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Abstract

In this article, we will firstly prove a base change result of character varieties
using the vanishing result of group cohomology on standard module and the good
bimodule filtration structure on the coordinate ring. Then we will prove a finiteness
result about morphism of character varieties after Cotner by using two ingredients:
the theory of adequate morphisms and the Bruhat—Tits theory.

1 Introduction

The first aim of the article is to prove the following theorem, about the base change of
character varieties:

Theorem 1.1 (Base change). Suppose that T — S is a morphism of two schemes and
G s a reductive group S-scheme. Let G act on G™ by simultaneous conjugation.
For any integer n > 0, there is an isomorphism:

G%//GTZGZ//GS XST,
where || denotes the categorical quotient.

The proof of the theorem will use the techniques in group cohomology theory, espe-
cially the standard modules and the good filtrations.

We can view G% // Gs to be the character variety of the free group F,. If we consider
a general finitely generated group I', we can prove a weak version of the base change.

Theorem 1.2 (General base change). Suppose that T'— S is a morphism of two noethe-
rian schemes and G is a reductive group S-scheme. Let I' be a finitely generated group.
Then the base change morphism

Hom(I",Gr) J Gr — Hom(I',G) | G x5 T
is finite, where || denotes the categorical quotient.

Then after Cotner (|Cot23]), We will sketch the proof of the following finiteness result
of morphisms between character varieties.

Theorem 1.3 (Finiteness). Let S be a locally noetherian scheme. and f: H — G be a
finite morphism of reductive group schemes over S. Let I' be a finitely generated group
and I € T be a subgroup of finite index. Then the morphism

Hom(T", H) ) H — Hom(I",G) J G

18 finite.



As the morphism is affine, it suffices to prove that it satisfies the existence part of
the valuative criterion. The proof will use the theory of adequate moduli spaces to study
the categorical quotient and use the theory of Bruhat—Tits building to study the integral
points of the character variety.

Those questions arise naturally in the study of Galois representations. Indeed, for a
local field K, let K; be the maximal tamely ramified extension of K. Then the Galois
group Gal(K;/K) has a dense subgroup (¢,0 | pop~' = oP), where ¢ is the Frobenius
automorphism. Then those consequences will give some information about the moduli
space of the Galois representations.

2 The base change result

The goal of the section is to prove the base change result [1.1}

The essential step of the proof is the following vanishing result of group cohomology.
The idea is that the structure ring of the categorical quotient X/G is the zeroth group
cohomology of the structure ring of X. It is known that the higher group cohomology
of a reductive group over a characteristic zero field vanishes. Thus the main problem is
over the characteristic p fields, which is the case that we will mainly consider.

Through this section, k will be a characteristic p field and G = G}, will be a split
reductive group scheme over k£ without mentioning. The Borel subgroup and the maximal
torus of G will be denoted by B, T respectively. Let wy be the longest element of the
Weyl group of G. The following theorem is essential for the proof of the base change
result.

Theorem 2.1. For an integer i > 1, the higher group cohomology vanishes:
H'(G,0(G") =0

The group cohomology does not vanish for general Gy-modules if £ is of characteristic
p. To prove this statement, we will firstly show that the higher group cohomology vanishes
for a class of objects, called the standard objects V(A). Then we show that the module
O(G"™) has a good filtration, i.e., has a filtration whose subquotients are standard objects.

2.1 Group cohomology

We firstly recall the notion of induced modules from B to G. The main reference here is
[CL77).

Definition 2.2 (Induced modules). Let V' be a B-representation. It corresponds to a
G-equivariant vector bundle over G/B, denoted by V, whose global section is called the
induced module of V', denoted by Indg V.

The induced modules satisfy the following properties.

Proposition 2.3. o Let V be a G-module and W be a B-module, then we have the
Frobenius reciprocity

Homp(V, W) = Homg(V, Ind% W).
We also have its derived version:

Exth(V, W) = Exth(V, Ind§ W).
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o Let V be a G-module and W be a B-module, then we have
IndG (Ve W) ~V @ (Ind§ W).

The induced module from B to G of a one dimensional module is called the standard
module.

Definition 2.4 (Standard modules). Let A be a weight of G. Then A corresponds to a
representation ky,x of B of dimension 1. The induced module of ki », Indg Ewox s called
the standard module, denoted by V(\).

The standard modules satisfy the following.
Proposition 2.5. e V()) is not zero if and only if X is dominant.
e For dominant X\, the highest weight of V(\) is A.

e [For dominant X\, the irreducible module of highest weight X\, L(\) is the socle of
V(A).

o The dual of V(—woA), V(—woA)* has highest weight A and head L(X). The module
is denoted by A(N), called the costandard module.

Thus the notion of standard module is meaningful only for dominant .
The proof of the vanishing result divides into some lemmas.

Lemma 2.6. Denote the set of non-negative combinations of positive Toots by Q. Let

A be a weight and A ¢ QF, then H"(B,ky) =0 for all n € N.

Proof. As B =U x T and T-representations are semisimple, O(U) is injective. There is
an injective resolution of k), given by the complex

iy @ O(U) L5 by @ O(U x U) — - -

where a* is the coaction and m* is the comultiplication. We have that O(U) is a polyno-
mial ring with generator indexed by positive roots. Thus the characters of O(U) are in
—Q*. After we take B-fixed points, all modules in the complex vanish. Thus the group
cohomologies are zero. O

Lemma 2.7. The higher group cohomologies of the trivial module vanish: H'(B,k) = 0
fori > 1. Moreover, H*(B,k) = k

Proof. Consider the injective resolution above. It becomes
k@ OWU) L5 k@ OU x U) = -+ -
When we take the T-fixed point, it becomes
N SN

Thus all higher cohomologies vanish and H°(B, k) = k. O



Proposition 2.8. For a dominant X\, the higher group cohomologies of the standard

objects vanish: '
H' (G,V(\)=0.

In fact, we have a stronger result. If V' 1is a G-module such that all weights of it are not

in —woA + (QT\{0}), '
H(G,VA)®V)=0

for alli > 1. Moreover, for i =0, dim H°(G,V(\) ® V) is the dimension of the subspace
of V' of weight —wgA.

Proof. We have the following identities
HY(G,VA) @V) =Exto(V*, V(N) = Exty(V*, kuer)) = H(B,V ® kyy»)

All B-modules have a filtration whose subquotients are one-dimensional modules. As in
the condition, those weights are not in @T\{0}. Thus H*(B,V ® ky,») = 0 for all : > 1

by 2.6l and 2.7,
The argument about i = 0 follows from and and the long exact sequence of
cohomology. O

Corollary 2.9. Let \, i be two dominant weights. H'(G,V(A\) @V (u)) =0 for alli > 1.
Moreover, if \ = —wou, dim H°(G, V(A\)®@V (1)) = 1 otherwise H°(G,V(\) @V (u)) = 0.

Proof. For the first statement, The highest weight of V() (respectively, V(u)) is A
(respectively, p). By 2.8 if A ¢ —wop + QT\{0} or u ¢ —woA + QT\{0}, the theorem
holds. One of the two statements must hold, otherwise 0 = woA + p + (—wp) (A + wop) €
Q1\{0}, a contradiction.

The case \ # —wou follows similarly, For the case A\ = —wgu, the result follows from
the fact that the highest weight of V() is ¢ and that the dimension of the highest weight
subspace is of dimension 1. O

By the duality between A and V, we have the following.

Corollary 2.10. There exists a non-zero morphism A(X) — V(u) for two dominant
weights A and p if and only if A = p. In this case, the image of a non-zero morphism
A(X) — V(A) is the simple module L(X). Moreover, Exty(A(N), V() = 0 for all
121, p,v.

2.2 Good filtration

We now define the notion of good filtration and exploit its properties. We will prove that
the structure ring O(Gy) has a good filtration, which will imply the vanishing result of
group cohomology. The main reference here is [Kop84].

Definition 2.11. A G-module M has a good filtration if there is a filtration (indexed by
some ordinal o) of M :
0=MyC M; CMyC...

such that for all i € N, the subquotient M;1/M; is of the form V(X) for some dominant
weight .

The following is a criterion for good filtrations.
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Proposition 2.12. Let V' be a G-module such that it is a union of finitely dimensional
G-modules. The following are equivalent:

1. 'V has a good filtration.
2. For any i > 1 and dominant weight X of G, H(G,V @ V(\)) = 0.

3. For any dominant weight X\ of G, H'(G,V ® V()\)) =

Moreover, if these conditions hold, the number of V(\) in the subquotients of any good
filtration equals to dim Homg(A(X), V).

The proof will use the induction method. We firstly make the following convention
on the order structure of weights.

Definition 2.13. The relation A < u <= pu— A € Q defines a partial order on the
dominant weights.

Proof. e (1) = (2): It follows from the long exact sequence of cohomology and the
proposition [2.9

o (2) = (3): It is trivial.

e (3) = (1): We may use the transfinite induction. Suppose we have constructed
V;. We then construct V;.;. Note that by and the long exact sequence of
cohomology, V/V; Let p be the minimal weight such that Hom(L(u), V') # 0 (where
L(p) is the simple module of highest weight 1). It suffices to prove that this induces
an injection V(u) — V. There is an exact sequence

0— L(u) = V(u) = R(u) — 0.

For any composition factor L(v) of R(u), we have v < p. By definition of g,
Homeg(L(v),V) = 0 and then Homg(R(p),V) = 0. For L(v), there is an exact
sequence

0— P(v) — A(v) = L(v) — 0,
which induces

Home(P(v), V) — Extg(L(v), V) — Extg(A(v), V).

The weights of P(v) are smaller than v, thence than v. Thus Homg(P(v),V) =
0. We also have Extj(A(v),V) = HYG,V ® V(—wyv), which is zero by the
assumption in (3). Thus Extj(L(v),V) = 0 and then Extj(R(u), V) = 0.

Now the exact sequence for L(u) induces a long exact sequence
Homg(R(u), V) = Homg(V (1), V) — Home(L(), V) — Extg(R(n), V).
Thus there is an isomorphism
Home(V (1), V) = Home(L(p), V)

and the inclusion L(p) — V induces a homomorphism V(A) — V. The homo-
morphism is an inclusion, otherwise it will factor through R(u), a contradiction.
Moreover, for a limit ordinal «, if we have constructed Vs for 8 < a, we may
construct V, = |J g<o V3. Then the transfinite induction applies and we obtain a
filtration on V.

The last argument follows from [2.10] O



Proposition 2.14. As a G x G-module, O(G) has a good filtration. For dominant weight
A, V(A 1) :== V(N) B’V (u) appears in the subquotients if and only if p = —woX. In
the case p = —woX, V(A, 1) appears once.

Proof. For the first argument, by the criterion [2.12] it suffices to prove that for any
weights A, p,
HY(G x G,V(\) R V(u) ® O(G)) = 0.

Denote the two copies of G by G; and G5. The Hochschild—Serre spectral sequence
induces an exact sequence

0 — HY(Gy, W) = HY(Gy x Gy, W) — HY (G, W),
where W = V(\) X V(1) @ O(G). There is an isomorphism
(VN ® O(G))*r = V(\)

as Gy-modules, induced by id ®e where € is the counit map O(G) — k and the coaction
V(A) = V(A®O(G). Thus H'(G2, W) = 0 by[2.9] Moreover, as VRO(G) ~ V,@0(G)
for any G-module V', where Vj =V as vector spaces but the action of G on Vj is trivial.
Thus HY(G1,W) = 0. Hence H'(G; x Go, W) = 0.

For the second argument, it suffices to compute Homg(A(N) K A(u), O(G)). We have

Homa(A(N) B A1), O(G)) = (V(A, p), O(G) ¥ = (V(A) @ V()“.
ByR.9, (V) ® V()% = 0if A # —wop and dim(V(\) @ V(u))¢ = 1if A = —wpp. O

Proposition 2.15. If both of two G-modules have good filtrations, their tensor product
has a good filtration.

The proof of the proposition can be found in [Mat90]. The idea of proof is to realize
the tensor product of two standard modules V(\) ® V(u) as the global section of a
line bundle on some generalized Schubert variety S (i.e., varieties of the form Bw;B x?
xB...xBBw,B/B C (G/B)") and one can find some Schubert subvarieties S’ such that
morphisms of the form I'(S, £) — I'(S’, £) induces the good filtration of V(A) @ V(u).

Now we turn to the reductive group schemes over Z. Let G = GGz be a split reductive
group scheme over Z.

Over Z, the standard and costandard modules can still be defined.

Definition 2.16 (Standard modules). Let A be a weight of G. Then X\ corresponds to
a representation Zu,s of B of rank 1. The induced module of Zi,x, Indg Loyx 15 called
the standard module, denoted by V(). The dual module Homy(V(—woA), Z) is called the
costandard module, denoted by A(N).

We will then use V() and A()) to denote the standard and costandard modules over
some [F),.

Note that by proper base change theorem, the standard and costandard modules are
free over Z and they satisfy the base change

V) @, F, ~ V()

and similarly for A(X).



Lemma 2.17. Suppose that V' is a Gz-module, which is of finite type as an Z-module.
Denote V,, .=V @z F,. If HY(G,,V,) = 0 for any prime p, then H'(G,V) = 0 and
VEQTF, ~ VpG.

Proof. By the universal coefficient theorem, there is an exact sequence
0— H(G,V)®F, = H(G,,V,) = Tor{ (H™(G,V),F,) — 0.

Taking ¢ = 1, we have H'(G,V) ® F, = 0. The group cohomology of V is given by the
cohomology of the chain complex

l1—a*+m*

0=V ESVROG) 22 Ve 0G) 0 OG) - - -

Thus the torsion of H'(G,V) is finite and then H'(G,V) = 0. Taking i = 0 in the exact
sequence, we have V¢ @ F, ~ V. O

Lemma 2.18. Let A be a dominant weight. There is an isomorphism
Homgyq(A(A, —woA), O(G)) = Z.
Proof. By similar computations as in [2.14], we have
Homeax(A(A, —wo)), O(G)) = (V(N) @ V(~woh))®.
The module (V(\) @ V(—wp)))® is free as a submodule of a free module and (V()\) ®
V(—woA)¢ @ F, ~F, by and 2.9 Thus (V(\) ® V(—wo)))% ~ Z. O
Proposition 2.19. There is a filtration on O(G)

o=VcWcWc---CV:=0(G)

such that V; is a G-bimodule and saturated (i.e. V;@ QNV =V;) for all i and there exists
A such that the subquotients V;/V;_y @ F, is of the form NV (X, —woX) for all prime p.

Proof. We construct this filtration inductively. Suppose that we have constructed V; and
the manner of construction is the same as below if 7 > 1.
There is an commutative diagram

AN, —wor) —— A\, —wo)) —— VIV,

N L

A, —wod) —— A\, —wo)) —— V/Vi.

where the morphism A(X, —wgA) is induced by the inverse image of 1 in the isomorphism
in ~ denotes the saturation of the image of A(X, —wpA), in V/V; (the saturation of
M in N means M ® QN N) and the second arrow is the first arrow tensored by F,.

Choose a minimal \ such that V(\, —w)) appears in the good G-bimodule filtration
of V/V; (We choose it for one prime p, but it will be minimal for any p). Take V.1 be
the inverse image of A()\, —woA) in V. We claim that V;,; satisfies the conditions.

We firstly show that the morphism A(X, —woA) — V/V; is injective. As both sides are
free modules over Z, it suffices to show that the morphism is injective after tensoring Q.
By construction, the image of A(\, —weA)®Q in VRQ is a simple module and V;®Q is the
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direct sum of simple modules different form A(X, —woA). Thus A\, —weA) @ QNV; =0
and the morphism A(X, —woA) ® Q — V/V; ® Q is injective.

Next, the morphism A(\, —wo)\) — V/V; is not zero and uniquely induced by the
morphism A(A\) — L(A\) — V()\) by . Thus the image of A(\, —woA) in V/V; has a
subquotient which is isomorphic to L(\, —weA) and A(X, —we)) — W also has such
subquotient. -

Moreover, the characters of M := A(\, —we)) and of V(\, —woA) are the same, as
they equal to the character of V(\, —wp\) ® Q. The rest of proof is a general argument
which is valid in all highest weight categories.

The simple components of M are of the form L(u, —wopu) for p < A and L(A, —woA)
appears only once. The module M does not contain a simple submodule L(u,r) such
that (i, ) < (A, —woA) otherwise by the proof of 2.12] there will be a submodule V(u,v)
of V/V;, a contradiction with the choice of A. Thus the socle of M must be L(\, —woA).
There is an exact sequence

0 — L\, —woA\) = M — M/L(\, —woA) = 0
which induces a long exact sequence

HOHIG'(M/L()\, —’LUO)\), ?()\, —wg)\)) — Homg(M, ?()\, —wo)\))
— Homg(L(\, —wo)), V(A, —woA)) — Exts(M/L(A, —wol), V(A —wo)))

As the simple components of M/L(\, —wyA) are of the form L(u,v) such that (u,v) <
(A, —woA) by [2.8] the first and the fourth term are zero and the inclusion L(\, —wo) C
V(A, —wpA) induces a morphism M — V(), —woA). The morphism must be injective
as the simple components of the kernel are of the form L(u,nu) such that (u,nu) <
(A, —woA). Then the morphism M — V(A —wg)) is an isomorphism as they have the
same character. O

In fact we can prove that the subquotients of the filtration is of the form V (A, —wgA)
over Z. It suffices to prove the following fact.

Lemma 2.20. Let M be an G-module which is free as a Z-module. If there exists
a dominant weight \ such that for all prime p, there is an isomorphism M ®gz F, ~
V(A) ®z F,, then there is an isomorphism M ~ V(\).

Proof. We have that Exti(M, V(X)) = H"(G,M* ® V(\)) for alln e N. As M ® F,, is
isomorphic to V() ® F,, the highest weight of M* is —woA and then H*(G,V(\) @ M*®

F,) ~ 0 by . Then by we have
Homg(M, V(M) ® F, ~ Homg(M @ F,, V(\) @ F,)

and the latter is isomorphic to F,, by 2.8] As Homg(M, V(X)) is a submodule of a free
module, it is a free module. Thus we have

Homg(M,V(N)) ~ Z.

The inverse image of 1 induces a morphism M — V(A). For any prime number p, the
morphism induced by tensoring with F, is an isomorphism, as Homg(M @ F,, V(A) @ F,)
is one-dimensional and the morphism tensored by p is not zero. As M and V are free
and of finite type, the morphism M — V() is an isomorphism. O
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Thus we have proved the following theorem.

Theorem 2.21. Let G be a split reductive group over Z. As a G x G-module, O(Q)
has a filtration whose subquotients are of the form YV (A, —woA) and for each dominant X,
V (A, —woA) appears once.

Remark 2.22. For any ring A, a split reductive group scheme G over A is of the
form Gz x A for some split reductive group scheme Gz over Z. One can also define the
standard module over A by V(\) := H°(G/B, Ay,y). As V(A) is compatible with base
change, we have that O(G) has a G x G-module filtration whose subquotients are of the
form V (A, —woA).

Lemma 2.23. The first group cohomology H'(Gz, O(G%)) vanishes, where G acts on G"
by sitmultaneous conjugation.

Proof. Consider the filtration introduced in[2.19] The tensor product of the G x G-module
filtration induces a G*"-module filtration on O(G™). The subquotients are of finite type
and by [2.15]and induction they have good filtrations. By[2.17] the first group cohomology
of all the subquotients vanish. Thus the first group cohomology of O(G™) vanishes. [

Now we can prove the theorem. We firstly consider the case that T"— S is flat.

Proposition 2.24. Suppose that T' — S is a morphism of two affine schemes and G is
a reductive group S-scheme. Let G act on G™ by simultaneous conjugation.
Then for any integer n > 0, there is an isomorphism:

Gn ) Gs xs T — G2 || G,

where || denotes the categorical quotient.
In fact, a stronger result holds. Let M be any Gg-module. Every group cohomology
of M satisfy the base change: for i >0,

Hi(GS, M) ®Os O(T) ~ Hi<GT, MT)
where O(X) denote the structure ring of an affine scheme X.
Proof. As O(S) — O(T) is flat, we have

H'(Gp, My) = H' (My — My @ O(Gr) — -+ )
=(H'(M - M®O(Gs) =) ®os) O(T)
= H'(Gs, M) ®@0(s) O(T).

The categorical quotients are also affine and structure ring of G% ) G is H*(Gg, O(G%)).
Thus the result for G% / G holds. O

Proof of the theorem[1.1. The question is local on both S and 7. Thus we may assume
that S and T are affine. By [DGIdhésP70], Exp. XXII, corollary 2.3, there is an étale
cover S — S such that Gg := G xg 5" is split and there exists a reductive group scheme
Gy over Z such that Gg = Gz ® S’. By proposition and descent, it suffices to prove
the result for Gg and base morphism 7" := S’ xg T — S. We will then replace S and T’
by S" and T".



We firstly show that
O(G7 [ Gz) @2 A~ O(G [/ Ga)
for any ring A. By universal coefficient theorem, there is an exact sequence
0= 0O(Gy ) Gz) @ A — O(G" ) Ga) — Tor?(A, H'(Gz, O(G))) — 0
By [2.23] H'(Gz, O(G%)) = 0 and
O(Gz [ Gz) @2 A= O(Gy [ Ga).
Let O(X) denote the structure ring of an affine scheme X. Now the theorem follows:
O(Gs [ Gs) @ogs) O(T) = O(G7, [ Gz) @2 O(5) ®os) O(T)
= 0(Gy | Gz) ®2 O(T)
= O(Gr [ Gr).
O

For the character variety Hom(I', G) / G, where T is an arbitrary finitely generated
group, the base change result may not hold. However, we can still prove that the base
change morphism is finite, by using the notion of adequate moduli spaces in the next
section. The result can even be generalized to reductive group schemes over arbitrary
noetherian rings.

Theorem 2.25 (General base change). Suppose that T — S is a morphism of two
noetherian schemes and G is a reductive group S-scheme. Let X — S be an affine
scheme of finite type. Then the base change morphism

XT//GT—)X//GXST

s finite, where X1 = X xg T and similarly for Gp. In fact, it is an adequate homeo-
morphism defined in|3. 1.

In particular, let T be a finitely generated group. Take X = Hom(I",Gr), the repre-
sentation variety. Then the base change morphism

HOIIl(F/, GT) // GT — HOl’Il(F, G) // G Xg T
1s finite.
Proof. There is a Cartesian diagram

[(Xr/Gr] —— [X/G]

J# s

X)GxsT — X )G

| |

7' —— S

where [X/G] denotes the quotient stack. The morphism f is an adequate moduli space
by By 3.9 the morphism f” decomposes into an adequate moduli space [Xr/Gr] —
Xr /) Gr and an adequate homeomorphism Xr / Gr — X J/ G xg T. Moreover, by
[Alp18], theorem 6.3.3, the morphism X /G — S is of finite type. Thus the base change
morphism is of finite type and then it is finite. O
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3 Adequate moduli spaces

In the following sections, we will prove the finiteness result after Cotner [Cot23]. The
proof relies on the theory of adequate moduli spaces and the theory of Bruhat—Tits
buildings. In this section we will introduce the theory of adequate moduli spaces. The
main reference here is [Alp18].

Recall that when K is a field of characteristic p and G is a reductive group scheme
over K, the functor (—)% of taking G-fixed point is not exact. However, we can introduce
a notion of adequate ring morphisms and prove that for a reductive group scheme over
an arbitrary ring, the functor (—)“ will map surjective ring morphisms to adequate ring
morphisms and we can establish the theory of adequate moduli spaces.

Definition 3.1 (Adequate ring morphism). A ring morphism f: A — B is called ade-
quate if for any b € B there exists a € A and n € N\{0} such that f(a) = b".

A ring morphism f: A — B is called universally adequate if for any ring morphism
A — A’ the morphism f ®4 A" is adequate.

A ring morphism f: A — B is called an adequate homeomorphism if is universally
adequate and satisfies ker(A — B) is locally nilpotent and f ® Q is an isomorphism,

Remark 3.2. Over Q, a morphism is adequate if and only if it is surjective.

One can show that the notion of universally adequate morphism satisfies the fpqc de-
scent ([Alp18|, lemma 3.1.3). Thus one can also define the notion of universally adequate
morphism on sheaves of rings reasonably.

Definition 3.3 (Adequate morphism of sheaves of rings). Let X be an algebraic stack.
A morphism of quasi-coherent Ox-algebras A — B is called universally adequate if for
any object U — X in the lisse-étale site and any section s € U — X, there exists an
covering U; of U, elements t; and integers N; > 0 such that tfvi =s; on U;.

Lemma 3.4. When X is an affine scheme, a morphism A — B between two quasi-
coherent Ox-algebras is universally adequate if and only if the induced morphism between
their global sections is universally adequate.

We also need a notion of adequately affine morphism. We consider only those quasi-
compact and quasi-separated morphisms to ensure that the quasi-coherent sheaves are
stable under pushforward.

Definition 3.5. Let f: X — Y be a quasi-compact and quasi-separated morphism between
two algebraic stacks. If for any surjective morphism of quasi-coherent Oy -algebras A —
B, the morphism of their direct images f. A — f.B is universally adequate, then f is
called adequately affine.

Note that affine morphisms are adequately affine, as the pushing forward functor on
quasi-coherent sheaves is exact.
We state a criterion of adequately affine morphism.

Proposition 3.6. Let f: X — Y be a quasi-compact and quasi-separated morphism
between algebraic stacks, then the following are equivalent.

1. For any universally adequate morphism A — B between quasi-coherent Ox-algebras
with kernel Z, the morphism f. A/ f.Z — f.B is an adequate homeomorphism.
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2. f is adequate.

3. For any surjection of quasi-coherent sheaves F — G, the morphism f,SymF —
[« Sym G is adequate, where Sym denotes the symmetric algebra over Ox.

Proof. The statements (1) = (2) = (3) are from the definition. For (3) = (2),
suppose A — B to be a surjection of quasi-coherent Oy-algebras. Note that Sym B — B
is split surjective, f. Sym B — f.B is surjective. We have a commutative diagram

feSymA —— f,SymB

| |

A— B

Thus the morphism f, Sym A — B is universally adequate and then the morphism A — B
is universally adequate.

For (2) = (1), suppose ¢: A — B to be a universally adequate morphism of quasi-
coherent Oy-algebras. We may assume that A — B is injective by replacing A by its
image in B. For any affine cover V' — ), we may choose a presentation R =2 U — X xyV
such that U is affine. We have a commutative diagrams of sections

FLAV) — A(U) —= A(R)

| |

£B(V) —— B(U) —= B(R).

For any s € f.B(V), there exists t € A(U) such that s" =t in B(U) as ¢ is universally
adequate and V is affine. Then by the injectivity and the sheaf property, ¢ comes from an
element ¢t € f, A(V) and s" =t in f,3(V). Thus f.A — f.B is universally adequate. [

Some properties of adequately affine morphism are enumerated here.

Proposition 3.7. 1. Let f: X — )Y and g: X — Y are morphisms between algebraic
stacks, if f is affine, then g o f is adequately affine if g is adequately affine.

2. Let f: X = Y and g: X — Y are morphisms between algebraic stacks, if g is affine,
then g o f is adequately affine if and only if f is adequately affine.

3. The class of adequately affine morphisms is closed under composition, fpqc descent
and base change.

Proof. The first statement follows from the fact that the pushforward functor along affine
morphism is exact.

For the second statement, as the statement is local on Z and ), we may assume that
Y and Z are affine. Notice that a morphism of quasi-coherent algebras on a affine scheme
is adequately affine if and only if the morphism between their global section is adequately
affine. The statement follows from the fact that the pushforward does not change the
global section.

For the third statement, the stability under composition follows from[3.6, The stability
under fpqc descent is from the flat base change and the fact that the fpqc descent of a
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universally adequate morphism is again universally adequate. For the stability under the
base change, suppose that there is a 2-Cartesian diagram of algebraic stacks

x4y

bl

y 2y

and f is adequately affine. The statement is local on ) and )’ and we may assume that
Y and )’ are affine schemes. Then ¢ and ¢’ are affine morphisms. Then the statement
follows from the first two statement. O

Definition 3.8 (Adequate moduli space). Let f: X — Y be a quasi-compact and quasi-
separated morphism between an algebraic stack X and an algebraic space Y. f is called
an adequate moduli space if the following holds:

[} f*(’) x = Oy.
e [ is adequately affine.
We enumerate some properties of adequate moduli spaces.

Proposition 3.9. 1. The class of adequate moduli spaces are closed under composi-
tion.

2. For an adequate moduli space f: X — Y and a quasi-coherent Oy -algebra B, the
morphism B — f,f*B is an adequate homeomorphism.

3. Suppose there is a 2-Cartesian diagram of algebraic stacks

x4 x

N

y 4,y

If f is an adequate moduli space, then the morphism g’ decompose into an adequate
moduli space X' — Specy. (f«Ox/) and an adequate homeomorphism Specy(fiOx1) —
Y’

Proof. Both of the two constituents of an adequate moduli spaces are closed under com-
position by proposition [3.7. Thus the first statement holds.

For the second, note that the morphism is an isomorphism for Oy and thus an isomor-
phism for any free Oy-algebra. For a quasi-coherent Oy-algebra B, choose a surjection
A — B, where A is a polynomial algebra over Oy. Then the statement follows from
proposition [3.6

For the third, as adequately affine morphisms are stable under base changes and
left compositions with affine morphisms by proposition [3.7 It suffices to prove the
statement about being adequate homeomorphism. The morphism is identified with
9+O0y+ — fof*g.Oy. Thus it is finite by (2). ]

Now we can state the two main theorem of this section.
The first states some properties of the adequate moduli spaces.
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Theorem 3.10. Let f: X — 'Y be an adequate moduli space, then
1. f is surjective.
2. f is unwersally closed.

3. For two closed substacks Zy, Zo of X, im(Zy) Nim(Z,) = im (2, N 2Z,), where im
denotes the schematic image.

4. For an algebraically closed field k, define an equivalence relation on X (k) by x1 ~ xo
if and only if {x1} N {xa} # 0, then the map X (k)/ ~— Y (k) is bijective.

Proof. 1. Suppose there is a point Spec(k) — Y, by , the morphism X xy k — k
decomposes into an adequate moduli space and an adequate homeomorphism. Thus
X Xy k cannot be empty.

2. For a closed substack Z of X, by , the morphism Z — im(Z) decomposes
into an adequate moduli space Z — Specy (Oz) and an adequate homeomorphism
Specy (Oz) — im(Z). Thus the morphism Z — im(Z) is surjective and then im(Z2)
is closed. Moreover, the morphism is universally closed as the notion of adequate
moduli space is preserved under base change up to an adequate homeomorphism.

3. By definition, it suffices to show that for any two quasi-coherent ideals Z;, Zy of

Oy, the morphism
Oy/fdZi +I) = Oy /Ty + £y

is an adequate homeomorphism.It is equivalent to show that for any affine open
U CY and any s € I'(U, f.(I1 + I2)), there exists an integer n > 0 and t €
U(U, f.Zy + f.Zy) such that ¢" is mapped to s. This statement follows formally from
the adequate affineness of f.

4. If two k-points z,y € X (k) satisfy {z} N {y} # 0, then by (2)(3), {f(z)} N {f(y)}
is not empty. However, as Y is an algebraic space, its k-points are closed. Thus

f(z) = f(y). Then we conclude with (1).

O
The second is about adequateness of the classifying stack of G.

Theorem 3.11. Let S be an algebraic space, and G be a reductive group scheme over S,
then then morphism BG — S is an adequate moduli space, where BG 1is the classifying
stack of G.

Remark 3.12. If a group scheme satisfies the property that BG — S is an adequate mod-
uli space, it is called geometrically reductive. In fact on can show that any geometrically
reductive group is an extension of a finite group scheme and a reductive group scheme.

Proof. By [DGIdhésP70] Exp. XXII, corollary 2.3, there exists an étale cover S" — S
such that G x¢ S is split and there exists a split reductive group scheme G’ Z such that
G' xS ~ G xg 5. Thus it suffices to show the case S = Spec(Z). By descent, it suffices
to show that the statement holds for S = Spec(A), where A is a discrete valuation ring
with algebraically closed field k. Consider the radical R(G) of G. As R(G) is a torus, it
is geometrically reductive. One can show that extensions and quotients of geometrically
reductive group schemes are still geometrically reductive ([AIp18], proposition 9.5.1).
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Thus G can be replaced by the universal cover of G/R(G). Thus we may assume that G
is simply connected.

G has the resolution property: for any G-module M there is a G-module surjection
V' — M such that V is free as an A-module. By [Alp18], lemma 9.2.5 (another version
of the criterion to prove G is geometrically reductive, it suffices to show that for
any finite type G-module V' which is free as an A-module and a G-equivariant morphism
x: R — V, there is an integer n and f € Sym"(V*) such that foz = 1.

By [Alp18§], lemma 9.7.2 and lemma 9.7.4, there exists an integer m and a G-equivariant
morphism

¢: V — V(mp) @ V(mp)’ — A,

where p is the half sum of all positive roots and V is the standard module, such that ¢gox
is the identity. Thus one can choose f to be the composition of ¢ and the determinant
det: V(mp) ® V(mp)¥ — A. O

The theorem implies the following.

Corollary 3.13. Let S be an algebraic space, X — S be an affine morphism and G be a
reductive group scheme acting on X. Then the morphism [X/G] — X | G is an adequate
moduli spaces, where [X/G] is the quotient stack and X [/ G is the categorical quotient
Specg(0F).

Proof. We may assume that S is affine as the statement is local on S. The morphism
[X/G] — BG is affine and thus the composition [X/G] — BG — S is adequately affine.
By [3.4] the morphism [X/G] — X J G is also adequately affine as X / G is affine.
Moreover, the morphism [X/G| — X // G induces an isomorphism of global sections by
definition. Thus [X/G] — X J/ G is an adequate moduli space. O

The following result is about A-points on categorical quotient.

Proposition 3.14. Let S be an locally noetherian scheme, G be a reductive group scheme
over S and X — S be an affine morphism of finite type. For any A-point x of X || G,
there exists a local extension A C A" and an A'-point of X such that the diagram

Spec(A) —— X

! |

Spec(A) — X J G
commautes.

Proof. Denote [X/G] the quotient stack. The morphism [X/G] — X // G is an adequate
moduli space by corollary Thus it is universally closed by theorem [3.10] (2). As
G — S is quasi-compact, the stack [X/G] is quasi-separated and of finite type. Thus
the morphism [X/G] — X // G satisfies the existence part of the valuative criterion by
[Sta23l Tag 0CLX].

Suppose there is an A-point of X//G, which induces a K-point of X /G. By theorem
[3.10] (1), after a finite extension of L/K, the K-point lifts to [X/G]. Then we may replace
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K by L and A by a discrete valuation ring A’ C L such that the fraction field of A" is L.
Now we have a commutative diagram

Spec(K) —— [X/G]

| |

Spec(A) — X // G.

The diagram is just the diagram appeared in the valuative criterion. Thus there exists a
morphism Spec(A) — [X/G] such that the diagram commutes. Moreover, as X — [X/G]|
is an étale G-torsor, after extending A again we may lift the A-point to X. m

4 Bruhat—Tits buildings

In this section, we briefly sketch the constructions and the consequences about the
Bruhat-Tits building. As the theory is standard and the proof is complicated, we will
omit some proofs and only illustrated the ideas.

The theory of Bruhat—Tits building is devoted to classify the open bounded subgroups
of a reductive group G over a Henselian discrete valuation field K and study their prop-
erties. Roughly speaking, the Bruhat—Tits building is a complex with G-action. Each
facet of it corresponds to an open bounded subgroup of GG, namely the stablizer of it.
Moreover, for those open bounded subgroup, on can find a reductive group scheme G over
A, the integer ring of K, such that G is an integral model of G.

We firstly recall the notion of simplicial complexes.

Definition 4.1 (Simplicial complex). o A simplicial complex is a pair (V,B) where
V' is a set and B is a set of non-empty subsets of V', such that for all x € V we
have {x} € B and if ) # A C B € B implies that A € B. The elements of B are
called facets of the simplicial complex.

o A polysimplicial complex is of the form (Vi,B1)x---x(V,, By,), where each of (V;, By)
is a simplicial complex. The elements of the set By x B,, are called facets. If there is
no risk of confusion, we will denote B for a simplicial complex or a polysimplicial
complex.

e For AAB C B and A C B, A is called a face of B. The case for polysimplicial
complexes is similar.

e For A C B € B, the codimension of A in B is length of a maximal chain A = Ay C
Ay C--- C A, = B, denoted codim(A, B).

o The maximal facets of a polysimplicial complex are called chambers. A cham-
ber complex is a polysimplicial complex such that every element is contained in
a chamber and for any two chambers C,C’, there exists a chain of chambers Cy =
C,Cy,---,C, = C" such that codim(C; N Ciyq, C;) = codim(Cy, Ciyq) = 1 for each
1. For a chamber complex, the codimension of a facet A is the codimension of it in
a chamber containing it. The condition for the chamber complex ensures that the
codimension is well-defined.

The dimension of a facet B is the mazimum of codim(A, B), where A C B.
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One can naturally define the notion of subcomplexes and the morphism and isomor-
phisms between polysimplicial complexes.

For each simplicial complex, one can form a metric space corresponding to it, called
its geometric realization. Each facet of it corresponds to a standard simplex and the
simplices are glued with each other via their common faces. For polysimplicial complexes
the case is similar. Each facet of it corresponds to the product of standard simplices.

Then we turn to the definition of buildings.

Definition 4.2 (Building). A building is a chamber complex B equipped with a collection
of its subcomplezes, called the apartments of it, satisfying the following conditions.

1. The chamber complex is thick, i.e., each facets of codimension 1 is contained in at
least three chambers.

2. Every apartment is a thin chamber complez, i.e., each facets of codimension 1 in it
15 contained in exactly two chambers.

3. Any two chambers belongs to an apartment.

4. For any two apartments Ay, As and facets Fi, Fo C A1 N Ay, there is an isomor-
phism of Ay — A¢ such that it fives Fi and Fo pointwisely.

The following is a simple example of a building.

Example 4.3. Consider the reductive group G = Sly over any field k. Let (V,B) be as
the following:

e V is the set of all Borel subgroups of G. Then V ~ P(k).
e B is the set of all singletons in V.

Moreover, the apartments are those subsets containing two elements in V. Then the
conditions are trivially true.

In fact, one can associate a building to each Tits system. The simple example above
is just the special case for G = SLs.

Definition 4.4 (The building associated to a Tits system). Let (G, B, N,S) be an irre-
ducible Tits system. The building is as the following:

o V is the set of maximal proper parabolic subgroups of G.

e The elements of B are of the form {Py,--- , P,} such that the intersection of those
parabolic subgroups is again parabolic.

o Let C C B be the subcomplex consisting of the subsets of those standard parabolic
subgroups. Then C is a chamber, called the standard chamber.

e Let A be the union of all the N-conjugates of C. The apartments are those G-
conjugates of A and A is called the standard apartment.
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For general Tits systems, we define the building of it to be the product of the buildings
of the irreducible components of it.

One can show that the construction is exactly a building by using the theory of Tits
systems. One kind of examples of the Tits system is (G(k), B(k), N(k).S), where G is
a split reductive group over a field k, B is its Borel subgroup, N is the normalizer of
the maximal torus and S € N (k) is liftings of the simple reflections of the Weyl group
W = N(k)/T (k). This kind of example is “of finite type”.

There is also a kind of examples, which are “affine”. For a split reductive group G
over k, one can take G = G(k((t))) be the loop group and B is its Iwahori subgroup.
N is the normalizer of the torus T'(k) and S is liftings of the simple reflections of the
affine Weyl group N/T'(k). The case that we will introduce in the Bruhat—Tits theory is
a generalization of the case for loop groups. That is, the case for G = G(K) where K is
a discrete valuation field.

We will introduce two examples to illustrate the idea. The first example is the simplest
case G = SLy. Then G is split.

Example 4.5 (Example for SLy). Let K be a discrete valuation field, A be its integer
ring, m be the maximal ideal of A and 7 a uniformizer of A. Consider the group G(K) =
SLy(K). The cocharacter group of the mazimal torus T is X, (T) ~ Z For a root b of G,
we define the morphism u,: G, — G to be

. (1 x)
0 1)’
whose 1mage 1s denoted Uy.

We firstly construct the standard apartment A. The total space of A is X.(T)QR ~ R,
in which the zero dimensional cells are the elements of %X* (T') and the one dimensional
cells are the segments joining the consecutive points.

For each x € X.(T) ® R, we assign it to the subgroup P, of G(K) generated by T(A)
and uy(m~L02N) - Explicitly, we have that

A m-lea)
Pr = (m[<a,x>1 A

where a is the positive root and [—] is the floor function. For x € %X*(T), the group
P, can be shown as a mazximal compact subgroup. For x < y < x +% where x € %Z,
the group Py is the intersection of P, and P, 1, which is called the Twahori subgroup.
The group P, depends only on the facet where x is. Thus the group Px for a facet F is
well-defined. The idea is that the zero dimensional facets correspond to the points x such
that [{(a, z)] jumps.

Next we consider the affine Weyl group and the affine roots. The affine Weyl group s
defined to be the group N(K)/T(A) where N is the normalizer of the mazimal torus. The
group N(K) will conjugate P, to another P, for some P and there is a natural action of
N(k) on A. The affine roots are defined to be those affine functions on X.(T) @R of the
form b+ Z. The affine Weyl group is isomorphic to the subgroup of the automorphism
group of A generated by the reflections corresponding to the affine roots.

The Bruhat-Tits building of GLy(K) is defined to be G(K) x A/ ~, where ~ is defined
by

(9,7) ~ (h,y) <= Ime N(K):y=nz, g 'hn € P,.
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The next example is G = SU3. In this case G is quasi-split but not split. We should
consider the relative root system, which is not reduced.

Example 4.6 (Example for SUs). Let L/ K be a quadratic extension of Henselian discrete
valuation fields. Let m be a uniformizer of K, A be the integer ring of A and w be a
uniformizer of L. Let w be the valuation on K (and so on L) such that w(m) = 1. Define
SU3(K) to be the group

0 0 1
{geSLs(L) |g=Jg~' T}, J=([0 -1 0
1 0 0

As the map g — JgJ ' preserves the Borel subgroup of SL3(L), the Borel subgroup
descends to the Borel subgroup of SUs3.

The mazimal torus T of G is {diag(x,z/x,z7') | x € L} and the maximal split torus
of G is {diag(x,0,271) | z € K}. The character groups of T and S are X*(T) ~ Z* and
X*(S) ~ Z and the map X*(T') — X*(S) can be identified with (x,y) — x +y. The
relative roots is {—2a, a, a,2a} where a is the generator of X.(S). The unipotent subgroup
Uy, corresponding to 2a is

1
0 lz+2=0
0

o = O
=]

and stmilarly for —2a. The unipotent subgroup U, corresponding to a is

Ug(u,v) 1= lv+v=wuup,

O O =
O~
— S

and similarly for —a. We have that the quotient U, zq := U,/Usq is isomorphic to L.
We then define a filtration on the subgroups U, and Us,. The filtration on Us, is
defined to be
U2a,r = {ua(07v) | w(v) >+ H

where p = 0 if L/K is unramified and p = —w((w)/7m — 1) if L/K is ramified. The
filtration of U, is defined to be

Usr = {ua(u,v) | w(v)/2 > r+ p/2}.

The induced filtration on U, s, coincides with the filtration on L by valuations. Similarly
one can define the filtrations on U_, and U_q,.

As in the case for SLy, we define the total space of the standard apartment A to be
the affine space X.(S) @ R ~ R and the zero dimensional facets of A are those x such
that the filtration Uy .y jumps for some root b. The results are

o When L/K is unramified, the jump set is Z for both U,jsq and Us,. Thus the set
of the zero dimensional facets is Z. The affine roots are {£a + Z} U {+2a + Z}.

e When L/K is ramified, the jump set is Z—l—% for Uy, and %Z for U,. Thus the set of
the zero dimensional facets is 17Z. The affine roots are {+a+ 1Z} U{+£2a+ 3 +Z}.
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For x € A, its corresponding group P, is defined to be the group generated by T(A) and
Ub,(—bz)y for b= %a,£2a.

The affine Weyl group can still be defined as the subgroup of the automorphism group
of A, generated by the reflections corresponding to the affine roots. The Bruhat—Tits
building is then G(K) x A/ ~, where ~ is defined by

(g,2) ~ (h,y) <= 3Ine€ N(K):y=nz, g 'hn € P,.

Now we turn to the general case. We will only discuss the case for quasi-split groups
for simplicity. In fact, any reductive group over a strictly Henselian discrete valuation
field is quasi-split ([KP23], corollary 2.3.8). Then for an arbitrary reductive group over
a Henselian discrete valuation field one can pass to the maximal unramified extension of
it and then use the technique “unramified descent” (introduced in [KP23], chapter 9).

We firstly discuss the split reductive groups. We will imitate the case for SLy, The
issue here is that the isomorphism G, ~ U, for a root b is not canonical. Thus there is
not a canonical filtration on Uy(K). Instead of this, we will associate a weak Chevalley
system to a filtration.

Let G be a split reductive group over a discrete valuation field K and S =T be a
maximal torus of G. Denote V(S) = X, (S) ® R. Let A be the integer ring of K.

Definition 4.7. Given a weak Chevalley system o = (G, (X4)aco), each X, defines an
isomorphism G, ~ U,. Then there is a valuation ¢,q: U,(K) — G, — Z U {oo} on
U.(K) and we define the filtration of U,(K) by

Ua,or(K) = ¢4([r, o0]).

Moreover, for v € V(S), we can define the translation of a valuation by v. Define
Gotva: Ua(K) = Z U {o0} to be ¢pq + a(v). Moreover, the valuation is defined by

Ua,o+v,T(K) = ¢;i([r - a(v), OO])
The proof of the following lemma can be found in [KP23], lemma 6.1.13.

Lemma 4.8. The valuations induced by different choices of weak Chevalley systems differ
only by a translation. That is, for two weak Chevalley systems o and o, there exists
v € V(S) such that oy = G for any root a.

Definition 4.9 (Standard apartment). The total space of the standard apartment A is
the affine space o+ V(S), viewed as a subspace of the space of valuations, where o is a
weak Chevalley system.

The definition is independent of the choice of the weak Chevalley system by [4.8|

The case for a quasi-split group is more complicated. Let G be a quasi-split reductive
group over a Henselian discrete valuation field K, T" be a maximal torus and S C T be
a maximal split torus. Let ®, ® be the relative and absolute root system respectively.
Fix a weak Chevalley—Steinberg system (defined in [KP23], definition 2.9.12). For a € ®
such that a/2,2a ¢ ®, we have U,(K) ~ K. For a € ® such that 2a € ®, the case is
similar to the case in SU3. We have U,/2,(K) ~ L for a quadratic extension L/K and
Uso(K) ~{x € L | z+z = 0}. Then one can again define the filtrations as in the case
for SU; ([KP23], construction 6.1.21).

20



Let N = Ng(T) be the normalizer of the maximal torus. Then there is a natural
action of N(K') on the weak Chevalley systems and the action induces an action of N(K)
on the space A.

The simplicial complex structure is also defined to be the “jumps” and we will then
construct it. For this purpose, we firstly define the affine roots, which will also be some
affine functions as in the examples.

Definition 4.10 (Affine roots). For an affine function ¥ : A — R with slope a, where a
is a root, define Uy to be Uz ypxy for some x € A (the group Uy, is independent of the
choice of x).

Define Uy+ = Uy~yUy and the affine roots to be

U={peA|dy €Uy ¢ UpyUpt},

where ® is the relative root system and Usy = 1 if 2dep ¢ O.
The affine roots induce automorphisms of the space A and the group gemerating by
them is called the affine Weyl group.

The we can define the simplicial complex structure of A.

Definition 4.11 (Simplicial complex structure). The polysimplicial complex structure of
A is defined as follows. Denote H, the zero space of an affine function .

e The chambers of the complex are the connected components of the space

A\ My

pew

e The codimension 1 facets are the connected components of the space

U 7‘[¢— U H¢ﬁ7’[¢/.
Yevw Y#EY' eV

e Flt cetera.

Now we can define the Bruhat—Tits building. We introduce the following notations. Z
is the central torus of G. For a torus T" over K, T'(K), is the maximal bounded subgroup
of T(K). For a torus T over K, choose a field extension L™ /K™ /K such that T splits
over L™, T'(K)o := T(K) N Nmpue/poor T(L™)p.

As in the examples, we define the Bruhat—Tits building to some quotient.

Definition 4.12 (Bruhat-Tits building). Define for x € A P, to be the subgroup of G(K)
generated by U, .0, a € ® and Z(K)°. The Bruhat-Tits building B(G) is the quotient
G(K) x A/ ~, where ~ is defined by

(g,2) ~ (h,y) <= Ime NK):y=nz, g 'hn € P,.
G(K) acts on B(G) by acting on the first component.

Remark 4.13. In [KP23], the Bruhat-Tits building is defined by the building associated
to some Tits system ([KP23], definition 7.6.1). The definition here is equivalent as
explained in [KP23], remark 7.6.5.
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For a field extension L/K, there is a natural map B(G) — B(GyL), induced by the
map between their standard apartments X,(S(G)) @ R — X,(S(GL)) ® R (note that
the scalar extension of a weak Chevalley system is again a weak Chevalley system). The
details can be found in [KP23], section 7.9.2.

We then study the points of the Bruhat—Tits buildings.

The special points are defined for an affine root system.

Definition 4.14. For an affine root system ¥ defined over an affine affine space A, x € A
is called special if for any 1 € U there exists ' € ¥ such that dip = dyy’ and ¢'(x) = 0.

For a Bruhat—Tits building, one can define the following conditions on its points.
Definition 4.15. For B(G), a point x € B(G) is called
e special, if its conjugate in the standard apartment is special;

o superspecial, if the image of x in B(Gy) is special for any finite unramified extension
L/K.

e absolutely special, if the image of x in B(GL) is special for any finite separable
extension LK.

e hyperspecial, if x is superspecial and G splits over some unramified extension of K.

Remark 4.16. As mentioned in [KP23], remark 7.11.2, if G splits over some unramified
extension of K, the notions superspecial, absolutely special and hyperspecial are equivalent.

Example 4.17 (Example for SLs). In the special points in A are elements in %Z.
They are also superspecial, absolutely special and hyperspecial.

Example 4.18 (Example for SU3). In for points in A,

e [f L/K is unramified, then the special points are %Z. SUjz ~ SL3 over L. Then the
hyperspecial points are Z and the same for superspecial and absolutely special.

o [f L/K is ramified, the special points are iZ. In this case, SUs is never split over
an unramified extension. The superspecial points are iZ and the absolutely special
points are %Z.

The following proposition ([KP23],corollary 7.11.5) will be used in the proof of the
finiteness theorem [L.3

Proposition 4.19. Any two absolutely special points are conjugate by the adjoint group
Ga(K).

Finally we discuss the relation between the bounded subgroups and the points on the
Bruhat-Tits building.

Proposition 4.20. Any bounded subgroup K of G(K) is contained in a maximal open
bounded subgroup
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Proof. Choose a faithful representation G(K) — GL(V'), where V is a vector space over
K. Choose an A-lattice A in V. The set ICA is bounded and an A-module. Thus A is
a lattice A" in V. Then K is contained in an open bounded subgroup GL(A") N G(K) of
G(K).

By Zorn’s lemma, it suffices to prove that an increasing union (J,.; B; of bounded
subgroups is again bounded. If not, the union will contain an element whose some
eigenvalue ¢ satisfies w(¢) < 0 by [KP23], lemma 2.2.11 as the union is a subgroup.
However, none of B; contains such element, a contradiction. O]

Definition 4.21. For a torus T over K, the group T(K)! is defined to be the mazimal
bounded subgroup of T.

For a reductive group G, denote Gy, to be the simply connected cover of G/Z(G).
Denote G(K)* the image G4.(K) — G. The group G(K)' is defined to be G(K)*Z(G)* .

Then we have that any bounded subgroup is contained in G(K)?.
Theorem 4.22. For x € B(G), define G(K)! the stablizer of x in G(K)'.

1. Any mazimal open bounded subgroup K of G(K) is of the form G(K). for some
point x, where x is the barycenter of some facet.

2. For any vertex x, G(K)L is a mazimal open bounded subgroup of G(K).

Sketch of proof. (1) One can show that the Bruhat—Tits building B(G) is complete ([KP23],
theorem 4.2.10) and non-positively curved ([KP23|, proposition 4.2.7). Thus by the
Bruhat-Tits fixed point theorem (JKP23], theorem 1.1.15) K is contained in such G(K)}
and one concludes with the maximality of K.

(2) The group G(K)! is bounded by [KP23], theorem 7.7.1. For a bounded subgroup
K containing G(K)j, it is contained in some G(K),. We then conclude that =y as x
is the only point fixed by G(K)!. O

5 The finiteness result

In this section, we will proof the finiteness theorem after Cotner.
The proof relies on the following lemma.

Lemma 5.1. Let G be a reductive group scheme over A and B C G(K) a bounded sub-
group, We may extend A such that there is an element g € G(K) satisfying Ad(g)(B) C
G(A).

Proof. By and B is contained in a maximal bounded open subgroup U of G
and U is the stablizer of some x € B(GY%), where B(GY%) is the Bruhat-Tits building of
GY% and x is the barycenter of some facet of B(GY%). By [Lar95], lemma 2.4, there is
a local extension A C A’ such that the inverse image 2’ of z along B(G%,) — B(GY%)
is a hyperspecial point. We may also extend A such that G4 is hyperspecial. Thus by
[1.19) G(A) and the subgroup corresponding to 2’ are conjugate by G(K) after extending
A. O

We turn to the proof of the finiteness theorem
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Proof. We may assume that S is affine as the result is local on S. Then G™ J G and
H"™ /) H are affine. Moreover, the morphism is of finite type. Thus by the valuative
criterion, it suffices to prove that for any discrete valuation ring A with fraction field K
and any commutative diagram

Spec(K) —— Hom(I', H) J H

| |

Spec(A) —— Hom(I",G) J G

There exists a local extension A C A" with fraction field K’ and a morphism Spec(A) —
H"™ // H such that the diagram

Spec(K') —— Spec(K) —— Hom(I',H) J H

60— Sty et

Spec(A’) S Spec(A) —— Hom(I",G) J G

commutes.

By lemma [3.14, we may and do extend A such that the morphism Spec(A4) —
Hom(I",G) J/ G comes from a group homomorphism ¢: I — G(A) and Spec(K) —
Hom(T', H) // H comes from a group homomorphism ¢: I' — H(K) and we may choose
¢, ¢ such that ¥ and ¢ live in closed orbits of Hom(I'V, G(K)) and Hom(T', H(K))
respectively. Thus we may extend A such that ¥k and f o ¢|r are conjugate by G(K).

As (I") € G(A) is bounded, f o ¢(I") is also bounded and ¢(I") is bounded. Note
that the boundedness is preserved by local extension of discrete valuation rings. Then by

lemma [5.1] after extending A there is a group homomorphism ¢': I' = H(A) such that ¢/

and ¢ are conjugate by G(K) and ¢’ induces the desired dashed morphism. O
References
[Alp18§] Jarod Alper. Adequate moduli spaces and geometrically reductive group

schemes, 2018.

[CHT7] Parshall B. Scott L. Cline, E. Rational and generic cohomology. Inven-
tiones mathematicae, 39:143-164, 1977.

[Cot23] Sean Cotner. Morphisms of character varieties, 2023.

[DGIdhésP70] M. Demazure, A. Grothendieck, and France) Institut des hautes études sci-
entifiques (Paris. Schémas en groupes: séminaire de géométrie algébrique
du Bois Marie, 1962/64, SGA 3. Number 1 in Lecture notes in mathe-
matics. Springer-Verlag, 1970.

[Kop8&4] Markku Koppinen. Good bimodule filtrations for coordinate rings. Journal
of the London Mathematical Society, 2(2):244-250, 1984.

[KP23] T. Kaletha and G. Prasad. Bruhat-Tits Theory: A New Approach. New
Mathematical Monographs. Cambridge University Press, 2023.

24



[Lar95]

[Mat90]

[Sta23]

Michael Larsen. Maximality of galois actions for compatible systems. Duke
Mathematical Journal, 80:601-630, 1995.

Olivier Mathieu. Filtrations of g-modules. Annales scientifiques de I'Ecole
Normale Supérieure, 23(4):625-644, 1990.

The Stacks project authors. The stacks project. https://stacks.math.
columbia.edu, 2023.

25


https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

	Introduction
	The base change result
	Group cohomology
	Good filtration

	Adequate moduli spaces
	Bruhat–Tits buildings
	The finiteness result

