
(b) Assume $\sigma(K) \not \subset \mathbb{R}$. Show that there exists $\alpha \in \mathcal{O}_{K}$ non zero such that
$-|\Im(\sigma(\alpha))| \leqslant \sqrt{\left|D_{K}\right|}$ and $|\Re(\sigma(\alpha))|<2$, and
- $\left|\sigma^{\prime}(\alpha)\right|<1$ for any embedding $\sigma^{\prime}: K \hookrightarrow \mathbb{C}$ not conjugate to σ.
(2) In both cases, prove that $|\sigma(\alpha)|>1$. Then prove that $K=\mathbb{Q}(\alpha)$.
(3) Show that the coefficients of f_{α} are bounded above by $2 n!\sqrt{\left|D_{K}\right|}$ and deduce that there are finitely many number fields of given discriminant and degree.
(4) Prove that there are finitely many number fields of given discriminant.

TN 3 Let p be prime number. We fix an algebraic closure $\overline{\mathbb{Q}}_{p}$ of \mathbb{Q}_{p} and we denote by $|$.$| the$ p-adic absolute value on $\overline{\mathbb{Q}}_{p}$.
(1) Let $n>1$ be an integer. Compute the degree of $\mathbb{Q}_{p}\left(\zeta_{n}\right)$ over \mathbb{Q}_{p}, where ζ_{n} is a primitive $n^{\text {th }}$ root of unity in $\overline{\mathbb{Q}}_{p}$.
(2) Let F, E be finite extensions of \mathbb{Q}_{p} inside $\overline{\mathbb{Q}}_{p}$. Assume E is a totally ramified extension of F, of degree n prime to p. We will prove that there is a uniformizer ϖ of \mathcal{O}_{F} such that E is generated by some $n^{\text {th }}$-root of ϖ.
(a) We start with a uniformizer β of \mathcal{O}_{E}. Show that β^{n} is of the form $\varpi_{0} u$ for some uniformizer ϖ_{0} of \mathcal{O}_{F} and some unit $u \in \mathcal{O}_{E}^{\times}$.
(b) Show that there is a unit $u_{0} \in \mathcal{O}_{F}^{\times}$such that $\left|u-u_{0}\right|<1$ and then, exhibit a uniformizer ϖ of \mathcal{O}_{F} such that $\left|\beta^{n}-\varpi\right|<|\varpi|$.
(c) Let $\alpha_{1}, \cdots, \alpha_{n}$ denote the $n^{\text {th }}$-roots of ϖ in $\overline{\mathbb{Q}}_{p}$. Show that for $i \neq j$ we have $\left|\alpha_{i}-\alpha_{j}\right|=\left|\alpha_{i}\right|=\left|\alpha_{j}\right|=|\varpi|^{1 / n}$. [this is where we use that n is prime to p]
(d) Prove that there is a unique index i such that $\left|\beta-\alpha_{i}\right|<|\varpi|^{1 / n}$ and then conclude.

