INTRODUCTION À LA THÉORIE ALGÉBRIQUE DES NOMBRES

TN 1 Set $f_n(X) = X^n - X + 1$.

- (1) Show that $\operatorname{disc}(f_n) = \pm (n^n (n-1)^{n-1}).$
- (2) Suppose n = p is prime. Then show that f_p is irreducible in $\mathbb{F}_p[X]$. [hint : prove that no root of f_p belongs to \mathbb{F}_{p^i} for i < p.]
- (3) Now, let n = 5 and put $K := \mathbb{Q}[X]/(f_5)$.
 - (a) Show that $\mathcal{O}_K = \mathbb{Z}[X]/(f_5)$ [hint : 2869 = 19 × 151].
 - (b) Decompose (2) as a product of prime ideals of \mathcal{O}_K and provide generators of each factor.
 - (c) Determine r_1 and r_2 . Then prove that $M_K \sqrt{|D_K|} < 4$.
 - (d) Prove that in fact \mathcal{O}_K is principal.

TN 2

Let K be a number field of degree n and discriminant $D_K \in \mathbb{Z}$.

- (1) Let $\sigma: K \hookrightarrow \mathbb{C}$ be a complex embedding.
 - (a) Assume $\sigma(K) \subset \mathbb{R}$. Show that there exists $\alpha \in \mathcal{O}_K$ non zero such that $-|\sigma(\alpha)| \leq 2\sqrt{|D_K|}$, and
 - $|\sigma'(\alpha)| < 1$ for any other $\sigma' : K \hookrightarrow \mathbb{C}$ distinct from σ .
 - (b) Assume $\sigma(K) \not\subset \mathbb{R}$. Show that there exists $\alpha \in \mathcal{O}_K$ non zero such that $-|\Im(\sigma(\alpha))| \leq \sqrt{|D_K|}$ and $|\Re(\sigma(\alpha))| < 2$, and
 - $|\sigma'(\alpha)| < 1$ for any embedding $\sigma' : K \hookrightarrow \mathbb{C}$ not conjugate to σ .
- (2) In both cases, prove that $|\sigma(\alpha)| > 1$. Then prove that $K = \mathbb{Q}(\alpha)$.
- (3) Show that the coefficients of f_{α} are bounded above by $2n!\sqrt{|D_K|}$ and deduce that there are finitely many number fields of given discriminant and degree.
- (4) Prove that there are finitely many number fields of given discriminant.

TN 3 Let p be prime number. We fix an algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p and we denote by |.| the p-adic absolute value on $\overline{\mathbb{Q}}_p$.

- (1) Let n > 1 be an integer. Compute the degree of $\mathbb{Q}_p(\zeta_n)$ over \mathbb{Q}_p , where ζ_n is a primitive n^{th} root of unity in $\overline{\mathbb{Q}}_p$.
- (2) Let F, E be finite extensions of \mathbb{Q}_p inside $\overline{\mathbb{Q}}_p$. Assume E is a *totally ramified* extension of F, of degree n prime to p. We will prove that there is a uniformizer ϖ of \mathcal{O}_F such that E is generated by some n^{th} -root of ϖ .
 - (a) We start with a uniformizer β of \mathcal{O}_E . Show that β^n is of the form $\varpi_0 u$ for some uniformizer ϖ_0 of \mathcal{O}_F and some unit $u \in \mathcal{O}_E^{\times}$.
 - (b) Show that there is a unit $u_0 \in \mathcal{O}_F^{\times}$ such that $|u u_0| < 1$ and then, exhibit a uniformizer ϖ of \mathcal{O}_F such that $|\beta^n \varpi| < |\varpi|$.
 - (c) Let $\alpha_1, \dots, \alpha_n$ denote the n^{th} -roots of ϖ in $\overline{\mathbb{Q}}_p$. Show that for $i \neq j$ we have $|\alpha_i \alpha_j| = |\alpha_i| = |\alpha_j| = |\varpi|^{1/n}$. [this is where we use that n is prime to p]
 - (d) Prove that there is a unique index i such that $|\beta \alpha_i| < |\varpi|^{1/n}$ and then conclude.