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Abstract. Let G be a reductive group over a finite field F, of characteristic p > 0. In this
thesis we first discuss some links between the free monodromic Hecke categories and Deligne-
Lusztig theory. We start by giving a new construction of the free monodromic categories of Z.
Yun [BY13] using twisted equivariant sheaves. We then use this to construct a Z-lift of the
free monodromic Hecke categories studied by Bezrukavnikov, Riche, Yun and by Gouttard. In a
second direction, we discuss how the monodromic formalism interacts with the (twisted) horocycle
correspondence introduced by Lusztig and how to use it to recover some key facts of the theory.
We then proceed to compute the trace of Frobenius on the monodromic Hecke category and show
that we recover the category of representations of the finite group G¥. We apply this formalism to
study the endomorphism algebra of the Gelfand-Graev representation of G¥ and recover a result of
Li expressing this algebra in terms of the dual torus.

Finally, assume that G is a quasi-split unramified group defined over local field of equal charac-
teristic F'. In this setting Lafforgue and Genestier have constructed a semisimple local Langlands
correspondence. We show two expected properties for the depth 0 part of this correspondence.
Namely, we show that the Langlands parameter associated to a depth 0 representation of G(F') is
tame and we describe the semisimple part of the image of a generator of the tame monodromy.

Résumé. Soit G un groupe réductif sur un corps fini F, de caractéristique p > 0. Dans cette
these, nous discutons tout d’abord des liens entre les catégories de Hecke monodromiques libres et la
théorie de Deligne-Lusztig. Nous commengons par donner une nouvelle construction des catégories
de faisceaux monodromiques libres de Z. Yun [BY13] en utilisant des faisceaux équivariants tor-
dus. Nous utilisons ensuite cela pour construire un relevement Z,-linéaire des catégories de Hecke
monodromiques libres étudiées par Bezrukavnikov, Riche, Yun et Gouttard. Dans une deuxieme
direction, nous discutons de I'interaction du formalisme monodromique avec la correspondance horo-
cyclique (tordue) introduite par Lusztig dont nous nous servons pour donner de nouvelles preuves
de certain résultats de la théorie de Deligne-Lusztig. Nous procédons ensuite au calcul de la trace de
Frobenius sur la catégorie de Hecke monodromique et montrons que cette derniere est équivalente
3 la catégorie des représentations du groupe fini G¥. Nous appliquons ce formalisme & ’étude de
I’algebre d’endomorphismes de la représentation de Gelfand-Graev de G¥ et retrouvons un résultat
de Li exprimant cette algebre en termes du tore dual.

Enfin, supposons que G soit un groupe quasi-déployé non ramifié défini sur un corps local
d’égale caractéristique F'. Dans ce contexte, Lafforgue et Genestier ont construit une correspon-
dance de Langlands locale semi-simple. Nous montrons deux propriétés attendues pour la partie
de profondeur 0 de cette correspondance. Plus précisément, nous montrons que le parametre de
Langlands associé a une représentation de profondeur 0 de G(F') est modéré, et nous décrivons la
partie semi-simple de 'image d’un générateur de la monodromie modéré.
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Chapter 1

Introduction en Francais

1.1 Catégories de Hecke monodromiques libres

Soit p > 0 un nombre premier et k un corps algébriquement clos de caractéristique p.

1.1.1 Faisceaux monodromiques en tant que faisceaux équivariants

Soit T un tore sur k. Soit 71(T") le groupe fondamental étale de T au point géométrique 1, et soit
7t (T) le quotient premier & p (ou quotient modéré). On sait que 7t (T) = X.(T) @ ZP)(1), on
X.(T) désigne 'ensemble des cocaracteres de T'.

Soit X un schéma muni d’une action de T. Dans [Ver83], Verdier définit (pour T' = G,,) la
notion de faisceaux monodromiques de la maniére suivante. Soit ¢ # p un nombre premier, notons
par Deons(X ,Z@) la catégorie dérivée des faisceaux constructibles ¢-adiques sur X.

Définition 1.1.1 ([Ver83]). Un faisceau A € Deons(T,Z¢) est monodromique si, pour tout 7, le
faisceau de cohomologie H7(A) est lisse sur T et que la représentation correspondante de 71 (7T') est
modérée, c’est-a-dire qu’elle se factorise par par i (T).

Définition 1.1.2 ([Ver83])7. Un faisceau A € Deons(X, Z¢) est monodromique si, pour tout z € X,
le faisceau at A € DconﬂT7 Zy) est monodromique, ol a,, : T'x X — X est Papplication orbite de x.
Nous notons Deons(X, Z¢)mon la sous-catégorie pleine des faisceaux monodromiques.

Théoréme 1.1.3 ([Ver83)]). La catégorie Deons(X,Z¢)mon €st une catégorie triangulée (ou stable
si nous travaillons avec des co-catégories). De plus, tout objet A € Deons(X, Zg)mon posséde une
action canonique de wt(T) appelée la monodromie canonique. Cetle action commute avec tous les
morphismes de faisceauz.

Notons CH(T') I’ensemble de tous les caracteres continus 7t (T) — Z; d’ordre fini premier & /.
Pour chaque x € CH(T), il existe un faisceau de Kummer £, sur T. Nous dirons qu’un faisceau
A € Deons(X,Zy) est x-monodromique si sa monodromie canonique ¢4 : Z¢[ri(T)] — End(A) se
factorise & travers la complétion de Z,[n%(T)] le long du noyau de I’homomorphisme défini par x.
Nous notons Deons (X, Zg)xmon la sous-catégorie pleine des faisceaux x-monodromiques. Si y est le
caractere trivial, les faisceaux y-monodromiques sont également appelés faisceaux monodromiques
unipotents.



Proposition 1.1.4. La catégorie Deons (X7Zz)mon est la somme directe

Dcons (X; ZZ)mon = ®X€CH(T)DCODS(X7 ZZ))(,mon- (11)

Nous notons {27z, I'anneau

Qr.z, = lim Z/ " Z[T[E™]). (1.2)

n,m

Apres avoir choisi une trivialisation 7t (G,,) ~ Z®) et une base de X, (T), cet anneau devient
isomorphe & Z[t1, ..., t,], un anneau de séries formelles. Nous notons Qp = Qrz, ®z, Zy.

Ezemple 1.1.5. En prenant la fibre en 1 € T', on obtient une équivalence de catégories Deons (7, Zg)unjp,mon ~
Deon,m (27) entre la catégorie des faisceaux monodromiques unipotents sur 7" et la catégorie dérivée
des faisceaux cohérents sur €2 supportés sur 'idéal d’augmentation de Q.

L’anneau Q27 n’est pas un anneau régulier, mais il est tout de méme cohérent, c’est-a-dire que
tout module de type fini est finiment présenté, la catégorie Do, (27) se comporte ainsi comme si Qr
était noéthérien. Cependant, la catégorie Deon m(£27) n'est pas aussi raisonnable. Pour remédier
a cela, Z. Yun introduit dans [BY13], Appendice A, la notion de faisceaux monodromiques libres.
Plus précisément, il construit une sous-catégorie pleine Deons(X [ T,7Z¢) C ProDeons(X, Z¢)mon
functorielle en X et compatible avec les 6-foncteurs telle que lorsque X = T, nous obtenons une
équivalence Deons(T [JT,Z¢) = Deon(Qr,z,).

La difficulté de la construciton de loc. cit. est qu’il n’y a a priori pas de structure triangulée
sur la catégorie des pro-objets dans une catégorie dérivée. L’un des points techniques est alors de
construire la structure triangulée et les t-structures sur cette catégorie. Nous souhaitons donner
une construction différente de cette catégorie. Jusqu’a présent, nos résultats fonctionnent bien pour
les versions sur Z; ou F; de ces catégories, mais la version Q; nécessite davantage de travail. L’idée
principale est de réaliser cette catégorie comme une certaine catégorie de faisceaux équivariants
tordus. Nous exposons maintenant les grandes lignes de cette construction.

Le formalisme des faisceaux adiques, ainsi que sa généralisation en utilisant le topos proétale de
[BS15], nous permettent, en utilisant le formalisme de [HRS21], de définir pour tous les schémas de
type fini X sur k deux catégories

Dcons(Xa QT) C Dindcons (X; QT)a (13)

de faisceaux constructibles et ind-constructibles sur X respectivement. Ce sont naturellement des
oo-catégories.
Nous ajoutons une autre idée provenant de [GL96]. Il existe une application canonique

can : 1 (T) — Q7F. (1.4)

Cette application définit un Qp-systeme local de rang un sur 7', que nous notons L. Cet objet est
un faisceau multiplicatif sur 7', ¢’est-a-dire qu’il existe un isomorphisme

m*LT = LT IEQT LT (15)

équipé de certaines compatibilités.
La catégorie Dingcons(T, Q1) est munie d’une structure monoidale provenant de la convolution.
Plus précisément, pour A, B € Dindcons(T, 1), nous définissons

AxB=m(AKB), (1.6)



ol m est la multiplication. De méme, si X est un schéma avec une action de T, la catégorie
Dindeons (T, Q1) agit sur Dindeons(X, Q7). L’action est donnée par

AxB=a(AX B), (1.7)

oua:T x X — X est 'action.

Nous suivons maintenant la construction de Gaitsgory [Gai20]. Nous pouvons tordre l’action
de Dindcons(T, Q1) sur Dindeons(X, Q7) par le faisceau multiplicatif L. En d’autres termes, nous
définissons :

Ax"V B=(A® L)+ B (1.8)

ou A et B sont comme précédemment.

Définition 1.1.6. La catégorie des faisceaux équivariants tordus (T, L) sur X est la catégorie des
invariants, au sens de loc. cit., de la catégorie Dindcons(X, Q7) pour 'action tordue de Dindcons (T, 7).
Nous la notons Dindcons (X, Q7 )unip-

Remarque 1.1.7. D’une maniere tres imprécise, on peut considérer les objets de Dindcons(X; 27 )unip
comme des objets A € Dindcons(X, Q7) équipés d’un isomorphisme

a* A~ LT X QTA (19)

De méme, si x € CH(T), le faisceau Ly ®7, £y est également un faisceau multiplicatif sur
T. Ainsi, nous pouvons reproduire la méme construction et définir Dindcons(X, Q7), comme la
catégorie des faisceaux (T, Lt ®z, L )-équivariants sur X. Nous pouvons également effectuer la

méme construction sur Fy, F; ou Z; au lieu de Z,.

Théoreme 1.1.8 (3.2.46). Il existe une équivalence naturelle de catégories
ho(Deons (X, U, 7)) =~ Deons(X [T, Fo). (1.10)

Le théoreme affirme non seulement que nous avons produit une nouvelle construction de la
catégorie des faisceaux monodromiques libres sur X, mais nous avons également produit un relevé
oo-catégorique. Notre construction présente plusieurs avantages, les plus importants étant que nous
n’avons pas a manipuler des pro-objets et que les six foncteurs s’étendent naturellement a ce cadre.

Remarque 1.1.9. Ce qui rend cette construction possible est la remarque vague suivante. La con-
struction de [BY13] consiste & compléter la catégorie Deons(X, Z¢)mon le long de la monodromie de
Verdier. Alors que notre construction considere la catégorie de tous les faisceaux a coefficients dans
Q1 et impose ensuite que la Qp-structure soit la méme que celle de la monodromie de Verdier.

1.1.2 Catégories de Hecke

Soit G un groupe réductif sur k, B = TU une paire de Borel et W le groupe de Weyl de (G,T).
L’étude des catégories de Hecke a une longue histoire. Pour les applications a la théorie de Deligne-
Lusztig que nous souhaitons discuter dans cette these, nous nous intéresserons aux variantes mon-
odromiques libres de ces catégories [BY13], [BR22b], [Gou2l]. Plus précisément, nous souhaitons
discuter des versions Z; de ces catégories de Hecke monodromiques libres. Elles ont été étudiées
dans [BY13] pour le cas unipotent sur Q, dans [BR22b] pour le cas unipotent sur F, et dans



[Gou21] pour le cas non unipotent sur F,. Le travail de Gouttard est lui-méme une généralisation
de [BR22b] et [LY20].

Considérons le champ U\G/U équipé de sa stratification de Bruhat. Il y a deux actions de T
sur ce champ induites par translations a gauche et a droite. Ainsi, il existe trois versions de la
catégorie des faisceaux monodromiques libres que nous pouvons définir.

(1). H'ef = @XGCH(T) Dindeons(U\G/U, QT)ifft ot I’équivariance est relative a I’action de T &
gauche.

(i7). Hrisht = ®xECH(T) Dindeons(U\G/U, QT);ight ot I’équivariance est relative & ’action de T &
droite.

left,right __ . left,right ~ 754 . . T .
(#9i). H B — @x,x’GCH(T) Dindeons(U\G/U, QTXT)X;X' ot I’équivariance est relative a I’action

de T x T et 'indice (x, x") fait référence aux faisceaux qui sont équivariants pour Ly ®z,
(Lx Bz, Ly)-

Nous montrons qu’il existe des foncteurs d’oubli naturels

left

For right
Hleft

Hleft,right For Hright’ (111)
et que ces foncteurs sont des équivalences, voir le lemme 3.4.4. Nous notons H 1'une de ces catégories
équivalentes et nous ’appelons la catégorie de Hecke universelle, empruntant la terminologie de
[LNY23]

Nous suivons ensuite la construction de [BR22b] et [Gou21] pour étudier cette catégorie. Nous
commengons par équiper cette catégorie d’'une structure monoidale donnée par la convolution.
Considérons le diagramme

U\G xV GJU - U\G/U

U\G/U U\G/U
olt m est induit par Papplication de multiplication. Ensuite, nous définissons pour A, B € H'eft:right
A x B = For m;(A@ZZB)[dim 7). (1.12)

Décrivons maintenant ce foncteur. Tout d’abord, (A@ZZB) est naturellement un faisceau Qryr ®

Qryr sur U\G xY G/U. Etant donné que les six foncteurs que nous utilisons se comportent mieux
pour les anneaux complets, nous complétons d’abord ce faisceau pour passer a un QryrxTxT-
faisceau, ce qui explique le symbole . Apres avoir appliqué my, nous obtenons un faisceau
Qryrxrxr sur U\G/U, le foncteur For est le foncteur d’oubli induit par linclusion Qryr —
QrwrxrxT induite par les deux inclusions extérieures.

Une fois cette structure monoidale construite, nous procédons a I’étude de la catégorie H en
reprenant certaines des constructions principales de [Gou21]. Fixons (w) un ensemble compatible
de relevements des éléments w € W. Le choix de w donne un morphisme T-équivariant pour les
actions par translation a droite k,, : U\BwB/U — T. Comme c’est standard en théorie de Soergel,
nous définissons les faisceaux standard et costandard de la maniére suivante.

Définition 1.1.10. Soit w € W et x € CH(T).



(4). Le faisceau standard indexé par (w, x) est Ay, y = iy, 1k;, (L1 ®7, £,)[dim T + £(w)].
(i). Le faisceau costandard indexé par (w,x) est Vi, y = iw k(L1 ®7, £,)[dim T + £(w)].

Comme les inclusions i,, sont affines, tous ces faisceaux sont pervers.
Nous pouvons maintenant introduire les objets d’intérét principal pour la théorie de Soergel.

Définition 1.1.11. Soit A un faisceau pervers dans H. Une A-filtration (resp. une V-filtration)
pour A est une filtration telle que toutes les gradués sont isomorphes a des faisceaux standards (resp.
costandards). Le faisceau A est tilting s’il possede & la fois une A-filtration et une V-filtration.

Théoréme 1.1.12 (3.B.12). Pour tous x et w comme ci-dessus, il existe un unique faisceau tilting
indécomposable qui est supporté sur la fermeture de U\BwB/U et tel que la multiplicité de A,
dans toute A-filtration (resp. la multiplicité de V., dans toute V-filtration) soit égale a un.

La démonstration de ce théoréme consiste essentiellement & relever & Zy la preuve déja connue
dans la littérature. Nous désignons par Tilt(U\G/U) la catégorie des faisceaux tilting pervers.

Supposons maintenant, pour simplifier, que le centre de G est connexe. Sinon, nous devrons
introduire les notions de blocs, voir la section 3.4.2. Soient y, x’ € CH(T) dans la méme orbite sous
I’action de W. Nous notons

Wy ={w e W,wx =x'}. (1.13)

En particulier, , W, = W, est le stabilisateur de x. Nous équipons W de l'ordre de Bruhat,
c’est-a-dire l'ordre induit par les spécialisations dans U\G/U.

Lemme 1.1.13 ([LY20]). L’ensemble W, muni de Uordre induit par W, posséde un unique
élément maximal. Nous notons cet élément Wy
Remarque 1.1.14. Si x = x’ est trivial, alors cet élément maximal est wg, 1’élément le plus long du
groupe de Weyl.

Nous notons T/, le tilting correspondant a x et w;“,“;(‘ Nous pouvons maintenant énoncer les
principaux théoremes de la théorie.

Théoréme 1.1.15 (Endomorphismensatz, 3.4.34). Pour tous les couples (X', x) comme précédemment,
il existe un isomorphisme
End(TX/7X) == QT ®QWX QT- (114)
T

Définition 1.1.16. Nous définissons
T=EP Lo (1.15)
X'>x
et nous I’appelons le grand faisceau tilting.
Définissons le schéma C(T') comme suit :
C(T) = LlSpec(QT) X X- (1.16)
X

Cet espace a été introduit pour la premieére fois dans [GLI6] en tant qu’espace de modules des
faisceaux multiplicatifs sur 7. Nous considérons le schéma suivant :

C(T) xcirypw C(T). (1.17)



Ce schéma est I'union de tous les graphes des actions des éléments w € W. Ses composantes
connexes sont indexées par les paires (x/, x) dans la méme orbite sous I’action de . Pour une telle
paire, la composante connexe correspondante est isomorphe a

Spec(Qr ®,wy Q). (1.18)
T
Nous introduisons le foncteur global V qui est défini comme suit :

Tilt(U\G/U) — Coh(C(T') x¢(ryyw C(T))
T — Hom(T,T).

La catégorie cible est la catégorie abélienne des faisceaux cohérents sur C(T') x¢(ryyw C(T). Elle
est équipée d’une structure monoidale provenant de la convolution.

Théoréme 1.1.17 (3.4.57, 3.4.45). (i). Le foncteur V est pleinement fideéle.
(ii). Le foncteur V est monoidal.

La premiere affirmation dans le théoreme précédent est appelée le Struktursatz.

1.2 Quelques résultats en théorie de Deligne-Lusztig

1.2.1 Une formulation champétre de la théorie

Soit G un groupe réductif sur Fq avec un endomorphisme de Frobenius F : G — G provenant d’une
F,-structure. Soit B = T'U une paire de Borel stable par F et soit W = Ng(T')/T le groupe de Weyl

de (G,T). Soit A € Fy,Q,Z, un anneau de coefficients avec £ # p. La théorie de Deligne-Lusztig,
qui tire son nom de Darticle original [DL76], étudie les représentations du groupe fini G¥ = G(F,)
sur des A-modules. Notons également par

L:G—>G
g+~ g 'F(g),

I’application de Lang. Classiquement, les variétés de Deligne-Lusztig sont définies comme suit. Soit
w € W et définissons
X(w) ={yB, L(g) € BuB} C G/B, (1.19)

et étant donné un relevement 1w € Ng(T') de w,
Y (w) ={gU,L(g) e UwU} C G/U. (1.20)

L’application naturelle G/U — G/B induit une application 7 : Y (w) — X (w). Les faits suivants
sont connus :

(i). Le groupe fini GF agit par translations & gauche sur X (w) et Y (), et lapplication 7 est
GF-équivariante.

(ii). Le groupe fini T%F agit par translations & droite sur Y (w), et I'application 7 est un T%F-
torseur pour cette action. De plus, les deux actions de T%F et G¥ sur Y () commutent.
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Nous n’utiliserons pas X (w) dans cette these et travaillerons exclusivement avec Y (w). Considérons
la cohomologie

RT.(Y (), A) € D(Rep, (G x T*F)). (1.21)
Ce complexe a deux actions, celle de G¥ et celle de TY, et est donc un (A[GY], A[T*¥])-bimodule.
Par abstract nonsense, nous obtenons une paire de foncteurs adjoints :

R : D(Rep,T*F) = D(Rep,GY) M — M @puwr RL(Y (), A),
et
*Ru : D(RepyGT) — D(Rep,T*F) N — RHomgr (RI.(Y (), A), N),

appelés respectivement foncteurs d’induction et de restriction de Deligne-Lusztig.
Le fait le plus important concernant ces foncteurs est le théoréeme suivant.

Théoréme 1.2.1 ([DL76] pour le cas Q,, [BR03] pour un A général). La collection des complezes
RI.(Y (i), A) engendre la catégorie Perf(A[GY]),la catégorie des complexes parfaits de représentations
de GF.

Corollaire 1.2.2 ([BRO03]). Si A est un corps, alors pour toute représentation irréductible p de
GY, il existe w € W et j € Z tels que p soit un sous-quotient de HI(Y (), A).

L’étude des complexes RI'.(Y (w),A) et des foncteurs correspondants revét une importance
primordiale pour la théorie des représentations de G¥. L’un de ses succes les plus impressionnants
est la classification des représentations irréductibles de G par Lusztig [Lus84].

Nous introduisons maintenant la correspondance F-horocyclique. Notons par Adg l'action de
G sur lui-méme par conjugaison tordue, c’est-d-dire I'action donnée par g.x = gzF(g~!). Nous
considérons la correspondance de champs algébriques :

G ¢+ G , U\G/U
= = .
AdgG  AdpB AdpT
Cette correspondance a été introduite sous une forme non champétre dans [Lusl5], [Lusl7] et
également étudiée dans [BDR20]. Cette correspondance est une version tordue de la correspondance
horocyclique utilisée par Lusztig pour construire les faisceaux caracteres [Lus85].

D’apres le théoreme de Lang, il existe un isomorphisme de champs WC;G = pt/G¥. Le coté
droit de la correspondance ci-dessus est stratifié a I’aide de la stratification de Bruhat. Soit w € W
et w un relevement de W. Il existe des isomorphismes de champs

% = WT/Adp(T x (U N Ad(w)U)) = pt/(TVF x (UNAd(w)D)). (1.23)

Cet isomorphisme dépend du choix de w. L’application naturelle (T%F x (U N Ad(w)U)) — T%F
induit une application

(1.22)

U\BwB/U F
ky: ———— t/ T 1.24
o Rt (1:24)
Notons également par i, : U\f(;??/ v TA\QTU I'inclusion. Considérons le foncteur

Dindcons (pt/TwF7 A) — Dindcons (pt/GFa A)
M +— q!T*iw,Ik‘i\;f

Sous ’équivalence naturelle D(pt/T*¥, A) = D(A[G¥]), nous montrons :
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Théoréme 1.2.3 (3.3.8). Le foncteur qir*iy 1kl est isomorphe & Ry,.

Nous désignons par HCg = 7¢* et par CHp = ¢, son adjoint & droite, et nous les appelons re-
spectivement la correspondance horocyclique et la correspondance des F-caracteres. Nous donnons
ensuite une nouvelle démonstration du théoréeme 1.2.1 en montrant que

Théoréme 1.2.4 (3.5.30). Le foncteur HCy est conservatif.

La démonstration de ce théoréme est essentiellement une variation d’un argument de [BBMO04b]
et [MV8S].

1.2.2 Trace catégorique de Frobenius

La catégorie H est une catégorie monoidale, le morphisme F : G — G induit un endofoncteur
monoidal F* : H — H de H. Dans la situation présente, nous pouvons définir le F-centre et la trace
catégorique F de H. Ce F-centre est un raffinement oo-catégorique du F-centre de Drinfeld tordu.
Rappelons d’abord la théorie classique. Soit C une 1-catégorie monoidale munie d’un endofoncteur
monoidal F : C — C. Son centre de F-Drinfeld tordu est la catégorie Z5(C) définie comme suit (o1
le symbole (—)! fait référence & la version 1-catégorique de cette construction).

(7). Ses objets sont des paires (X, x) ou X est un objet de C et x : F(—=) * X — X * — est un
isomorphisme de foncteurs compatible avec la structure tensorielle (nous n’expliciterons pas
ce point).

(44). Ses morphismes sont des morphismes de paires u : (X,¢¥x) = (Y,¢y) ot v : X — Y est un
morphisme dans C compatible avec ¥ x et 1y .

Pour nos besoins, nous devons passer a la version oco-catégorique de cette construction.

Définition 1.2.5. Soit C une A-catégorie stable présentable cocomplete A-linéaire oco-catégorique
munie d’un endomorphisme F : C — C. Alors son centre F est défini comme suit :

Zr(C) = Funfgcee (C, Cr), (1.25)

ou cette catégorie de foncteurs est la catégorie des foncteurs de C vers C qui sont linéaires pour
laction de C ® C™V, ou C™V est la méme catégorie C mais avec la structure tensorielle opposée, et
I'indice (—)r signifie que nous tordons 'action a droite de C sur elle-méme par ’endomorphisme F.

De maniere duale, dans le cadre co-catégorique, il existe une notion de trace catégorique qui est
définie comme suit.

Définition 1.2.6. Supposons que C et F sont comme ci-dessus. Alors la trace catégorique est la
catégorie :
TT(F, C) == C ®C®Crev CF. (1.26)

Dans le contexte des catégories de Hecke, le centre et les traces co-catégoriques ont été étudiés
par D. Ben-Zvi et D. Nadler [BZN09]. L’idée de prendre la trace catégorique de Frobenius est venue
du programme de Langlands. Plus précisément, il y a eu une tentative de concilier la construc-
tion de V. Lafforgue [Lafl8] avec le programme de Langlands géométrique. L’un des résultats les
plus impressionnants dans cette direction est le travail de [AGK™*21]. Essentiellement, en suivant
I’argument de Ben-Zvi et Nadler, nous calculons le F-centre et la F-trace sur la catégorie H.
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Théoreme 1.2.7 (3.5.19). Le foncteur CHy induit une équivalence :

Tr(F,H) = Dindcons(pt/G", Zs). (1.27)
Le foncteur HCy induit une équivalence :

Zp(H) = Dindeons (Pt/G", Z). (1.28)

Comme application de ce calcul, nous donnons une autre construction des ¢-séries géométriques
de Lusztig.

Théoréme 1.2.8 (3.5.31). Il existe une collection compléte d’idempotents orthogonaux e, € Z[GY],
o s € (TV W) (F,). Ils sont caractérisés par la propriété suivante : soit p une représentation Fy-
irréductible de G¥, alors esp = p si et seulement s’il existe (w,x) ovw € W et x € CH(T) = TV (Fy)
dans Uorbite correspondant a s telle que *R, (p) # 0.

1.2.3 Endomorphismes de la représentation de Gelfand-Graev

Discutons maintenant d’'une application du théoreme du centre a la description de I’algebre d’endomorphismes
de la représentation de Gelfand-Graev. Notons U le radical unipotent du Borel opposé a B. Le
choix d’un épinglage de G détermine un morphisme

¢: 00" ~][ > G, (1.29)
Ga

ot (—)?P désigne I’abélianisé et 1'isomorphisme provient du choix de I'épinglage.
Soit 1 : F, — A* un caractere additif de F,. Nous notons encore ¢ : U¥ — AX sa composition
F
avec ¢. La représentation de Gelfand-Graev est I'y, = indgp (1). Cette représentation est centrale
dans la théorie des représentations de G¥ et est la version pour les groupes réductifs finis de la
représentation de Whittaker des groupes p-adiques.

Ezemple 1.2.9. Si G = GL,, et F est la F -structure provenant de la forme déployée de GL,, sur
Fg, il est connu que tous les caracteéres ¢ de UY sont conjugués, et donc la représentation I'y, ne
dépend pas du choix de 9. De plus, si A = Q,, toutes les représentations cuspidales irréductibles
de G¥ sont des facteurs directs de T'y.

Pour les groupes autres que GL,,, toutes les représentations cuspidales ne sont pas nécessairement
facteur direct de la représentation I'y, mais cette représentation contréle néanmoins une grande
partie de la structure de la catégorie Rep,G¥.

Théoréme 1.2.10 ([Stel6]). Si A = Qy, alors la représentation Ty, est sans multiplicité. Pour un
A général, l'algebre d’endomorphismes Endygri(L'y) est commutative.

Sur Q,, étant donné que cette représentation est sans multiplicité, sa décomposition produit de
nombreuses représentations irréductibles. Plus précisément, nous avons le théoreme suivant.

Théoréme 1.2.11 ([DL76]). Si A = Qy, alors Ty, contient ezactement un facteur direct irréductible
dans chaque série de Lusztig.

Ce théoréme a été initialement démontré en calculant le caractere de I'y, et en le décomposant
par rapport aux caracteres virtuels des complexes RT'.(Y (w), A). Cependant, cela peut étre déduit
du théoréeme suivant.
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Théoreme 1.2.12 ([Dud09]). Pour tout A et tout w, il existe un isomorphisme
*Ro(Ty) = A[TVF][E(w))]. (1.30)

Nous donnons une preuve différente de ce dernier théoreme en généralisant un argument de
[BT22].

Théoreme 1.2.13. I existe un isomorphisme a décalage pres
HCF(Fw) = p!T, (131)
ou T est le grand faisceau tilting.

Notre démonstration du théoreme 1.2.12 découle alors du théoréme 1.2.13 et de la connaissance
des fibres et des cofibres de T. Par fonctorialité, ce théoreme définit une application canonique

Cury, : Endpjgr)(Ty) — A[TvF), (1.32)

appelée morphisme de w-Curtis. Elle a été initialement construite par Curtis [Cur94], en utilisant
le théoreme 1.2.11. Notons

Cur = @,,Cury, : Endygr)(T'y) — EBU,A[T'”F], (1.33)

la somme directe de tous les morphismes de w-Curtis. Cette application est injective. Un probleme
clé est de calculer son image et de ’exprimer en termes du tore dual.
Du coté dual, soit TV le tore dual sur A et FV : TV — TV le morphisme dual & F. Soit w € W
Vv
et considérons le schéma des points fixes (TV)“Y" sous wFY. C’est le schéma tel que le diagramme
suivant soit cartésien.
(T\/)wFV TV
l iidxFV
v — ™V x TV

De méme, nous considérons également le schéma quotient GIT : TV /W ou FV le morphisme induit
par FY de TV. Par fonctorialité des invariants, nous avons un morphisme

cur’Pee - o((TY J W) = o((TV)“F )

que nous appelons le morphisme de w-Curtis spectral. En prenant la somme directe sur w, comme
précédemment, nous obtenons le morphisme de Curtis spectral,

CurP = @, CurSP - O((TY J W)F') = @,0((T")"F), (1.34)

Apres avoir choisi un ensemble de trivialisations des racines de 'unité de Fq, nous obtenons des
isomorphismes A[T*F] = O((TV)*F") pour tout w € W.

Théoreme 1.2.14 ([Li21], [LS22]). Supposons que £ soit bon pour G et que G ait un centre connexe.
Il existe un isomorphisme Endgr (T'y) = O(TV JW)¥") qui rend le diagramme suivant commutatif.

Endgr (Ty) == O((TV | W)
Curwl lCurqsﬂpeC
A[T"F) == o((T")""")
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La preuve de ce théoreme dans loc. cit. se déroule comme suit. Tout d’abord, si A = Q,
les deux algebres Endg e (I'y) et O(TY [ W)F') sont isomorphes & Q; pour un certain n et
sont donc isomorphes. Maintenant, les Z,-versions de ces algebres sont des réseaux a l'intérieur de
chacune d’elles, ils montrent ensuite que 1'isomorphisme sur Q, préserve ces réseaux essentiellement
en calculant la matrice de ce morphisme et en vérifiant qu’il n’y a pas de dénominateurs. Nous
donnons une preuve différente de ce théoreme.

Théoréme 1.2.15 (3.6.3). Il existe une application canonique O((T J W)F') — Endgr (Ty)
compatible avec les morphismes de Curtis et de Curtis spectrauz.

Une fois cette application construite, le théoreme 1.2.14 découle d’un argument de formes
symétrisantes. Nous donnons une construction de cette application en utilisant le théoreme de
centre catégorique 1.2.7.

1.3 Cohomologie des champs de chtoucas

1.3.1 Chtoucas et le programme de Langlands

Soit X une courbe lisse, projective et géométriquement connexe sur F,, et soit F' le corps des
fonctions de X. Soit G un groupe réductif sur X et notons A I'anneau des adeles de F'. Supposons
pour simplifier que G est déployé et notons G le groupe dual de G sur Q,. Choisissons 7 — X un
point générique géométrique de X et Weilp le groupe de Weil absolu de X au point géométrique 7.

Définition 1.3.1. Une représentation automorphe lisse et irréductible de G(A) est un sous-quotient
irréductible de C.(G(F)\G(A),Q,), I'espace des formes automorphes & support compact.

Définition 1.3.2. Un parametre de Langlands pour G et F est un morphisme Weilp — G(@@)
qui est continu, défini sur une extension finie de Qy et presque partout non ramifié. On dit qu'un
parametre est semi-simple si chaque fois qu’il se factorise a travers un parabolique de G , alors il se
factorise a travers un Levi de ce parabolique.

Conjecturalement, la correspondance de Langlands globale est une application
GLC : ™™™ (G(A)) — ZY(F, Q) /G(Q,), (1.35)

qui associe & chaque représentation automorphe lisse et irréductible une classe de conjugaison de
parametre de Langlands globaux.

Conjecture 1.3.3. Il existe une application GLC qui est compatible avec linduction parabolique,
avec l'isomorphisme de Satake aux places non ramifiées et avec la théorie du corps de classes globale
pour les tores.

Cette conjecture a été démontrée pour G = GLg par [Dri77], puis pour G = GL,, par [Laf02].
En général, nous avons le théoreme suivant :

Théoréme 1.3.4 ([Lafl8)). Il existe une application GLC™ : Irr*™ "™ (G(A)) — Z1(F,G)*/G(Q,)
qui associe a chaque représentation automorphe lisse et irréductible un élément de classe de conju-
gaison dans l’ensemble des parameétres de Langlands semi-simples.

Théoreme 1.3.5 ([Xue20b]). L’application GLC® de [Laf18] est compatible avec l'induction parabolique.
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La construction de cette application se fait en étudiant la cohomologie des champs de chtoucas.
Nous rappelons quelques faits clés concernant cette construction, en ignorant pour le moment les
probléemes posés par les troncatures de Harder-Narasimhan ou par le centre de G. Soit N C X un
diviseur effectif, et soit I un ensemble fini et W € Rep Aél . Alors il existe un champ algébrique
Chty 1w sur (X — N )! et un faisceau f-adique F ~,1,w provenant de la correspondence de Satake
géométrique. Les faisceaux de cohomologie sont ensuite définis comme suit :

Hy 1w = pFN1w, (1.36)

oup: Chty;w — (X — N)! est l'application des pattes. En général, Chty,r,w n’est pas quasi-
compact, il faut donc le filtrer en utilisant les troncatures de Harder-Narasimhan. Une propriété
importante qu’ils possedent est qu’ils sont munis d’actions des endomorphismes de Frobenius par-
tiels. Plus précisément, pour Iy C I un sous-ensemble fini de I, il existe un endomorphisme
Fr, : (X = N)! — (X — N)! donné par Fy,(z;) = (y;) avec y; = F(z;) si i € Iy et y; = x; sinon.
Soit A(7) — (X — N)! le point géométrique obtenu en composant 7 — X — N avec la diagonale.
En utilisant le lemme de Drinfeld [Lafl18] et [Xue20d], on montre que

HY pw = (HA ) |A®), (1.37)

n’est pas seulement muni d'une action de Weil((X — N)?, A(#)), mais que cette action se factorise
a travers Weil(X — N)!. En conséquence, nous obtenons une application

Repy (G1) — Rep, Weil(X — N)!
W HY

Cette application est fonctorielle a la fois en I et en W. Une fois ce foncteur construit, la machinerie
des opérateurs d’excursion de [Laf18] entre en jeu. En particulier, il existe une algebre Exc(F, ()
telle que les A-points(pour A un corps) de Spec(Exc(F, é)) sont en bijection avec les parametres de
Langlands globaux semi-simples. De plus, étant donné tout systeme de foncteurs (I, W) — Hy
comme décrit ci-dessus, 'espace vectoriel Hygy 1 olt 1 est la représentation triviale de G est muni
d’une action de cette algebre d’excursion.

Nous nous tournons maintenant vers le cadre des corps locaux d’égale caractéristique. Soit K
un corps local de caractéristique résiduelle fixée et soit H un groupe réductif sur K, que nous
supposons dans cette section étre un groupe déployé. La correspondance de Langlands locale est
une application conjecturale

LLC: Irr@g(H(K)) — Z'(Weilg, H)/H(Q,) (1.38)
qui associe & chaque représentation lisse et irréductible de H (K) un parametre de Langlands local.
L’existence de cette application est connue pour GL,, [LRS93]. Bien que cette application n’ait

pas été construite, il existe une version semi-simple de la correspondance qui a été construite par
[GL17] et [FS21].

Théoréeme 1.3.6. Il existe une application
LLC* : Trgy, (H(K)) — Z' (Weil, H)* /H(Q,) (1.39)
compatible avec la théorie du corps de classe et l'induction parabolique.

D’apres un résultat de Li-Huerta [LH23], nous savons que les deux correspondances de Fargues-
Scholze et de Lafforgue-Genestier coincident.
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1.3.2 Langlands local en profondeur 0

Nous énoncons maintenant nos principaux théorémes concernant la correspondance locale de Genestier-
Lafforgue pour les représentations de profondeur 0. Plus précisément, nous montrons une certaine
compatibilité entre différentes paramétrisations de type Langlands local. Nous rappelons d’abord

le théoreme sur la structure des représentations de profondeur 0.

Théoreme 1.3.7 ([Lanl8], [Lan21]). La catégorie Rep} H(K) des représentations de profondeur
0 de H(K) se décompose en une somme directe

ReplH(K)= €  RepiH(K), (1.40)
s€(T/W)F ()

ot T désigne le tore dual sur A, T// W le quotient GIT par l'action de W et (—)F le schéma des
invariants sous le morphisme dual de Frobenius.

Cette décomposition du théoreme 1.3.7 induit une application
LS : I (H(K)) — (T ) W)F(A), (1.41)

ot Irr) (H(K)) est Pensemble des représentations irréductibles de profondeur 0 de H(K), car-
actérisées par LS(m) = s si et seulement si 7 appartient au sous-groupe direct indexé par s.

Théoréme 1.3.8 (4.1.6). Soit m € IrtS (H(K)). Alors LLCS™(n) est un paramétre de Langlands
local modéré. De plus, le diagramme suivant est commutatif.

I’ H (K) 2S5 (244K, 1) ) H)(A)

LSl lev K

(T ) W)F =—= (T W)F

La démonstration de ce théoréeme repose sur I’étude de certains faisceaux de cohomologie des
champs de chtoucas. Pour accéder aux représentations de profondeur 0, nous commencons par
fixer un tore T' déployé et maximal inclus dans H sur K. Cela détermine un appartement A dans
limmeuble de Bruhat-Tits de H(K). Soit ¢ un polysimplexe dans A et H, le schéma en groupe
parahorique correspondant sur O . Nous choisissons un point z dans X et un isomorphisme entre
K et la complétion de F' en x. Soit G, un schéma de groupe affine et lisse sur X, réductif sur X —z,
et isomorphe a H, sur Okg. Soit N = x + N® une structure de niveau telle que = ¢ N*. Nous
considérons les groupes de cohomologie H } ~,w bour le groupe Go. Notons V, le radical unipotent

de la fibre spéciale de H, et M, son quotient réductif. Le groupe H, (F,) agit sur H } Nw-

Théoreme 1.3.9 (4.1.7). (¢). Pour tout I, W, le Weil}z -module (H;,W7N)V”(FI) est modérément
ramifié, c’est-a-dire que l’action se factorise a travers le quotient modéré (Weil%z)l.

(i7). Soit s € (T W)ﬁ(A), alors en tant que Exc(Weil’}x,@)—module, es(H{WVN)VU(FI) est sup-
porté sur ev! (s), ot e, est Uidempotent dans A[My(F,)] correspondant d la série de Lusztig
associée a s, nous renvoyons & la Section 4.2 pour les notations.
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Enfin, la construction principale de [LZ18] produit un faisceau quasi-cohérent M%V sur le
champ des parametres de Langlands locaux, qui est canoniquement associé au systeme de fonc-
teurs (I, W) = Hy y y -

Corollaire 1.3.10 (4.1.8). (i). Le faisceau quasi-cohérent (/\/lg\,)vf’ (=) est supporté sur Z (Fy, G).

(i4). En utilisant les mémes notations que dans 4.1.7, soit s € (T [ W)ﬁ(@e), alors le faisceau

quasi-cohérent eS(MgV)V“ (=) est supporté sur ev ! (s).

Organisation

Cette these comporte deux chapitres indépendants. Le premier contient les résultats concernant
les faisceaux monodromiques, la théorie de Soergel et le théorie de Deligne-Lusztig. Le deuxieme
contient les résultats concernant les champs de chtoucas et la correspondence de Langlands locale.
Chacun des deux chapitres est précédé d’une introduction détaillée.
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Chapter 2

Introduction in English

2.1 Free monodromic Hecke categories

Let p > 0 be a prime number and let k be an algebraically closed field of characteristic p.

2.1.1 Monodromic sheaves as equivariant sheaves

Let T be a torus over k. Let 71(T") be the étale fundamental group of T' at the geometric point 1 and
let 7t (T') be the itd prime to p-quotient (or tame quotient). It is known that 7t (T) = X, (T)®Z® (1)
where X, (T) denotes the set of cocharacters of T'.

Let X be a scheme with an action of 7. In [Ver83], Verdier defines (for T'= G,,) the notion of
monodromic sheaves as follows. First let £ # p be a prime and let us denote by Deons(X, Z¢) the
derived category of constructible ¢-adic sheaves on X.

Definition 2.1.1 ([Ver83]). A sheaf A € Deons(T,Z¢) is monodromic if for all j, the cohomology
sheaf H’(A) is lisse on T and the corresponding representation of 71(T") is tame, that is, factors
through «¢(T).

Definition 2.1.2 ([Ver83]). A sheaf A € Deons(X,Z¢) is monodromic if for all z € X, the sheaf
arA € chns(T, Zy) is monodromic, where a, : T x X — X is the orbit map of x. We denote by
Deons (X, Z¢)mon the full subcategory of monodromic sheaves.

Theorem 2.1.3 ([Ver83]). The category Deons(X,;Z¢)mon is a triangulated (or stable if we work
with oo-categories) category. Furthermore any object A € Deons(X, Z¢)mon has a canonical action
of ™t (T) called the canonical monodromy. This action commutes with all morphism of sheaves.

Let us denote by CH(T') the set of all continuous characters 7t (T") — ZZ of finite order prime to
¢. For each x € CH(T), there is a Kummer sheaf £, on T. We say that a sheaf A € Deongs(X, Zy) is
x-monodromic if its canonical monodromy ¢ 4 : Zg[w}(T)] — End(A) factors through the completion
of Z[r}(T)] along the kernel of the morphism defined by x. We denote by Deons(X,Z¢)y.mon the
full subcategory of x-monodromic sheaves. If x is the trivial character, y-monodromic sheaves are
also called unipotent monodromic.
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Proposition 2.1.4. The category DCOHS(X7Zg)m0n is the direct sum
Dcons(Xa ZE)mon = @XECH(T)DconS(X7ZZ)x,morv (21)

We denote by Q1 7z, the ring
Qrz, = @ZZ/K”ZK[T[E"’]]. (2.2)

After choosing a trivialization 7% (G,,) ~ Z® and a basis of X, (T), this ring becomes isomorphic
to Zg[t1, - .., ts] a ring of power series. We denote by Qr = Qrz, ®z, Zy.

Ezample 2.1.5. Taking the fiber at 1 € T, yields an equivalence of categories Deons (7, Zg)unjp,mon ~
Deon,m (€27) between the category of unipotent monodromic sheaves on 7' and the derived category
of coherent sheaves on 27 supported on the augmentation ideal of Q.

The ring Q7 is not a regular ring but is still coherent, that is, every finite type module is
finitely presented, hence the category Deon(Qr) is well behaved. However the category Deon,m (€27)
is not as nice. To remedy this Z. Yun introduced the notion of free monodromic sheaves in [BY13],
Appendix A. Namely, he constructs a full subcategory Deons(X [ T,Z¢) C ProDcons(X, Z¢)mon
functorial in X and compatible with the 6-functors such that when X = T', we have an equivalence
Dcons(T ﬂT7 Zl) = Dcoh(QT,Z[,)~

The construction of loc. cit. is highly non trivial as there is a priori no triangulated structure
on the category of pro-objects on a derived category. One of the difficult technical points is then
to construct the triangulated structure and the t-structures on it. We want to give a different
construction of this category. So far our results work well for the Z;, or F, versions of these
categories, the Qg-version requires more work. The main idea is to realize this category as a certain
category of twisted equivariant sheaves. We now outline this construction.

The formalism of adic sheaves, and its generalization using the proétale topos of [BS15] allows
us, using the formalism of [HRS21], to define for all finite type schemes X over k two categories

Dcons(Xa QT) C Dindcons (X; QT)a (23)

of constructible and ind-constructible sheaves on X respectively. These are naturally co-categories.
We add in another idea coming from [GL96]. There is a canonical map

can : m (T) — QF. (2.4)

This map defines a rank one p-local system L on T. This object is multiplicative sheaf on T,
that is, there is an isomorphism
m*LT = LT gQT LT (25)

equipped with certain compatibilities.
The category Dindcons(T, 27) is equipped with a monoidal structure coming from convolution.
Namely, for A, B € Dindeons(T, Q1), we define

AxB=m(AKX B), (2.6)

where m is the multiplication map. Similarly, if X is a scheme with an action of 7', the category
Dindeons(T, Q1) acts on Dindeons(X, Q7). The action is given for A € Dingcons(T, 1) and B €
Dindcons (Xa QT) by

AxB=a(AX B), (2.7)
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where a is the action map.
Now we follow a construction of Gaitsgory [Gai20]. We can twist the action of Diydcons(T, Q1)
on Dingcons(X, Q7) by the multiplicative sheaf Ly. Namely, we set

A"V B=(A® L)« B (2.8)
where A and B are as before.

Definition 2.1.6. The category of (T, Ly)-twisted equivariant sheaves on X is the category of
invariants, in the sense of loc. cit. of the category Dindcons(X,§2r) for the twisted action of
Dindcons(T; QT) We denote it by Dindcons (X7 QT)unip-

Remark 2.1.7. In some very imprecise way, we can think of objects in Dindcons (X, Q7 )unip as objects
A € Dingdeons (X, Qr) equipped with an isomorphism

a* A~ LT &QT A. (29)

Similarly, if x € CH(T), the sheaf Lp ®7, Ly is also a multiplicative sheaf on T'. Hence we can
reproduce the same construction and define Dindcons(X, Q1) to be the category (T, Ly ®7, Ly )-

equivariant sheaves on X. We can also do the same over Fy,F, or Z, in place of Z,.

Theorem 2.1.8 (3.2.46). There is a natural equivalence of categories
ho(Deons (X, U, 7)) =~ Deons (X [T, Fo). (2.10)

The theorem not only states that we have produced a new construction of the category of
free monodromic sheaves on X but we have also produced an co-categorical enhancement of this
category. Our construction has has several advantages, the most important ones are that we do not
have to manipulate pro-objects and that the six functors naturally extend to this setting.

Remark 2.1.9. What makes this construction work is the following vague remark. The construction
of [BY13] counsists in completing the category Deons(X, Z¢)mon along Verdier’s monodromy. While
our construction consider the category of all sheaves with Qp-coefficients and then enforces the
Qp-structure to be the same structure as Verdier’s monodromy.

2.1.2 Hecke categories

Let G be a reductive group over k, let B = TU be a Borel pair and W be the Weyl group of (G, T).
The study of Hecke categories has a long story. For the applications to Deligne-Lusztig theory
we want to discuss in this thesis, we will be interested in the free monodromic variants of these
categories [BY13], [BR22b], [Gou21]. More specifically, we want to discuss Z,-versions of these free
monodromic Hecke categories. They were studied in [BY13] for the unipotent Q,-case, [BR22b] for
the F, unipotent case and in [Gou21] for the non-unipotent Fy-case. The work of Gouttard is itself
a generalization of [BR22b] and [LY20].

Consider the stack U\G/U equipped with its Bruhat stratification. There are two actions of T
on this stack induced by left and right translations. Hence there are three versions of the category
of free monodromic sheaves that we can define.

(1). H" = @, conr) Dindeons(U\G/U, Q)" where the equivariance is relative to the action of
T on the left.
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(ii). Hright = D, CCH(T) Dindeons(U\G/U, QT);ight where the equivariance is relative to the action
of T on the right.

p left.right .. . .
(idi). THleftrisht — @x,x’GCH(T) Dindeons(U\G/U, QTxT)Xe)X’,"g where the equivariance is relative to

the action of T x T on the right and the index (x, x’) refer to sheaves that are equivariant for
Lrxr ®z, (Lx Xz, L)

We show that there are natural forgetful functors

Hleft For'®f Hleft,right For'ieht Hright. (211)
And that these are are equivalences, see lemma 3.4.4. We denote by H either of these equivalent
categories and we call it the universal Hecke category, borrowing the terminology from [LNY23].

We then follow most of the construction of [BR22b] and [Gou2l] to study this category. We
start by equipping this category with a monoidal structure given by convolution. Namely, consider
the diagram

U\G xV GJU - U\G/U

U\G/U U\G/U
where m is induced by the multiplication map. Then we define for A, B € H!eft-right
Ax B = For mi(AR; B)[dim T. (2.12)

Let us describe this functor. Firstly, (AXZB) is naturally an Qp 7 ® Q7 sheaf on U\G xY G/U.
Since the six functors we are using behave best for complete rings, we first complete this sheaf to
pass to an Qrxrx1xT, this explains the X. After applying my we get an Qpyr«7x7-sheaf on
U\G/U, the functor For is the forgetful functor induced by the inclusion Qryx7r — QrurxTxT
induced by the two outer inclusions.

Once this monoidal structure is constructed we proceed with the study of the category H by
lifting some of the main constructions of [Gou2l]. Let us fix (w) a compatible set of lifts of
the elements w € W. The choice of w gives a T-equivariant morphism for the actions by right
translations k,, : U\BwB/U — T. As it is standard in Soergel theory, we define the standard and
costandard sheaves as follows.

Definition 2.1.10. Let w € W and x € CH(T).
(4). The standard sheaf indexed by (w, x) is Auy,x = i,k (LT @7, Ly)[dim T + £(w)].
(i4). The costandard sheaf indexed by (w, x) i8 Vi, = iw,«ky, (LT @7, Ly)[dim T + £(w)].

Since the inclusions i,, are affine all those sheaves are perverse. We can now introduce the
objects of main interest for Soergel theory.

Definition 2.1.11. Let A be a perverse sheaf in H. A A-filtration (resp. a V-filtration) for A is a
filtration such that all graded pieces are isomorphic to standard sheaves (resp. costandard sheaves).
The sheaf A is tilting if A has both a A and a V-filtration.
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Theorem 2.1.12 (3.B.12). For all x and w as above, there exists a unique indecomposable tilting
sheaf that is supported on the closure of U\BwB/U and such that the multiplicity of Ay, in any
A-filtration (reps the multiplicity of V., in any V-filtration) is one.

The proof of this theorem consists essentially in lifting to Z, the already known proof from the
literature. We denote by Tilt(U\G/U) the category of perverse tilting sheaves.

Let us now assume that G has connected center for simplicity, otherwise we will have to introduce
the notions of blocks, see section 3.4.2. Let x,x’ € CH(T) be in the same W-orbit. We denote by

Wy ={w e W,wx =x'} (2.13)

In particular ,-W, = W, is the stabilizer of x. We equip W with the Bruhat order, that is, the
order induced by specializations in U\G/U.

Lemma 2.1.13 ([LY20]). The set W, equipped with the order induced from W has a unique

mazimal element. We denote this element by wii*y.
Remark 2.1.14. If x = X’ is trivial, then this maximal element is wq, the longest element in the
Weyl group.

max

We denote by T, the tilting corresponding to x and wy?y. We can now state the main

theorems of the theory.

Theorem 2.1.15 (Endomorphismensatz, 3.4.34). For all pairs (X', x) as above. There is an iso-
morphism
End(TXQX) = QT ®QWX QT- (214)
T

Definition 2.1.16. We define
T= T (2.15)
X'5x
and we call it the big tilting sheaf.
Define the scheme C(T') to be
C(T) = Uy Spec(Qr) x {x}- (2.16)

This space was first introduced in [GL96] as the moduli space of multiplicative sheaves on 7. We
consider the scheme

This scheme is the union of all the graphs of the actions of the elements w € W. Its connected
components are indexed by pairs (x’,x) in the same W-orbit. For such a pair the corresponding
connected component is isomorphic to

Spec(QT ®QWX QT) (218)
T
We introduce the global V-functor which is defined as

Tilt(U\G/U) — Coh(C(T') x¢(ryyw C(T))
T — Hom(T,T).

The target category is the abelian category of coherent sheaves on C(T') X ¢(1) ywC(T'). It is equipped
with a monoidal structure coming from convolution.
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Theorem 2.1.17 (3.4.57, 3.4.45).  (i). The functor V is fully faithful.

(#i). The functor V is monoidal.

The first statement in the previous theorem is called the Struktursatz.

2.2 Topics in Deligne-Lusztig theory

2.2.1 Stacky formulation of the theory

Let G be a reductive group over F, with a Frobenius endomorphism F : G — G coming from some
F,-structure. Let B = TU be a F-stable Borel pair and let W = Ng(T')/T be of the Weyl group
of (G,T). Let A € {Fy,Qy,Z¢} be a coefficient ring with ¢ # p. Deligne-Lusztig theory, taking its
name from the original paper [DL76], is a theory that studies the theory of representations of the
finite group G = G(F,) on A-modules. Let us also denotes by

£L:G—>G
g+ g 'F(g),

the Lang map. Classically, the Deligne-Lusztig varieties are defined as follows. Let w € W and
define

X(w)={g9B,L(g) € BuB} C G/B, (2.19)
and given a lift w € Ng(T') of w,
Y () = {gU, L(g) € Ui U} C G/U. (2.20)

The natural map G/U — G/B induces a map 7 : Y (w) — X (w). The following facts are known to
hold

(i). The finite group GY acts by left translations on X(w) and Y (u) and the map 7 is G¥-
equivariant.

(ii). The finite group T*F acts by right translations on Y () and the map 7 is a T%F-torsor for
this action. Moreover the two actions of T%F and G¥ on Y (#) commute.

We will not use X (w) in this thesis and work exclusively with Y (w). Consider the cohomology
RI.(Y (w),A) € D’(Rep, (G x TVF)). (2.21)

This complex has two actions of G¥ and T%F and is thus a (A[GY], A[T"¥])-bimodule. By general
nonsense, we get a pair of adjoint functors

R : D(Rep, T*F) — D(Rep,GY)
M — M @puwr RT(Y (), A),

and

*Ru : D(Rep,GF) = D(Rep,TvF)
N — RHomgr (RI(Y (), A), N),

called respectively Deligne-Lusztig, or Lusztig, induction and restriction functors.
The most important fact concerning these functors is the following theorem.
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Theorem 2.2.1 ([DL76] for the Q,-case, [BR03] for a general A). The collection of complexes
RI.(Y (), A) generate the category Perf(A[GF]) or perfect complexes of representations of GF .

Corollary 2.2.2 ([BRO03)). If A is a field, then for all irreducible representations p of G¥, there
exists w € W and j € Z such that p is a subquotient of HJ (Y (1), A).

The study of the complexes RI', (Y (w), A) and the corresponding functors is of prime importance
for the theory of representations of G¥. One of its most impressive success is the classification of
irreducible representations of G¥ by Lusztig [Lus84].

We now introduce the F-horocycle correspondence. Denote by Adg the action of G on itself by
twisted conjugation, that is, the action given by g.x = grF(g~!). We consider the correspondence
of stacks

G ¢+ G , U\G/U
— - .
AdrG  AdpB AdpT

This correspondence was introduced in a somewhat non stacky form in [Lus15], [Lusl7] and also
studied in [BDR20]. This correspondence is a twisted version of the horocycle correspondence used
by Lusztig to construct character sheaves [Lus85].

By Lang’s theorem there is an isomorphism of stacks ﬁ = pt/G¥. The right hand side
stack is stratified using the Bruhat stratification. Let w € W and w be a lift of W. There are
isomorphisms of stacks

(2.22)

U\BwB/U

T - WT/AdR(T x (U N Ad(w)U)) = pt/(TF x (U N Ad(w)U)). (2.23)

This isomorphism depends on the choice of 1. The natural map (T%Y x (U N Ad(w)U)) — T¥F
induces a map
U\BwB/U
by : ————
AdpT

U\f;';?/ v, [QSF/TU the inclusion. Consider the functor

— pt/T™F. (2.24)

Let us also denote by i, :

Dindcons (pt/TwFa A) — Dindcons (Pt/GF7 A)
M — q!’l“*iw,gk‘:)M
Under the natural equivalence D(pt/T*¥, A) = D(A[GY]) we show.
Theorem 2.2.3 (3.3.8). The functor qir*iy k is isomorphic to Ry,.

We denote by HCy = 7¢* and by CHp = ¢, its right adjoint and we call them the F-horocycle
and F-character correspondence. We then give a new proof of theorem 2.2.1 by showing that

Theorem 2.2.4 (3.5.30). The functor HCp is conservative.

The proof of this theorem is essentially a variation on an argument of [BBM04b] and [MV88].

2.2.2 Categorical traces of Frobenius

The category H is a monoidal category, the morphism F : G — G induces a monoidal endofunctor
F*: H — H of H. In the present situation, we can define the F-center and the F categorical trace
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of H. This F-center is an oco-categorical refinement of the F-twisted Drinfeld center. Let us first
recall the classical theory. Let C be a monoidal 1-category equipped with a monoidal endofunctor
F:C — C. Its F-twisted Drinfeld center is the category ZL(C) defines as follows (where the (—)!
refers to the 1-categorical version of this construction).

(7). Its objects are pairs (X,1x) where X is an object of C and ¢ : F(—) * X — X % — is an
isomorphism of functors compatible with the tensor structure (we do not make this point
explicit).

(#4). Tts morphisms are morphisms of pairs u : (X, 9¥x) — (Y, 9y ) where v : X — Y is a morphism
in C compatible with ¥ x and ¥y .

For our purposes, we need to move up to the co-categorical version of this construction.

Definition 2.2.5. Let C be monoidal stable presentable cocomplete A-linear co-category equipped
with an endomorphism F : C — C. Then its F-center is defined as

Zr(C) = Funfgycre (C, Cr), (2.25)

where this category of functors is the category of functors from C to C that are linear for the action
of C ® C™V where C™ is the same category C but with the opposite tensor structure and the index
(—)r means that we twist the right action of C on itself by the endomorphism F.

Dually, in the oco-categorical setting there is a notion of categorical trace which is defined as
follows.

Definition 2.2.6. Assume C and F are as above. Then the categorical trace is the category
rj[‘I'(F7 C) = C ®C®Crev CF. (226)

In the context of Hecke categories, the co-categorical center and traces were studied by D. Ben-
Zvi and D. Nadler [BZN09]. The idea to take the categorical trace of Frobenius came from the
Langlands program. Namely, there was an attempt to reconcile V. Lafforgue’s construction [Lafl8]
with the geometric Langlands program. One of the most impressive results in this direction is the
work of [AGK™21]. Essentially by following the argument of Ben-Zvi and Nadler, we compute the
F-center and F-trace on the category H.

Theorem 2.2.7 (3.5.19). The functor CHy induces an equivalence
Tr(F, H) = Dindcons(Pt/G", Zs). (2:27)
The functor HCg induces an equivalence
Zp(H) = Dindeons(pt/G¥, Zy). (2.28)

As an application of this computation. We give another construction of Lusztig’s geometric
{-series.

Theorem 2.2.8 (3.5.31). There is a complete collection of orthogonal idempotent e, € Z,[G¥)
where s € (TY || W)(Fy). They are characterized by the following property, let p be an irreducible
Fy-representation of G¥ then esp = p if and only if there exists (w,x) where w € W and x €
CH(T) = TV(F,) in the orbit corresponding to s such that, *R, (p) # 0.
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2.2.3 Endomorphism of the Gelfand-Graev representation

Let us discuss an application of the center theorem to the endomorphism of the Gelfand-Graev
representation. Denote by U the unipotent radical of the Borel opposite to B. The choice of a
pinning of G determines a morphism

¢:U— 0" ~][> G, (2.29)

Ga
where (—)2P denotes the abelianization and the isomorphism comes from the choice of the pinning.
Let 1 : F, — A* be an additive character of F,. We still denote by 1 : U — A its composition

with ¢. The Gelfand-Graev representation is I'y, = indgi (v). This representation is central to the
representation theory of G¥ and is the finite group version of the Whittaker representation of p-adic
groups.

Ezample 2.2.9. If G = GL,, and F is the F4-structure coming from the split form of GL,, over F,.
It is known that all characters 1 of U are conjugate and therefore representation I'y does not
depend on the choice of ¥. Moreover, if A = Q,, all irreducible cuspidal representations of G are
direct summands of I'y.

For groups other than GL,,, not all cuspidal representations need to appear in the representation
I'y, but this representation still sees a lot of the structure of the category Rep AGY.

Theorem 2.2.10 ([Stel6]). If A = Q,, then the representation 'y, is multiplicity free. For a general
A, the endomorphism algebra Endpjgri(L'y) is commutative.

Over Q,, since this representation is multiplicity free decomposing it produces many irreducible
representations. More precisely, we have the following theorem.

Theorem 2.2.11 ([DL76]). If A = Q,, then I'y, contains exactly one irreducible direct factor for
each Lusztig series.

This theorem was shown originally by computing the character of I'y, and decomposing it with
respect to the virtual characters of the complexes RI'.(Y (w), A). This can however be deduced out
of the following theorem.

Theorem 2.2.12 ([Dud09]). For all A and all w, there is an isomorphism
“Ru(Ty) = A[TF][((w)]. (2.30)
We give a different proof of this theorem generalizing an argument of [BT22].
Theorem 2.2.13. There is an isomorphism up to shifts
HCr(T'y) = pT, (2.31)
where T is the big tilting sheaf.

Our proof of theorem 2.2.12 then follows from theorem 2.2.13 and the knowledge of the stalks
and costalks of T. By functoriality, this theorem defines a canonical map

Cur,, : Endpigr) (T'y) — A[TVF], (2.32)
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called the w-Curtis morphism. It was first constructed by Curtis [Cur94], using theorem 2.2.11.
Let us denote by
Cur = §,Cury, : EndA[GF](F¢) — EBwA[TwF], (233)

the direct sum of all w-Curtis morphisms. This map is injective. A key problem is computing its
image and express it in terms of the dual torus.

On the dual side let TV be the dual torus over A and FY : TV — TV be the morphism dual to
F. Let w € W and consider the scheme of fixed points (7)Y " under wFY. This is the scheme
making the following diagram cartesian.

(T\/ )wFV v

| e

TVTTVXTV

Similarly, we also consider the GIT quotient scheme TV J/ W and FV the morphism induced by FV.
By functoriality of taking the scheme of invariants, we have a morphism

CursPe : O((TY ) W)F') = O((TV)*F")

which we call the w-spectral Curtis morphism. Taking the direct sum over w, as before, we get the
spectral Curtis morphism,

Cur'™™® = @, Cury?™ : O((TY | W)*') = @,0((TV)""). (2.34)

After choosing a set of trivializations of roots of unity of Fq, we get isomorphisms A[TWY] =
O((TV)*F") for all w € W.

Theorem 2.2.14 ([Li21], [LS22]). Assume that £ is good for G and that G has connected center.
There is an isomorphism Endgr (T'y) = O(TY /| W)F" making the following diagram commutative.

Endgr(T'y) == O((T" J W)F")
CurwJ/ lCurf,f’ec
A[TYF] ——— O((TV)"F")

The proof of this theorem in lvoc. cit. proceeds as follows. Firstly, if A = Qy, both algebras
Endg, (e (T'y) and O((TV / W)F") are isomorphic to @, for some n and thus are isomorphic.

Now the Z@—VGI‘SiOES of these algebras are lattices inside each of them, they then show that the
isomorphism over Q, preserve these lattices essentially by computing the matrix of this morphism

and checking that there are no denominators. We give a different proof of this theorem.

Theorem 2.2.15 (3.6.3). There is a canonical map O((TV JW)F') — Endgr (Ty) compatible with
the Curtis and spectral Curtis morphisms.

Once this map is constructed theorem 2.2.14 follows from some symmetrizing form argument.
We give a construction of this map using the center theorem 2.2.7.
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2.3 Cohomology of stacks of chtoucas

2.3.1 Chtoucas and the Langlands correspondence

Let X be a smooth projective geometrically connected curve over F,; and let F' be the function field
of X. Let G be a reductive group of X and denote by A the ring of adeles of F. Let us assume for
simplicity that G is split and denote by G the dual group of G over Q,. Choose 7 — X a generic
geometric point of X and Weily the absolute Weil group of X at the geometric point 7.

Definition 2.3.1. A smooth irreducible automorphic representation of G(A) is an irreducible
subquotient of C.(G(F)\G(A),Q,) of the space of compactly supported automorphic forms.

Definition 2.3.2. A Langlands parameter for G and F' is a morphism Weilp — G(@e) that is
continuous, defined over a finite extension of QQ; and almost everywhere unramified. We say that
a parameter is semisimple, if whenever it factors through a parabolic of G then it factors trough a
Levi of this parabolic.

Classically, the global Langlands correspondence is a map
GLC : ™™™ (G(A)) — ZY(F, Q) /G(Q,), (2.35)

from the set of smooth irreducible automorphic representation to the set of conjugacy classes of
global parameters.

Conjecture 2.3.3. There exists a map GLC that is compatible with parabolic induction, compatible
with the Satake isomorphism at the unramified places and with global class field theory for tori.

This conjecture was first shown for G = GLy by [Dri77], then G = GL,, [Laf02]. In general we
have the following theorem

Theorem 2.3.4 ([Laf18]). There exists a map GLC® : GLC : Ir™**™ (G(A)) — Z1(F, G)*/G(Q,)
to the set of conjugacy classes of semisimple Langlands parameters.

Theorem 2.3.5 ([Xue20b]). The map GLC™ of [Laf18] is compatible with parabolic induction.

The construction of this map is done by studying the cohomology of stacks of chtoucas. We
recall some key facts about this construction, for now let us ignore the problem coming from the
Harder-Narasimhan truncations or from the center. Let N C X be an effective divisor and let [
be a finite set and W € RepAéI. Then there is an algebraic stack Chty s w over (X — N)! and
an f-adic sheaf Fx ;w coming from geometric Satake over it. The cohomology sheaves are then
defined as

Hy 1w = FN 1w, (2.36)

where p : Chty rw — (X — N)! is the leg map. In general Chty ;. is not quasi-compact so we
have to filter it using Harder-Narasimhan truncations.

Theorem 2.3.6 ([Xue20d]). The sheaves Hg\,’LW are ind-lisse on (X — N)I.

One important piece of structure that they carry is that they are equipped with actions of the
partial Frobenius endomorphisms. Namely for Iy C I a finite subset of I, there is an endomorphism
Fr, : (X = N)! — (X — N)! given by Fy, (z;) = (v;) with y; = F(x;) if i € Iy and y; = x; otherwise.
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Let A(7) — (X — N)! be the geometric point obtained by composing 7 — X — N with the diagonal.
Then using Drinfeld’s lemma [Laf18] and [Xue20d] show that

HJ]Q,I,W = (/Hg\/,I,W)IA(ﬁ)v (2.37)

is not only equipped with an action of Weil((X — N)?, A(#)) but that this action factors through
Weil(X — N)!. In turn we get a map

Repy (GF) — Rep, Weil(X — N)!
W— H {V Lw-
This map is functorial in both / and W. Once this functor is constructed the machinery of excursion
operators of [Laf18] takes over. Namely, there is an algebra Exc(F, G) such that the A-points (for A

a field) of Spec(Exc(F, G)) are in bijection with semisimple global Langlands parameters. Moreover
given any system of functors (I, W) +— H w as above, the vector space Hgy ;1 where 1 is the trivial

representation of G is equipped with an action of this excursion algebra.

We now turn towards the local function field setting. Let K be a local field of equal characteristic
and let H be a reductive group over K, which we assume for this section to be split. The local
Langlands correspondence is a conjectural map

LLC : Trrg (H(K)) — Z'(Weilk, H)/H(Q,) (2.38)

from smooth irreducible representations of H(K) to local Langlands parameters. The existence of
this map is known for GL,, [LRS93]. While this map has not been constructed, there is a semisimple
version of the correspondence that has been constructed by [GL17] and [FS21].

Theorem 2.3.7. There exists a map
LLC : Trrg (H(K)) — Z' (Weilk, H)* /H(Q,) (2.39)
compatible with class field theory and parabolic induction.

By a result of Li-Huerta [LH23], we know that the two correspondences of Fargues-Scholze and
of Lafforgue-Genestier agree.

2.3.2 Depth 0 local Langlands

We know state our main theorems concerning the Genestier Lafforgue local Langlands correspon-
dence for depth 0 representations. More specifically, we show some compatibility between different
local Langlands type parametrizations. We first recall the structure theorem of depth 0 represen-
tations.

Theorem 2.3.8 ([Lan18], [Lan21]). The category Rep H(K) of depth 0 representations of H(K)
decomposes as a direct sum

ReplH(K)= P  RepiH(K), (2.40)
Ss€(T/W)F ()

where T denotes the dual torus over A, T' ) W the GIT-quotient by the action of W and (—)F the
scheme of invariants under the morphism dual to the Frobenius.
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This decomposition of theorem 2.3.8, yields a map
LS : I (H(K)) — (T ) W)F(A), (2.41)

where TrrQ (H(K)) is the set of irreducible depth 0 representations of H(K), characterized by
LS(m) = s if and only if 7 lies in the direct summand indexed by s.

Theorem 2.3.9 (4.1.6). Let w € IrtQ (H (K)) then LLCSY(7) is a tame local Langlands parameter.
Furthermore the following diagram is commutative.

I’ H (K) 2S5 (ZV4(K, 1) ) H)(A)

LSl leVTK

(T ) W)F =—= (T W)F

Our proof of this theorem will follow from the study of certain cohomology sheaves of stacks of
chtoucas. To access depth 0 representations, we first fix a maximally split maximally unramified
torus T'C H over K. This determines an apartment A in the Bruhat-Tits building of H(K), we let
o be a polysimplex in A and H,, be the corresponding parahoric group scheme over Ok . We choose
x € X a point and an isomorphism between K and the completion of F' at z. Let G, be a smooth
affine group scheme over X that is reductive over X — x and such that over Ok it is isomorphic to
Hy. Let N =+ N¥ be a level structure such that z ¢ N*. We consider the cohomology groups
HﬂN’W for the group G,. Denote by V,, the unipotent radical of the special fiber of H, and M, its

reductive quotient. The group H,(F,) acts on H?N)W.

Theorem 2.3.10 (4.1.7). (¢). For all I,W the Weilfvz -module (H§7W7N)V”(Fw) is tamely ramified,
that is, the action factors through the tame quotient (Weil%z)l.

(i7). Let s € (T W)ﬁ(A), then as an Exc(Weil%z,G')—module eS(H?W’N)VG(]Fw) is supported on
eV;Flz (8), where e is the idempotent in A[M,(F;)] corresponding to the Lusztig series attached

to s, we refer to Section 4.2 for the notations.

Finally, following a construction of [L.Z18], we construct a quasi-coherent sheaf My on the stack
of local Langlands parameters that is canonically attached to the system of functors (I, W) —

Hinow.

Corollary 2.3.11 (4.1.8). (i). The quasi-coherent sheaf (./\/(gv)v" (F=) 45 supported on ZV(Fy, G).

(ii). Using the same notations as in 4.1.7, let s € (T W)F(@[) then the quasi-coherent sheaf

es (M=) s supported on evyr (s).

Organization

This thesis is composed of two independent chapters. The first one contains the results on mon-
odromic sheaves, Soergel theory and Deligne-Lusztig theory. The second one contains the results on
stacks of chtoucas and the local Langlands correspondence. Both chapters have their own detailed
introduction.
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Chapter 3

Soergel theory and Deligne-Lusztig
theory

Contents
3.1 Imtroduction . . . . . . . . . .. e 32
3.2 Free monodromic categories . . . . . . . .. L Lo L 40
3.3 Deligne-Lusztig theory and the F-horocycle space . . . . . . . . ... ... ... ... 53
3.4 Integral Soergel theory . . . . . . . . . . . L 68
3.5 F-Categorical center of the Hecke category . . . . . . .. ... .. ... ... . .... 85
3.6 Endomorphism of the Gelfand-Graev representation . . . . . ... ... ... .... 101
3.A Equivariant sheaves. . . . . . . . . . .. L 112
3.B Monodromic Tilting sheaves . . . . . . . . ... ... L o o 114
3.C Twisted categorical centers . . . . . . . . . . ... 119

3.1 Introduction

Let p be a prime number and I, be the finite field with g elements and characteristic p and let
Fq be an algebraic closure. Let G be a reductive group over Fq equipped with an endomorphism
F coming from a F-structure, fix a Borel pair B = TU which is F-stable. In this paper we are
interested in understanding some links between the theory of representations of G(F,) = G and
the theory of monodromic sheaves on U\G/U. We also fix ¢ a prime number different from p.

The modern way to study the theory of representations of G¥ is via the cohomology of the
Deligne-Lusztig variety [DL76]. Let W denote the Weyl group of G and fix multiplicative liftings
(w) of W inside of N(T). For any w € W there is a pair of varieties 7 : Y (w) — X (w) with
G¥-actions and the map 7 is a T""-torsor, where F is the Frobenius of T, induced from the one
of G. The cohomology RI'.(Y (), Z;) is then equipped with two commuting actions of G¥ and of
T*F and yields a pair of adjoint functors

Ry : D*(Repz, (T"F)) S D’(Repz, (G¥)) : Ry
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called the Deligne-Lusztig induction and restriction functors, given by R, (M) = M®pwr R (Y (1, Zy)
and *R,(N) = RHomgr (R[(Y (W, Z¢), N). While in the original article, Deligne and Lusztig
worked mostly with characters of representations and Q,-cohomology, a functorial treatment for
the integral setting has been worked out, see for instance [BR03] and [BDR17]. One of the out-
put of the present article will be to recover these functors in a way that does not involve the
Deligne-Lusztig varieties.

On the other side, consider the category of f-adic sheaves on B\G/B or U\G/B. These cate-
gories are well understood and are now described in terms of purely algebraic datum called Soergel
bimodules. When passing from U\G/B to U\G/U, we loose the key property that there are finitely
many irreducible objects, this is partially regained when considering the full subcategory of unipo-
tent monodromic sheaves, that is the category generated by pullback of objects from U\G/B. Then,
to get a category with good properties [BY13] have introduced a ’completed category’ and a corre-
sponding description of the completed category in terms of these Soergel bimodules. When passing
from the f-adic setting to the mod/ setting, a corresponding description has been worked out by
[BR22b]. In his thesis Gouttard [Gou2l| has gotten a similar description for the non-unipotent
case.

The two theories are related in via the following diagram

U\G/U =5

pl / x (3.1)
U\G/U G

AdpT AdrG

where the quotient always denote the quotient stack and the Adg refers to the action by Frobenius
conjugation, that is (g, z) — grF(g)~! and the maps are the quotient maps for the various groups
and actions, see also section 3.3.1. Lusztig had previously introduced the functors qir* and r¢* in
[Lus15] and [Lusl7]. Lang’s theorem yields an isomorphism WC;G ~ pt/G¥, while on each of the

Bruhat strata we also have an isomorphism of stacks %{%U ~ pt/(Uy x T®F) where U,, C U is
a closed connected subgroup. In particular considering the functor qir*<,, 1, where ¢,, is induced by
the inclusion BwB C G, gives a functor between the representations of T*Y and that of GF. We
will compare this functor with the Deligne-Lusztig induction functor.

The initial motivation of this paper was to gain a geometric insight into the following theorem.
Let U denote the unipotent radical of the opposite Borel, and let U — G, be a generic morphism,

denote by Ly the pullback along this morphism of an Artin-Schreier sheaf. The trace of Frobenius
function of this sheaf produces a character of U" and an idempotent ey € Z@[UF]. Denote by
ry = indgi (1) the Gelfand-Graev representation.

Theorem 3.1.1 ([Li21], [LS22]). Assume that ¢ is good for G and that G has connected center,

then we have an isomorphism
EndGF (Fw) ~ O(Tv//W)F\/ y

where TV is the dual torus of T defined over Zg, FY : TV — TV is the morphism dual to Fr and
(TV | W)E" is the scheme of invariant, that is the one deduced by intersection of the diagonal and
the graph of FV.
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We give a proof of this theorem in section 3.6.2 by using a twist of a method of [BT22] and
relating the representation I'y, to Soergel theory. More precisely, we show that

g Ty ~p T, (3.2)

where T is an explicit object coming from Soergel theory. We then use the Endomorphismensatz
3.4.34, to produce a map

‘We now describe our main results in more details.

3.1.1 Monodromic categories

We want to work with a Z, version of the completed categories of [BY13] and [BR22b]. We could
follow their approach and define this completed category in terms of pro-objects of Z,-sheaves, we
instead want to rebuild them using the proétale topology of [BS15].

Let T be a torus over Fq and denote by

Qrz, = lim Z/0Z[T["),

and by Q7 = Qr ®7, Zy. We first discuss the existence of a good sheaf theory with coefficients in
Qr. Namely for all schemes X of finite type over F, there is a stable (0o, 1)-category Deons(X, Q7)
of constructible sheaves of Qp-modules. The formalism of [BS15] and [HRS21] yields a family of
categories

X — Deons(X, Q1)

equipped with a 6-functor formalism. They are furthermore equipped with a pair of ¢-structures,
one classical and one perverse.
Denote by 71 (T') the étale fundamental group of T at the geometric point 1 and 7% (T) the tame

fundamental group, that is its largest prime to p quotient. It is isomorphic to @ (np)=1 T[n]. Given

a Zg-character of order prime to ¢ of m1(T) we get a Kummer sheaf £, on 7.

With the above setup, we give a new definition of the completed monodromic categories. The
ring Qr was introduced in [GL96], and there they define a rank one Q7 character sheaf on T" which
we denote by Ly, which is given by the canonical map w1 (T) — Qp. Let 7 : X — Y be a T-torsor,
we then define the completed category of unipotent monodromic sheaves on X as the category of
equivariant sheaves for (T, L) and we denote this category by Deons(X, Q1) unip-

We then show in section 3.2.7 that when one performs the same construction for the ring
Qrr, = Qrz, @z, Fy, there is a natural equivalence with the construction of [BR22b]. We do not
however compare with the Q,-version of [BY13] but we plan to return to this case in a later work.
We also discuss a non-unipotent version, but here this is simply requiring equivariance with respect
to a character sheaf of the form Ly @7 L, where x is as above a character of 7{(T’) of order prime
to £ and we denote this category by Deons(X, Q1)

Finally, in the Appendix 3.B, we discuss how to set up the basics of Soergel theory, namely we
place ourselves in the following situation : there is a stratification of Y = [ J, Y} into strata that are
affine spaces and we consider sheaves on X such that their pushforward to Y are constant along
the strata. The results of this section are very easy generalizations of [BR22b] Section 1-5 and
of [Gou21| Section 7., since we have to rebuild some of the theory we also have to discuss some
variants of results of [RSW13] and [AR16].
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3.1.2 Deligne-Lusztig theory

Let us now explain how to recover the Deligne-Lusztig induction and restriction functors. We will
use the notations of (3.1). We first fix an element w € W and consider the category Dcons(%, Zy).
The choice of a lifting w determines an isomorphism of stacks

U\UTwU/U

=pt/(T*F x U
AdpT pt/( w)s
U\UTwU/U =
8 Ad::,UT 5 Z@)
is equivalent to the category Deons(pt/T*Y,Z,), which is nothing else than the category of repre-

sentations of T%F on Zs;-modules. Consequently, the category Dcons(%,z{) is obtained as the

where U, is a closed unipotent connected subgroup of U. Hence the category D ons(

gluing of all the categories of representations of the finite groups T%F. Consider now the functor

QrFiy, DCOUS(W,Z@ — Deons(pt/GY, Zy), we first show the following theorem.

Theorem 3.1.2 (Theorem 3.3.8). Under the equivalence Db(Repf TWF) ~ DCOHS(%;”TU/U,ZZ),

the functor qir*iy, s isomorphic up to a shift to the Deligne- Lusztzg induction functor.

Remark 3.1.3. Passing to right adjoints yields the Deligne-Lusztig restriction functor.

We then want to relate the Deligne-Lusztig induction and restriction functors with Soergel
theory. Since we reformulate Soergel theory in terms of Lp-equivariant sheaves, we first produce a
second functor Deons(pt/T Y, Z¢) — Deons(pt/GF,Zy) that is defined using monodromic sheaves.
On the stratum UTwU there are two commuting actions : one of T by right translations and one
of T' by Frobenius conjugation, consider now Dcons(w Qr)y

AdeT the same category but with
an equivariance condition for the right action of 7.

Lemma 3.1.4 (Lemma 3.3.9). There is an equivalence

U\UTwU/U

Dcons ( AdFT

5 QT)unip ~ echons (pt/TwFa Z@),

where ey denote the projector onto the principal block. Similarly replacing unip by x we get the
projection onto the corresponding block provided that wF(x) = x.

This results follows from the computation of the averaging of Ly under Frobenius conjugation
of T. We are now able to construct a functor from the category of Z, representations of T*¥ to the
category of G¥-representations. Namely consider the following composition

U\UTwU/U

wk

Dcons (pt/T P ZZ @ Dcons AdFT QT)X

U\UTwU /U
AdpT

U\G/U
AdpT '’

% Dcons (pt/GF7 QT)

— Dcons( ’ QT)

“v_'> Dcons ( QT)

Forng

—— Dcons (pt/GF’ Ze),
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where the first functor is the one of 3.1.4, the second one is a forgetful functor (we refer to 4.2.1 for
the precise definition of this forgetful functor) and the last one is simply forgetting the Qr-structure
down to a Zg-structure. In particular we show the following theorem

Theorem 3.1.5 (Theorem 3.3.13). There is an isomorphism of functors between the composition
of these functors and R,,.

Remark 3.1.6. For w € W, we have outlined the construction of two functors Deons(pt/TVY, Zg) —

Deons(pt/GY, Z) and that they are both isomorphic with the Deligne-Lusztig induction. They are

in particular isomorphic. Going the other way, we have two functors

U\G/U -

UG/U 7.
AdgT

We refer to lemma 3.3.15 for their definition. We show that these two functors are isomorphic.

’/‘!q* and For Dy Avan*(— ®Z€ QT) : Dcons(pt/GFaZZ) — Dcons(

3.1.3 Soergel theory

The fourth section of our paper deals with the integral version of the results of [BR22b] and [Gou21].
All the results are generalization of loc. cit.. The category of equivariant sheaves with respect to a
non trivial character x had already been studied in [LY20]. Let us fix some notations, let w € W
and y be as before. We then have at our disposal

(¢). The standard and costandard sheaves A,, , and V,, , which are the ! and *-extension of the
sheaf a Bruhat stratum corresponding to Ly ® L, they are in particular perverse.

(7). The tilting sheaves T,  that are perverse sheaves on U\G /U with both a A-filtration and a V-
filtration, where a A-filtration (resp. V-filtration) is a filtration with graded pieces belonging
to the set {Ay ,w e W, x € CH(T)} (reps. {Vu,y,w € W, x € CH(T)}).

We then carry out the study of the category Deons(U\G/U, Qr),. We equip this category with
a convolution structure, it is built to ensure compatibility with the modular version of [BR22b] and
[Gou2l]. Assuming that G has connected center, we get a decomposition of the category

Dcons(U\G/U7 QT)X = @ Dcons(U\G/U7 QT)[x’,x]a
X/

where X’ ranges through the orbit of x, and the category Deons(U\G/U, Qr)[y 5] is the category
generated by all A, , for w such that wy = x’.

The next step is to show the Endomorphismensatz in our setup. Let us fix x as before and x’ in
the W-orbit of x, there is a distinguished tilting object in Deons(U\G/U, Q1 )[y 5] Which we denote
by T . Denote by W, the stabilizer of x.

Theorem 3.1.7 (Endomorphismensatz, 3.4.34). Assume that € is good for G. There is an isomor-
phism
Qr ®Q;VX Qp ~ End(TX,X/)'
With this theorem in place we can define the V, ,, functor which is nothing else than Hom (T} ./, —).
The last result we need out of Soergel’s theory is that this functor is fully faithful on tilting objects,
which is done in section 3.4.7. We finally consider the direct sum category

D Deons (V\G/U, 1),

X
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and we take the direct sum of all the V functors on all the blocks at once. Following [GL96],
we introduce C(T') = |, Spec(Qr) x {x}, which is the space of rank one character sheaves on
T. With this notation the global V functor takes values in the category of coherent sheaves on
C(T) x¢(ryyw C(T') and the structure sheaf is the image of the direct sum of all the tilting sheaves
Ty ', which we denote by T. Only in defining the global V-functor we require that G' has connected
center, all the other results extend to the non-connected center case.

3.1.4 Categorical centers

In the fifth section of this paper we consider the problem of realizing the category of representations
of GF as a twisted categorical center. This notion of categorical center is well behaved in the infini-
categorical world and generalizes the more classical notion of Drinfeld centers. We refer to Appendix
3.C for some basic definitions about categorical centers.

Consider the functor

p'HCF . Dindcons (pt/GFazZ) — @ Dindcons(U\G/Uv QT))(~ (34)
xE€CH(T)

Theorem 3.1.8 (Theorem 3.5.19). The functor p'HCF is equipped with a canonical F-central struc-
ture and induces a isomorphism

Dindcons (pt/GFa Z@) ~ ZF( @ Dindcons(U\G/U7 QT)x)~ (35)
x€CH(T)

In [Lusl5] and [Lusl7], Lusztig has shown a similar statement using abelian categories. There
are two advantages to our method. The first one is that it works over Z,, whereas Lusztig uses the
theory of weights which is only valid over Q,. Secondly our proof is almost formal, it is a variation
(with Frobenius) of an argument of [BZN09], whereas Lusztig’s construction inputs some knowledge
about the classification of irreducible representations of G¥.

The only nonformal input in the proof of this theorem is the celebrated theorem of Deligne-
Lusztig.

Theorem 3.1.9 ([DL76]). Let p € Irrg, (GY), then there exists, w € W and j an integer such that
The proof of this theorem in loc. cit. relies on some character computations. We give a geometric

proof of this fact using a technique from [BBMO04b]. Namely, we compute the functor CHrHCp.
A first remark is that the category Dcons(%,A), where Ad denotes the adjoint action acts on

Dcons(ﬁ, A) via convolution, we refer to section 3.5.5 for the definition of this action. We then
show the following lemma, which is a F-twisted version of a theorem of [MV88].

Lemma 3.1.10. There is an isomorphism of functors
CHpHCF ~ Spr * —, (3.6)
where Spr € Dcons(%, A) denotes the Springer sheaf.

In characteristic 0, the sheaf ¢, is a direct summand of the Springer sheaf. This is enough to
imply the conservativity of the functor HCp and then the generation statement. This proof also
works with modular coefficients, in particular we get a new proof of the following theorem.

Theorem 3.1.11 ([BRO03]). The compleves RT.(Y (), A) span Perf(A[GF]).
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3.1.5 Endomorphism of the Gelfand Graev representation

We finally come to our last section and we want to illustrate how to recover the theorem of [Li21]
in geometric terms. From now on we assume that G has connected center and that ¢ is good for G.
The idea here is a twisted version of [BT22]. The main novelty is that we construct a map

EHdGF‘ (Fw) — O(T\///W)F.

Once this map is constructed, the theorem will follow by standard arguments of symmetrizing
forms. Let us explain how to construct this map.

Firstly, we compute mq*I'y,. We show the following lemma, we refer to lemma 3.6.8 for the
normalization.

Lemma 3.1.12. There is an isomorphism, up to shift,
g Ty =pT.
Once this is in place we consider
V(p'rig*Ty) = Hom(piT, piT).

This is a coherent sheaf on C(T') x¢(7)yw C(T'). We then show that this sheaf is the structure sheaf
of Z = (C(T) x¢(ryyw C(T)) Xe(ryxeer)y C(T), where the C(T') is embedded via the graph of FV.
The closed subscheme Z C C(T') x C(T) is stable under the W-action given w.(z,y) = (wz, F(w)y).
We then show that Z J W = (T J W)F. With this presentation we get two actions of End(I'y)
and W on Oz, we show that they commute using the centrality statement of the previous section.
This induces the desired map

End(I'y) — End(0}) = Opv .

3.1.6 Conventions and notations
oo-categories.

We will use the language of (00, 1)-categories of Lurie [Lur09] [Lur]. We introduce the following
notations concerning them. Given an (oo, 1)-category C, we denote by ho(C) the homotopy category.
Given a stable category C with a t-structure, we denote by C% its heart, the notion of stable co
is defined in [Lur] 1.1.1.9. Recall that if C is a stable co-category, the category ho(C) is naturally
a triangulated category, and the data of a t-structure on C is the data of a t-structure on ho(C),
[Lur] 1.2.1.4. Let A be ring, we denote by D(A) the co-derived category of A, constructed in [Lur]
1.3.5.8., its homotopy category is naturally identified with the usual derived category of A. If A
is commutative, then this category is a closed monoidal symmetric category. We will consider A-
linear categories, that is categories that are modules over D(A). Given a A-linear stable category
C, we denote for z,y € C by Home(x,y) € D(A) the mapping space between z and y. Its image in
ho(D(A)) is a complex such that H*(Home(z,y)) = Home(z,y[i]) = Hom(z,y), if the context is
clear, we will drop the C. In the usual cases of categories of étale sheaves, this complex is simply given
by the functor RHom. If A C C is the heart of a ¢-structure on C, then we will denote by Hom 4 (z, y)
the Hom-set in the abelian category of A, for =,y € A. Note that Hom 4(z,y) = Homg (z,y).
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Bar resolutions.

We denote by A the simplex category. In a category with products C (either oo or 1), given a
group object G acting on an object X. We denote by X x G**! — X the augmented Bar simplicial
objects. That is the simplicial object A°? — C,[n] — X x G"*! and whose degeneracy maps are
given by the action map and partial multiplications.

Categories of étale sheaves.

We fix p a prime number. We will denote by A a coefficient ring which is either Zg, Fy or Q7. We
will denote by Deons(X,A) the bounded category of constructible A sheaves on a stack X. For
a morphism f : X — Y, we denote by f,, f*, fi, f' the corresponding derived functors, they are
recalled in section 3.2. In general all functors will be understood in the derived sense. We fix once
and for all a trivialization of the Tate twist (1) = id.

Categories of coherent sheaves.

Given a ring A or more generally for X a(n underived) scheme, we denote by D(A), Dgcon(X), the
derived category of A-modules and the derived category of quasicoherent sheaves on X. We denote
by Perf(A), Perf(X) the full subcategories of D(A) and D(X) respectively of perfect complexes.
We denote by Deon(A), Deon (X)) the full subcategories of D(A), Dycon (X) respectively of complexes
which are cohomologically bounded and with coherent cohomologies. We denote by Coh(A) and
Coh(X) the category of finite type A-modules and coherent Ox-modules respectively. The cate-
gories D(A), Dgcon(X) and Deon (A), Doon (X)) all carry standard t-structures. The categories Coh(A)
and Coh(X) are then identified with the hearts of Deon(A) and Deon(X) respectively.

Reductive groups.

We let G be a reductive group over k, we fix a Borel pair B = TU and we let U be the unipotent
radical of the opposite Borel. We let W be the Weyl group of (G, T) and we denote by A C &+ C &
the simple, positive and roots associated to (G, B), similarly we denote by ®V the set of coroots
corresponding to (G, T). For a root a € ® we denote by s, € W the corresponding reflection and
by a" the corresponding coroots. We also fix a multiplicative family of liftings (w) of the elements
of W into Ng(T), that is we impose that
i = wuw'’

whenever ¢(w) + ¢(w') = £(ww’). This choice produces natural trivializations BwB ~ U, x T x U,
where U, is U N w~'Uw and in particular is an affine space and we denote v,, : BwB/U — T the
corresponding projection.
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3.2 Free monodromic categories

3.2.1 Setting up the 6-functors

Let k£ be an algebraically closed field of characteristic p > 0, and T be a torus over k. We denote
by X = X(T) and Y = Y(T) its character and cocharacter lattices. We denote by m1(T") the étale
fundamental group of T at the base point 1 € T. We denote by w¢(T) the tame quotient, that is
the largest quotient of pro-order prime to p. It is known that

i (T) = lim Tn] =Y(T) @ 7(G,,).
(n,p)=1
We also denote by 71 (T)" the kernel of the projection 7 (T) — mt(T).
Let ¢ be a prime different from p, as in [GL9I6] we define 71(T"), the largest pro-¢ quotient of
7t (T) and by
Qrz, = Zylm (T)e] = lm Z/C"Z[T[e™).
Remark 3.2.1. We fix once and for all a topological generator v € 71 (G, ).
Remark 3.2.2. Note that we also have 7} (T) = L py=1 m1(T)e hence we can also see m1(T)¢ as a
subgroup of 7¢(T).
If R is a Z¢-algebra we denote by Qr r = Qr ®z, R, and by Qp = QTZ‘

Definition 3.2.3. Let X be a k-scheme of finite type and let A € {Fy, Z¢, Q7 }. We set Deons (X, A),
resp. Diis(X, A), resp Dindeons(X, A) to be the (0o, 1) stable category of constructible, resp. lisse,
resp ind-constructible sheaves of A-modules as defined in [HRS21].

We recall a modern presentation of the 6-functors formalism. This presentation is due to Mann
[Man22] based on work of [LZ17], we also refer to the lectures notes of P. Scholze [Sch23]. We
consider the category Schi,;t of separated finite type k-schemes. As explained in [Man22], Liu and
Zheng construct an oo-symmetric monoidal category Corr(Sch%) whose objects are the same as
the objects of Schit and whose morphisms X --» Y in Corr(Sch%) are given by correspondences
X—Z-=>Y.

Definition 3.2.4. An abstract 3-functors formalism on Schf is the data of lax symmetric monoidal

functor
D : Corr(Schi) — oo — Cat, (3.7

to the symmetric monoidal co-category of oco-categories equipped with symmetric monoidal struc-
ture given by cartesian product. Given such a lax-monoidal functor, we define for f : X — Y a
morphism of schemes

(7). f*:D(Y) — D(X) as the image of the correspondence Y Lx= X,
(#). fi : D(X) — D(Y) as the image of the correspondence X = X Ly,
For X € Schf, we define a symmetric monoidal structure on D(X) by
D(X) x D(X) - D(X x X) 25 D(X), (3.8)
where the first map is the data of the lax-monoidality of the functor D and the second one is the

pullback along the diagonal.
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Definition 3.2.5. A 6-functors formalism on Schf is the data of a 3-functors formalism such that
for all maps f in Schi® and all objects A € D(X), the functors f*, fy and A® — admit right adjoints.
These right adjoints are then called f,, f' and Hom respectively.

Remark 3.2.6. As explained in [Sch23], the data of a 6-functors formalism encodes all the base
change maps, the Kunneth maps, the adjunctions maps as well as the compatibilities between
them.

Theorem 3.2.7 (6 functors, [BS15] 6.7, [HRS21] 3.44). There exists 6-functors formalisms Deons(—, Q1)
and Dingeons (X, Qr) on Schit such that for all X € Schzt

Dcons(_7 QT)()() - Dcons(X7 QT), (39)

and
Dindcons(_7 QT)(X) = Dindcons(X7 QT) (310)

Proof. As explained in Lecture IV of [Sch23], to construct a 6-functors formalism, it is enough to
construct a functor
Schf"°P — CMon(co — Cat), (3.11)

to the category of symmetric monoidal co-categories and two collections of morphisms I and P

such that (see the conditions (1) — (4) of loc. cit.) :

(7). The class I and P are stable under composition, pullbacks and contain all isomorphisms.
Moreover any morphism f can be decomposed into a composition p o j where p € P and
jel.

(it). Forall f € I, the functor f* has a left adjoint denoted by fi satisfying the base change formula
and the projection formula,

(#i1). For all p € P, the functor f* has a right adjoint denoted by f. satisfying the base change
formula and the projection formula,

(iv). For any cartesian diagram with j € I and p € P,

vy 2y

v g

X’ﬁX

the natural map jip), — p.ji, adjoint to the base change map, is an isomorphism.

Let us now apply this to our context, firstly the construction of [HRS21] produces the two
desired functor D¢gps : Schf;’Op — CMon(oco — Cat). Indeed, they define the categories Dcons (X, Q1)
and Dindcons(X, Q1) as certain monoidal symmetric subcategories of D(Xproet, 277) which depends
functorially upon X. Next, we take P the class of proper morphisms and I the class of étale maps.
The four statements above follow from classical statements about proper and smooth base change.
They are checked (using the proétale setting) in [BS15] 6.7 and [HRS21]. O

We now explain how this construction extends to stacks. First, we need the following descent
properties.

41



Definition 3.2.8. Let D be a 6-functors formalism on Schfct. Let f : X — Y be a morphism of
schemes, we say that D satisfies * or !-descent along f if

(£2) : D(Y) = limD(X"Y) (3.12)

n

or

(£2): DY) = linD(X™/Y) (3.13)

are isomorphisms respectively, where X™/Y denotes the n-fold product of X over Y and f, :
X"/Y Y is the projection.

Theorem 3.2.9. For all X € S(}h}:t the category Dindcons(X, Q1) is presentable. Furthermore the
functor X — Dindcons(X, Q1) satisfies smooth x and ! descent.

Proof. The presentability statement is done in [HRS21] 3.49. The *-descent property holds for
v-cover by a result of [BM21] Theorem 1.8, see also the introduction of [HS23]. The !-descent is a
consequence of Proposition 6.18 and Theorem 7.19 of [Sch23]. O

Notation 3.2.10. Denote by Stk, the category of Artin stacks locally of finite type over k.

Proposition 3.2.11 ([Man22] A.5.16). There is a canonical extension of the 6-functors formalism
Dindcons(—, Q) to Corr(Stk), the category of correspondences on Artin stacks locally of finite type
over k. For X an Artin stack locally of finite type, the category Dingcons(X, Q1) is given by

Dindcons(Xa QT) = &1 Dindcons(sa QT)7 (314)
S—X

where the limit is taken over all schemes S € Schfct and all maps S — X and transition maps are
giwen by x-pullbacks.

Definition 3.2.12. For a stack X, denote by Deons(X, Q1) C Dindeons (X, Q1) the full subcategory
of Dindcons(X, 1) of objects A such that for all f:S — X, f*A is in Deons(:S, Q7).

Remark 3.2.13. Contrary to schemes, the natural map Ind(Deons(X, 7)) — Dindcons (X, Q1) is not
necessarily an isomorphism.

Remark 3.2.14. Since we allow non representable maps in Stky,, the 6-functors formalism Deons(—, Q1)
a priori does not extend to Stky. Consider the subcategory Stk, ™" of Stk; composed of the same
objects but with only representable maps. Consider the restriction of the 6-functors Dindcons(X, 1)
to Stk, ™", then X — Deons(X, Q7) C Dindcons(X, Q7) defines a 6-functors formalism. This follows
from the fact that constructible sheaves are preserved under !-pushforward along all representable
maps.

Remark 3.2.15. Recall that for a scheme X, all objects in Deons(X, Q7.z,) are derived complete,
we refer to [BS15] section 3.5 for a discussion about derived completions. By [BS15] 3.5.1. a sheaf
K € Deons(X, Qrz,) is derived complete if the natural map

K = limK ®q,,, Z/C"L[T[™]]

n,m

is an isomorphism. Moreover a sheaf M € D(Xproet, {27,z,) is constructible if and only is M/m =
M Rz, Qrz,/m is a constructible F,-sheaf where m denotes the maximal ideal of Qr z,.

42



Lemma 3.2.16 (Derived Nakayama). Let M € Deons(X, Qrz,), if M/m =0 then M = 0.

Proof. Choose a stratification X = LX; for which M is constructible. After pulling back to each
strata we can assume that M is lisse. Let X’ — X be a proétale cover such that M, |x is perfect
constant. Such a cover exists by [HRS21] 3.26. Then Mx: ~ Nx/ is isomorphic to a constant
complex. The statement then reduces down to the derived Nakayama lemma for rings which holds
by [Aut] Tag 0G1U. O

Remark 3.2.17. By [HRS21] 3.29, an object A € D¢ons(X,A) is in Dy(X, A) if and only if all
cohomology sheaves are lisse in the classical sense.

3.2.2 Setting up the perverse t-structures

Theorem 3.2.18. There is a t-structure on Deons(X, Qr) such that for all geometric points x :
Spec(k) — X the functor * : Deons(X, Q1) — Perfq,. is t-ezact.

Definition 3.2.19. We call the t-structure of theorem 3.2.18 the standard ¢-structure.

Proof. We first check that Deons(X, Q7.7,) has a natural ¢-structure. It is enough to show that the
ring Qp is t-admissible in the sense of [HRS21] 3.27. The ring Qr 7, is clearly regular and noetherian,
in particular coherent. Let S be an extremally disconnected set and write it S = @L S; as a limit
of finite sets. Then we have

I(S,9rz,) = lim lim T(S;, Z/¢"Z[Tm]]).

n,m i

Now each I'(S;, Z/¢"Z][T[m]]) is flat over Z/¢"Z[T[m]] and therefore so is lim, (S, Z/e"Z[T[m])]),
we can now apply [Aut] Tag 0912 and get that Qpz, — I'(S,Qrz,) is flat. The same argument
holds for Q1 0, ) for any finite extension E/Qy, then Deons(X, Qr) = %nE Deons(X, Qr.0,) and it
is easy to see that the transition are t-exact and therefore induce a t-structure on the colimit. [

Theorem 3.2.20. Let X be a k-scheme of finite type, there is a unique t-structure on Deons(X, Q1)
which we call the middle perversity t-structure such that A is in Deons(X, Qr)Z"0 if and only if

Vi dim suppH " < i.

Sketch of proof. We only sketch the construction to convince the reader that the argument of
[BBD82] 3.4 applies to our situation. Consider pairs (S,L£) where S is a stratification X =
|_|se sXs and £ is a collection of Fy-local systems £, on each strata. We consider now the cat-
egory Deons,(s,2)(X, Qr) defined as the full subcategory of Deons(X,Qr) of (S, £)-constructible
sheaves, that is sheaves A that are constructible and such that for all i € Z and s € S, we have
Hi(itA ®Qyr.,, Fe) and Hi(iLA ®qr.,, Fr) are successive extension of local systems in £, where
is : Xs — X is the inclusion of the stratum corresponding to s. Using the constructibility results
of [BS15], we can always refine the pair (S, £) such that if A is an (X, L)-constructible sheaf on
X, then i51A and 45, A are (S, L£)-constructible. Once this is in place, we can apply the gluing
formalism of [BBDS&2]. O

Remark 3.2.21. Just as in the case of Z,-sheaves, this perverse t-structure is not stable under
Verdier duality.
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3.2.3 The canonical sheaf and the unipotent categories
There is a canonical morphism

can : m(T) = (Qr)* (3.15)
which defines an Qp-rank one local system on 7" which we denote by L.

Lemma 3.2.22 ([GL96] 3.1). Let p : T — T’ be a morphism of tori, it induces a morphism
D« - QT — QT/.

(7,) p*LT’ = LT ®QT QTI.
(ii). Assume p is a quotient map of relative dimension d then we have pyLt = Lp/[—2d](—d).
Remark 3.2.23. In loc. cit., a quotient map means the projection on a direct factor.

Corollary 3.2.24. The sheaf Lt is multiplicative, that is we have an isomorphism m* Ly ~ LrXgq,.
Ly where m : T x T — T s the multiplication.

Let X be a scheme with an action of 7. In [BY13], the authors have defined the free monodromic
completion of sheaves on X. We define an integral version using the categories Dcons(X, Q7).

Remark 3.2.25. It should be possible to use a similar strategy as in [BY13] and [BR22b] using
categories of monodromic sheaves and then completing the category, our method has the advantage
to not have to use pro-objects.

Definition 3.2.26. We define Deons(X, Q7 )unip to be the category of (T, L1)-equivariant sheaves
on X. We refer to Appendix 3.A for the definition of equivariant sheaves.

Remark 3.2.27. In appendix 3.A, we also define Dingcons (X, Q7 )unip- The category Deons(X, Q1) unip
is then the full subcategory of Dindcons (X, 7 )unip of objects such that their image in Dindcons (X, Q27)
is constructible.

Lemma 3.2.28. There is a perverse t-exact equivalence

Db(QT) =~ Deons (T7 QT)unip
M+ M ®q, Ly[dimT].

Proof. A sheaf A on T is (T, Lr)-equivariant if and only if A ® LY. is T-equivariant and therefore

descends to the point, which yields the equivalence, the t-exactness is immediate. O
Proposition 3.2.29. Consider the category Schl'tf of schemes with a T-action. There exists a six
functors formalism Deons(—, Q1) unip (765D Dindcons(—, Q1) unip) given by

Dcons(_7 QT)unip (X) = Dcons(X7 QT)unip- (316)
(7’6527 Dindcons<_a QT)unip(X) = Dindcons(Xa QT)unip); fO’f’ all X € SChT’tf‘

Proof. We show it for Dindcons, the case of Deons follows by taking constructible objects in Diydcons-
First consider the 6-functors formalism constructed previously X € Sch' — Dindcons (X, Q7).
Consider the functor Schf — Corr(Schil) sending X — X and f : X — Y to the correspon-
dence X = X — Y. This functor is lax monoidal. Composing it with the lax monoidal functor
Dindeons(—, Q) yields a lax monoidal functor Schit — oo — Cat. By lax monoidality, the group
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object T is sent to the category Dindcons (T, Q1) which is then canonically equipped with a monoidal
structure. This monoidal structure is nothing else than the !-convolution of Appendix 3.A.
Similarly, if X is a scheme with an action of T, the category Dindeons(X, 1) has a natu-
ral action of Dingcons(T, Q7). More generally, the functor X — Dingeons(X, Q1) yields a functor
Corr(SchT’tf) — Dindeons (T, Q1) —Mod, the co-category of categories with an action of Dingcons(T, 7).
Taking (twisted)-invariants yields a lax monoidal functor X + Dindcons(X, Q7 )unip. This defines a
3-functor formalism, all categories in sight are presentable and cocomplete and all three functors
commutes with all colimits, the existence of right adjoint follows from the adjoint functor theorem
5.5.2.9. O

3.2.4 Twisted variants

We keep the scheme X with a T-action. We introduce the following notational convention, we
denote by x a finite order character of 7} (7T') of order prime to ¢ defined over O where E/Qy is a
finite extension. We use the notation of [LY20] and denote by CH(T') the set of all such character,
note however that we do not allow characters of order £ contrary to loc. cit. and we consider them
as defined over Z,. Then the sheaf Ly ® L, is an Q7 rank one character sheaf on 7. We define
Deons(X, Q1) to be the category of (Ly ® L, )-equivariant sheaves on X and extend the 6-functors
as in the previous section to the twisted variants.

3.2.5 Functoriality with respect to finite étale isogenies

Lemma 3.2.30. Let [{] : T — T be the {-power map. It induces a map of rings [€]« : Qr — Qr for
which the target is free over the source of rank |T[¢]|.

Proof. We only need to prove the corresponding assertions for {077, since the rest follows after
tensoring with Z,. We first choose an isomorphism T ~ G, to generators (71,...,7,) of w1 (T)¢ so
that Qrz, ~ Z[t1, ... t,] where t; +1 =~,; . The map [{]. is given by

[0u(t;) = (t; +1)" — 1.

Reducing everything mod ¢ yields [¢].(t;) = tfmod/ and the induced map [¢],modl clearly defines
a structure of a free module for the target, we can now apply [Aut] Tag 00NS, which implies the
freeness hypothesis and the rank. O

Let f: T — T be a finite étale isogeny. Consider f, Lz, this is a lisse {27/-sheaf of rank the
degree of f. Note that since Lt ®q, Z; = Z;, where Qr — Z, is the augmentation, we have

filr ®q,, Lo = fily.

We denote by CH(ker(f)) € CH(T) the set of characters of 7}(T) of order prime to ¢ that factor
through ker(f).
We denote by For% the forgetful functor Deons(X, Q1) = Deons (X, Q717).

Lemma 3.2.31. There is an isomorphism of Qs -sheaves on T .

flpr= @ Forfu(Lr) ®z, Ly
XECH (ker(f))
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Proof. The sheaf f.Lps is lisse and the corresponding representation of 71 (7") is the induction
along the embedding 71 (7”") — 71 (T) of the character can. We can factor f into fi : T — T} and
fo : Ty — T such that f; is a finite isogeny of degree prime to £ and fs is of degree a power of /.
Since the induced map Qp: — Q7 is an isomorphism and the map Q7 — Q7 is a finite extension
of degree |ker fs], it is enough to show the lemma for f; and fy separately.

For fi, we have f1.L1 = @yecu(ker f;) L ®7, Ly. To show the statement for f5, by choosing

isomorphism between 7', 7" and GImT e can reduce to T =T = G,, and fy = [(]. Now note
that Ly = lim [("]Z,, now we have [(], Ly = lim [f].[("].Z¢ =}im [("t1],Zy = Ly. Note however
that the Qp-structure is given by Forn along the map [/].. O

3.2.6 Monodromic sheaves

We keep X with a T-action and let A € {IFy,Z;, 7} be a coefficient ring.

Definition 3.2.32. Let Y be a connected scheme and § a geometric point of Y. We define
Rep, (11 (Y, 7)) = Dus (Y, A)¥. We say Y is a categorical K (7, 1) if the realization functor

D’(Rep, (m1(Y, %)) = Duis(Y, A),
is an equivalence.

Remark 3.2.33. The category Rep, (71(Y)) is the usual abelian category of continuous representa-
tions of 71(Y’) on A-modules of finite type.

Lemma 3.2.34 ([Achl17]). The torus T is a categorical K(m,1).

Let A in Repy(m1(T)). Since 71(T)" is normal in 7 (T) and of pro-order prime to £, the
sheaf A splits as a direct sum A" @ A%ild The two summands are characterized by the fact that
7 (T)V1 acts trivially on A**™¢ and non trivially on all subquotients of AW,

Lemma 3.2.35. The category Dys(T, A) splits as a direct sum
Dyis(T, A) = Dyis(T, A)™*™° @ Dy (T, A)™,

such that A € Dy (T, A)*®™¢ resp. Dy (T, AV if and only if for all i, H'(A) = H'(A)'*™° resp.
H’L(A) — Hi(A)Wild.
Definition 3.2.36. Let A € Dy(7,A). We denote by A% and AV the two direct factors of

lemma 3.2.35 and we call the objects of Dys(7T, A)**™¢ tame sheaves.

Proof of lemma 3.2.35. The abelian category Rep, (m1(T')) splits as Rep, (71 (7)) ™e@Rep, (1 (T)) V14
hence so does the derived category. This induces the splitting on Dj(7,A) in view of lemma
3.2.34. 0

Definition 3.2.37. Let A € Dcons(X, A) be a sheaf on X. The sheaf A is monodromic if for all
x € X, the pullback along a, : T'— X, + t.z is lisse and tame on T

Theorem 3.2.38 ([Ver83]). Let A be a sheaf of A-modules on X, suppose A is monodromic then
there is a canonical action of ¢ (T) on A. This action is functorial on monodromic sheaves.
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Proof. We recall its construction. Let T = mn T where n is prime to p and the transition maps

are given by T'— T,z +— z". Since all transition maps are affine, T is an affine group scheme. The
map 7 : T — T is pro-étale covering with group 7% (7"). Consider the action of T' on X given by the
composition of 7 with the action map. We prove that for all monodromic sheaves A € D¢ons(X, A)

there is a unique isomorphism
¢o:a"A—p*A

on T x X , where a is the action map and p is the projection, such that the induced map along
1 x X is the identity. By [Ver83], we have RI'(T,A) = A. The Kunneth formula then implies
that a* is fully faithful, that is the map Hom(A, B) — Hom(a* A, a*B) is an isomorphism for all
A, B € Deons(X, A) monodromic. This in particular implies the unicity of the map ¢.

By [Ver83] 5.1, if A is a torsion ring, there exists n prime to p, such that a* A ~ p* A for a,, the
n-dilated action map, that is, the action of 7" given by (¢, z) — t"z. Pulling back to T produces the
map ¢. To pass from A a torsion ring to a general A, we present A as a limit and pass to the limit.
Since 7t (T') = ker(T — T)) acts trivially on X, the map ¢ defines an action of 7, (T) on A. O

Remark 3.2.39. Verdier works a priori only with T' = G,,, but as explained in [BY13] Appendix A,
the construction naturally extends to any torus 7.

Definition 3.2.40. For a monodromic sheaf A, we denote by ¢4 : A[r}(T)] — End(A) the corre-
sponding monodromy action. We say A is unipotent monodromic is ¢4 factors through A[my(T)e],
we denote by Decons(X, A)mon,unip the full subcategory of Deons(X,A) of unipotent monodromic
sheaves.

WD of schemes with a T-action. The functor X —

hT,ft .

Lemma 3.2.41. Consider the category of Sc
Decons (X, A)mon,unip Satisfies descent in the smooth topology of Sc

Proof. Let Y — X be a smooth T-equivariant cover. Firstly since Deons(—, A) satisfies descent
along smooth cover, we have an isomorphism
(f5) : Deons(X, A) = lim Deons (Y X/, A), (3.17)

—
A

where as before Y/ denotes the n-fold product of Y over X. As such Y™/¥ is equipped with
the diagonal T-action and we consider DCOHS(Y”/ X, A)mon,unip, since pullbacks along T-equivariants

maps preserve the category Deons(—, A)mon unip- We have an induced cosimplicial category n +—
DCODS(Y”/ X A)mon,unip- Taking limits yields a commutative diagram of categories

Dcons (X, A) — I'LHA Dcons(Yn/Xv A)

J J

Dcons(X; A)mon,unip —— yﬂlA Dcons (Y"/X7 A)mon,unip

Note that the map lim Deons(Y/X, A)mon, unip — l'glA Deons (Y™ X, A) is fully faithful since taking
limits preserves fully faithfulness. We want to show that the bottom map is an equivalence. Since
all three other maps are fully faithful, the bottom map is fully faithful. It remains to control the
essential surjectivity. If (4,) is an object of @A Decons (Y X, A)mon,unip, We can descend it to an
object A € Deons(X,A). We only need to check that this object is unipotent monodromic. Let
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z € X and y € Y over z. Let O, be the T-orbit of z and O, the one of y. We then have a
commutative diagram

T % 0,
T
Oy

induced by the orbit maps of z and y. By construction a; A = aj A; which is unipotent monodromic
hence A is unipotent monodromic. O

Consider now the full subcategory D ons(X, QT)ZFCOHS of chns(X, Qr) of objects such that
their image under the forgetful functor Deons (X, QT) — D(Xproet, Z¢) i8 in Deons (X, Zg). This then

induces a well defined functor For : Deons (X, QT)Z‘”CO“S — Deons(X, Zy).

unip

Lemma 3.2.42. The forgetful functor induces an equivalence Deons (X, QT)Z‘%O“S — Deons (X, Ze) mon, unip -

unip

Proof. Consider the Bar resolution X x T"*! — X of X, since both sides satisfy smooth descent,
we have a commutative diagram

Dcons (Xv QT)Z[ oons

unip

| |

DCOHS(X7 Zé)mon,unip _ yLnA Dcons(X X Tn+1vz£)mon,unip

unip

: n Zy—cons
mA Dcons(X x T +1aQT) ‘

Hence, it is enough to show the statement for X x T7+!. More generally assume that X =Y x T
splits T-equivariantly as a product where T-acts trivially on Y.

We first show that the forgetful functor is fully faithful. Let A’ = A Xz, (Zo)T € Deons(Y x
T, Zt) mon umip, Since (Zg)7 = Lp/m, where m denotes the augmentation ideal of Qr, we have
A’ = For(Ayp), where Ay = (A ®7, Qr) Ko, Lr/m. Let A’ = A X, (Z¢)r,B' = B Xz, (Z¢)r be

two such objects and denote by Ay and By € Deons(X, QT)%I;O“S the corresponding lifts, then the
Kunneth formula implies that

HOIn(Ao, Bo) = Homzl (A, B) ®Z@ Hochom(T,QT)unip ((ZZ)T7 (Z@)T) (318)

Let us evaluate Homp___(7,07) i (Ze) 7, (Ze)7). We have

unip

Homp, .., (7,07) i (Z0)T, (Ze)7) = Homa, (Qr/m, Q1) @a, Homp,,,.(1.97) i, (L1 LT) @07 Qr/m
= Homg, (Qr/m, Q1) @0, Qr ®ap Qr/m
= EHdQT (QT/m)
= RI(T,Zy).

The second line comes from the fact that Homp_,  (7.07)um, (L7, Lr) = Q7 which can be seen

through the equivalence Dcons(T, Q7 )unip = D2}, (7). The last line comes from lemma 3.2.43. On
the other hand after applying the forgetful functor, we get that

Hochm.s(YxTﬁiz)l,,o,,fump (A", B) = Homgz, (A, B) ®3, RINT,Zy), (3.19)
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as RI(T,Zy) = End((Z¢)r). Therefore the forgetful functor is fully faithful on objects of the
form Ay. We show that these objects generate the category Deons(Y X T, QT)Z’Z cons - Let Ag €

unip

Deons(Y x T, QT)Zf comsas Ag is (T, Lr)-equivariant Ag can be written as Ag = A’ X Ly, where

unip

A’ is an Qp-constructible sheaf on Y. But as Ay is also Z,-constructible, the Qp-structure of A’
factors is of m>-torsion. As such A’ is in the full subcategory of Deons(Y, Q1) generated by the
essential image of the functor Deons(Y, Z¢) — Deons(Y, Qr) induced by the forgetful functor along
the augmentation Q7 — Zy. Let A’ € Deons(Y, Q) be in the essential image of Deons(Y,Z¢), then
we have

Al IEQT LT = Al IEZZ LT/m = A/ gz@ (Z@)T. (320)
Let C,D € Deons(X, QT)Zz " since objects of the form A’ X (Z¢)r generate the category we

unip

can write C' = lgl(Al X (Z¢)r) and D = hgj(B; X (Z¢)r) where both colimits are finite. As

the forgetful functor is a right adjoint it commutes with limits hence it also commutes with finite
colimits [Lur] 1.1.4.1. We then have

Hom(C, D) = @@Hom((/x; R (Ze)r), (B} B (Ze)r))

<i£111>mHom(For(Ag X (Ze¢)1), For(B; B (Z¢)r))
i

—

Hom(For(A), For(B)).

Hence For is fully faithful. Since the objects of the form For(A’ Xz, (Z¢)T) generate the category
Deons(Y x T, Z@)mon,unip under finite colimits, the essential surjectivity is clear. Indeed let A €

Deons (Y X T, Z¢) mon,unip, We can then write A = hng For (A’ Xz, (Zo)T) = For(ligqi A’ Xz, (Z¢)r). O
Lemma 3.2.43. There is a canonical isomorphism Endgq, (Qr/m) = RI(T, Z,).

Proof. Consider the following functors Dcops(pt, QT)Z“*“’“S r, Deons (7T, QT)ZFCOHS For, Deons(T, Zg),
where p : T — pt is the structure map. By fonctoriality we get a map

Endg, (Qr/m) — Endr((Ze)r) = RI(T, Zy). (3.21)

It remains to check that this is an isomorphism. This can be done after taking cohomology, namely,
we want that the induced map

Extg,, (Qr/m, Qr/m) — H*(T, Zy), (3.22)

is an isomorphism. Since it is deduced from functoriality, this map is a map of algebras. It is known
that both sides are exterior algebras on their degree one parts. For the left hand this is (m/m?)Y
(where the (=) is the Z,-linear dual) and for the right hand side this is H'(T,Z;). But those two
are canonically isomorphic to Hom(74(T'), Z)) ®7, Z¢ where this Hom denotes the set of morphism
in the 1-category of profinite groups. O

Let A € Deons(X, QT)%fnpcom and consider the object A’ € Deons(X, Z¢)unip,mon De the image of
A under the forgetful functor. Consider the Z[r%(T)]-module structure on A’, since A’ is unipotent
monodromic the morphism Z,[r!(T)] — End(A’) factors through Q7.
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Lemma 3.2.44. The two Qp-structures on A’, one coming from Verdier’s monodromy and one
coming from the forgetful functor, coincide.

Proof. The object A € Deons(X, Qr)%7°" is an Qp-unipotent monodromic, its canonical mon-
odromy is a morphism Qp[7¢(T)] — End(A). As A comes from an equivariant sheaf this morphism
factors through Qr[7!(T)]/I where I is the ideal generated by elements (¢t — can(t)) for ¢t € 7} (T)
and can is the canonical map (3.15). where the second map is the forgetful map and is the inverse

functor to Deons (X, QT)Z" " — Deons (X, Ze)mon unip- Consider now the following diagram

— l

t
QT E— QT 7T1

l

Qr[r (T))/1

|

End(A")

where the map Zg[n! (T)] — Q7 is induced by the morphism can and the other morphisms are the
natural ones. The triangle does not commute but it commutes after projecting in Q[ (T)]/1.
The canonical monodromy is the Qp-structure coming from the vertical composition while the
Qp-structure on the forgetful functor is the map Qr — End(A4"). O

We now denote by ®ynip : Deons (X, Zg)unipmon — Deons (X, Q1 )unip the inverse of the forgetful
functor.
Remark 3.2.45. The previous construction naturally extends to the non unipotent setting, for
x € CH(T) we get a fully faithful functor

q)x : Dcons(szé)mon,X — Dcons(X7 QT)X~

3.2.7 Reduction mod ¢ and the completed categories of [BY13]

Denote by Qr g, = Qr ®z, Fy, this is the ring denoted by Ry in [BR22b] defined for the ring k = F,.
We can work as previously using this ring instead of Q7 and define the category Deons(X, Qrp, ),
the sheaf Ly, and the monodromic categories Deons(X, Q7w )y as before for X with a T action.
We now give a comparison between our categories of monodromic sheaves and the completion of
the categories of monodromic sheaves of [BR22b] and [Gou21]. In this section, let Y be a scheme
and let X — Y be a T-torsor.

Theorem 3.2.46. We have a natural equivalence
ho(Deons (X, Q7.7 )unip) = Dg(X JT)

where the category on the right is the completed monodromic category of [BR22b]. In the non-
unipotent case there is an equivalence

ho(Deons (X, Q75,0 )x) =~ DAX [T, (3.23)
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which holds after passing from Fy to a finite extension Fpn where x is defined.

Proof. We only show the version for x = 1, the generalization to other x is straightforward. To
define the desired functor, first note that the category D2(X JT') is a full subcategory of the category
ProD%(X [JT) of monodromic objects on X, see [BR22b] 3.1 and 10.1. We first define a functor

U : hoDeons (X, Q1 5, )unip — ProD%(X JT)

by A7 I'Ln”A @, Qrr,/m"™ where m is the maximal ideal of Qrr,. The ring Qrr,/m™ is an
Artin ring over F, so in particular it is finite dimension and A QQr g, Qpr, /m™ lives in Deons (X, Fy)
after forgetting the Q7 5, /m™-structure. For any y € Y the restriction to the fiber X, = 7~ !(y)
of A is isomorphic to M Qs r, Ly for some {7 p,-module M and therefore the restriction of
A ®qry, 1, /m" is isomorphic to the sheaf denoted by M ®q;.,, L1, in [BR22b] 3.2 and in
particular is monodromic on T'. This implies that A ®Qrg, Qrp,/m™ is monodromic as an Fy-sheaf
on X and that ¥ is well defined.

We first check that it factors through the category DY(X [ T), which means checking the
two properties of [BR22b] definition 3.1. The pro-object ¥(A) is m-constant, indeed we have the
following computation

y_ m(A ®Qrs, Qrp, fm™) = @(W[A) O, Qrp, fm™
s

The first line follows from the compatibility of the formation of 7 with change of coefficients and
the second comes from the completeness property of the objects of Deons(X, Q) by 3.2.15. The
object mA a priori lives in Deons (Y, Qr), but fiberwise it is isomorphic to M ®Qr, RI(T, LrF,) ~
M ®q,. 5, F,[2dim T and therefore the Qp f,-structure factors trough an Fy-structure via Qpp, —
Qrp,/m ~TF,, which is a well defined constructible Fy-sheaf on Y.

The pro-object ¥(A) is also uniformly bounded in degrees. There exists a < b two integers such
that F € Deons(X)1*?, the functor — ®Qqy, 75, /m™ is of cohomological dimension [—dim T, 0]
and the forgetful functor Deons (X, QrF, /m™) — Deons(X, Fr) is t-exact. This implies that A @,

Qpr, /m™ lives in cohomological degree [a — dim T, b] and the functor W factors through D2(X /T).
The functor ¥ is fully faithful. Let A, B € Deons(X, Q1F, )unip, We have

Hom(A, B) = @Hom(A, B ®qq., Q1F, /m™)
n

= ILIH hgl HOHl(A ®QT,F[ QT,FZ /mm’ B ®QT,1Fz QT-,]Fe /mn>

The first equality comes from the isomorphism B = ]gln B(E{)gmZ Qrr,/m" and the second from the
same isomorphism for A and the fact that each B ®q,.., Qrr,/m" is discrete and thus a morphism
from A factors through one of its quotients. We apply H° to this isomorphism, there is a Milnor
short exact sequence

0— R @H*(Hom(A B ®qzs, Q1 /m") = H°limHom(A, B ®qy,, 1, /m"))

n

— @HO(Hom(A, B ®qq, 1, /m™))) — 0.

n

o1



Note that as a complex Hom(A, B) € D(Q2rp,) is perfect and thus derived complete, indeed the cat-
egory of derived complete objects is stable and contains Q7 r, hence all perfect complexes. By [Aut]
Tag 091P, all the cohomologies of Hom(A, B) are derived complete hence H~!(Hom(A, B)) is de-
rived complete. Since it is an Q7 r,-module of finite type, by Nakayama’s lemma it is also m-adically
separated and therefore m-adically complete by [Aut] Tag 091T hence im H ~1(Hom(4, B))/m" =

H~'(Hom(A, B)) and the first term of the above exact sequence vanishes. Hence H® commutes
with the limit, since the colimit filtered it is exact and commutes with H°. The fully faithfulness
now follows from the description of the morphisms in D%(X /T) [BR22b] 3.1 and [BY13] Section
A2.

It remains to show that U is essentially surjective, note that we have a compatibility between
free monodromic local systems as W(Lr) = L1 where the second sheaf is the free monodromic local
system of [BR22b] 3.2. Let A =7 lim ” A, be an object in DY(X [T), we can assume that for
each A,, the Verdier’s monodromy ¢4, : Qrr, — End(A4,)-factors through Qrp,/m”. Consider
now A = ]'&n” Qynip(An) € Deons(X, Q1 F, )unip- By construction fl/m” = Dynip(A4,) and forgetting

the Qp g, /m™-structure yields back A, hence W(A) = A and ¥ is essentially surjective. O

3.2.8 The functor

We define two functors

Tyt Dcons(Xa QT)X — Dcons(X/(T7 ‘Cx)azé)

and
7 %, Deons(X, 1)y = Deons(X/(T, Ly), Fe).

by
(’L) Tt = — Qqr Z@ and
(i1). m 5, = — @, Fy, where Qp — Zy — Fy is the augmentation.

The equivariant structure is clear since L1 ®q,, Zy = Zy.

Remark 3.2.47. Under the equivalence of theorem 3.2.46, the functors 7 and T F, correspond to
the same functors my of [BR22b] and [Gou21].

Remark 3.2.48. These functors have a canonical right adjoint which we denote by «f and W% .
£

Remark 3.2.49. In the unipotent case, the functor 74 is isomorphic to the functor 7*m[2 dim T7.

3.2.9 Pushforward to the base on unipotent monodromic categories.

Consider a Cartesian diagram

x I, x

| b

YT>Y’

where the stacks X and X' are equipped with an action of T, f’ is T-equivariant and p and p’ are
T-torsors. Let x € CH(T') and consider the categories Deons(X, Q7)unip a0d Deons (X', Q1) unip-
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Lemma 3.2.50 (Analog of [BY13] A.3.4). The canonical base change maps
(@). pifi = fipr,
(it). pifi = fipy,
(iid). pof™ = f*pi,
). puf" = f'p]
are isomorphisms of functors Deons(X, Q7 )unip — Deons(Y”, Ze) and Deons(X', Q1) unip — Deons (Y, Ze).

(v

Proof. The cases of fy and f* are immediate by the compatibility of the composition of lower shrieks
and proper base change. For the two other maps, both statements are Zariski local on Y and Y’
respectively. We may assume that the T-torsors X and X’ are trivial and we fix trivializations X =
Y xT and X’ =Y’ x T. We do the case for ", the case of f/ is similar. Let A € Deons(X’, Q1) unip
then A ~ A’ X Ly for some sheaf A’ on Y’. Then we have

pffA=p(f xid)'A
=p(f'A' R L)
= f'A @ RT(T, Ly)
= f'pi(A' @ Lr)
= f'plA.

3.3 Deligne-Lusztig theory and the F-horocycle space

3.3.1 The F-twisted horocycle transform.

We consider a variant of the horocycle transform that was used by Lusztig to define character
sheaves. This variant was already considered by Lusztig in [Lusl5] and [Lusl7]. We also refer to
[BDR20]. Consider the following diagram.

(G x G)/ArU
G/U x G/U (G x G)/ArB
(G/U x GJU)/ AT (G x G)/ArG

Here Ap refers to the action on the right given by (z,y).g = (zg,yF(g)). All maps are the obvious
quotient maps. They are equivariant for the diagonal left action of G on all objects. Passing to
the quotient and using the isomorphism a : A(G)\(G x G) ~ G, (z,y) — x~ 'y yields the following

commutative diagram of algebraic stacks over Fj,.
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AdrU

o

U\G/U rf(B) 4
pJ/ / x
(U\G/U) _ G
AdrT Adr(G)

where Adp refers to the action given by g.x = grF(g) L.

Remark 3.3.1. Consider the isomorphism (GxG)/ArB ~ GxG/B given by (z,y) — (F(x)y~!, 2B).
This morphism is equivariant for the diagonal action of G on the source and the action of G on
the target given by g.(z,yB) = (F(g)zg~',gyB). Passing to the quotient yields the following
isomorphism

G P
AL G"\G/B. (3.24)
Note that we can freely replace B by any F-stable subgroup of G.

We call the space (UA\diTU) the F-twisted horocycle space. We also define the three functors
F

F-character, F-horocycle correspondence and the x — F-horocycle correspondence as

HCp = nrgq”
CHp = g
HCy = req.

The * in HC}, refers to the s-pushforward. Since ¢ is proper we have an adjunction (HCg, CHp)
and since r is smooth of relative dimension dim U, we have an adjunction (CHp[2dim U], HCy).
These functors were introduced in [Lusl5], [Lus17] and [BDR20] but in a non stacky form.

Consider the category Dingcons(pt/GY,A), s : pt — pt/GY and the adjunction s : D(A) =
Dindeons(pt/GF, A) : s'. By general nonsense, the functor s's; : D(A) — D(A) is a monad acting on
D(A). Recall that we say that the functor s' is monadic if it identifies Dingcons(pt/GY, A) with the
category of algebras over the monad s's.

Lemma 3.3.2. The functor s' is monadic and the monad s's, is canonically identified with the
functor A[G¥] @ — seen as monad using the group algebra structure of A[GF].

Proof. To check the monadicity assertion, we apply the Barr-Beck-Lurie theorem [Lur] 4.7.0.3. First
note that both categories are cocomplete, it is then enough to check that s' is conservative and
commutes with geometric realization (i.e. A°P-shaped colimits). But since s is surjective and étale
s' = s* is conservative and commutes with all colimits this concludes the first part of the lemma.
For the second, since the functor s's; is a continuous endofunctor of D(A), by proper base change
it is given by ®AA[GY] together with its group algebra structure. O

Corollary 3.3.3. There is a canonical equivalence of co-categories

Dindcons(pt/GFv A) = D(A[GF]) (325)
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Proof. By lemma 3.3.2, there is a canonical equivalence Di,dcons(pt/GF, A) = A[GF] — Mod(D(A))
where the right hand side category is the category of A[G¥]-modules in D(A). Identifying D(A[GF])
with A[GF] — Mod(D(A)) is standard and follows from the Barr-Beck-Lurie theorem. Let us recall
the argument, consider the adjunction A[GF] ® — : D(A) = D(A[GY]) : For. The forgetful
functor is conservative and commutes with all colimits (since it has itself a right adjoint given by
Homy (A[G¥], —)), hence For is monadic and the monad For o (A[G¥] ®, —) is simply given by
tensoring with the algebra A[GF]. O

Remark 3.3.4. The subcategory Deons(pt/GY,A) is then identified with the full subcategory of
Dindeons(pt/GF, A) of objects such that their pullback to pt is constructible, i.e., is a perfect complex
of A-modules. In classical terms, this is nothing else than (the co-enhancement of) the derived
category D(Repy GT) of modules of A[GT]-modules of finite type.

Lemma 3.3.5. We have a canonical isomorphism of functors.

Deons(U\G/U, A) — D(A)
RI.(G/U, (id x Fgp)*a*—) = 1*CHg (p—)[-2 dim U],

where 1 is the map pt — pt/GF.
Proof. Consider the diagram

(idxF)

G/U x GJU G/U pt

| | |

AG\(G/U x GJU) +—— GF\G/U —— GF\pt

! | |

G G
U\G/U 7 AdeU q AdrG

where the bottom vertical maps are isomorphims by the map a : (z,y) — 21y, the top vertical
maps are the quotient maps and the top squares are Cartesian. We now have by proper and smooth
base change

RI(G/U, (id x Fgy)*a®—) = 1"q7"
= 1*gpi [-2dim U]
= 1*qr'p[—2dim U] = 1*"CHp(p1—).

O

Finally we denote by Forq,. : Dindeons(Pt/GF, Q7)) — Dindcons(pt/GY, Zy) the forgetful functor
along the inclusion Z; — Q7 and by — ®z, Qr its left adjoint.
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3.3.2 Sheaves on the F-twisted horocycle space and Deligne-Lusztig the-
ory.

In this section we discuss some links between Deligne-Lusztig theory and twisted horocycle trans-
form. In the next subsection, we will discuss a monodromic variant of the construction here. We first
consider the space K{}f(/g) together with the stratification induced from the Bruhat stratification.

Let w € W and consider the corresponding stratum %

We first note that we have an isomorphism of stacks, after choosing a lift w of w,

W ~ pt/ (U, x TF).

In particular after passing to categories of sheaves, we get Deons (Dt/ (U XT™Y), A) =~ Deons(pt/TF, A).

We will also denote by iy, : U\Xd";q(ﬂ:,[{)/ v ng(/:,{]) the inclusion.

Remark 3.3.6. The category Dcons(li\\diC;/TU7

in a nontrival way.

A) is obtained by gluing all the categories Deons(pt/T™F, A)

Remark 3.3.7. Let us also highlight the dependency on the lift w. We have an isomorphism of
stacks
U\G/U
Adp(T)

induced by the map a : G/U x G/U — U\G/U. Let O, be the A(G) x Ap(T)-orbit of the point
(1,w) in G/U x G/U, as a locally closed subscheme of G/U x G/U it is idenpendant of the choice

of 1. Under this isomorphism A(G)\O,,/Ar(T) is sent to %. Now U, x T*F is identified

with the stabilizer of the point (1,w) which yield the desired isomorphism.

= A(G\(G/U x GJU)/Ap(T),

We recall that to w and w, Deligne and Lusztig [DL76] have attached a pair of varieties
X(w) = {gB, L(g) € BuB} C G/B,

and
Y(w) ={gU, L(g) € UwU} C G/U.

The following facts hold, we refer to loc. cit.
(i). Both varieties X (w) and Y (1) are GF-stable in G/B and G/U respectively.

(ii). Consider the right action of T on G/U. The variety Y (w) is T%¥-stable. The T%" and
GY¥-actions on Y (1) commute.

(#41). The map induced by the projection G/U — G/B induces a map Y () — X (w). This map is
a T"Y-torsor.

In particular the cohomology RI'.(Y (), A) has two commuting actions of 7% and G¥. We can
now define the Deligne-Lusztig induction functor as

Ryt Deons (pt/T™", A) = Deons (pt/GT, A), M = M @pwr RU(Y (1), A).
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Consider now the following diagram

U\G/U G e

I [ |

A(G\(G/U x GJU) /AT +—— G¥\G/B —— GF\pt

| I H

A(G)\Ou/Ap(T) ——— GF\X(w) —— GF\pt

where the first line is the F-twisted horocycle correspondence, the second line is isomorphic to the

first via the two isomorphisms A(G)\(G/U x G/U)/Ar(T) = [{A\EF/TU and A(ﬁB = A(G)\(G x

G)/Ar(B) = G¥\G/B induced by the map a. The bottom line is induced by the inclusion of the
orbit O,, and the fact that X (w) is the intersection of BwB/B with the graph of Frobenius.

Denote by k,, : U\%F?/U — pt/T™Y the map induced by the quotient map T%F x U,, — T"F.

Under the isomorphism A(G)\O,/Ar(T) = pt/(T*F x U,), the map G\ X (w) — pt/(T*F x

Uw) LN pt/T%Y corresponds to a T¥-torsor over GF\ X (w). It is nothing else than G¥\Y (w). To

sum up we have the following diagram

U\G/U r G q G
AdpT AdrB AdrG
o] T |
U\BwB/U

a5 GI\X(w) —— G\pt

Let M be a sheaf on U\%ﬁ/[}, proper base change implies that
Qi M = qr* M.
We then deduce the following theorem.

Theorem 3.3.8. There are canonical isomorphisms of functors Deons(pt/T%F, A) — Deons(pt/GF, A)
and Deons(pt/GY, A) — Deons(pt/T*F, A) respectively,

Qi ki ~ RO (Y (W), A) @pur —
kw,*i;r!q* =~ RFC(Y(U))? A) ®GF -

Proof. Using the above diagram, both functors can be summarized with the following correspon-
dence

pt/TF &2 bt /(TF % U,) < GF\Y (w)/T" % pt/GF. (3.26)
The result now follows from the Kunneth formula. O
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3.3.3 Sheaves on a torus

Before reconstructing Deligne-Lusztig theory we first study the case of a torus. Let us now introduce
some notations for the representations of 7%Y. Note that T%Y is naturally a quotient of 7¢(T),
induced by the Lang map L, : T — T which is a T%F-covering. We denote by CH(T*Y) the set
of Zg-characters of T*Y of order prime to £, the quotient map 7 (7) — T defines an inclusion
CH(T"¥) < CH(T). For x € CH(T"F) there is a corresponding block of Z,[T%F] and we denote
the corresponding idempotent by e, € Z;[T*F]. We want to relate the two equivariance conditions
on T : the Ad,p-equivariance and the (T, L1 )-equivariance.

Lemma 3.3.9. We have an equivalence of categories

T _
Dcons(m, QT)unip = echons(pt/TwF7 Z€)~ (327)
Proof. Consider the adjunction
For: D (LQ) ip S Deons(T, Q7 )unip : AvAder
- Ycons AdwF(T)7 T Junip cons\4 » 34T Junip - )

where the functor AvA9“F = gy(— R, Qr[2dimT]) for a : T x T — T, (z,y) — xLy,r(y) and For
is the forgetful functor which is right adjoint to AvAder,

We compute the monad ForAvAdwr acting on Deons(T, Q7 )unip =~ Perfq,. It is enough to
compute AvAYF (Lr) = a)(p* L) where p : T x T — T is the first projection. By lemma 3.2.22,
we have

P Ly = Lrxr @Qpyr,p. Q7.

We have a = mo(idx L,r) and by using lemma 3.2.31 we have (idx L5 )1 Ly = @XGCH(TUJF) Lrxr®7,
Lyx1. Then miLyxr ®7, Lyx1 is 0 for non trivial x and miLryxr = Lr[—2dim T] by lemma 3.2.22
and the Qp-module structure is the one obtained from m, : Qryx7r — Qp. Putting everything
together we have ayp* Ly [2dim T| = Ly ®q,., » Q7. Taking the fiber at 1 yields Qr ®q,., . Q7 where
the left Q7 is an Qry7-modules via the composition m, (id X L,r)« = a. and the right one via the
first projection. But now we have

Q1 ®a.Qrurp. U =~ U L ar Lo = Le[TVF[0°]).

Now it follows from the Barr-Beck-Lurie theorem as in lemma 3.3.3 that the category of algebras
over this monad is equivalent to D?(Z,[T™¥ [¢>]]), that is €1 Deons(pt/T™F, Zy). O

Remark 3.3.10. Let us comment on the right hand side of 3.27, the category Deons(pt/T™Y,Zy) is
equivalent to the bounded derived category of modules over Z,[T*¥] which has a natural direct sum
decomposition according to the idempotent e, . For the idempotent ey, first note that e; Z,[T%¥] ~
Zg[TF[£>°]] hence the category e;Deons(pt/T%F, Zy) is equivalent to the bounded derived category
of Z[T™¥[¢>°]] modules. Consider now the composition of functors

T For w
mng)unip — Deons(pt/T FQr)

i) Deons(pt, 1) =~ Perfq,.

echons(pt/TwFazé) = Dcons(
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where 1 : pt — pt/T*Y is the universal torsor. Then for A € e1Deons(pt/T*Y,Z;) the Qr-module
obtained by applying all these functors is the following. Consider the Lang map L,r : T — T by
functoriality if induces a map of rings L« : Q7 — Qr, then by lemma 3.2.31 we have a natural
isomorphism

Lt @ap Lo, v ~ LTV [0])

wF, %

and that the composite of the functors is simply the forgetful functor corresponding to the map
Q7 — Zg[TVF[0]].

Similarly we have the following in the non unipotent setting.

Lemma 3.3.11. Let x € CH(T%") we have a canonical equivalence

T w
Dcons(m7 QT)X =~ echons(pt/T F)

Corollary 3.3.12. Combining all previous equivalences, we get the following equivalence

Dcons(pt/Twpvzﬁ) =~ @ Dcons(
xECH(TwF)

T
AdwF(T) 9’ QT)X‘

3.3.4 Monodromic variant

We now give a second construction of the Deligne-Lusztig induction functors but this time using
monodromic sheaves. We will also show that the two constructions are equivalent. This second
construction will make it much easier to compare the Deligne-Lusztig theory with Soergel theory
and will be relevant in the last section to compute the image under HCg of a Gelfand-Graev
representation.

Denote by Forr, the functor

T T
Dcons 779 Dcons 779
(Rdye ) 4 = Deons( g - 1)
kX T
— Dcons(m, QT)
U\BwB/U
~ Deons(——r—, 0
CO]’lb( AdF(T) y T)

where the first functor is the forgetful functor of the (T, Ly ® L,)-equivariance, the second is
a pullback under k, : zg F(Yi;“)x U=~ Ad :’;(T) and the last one is induced by the isomorphism

ng:(?/)[] ~ Ao (q;)wa. Consider now the following composition of functors
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_ T
wkF ~ R —
Dcons (pt/T 7Zf) — @ Dcons(AdwF (T) s QT))(
xECH(TwF)

@XGCH(T'UJF) Forr,

U\BwB/U
COHS(W

7QT)

U\G/U
Adp(T)’ 7)

% Dcons (pt/GF; QT)

iw.!
— Dcons(

O Do (p/GF Z).
Lemma 3.3.13. The previous composition of functors is isomorphic to the functor
Deons (pt/T™", Z¢) — Deons(pt/G" , Zy)
A A@puwr RL(Y (W), Zy),
where Y (W) is the Deligne-Lusztig variety associated to w.

Proof. Consider the diagram

T «——— T xpt/U, —~— U\BwB/U s U\G/U

pw,{ pw,zi poa | g

w w U\BwB/U U\G/U
pt/T ’ kuw pt/(T " Up) —~— de(T/) AC\iF(/T)

Tw

where all squares are Cartesian and the vertical arrows are the quotient maps for the Ad,g-action.
In the proof of lemma 3.3.9, we showed that p, 31(Lr ® Ly) = €,Z[T""][-2dimT]. Proper base
change implies

Priw1 (kL) (Lr ® L) = iy Forr (e Ze[TF])[~2 dim 7).

We can now apply lemma 3.3.5, to get that
ForQqur*iw,lForT,X(eXZg[T“’F]) = RI(G/U, (id x Fg u)*a*iw, (k)" (LT ® Ly))[2dim T.

We now have to identify the right hand side with the cohomology of the Deligne-Lusztig varieties,
which is lemma 3.3.14. O

Lemma 3.3.14. There is a canonical isomorphism, compatible with the actions of G¥ and T™Y
RI(G/U,(id x Fgu)*a"iw vy, (Lr ® Ly))[2dim T ~ ex RU(Y (w), Zy),

where Y (w) is the Deligne-Luszig variety associated to w and the map vy : BwB/B — T is the
projection onto T using the splitting BwB = U x T x U, induced by the choice of w.

Proof. Denote by Y (w) C G/U the subvariety of {gU, g 'F(g) € BwB}. Note that Y (w) is
independent of the choice of w. The map vy, : BwB — T induces a map v, : Y(w) — T defined
as v, (gU) = v4(g7'F(g)). Denote by X(w) C G/B the Deligne-Lusztig variety associated to w,
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that is X (w) = {¢gB,g 'F(9) € BwB}. The variety Y (w) C G/U is {gU,g 'F(g9) € UwU}, it
is therefore identified with the fiber at 1 of ;. Let us summarize the situation via the following
diagram

Y(w) —
s
X(w) +—— Y(w)

Vap

l |

U\BwB/U 2> T.

N

The subscheme Y (w) C G/U is T-stable for the action of T’ by right translation and the map

/

v,, is equivariant for the action of 1" on itself via the map £,r. The map ¢ is a T-torsor and the

map ¢ is a T"F-torsor. The action of T on ?(w) then induces an isomorphism
V() xT" T ~ V(w).

Where xT*" denotes the quotient by the action of T%¥ given by t.(x,y) = (zt~1,ty). In particular
this induces a canonical isomorphism

Vi(Lr ® Ly) = Qr BE" Lip(Lr © L),

where &g;F denotes the sheaf on Y (w) xT"" T descended from the sheaf X, on Y(w) x T. The
Kunneth formula now yields

@V (Ly © Ly) = (qiQr ®ap RUA(T, Lip(Ly @ £,))7 .

We claim that RL.(T, L p(Lr @ Ly)) = ey Ze[T*¥][-2dim T)]. Let us first show that this implies
the result,

v (Lr ® Ly) = (i oy RU(T, Lop(Lr @ L))
= (¢ ®q, exZeT][—-2dim T))T""
= eyqZ¢[—2dim T).

We now prove the claim. Decompose T%F = Ty x T, where T5 is of -torsion and T} is of prime to
f-torsion. We factor L : T — T into T f—1> T f—2> T where f; is the quotient by 77 and fo the
quotient by T5.

As T is of /-torsion, we have an isomorphism fy£, = L. On the other hand, by lemma 3.2.22,
foLr = Lt ®q, 1, , Qr where fa . : Qp — Qr is the map induced by f>. Combining both of those
facts, we have f3 (Lt ®z, Ly) = (L1 ®z, Ly) @aq f,. Q1

As f1 is the quotient by 77 which is of prime to ¢-torsion, the induced map f1 . : Qp — Qp is
an isomorphism, hence f;Lr = Ly. We have

fl*.fQ*(LT & ‘CX) = fl*(LT ®Zz ‘CX) ®QT,f2,* Qr
= fl*(LT ®Ze LX) ®QT7f2,* Qr
= Lt ®z, [TLx ®ar.fs,. Q1.
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To compute the cohomology, we first apply f1 .. This yields
fi(Lr @z, f{Ly) ®ar. fo. Qv = fixLr @7z, Ly @aq 1, . Q1

by the projection formula. The sheaf f; Ly decompose as @X”ECH(TwF) Ly ®7z, L+. We have
RE(T, f14(Lr ®7, Ly) @ar.fs. 1) = @RF (Lt ®7, Ly @z, Ly) ®ar, . Q1)

= RFC(T, Lt ®Ze ﬁx—l ®Z€ ‘CX) Q1 fa.. Qr
=X ®z, Zg[—? dim T 7, f2. Qr
= X ®g, Ze[T*T)[¢][-2dim T
= ey Zg[T"F][-2dim T
where the second line comes from the fact that the cohomology of Lt ® L, is 0 if x is non trivial,

the third one comes from the identification of the action of 17 on the cohomology and x denotes
the one dimensional representation of 7T corresponding to . O

3.3.5 Comparison of the two functors
Consider the two functors Deons(pt/GT, Ze) — Deons(pt/T™F, Zy),
(i). it,HCH:(—), where HC} = r.q' as before,

(i) it, By Av, HCH(— ®z, 1), where Avy = ai(— Mo, (Lt ® L;[2dimT')]) and a is the action
map of T" acting by right translations.

These functors are the right adjoints of the functors of theorem 3.3.8 and lemma 3.3.13, which we
have shown to be isomorphic to the Deligne-Lusztig induction functors. By the unicity of right
adjoints, these functors are isomorphic.

Let M € Deons( %,Z@) and consider the action of T by right translation. On each T-orbit,
the sheaf M is monodromic for this action. The inverse of the forgetful functor of lemma 3.2.44 is

a functor
U\G’/U @D U\G/U

b = @X(I)X : Dcong( AdFT y T)X'

Lemma 3.3.15. The functor ® is an equivalence and the following diagram commutes.

G A \G/
Dcons( U‘:\\dF/qlv] 5 ZZ) (b @X Dcons( UAdFTU 9 QT)

>
k Oy AvyHOL(~®7, Q)
S ~

Decons (pt/GFv Zf)

where HC% denotes either the functor HCg or the functor HCE.

Proof. We show the statement for HC the same proof applies to the functor HCp. By construction,
the functor ® is an equivalence onto its image. It is therefore enough to see that ® is essentially
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surjective. Let M € DC()HS(%GF/TU,QT)X7 then on all strata the Qp-structure factors through a

quotient Qg /I™ where I is the augmentation ideal. Hence this happens globally, therefore M is in
the category of constructible Z,-sheaves, which lies in the essential image of ®.
To show the commutativity, note that Av,HCy (- ®z, Qr) = Av, (HC(—) ®7, Q7). Now

Avy((=®z, Or) = al((Lr © Ly)[2dim T] Mo, (- ®z, Q1))
= a((Lr ® £,)2dim T] B, (-)).

But on x-monodromic sheaves the functor a\((Lr ® £,)[2dimT] X7 (—)) is nothing else than the
functor . O

3.3.6 Parabolic variants and parabolic Deligne-Lusztig functors

In the previous section we have discussed the link between the Deligne-Lusztig induction functors
from a torus. In this section we give a a more direct construction of the Deligne-Lusztig induction
and restriction functor but which also recovers the parabolic induction/restriction functors.
Consider the following situation. Let L C G be an F-stable Levi subgroup and P = LV a
parabolic with Levi L and unipotent radical V', we do not require P to be F-stable. We will denote
by F(V) the image of V under F.
Consider now the correspondence

WG/F(V) vv G g G
AL AP AdeG'

Consider the inclusion i : PF(P) C G. We have %F)f(v) =pt/(LF x (VNF~1(V)). Denote
by kr, : pt/(LF x (VNF~1(V)) = pt/LF the map induced by the projection L¥ x (VNF~1(V) —
pt/L¥. We consider the functor gp i Attached to the data of (P, L,F), there are parabolic
Deligne-Lusztig varieties, see for instance [DM14],

Xp ={gP L(g) € PF(P)} CG/P

and
Yp={gV.L(g) e VF(V)} CG/V.

The map Yp — Xp is an LF-torsor and the cohomology RI'.(Yp, A) is equipped with commuting
actions of G¥ and LF.

Theorem 3.3.16. We have an isomorphism of functors Deons(pt/LY, A) — Deons(pt/GF, A),
gpyrpik; ~RT(Yp,A) @pr —.

Definition 3.3.17. We denote this functor by ipcp. It is usually called the parabolic Deligne-
Lusztig induction functor. Its right adjoint is denoted by r1-p and is usually called the parabolic
Deligne-Lusztig restriction functor.
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Proof. The proof is very similar to the proof of theorem 3.3.8. Consider the diagram

V\G/F(V) TP € qp G
Adr L Adg P Adr G

VA\PF(P)/V F F
AdiL = G \Xp *MIP G \pt

] 1

Pt GF\Tp

where the two left squares are Cartesian and Yp = {g € G, L(g) € V}. Note that the map Yp — Yp
is a VN F~1(V)-torsor. Then we have by proper base change for M € Deons(pt/LF, A)
qpirpiM = gp rp(L1* M) pe[2dim(V N F~H(V))]
= (gpyirrp 1) 1* M) e [2dim(V N FH (V)]
= (qgparp L 1* M) pr[2dim(V N F~H (V)]
= 1*M @1 RI.(Yp, A)[2dim(V NF~1(V))]
=RI(Yp,A) ®@pF —.

The first line follows from the fact that the map 1: pt — pt/(L¥ x (VNF~1(V))) is a L¥ x (V N
F~1(V))-torsor and the last one by the fact that R[.(Yp, A)[2dim(VNF~1(V))] = R[.(Yp,A). O

3.3.7 Compatibility with parabolic induction

Finally we want to discuss some compatibilities with parabolic induction. There are two statements
we will be interested in

(7). compatibility of the F-horocycle transform with parabolic induction,
(#i). transitivity of the Deligne-Lusztig induction.

The second point is already well known but we give a proof with the stacky formalism for com-
pleteness.

Let us consider the first situation. Let B C P C G be a F-stable standard parabolic with
F-stable Levi F. Denote by V the unipotent radical of P, by By = L N B, this is a Borel of L
and by Uy, the unipotent radical of By,. In particular, we have B = B V. We define the parabolic
induction functors

(7). For the horocycle correspondence, consider the correspondence

U \L/UL & U\P/U N U\G/U

AdpT AdpT AdpT ’ (3.28)

where the left map is induced by projection P — L and the quotient U — Uy, and the right

map is induced by the inclusion P — G. The parabolic induction functor is zgg p =tis".
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(#4). On the representation side, consider the correspondence

pt/LF < pt/PF Y5 pt/GF, (3.29)
the parabolic induction functor is ircp = t]s™.
Lemma 3.3.18. There is an isomorphism of functors Dcons(%, A) = Deons(pt/GY, A),
HCFiCp = irc PHOE, (3.30)
where HC? and HC{; denote the horocycle transform for G and L respectively.

Proof. Consider the following commutative diagram of stacks.

UNL/U, , s U\P/U t . U\G/U

AdpT AdpT AdeT
TLT TPT T"‘
_ L . _Pr _G
AdeBL T T ARdpB U AdpB

| | Js

pt/L¥ «—— pt/P¥ — pt/G¥
S

where the bottom and top lines are the maps defining the functors i;-p and ZES p, the middle
horizontal line is induced by the projections P — L and B — By, and by the inclusion P — G.
The exterior vertical lines are the maps defining the functors HC§ and HC?. The map rp is the
quotient by U acting on the left and the map ¢p is the map ﬁ — WF;P induced by the inclusion
B C P. It follows from these descriptions that the top right square is Cartesian and the bottom
left one is Cartesian as well. The lemma is a proper base change exercise

ircPHCE = t{s™qr, 1}

!/
= tigpsiry

= qit1,7ps"
=qr*ts”
= HclgiIL{gP'
O
We now pass to the second statement. Consider now the following tower of groups
McQcLcCPcCQaG, (3.31)

where P is a parabolic of G with Levi L and @ is a parabolic of L with Levi M. Denote by Up
and Ug the unipotent radicals of @ and P and by Q' = QUp C G. This is a parabolic of G with
Levi M. The following lemma is well known, see for instance [CE04] 7.1.9 for a different proof.

Lemma 3.3.19. There is an isomorphism of functors Deons(pt/MY, A) — Deons(pt/GF, A) a

iLCPiMCQ = iJV[CQ/- (332)
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Proof. Consider the following diagram.

G
AdrG
G G
A \ o \
Upr\G/F(Up) Q'F(Q) PF(P)
Ug\G/F(Ug/) Up\(Q’ F(Q ))/F(Up Up\<PF<P)>/F(Up)

Adp M

T

U \(Q' F(Q N/EWUqr)

o
\

UQ\(QF Q /F(UQ)

h—>‘ih

dp M AdrQ
M UQ\L/F(UQ)
AdFM Ad F

We will detail this diagram while doing the proof of the lemma. Consider the two functors
Dcons(ﬁ,A) — Dcons(ﬁ,A) obtained by doing *-pullbacks and !-pushforwards along two
exterior paths ﬁ -3 ﬁ, doing so along the leftmost exterior path computes iy;cq and
doing so along the right exterior path computes the composition ircpirrcg. Therefore once we
show that this diagram commutes and that enough squares are cartesian the statement will follow
from the proper base change theorem.

Firstly, the square

G G
Adr Q7 AdpP
Q'FQ" PF(P)
AdrQ’ Ady P

is induced by the inclusion of @' C P C G hence it is commutative.
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The squares

_G
AdrQ’
Up\G/F(Up) Q'F(Q)
AdFQ AdFQl
Ug/\G/F(Ugq/) Up\(Q'F(Q"))/F(Up)

—~ |

Ug/ \(Q'F(Q"))/F(Ug)
Adr@Q

are horizontally induced by the inclusion Q'F(Q’) C G and by the quotient by Up and Ug vertically
hence these commute and are cartesian.

The square
QF(Q) PF(P)
AdrQ’ Adp P
Ur\(Q'F(Q))/F(Up) Up\(PF(P))/F(Up)
AdrQ AdpL

is horizontally induced by the inclusion Q' C P and vertically taking quotients by Up acting on by
left translations. In particular, both vertical maps are Up-torsors hence the square commutes and
is cartesian.

The square

Up\(QF(Q")/F(Up) Up\(PF(P))/F(Up)
AdrQ AdrL
\ QF(Q) \ L
AdrQ AdeL

is induced by the commutative diagram of groups

P—— L

Q —Q
where both horizontal maps are the quotients by Up. There is a canonical isomorphism of stack
Ur\(Q igg/}?wp) = AdFQx(%i(r?F)ﬂ(Up)) induced by the inclusion @ C Q' and the left vertical map
of the former square is isomorphic to the projection % o Q;Q(SE%)F(UP)) — %;i%), in particular the

left vertical map is a trivial Up N F~}(Up)-gerbe. The same applies the the right vertical map and
both trivializations of these gerbes are compatible. Indeed these trivializations are induced by the
splittings of P — L and Q' — @ which are by hypothesis compatible, hence the square we are
interested in is commutative and cartesian.
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The square

Ur\(Q'F(Q))/F(Up)
AdrQ

UQ/\(Q/F(Q'))/F(UQI)\ QF(Q)

Adp M AdrQ
U \(QF(Q))/F(Uq)
Adp M

is induced by the maps Q" — @ — M and both vertical maps are Ug-torsor hence is it commutative
and cartesian.
The triangle

U/ \(Q'F(Q"))/F(Ugr)

Adr@Q
Ug\(QF(Q))/F(Uq)
Adp M
M
Adp M
is isomorphic to the triangle
M

AdpMD((UQ/ﬂFfl(UQ/))

T

M
AdFMM(UQﬂFfl(UQ))

|

_M
Adr M

and the maps are induced by the quotient Ug: — Ugq, hence the triangle is commutative.

The remaining right hand side of the diagram is clear commutative and the remaining square
is cartesian. The lemma now follows from iterated applications of the proper base change theorem
and the commutativity of the diagram. O

3.4 Integral Soergel theory

In this section we set up an integral version of the results of [BR22b] and [Gou2l]. Most of our
arguments will reduce to their statements.

3.4.1 Setting up the geometry

Consider the stack U\G/U. There are three actions of tori that we can consider :
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(7). the action of T induced by left translations U\G/U,

(#1). the action of T on U\G/U induced by the action of T on G given by t.x = xt, we will refer
to this action as the right action of T',

(#31). the action of T x T induced by left and right translations.

The quotients by these actions are the stacks B\G/U, U\G/B and B\G/B respectively. There are
therefore three version of the free monodromic categories that we can attach to this stack, we will
soon see that they are isomorphic. We refer to Appendix 3.A for the definition of the equivariant
categories. Denote by

(i), H'ft = @D ccon(r) Dindeons(U\G /U, QT);eft where the equivariance is relative to the action of
T on the left.

(i1). Hrisht = @D con(r) Dindeons(U\G /U, QT)’;ght where the equivariance is relative to the action
of T on the right.

(4i1). [Hrleft right — @X X' €CH(T) Dindeons(U\G/U, QT)iff;’/right where the equivariance is relative to
the action of T x T on the right and the index (x, x’) refer to sheaves that are equivariant for
Lrxr ®g, (£y Wz, Ly).

We equip the space U\G/U with its Bruhat stratification. The strata are indexed by the Weyl
group W, and the stratum corresponding to w € W is U\ BwB/U. We denote by i,, : U\BwB/U —
U\G/U. We first need a lemma to deal with the case of a torus.

left,right

. ;L . .
o is zero unless X' = x. In this case, this

Lemma 3.4.1. The category Dindcons(Ts Qrx1)
category is equivalent to D(Qr).

Proof. Consider the multiplication map m : T x T — T. Consider the monad m'm, acting on
Dindcons(T' X T, Qrx1)y,y- Since the map m is surjective, m' is conservative as it is continuous,
we can apply the Barr-Beck-Lurie theorem [Lur] 4.7.0.3 and identify Dingcons(7) QT)i?’f;(’,right with
the category of m'my-algebras in Dindcons(T X T, Qrxr)y,x' = D(Qrxr). The sheaf mi(Lyxr ®z,
(Lx®Ly) is 0 if x # x" and isomorphic to Ly ®z, £, [2dim T by lemma 3.2.22 if x = x’. Hence
if x = x/, we have 1*m'my(Lrxr ®7, (Ly W Ly)) = Qp. The algebra Qr € D(Qrxr) is the

quotient of Qryxr — Qp induced by the map m. Hence Dindcons(7Ts QT)ff;’,right is equivalent to

QT — MOd(D(QTxT)) = D(QT) O

Lemma 3.4.2. All three categories H'°f HYieht gnd Hleftrieht gre compactly generated. The cate-
gories of compact objects are the categories

(Z) @xeCH(T) Dcons(U\G/U7 QT)I;BR;
(i#d)- D ecn(r) Deons (U\G/U, Qr) =,

(Z“) and 69)(,X’ECH(T) Dcons(U\G/U, QT)I;;,f;c(,/right7

respectively.
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Proof. First since the inclusion ¢,, are quasi-compact and schematic all functors ¢, 1, iim Ty, x5 Ty DE-
tween the categories H’ and @XGCH(T) Dindeons(U\BwB/U, QT):C where ? € {left, right, (left, right) }
commute with arbitrary direct sums. For 4., and ¢}, this is clear since they are left adjoints. We
show it for 4, ., the case ZL; can be deduced from the case of 4, , using excision triangles. We only
need to check that the canonical map @iy «Ai = Gw « i A; for A; € H’ is an isomorphism, since
the functor 7,, . commutes with the forgetful functor and smooth pullbacks this can checked after
pulling back to G/U, where this now follows from the statement on schemes by [BS15] 6.4.5.
Since zlu and i,, « are continuous, their left adjoints preserve compact objects. We now show the

lemma by induction on the strata. Denote by V % U\G/U < Z the inclusion of the open stratum
U and Z its closed complement. Using the exicision triangles for A € H”,

JFA = A= i A, (3.33)

we see that A is a colimit of compact objects if and only if j*A and i*A are so. By induction this
reduces to showing that @XECH(T) Dindcons(U\BwB/U, QT)Z< is compactly generated. But this
category is equivalent to the category @X D(Qr). This is clear for ? € {left,right} and by lemma
3.4.1 for the case of the action of T' x T'. This proves the compact generation statement.

We now identify the compact objects. Again by induction on the strata, and using the same
triangle, we see that an object A is compact if and only if for all w,} A is compact. Hence the
category of compact objects is the stable category generated by all objects of the form i, A for
varying w and A € ®x€CH(T) Dindcons(U\BwB/U, QT); a compact object. On U\BwB/U the
category of compact objects is €D, c (7 Deons(U\BwB/U, QT); And the category generated by
all 4,1 A for varying w and A compact is then @, Deons(U\BwB/U, Q7). O

The inclusions of T 2% T x T <= T given by djeqt(t) = (£, 1) and irigne (£) = (1,£) induce
Or.

Tleft, * Tright,*

QT><T

inclusions Qp

Lemma 3.4.3. There are well defined functors
Hleft For!ef* Hleft,right For*isht Hright (334)

induced by forgetting the (T x T, Ly« ®z, (Ly XZ L,))-equivariance along tief, « and iyight,« Te-
spectively.

Proof. To check that these functors are well defined we have to check that the functors For'® and
For™#" preserve constructibility. Let A € Deons(U\G/U, QTxT)iff;’,“ght. As in the previous lemma,
we can assume A = i,,) A for some object

Ao B Deons(U\BwB/U, Qryr)y -
x,x' €CH(T)

We can further assume that Ay € Deons(U\BwB/U,Qrxr)y, and that wy’ = x otherwise
this category is zero. By lemma 3.4.1, the category Deons(U\BwB/U, Qrx1)y,y is equivalent to
Deon(Q27). We can assume that A corresponds to Q0 as this objects generates the stable category
Deon (7). Therefore Ag ~ v ((Lrxr @Qpyr Q1) ®7, Ly)[l(w) +dimT] as an Qryp-sheaf. Since
Lryr ®qp,p Q7 =~ Lt as an {r-sheaf after forgetting along either the left of right inclusion, we
get the desired constructibility statement. 0
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Lemma 3.4.4. Both functors For'® and For™&™ gare equivalences.

Proof. We first show that For'®® and For"®" induce equivalence on each strata.

P Deons(U\BwB/U,Qryr)yy ~ D Deons(U\BwB/U, )™, (3.35)
x,x'€CH(T) x€CH(T)
and
B  Dens(U\BwB/U,Qrxr)yn =~ D Deons(U\BwB/U, Q)™ (3.36)
x,x' €CH(T) x'€CH(T)

We do it for the for the first one. Note that we have an equivalence of categories Deons(U\BwB /U, Qryxr)y .y =
Doons(WT', Qrx 1)y Where wT C N(T) is the closed subscheme of N(T'), the normalizer of T in
G, over the element w € W. Let w € wT, this choice determines a map my, : T X T x T, (t,h) —
w(Ad(w)(t)h) where Ad(w) denotes the adjoint action of W on T'. Arguing as in lemma 3.4.1 with
the map m,, instead of m, we get that Deons(U\BwWB/U, Qrxr)y v = 0 if wx’ # x and if x = wy/,
then Deons(U\BwB/U, Qrxr)y,y = Qv — Mod(Deons(Qrx7) where Qp is the Qpyp-algebra in-
duced by the map m,,. In particular, if wx’ = x then Deons(U\NBwB/U, Qrx7)y,y' = Deon (7).
Moreover we have Dons(U\BwB/U, QT)l)fft ~ Deon(27) and the left forgetful functor therefore
induces a functor Deon (27) = Deon(Qr) which sends Qr to itself and is therefore an equivalence.
To conclude that the functor For'®™ is an equivalence, we proceed by induction on the strata. Let
V C U\G/U be a stratum and let Z = V — V be the closed complementary of the closure of
V. Denote by i and j the inclusions Z C V and V C V respectively. Assume by induction that
For'® induces an equivalence on the full subcategory of H'*t and H'*fright supported on Z. Let
A, B € H'*ftright he supported on V. Using excision triangles, we can assume that A = i, A or
A = j1Ap and that B = 5By or B = i,By. We now have

(i). if A =i, Ay and B = i, By, then Hom(A, B) = Hom(For'®®(A), For'®®(B)) by induction,

(i1). if A= jiAg and B = 5By, then Hom(A, B) = Hom(For'®®(A4), For'®™(B)) using the stratum
case,

(#41). if A= j5Ap and B =i, By, then Hom(A, B) = 0 and Hom(FOI"IGft(A)7 Forright(B)) =0,

(iv). finally if A = i,Ay and B = 5By, then as the forgetful functor commutes with i' and j;, we
have

Hom(A, B) = Hom(Ay, i'jiBy) = Hom(For'®* A4y, For'"i'j, By)
= Hom(Forleft A, j!ForIEft By)
= Hom(For'*® A, For'*"* B).
This establishes that For'® is fully faithful, as the subcategories of Hleft:right and Hleft of

sheaves supported on V are generated by the sheaves of the form i, Ay and 714, we get the
essential surjectivity.

O

Remark 3.4.5. Note that the functor For™#" ~!'For'®® is an equivalence that is not Qp-linear.
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From now on we denote by H either of the categories H!'®ft, Hright o Hleft:right which are identified
through For'®® and For™&". This category is equipped with its perverse t-structure. For most
constructions, we will work with H"8"*. We denote by H“ the full subcategory of compact objects
and by HY the category Deons(U\G/U, Q).

Remark 3.4.6. Since For'®" is an equivalence, the category H is equipped with an Qpp-linear
structure.

We will need to apply some classical results of Soergel theory, which are recalled in Appendix
3.B. Consider the schemes

G/B = UyewBwB/B and G/U = Uyew BwB/U.

equipped with their Bruhat stratification. The map G/U — G/B is a T-torsor. The pullback along
G/B — U\G/B yields an equivalence Deons(U\G/B,Z¢) ~ D.,.(G/B,Z) where the category is
defined in Appendix 3.B. Recall that we have chosen a compatible system (w) of lifts of the elements
of the Weyl group W. Each w induces a T-equivariant splitting BwB =U x T x U,,. For w € W,
recall that we denote by v, : U\BwB/U — T the induced projection onto T'. Furthermore, it is
known that the schemes BwB/B are affine spaces and that the inclusions BwB/B — G/B are
affine hence we can apply the results of Appendix 3.B.
We thus have

(4). the standard and costandard sheaves Ay, y = iy 1y (Lt @7, Ly)[dim T + £(w)] and V,,, =
b,V (L @7, Ly)[dim T + £(w)]. These sheaves are perverse sheaves on U\G/U.

(27). For all pairs (w, ), there exists an indecomposable perverse tilting sheaf T, , by theorem
3.B.12. This is a sheaf that is supported on the closure of U\BwB/U and which admits a A
and a V-filtration in Perv(U\G/U, Qr). We refer to Appendix 3.B for the definitions.

Since we used the torsor G/U — G/B for the construction of the tilting sheaves all these sheaves
are a priori considered as (twisted) equivariant sheaves for the right action of T'. By lemma 3.4.4,
they also carry an equivariant structure with respect to the left action of 7. Note that, while the
categories H" &Mt and Heft:ri8ht are equivalent, we cannot apply the construction of Appendix 3.B
to the T x T-torsor U\G/U — B\G/B as the strata of the target are the stacks B\ BwB/B which
are not cohomologically contractible.

Definition 3.4.7. We define Tilt(U\G/U) C H*:? the full subcategory of tilting objects. We will
also denote by Tilt(U\G/U), the corresponding full subcategory of H.

Definition 3.4.8 (Weyl groups). Let x, x’ € CH(T) be two characters, we set
(1). Wy = Stabw (x),

(it). WY the subgroup of W, generated by all s, such that aY* L, is trivial,

(i17). Wy ={w e W, x =wyx'}.

Definition 3.4.9. Let x,x’ € CH(T) we denote by H‘[‘;(, A the full subcategory of HY generated

by the A, such that wy = x'.

Lemma 3.4.10. Let x € CH(T) and w,w’ € W we have HomH;(Awyx, Ay ) =0 if wy # w'x.
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Proof. We have
Homgzo (A, x, Aw ) = Hom(iy, Au y, v (Ly @ Ly [dim T + £(w')]))
= Homp,,,_ (7,07, (Vur tig Dy, (L1 @ Ly [dim T + £(w') — 2N])).
where N is the relative dimension of the smooth morphism v, hence we have v, = v,[~2N]. The

sheaf v, 11, Ay, is by construction (T, Lt ® L )-equivariant on the right and (T, (L7 ® Loy—14y )-
equivariant on the left. As Hom(L,14y,Ly) = 0 if w'~lwy # x, we get the desired vanishing. [

Lemma 3.4.11. We have
HY = @Hﬁ(’,x]'
X/

Proof. First note that H‘[’;(, X is zero if x’ is not in the W-orbit of x. The result then follows from

Lemma 3.4.10 O

3.4.2 Blocks

For this whole section we refer to [LY20] Section 4. We equip the group W with the Bruhat order,
this is the order induced by the closure relations of the Bruhat stratification, ie w < w’ if and only
if BuB C Bw'B.

Definition 3.4.12. We call the elements of

W = XWX'/W;’ = W;’\XWX/
the blocks for [x, x']. Given a block 8 € \W._ ., we denote by H&/ﬁ N the full subcategory of H,
generated by the objects A, , for w € .

Definition 3.4.13. Let a« € \W,,,8 € ,w"W,» and w € a,v € 8 then wv lie in a block called
af € yW,.. The formation (a, 3) — «af does not depend on the chosen representative and is
associative.

Definition 3.4.14. Let x € CH(T) and denote by
(i), BY = {a¥ € B, (a¥) Ly = Zo)r},
(i1). &y ={a € ®,a’ c ®/},
(iid). Y+ = BY N DV,
(v). Denote by Sy = {so € Wy, such that " is indecomposable in @ . }.

It is known that (W7, S, ) is a Coxeter group and that (®,,®)) is a subroot system of (&, ")
with Coxeter group (Wy, Sy).

Definition 3.4.15. Let 8 € x’Wx be a block, and consider it as a poset with order induced by

max min

W, then there is a unique maximal element and a unique minimal element wg™* and wg

Lemma 3.4.16 ([LY20] 4.2, 4.3). Let o € \ W, and B € wW_ . then the following holds

- min,,,min __ ,,,min
(1) wg™wg™ = wg',
(id). wIWPX = whax,
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3.4.3 Tilting objects

Let x € CH(T) and consider the ring Qrp ®Qw§ Qr, where QTVE/; C Qr is the ring of W-invariants.

This ring is naturally a quotient of Qr ®7, QTT.

Lemma 3.4.17 ([BR22b| 8.4). The map Qr ®z, Or = Qr ®Qw§ Qr factors through Qry7 making
T

the following diagram commutative

Qr @z, Qr —— Qrxr

T~ |

Qr ®Q;v§(> Q.

Proof. The proof of [BR22b] is done for the mod ¢ variant but the same argument applies. O

Lemma 3.4.18. We have Endge (A ) = Qr and the Qryr-module structure is given by the map
Qrxr — Qr induced from T x T+ T, (t,h) = w(t)h. One can replace Ay, by Vo . And for all
A € Perv(U\G/U,Qr)y the Qpyr-structure factors through Qp ®QW>‘<’ Qrp.

T

Proof. Since ity Ay, = v*(Lr® L, )[dim T +¢(w)] as U\BwB/U is open in the support of A,, ,, we
have Endge (A, ) = End(v* (L ® Ly ) [dim T +£(w)]) ~ Qp. The statement about the factorization
follows from the proof of lemma 3.4.4. The last statement follows from the fact that the sheaves
Ay x generate HY. O

Lemma 3.4.19. Let x € W and w # w' € W. Then we have

Hompery(t1\a/v,00), (Duw,x> Bw x) = 0.

Proof. The proof of [BR22b] 6.2 extends verbatim after replacing RY. ® RY. by Q7«7 and inputing
lemma 3.4.18. O

As in [BR22b] 6.3, we define the graded functor on tilting sheaves. We fix a total ordering on
W extending the Bruhat order. For w € W denote by (U\G/U)«,, the union of all Bruhat strata
corresponding to w’ < w and j<y, : (U\G/U)<w C G. For a tilting sheaf T' denote by T%,, the
kernel of the adjunction map T' — j<w +j%,T. The set of subobjects (T, ), forms an exhaustive
decreasing filtration of T, the corresponding graded parts gr,,(T) = T>y/T>y is a direct sum of
copies of Ay .

Lemma 3.4.20. The filtration (T )w s functorial and the associated graded functor

@Per, = gr: TU\G/U)y — Perv(U\G/U, Qr)

is faithful.

Proof. The functoriality of the filtration follows from the fact that Hom(A,, y, Ay ) = 0if w > w'.
The faithfulness follows from lemma 3.4.19. O

Lemma 3.4.21. Let T € Tilt(U\G/U) then there is canonical isomorphism gr,,(T') = iy ,135T.
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Proof. Denote by j>u : (UNG/U)>yw — U\G/U and js. : (U\NG/U)sy — U\G/U the inclusions
of all strata indexed by y > w and y > w respectively. Both of these maps are open immersions.
We then have an excision triangle,

Jowiisel = T = jewefiuT (3.37)

Since the adjunction map T' — j<u,«j%, 1 is surjective, this triangle is a short exact sequence
of perverse sheaves and T, = jsuw1js, T Let isy @ (U\NG/U)sw — (U\G/U)s, denote the
inclusion and i/, : U\BwB/U — (U\G/U)>,, the inclusion of the stratum w. We then have an
excision triangle in (U\G/U)>w

!

iswispwiswT = G50 T — i i is ey, T (3.38)

We apply j> to this triangle and using the fact that is,, is an open immersion and that i/, is a
closed immersion we get a triangle

JowdswT = GswiibeT = duwilT. (3.39)

By definition the first map is an injection of perverse sheaves and as T’ is tilting ¢} is perverse hence
w195, 1" is perverse and this triangle is a short exact sequence of perverse sheaves. O

3.4.4 Convolution structure

We define the convolution structure on H“. We do it in several steps. We will use the model of H
given by Hleft,right’
First let X be a stack. We define a functor

®Z2 : Dcons(Xa QT) X Dcons(Xa QT) — Dcons(X7 QT><T)

(A,B) — (A®ZB)'
For Ay, By € Deons(X,Qr z,) we first construct a sheaf (Ao®z,Bo) € Deons(X, Qrxrz,). First
consider Ay ®z, By, this is naturally an Qrz, ®z, Q7.z,-sheaf on Xproer. Let mpyr be the ideal
of Qrz, ®z, Qrz, given by Qr 7z, @z, m + m ®z, Qrz,. The ring Qry 7 is then the completion of
Qr 7, ®z, Qr7, along I. We then denote by (Ag®z,Bo) the derived completion of Ay ®z, By along

the ideal I in D(Xproet, Q7,2, @2z, Q1,7,) in the sense of [BS15] Section 3.5. This derived completion
is the functor D(Xproeta QT,ZZ &z, QTZ@) — D(Xproet7 QTXT,Z@) given by

Co = 1im(Co (g 2, @5, 012, (1.2, @2, Q1.2,)/17). (3.40)

Lemma 3.4.22. For Ay, By € Deons(X, Qrz,) the Qrxr z,-sheaf (Ao®z,By) is constructible.

Proof. Recall that an Q7 z,-complete sheaf Ay is constructible if Ag ®Qr 1z, Qrxrz,/Mrxr is
constructible, where my 7 is the maximal ideal of Qry7z,. But we have

(A0®2,Bo) ®ar, vz, Qrxrz. /Mrxr = (A0 @012, Qr,2,/M) ®F, (Bo ®0rz, U1z, /m).  (3.41)

But (4o ®qy.,, 1z, /m) and (By ®@qy.,, O1,z,/m) are constructible Fy-sheaf therefore this tensor
product is also constructible. O
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Definition 3.4.23. The functor
@7, * Deons(X, Q1) X Deons(X, Q1) = Deons (X, Qrxr)
(A, B) — (A®ZB)'
is defined as the Zs-extension of the functor
®2, * Deons(X, Q7.2,) X Deons(X, 27.2,) — Deons(X, Qrxr.2,)- (3.42)
Then we define a functor
Deons(UNG/U, Q7x1) X Deons(UNG/U, Qrx1) = Deons(U\G /U, QrxTxTxT)

as follows. Consider the following diagram

U\G xV G/U — U\G/U

U\G/U U\G/U
where m is induced by the multiplication map. Then we set for A, B € Deons(U\G/U, Q1)
Ax B =m(Az, B)[dim T.
Lemma 3.4.24. Assume that A € HY and B € H‘[‘;@»m]’ if X3 # X2 then Ax B =0 and in

[x1.x2]
general the QryrxrxT-structure on A x B 1s constructible as an Qrxr-sheaf after forgetting along

the inclusion Qrxr — QrxrxTxT nduced by the outer inclusions.

Proof. We argue as in [BY13] 4.3. We decompose the map m in two steps
U\G xY G/U % U\G xB G/U 2 U\G/U,

where m is the map induced by the multiplication in G and ¢ is the quotient by the T-action
t.(g,9") = (gt~ 1,tg), in particular the map ¢ is a T-torsor. It is enough to check the triviality of
qQ (A®Z@B) if xo2 # x3. The triviality can be checked after reducing modulo mryr«7x7. We have
an isomorphism R

q(AXz, B) /mrsrxrxr = q((A/mrx7) K, (B/mrxr)). (3.43)
The sheaf A/mryr is (T, L, , 7, )-equivariant for the right action of T' and B/myxr is (T, L, | 5,)-
equivariant for the left action of 7. Hence their tensor product is (7 £X2_1X37E)—equivariant for
the action of T given by t.(x,y) = (xt~1,ty). The pushforward along q is therefore 0 if yo # x3.
The constructibility assertion follows from the fact that AQZB is already Q1 «-constructible after
forgetting along the outer inclusions. This follows from lemma 3.4.4, indeed A is Qp-constructible
after forgetting the right action of Q7 and B is constructible after forgetting the left action of
Qr. O

We can now define the convolution functor
HY x HY — H¥
(A, B) ~ Forexymi (AN B),

where Forey; is the forgetful functor induced by the map Qry7 — Qrxrxrx7 induced by the outer
inclusions.
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Remark 3.4.25. Replacing Qr by QT,E in all this construction yields the same structure as in
[BR22b]. Moreover if we denote by Axg, B the convolution of two sheaves A, B € Deons(U\G/U, QT,E)unip-
Then for all C, D € Deons(U\G/U, Q1) unip we have

(C* D) ®z, Fr = (C ®z, Fe) #5, (D @7, Fo).

w

Corollary 3.4.26. The convolution defines a monoidal structure on H* and H[x NE

As H = Ind(H%), we can extend the monoidal structure to H using the universal property
of ind-completions. In particular we have a monoidal structure on H that is continuous on both
variables.

The following lemma is standard, we refer to [BR22Db] 7.7 and [Gou21] 8.4.2.

Lemma 3.4.27. We have isomorphism

(1), Ay * Dwry = Dpur  if Lww') = L(w) + £(w').
(11). Vwy * Var y = Vi if Lww”) = L(w) + £(w').
(#19). D=1y * Viox = Doy = Vo y % Dyt -

Proof. We only prove that A, is the unit in Deons(U\NG/U, Q1 )unip as the rest is standard. It is a
computation done on T, consider Lr[dim 7] * Ly[dim T] on T where x is defined as previously, by
3.2.22 we have Ly[dimT] # Ly[dim T] = my Ly (3 dim T] = Ly [dim T). 0

Lemma 3.4.28. Let o, € W, be two distinct blocks then for all w € a,v € B we have
Hom(Ay ., Ayy) = 0. In particular we get a direct sum decomposition of

w _ w,
X' .x] — @ H[x’,x] )
B

Proof. Psing the presentation of both objects as pro-objects, we reduce to the case WT’E%T’E Awx
and WT’F‘WT 7,80,y which is done in [Gou21] 8.5.6. O

Definition 3.4.29. For each character y € CH(T) and each block § we denote by Tj , the tilting
sheaf corresponding to wg"™*.

Lemma 3.4.30. Let x € CH(T) and 8 be a block. The multiplicity of Ay in a A-filtration of
T3, is one. Similarly the multiplicity of V., in a V-filtration of Ts , is one.

Proof. Reducing mod ¢ preserves the multiplicities of A-filtrations and V-filtrations, hence the
statement follows from [Gou21] 9.3.3. O

Lemma 3.4.31. The convolution is compatible with the block decomposition. Let x1,Xx2,X3 €
CH(T) in the same W -orbit and fix two blocks o € ;W , and B € \,W, , then for all A € H,

x1’ [x3,x2]

B af
and B € H[XZ’XI] we have Ax B € H[XS’XI].
Proof. The statement follows from [Gou21] 8.5.1 after reducing mod . O
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Lemma 3.4.32 ([BR22b] 7.10, [Gou21] 9.7.6). Let x1, X2, X3, xa € CH(T) in the same W -orbit,

fix three blocks 6 € \ W, .. B € W, and v € (,W, . Let o € \ , W, be the block 63v. For any

w € d and v € v we have an isomorphism
AU%Xs * Ty, AU7X1 =Ty, a-
Sketch of proof. We will indicate the main reduction. It is enough to prove both isomorphisms

AUJ,X:; * Ty, 82Ty 68, Txo,p * AU1X1 = Ltx1,87-

For both isomorphism, it is enough to identify 7TT7E(AM,X3 * T\, .3) by theorem 3.B.12 but this is
checked to be the corresponding tilting in loc. cit.. O

3.4.5 The Endomorphismensatz

Definition 3.4.33. A torsion prime for G is either a prime dividing the order of the fundamental
group of Gger the derived subgroup of G or a prime in one of the table of [SS68] 4.3. for each quasi-
simple quotient of G. A bad prime is a prime in one of the tables of loc. cit. for each quasi-simple
quotient of G.

The goal of the section is to formulate a version of the Endomorphismensatz in our setting.

Theorem 3.4.34 (Endomorphismensatz). Assume that ¢ is not a torsion prime for G. Let X1, X2 €
CH(T) and B € \,W, . There is a canonical isomorphism

Qr ®QW§1 Qr — End(TXhB)'
T

Remark 3.4.35. If we assume further that G has connected center, then the hypothesis is satisfied
if £ is good for G.
Remark 3.4.36. The condition on ¢ comes from [Gou2l], it is here to control the problems of the
non connectedness of the center of G or of its endoscopic groups. If we assume that G has connected
center and that x = 1, then the Endomorphismensatz holds without the hypothesis on ¢. This is
almost the case that appears in [BR22b] as they assume that G is adjoint.

We will explain the key steps of the proof which is in essence the proof from [BR22b] Section 9.
and [Gou21] 10.4. The key input is theorem 3.4.38. This last theorem is a technical result which
is an immediate generalization of the corresponding statements in loc. cit., their proof extends

verbatim, note that the only external input in their proofs is a result of [KK90] which is valid over
Z.

Theorem 3.4.37 (Completed Steinberg Pitie, [Gou2l] 10.2.3). Assume that £ is not a torsion
prime for G. Let x € CH(T), the module Qr is free of rank W3 over QQVYX.

Recall that we have fixed a generator v of 7} (G,,). For a € &, we denote by e’ € Qp the
element obtained by image of the generator of m;(G,,)¢ along the map a¥ : G, — T.

Theorem 3.4.38 ([BR22b] 8.4,[Gou21] 10.3.4). Assume that { is not a torsion prime for G. Con-
sider the map 7 : Qr ® W Qr — Fun(Wy, Qr) defined by
T

a®b (w— aw (D).

Then this map is injective and its image is the space of functions f such that f(w) = f(wsqv) mod (1—
"
e®) forw e WP and a € ®y.
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Sktech of proof of theorem 3.4.34. We only sketch the proof for the block § = 1, the other blocks
are deduced from this one as in [Gou21] 10.4.3. We have already gotten a morphism

QT ®QW§ QT — EI’IC{(CZ—'XJ)7
T
consider the composition

Qr @ wg Qr = Qr @ wg Ur — End(T = P End(Auy) =~ Fun(Wy, Qr)
weWp

where the first map is induced by a ® b — b ® a. The key remark is that this composite is the map
7 of theorem 3.4.38. This yields the injectivity of the map Qr ® e Qr — End(Ty1). To get the

T
surjectivity, by lemma 3.4.20, it is enough to show that any tuple (a,) in the image of this map
satisfies the condition of theorem 3.4.38, that is for all o € @;”*, we have a5y = a,, mod (1—e® ).
The proof of [BR22b] and [Gou21] is split in two key steps.

(i). First build a W x Wp-action on End(Ty 1) such that all maps in the previous comp051t10n

are W x Wp-equivariant. This allows one to reduce to showing that a;_ , = ajmodl — e*
for all a.

(#4). Then show the claim of (), which is then reduced to a computation in rank one.

For the first point the action on End(7) 1) is defined as follows. For w,v € Wy, set
End(Ty,1) = End(Ay y * Ty 1 % Ay ) = End(T)y 1),

where the first morphism is induced by the functor A, , * (=) * A, , and the second by the
isomorphisms of 3.4.32. We then refer to [BR22b] 9.6 and [Gou21] 10.4.5 for the argument why this
does not depend on the chosen isomorphisms and the compatibility with the action.

For the second point, the first step is to set Ty = js «jiTy,1 where s € S, and j, is the inclusion
of both strata corresponding to s and e. This sheaf is the tilting sheaf corresponding to s as it is
the case after applying 7, 5, by [BR22b] 6.10 and [Gou21] 10.4.4. This implies that as in [BR22b]
9.4, the map

g1, (1) = g1, (T)

is an isomorphism for w € {e, s}. We then have a commutative diagram

El’ld(TX)l) — End(TS) — QT D QT

|

Qr ®Q;v§ Qrp.

The diagonal map is simply the composite Qrp ® we Qr — Fun(W,Qr) — Fun({e, s}, Qr) where
the second map is the restriction. The map Qr ® Wo Q7 — End(T5) is surjective. This is a direct

application of Nakayama’s lemma once we see that after reducing mod the maximal ideal of Q7 is
becomes surjective, but this follows from using [BR22b] 6.6 after applying the functor g, T he
rest follows as in [Gou21] 10.4.7.
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3.4.6 Whittaker model

We define £ a rank one character sheaf on U as follows, consider the following composition

6:0 = 0/[0,0)= [[ Voo ] Ga > G,
acA aEA

where the third map comes from the chosen pinning of G. We fix a character ¢ : F, — ZZ and
denote by AS : G, — G, the Artin-Schreier covering. The choice of 1) determines a direct summand
of AS\Z called the Artin-Schreier sheaf, denoted by L. We then still denote by Ly = ¢* L.

Remark 3.4.39. The Artin-Schreier sheaf we have chosen takes its values in Z, but we can also see
it as an Qp-sheaf if we need to.

We consider sheaves on G/U that are £, ® Ly equivariant on the right and £y-equivariant on
the left. We denote the category of those sheaves by

Dcons(<(7’ ’lﬂ)\G/U, QT)X'

We have averaging functors Avy, and Avy . : Deons(U\G/U, Q1)y — Deons (U, ¥)\G/U, Q1)

defined by
a?(Ly ¥ —)[dim U],

where ? € {!,*} and a : U x G/U — G/U is the multiplication. By standard arguments [BBM04b],
the natural map Avy) — Avy . is an isomorphism, and from now on we drop the ! and * in its
definition. Note that as a is affine a; right perverse exact and a. is left perverse exact hence Ady is
perverse exact. The functor Avy has both a left and right adjoint given by Avy and Avy . defined
similarly.

Lemma 3.4.40. Any sheaf in Deons((U, ¥)\G/U, Qr), is supported on UB.
Proof. This follows immediatly from the genericity of ¥ and [BBMO04b]. O
Corollary 3.4.41. The functor i% : Deons((U, Y)\G/U, Q1) — Deons(T)y realizes a perverse
t-exact equivalence.

We denote the image of L1 ® £, under the inverse equivalence by dy .
Lemma 3.4.42. There is an isomorphism Avy,(dy,y) = D,/ ®B€X/EX Ty.3-
Proof. The proof is the same as in loc. cit.. Using the characterization of theorem 3.B.12 of
tilting perverse sheaves and their classification, it is enough to show the corresponding statement
for i g, Avy(6y,y), which is done in [Gou21] 12.9.3.(i1). O
Corollary 3.4.43. The sheaves T, g for varying x and 8 are projective in Perv(U\G/U, Qr),.

Proof. 1t is enough to show that Avy(dy,) is projective since Ty g is a direct factor of it. But by
adjunction we have
HOIIl(AVU (5)(77/’)’ 7) = Hom((éxﬂz,), Awa),

the result now follows from the exactness of Av,, and the projectivity of 6,y in Perv((U, ¢)\G/U, Q1)
O

Notation 3.4.44. We define Ty, = Avy AvyAry = Avyidy,y. We will also denote by ]HI:Z the
category

@ Dcons((U’ ¢)\G/U7 QT)X' (344)
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3.4.7 The functors V

Following [Gou21] 9.10, given a pair of characters (x’, x) in the same W-orbit and a block 8 € /W,
we define the functor

Vg : TiW(U\G/U)y.p5 — End(Ty g) — mod
T — HomPcrv(U\G/U) (TX’IB7 T)

Theorem 3.4.45 (Struktursatz). The functor Vy g is fully faithful.

Proof. The proof is adapted from [BY13] 4.7, [BR22b] 11.2 and [Gou21] 9.10.2. The functor
Vy,3, defined on the whole category Perv(U\G/U, QT)I[BX';X] with values in the abelian category
End(Ty ) — mod has a left adjoint given by M +— M ®gna(r, 4) Ty,s- This is well defined because
T, is projective. This then reduces to showing that for T € Tilt(U\G/U),,3 the adjunction map
adjr : Ty, @End (T, 5) Vy.3(T) — T is an isomorphism. Consider the exact sequence

00— A— TX,B ®End(TX1/3) VX”@(T) adi) T — B —0.

We have to show that both A and B vanish. There is a corresponding statement after applying
T, F, which is shown in the first part of loc. cit. and as in loc. cit. we will reduce to it. Applying
T4 F, the arrow adjr produces an isomorphism by loc. cit. and as TiF, IS right perverse t-exact this
implies that ? H° (7TTj£B) = 0 and hence that B = 0 by lemma 3.B.10 which yields the surjectivity
of the arrow adjr. For the injectivity, it is enough to show that Hompe(A4,77) = 0 for all
tilting sheaves and then that Hompey (A, Ay ) = 0. As in loc. cit., writing the object A, 5

as an inverse limit and then each term as a successive extension of ﬂ% A it is enough to have
£

w, X
Hompe,y (A4, W%E’ITTFZAW’X) = Hompe,y (WTF/L WT,EAw,X) = Hompe,y (pHOWTFZA’ . F, Ay ) vanish.
But this garanteed by the fact that the map Ty F, (adjr) is an isomorphism. O

3.4.8 The global V functor

From now on we assume that G has connected center so that there is a unique block in each HT;( N
Let us consider the scheme

cm = || Spec(@r)x{x} (3.45)
x€CH(T)

in a similar fashion as the scheme of characters of [GL96] 3.2. This is a scheme that is not of finite
type over Zy because it has infinitely many connected components.

1 Z[,ai
is the torus dual to T defined over Zg, the set {x € T), ,} is the set of all closed points of Ty, (in
particular they are all points of the special fiber of TZVZ) and ngﬁ Xz, Z¢ denotes the completion of

Lemma 3.4.46. The scheme C(T) is canonically isomorphic to l_laaeTZV T, %z, Ly, where T,
0:C

TZVL; at the point x then base changed to Z.

Remark 3.4.47. The statement of the previous lemma is made to avoid introducing the field of
definition of a given character x € CH(T).
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Proof. First note that there is a bijection CH(T) = TV (F,). Let = be a closed point of T, and let

Fy(x) be the residue field of Ty, at x. Let 0, C CH(T) be the Gal(F;/Fy)-orbit corresponding to .
And let E/Qg be the unramified extension of Q, correspoding to the extension Fy(z)/F,. We then
have - -
TZ\/Z’Q Rz, Ly = |_| Tg,ﬁz/\,y R0y Ly. (346)
y€o,

We further make the identification T(\Q/EAy ®oy Ze = Spec(Qr) x {y}. Since CH(T) = Urery 00
taking a disjoint union yields the lemma. O

We now consider the action of W on C(T') and we consider the GIT quotient C(T') / W. For all
W-orbits 0 € CH(T) of characters, we choose a representative y, € o.

Lemma 3.4.48. There is an isomorphism

C(T) J W =] |Spec(p ). (3.47)

Proof. We have C(T') = Uyecn(r)Spec(Q2r) x{x} = UslyeoSpec(Q7) x {x} and each U, ,Spec(27) x
{x} is stable under the action of W. The inclusion of the component x, then induces an isomor-
phism (UyeoSpec(Qr) x {x}) / W = Spec(Qr) [ Wy, = Spec(QgYX“ ). 0

We finally consider the scheme C(T') x¢(ryyw C(T'). As before it has infinitely many connected
components. By definition it is the closed subscheme of C(T') x C(T) obtained as the union of the
graphs I'y, C C(T') x C(T) of the actions of the elements of W. Let us now describe its connected
components.

Lemma 3.4.49. There is a canonical isomorphism
C(T) xeryyw C(T) = |_| Spec(Qr D Wx Qr) x {x’ x x}, (3.48)
0,x,X'€o i
where the union is indexed over all W-orbits in CH(T).
Proof. We have
C(T) Xe(ryyw C(T) = |_| (Spec(Q27) x {x}) Xe(ryyw (Spec(Qr) x {x'})
XX

= || (Spec(2r) x {x}) X (U c.Spectr) x xpyw (SPec(Qr) x {x'})

0,X,X' €0

= | Gpec(@r) x {x}) Xgpp@mx, (Spec(@r) x {x'}).

0,X,x' €0

Lemma 3.4.50. There is a unique fully faithful functor
V: Tilt(U\G/U) — Coh(C(T) x¢(ryyw C(T)),

that restricts to the functor V,, on each Tilt(U\G/U),.
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Proof. The existence and unicity are immediate from the fact that both categories on the left and
right hand side are direct sums and we have prescibed the functor on each direct factor. O

Definition 3.4.51. The objects in the essential image of V are called Soergel bimodules.

Remark 3.4.52. Note that the functor V induces a well defined functor H* — Deon(C(T') Xc(yyw
C(T). Tt is however not fully faithful on all of H*.

Definition 3.4.53. We define T = EBXeCH(T) T, € H and we call it the big tilting sheaf.
Remark 3.4.54. Note that the object T is not compact.
Lemma 3.4.55. Under the functor V, the sheaf T corresponds to Oc(T)x ey ywe(T)-

Proof. This is clear since it holds on all connected component of C(T) x¢(ryyw C(T). O

3.4.9 Monoidality of the global V functor

We still assume that G has connected center.

Lemma 3.4.56. The category Tilt(U\G/U) is monoidal.

Proof. Let T,T" € Tilt(U\G/U). The statement breaks down in two steps :
(7). the convolution T * T is perverse,

(#i). the convolution T x T” is tilting.

Both properties can be checked after reducing mod ¢ by theorem 3.B.12. For the mod ¢ version,
this is then [Gou21] 9.7.5. O

Consider the category Dqcon(C(T") X¢(yyw C(T)), it is equipped with a convolution monoidal
structure as explained in Appendix 3.C.

Theorem 3.4.57 (Analog of [Gou21] 12.10.1 and [BR22b] 11.5). The functor V is equipped with
a canonical monoidal structure.

Proof. Consider the category Hyj. By corollary 3.4.41, the functor
Hom(©0y, 4, —) : HY = D Deons (T, Q1) = Perf(C(T)),
X

is an equivalence. The category H* acts on H, and therefore on Perf(C(T")). By lemma 3.C.11, we
have a monoidal equivalence

End(Perf(C(T)) =~ Perf(C(T) x C(T))
F = F(Ocr));

where O¢(ry is a considered as a O¢(y-bimodule and therefore F(O¢(r)) has two O¢(ry actions
: one coming from functoriality and one from the fact that F' takes its values in the category
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Perf(O¢(ry). The target category is equipped with the convolution of bimodules structure. We
therefore have a monoidal functor

V' : H¥ — Perf(C(T) x C(T)).

It is then enough to check that this functor is naturally isomorphic to V. By the above description,
we can compute the functor V' as follows

VA(T)(Oc(r)) = Hom(@y 0y, 4, Exx,y * T)

= Hom(®y 0y, AvyT')

= HOIII(AVU @X s T)
(T, T)

= Hom
= V(7).

Hence we have a commutative diagram

He Y Perf(C(T') x¢(ryyw C(T))

x l

Perf(C(T) x C(T)).
After restricting to tilting objects, we get a natural commutative diagram

Tilt(U\G/U) —— Coh(C(T) xeryw C(T)

\ l

Coh(C(T) x C(T)).

On the abelian category of coherent sheaves the vertical functor is fully faithful and monoidal.
Hence as V' is monoidal, there exists a unique lift of this monoidal structure to V. O

Consider the full subcategory (T) C H* generated by T and all its direct summands.

Lemma 3.4.58. The category (T) is a monoidal subcategory of ®yDeons(U\G/U, 1)y and the
functor V induces a monoidal equivalence

Proof. Since T satisfies Hom(T, T) = Oc(T)xc(ryywe(T) it is enough to check that (T) is a monoidal
subcategory. For this we compute V(T x T) = V(T) ®o,,, V(T). Let

p13 2 C(T) xeeryyw C(T) xe(ryyw C(T') — C(T') x¢(ryyw C(T), (3.50)
be the map given by the projection on the outer factors. Then we have,

V(T * T) = pi3..O. (3.51)
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The map pi3 is finite and faithfully flat. We argue component by component on C(7T") and we show
that the restriction to a component (x’, x) of p13,.O is free. We do it for the case (x/,x) = (1,1)
the other are similar. Consider the map

pls 1 Spec(Q7) X Spec(Ql) Spec(Q2r) X Spec(QW) Spec(Qr) — Spec(Qr) X Spec(Q) Spec(Q2r), (3.52)

given by the projection on the outer coordinates. The restriction to the component (1,1) of p13.O
is given by pj3O. The ring Qp Qaw Qp is local by [BR22b] 8.5. Since the map pi; is finite and
faithfully flat so is p{3O. A finite flat module over a local ring is free, see [Aut] Tag 00NZ. O

3.5 F-Categorical center of the Hecke category

In this section, we compute the F-categorical center for the category H. We consider all relevant
categories to live in D(Z)-Mod. This is a variation on [BZN09] [GKRV22]. In the abelian setting
[Lus15], [Lusl7] has shown a similar statement, the key difference is that Lusztig inputs the classi-
fication of representations of GF whereas our construction is formal. We have to work with H and
not H¥ to be able to dualize the relevant categories.

3.5.1 Duality on monodromic categories

In [BT22], the authors define a duality functor on completed unipotent monodromic categories ex-
tending the usual Verdier duality on Q,-constructible monodromic sheaves. We give a construction
here that does not involve pro-objects, works for all schemes X equipped with an action of T' and
is valid in the non-unipotent setting.

Lemma 3.5.1. Let A be a coefficient ring. Let X be a stack with a T action and let A be a
A constructible T-monodromic sheaf. The Verdier dual Dp(A) is monodromic and its canonical

monodromy is given by
¢ : A[rt(T)] — End(A), (3.53)

where ¢ is the canonical monodromy of A and ¢V = ¢oinv* with inv : A[xt(T)] — A[x}(T)] induced
byt—t L.

Proof. We only need to check this on the fibers of X — X /T which are all isomorphic to 7T'. This
now follows from the fact that since T is smooth, the Verdier dual of a lisse sheaf is lisse and
corresponds to the dual representation of 7 (7). O

Definition 3.5.2. The map inv : T — T induces a map inv, : Qr — Qr. Given an Qr module
M, we denote by M(g) = M ®qy inv. Or-

Remark 3.5.3. Note that Lp(¢) = Ly is the Qp-linear dual of L.

Definition 3.5.4. Let X be a stack with an action of T. We define

Dcons(X7 QT)X — Dcons(X; QT))(*l
D' = DQT(_)(€)7

where Dg,. is the Qp-linear Verdier duality functor.
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Lemma 3.5.5. The functor I satisfies

(7). On the full subcategory Dcons(X,Ze)X,mon, we have a canonical isomorphism of functors

D' = Dy [~ dimT], (3.54)

(i7). D'D’ =id,

(t4i). For A, B € Deons(X, Q21)y we have Hom(A, B) = Hom(D'(B),D'(A)).

(iv). Given f: X =Y a morphism of T-scheme, we have D' fi = f.I' and D' f* = f*I’.

Proof. The last three points follow from the definition. We discuss the first one. We can work
locally in the lisse topology and assume that we have a T-equivariant splitting X = Y x T.
We can then further assume that Y is a point. Let A be a y-monodromic sheaf on T, we can

write A = M ®q, (Lr ® L£,)[dimT] for the Qp-module M = 1*[—dimT]A. Then by definition
D'(A) = Homgq,. (M, Qr)®q, (LT®Ly-1)[dim T]. On the other hand, we have 1*[— dim 7Dz (A4) =
Homgz, (M,Z), where M is the Zgy-module obtained by forgetting the Qr-stucture along the inclu-
sion Zy — Q.

We claim, that there is a natural Qp-linear isomorphism

Homy (M, Z¢) = Homg,. (M, Qr)(e)[dim T7, (3.55)

which is induced by local Serre duality for the pushforward along the map Spec(Qr) — Spec(Ze).
Let us show this claim. Let I C Qr be the augmentation ideal. Since A is Zy-constructible, M
is of I-power torsion. Then we have

Homg, (M,Zy) = Homgq,,.(M, Homg, (Q7,7Zy))
= HOmQT (M, F[ (I‘IOHIZZ (QT7 Zg))
= Homg,. (M, liﬂ(HomQT (Qr /1", Homz, (Qr, Zy))
= Homg.. (M, ligl(Homzz (Qr /17, Zy))

= %ﬂ HOIHQT (M, (HOIIIZL] (QT/IH, Z@))

where the first line comes from the adjunction between forgetful and Hom, the second one from the
fact that M is of I-power torsion, the third one from the definition of local cohomology, the fourth
one again from the adjunction and the last one from the compacity of M as an Qp-module.

On the other side, we have

Homg,. (M, Qr) = Homg, (M, I';(€2r))
= Homg,,. (M, lim Homg,, (Qr/I™, Q1))

= lim Homg,. (M, Homg,, (Qr /1", Qr)).
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Let T" be the torus dual to T defined over Spec(Z) and let R = O(T”) and let I’ C R be the
augmentation ideal. There is a natural flat map R — Qr and such that I'QQr = I. This implies
in particular that Homgq,. (Qr/I™,Qr) = Qr @ Homg(R/I'"™, R). Let f : T' — Spec(Z) be the
structure map. Embedding the categories of R-modules and Z-modules into the categories of solid
R-modules and solid Z-modules, built in [CS18]. We get a pair of adjoint functors

fi:D(Rm) = D(Zm) : . (3.56)
Moreover by [CS18] Observation 8.12, f'Z = R[dim T]. A priori fi can be difficult to compute, but
for the R-module R/I’, we have fiR/I" = f.R/I'"™ since R/I'"™ = i, R/I"™ where i : Spec(R/I'™) —
Spec(R) is the closed embedding. Indeed, the formation of i, is compatible with composition

and 4 = i, for proper maps,see [CS18] Theorem 11.1 and the following discussion, but the map
Spec(R/I'™) — Spec(Z) is finite hence proper. The adjunction and base change therefore provide

a canonical Zy-linear isomorphism
Homy (M, Z¢) — Homg, (M, Qr)[dim T]. (3.57)

We still need to promote this to an (lp-linear isomorphism. Note that by our construction, it is
enough to do so for the objects Qr/I™. We further note that for M = Q¢ /I™ both complexes lie in
degree 0. We now check the Qp-linearity on H?, it amounts to the Qp-linearity of the isomorphism,

Hom? (M, Z;) — Extg™ " (M, Qr)(e). (3.58)

7@
On the LHS, the Qp-structure comes from Verdier’s monodromy which is obtained by twisting by
(¢) by lemma 3.5.1. We now have a commutative diagram

| [

D¥(Q7r) —— D¥(Zy)
where the horizontal maps are the forgetful functors and the vertical ones the inclusions. The map

we consider therefore lives in D¥(Q7) and thus we get the desired Qp-linearity. O

Remark 3.5.6. The setup of [CS18] requires to consider rings that are of finite type over Z which
is why we reduced everything to the ring R.

3.5.2 Rigidity of H

Definition 3.5.7 (Rigid category, [GR17]). Let C be a monoidal compactly generated category.
Then C is quasi-rigid if it is generated by left and right compact dualizable objects. The category
C is rigid if the unit object is also compact.

Lemma 3.5.8. The category H is quasi-rigid.
Proof. The A, , generate it and are compact and dualizable. O

Remark 3.5.9. The only failure to rigidity here is the fact that the unit is not compact since it is an
infinite direct sum. If we consider the category H, = @y coDindcons(U\G/U, Qr), where o C CH(T)
is a W-orbit then this category is rigid.
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3.5.3 Duality in H
We now work out the left and right duals in H*“.
Definition 3.5.10. We define the following duality functor
D™ :HY —» HY, M — inv*'D'(M)(g)[— dim T,
where inv : G — G denotes the inversion map.

Lemma 3.5.11. There is a canonical isomorphism
D'(—*—) = (D'(=) *D'(-))[-2dim T7. (3.59)
Proof. Recall that the convolution 3.4.4 was defined as
Ax B =TForg" mi(AXy B)[dim T, (3.60)

where the forgetful functor is induced by the second inclusion Q7 — Qp«7r. Consider the Qpy -
module Qryxr(erxT) 0. Qr(er) where Qp — Qpyr is induced via the second inclusion. Tensoring
by this module defines a twist M + M (epxp/7) for M € D(Q27). We claim that there are natural
Q7w r-linear isomorphism of functors

(i). Dg,,. (Forg;”(—)) = ForgixT(DbTxT(—))[— dim T|(erxr/7), where the index Qr or Qpxr

specifies where we use the version of the duality D' we use.
(7). my = m,[dimT] on objects that are Ly @ L, ,s-equivariant.
Let us assume both claims. And let us show how this implies the theorem
0 N
DG, (A% B) = Forg! E)Tme!(AgieB)(ETXT/T)

= Forgiwm* Orr (Agz[B)(ETXT/T)

= For  my(D, (A)Rg, Dy, (B)(erxer) [~ dimT].

The first line follow from the first point and the last one from the compatibility between ®, Hom
and the Kunneth formula. Note that once we forget along Q7 — Qp«r the second inclusion, the
twist (epxr/7) becomes trivial.

To prove the first claim, we show more a general statement. Let X be a scheme with a T-action,
and let T'= T} x T be a decomposition into a product of tori. Define the twist M +— M (er,r,) in
a similar way. There is Qp-linear isomorphism of functors Deons (X, 27)3P — Deons (X, Q1)

Forg ™ Dy, = Df,,. Forg™ [dim Ty)(er/,) (3.61)

This isomorphism can be constructed locally in the smooth topology of X/T', hence we can assume
that X =Y xT. We can furthermore assume that Y is a point. The compatibility with the duality
follows from the same argument of the proof of lemma 3.5.1 (i) with the pair (Z,, Q7) replaced by
(Qry, Q).

For the second point, we show that there is an Qp-linear isomorphism of functors Deons(U\G xU

G/U, QTXT))(’,X — Dcons(U\G/U» QT)X
my[dim T = m.. (3.62)
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Recall that m is the composition of a T-torsor and a proper map. We show that for a T-torsor f :
X — Y there is an isomorphism of functors Deons (X, Q7 )unip — Deons (X, Q1 )unip, fi = fo[— dim 7.
This isomorphism can be constructed locally in the smooth topology and as before we can assume
that X = T and Y is a point. The statement then follows from the computation of RT'(T, Lt) =
Z4[— dim T'] which is done in [GL96] 3.1.1. O

Lemma 3.5.12. Let X be a T-scheme, there is a canonical isomorphism
Homp x.p), (4, B)[dim T] = RT(X, ' (4)&3, B) (3.63)
where ®!Ze denotes A'(— Xz, —) and the completion as in section 3.4.4.

Proof. By descent, we can assume that X = Y x T. We assume that x = 1. Let A, B €
D(X, Q7)unip- Then A = A’ Kg, Ly and B = B’ Kg, Ly. We can thus compute

HomD(X,QT)“n;p (A, B) = Hochons(Y7QT) (AI, B/)
= RI(Y, D, (4) &h, B).

On the other side, we have
N N .
D'(A)é5, B = (Do, (AR5, B) Bay, p A Lrxr. (3.60)
Applying the functor RT'(X, —) we get

B) = RT(Y, Dg, (A)&3, B) ©ay, RT(T, A*Lyyr)

= RF(K Do, (A)®’Z1/B) OQryr Qr [dlm T]
— RI(Y, Do, (A) 80, B)[dimT).

RI(X, D' (A)én

L

O

Theorem 3.5.13. All objects A € HY are left and right dualizable with left and right duals canon-
ically identified with D~ (A).

Proof. We want to show that there are canonical isomorphisms for all A, B,C € H,
Hom(A * B,C) = Hom(A,C * D™ (B)) = Hom(B,D™ (4) % C). (3.65)

By symmetry we will only show the first one. We follow the construction of [BZN09]. Assume that
A, B,C € H¥. Then we have by lemma 3.5.12

Hom(A + B,C) = RI(U\G/U, (A « B)&5,C) = RT(U\G/U, IV (A) « I/ (B) &' C)  (3.66)

and
Hom(A, C + D™ (B)) = RT(U\G/U, D/ (A&, (C + D™ (B)). (3.67)

Replacing A, B by D'(A) and D'(B), it is enough to show that

RI(U\G/U, A3, (C = inv*B)) = R(U\G/U, (A * B)&%, C). (3.68)

89



Consider the following diagram

U\G xV G/U 25 U\G xU G/U x U\G/U —2 U\G/U x U\G/U x U\G/U

| Jisenm

U\G/U ——— U\G/U x U\G/U

where m is the multiplication and A; = id X m and ¢; is simply the projection. The square in this
diagram is Cartesian. We have
(A% B)&z,C = Al(m x id)iq} (AR, BR; Z,C))
=mA}q} (AXz, BX; C).

This follows from the fact that mi(AX B) ~ m.(AX B)[dim 7] as in the proof of lemma 3.5.11.
Similarly, we have

U\G xU GJU —225 U\G xV G/U x U\G/U —2— U\G/U x U\G/U x U\G/U

m| [iaxm

U\G/U ———— U\G/U x U\G/U

where Ay (z,y) = (m xid) and g is induced by the maps G® — G3, (a,b, ¢) — (a,inv(c),b) and the
square is cartesian. Then we have
A%, (C +inv*B) = Al(id x m)ig3 (AR By C)
= miAyqs (AXy, BXy, C)

Consider now the diagram

U\G xU G/U 222, U\G/U x U\G/U x U\G/U
mJ/ \T TQIAl
\
U\G/U +———— U\G xY G/U

where r is the map induced by the map G x G — G x G, (z,y) — (xy,inv(y)). This diagram is
commutative. We therefore have

RI(U\G/U,miAbg3(AXz, BXy C)) = RD(U\G/U,mur' Ay q; (AKz, BX5 C))
= RT(U\G/U,miryr' Al ¢} (AKX, BX; C))
= RT(U\G/U,mA}q} (AN BX; C)).

The first line comes from the remark that ¢; and go are smooth of relative dimension dim U hence
since Abgh = r'Alq) after shifting by [~2dim U] we get Abqs = r'Alq}. The passage from the
third to the fourth line follows from the fact that r is an isomorphism. O
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The proof of this theorem yields a finer information. Since all objects of H* are dualizable,
there are well defined functors L, R : H*°? — H such that for all z € H“, the sheaf L(x) (resp.
R(x)) is the left dual of x (reps. the right dual of ). The next corollary is then also a consequence
of the proof theorem 3.5.13.

Corollary 3.5.14. There is a monoidal isomorphism of functors H*°P — H¥ L — R.

We now pass to the Ind-extensions. Recall that we extended the convolution product to all of H
by continuity. Recall also the following facts from Appendix 3.C. Since the category H is compactly
generated, it is dualizable and its dual is canonically identified with HY = Ind(H“:°P). By extending
by continuity the functors L and R, we get continuous functor L, R : HY — H defined on compact
objects by taking left and right duals.

Definition 3.5.15. A pivotal structure on H is the data of a monoidal isomorphism L — R.

Remark 3.5.16. We refer to [BZN09] Section 3.4 for a discussion about pivotal structures in the
context on quasi-rigid categories.

Theorem 3.5.17 ([BZN09], 3.13). Assume that C is a monoidal quasi-rigid category, and let M
be a C-bimodule. Assume further that C is equipped with a pivotal structure. Then it induces an
isomorphism

C Qcgerev M = Homegerer (C, M). (3.69)

We can now also reformulate theorem 3.5.13 as follows.

Corollary 3.5.18. The category H is equipped with a canonical pivotal structure.

3.5.4 F-center and F-trace of H

We refer to Appendix 3.C for the notion of F-central functors and of F-trace functors. We consider

the functor
HO™

Dcons(pt/GFazl) —F> Dcons( U\G/U

AdpT
where ® is the functor defined in section 3.3.5. We will abbreviate this functor to p'HCj. Similarly

we denote by CHgp its left adjoint.
Consider the functor F* : H¥ — H“. Note that this functor is monoidal.

Zo) 22 me (3.70)

Theorem 3.5.19. The functor p'HCh is equipped with a canonical F*-central structure and the
functor CHgpy is equipped with a canonical F-trace structure. That is, we have a diagram with two
commuting triangle.

mdcons Pt/GF ZZ

e

Zp( Tr(F, H)

where the functors Zp(H) — H and H — Tr(F,H) are the canonical functors. Moreover, both
functors Dingcons(pt/GY, Zg) — Zr(H) and Tr(F,H) — Dindcons(pt/GT, Z¢) are equivalences.

Corollary 3.5.20. The functor HCyg is equipped with a canonical F*-central structure.
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Proof. By lemma 3.5.11, the functor I’ is equipped with a monoidal structure hence induces an iso-
morphism Zp(H) — Zp(H) since D'F*I’ = F! = F*. The functor D’HCpD : Dindcons(pt/GT , Z¢) —
H is isomorphic up to a shift to HCE hence is equipped with a canonical central structure. There-
fore HCrD : Dingeons(pt/GF, Z)Y — H is equipped with a central structure. Since the functor D
induces an equivalence Dindcons(Pt/GT, Z¢)Y =~ Dindeons(Pt/GF, Z¢) we get a F-central structure on
HCp. O

Proof of theorem 3.5.19. The argument closely follows the one of [BZN09]. First recall that H is a

Hr-bimodule, consider the following augmented simplicial object H®r*+2,

H +— H@u, H —— H @u, Hown, H F— ...

where the maps are given by the partial convolutions. This gives a resolution of H as an H-bimodule,
therefore we have
H = ling H®=re+2, (3.71)
Aop

We first build the F-central structure. The F-center of H is
ZF (H) = EndH®Hrev (H, HF), (372)

where Hr denotes H with its right H-module structure twisted by F*. We use the previous resolution
to compute it.

Homsggrer (H, Hr) = Homsge (lig H¥#r *+2 Hp)
= @1 Hompgprev (H®#*+2 Hy)
- @1 Homp, g, (H®HT.7 HF)
Let us identify the object Homy,, gp, (H®#7* Hp). By lemma 3.5.21, we have
H®r" = @ Dindcons(U\G/U x T U\G/U xToox® U\G/U7 QT)xa (3'73)
X

where there are n-copies of G and T x T-acts on the left of the first copy of G and on right of the
last copy of G. By lemma 3.5.22; we have

U\G/U xT U\G/U xT ... xTU\G/U

Homs, e, (H®#r™, Hy) = @ Dindeons AT Qr)y,  (3.74)
where there are (n 4 1)-copies of G. The maps in the simplicial diagram
U\G/U xT U\G/U xT ... xT U\G/U
@Dindcons( \ / \ / \ / ’QT)X (375)
N AdpT

are given by the right adjoints of the partial convolutions. The functor ® of section 3.3.5 induces
an equivalence

indcons AdFT

U\G/U xT ... xTU\G/U =
AT Zy). (3.76)

7QT)X =~ Dindcons(
X
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Consider the following map of simplicial stacks

GxBGxB...xBa . U\G/U xT ... xTU\G/U
b AdyB AdpT ’

(3.77)

given in degree n by the quotient map for the action of U™*! on the left of each copies of G. In
particular, at level n, this map is a torsor over a unipotent group scheme. We claim that the
pushforward map

G><BG><B~--><BGZ b U\G/U><TU\G/U><T~-><TU\G/UZ

AdFB ) E) — indcons( AdFT P 2)7

(3.78)

defines a morphism of cosimplicial objects. The source cosimplicial object is nothing else than the

category of sheaves on the simplicial stack obtained as the Cech nerve of the map ﬁ — ﬁ.

And the morphism are given by the !-pullbacks along partial multiplication maps. Denote by

m} - GXBiﬁfé'XBG — GXBiE:é'XBG the partial multiplication map. We now prove the claim.
After passing to left adjoints, we need to show that there is a canonical isomorphism

Pn,x : Dindcons(

pilel] = mipiia, (3.79)

j Tty — Ty —
where [c]] : Dindcons(%,Z@ — Dindcons(%,Zg) denotes the j-th convolution.

For clarity of exposition, we show it in the first degree. Consider the diagram

U\G/UxTU\G/U , pr  U\GxPGQ/U m _ U\G/U

AdrT AdrT AdpT

pﬁ 1 — Tpo
B —

Gx~G G

AdFB m/ AdFB

where pr is the quotient map and m induced by the multiplication. The right slanted square is
Cartesian and the left triangle is commutative. Then we have

pold] = pyrmupr’
= mpypr*

!,k
= mpq,

as desired.
By !-descent theorem 3.2.9, this defines a map

Z Dindcons (pt/GFa QT) — ZF (H) (380)

Furthermore the following diagram commutes

Dindcons (Pt/GF7 QT) — Zp (H)

MI$
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By theorems 3.5.17 and 3.5.13, there is an identification Zp(H) with Tr(F,H). Under this
identification the two canonical maps

Zp(H) — H — Tx(F, H) (3.81)

are adjoints, with H — Tr(F,H) being the left adjoint. We now build the map Tr(F,H) —
Dindeons(Pt/GY,Z;). This is roughly the same argument but with left adjoints instead. Using
the previous resolution we get

Tr(F,H) = H Quggrev Hp = h_r)nH@@HT' OH, o, HE- (3.82)
Aop

As before we identify the terms

U\G/U xT ... xTU\G/U
AdFT

H®HTn ®HT®HT HF = Dindcons( ZE) (383)

with (n + 1)-copies of G. The pullback along the maps p,, defines a morphism of simplicial objects

GxBGxB...xB@g
Adp B

pt : H®urn QHr@HT Hg — Dindcons( ,Zg), (384)

where the right simplicial object is, as before, the category of sheaves on the simplicial stack obtained
as the Cech nerve of the map
fracGAdg B — ﬁ. This in turn induces a map

T: TI“(F,H) — Dindcons(pt/GszZ)~ (385)

Moreover the following diagram commutes

Dmdcons pt/GF ZZ

B

H—— Tr(F,H)
We want to show that T is fully faithful. For this we compute its right adjoint and verify that

id — TET is an isomorphism. We consider now the morphisms

GxBGxB...xBg
AdFB

De x - Dindcons( Z ) — H®HT ®HT®HT HFa (386)

and we claim that this induces a morphism of simplicial objects. We check it as before on the first
term. Consider the following diagram

U\G/UxTU\G/U , pr  U\GxP@Q/U m _ U\G/U

AdpT AdpT AdpT
Tfh
D
b2 ’ Z p1
/
axBa G
AdpB m AdpB
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where the maps are the same as before and Z is the fiber product of both maps p, and pr. Note
that the triangle (g1, D2, ¢2) is commutative. We then have

TUPT, P2« = M1q2,4q]

= MP2,+q1,%q]

- m*ﬁQ,*

= pl,*m;

= p1,*m§’
where the first line follows from smooth base change, the second one from the commutativity of
the tringle, the third one from the fact that ¢; is a U-torsor and thus the map id — ¢; .¢] is an
isomorphism and the fact that m is proper, the fourth one from the commutativity of the square

(P2, m,p1,m') and the last one from the properness of the map m/'.
This in turns induces a morphism

TR : Dindcons (pt/GF7Zf) — ’I‘r(Fa H)7 (387)

which is right adjoint to 3.85. The composition id — THT is computed as the colimit of the
corresponding id — pe «ps all of which are isomorphism. This implies that T is fully faithful. Its
essential image contains all the complexes RT'.(Y (), Z,). By [BR03], these are known to generate
the category Perf(Z,[G¥]) and hence all of Dingcons(pt/GY,Z¢). The functor T is therefore also
essentially surjective and thus an equivalence. O

Lemma 3.5.21. The exterior tensor product induces a natural equivalence

H¥*r" = @D Dindeons(U\G/U x" U\NG/U x™ - xT U\G/U, Q7). (3.88)
X

Proof. First consider the functor

.....

X155 Xn

A @ @A, = ARy K5 Ay,
where the x; refers to the right action of T on the i-th factor of U\G/U. Denote by p the projection
U\G/U x ---x U\G/U = U\G/U xT ... xTU\G/U. (3.89)
By the universal property of tensor products, there is a commutative diagram

il ®D(Ze) o ®D(Ze) H ®X1)~~7Xn DindCOI’S(U\G/U XKoo X U\G/U’ QT")X1,---7X

J -

H ®HT e ®]I—]IT H— @ Dindcons(U\G/U XT e XT U\G/U7 QT")Xl,...,xn~

n

X15--5Xn

We want to show that the bottom functor is an equivalence. Proceeding as in lemma 3.4.4, both
sides are stratified with strata indexed by tuples (w1, ..., w,) € W™. As the functor X7, commutes
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with the functors iy, ), 7* and ' for ¢ the inclusion of a stratum, the gluing is immediate, it is then
enough to show that the bottom map induces an equivalence on each strata. Let (w1, ..., w,) € W"
be tuple and let x1,...,xn € CH(T). Note that the category

Dindcons<U\BwlB/U; QT)Xl ®]HIT e ®HT Dindcons(U\BwnB/Ua QT)Xna (390)

is zero unless y;_1 = w;x; fori = 2,...,n. Clearly the same applies to the category Dingeons(U\Bwy B/U xT
- xTU\Bw,B/U, Qrn)x1,...xn- Wenow assume that x;—1 = w;x; fori =2,...,n. We can simplify
the tensors as follows

Dindcons(U\BwlB/Ua QT)Xl ®HT e ®HT Dindcons(U\BwlB/U7 QT)Xn
= Dindeons(U\Bw1 B/U, QT)Xl OHr,, * OHr oy, Dindcons(U\Bw, B/U, QT)Xn~

The right hand side is then equivalent to
D(QT) ®p(Qr) D) D(QT) ~ D(QT). (3.91)

On the other hand after forgetting along the last inclusion, proceeding as in lemma 3.4.4, we have
equivalences

Dindcons(U\G/U xT -+ xT U\G/U, Qrn)y....n, = DO\G/U xT - xTU\G/U,Qr),,, (3.92)
and
Dindeons(U\Bw; B/U xT - xT U\Bw,B/U, Q12 )y, <
= Dindeons(U\Bw1 B/U x* .- xT U\Bw,B/U,Qr),, =D(Qr).

Using this second equivalence, we see that the bottom functor of the above diagram is an equivalence.
Using the first equivalence, we get the desired equivalence of the lemma. O

Lemma 3.5.22. There is a natural equivalence

U\G/U xTU\G/U xT ... xTU\G/U Q

AT Ty (3.93)

HomHT QHT (H®HT n’ HF) = @ Dindcons(
X

Proof. Since the category H®#r™ is compactly generated, it is dualizable. The duality functor D~
defines a self duality on H®#r™, Furthermore, since the category Hr @ Hy is quasi-rigid, by [BZN09]
3.14 the category H and thus H®#r" is dualizable as an Hr ® Hp-module. Hence we get that

Homy, gu, (H**1", Hr) = H¥*7" Qp, g, H. (3.94)

The duality D~ exchanges the left and right actions of T on the first factor and also twists them
by t — t~1. As previously, the category on the right hand side is identifies with the category of
sheaves on the product of the spaces, that is sheaves on U\G /U xT U\G/U xT ... xT U\G/U. By
the same argument of lemma 3.5.21, taking invariants by T x T firstly contract above T' for one of
the action of T' and for the second one takes the Adp invariants. O
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3.5.5 Generation of the category Perf(Z,[G"])

The last argument of theorem 3.5.19 requires the input of the following theorem.

Theorem 3.5.23 ([BRO03]). The category Perf(Z,[GY]) is generated by the complezes RT (Y (), Zy).
The proof of loc. cit. reduces to the following statement of [DL76].

Theorem 3.5.24 ([DL76]). For all irreducible Q,-representations p of G, there exists w € W and
i an integer such that . -
Hom® (p, HL(Y (1), Qy)) # 0. (3.95)

We want to give a second proof of both these statements using a geometric argument. The
strategy is to compute the functor CHFHCy and show as in [MV88] that it is given by convolution
against the Springer sheaf. We consider the category Decons(G, A). This category is equipped with
the following convolution product. Consider the diagram

GxG 25 @G
N
G G

where m is the multiplication and p; are the projections. Then for A, B € Dcons(G, A), the convo-
lution is defined as
AxB=m(AKX B). (3.96)

Consider the two categories Dcons(&,[\) and Dcons(ﬁimA) where Ad and Ady denote the
adjoint and F-adjoint action as before. The convolution structure induces a convolution structure

on Dcons(WG@ A) and a module structure over it on Dcons(ﬁ, A).

Definition 3.5.25. The (multiplicative) Springer resolution is the space U = {(g, Bo), g € Up,} C
G x G/B where By is a Borel subgroup and Up, is its unipotent radical. Let s : U — G be the
projection. The space U is equipped with the G-action induced by the adjoint action on G and the
natural action on G/B. The Springer sheaf is defined as

Spr = s A[dim]. (3.97)
The following lemma is well known, [BM&3].

Lemma 3.5.26. The sheaf Spr is a perverse sheaf equipped with a W -action and over Q, the sheaf
01 s a direct summand of Spr.

Remark 3.5.27. There are two possible normalization of the Springer action on Spr. They differ by
a twist by the sign representation of W. For one of them the irreducible representation yielding d;
is the trivial representation, for the other one, it is the sign representation.

Lemma 3.5.28. There is an isomorphism of functors
qr*rig* ~ Spr[—2dim U] * —. (3.98)

where r and q are the maps defining the horocycle correspondence.
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Proof. The proof follows closely the argument of [MV88]. Consider the following diagram
(G x G)/ArG

B

(G x G)/ApG Z (G x G)/ApB

| |

(GxG)/ApB —— (G/U x G/U)/AsT

where Z is defined such that the bottom right square is Cartesian. Note that it is equipped with
a GG action such that the two maps p; and ps are equivariant for the diagonal left action of G on
their target. Under the identification ﬁ ~ AG\(G x G)/ArG, the functor gqir*rq* = p2,1p3.
We identify (G x G)/ArG ~ G via (z,y) — F(z)y~!

We compute the space Z, let (g, ¢’), (h,h') € (GXG)/ArB such that (gU, ¢'U) = (hU, h'U)modAgT.
Then there exists t € T,u, v € U such that g = hut,g’ = h’'u/F(¢t). Since the pair (h,h’) is only
considered up to ArB, we can assume g = h and ¢’ = h'u for some u € U. There is an isomorphism
Z =Y/B where Y = {(g,9',h),V"1g € U} C G x G x G and B acts by id x F x F. Under the
identification (G x G)/ArG ~ G, the maps p; and py are then given as p1(g,¢’,h’) = F(g)g'~* and
p2(g, ', h') = F(g)h'~!

Consider (p1,p2) : Z — G x G be the product of the two maps. And let K = (p1,p2)iA, this
sheaf is G-equivariant on G x G for the diagonal action of G (not twisted by Frobenius) and we
have a canonical isomorphism

p2,p] = pra (K ®pri—), (3.99)
where pr; : G x G — G are the two projections. Recall a : G x G — G is the map (z,y) — x~y.
Using the A(G) equivariance of the sheaf K, there exists a sheaf K° and isomorphisms K = a*K°
and

prQ)I(K Qpri—) =K x—. (3.100)
We now compute the sheaf K°. Let 1 x G C G x G be the inclusion of the second factor. Then
K° = (1xid)*K. Let Z° be the pullback of Z to 1 x G.

ql l(m p2)

G NTREN G xG
Then Z° is the space of pairs (g,h') € (G x G)/ArB such that K’ ~'F(g) € U and the map q¢(g,
F(g)h'~t. Let 20 = F(g)h'~!, then M’ "1F(g) = F(g71)20F (g). Let Z’° = {(9B, h), h € Ad(F(g))(
and let ¢’ : Z'° — G be the second projection. Then the map Z° — Z°, (g, h’) — (9B, F(g)h'~1)
G/B x G is an isomorphism over G. Finally the map U — Z'° given by (9B, h) — (F(g)B,h) is
universal homeomorphism, hence K° = ¢A ~ Spr[—2dim U].

h) =
U
}

)
C

70 s Z/N{

Sl
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Lemma 3.5.29. Over F;, the simple perverse sheaf 6, is a subquotient of Spr.

Proof. The Sringer sheaf is a perverse sheaf on the stack %, where U denotes the unipotent
variety of G. It is known that there are finitely many irreducible perverse sheaves on this stack up to
isomorphism with coefficients in either Q, or F,. We are interested in the multiplicity [Sprg, : d, 7,]
where the indexed [y is here to indicate over which coefficients we consider this multiplicity. Let
d: Ko(Perv(——

,Qp)) = Ko(Perv( F)), (3.101)

u
Ad( ) Ad(G)’

be the decomposition morphism, we refer to [Jut09] for a discussion about this morphism. We
write [Sprg,] (resp. [Sprg,|) for the image of Sprg, (resp. Sprg,) in his Ko. It is then enough to
check that in the basis of Ko(Perv(Ad(G) Fy)) indexed by irreducible objects, we have [Sprg,| =

ald, 7,1 + Zp# ;, ol where p ranges through the irreducible objects in Perv(Ad( o) ,Fy) different
from ¢, 7,, that disa positive integer. We have [Sprg,] = d([Sprg,]) and in the basis composed of
irreducible objects, the matrix of d has nonnegative entries. O

Proof of theorems 38.5.24 and 3.5.23. The following argument already appeared in [BBM04b]. By
lemmas 3.5.28 and 3.5.29, the identity functor is subquotient functor of CHrHCy over both Q, and
Fy. This implies in particular that the functor HCp is conservative, over any coefficient ring. We
want to show that the category Perf(A[G¥]) is generated by the complexes RT.(Y (i), A). Arguing
as in [BRO3], it is enough to show that for all irreducible representations p either over Q, or over
Fy, there exists w € W such that Hom(RI':(Y (w, A), p) # 0. But we have by adjunctions
Hom(RT'.(Y (w, A), p) = Hom(qur* i, 1k A[TF], p)
— Hom(A[T"F], 7' p).
By Verdier duality the functor r,¢' is conservative. There is thus one of the costalks of ,¢'p that

is nonzero. For such a costalk, ky .i\,7.q'p is nonzero and therefore Hom(A[T%¥], ky, i}, 7.q' p) is
nonzero. L

The following corollary is a consequence of the above proof of theorem 3.5.23.

Corollary 3.5.30. The functor HCp : Deons(pt/GY, Zg) — DCOHS((QE/TU,ZK) 8 conservative.

3.5.6 Lusztig’s (-series

As a corollary of theorem 3.5.19, we explain how to recover Lusztig’s geometric ¢-series, see [BRO3]
Section 8. Denote by CH(T')/W the set of W-orbits of CH(T).

Theorem 3.5.31. For each W-orbit o C CH(T)/W such that F(0) = o, there exists a central
idempotent e, € A[GT] satisfying the following properties.

(i). The collection of all e, for o ranging trough the set of orbits such that F(o) = o is a complete
set of orthogonal idempotents in Zo[GF].

(ii). Let p be an irreducible Fy-representation of G, then e,p = p if and only if there exists a pair
(w,x) withw € W and x € o, such that the Deligne-Lusztig restriction *Rq, ,(p) # 0.
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Before giving a proof of the theorem we first need the following classical lemma.

Lemma 3.5.32. Let A be a ring. There exists a natural isomorphism of rings
Z(A) = End’(idp(a)), (3.102)
between the center of A and the algebra of endomorphisms of the identity functor of D(A).

Proof. Let us construct the bijection by hand. Let a : idp(4) — idp(4) be an endomorphism of the
identity functor. Then evaluating it at A € D(A) yields an endomorphism z € End%( (A=A Tt
remains to check that it is central. Let f € A then the multiplication by f is an endomorphism of
A, as a is a natural transformation the following diagram commutes

and therefore fz = zf and thus z is central in A.

Conversely let z € Z(A), then the left multiplication by z defines an endomorphism of all
A-modules. After passing to the derived category this defines an endomorphism of all object
M € D(A) functorial in M hence an endomorphism of the identity functor. It is clear that the two
constructions are inverse of each other and that they are morphisms of algebras. O

Remark 3.5.33. Let A be aring and assume that we have a direct sum decomposition D(A) = C1&Cs.
Then the identity functor decomposes as idp4) = ide, @ ide, and the morphism idp(4) — ide, —
idp(4) induced by the projection and the inclusion yields an endomorphism of the identity functor
idp(4). This endomorphism is idempotent hence the corresponding element of Z(A) is a also
idempotent.

Proof of theorem 3.5.31. First note that we can write H as a direct sum as follows

H= & H (3.103)

0E€CH(T)/W

where H, = €D, Hy. The Frobenius acts on the set CH(T')/W, let A C CH(T)/W be an orbit of
the Frobenius and denote by Ha = @, 4 H,. This category is a monoidal subcategory of H and
F* acts on Hy4 for all A. The theorem is now a consequence of the following facts

(). there is a direct sum decomposition

Tr(F*, H) = €D Tr(F*, Ha), (3.104)
A

where A ranges through the collection of all F-orbits in CH(T")/W.
(#9). If A is a F-orbit in CH(T")/W that is not reduced to a single element then Tr(F*,Hy4) = 0.
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Assuming these two points, let us show the theorem. We have
Dindcons (pt/GFa Z@) = TI‘(F*’ H)
=P Tx(F*, Ha)
A

P TFEH).

0,F(0)=0

By remark 3.5.33, corresponding to each orbit o such that F(o) = o there is a central idempotent
eo € Z(Zy|GF]) such that for all M € Dingeons(pt/GY,Zs), we have e,M = M if and only if M €
Tr(F*,H,). Furthermore the collection of all e, is a complete collection of orthogonal idempotents
of Z[GF]. Tt remains to check that this implies the desired property on irreducible representations.
Let p € Tr(F*,H,) be an irreducible Fy-representation and consider HCp(p). By theorem 3.5.19,
p'HCp(p) is an object of H,. By corollary 3.5.30, the functor HCp is conservative hence HCr(p) is
non-zero, and therefore there exists (w, x), with x € o, such that Homg, (TwF] (X, kw +1t, HCr (p)) # 0.
By lemma 3.3.8, this implies that *R,, , (p) # 0.

Let us now prove the two claims. Firstly let us recall that Lurie’s tensor product of categories
commutes with colimits in both variables [Lur] 4.8.1.24. Therefore we have

TI"(F*7 ]H[) = ]H[ ®H®Hrev HF

= @HA ®H®Hrev HB,F'
A,B

Futhermore if A # B then Ha Qugmre Hpr = 0 and for A = B, we have Hs Qugmre Hpp =
Tr(F,Hy4). This yields (i).

For the second point, let A be an F-orbit in CH(T)/W. Assume that A is not reduced to a
single element and denote by A = {o01,...,0,} the elements of A ordered such that F(o0;) = 0;41.
We then have

Tr(F*, Ha) = @i ;H,, Ouenrev Ho, r.

But H,, @y H,, = 0 with respect to the left action of H if i # j. Similarly, H,, @grev H,, p = 0 if
i+1 # j mod n. As these two conditions are mutually exclusive if n > 1, we have Tr(F,H4) =0. O

3.6 Endomorphism of the Gelfand-Graev representation

We keep the notations of the previous sections, we further assume that GG has connected center and
that £ is good so that we can use the global V functor. The sheaf £, on U is equipped with an
F4-structure and the trace of Frobenius function corresponding to it is a generic character of the
group UY which we still denote by ©. We let e, be the idempotent

1

g 2 v e ZIG )
U¥o

p][U I

where ¢, is a primitive p-th roof of 1.

We also denote by I'y, = indgiw the corresponding Gelfand-Graev representation. On the dual
side consider the dual torus TV over Z,. The Frobenius of T induces an endomorphism FY which
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we still call the Frobenius. Consider the scheme (T // W)Fv defined as the intersection of the
diagonal and the graph of FV in TV J W x TV J W, that is the scheme fitting into the following
cartesian diagram

TV W TV W

l J»

\% \4 \%
T //WWT JW xTV | W.

The main goal of this section is to give a new geometric proof of the following theorem.

Theorem 3.6.1 ([Li21] 0.3 and [LS22] Main theorem). Assume that G has connected center and
that £ is good for G. There is an isomorphism of algebras

Endgr (I'y) = O((TY J W)F) (3.105)

Let us outline our construction. We first recall the construction of the Curtis morphisms. The
modern way to define them is through the computation of the Deligne-Lusztig restriction of the
Gelfand-Graev representation.

Theorem 3.6.2 ([Dud09]). Let w € W, there is a T*Y -equivariant isomorphism
RL(Y (W), Z¢) @gr Ty = Ze[TVF][£(w))].
This isomorphism then induces a canonical map
Cury, : End(T'y) — Z¢[T"Y] = Endpuwr (Zo[T"F][—£(w))) (3.106)
which we call the w-Curtis morphism. The full Curtis morphism is then defined as the direct sum

of all w-Curtis morphisms,

Cur : End(Ty) 292y &, Z,[TF]. (3.107)

Consider the following commutative diagram

w

TV w7V

| l

TV W — TV W

where the vertical maps are the quotient maps. This diagram is commutative and thus induces a

map on fixed points y y
(T\/)wF — (T\/ // W)F .

Taking rings of global sections, we have a map, which we call the spectral Curtis morphism
Curs - Oy pyryrv = Opvyury = Zg[TF]. (3.108)

We show the following theorem
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Theorem 3.6.3. Assume that G has connected center and that £ is good for G. Then the map Cur
factors through @&,,Curi’® and we have a commutative diagram

End(Fw)

/ Cur

Oy ywyrv SuCurTe DuLe[TV].

Once this factorization is constructed, we show by a standard argument of symmetrizing forms
that the map End(I'y) — O(zv yyyrv is an isomorphism.

Remark 3.6.4. Let us highlight the difference between our construction and the constructions of
[Li21] and [LS22]. It is known that after inverting ¢ both algebras are isomorphic, the problem
then lies in comparing two Z, -lattices inside. The key idea in loc. cit. is to show that for
suitable bases, the matrix giving the isomorphism is in fact defined over Z;. The proof is then a
difficult computation to check that this property holds, in particular it uses non trivial facts about
almost characters. Our construction on the other hand is purely geometric and free of Lusztig’s
classification.

Remark 3.6.5. In the proof of 3.6.3, we will also deduce a new proof of theorem 3.6.2.

3.6.1 Intersection with the graph of Frobenius on Soergel bimodules.

We have defined Soergel bimodules as certain coherent sheaves on C(T") x¢(1yyw C(T'). Consider the
dual torus TV over Z,. Recall that there is a canonical isomorphism between C(T') and a disjoint
union of completions of TV, hence there is a canonical map :

can : C(T) — T3 .

Consider now the space TV x TV over Z; and denote by I'pv the closed subscheme equal to the
graph of FV. This is the image of TV under id x FV. We also denote by I'rv C C(T) x C(T) the
graph of FV. Note that we have

Or

. = (can x can)*Or,, .

Lemma 3.6.6. We have an isomorphism of functors H* — Deon(C(T) X¢(1yyw C(T)),

V(=) ®O¢(ryxe(m Of‘Fv = V(p!pg—).

Proof. The statement is an analog of [BT22] 4.4. Let A € Deons(U\G/U, Qr)y. All the sheaves
Ay are T-monodromic for the action of 1" given by Adp hence so is A. Suppose A is unipotent
monodromic for this action then p'mA = A ®q, Z¢ by remark 3.2.49. In general A splits as
A = &, A, such that each A, is y-monodromic. Applying p to a non-unipotent monodromic
sheaf kills it hence p'piA = A ®oy ., Z¢ where O¢(y — Zy is the augmentation of the component
corresponding to the trivial character. Consider the following Cartesian diagram,

TV bt vV

T Tre

1 ¢—— 1TV
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where t(z,y) = 2 'FV(y). The functor V is Qr ® Qz-linear. We then have

V(=) ®arear OFFV =V(- QOc(ryxe(r) Ofp)
= V(_ ®OC(T) Zﬁ)
= V(p!p!_)a
where the third line come from the cartesianity of the above diagram. O
Lemma 3.6.7. There is a canonical W -action on OC(T)XC(T)//WC(T) ®Oc(ryxer) OfFv and we have
an isomorphism
w
(OC(T)XC(T)//WC(T) QO¢(ryxe(m Of‘p) = O(TV//W)FV'
Proof. We will do the proof in two steps, firstly we will prove an analog statement for TV in place
of C(T') and then use the flatness of can and an analog of [BR22b] 8.5 to pass from TV to C(T)).
Let Z the derived scheme obtained as the derived intersection of TV Xpv W TV and the graph
of FV,
Z — T

l l(idva)

TV XT\///W TV *Z> TV X T\/
where i is the closed immersion. By definition of Or_, we have an isomorphism of Orv x7v-modules
Oz =O01vyn ¥ ®0sv v Orpy -

Consider the natural action of W x W on TV x TV, the closed subscheme TV xpv yy TV is
stable under this action. The closed subspace TV embedded via the graph of FV is stable under the
action of W obtained by restriction along (id x F) : W — W x W. Consider further the diagram

A TV
l (id><‘Fv)
TV Xpv pw TV TV x TV
(T ) W)F v W
l (id>‘<F)

TV W —— TV W T W

where A is the diagonal and the long arrows are induced by the natural map TV — TV J W. We
claim that the top face is Cartesian. By construction the back, front and bottom are Cartesian. In
particular the composition of the top and front faces is Cartesian, to deduce that the top face is
Cartesian it is enough to know that the map (T J W)¥" — TV J W is a monomorphism, but this
map is a closed immersion as it is obtained via the pullback of one and is therefore a monomorphism.
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We furthermore want to identify Z J W with (TV J W)F". First note that ™V =TV | Wis
faithfully flat and finite of rank |[W| then so is Z — (T J/ W)¥", in particular Z is a finite flat
Zg-scheme. The claim is clear after inverting ¢, we now have the following diagram

Ocrv pwr Ocrv ywyr 7]

| |

(O1v @04 oy Oy ywrye)V —— (O1v @040 0y Oy ywrye) (3]

We first claim that the scheme (TV J W)F" is underived. This intersection over Z; is the base
change of the same intersection over Z,. Over Zg¢, both copies of (T J W) are regularly immersed
in (TV J W) x (TV J W) via the diagonal and the graph of FV since TV J W is regular by the
Pittie-Steinberg theorem. By [Li21] 3.16, we know that the classical part of (T JW)F" is finite free
over Zg, hence the underived intersection has the expected codimension. This is enough to imply
that the intersection is itself underived. Indeed any regular sequence that determines locally I'pv is
still regular when restricted to the diagonal by the Cohen-Macaulay property [Aut] Tag 02JN. As
the map Z — (TV J W) is faithfully flat, the scheme Z is also underived. We are dealing with
classical finite free Z,-algebra.

After inverting ¢, the map Z | W — (TV J W)¥ “ is an isomorphism by the exactness of the
functor of W-invariants. This implies that over Z, both algebras have the same rank. It is then
enough to show that the map O((TY J W)F') — O(Z J) W) is f-saturated. Since we have a
commutative diagram

Z —— Z W

|

(T ) W)

it is enough to show that the map O((TY J W)F') — O(Z) is -saturated. Over Fy, the map
O((TV J W)F') = O(Z) is faithfully flat hence injective and thus our original map is (-saturated.
We now pass to C(T), the statement will follow from the fact that the following diagram is
Cartesian.
C(T) xeryyw C(T) —— C(T) x C(T)

TV xpvyw TV ——— TV x TV
Let us assume this and show the lemma. Firstly this implies that

(can X can)*Oyz = OC(T)XC(T)//WC(T) QO¢(ryxe(m OfFv'
Since the map can X can is compatible with the W x W action on both the source and target, we get
the desired action on OC(T)XC(T)//WC(T) QOc(ryxeir OfFv' Moreover since can is flat it commutes

with taking invariants under W, hence after taking invariants we get an isomorphism

w
(OC(T)XC(T)//WC(T) ®OC(T)><C(T) Of‘Fv) = O(C(T)//W)F~
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But now we have a natural morphism (C(T) J W)¥ — (TV J W)¥, and we show that it is an
isomorphism, consider the following diagram

XC//WC (T) XC(T)

/TV//W v TV x TV

\/

< N\

AN

where Z' is defined to make the top square Cartesian. By hypothesis the back square is Cartesian,
and so are the right, bottom and front ones. Hence the diagonal square

Z' —— C(T) x C(T)

| !

Z —— TV xTV

is Cartesian. It is enough to check that Z ~ Z’ since we want to show that Z J W ~ Z' ) W. But
Z is just a collection of copies of Z, and all of them factor through torsion points in TV x TV. We
choose one of them for instance the point (1,1) but then the fiber over (1,1) in Z’ is Spec((Qr ®
Q7)) X7V« v Spec(Zy) = SpecZy.

It remains to check the claim about the Cartesianity of the above diagram. This can be checked
one pair of torsion points at a time in TV x TV, the proof is similar for all pairs of torsion points,
we do it for the point (1,1), but then this is lemma 8.4 of [BR22b] (again suitably lifted to Z,;). O

3.6.2 Isomorphism of the two functors and proof of theorem 3.6.1.

The representation T'y, defines a sheaf on pt/GY and we denote by =, the sheaf T, @z, Qr. We
now want to relate HCp(E,) with piT.

Lemma 3.6.8. We have an isomorphim
PHCp(T'y) = pT[dim T7. (3.109)

Proof. We show the following.

P Av HCp(Ey) ~ pT[dim T
x€CH(T)

where Av, is as before ai(Lr ® £,[2dimT] Mg, —). In view of the equivalence of lemma 3.3.15
this is equivalent to proving the lemma. The proof follows the argument of [BT22] 5.5.1, but we
have to bypass the use of the vanishing conjecture of [Che21] which is not available in the integral
setting.
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Recall that we have a sheaf £, on U which we interpret as an p sheaf. As a sheaf on U

it is Adp-equivariant and the corresponding object in Dcons(Af—U,QT) is nothing else than the
F
G

representation 1. Denote by v : U — G the embedding, and consider the sheaf v Ly on T Now
F

_G_ _G i i
denote by ¢ the map AT 7 AdeG W have a commutative diagram

U
Dcons( AdpU’

DY Q[T ]) D (Q7[GF))

F
indEF
U

vy

QT) — Dcons (

c

AdGFU’QT) DCOHS(AdC;GaQT)

where the vertical arrows are the usual identification with categories of representations and the
bottom horizontal one is the usual induction for finite groups. In particular we get that cyvi Ly, = Zy.
Consider now the diagram

o — 1 AG\(G x G)/ART +—"—— (G x G)/ApT

cl Cc1 Cc2
G

il 2 AG\(G x G)/ApG +—— (G x G)/ApG

QT q1 q2

Adr B - AG\(G x G)/ApB +—"*— (G x G)/ArB PR (G x G)/ArU

T‘J/ T1 T2 J/’I‘g

Ll — AG\(G/U x G/U)/ArT +— (G/U x GJU)/AxT 57— G/U x GJU

where the maps are as follow
(i). The maps i; for j =1,...,4 are isomorphisms induced by G x G — G, (z,y) — z~'y.
(#4). The maps 7 are the quotient maps for the diagonal action of G on the left.
(#i1). The maps p; and py are the quotient maps with respect to the right Ap-action of T'.
)

. The maps ¢,r and ¢ have already been defined and the other maps are defined so that all
squares are Cartesian, they are all quotient maps for the obvious groups.

Consider the sheaf £,-1 K Ly, on (U x U)/Ap(U) and the diagram

(U xU)/ApU —2— (G x G)/ArU

- 1
™0 ™

AU\(U x U)/ApU —— AU\(G x G)/ApU —— AG\(G x GQ)/ArU
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where all maps are either the obvious quotient maps or induced by the inclusion U — G. Note that
the two squares are Cartesian and the maps i; and ig isomorphisms. There is an isomorphism

ToigLy = Ly-1 X Ly,
We then deduce
Tuly = é1v1,150Ly
=&y wimomyigLy[2dim U]
=102, (Ly-1 K Ly)[2dim U]

where, in the second line, we have used the fact that mo 7 ~ id[—2dim U] since mq is a U-torsor.
We now want to compute i;HCp(Z,) as follows.

i HCr(Ey) = ijrig v Ly
=r1,1g1¢1,1701Ly
=r1,1q1c1 21 (Ly—1 X Ly)[2 dim U]
= T4,172,1¢3 21021 (Ly—1 K L) [2dim U]

We now want to discuss pira1q5c2,1v2,1(Ly-1 B Ly). First note that vy L1 X Ly was (U x
U,9~! x 9)-equivariant on the left and remains so after applying all the functors pira gica, the
resulting sheaf is ¥~! x i-equivariant on the left on G/U x G/U hence has to be supported on
the open cell, which is UTU/U x UTU/U. We now compute its pullback to T" x T. Consider the
following diagram

(TU x TU /AFU —" 5 TU/U x TUJU

J{jl
/ B (G /AFU ———— G/UXGJU
lp2 J/Pl

(U xU)/ApU —7 (G x G)/ApG 5 (GXxG)/ApB —— (G/U x G/U)/AT

where the maps j; and js are induced by the inclusion TU C G, the map j3 = gop2j2, the map triv is
the map with constant value 1. Both of the right squares are Cartesian. We identify (UxU)/ApU =~
U via the inclusion of the second factor, in partlcular the map U x U — (U x U)/ApU ~ U is
nothing else than the map (z,y) — (yF( D). Similarly we identify (G x G)/ArG with G and
(TU x TU)/ArU ~ T x T x U. Under these identification, we set the map v to be given by the
graph of F on T' x T and the map with constant value 1 on U. With these choices, the left square
is also Cartesian. We have

Jipiragscova i (Ly-1 B Ly)[2dim U] = 14,155 p5q5c2,1v2,1(Ly-1 B Ly)[2dim U]
=ra,1j5co1021(Ly-1 W Ly)[2dim U]
= rantriv(Ly-1 K Ly)[2dim U]
=ry,mQr[2 dim U].
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Under the identification TU/U x TU/U ~ T x T, the sheaf j}piroqco va(Ly-1 B Ly)[2dim U]
is therefore nothing else than the sheaf (id x F),Qr.
Consider the following cartesian diagram

G/U x GJU —— U\G/U

| [

(G/U x GJU)ApT — ST

4

We now compute -
a1p1r2,1G5C2,102,1 (Ly—1 X Ly)[2dim U].

By the preceding discussion, the sheaf pjraigicava(Ly-1 B Ly)[2dim U] is nothing else than

the sheaf pip1(Ly-1 X Ly)[2dim U] where Ly is considered as a sheaf on G /U via the inclusion
U — G/U. Note that the maps a,p;,p and 74 are equivariant for the action of T by translation
either on the right or on the second copy of G/U, hence Av, commutes with the functors pi, p*, ....
We now compute
AVXCLIprL!(,Cw—l X Ew)[? dim U] = AVXp*ﬂ'4,!p17g(£w71 X Cw)[Q dim U]
= p*pga!AVi(ﬁw—l X Ed))[Q dim U]),

where Avi refers to the averaging functor on the second copy of G/U. Let us now evaluate
AV (Ly-1 K Ly)[2dim U]). Consider the following diagram

) GxGIU —2— G/U
UU/U x UTUJU G/U x GJU —— U\G/U

UUJU x UTU/U

where z and % are the quotient maps for the action of U, the maps j and j are the obvious inclusions
and the map b is (z,yU) — x~1yU. Note that both squares are Cartesian. Since U is a unipotent
group the map id — z2' is an isomorphism.
AV (Ly—1 B Ly)[2dim U]) = arji(Ly—1 K (AV2 Ly))[2dim U])

= z2'ai(Ly—1 K (AVILy))[2dim T))

= bz (Ly-1 B (AVILy))[2dim U))

= 21bji(Ly—1 B (AV2 Ly))[Adim U))

= 21(6y.4)[dim T + dim U]

== AVU ((Sx’w)[dim T] = TX [dlm T}
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Putting everything together, we have,

Av,p"HCp(Ey) = p*7T4’!AViT2’!q§CQ’!UQ’!(£¢—1 X Ly)[2dim U]
= a!pTAViTQ,!q;CQ,['UQ,I(ﬁw—l XLy)2 dim U]
= p*pT, [dim T).
The sheaf p/T, [dimT7] is concentrated in a single perverse degree. Indeed, since T, is tilting,
both the stalks and costalks of T} are direct sums of copies of v} Ly ® £, [dimT + ¢(w)] . Since
the map p is a T-torsor, by lemma 3.2.50, the stalks and costalks of piT), [dim T are direct sums of

copies of pi} Ly ® £,[2dim T + ¢(w)] which is concentrated in a single degree.
We can now apply [BBD82] 4.2.5, to deduce that

p!TX[dimT] = AVXHCF(Ew)
Taking a direct sum over all x yields the lemma. O

Proof of theorem 3.6.2. Let w € W. Using theorem 3.3.8, we have that
ko it HCp(Ty) = Ty @gr RL(Y (), Zg).
Applying the functor k, i}, to both sides of 3.6.8, we deduce that
Ty ®@gr RU(Y (W), Zs) = ku sii,pT = Ky wpris, T[dim T7). (3.110)
Since T is tilting and by lemma 3.4.30, we get

inT= @@ vy(lr®L)[dmT +(w)].
x€CH(T)

By lemma 3.3.9, the right hand side of 3.110 is isomorphic to the regular representation of 7%F. [

Proof of theorem 3.6.3. By functoriality the isomorphism ®HCpI'y, ~ piT[dim T defines a map
End(T'y) — End(pT). (3.111)

The right hand side is isomorphic to V(p'pT) ~ Oz. By lemma 3.6.7, there is a W-action on Z
such that Z J W ~ (TV )| W)Fv. In particular the statement is equivalent to the commutation of the
action of End(T"y) with the W-action. We will use the F*-central structure to obtain a factorization
by the W-invariants.

Recall that (T) denotes the stable subcategory of H generated by T. By lemma 3.4.58, this is
monoidal subcategory of H¥. We have p'pT € (T). Indeed, choosing a regular sequence determining
the graph of Frobenius in C(7T") x C(T') and then restricting it to C(T") X¢ 7y yw C(T') is still a regular
sequence by the proof of lemma 3.6.7. The object p'pT is then isomorphic to the totalization of
the complex of T ®¢(7)x c(ryywC(T) Kos where Kos denotes the Koszul complex corresponding to
our chosen regular sequence.

Consider the full subcategory (I'y) C Deons(pt/GY, Zy) generated by I',. The F*-central functor
p'HCF then defines an F*-central functor

(Ty) — (T). (3.112)
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By lemma 3.4.58, the functor V induces a monoidal equivalence (T) =~ Dqcon(C(T) X¢(1yyw C(T'))-
Therefore V(p'HCp(—)) then defines a FV-central functor (I'y) — Daeon(C(T) Xc(ryyw C(T)). By
theorem 3.C.12, we have an equivalence

Zpv (Daeon (C(T) Xc(ryyw C(T))) = Daeon (C(T) J/ W)F") = Dgeon (TY | W)™). (3.113)
We then get a well defined functor
(Ty) = Dacan(T¥ ) W)™) (3.114)

making the following diagram commute

<Fw> choh((TV // W)Fv)

T~

Dacon(C(T') xe ey yw C(T))

where the map Dgcon((TY // WHF') - Deon(C(T') xe(ryyw C(T')) is given by i,2* where i and 2
are the following maps
C(T) xeryyw C(T) <= Z S (TV JW)F. (3.115)

The image of Ty, is then an O((T" // W)F')-module M whose image in Dcon(C(T') X ¢y yw C(T))
is V(p'pT) = i,0z. Hence we have an isomorphism z*M = Oz. As Z — (TV J W)F" is faithfully
flat, we see that M is locally free of rank one. Moreover, since (T // T/V)FV is a finite disjoint of
(Artinian) local schemes, M is free of rank one. We therefore have a map

¢ End(T'y) = Ogpv jyyev = End(M), (3.116)

compatible with the map End(T'y,) — End(pT).
To conclude the proof of the theorem, we still need to prove that Curit*°¢ = Cur,,. Firstly recall
from the proof of the Endomorphismensatz 3.4.34, that there is an embedding QT®QWX Qr = Bupdr
T

and that the following diagram commutes

End(Ty) — End(gr,Ty)

QT ®Q¥/X QT Tw) QT

where pr,, is the map induced by the projection @, — 27 onto the w-th component. Recall from
lemma 3.4.21 that gr, T\ = iyi5 7T, and thus End(gr,, T, ) = Hom(i}, T, i} T, ). We take a direct
sum over all x and then apply the functor Oz ®Oc(yx e pyyweem — 1O the previous diagram. Using
lemma 3.6.6 and the fact that Oy BOc(ryx gy e Oc(ry = Opvyuwrv, we have a commutative
diagram.

End(T'y) —— End(pT) —— End(pi},T)

l |

O(T\///W)FV OZ O(Tv)wF\/
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By lemma 3.3.8, and since End(pyi,T) = Z,[T"¥] the top line is the w-Curtis morphism and the
bottom one is the w-spectral Curtis morphism.
O

Proof of theorem 3.6.1. To conclude we use a symmetrizing form argument. Firstly consider the
map (TV)*¥ — (TV J W)¥". We have Opvyur = Zg[T"F], and we therefore have a map

O(TV//W)FV — Z@[TMF].

Consider the composition End(T'y) = O¢pv yypyev — Ze[T*"]. By theorem 3.6.3, this map is
the Curtis morphism. By [BKO08], the map End(T'y) = @, ey Ze[T¥] is injective and both sides
are equipped with compatible symmetrizing forms. As Q, ® End(I'y) ~ O(TV//W)FV ® Q, the map
End(T'y) = Opv jwyrv is an isomorphism by loc. cit. Lemma 3.8. O

3.A Equivariant sheaves

We will recall a construction of [Gai20]. We let T be a torus over k and X be a scheme with a
T-action and A be a coefficient ring. We first equip the category Deons(T, A) with the *-convolution
structure defined as follow. Consider the convolution diagram

TXT — T
T T

where p; are the projections and m is the multiplication. The * convolution is defined as
Ax* B=m,(AX B)

where A, B € Deons(T, A).

Remark 3.A.1. This monoidal structure extends to the category Dindcons(T, A) by the continuity of
My

Similarly the category Deons(X, A) is a module over Deons(T, A), namely there is an action
AxB=a,(AX B),

where a : T'x X — X is the action map and A € Dcops(T, A) and B € Deons(X, A). As before this
action extends to an action on the ind-completions. Consider the category D(A) as a Dindeons (T, A)-
module with the trivial action, that is the action given by (A, M) — RI(T, A) ® M, we denote it
D(A)triv~

Definition 3.A.2. Let C be a stable cocomplete Dipdeons(T, A)-module. We define the categorical
invariants and coinvariants as

(’L) CT = I‘IOHIDindCOns (T,A) (D<A)triva C)a
(i1). Cr = C ®py,geons (1,0) D(A)triv-

The evaluation at A € D(A)¢, defines the forgetful functor Fory : CT — C. Its right adjoint is
denoted by Avr . The functor Avy, : C — CT factors through a functor

CT — CT.
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Theorem 3.A.3 ([Gai20], B.1.2). The functor Cr — CT is an equivalence.

Remark 3.A.4. By [Gai20] 1.4.5, the category C” is identified with the category of comodules over
the comonad Avy ,Forp.

Definition 3.A.5. For the category C = Dindeons(X, A), the categorical invariants/coinvariants
are identified with the category Dindcons(X /T, A) of sheaves on the quotient stack by [Gai20] 1.4.6.
The category Deons(X/T, A) is the full subcategory of Dindeons(X /T, A) of sheaves such that their
pullback to Dindcons(X, A) is in Deons(X, A).

Remark 3.A.6. In the rest of the paper, we have used the !-convolution instead. As Verdier duality
exchanges ! and *-convolution, we get variants of the previous results. In particular, the category
Deons(X/T, A) is identified with the modules over the monad ForpAvy).

The twisted case.

Definition 3.A.7. A multiplicative sheaf £ € Dcons(T, A) is a sheaf equipped with the following
data

1). a trivialization at 1 € T', i.e., an isomorphism 1*£ = A
b ) p )

(#4). an isomorphism m*L ~ L X £ where m : T x T'— T is the multiplication map such that the
restriction at (1,1) € T x T of this isomorphism is compatible with the trivialization of ().

For this section we refer to [Gai20] 1.5. Let £ be a multiplicative sheaf on T of A-modules. Let C
be a category with a Dipdeons (T, A)-action, denote this action by A, c— A*c for A € Dindcons(Ts A)
and ¢ € C. We twist the action and define a new action x"V

AxYe=(A®pL)*c
where A € Dingeons(T,A) and ¢ € C.

Definition 3.A.8. The category of (T, L)-equivariant sheaves on X is defined to be the category
of invariants Dindcons(X/ (T, £), A) = Dindeons(X, A)T for the twisted action of Dingeons(T, A). Sim-
ilarly we define Deons(X/(T, L), A) to be the full subcategory of Dindcons(X/(T, L), A) of sheaves
such that their pullback to Dindeons(X, A) is constructible.

Locally constant actions and monodromic sheaves

Denote by Dindcons(T, A)? the subcategory generated by the constant sheaf. This is nothing else than
the ind-completion of the category of unipotent monodromic sheaves Dcons(T', A)mon,unip- Lhe in-
clusion Dindcons (T, A)° C Dindeons (T, A) has a right adjoint, which is monoidal for the *-convolution.

Definition 3.A.9. Let C be a category with an action of Dingcons(T, A). We set
CO = Dindcons <T7 A)O ®Dindcons(T»A) C.
The adjunction Dingeons(T; A)° S Dindeons(T, A) induces an adjunction C° < C.

Lemma 3.A.10 ([Gai20] B.5). The arrow C° — C is fully faithful and induces an equivalence
(COT ~ CT. Moreover the subcategory C° is the one generated by the image of the forgetful functor
from (C%)T.
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Remark 3.A.11. Lemma 3.A.10 implies that for £, a tame character sheaf on 1" and for the corre-
sponding twisted action of Dindcons(7, A) on Dindeons(X, A), the category Dindcons(X, A)? is identi-
fied with the category of £,-monodromic sheaves on X.

3.B Monodromic Tilting sheaves

3.B.1 Stratified spaces and tilting objects in the unipotent case

We consider a T torsor X — Y and we assume that the scheme Y = Li;csY; is equipped with a
finite stratification such that

(7). For each s the scheme Y; is smooth and has trivial cohomology, that is RT[(Y, Z¢) = Z,.

(i7). For each s, the torsor X, = 7~ 1(Y;) — Y, is trivial and we fix a trivialization X, = T x Y,
and denote by vs : Xy — T the projection.

(7i1). The inclusion iz : Xs — X are affine.

For s € S denote by 7/, : Yy — Y the inclusion. We denote by D, .(Y,Z) the full subcategory

cons

of Deons,s (Y, Zy), of S-constructible sheaves on Y, generated by the sheaves is1(Zs)y,. We will also
make the following assumption

(C) For all s,t, all cohomology sheaves H(i}is .(Z¢)y,) are constant.

We now adapt to our setup several of the definitions of [BY13] Appendix A. We first do it in
the unipotent case.

Definition 3.B.1 (Unipotent standard and costandard objects). We define the free monodromic
standard and costandard objects as

(). Ay = iy 7 Lrldim X,
(17). Vs =1g v} Lp[dim X].
and similarly on Y as

(1). AY =i, (Ze)y, [dim Y],
(i0). VY =i, ,(Ze)y, [dim Y.

Remark 3.B.2. Reducing modulo ¢ the sheaves A; and V, gives A, ®7z, F, and V, ®7z, F, which
are the pro-monodromic standard and costandard sheaves of [BR22b] 5.3.

/

Remark 3.B.3. The hypothesis (C) implies that the perverse t structure on the category D’ (Y, Z;)
is obtained by gluing the perverse t-structures on the stratification S and for the constant local
system on each Y.

Lemma 3.B.4. We have Homp,__ (x 0r)un, (As, Vi) = Qr[0] if s =t and O otherwise.

Proof. This is immediate. O
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Definition 3.B.5. We define D/ (X, Q7 )unip to be the full subcategory of Deons(X, Q1) unip of
sheaves A such that 7;(A) € D),

cons (Y? ZZ) - DCOHS(K ZZ)-

Lemma 3.B.6. (i). The perverse t-structure of Deons(X, Q1 )unip induces a well defined t-structure
on D1 (X, Q1 ) unip, with heart denoted by Perv' (X, Qr)unip-

cons

(#3). The category D, (X, Qr)unip s generated as a triangulated category, either by the (Ag) or
by the (V).

Proof. For the first point, note that all sheaves in D/ (X, Q7)unip are constructible with respect

to the (X;)-stratification. We then do an induction on the number of strata. If there is only one
strata the statement is obvious. Now let X be the open strata and let A € D (X, Qr), denote
by i : X \ Xs — X the inclusion of the other strata. Since the inclusion Xy — X is affine the
functors 75, and ¢, . are perverse t-exact. The functors ¢* and i' are respectively right and left

t-exact. Consider the two fiber sequence

is)isA— A— 4 A

it A — A g it A
and apply the perverse truncation functors 7>, and P7<,, respectively. We get two fiber sequence

is,ypTZni:A — pTZnA — i*pTZni*A

. .1 . .
WPT<ni’ A= Prep, A =i PT<nil A

Now by induction and the one stratum case, all the sheaves P7s,i* AP 7>,i* AP 7<,i' A and Pr<,i* A
are in their corresponding D, . and therefore so are 7>, A and P7<, A. Hence the subcategory
D! .«(X,Qr) is stable under perverse truncations and we have a well defined induced ¢-structure.

cons

For the second point, one argues again by induction on the number of strata, if there is only
one stratum this is trivial. In general let A € D, (X, Q71 )unip, as before let X, — X be the open
stratum and 7 : X \ Xs — X be the inclusion of the other strata. Using the excisions triangles for
(i,i5) as before, we reduce to the case of a single stratum (using the one with is, * for the V, and

is for the Ay). O

Definition 3.B.7. A sheaf A € Perv(X, Qp)unip is said to have a A-filtration (reps. V-filtration),
if it has a filtration whose graded parts are isomorphic to some Ay (resp. V). A perverse sheaf is
tilting if it has both a A-filtration and a V-filtration. There is a corresponding definition on Y, we
refer to [AR16].

Lemma 3.B.8. Let A € Perv'(X,Qr)unip be a perverse sheaf with a A-filtration and B with a
V-filtration then

(7). Hom(A, B) is concentrated in degree 0 and is a free Qp-module of finite rank.
(7). Hom(A, B) ®q, F; ~ Hom(my 5, A, 71 7, B).

(t4i). An object in A € Deons(X, Q1 )unip 18 @ tilting perverse sheaf if and only if w4 5, A is a tilting
perverse sheaf on'Y .

115



Proof. As explained in [BR22b], for (), this is an immediate induction on the number of terms in
the filtrations of A and B. For (4i) this is a consequence of the five lemma together with lemma
3.B.4. For the third point, the proof of [BR22b] 5.9 works verbatim in our setup after replacing
in loc. cit. by TR, O

Remark 3.B.9. Let T be a tilting sheaf, then Ty, is a tilting sheaf in Deons(X, 7 F, ) mon,unip-

Lemma 3.B.10. Let A € Perv'(X,Q7)unip be a perverse sheaf on X such that pHOﬂ'TE (A)=0
then A = 0. ‘

Proof. The same statement is proved for Qrp, in place of Q7 in [BR22b] 5.2. We can therefore
reduce to their statement. First consider PH%(A ®q,. QO 7,) then this is an ;5 -perverse sheaf
and PHOm? H(A ®qy Qp5,) = PHm, 5,A = 0. By loc. cit., (A ®q, Qp5,) = 0. Furthermore, the
reduction mod £ is conservative on perverse sheaves by derived Nakayama. O

Lemma 3.B.11. The realization functor D®(Perv' (X, Qr)unip) — D!

cons(Xa QT)unip 18 an equz’va-
lence.

Proof. We will prove this in several steps, this is essentially the proof of [RSW13] 2.3.1 and 2.3.4.
Since the perverse t-structure of D, (X,Qr) is glued from the one on each stratum, for X, a
stratum, we have an intermediate extension i, 1. : Perv(Xs, Qr)unip — Perv(X, Qr)unip- Since the
category Perv(Xs, Qr)unip is equivalent to the abelian category Qp — mod, for M € Qp — mod we
will denote by IC(X,, M) the corresponding object in Perv(X, Q7)unip-

Step 1: Every object in Perv(X, Qr)unip has a finite filtration with graded components of the
form IC(X, M) for varying s and M. One can just apply the proof of lemma 2.1.4 of [RSW13] as
the proof requires only the formalism of recollement of ¢-structures and our geometric setup.

Step 2: For all M and s there exists a projective object with a A-filtration in Perv(X, Qr)unip
that surjects onto IC(s, M). The proof essentially copies the one of [RSW13] 2.3.1 and of [BGS96].
The argument is an induction on the strata, if there is only one stratum then the statement is
clear. Let Xy C X be an open stratum and 7' : X’ C X be the closed complement. The functor
il is t-exact and induces an isomorphism Ext’. (4, B) = Ext'(i{A,i|B) for A, B € Perv(X'). It is
enough to show the statement for IC(X;, Qr) = IC; as IC(—, —) preserve surjections, see [Jut09]
2.27. Since i* = i’ is t-exact the sheaf A, is projective and surjects onto IC,. Let t # s and let
P’ — IC; be a surjection on X’. Since 4| is exact the map P’ — ¢{IC; = IC; is still surjective.

Let E = Ext'(P’,A;) and Ef — E be a free Qp-module of finite rank surjecting onto E and
let EY be its Qr-dual. The map

Qr — Ef ®@q, Ef = E ®q, Ef ~Extx (P, Ef ®q, A),
sends 1 to an element which corresponds to an extension
O—>E}/ ®ar Ay > P — P — 0. (3.117)

The object P surjects onto IC; and has a A-filtration. It remains to see that it is projective. This
follows from the following points.

(i). For all B € Perv(X'), we have Ext'(P,B) = 0. This follows from the long exact sequence
attached to 3.117 and the projectivity of Ag.
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(ii). We have Ext'(P,A,) = 0. Again the long exact sequence from (3.117) yields
Hom(EY ®q, A, A,) = Ext'(P',A,) = E — Ext'(P,A,) = Ext' (EY ®q, Ay, Ay) = 0.

The first map identifies with the map £y — E and is then surjective, the third term is
therefore 0.

(i3i). We have Ext*(P, B) = 0 for all B € Perv(X). It is enough to show it for all IC,, for varying
u. For such u we have a short exact sequence 0 — IC, — V,, = K — 0 which induces a long
exact sequence

Ext'(P,K) — Homp, X0 )uniy (P 1Cu) = Hom?, X1 )amp (P Vu)-

We can assume K lives on X’ and then Ext' (P, K) = 0 and since P is A-filtered Hom?(P, V) =
0.

(iv). Now use the exact sequence 0 — K’ — A; — IC; — 0 and the corresponding long exact
sequence
Ext'(P,A,) — Ext'(P,1C,) — Hom?(P, K).

But we have already killed the first and last terms. Hence Ext'(P,1C,) = 0.

Step 3: For this step, we repeat the arguement of [RSW13] 2.3.4. Since Perv’(X, Qr) generates
both the categories Deons (X, 7 )unip and D’ (Perv' (X, Q7 )unip), we only need to show that for all
A, B € Perv'(X, Q1) unip the map

EXt%’erv’ (A’ B) _> Hom%)cons(xyﬂT)mon (A’ B)

is an isomorphism. First assume that A is projective with a A filtration, we already know that for
1 = 0,1 both side coincide, we want to show that for i > 0 both sides vanish. For the left hand side
this is clear, for the right hand side, by the first step, we can reduce to the case B = IC(X, M),
using the exact sequence

0—-IC(Xs,M) > Vs®q M - K —0

and the induced long exact sequence after applying Hom*, using lemma 3.B.4 we get that Hom® ™! (A,K) =
0 implies Hom'(A,IC(X,, M)) = 0. Now we use step 2, to find a surjection from a projective P
with a A-filtration onto A, then one argues as in [RSW13] 2.3.4. to conclude. O

Theorem 3.B.12 (Structure of Tilting sheaves). (i). For all s € S there exists an indecompos-
able tilting sheaf Ts on X5 such that iiTs ~ v Lp[dim X,].

(ii). The isomorphism classes of indecomposable tilting sheaves are in bijection with S and the sheaf
T, corresponding to s is characterized by the fact that m; 7, Ts is an indecomposable tilting in
the sense of [BBM04a).

(ti1). It T is a tilting sheaf then T ®z, Fy is a free monodromic tilting sheaf in the sense of [BR22b].
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Proof. For the points (i7) and (iii) we refer to [BR22b] 5.12. We discuss the first point, which is
the most technical, the proof is just essentially the same as the one of [AR16] B.2.

The proof is by induction on the number of strata in X,. If there is only one stratum this is
clear. Otherwise let X; C X be a closed stratum and U = X\ X; 2y X, be the open complement.
By induction there exists Ty on U satisfying the assumption. We consider 57Ty, it is a perverse
sheaf since j is affine and it is equipped with a A-filtration. Let E = Extl(At,ngU) and By — F
a surjection from a free Qp-module of finite type. Consider the composition Qp — E}/ QF ~

Extl(At s EJY,j;T) it sends 1 to an extension
0= 4Ty =T = Ay Qo Ef =0 (3.118)

where T is a perverse sheaf, which clearly has a A-filtration. We now claim that 7 is tilting. Firstly
let i, : Xy, — U be a stratum and 4, : X, = U — X be the composite, then it, = g!uj! applying it
to 3.118 yields i, T = i, Tyy which is a perverse sheaf made of direct sums of copies of v Ly[dim X,].
We now want to show Ext’(A;, T') vanishes for all i > 0.

(7). First applying the functor Hom(A;, —) to 3.118, yields an exact sequence
Ef — E — Ext' (A, T) — Ext' (A, Ay ®q, EY) =0

hence Ext'(A;, T) = 0.

(ii). Since Ty has a V-filtration, 517" has a filtration with graded of the form V., it is therefore
enough to show that Hom'(Ay, 7#V,) =0 for ¢ > 1.

(#i1). There are two fiber sequence
M — 5V = j1Va, and J1xVy = jxVy — N.

Both M and N are supported on X; and in negative perverse degrees, hence Hom" (A, M) =
Hom"(A;, N) = 0 for k > 0.

o). - . g
(iv). We now apply the functor Hom(A¢, —) to both triangles and get long exact sequences, inputing
that Hom" (A, j,V,) = 0 for k > 0, we first get that Ext’(Ay, ji,V,) = 0 for i > 1 and then

that Hom"(Ay, iVy) =0 for i > 1.

This yields that .7 is perverse and it remains to see that is a direct sum of copies of v} Ly (only
the freeness is non trivial here). To check this we apply the functor T F,- The stalks of 7TT7EiltT are
the reductions mod m, the maximal ideal of 7, and therefore the stalks of WTﬁ[i!tT are projective
Qpr-modules if and only if their mod m reduction is concentrated in a single degree. But after
reducing mod m, the construction we have done is nothing else than the construction of [AR16],

Appendix B.
O

3.B.2 Tilting sheaves in the non unipotent case

We extend the definitions of the previous section to this one to cover the non unipotent case. We
fix x € CH(T).
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Definition 3.B.13. We define
(i). the category D’ (X/(T,L,),Z¢) to be the full subcategory of Deons(X/(T,Ly),Z¢)) of

cons
sheaves generated by the collection i,v} (L, ).

(#3). The standard and costandard sheaves as A;, = i, (Lr ® £,)[dim(X,)] and V,, =
is+ V2 (L ® Ly)[dim(X,)].

(77). The category DL, (X,Qr), as a full subcategory of Deons(X, Q7), of sheaves A such that

7TT(A) € Déons(X/(Ta ‘C)()az@)

The perverse sheaves with a A or V-filtration are defined accordingly and so are the tilting sheaves.
We also assume the following condition :

(C)y For all s,t, all cohomology sheaves H(i}is .v}L,) are of the form M ®q,. v; L, where M is
an Qp-module.

Remark 3.B.14. The category of sheaves satisfying condition (C), is independent of the choice of
the trivializations vs.

Theorem 3.B.15. All results of the previous section remain valid in the twisted setting.

Proof. All statements, except lemma 3.B.10 do not require the fact that we deal with unipotent
sheaves and the proof are very axiomatic. For the remaining statement we refer to [Gou21] 7.5.6. O

3.C Twisted categorical centers

In this appendix, we recall some known facts about categorical centers and traces. We will mostly
follow [BZNF10]. We refer to [GKRV22] for the various twisted versions.

3.C.1 Monoidal structure and categorical centers

Let A € {Qy,Z¢,F¢} and consider DGCaty the category of all presentable stable cocomplete A-
linear categories. It is equipped with the Lurie tensor product defined in [Lur] Section 4.8. We
refer to [GR17] Chapter 1 for a construction of this category. In this section, we call a category an
object of DGCaty.

Definition 3.C.1 (F-categorical center). Let C be a monoidal category in DGCaty and let F : C —
C be a monoidal endofunctor of C. We denote by C*" the category C equipped with the opposite
monoidal structure.

The category C has the structure of a C ® C**V-module. We denote by Cr the same category C
but with its bimodule structure twisted on the right by F. The F-categorical center of C is then
defined as

ZF(C) = HOmC®Crev (C7CF) (3119)

Definition 3.C.2 (F-categorical trace). Let C be a monoidal category and F : C — C be a monoidal
endofunctor of C. The (2)-categorical trace of F on C is defined as

TI'Q (F, C) =C ®C®Crcv CF (3120)
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Definition 3.C.3. Let C be a monoidal category. An object z € C is left dualizable (resp. right
dualizable) if there exists an object ¥z and morphisms

eviz® 'z — le,coev:le = Vz @, (3.121)

Y

where 1¢ denotes the unit of C, (resp. if there exists an object ¥ and morphisms,

ev:x' @z — lg,coev:le @) (3.122)

satisfying usual identities.
Remark 3.C.4. If C is symmetric monoidal, we will freely identify left and right adjoints.
Definition 3.C.5. A category C is called dualizable if it is dualizable as an object of DGCaty,.

Lemma 3.C.6 ([GR17], 1.7.3.2). IfC is compactly generated, i.e. C = IndC¥, where C¥ is the full
subcategory of compact objects of C, then C is dualizable. Its dual is identified with CV = IndC%-°P

and the evaluation is given by
ev:C®CY — D(A), (3.123)

for A,B € C¥,ev(A® B) = Hom(B, A).

Remark 3.C.7 ([GR17]). Let C be a compactly generated category. Then an equivalence D : C¥°P —
C% induces a equivalence C ~ CV.

Remark 3.C.8. The cateogry D(A) is the unit object of DGCata. We have Hom(D(A),D(A)) =
D(A).

Lemma 3.C.9. Let C be a dualizable category. Then for all categories D, there is a natural
isomorphism
Y ® D ~ Hom(C, D). (3.124)

Lemma 3.C.10. Let X be a quasi-compact A-scheme, then Dqcon(X) is compactly generated by
the category of perfect complexes. The naive duality

D : Perf(X)° — Perf(X), M — Homx (M, Ox) (3.125)
induces a self duality on Dgcon(X).
Lemma 3.C.11. There is a natural equivalence

End(Dgeon (X)) ~ Dgeon(X x X). (3.126)

3.C.2 Twisted centers of Hecke categories

Let f : X — Y be a faithfully flat finite type morphism of schemes. We consider the category
QCoh(X xy X) which we call the Hecke category of f. The category Dgcon(X Xy X) is equipped
with the convolution structure of [BZNF10]. On objects A, B it is given by

Ax B = pi3.(plaA @ p33B), (3.127)
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where the maps are the projections in the following diagram

XXyXXyX
ypml w)
X xy X X xy X X xy X.

Let Fx : X - X and Fy : Y — Y be morphisms commuting with f. We denote by LrY the
intersection of the diagonal and the graph of Fy. It fits into the following cartesian diagram.

LY —— Y

l J{(idxF)

YT>Y><Y

We introduce as [BZNF10], the (twisted) horocycle transform
LrY £ X xy Y Xyxy Y =X xxxy X 5 X xy X, (3.128)

where in the fiber product X x x xy X, the two maps X — X xY are given by (id x f) and (Fx x f)
respectively. The F-horocycle transform is then defined as the functor r.q*.

Theorem 3.C.12 (Twisted variant of [BZNF10] Theorem 5.3). There is an equivalence
ZF(Dgeon(X Xy X)) = Dacon(LFY), (3.129)
such that following diagram commutes

ZF(choh X ><Y — choh(cFY)

| /

choh (X Xy X

Remark 3.C.13. In [BZNF10], they show this statement for the categorical center and not its twisted
version. The proof in the twisted version is shown in the same way.
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Chapter 4

On depth 0 local Langlands and
global Chtoucas
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4.1 Introduction

Let ¢ = p" be a power of prime number p > 0 and let I, be the finite field with g elements. Let K
be a local field of equal characteristic with ring of integers Ok and let X be a smooth projective
curve over [F, with function field F. Let G be a reductive group over X with generic fiber G' and let
‘H be a reductive group over O with generic fiber H. Denote by Weilp and Weilx the absolute
Weil groups of F and K and by G = G x Weilp and “H = H x Weilg the L-groups of G and H
respectively. Finally fix £ # p a prime and denote by A € {F;,Q,} a coefficient field.

Theorem 4.1.1. (i). [Laf18] There is a map GLC : 7w — o, from cuspidal irreducible automor-
phic A-linear representations of G(Ag) to conjugacy classes of semisimple global Langlands
parameters, where Ar denotes the ring of adéles of F. They are morphisms Weilp — LG(A)
satisfying the hypothesis of loc. cit.

(i1). [GL17] There is a map LLCSY : 7w — o, from the set of smooth irreducible A-linear repre-
sentation of H(K) to conjugacy classes of semisimple local Langlands parameters. They are
morphisms Weilx — LH(A) satisfying the hypothesis of loc. cit.
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(#43). [GL17] The two constructions are compatible in the following sense. Let x € X be a closed
point and choose an isomorphism between F, the completion of F at x with K and an isomor-
phism Gr, = H. This defines an inclusion of Weilg C Weilp and a morphism Lg 5 L@, Let
™= ®;6X7ry be a cuspidal automorphic representation of G(Agr). Then the semisimplification
of the restriction of o, to Weilg is conjugate to o, .

Remark 4.1.2. If the group G is split, then using the compatibility with parabolic induction estab-
lished in [Xue20b], we can remove the words ’cuspidal’ in ().

The main goal of this paper is to discuss, in the local setting, the structure of local Langlands
parameters associated to depth O representations of H(K). In the global setting, we want to
discuss the local structure of global parameters associated to automorphic representations whose
local component at a place z has depth 0. In view of (iii) of theorem 4.1.1, those two questions are
essentially equivalent.

Let us now formulate our main results. We consider the local situation. Let T" C H be a
maximal torus and let W be the Weyl group of Tais, where K218 is an algebraic closure of K. We
first need to recall some properties of the structure of A-linear smooth representations of H(K), we
refer to section 4.3 for a more detailed account.

Theorem 4.1.3 ([Lan18], [Lan21]). The category RepX H(K) of depth 0 representations of H(K)
decomposes as a direct sum

RepQH(K)= )  RepiH(K), (4.1)
sE(TJW)F(A)

where T denotes the dual torus over A, T' ) W the GIT-quotient by the action of W and (—)F the
scheme of invariants under the morphism dual to the Frobenius of T.

Remark 4.1.4. We consider the decomposition into geometric series of loc. cit.. There is however a
finer decomposition into rational series, this will play no role in this paper.

The decomposition of theorem 4.1.3, yields a map
LS : I (H(K)) — (T ) W)F(A), (4.2)

where TrrQ (H(K)) is the set of irreducible depth 0 representations of H(K), characterized by
LS(7) = s if and only if 7 lies in the direct summand indexed by s.

Definition 4.1.5. Let ¢ : Weilx — “H(A) be a Langlands parameter. We say that this parameter
is tame if it factors through Weilk, = Weily / P, the tame Weil group, where Py denotes the wild
inertia subgroup. We denote by (ZV(K, H) J/ H)(A) the set conjugacy classes of semisimple tame
local Langlands parameters.

We fix 7¢ a topological generator of the tame inertia. Given a tame local Langlands parameter
¢, we denote by ev,, (¢) the image in H J H =T J W of ¢(1x). We can now state our main
theorem.
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Theorem 4.1.6. Let w € Irr (H(K)) then LLCYY(7) is a tame local Langlands parameter. Fur-
thermore the following diagram is commutative.

T H (K) M55 (290 (K, ) ) H)(A)

LS\L leVTK

(T ) W)F =—= (T | W)F

We fix a closed point z € X, an isomorphism F, = K between the completion of F' at x and
K and an isomorphism Gp, = H. This last isomorphism yields an isomorphism Gr, = H. Let o
be a polysimplex in the Bruhat-Tits building of H(K) and let H, be the parahoric group scheme
over Ok corresponding to o. Using the isomorphism G, = H, we glue H, with G(x_,) and we
get a smooth group scheme G, over X whose restriction to O is H,. Finally let N = x + N*
be an effective divisor of X with = ¢ N* and I be a finite set. The stack of chtoucas Chtg_ 1 n
with |I]-legs and level structure N is an algebraic stack over (X — N), its definition is recalled in
section 4.4. Let us for now ignore the Harder-Narasimhan truncations and the role of the center.
Let W € Rep, (YG)!, there is a sheaf F; yw on Chtg, ; n coming from geometric Satake. Denote
by p : Chtg, 1 — (X — N)! the leg map and by ’H?N’W = RIp\Frw the cohomology sheaf. This
sheaf is an ind-lisse sheaf on (X — N) by the main theorem of [Xue20d]. Let us further fix 7 — X
a generic geometric point, we take

Hi yw = Hinw)iam: (4.3)

the fiber of ’H,} nw at the geometric point A(7). As this sheaf is ind-lisse, taking its fiber at
a geometric point yields a representation of Weil((X — N)?, A(%)). Using Drinfeld’s lemma, Xue
[Xue20d], generalizing an argument of [Laf18], shows that the representation of Weil((X —N)I, A(#))
factors through Weil(X — N, 7)!. Hence we have a functor

Rep, (("G)') — Repy (Weil(X — N, 7)")

J
W — Hy yw-

The collection of these functors as I-varies carries a lot more structure. This structure is the data
of morphism of cocartesian functors over FinSet, the category of finite sets. The definition of this
structure is recalled in section 4.4. We will systematically restrict the action of Weil(X — N)! to
Weil}w. The formalism of excursion of [Laf18] produces an algebra Exc(Weilg, , G) whose A-points
are in bijection with conjugacy classes of semisimple local Langlands parameters. There is also an
evaluation morphism Spec(Exc(Weilg, ,G)) — G / G, such that on A-points this map is identified
with the evaluation and semisimplification on 75, . Moreover given such a cocartesian functor, each

of vector spaces H7 ~.w 18 equipped with a canonical action of Exc(Weilg, ,G). Denote by V,, the
unipotent radical of the special fiber of H, and M, is reductive quotient. The vector space H } NW

carries an action of the finite group Ho r, (F,). We consider the vector space (H7 5 w) Ve =) which
then also carries an action of M, (F,).

Theorem 4.1.7. (i). For all I,W the Weil}m -module (Hf’W7N)VG(FI) is tamely ramified, that is,
the action of Weilf;m factors through the tame quotient (Weil%m)l.
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(i1). Let s € (T W)ﬁ(A), then as an Exc(Weil%z,G')-module eS(H}’W’N)VU(Fl) is supported on

evyr (s), where ey is the idempotent in A[M,(Fy)] corresponding to the Lusztig series attached

to s, we refer to Section 4.2 for the notations.

Finally let Z! (Fx,(?) be the moduli space of local Langlands parameters as constructed in
[DHKM?20], [Zhu21] and [FS21]. In this setting a construction of [LZ18] attaches to the cocarte-
sian functor (I,W) — H} N.w @ canonical G-equivariant quasi-coherent sheaf on Z* (FI,G) Let
us denote this coherent sheaf ./\/lgv, whose construction is recalled in section 4.4.5. Let us select
A 1’t(Fx, G) the closed subscheme of tame Langlands parameters, this is a union of connected com-
ponents of Z'(F,,G). We still denotes by eVrp ZV(F,,G) — G J G the morphism induced by
evaluation at 7p,. The quasi-coherent sheaf M?V still carries an action of H, (F.).

Corollary 4.1.8. (i). The quasi-coherent sheaf (Mg\,)vf’(mf) is supported on Z''(F, G‘)

(i1). Using the same notations as in theorem 4.1.7, let s € (T' W)?(@g), then the quasi-coherent

sheaf es(./\/lgv)vf’(h) is supported on ev;! (s).

While preparing this paper, we learned that Andrew Salmon was working on a similar project,
[Sal23a]. Let us highlight the overlap and differences between our work. In [Sal23a], Salmon shows
theorem 4.1.7 assuming the following hypothesis, A = Q,, G is constant and split, o is a hyperspecial
point and the degree of z/F, is one. On the other hand, in this situation, he is able to describe the
unipotent part of the parameters while we restrict ourselves to the semisimple part.

4.1.1 Outline of the proof

We now give an outline of the proof. For simplicity, we will keep on ignoring Harder-Narasimhan
truncations and the role of the center in this introduction. These technicalities will be addressed
in section 5 through 8.

There is a map recalled in section 4.4

€:Chtg, 1. n — L;rgo\GerI'

Over (X — N)!, the geometric Satake equivelence provides a fully-faithful functor Rep, (*G)! —
Perv(L{G,\Grg, 1,A). The cohomology sheaves of stacks of chtoucas are then defined as

Hinw = pre*Sat(), (4.4)

where p : Chtg, ; v — X! is the leg map. By the main theorem of [Xue20d], these sheaves are
ind-lisse on (X — N)%.

The local Langlands correspondence of [GL17] relies on the formalism of excursion applied to the
tunctor (I, W) — H; n,w. The properties of the parameters we want to discuss can be read off the
Galois representations corresponding to the sheaves ’H? ~n.w- We choose a maximal torus 7 C H
over Ok, this choice then defines a maximal torus Th; C M,, we denote by Wy, the corresponding
Weyl group of the pair (Ma,Fq7TM,Fq)' Combining the formalism of excursion and of type theory
for depth 0 representations reduces the problem to computing the local Weil representation of
*Rw,XH}/:’J\(,]f;’V), where *R,,, denotes the x-isotypic component of the Deligne-Lusztig restriction
functor attached to an element w € Wy, the Weil group of M, and x is a character of T A%F the
corresponding finite torus.
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We compute the action of the inertia on this sheaf via a nearby cycles construction. In section
4.2, we reformulate the Deligne-Lusztig induction and restriction functors in a geometric way. We
then introduce the following correspondence

(X = N)! x @ «—— Chtg, 1 n xMe ) M, /By —— LfG,\Grg, ; x Dyilzftr

and there is a sheaf V,, (Regpwr ) on W such that *Ru,,x’}-l}/’”]\(,]ifv) = pre*(Sat(W)XV,, (Regpuwr ).
We refer to section 4.5 for the details of this construction.

The second step in this construction is to extend all three stacks to stacks over (X — N®)! so
that we can take some nearby cycles to z. For this, we construct a map emb from Chtg, 5 x x Mo (=)
M, /By to a stack of chtoucas for a different group. This new group is Go which is a group scheme
over X that differs from G, only at x. The group G¢ is the group that is obtained by dilating a
Borel subgroup in the special fiber of G, and as such its group of O,-points is an Iwahori in G(F}).
Similarly we also introduce Gco, obtained by dilating the unipotent radical of the same Borel in
the special fiber. On the right side of the above correspondence, there is also a map emb making
the following diagram commute and the right square Cartesian.

(X = N)! ¢—— Chtg, v xM ) M, /By —— L Go\Crg, 1 x Pogef

J |- L

LT 1Gc0o\Grg .1
I Tu{o}yvcC 0>
(X = N*)" «——— Chtg, rujo},n= B v

Now that we have extended our stacks to stacks that live over (X — N%)!, we can take nearby
cycles. Since we are over a power of a curve and not simply over one copy of the curve there
are several way to take nearby cycles. The main construction of Salmon [Sal23b] shows that
these different nearby cycles coincide and that the functor p; commutes with these nearby cycles.
We extend his proof to our setting. In the end, we are interested in the local monodromy of
pre*(Sat(W) XV, (Reggwr ), this local monodromy can be extracted from the nearby cycles (with
respect to the identity map (X — N)! — (X — N)!) applied the the cohomology sheaves. Since
these nearby cycles commute with py, it is enough to show their property on stacks of chtoucas.
Furthermore, the map € is smooth and thus the nearby cycles commute with smooth pullbacks,
hence, the control of the monodromy can be done on the side of affine Grassmannians. On the
geometric side, we can compute the nearby cycles of the sheaf Sat(W) X V., (Regywr) in terms of
(a variation of) Gaitsgory’s central functors [Gai0l]. We refer to section 4.7 for a discussion about
these central functors. Finally, we use the Wakimoto filtration on these central functors constructed
in [AB09] and [BFO09] to control the monodromy action on the nearby cycles.

4.1.2 Organization of the paper

In section 4.2, we recall some aspects of Deligne-Lusztig theory and the F-twisted horocycle trans-
form. In section 4.3, we recall results of type theory of depth 0 representations of H(K). In section
4.4, we recall some of the main player for the geometry of the problem, that is, affine Grassman-
nian, stacks of chtoucas, the excursion algebra and the space of parameters. We also recall the key
structural properties of the cohomology of stacks of chtoucas which we will use. In section 4.5, we
construct the morphism emb and discuss its main properties. In section 4.6, we discuss tame nearby
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cycles over a self product of a curve. In section 4.7, we recall the construction of (non unipotent)
central functors and their Wakimoto filtration. Section 4.8 is the heart of this paper, we assemble
the results of the previous sections and we show the main theorem. Finally, in the appendix 4.A,
we extend the result of [AB09] and [BFOO09] for the Wakimoto filtrations on the central functors to
modular coefficients.

4.1.3 Acknowledgments
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sharing a draft of his paper [Sal23a].

4.1.4 Notations

Etale sheaves

We will use the following notations. We fix A € {F;,Q,} a coefficient field. If X is a stack, we
denote by D(X, A) the category of ind-constructible ¢-adic sheaves on X. If X is a scheme, this
category is defined in [HRS21] Section 3. If X is a stack, we define this category by descent. For
all algebraic stacks X, the category D(X, A) is a closed symmetric monoidal A-linear triangulated
category. We will denote by ® the tensor product or ®, if we want to put some emphasis on the
coefficients. We denote by Hom the internal mapping spaces. If f : X — Y, we denote by f*, f., f'
and fi the usual derived functors between the categories D(X, A) and D(Y, A).

Finite group actions

Let T" be a finite group. By classical theory, we have D(pt/T', A) = D(Rep,I'), we refer to section
3.3.1 for a proof. The same argument shows that for all algebraic stacks Y, we have D(Y xpt/T', A) =
D(Y,A[l'). If X is a stack with an action of " and f : X — Y is a I'-equivariant morphism for the
trivial action of T on Y. Then for A € D(X,A) a I'-equivariant sheaf on X, the pushforward fiA
canonically lifts to D(Y, A[T']). This can be seen as follows, since A is I'-equivariant it descends to
X/T, and denote by [’ : X/T — Y/T' =Y X pt/T the map on quotients stacks. The lift is then
provided by f/A € D(Y,A) = D(Y,A[l']). It moreover clear that this construction is compatible
with the 6-functors.

Geometric objects

We fix X a smooth projective geometrically connected curve over F,. We choose x € X a point

(not necessarily of degree one) and Z : Spec(F,;) = X a geometric point over . We denote by

(i). m = Spec(F4(X)) € X the generic point of X, we let n"" = Spec(F,(X)) = n xp, F, denote
the generic point of Xr,-

(i). We let F, be the completion at z, O, its ring of integers and F, be the residue field of F.
We denote by 7, = Spec(Fy) and ni* = Spec(E)").
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Roots of unity

We fix a trivialization of the group of roots of unity IFqX ~ (Q/Z), where p’ denotes the prime to
p-part. We also fix a trivialization of the Tate twist (1) = id.

Local field

Let K be a local field of equal characteristic. We introduce the following notations

(7). K™ denotes the maximal unramified extension of K.

(i1). O is the ring of integers of K and kg its residue field,

(iii). Ognr the ring of integers of K™ and kg its residue field.

(iv). We fix an algebraic closure of K C K™ C K®8 and denote by I'x = Gal(K*8/K).
).
).

(v

(vi

We let Px C I C I'x denote the wild inertia and inertia subgroup respectively.

We identify T'g /I with Gal(kg /kx) and denote by F the topological generator obtained as
the Frobenius z +— x9%. We denote by Weilx the Weil group of K.

Adelic notations
We now fix some adelic notations.
(7). We denote by A the ring of adeles of X.
(73). We fix a divisor N C X, which we assume to be of the form N = x + N® where x ¢ N*.

(#i1). We denote by O the ring of integral adeles. We have a canonical map @ — Op. The kernel
of this map is denoted by Oy and is the compact open subgroup of principal adeles of level
N.

(iv). Denote by Z the center of G. We fix E C Z(F)\Z(A) a cocompact lattice of the center of G.

Dual groups

We fix some notations for the dual group. Let F’'/F be a finite Galois extension of F such that
G|p: is split and we let Q = Gal(F'/F'). Similarly, we fix 2’ be a place of F’ over z and denote
by Qioc = Gal(F,, /F,) the corresponding Galois group. Since G is the generic fiber of a reductive
group over X, we can assume that F’/F is everywhere unramified.

(7). We denote by G the Langlands dual group of G over A.
(ii). We denote by LG = G % Q the global L-group.

(iii). We denote by LG, = G x Q1oc the local L-group at x.
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4.2 Deligne-Lusztig theory.

4.2.1 Basics of Deligne-Lusztig theory

Let M be a reductive group over Fq equipped with a Frobenius endomorphism F : M — M coming
from some F, structure. We fix By; = TU)ps a F-stable Borel pair and we let Wy = N (T)/T be
the corresponding Weyl group.

The Deligne-Lusztig varieties are defined as follows. Let w € W), and fix a lift w € Ny (7T),
then consider the variety

Y(w) = {mUM,m_lF(m) S U]L[’IUUM} C M/UM (45)

It is equipped with two commuting actions of M¥ and T*¥ acting by left and right translations on
Y (w). The cohomology R,, = RI'.(Y(w), A) is then equipped with two commuting actions of the
same finite groups. We can then introduce the Deligne-Lusztig induction and restriction functors

R : D’ (Rep, (T")) — D°(Rep, (M"))
A= A®pur Ry

"Ry : DY (Repy (MF)) — DP(Rep, (TVF))
B — RHomyr (Ry, B).

The key theorem we will need is the following one.

Theorem 4.2.1 ([DL76] for Q,-version, [BR03] for a general A). The collections of functors *R.,
18 conservative.

We also introduce the following notations. Let TwF be the set of characters of T%F of order

invertible in A. For each § € T%F | there is an idempotent ey € A[T%¥] projecting onto the §-isotypic
part. We denote by *R., ¢ the functor the f-isotypic part of *R .

Consider the action of M on itself by F-conjugation. This is the action given by m.z =
maF(m~!) and we denote it by Adr. By Lang’s theorem, the quotient stack for this action is

= pt/MF.

M
Adp M

The Lang map £ : M — M, m — m~'F(m) induces an isomorphism of quotient stacks

M
M*\M/By = ————. 4.
\M/Bag = 50 (1.6
We introduce now the correspondence
r M Up\M/U
M™\pt <~ MF\M/By; = 1, Un\M /Ut (4.7)

AdeBy | AdpT

where r is induced by the map M/Bj; — pt and g is the quotient map for the left (equivalently
right) action of Uy acting by translations.

The stack % is stratified using the Bruhat stratification. Let w € W), and fix w a

lift of w. We have an isomorphism UM\BX;;?FM [Un 5 dFTT;bUM,w = pt/(T*F x Upr.) where
UM,w =Upy N Ad(li))UM.
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Consider now the following diagram

Upm\BywBa /U Up\M /U

pt/(TwF X UM,u;)

J{k‘ w

pt/TwF

Lemma 4.2.2 (3.3.1). There is an isomorphism of functor D*(Rep,T") — D?(Rep,GT)
Ry = ’I“[q*jw,[k’:}. (4.8)
Definition 4.2.3. Let w € Wj;. We define

Un\M /Uy
AdpT
M 5 jo k5 M.

Vo : Repp TV — D( ,A)

Note that we do not normalize it to be perverse.

4.2.2 Lusztig series

Let T be the torus dual to 7" defined over A. We recall the construction of the Lusztig series [DL76].
We denote by F the isogeny dual to T'. Note that we have an isomorphism (depending on the fixed
trivialization of roots of unity of F,),

A[TT] = O(TF), (4.9)
as both side are isomorphic to A[X,(T)/(wF —id)X.(T')]. We therefore have a bijection
Hom(T"F, A%) = T"F(A). (4.10)

Let 6 be a character of T%F and let 7 be an irreducible representation of M¥. We say that 7 lie in

the Lusztig series of (w,0) if 7 is a subquotient of a cohomology group of R,,(#). Conversely, by

theorem 4.2.1, for every 7 there exist a pair (w,#) such that 7 lie in the Lusztig series of (w, ).

 Consider the morphism ¢ : T—T J War. We still denote by F the morphism induced by F on

T ) W

Theorem 4.2.4 ([DL76] if A = Q,, [BRO3] if A =TF,). (i). Let w be an irreducible representation
of M¥. Suppose that  belong to the Lusztig series (w,0) and (w',8') then £(0) = £(6'). Hence
we have a well defined map

LS : ra MF — (T ) War)¥ (A). (4.11)

(ii). There is a complete collection of central orthogonal idempotents e, € A[MF] for s € (T
W)Y (A) such that for all m € Tera MY, we have esm = 7 if and only if LS(w) = s.
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4.3 Depth 0 representations of unramified groups

4.3.1 Parahoric subgroups and transfer of dual semisimple conjugacy
classes

Let #H be a reductive group over Ok with generic fiber H. We recall the setup of [Lan18]. The
group H splits over an unramified extension. We introduce the following notations.

(7). Let T C H be a maximally K-split maximal torus. We denote its generic fiber by T' C H.
Let X.(T) and X*(T') be the groups of cocharacters and characters respectively defined over
K™. The group Gal(kg /kx) naturally acts on them.

(ii). We denote by B(H) the reduced Bruhat-Tits building of H(K) and by B(Hgxr) the one
H(K™), by A the apartment corresponding to 7" and by A the one corresponding to Tynr.

(#4i). For a point « € B(H), we denote by H, the corresponding parahoric group scheme over Ok
We denote by M, the reductive quotient of H 1, the special fiber of H,.

The integral model H of H yields a hyperspecial point o € A. We choose C C A a chamber
containing x( in its closure. We denote by C C A the chamber containing C'.

The group H,(Ok) comes equipped with its Moy-Prasad filtration [MP94] denoted by H,(Ok )
for r € R>o. We have a canonical identification H,(Ox)/H.(Ok )0 = M, (kk ), where H,(Ok)>0 =
Ur>OHm (OK)T‘

Let © € B(H). The choices of T and C determine a Borel pair By; = TpUps of M, over k.
Let Wiy be the Weyl group of Ty -

Let W be the extended affine Weyl group of H and W,g be the affine Weyl group, that is, the
group generated by reflection along all hyperplanes in A. The Weyl group Wy, of M, is canonically
identified with the subgroup of W generated by reflections along hyperplanes in A containing the
image of the point x. Consider the composition Wy, C W — W, since the kernel W — W is torsion
free, the morphism Wy, — W is injective.

There are isomorphisms

Xe(Thr) = Xo(Toyeme ) ~ X (T), (4.12)

their composition is equivariant under Wy, — W and under the action of Gal(kx /kx). Subse-
quently taking group algebras over A, taking quotient under Wj; and W and taking Frobenius
fixed points we get a well defined transfer morphism

&t (Tar | War)F = (T ) W)F, (4.13)

where (;) always denote the dual torus over A.

4.3.2 Depth and inertial decomposition of the depth 0 part

We let Repp H(K) be the category of smooth representations of H(K) on A-modules. We recall
the definition of the depth of an irreducible representation.

Definition 4.3.1. Let m be an irreducible representation of H(K). We say that 7 has depth r if

r= |J #M©@)r (4.14)
zeB(H)
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where Hw(OK)>r = Ur’>7‘Hm(0K)r’-
Theorem 4.3.2 ([MP94]). Every representation has a well defined depth.

Theorem 4.3.3. The category Rep, H(K) canonically split as

Rep,H(K) = (D Repj H(K). (4.15)

The direct summand Rep) H(K) is characterized by the fact that an irreducible representation m
lies in Repy H(K) if an only if m has depth r.

We refer to [Dat09], Appendix A for a proof of this theorem over any coefficient ring. We now
recall how to construct types for depth 0 representations.

Definition 4.3.4. (i). An unrefined minimal depth 0 type is a pair (z,7) where z is a point in
B(H) and 7 is an irreducible supercuspidal representation of M, (kk).

(#4). Let w be an irreducible depth 0 representation of H(K). A depth 0 type for 7 is an unrefined

minimal depth 0 type (z,7) such that there is exists a non zero map ¢ — indgﬁg[{f -7

where 7 is a representation of H,(Ok) obtained by inflation along H,(Ox) — M, (kk).
Theorem 4.3.5 ([MP94]). Every irreducible depth 0 representation admits a depth 0 type.

Remark 4.3.6. Given a depth 0 irreducible representation 7, a depth 0 type (z,7) for it can be
chosen such that z lies in the closure of the chamber C'.

Theorem 4.3.7 ([Lanl8], [Lan2l1]). (i). Let m be an irreducible depth O representation of H(K
and let (z,7),(x',7") be two depth 0 types for m such that x,x’ € A. We have &;(LS(7)) =
&+ (LS(7"). In particular, we have a well defined map

LSy : Irr(Repd H(K)) — (T' ) W)F (). (4.16)

(i3). Let 3% be the Bernstein center of RepQ H(K). There is a complete collection (es)se(jﬂ//w)ﬁ

of orthogonal idempotents in 3% such that for all ™ € Irr(Repl H(K)), we have e;m = 7 if
and only if LSy (7) = s.

4.4 Recollections about stacks of chtoucas and excursion

4.4.1 Stacks of chtoucas

Let Q be a smooth affine group scheme over X. We assume that Q is generically reductive.

Definition 4.4.1 (Loop groups). Let z = (x;) : S — X' be a tuple of S-points in X, we denote
by 'y € X x S the union |, I's, the graphs of the z;, by I'; ,, the nth infinitesimal neighborhood

of z, by fz the formal neighborhood of I';, and by T',, = fm \ [y
We denote by
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(i). LT Q the functor over F, defined as S — {(z,g)|z : S — X!, g € Q(I'y)}, it is representable
by a group scheme of infinite type, it is equipped with a map L;rQ — X7 that induced by
(z,9) =z,

(ii). LrQ the functor over F, defined as S + {(z,g)|z : S — X,g € Q(T,)}, it is representable
by an group ind-scheme of infinite type and equipped with a map to X7,

(iii). L1, Q the functor over F, defined as S — {(z,g)|z : S — X!, g € Q(T';.n)}, it is representable
by a group scheme of finite type and is equipped as before with an map to X7.

The inclusion I'y , — fx induces a map of group schemes L}"Q — L1, Q whose kernel is a
pro-unipotent group.

Definition 4.4.2 (Bung and Hecke stacks). We denote by Bung the algebraic stack over F, defined
as S +— {&} the groupoid of Q-torsors over X x S.
The Hecke stack Hecke; is the stack whose S-point classifies the following data

(). #: 8 — X' a tuple of S-points of X,
(#4). A pair of Q-torsors (£,€’) over X x S,

(#4i). A isomorphism of Q-torsors ¢: & — & over X x S —T.

This stack is equipped with a map Heckey LN Bung x Bung and a map to X'.

Definition 4.4.3 (Principal level structure). Given N C X a divisor, we define Bung n to be the
stack that classifies the same data as Bung plus a trivialization of the Q-torsor £ on N. We have
Heckey n the stack whose S-points is the groupoid of tuples (x, (£,4), (',v), ¢) where

(). (z,(&,&"),¢) € Hecker(S),
(ii). = € (X — N)(S),
(#41). ¢ and ¢’ are trivializations of £ and &’ respectively on N x S such that the following diagram

commutes
PINxS

SN, A

|NxS

I
E\Nxs EiNxs

where £Y denotes the trivial Q-torsor over X x S.

Definition 4.4.4 (Beilinson-Drinfeld Affine Grassmannian). The Beilinson-Drinfeld affine grass-
mannian is defined as Gry o = L;Q/ L}LQ. It is an ind-projective ind-scheme of ind-finite type
over U!, where U is the open of X where Q is reductive. It represents the functor whose S-points
classifies the following data

(). #: 8 — X' a tuple of S-points of X,

(i4). a Q-torsor &£ over X X S,
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(4i7). a isomorphism of Q-torsors ¢ : &€ — &0 over X x §—T,, where E° denotes the trivial O-torsor.

Remark 4.4.5. There is an action of L?Q on Grro by left translation. The quotient stack
LI+ O\Gry, g is the stack whose groupoid of S-points classifies the following data

(). #: 8 — X' a tuple of S-points of X,
(ii). a pair &1, & of Q-torsors on f‘;,

(#i7). and an isomorphism of OQ-torsors

E o =& . (4.17)

) AN
This stack is not algebraic. There is a map of stacks € : Heckeg ; — L} Q\Grr o such that the
image of a modification ((x;), &1, &, @) is given by the restriction of both torsors and of ¢ to I';.

Definition 4.4.6 (Stacks of Chtoucas). For a Q-torsor £ over X x S denote by "€ the Q-torsor
(idx x Fg)*&, where Fg is the absolute g-power Frobenius of S. We define the stack of G-chtoucas
with I-legs as the following pullback

Cht; ——— Heckey

| |

Bung m Bung x Bung
d,

Replacing Hecke; by Hecker y in the previous diagram yields the stack Chtr nx, which is the stack
of chtoucas with level structure N.

4.4.2 The setup for the main construction
Group schemes from Bruhat-Tits theory

Recall that we have fixed G be reductive group over X and that we denote by G its generic fiber.
We consider the restriction of G to O,, we fix a maximally F,-split maximal torus 7o, C Go, with
generic fiber T, . This choice determines an apartment A, C B(Gp,) and the integral model Go,
determines a hyperspecial point so € A. Let C be a chamber in A containing sq in its closure and
let ¢ be polysimplex in the closure of C. The choices of C' and ¢ determine three smooth group
schemes over O,.

(7). Go,0, the parahoric group scheme corresponding to o,

(17). Ge,o, the Iwahori group scheme corresponding to C. Its group of O,-points is an Iwahori
subgroup of G(Fy).

(73). Finally let Goo o, be the smooth group scheme over O, whose group of O, -points is the
pro-unipotent radical of the Iwahori Ge o, (Og).

We also denote by G,,Gc and Geo the smooth group schemes over X obtained by gluing G)(x_ o)
with G 0,,Gc,0, and Geo o, respectively. They are summed up in the following diagram of group

134



schemes over X.

g Go

N

Gc

|

Geo

Note that all these groups schemes are isomorphic over X — x.

Special fibers.

We denote by V, C G, r, the unipotent radical of the special fiber of G, o, (equivalently the fiber
at x of G,). We denote by M, the reductive quotient of G, . In particular we have a short exact
sequence of algebraic groups over F,,

1=V, = Gor, > My — 1. (4.18)

The choice of C' and Tp, determines a Borel pairs Byy = Ty Upr of M,. We also denote their
inverse image in G, r, by B, and M,. Hence we have short exact sequences of algebraic groups
over [F,

1 Vo B, By —— 1
| [ [
1 Vo Us, Unm 1.

0

—~cC —~C
Let G, (resp G, ) be the dilatation of the subgroup B, of the fiber at = of G, (resp the
dilatation of U,) in the sense of [MRR20].

—~C
Lemma 4.4.7. The morphism Go — G, (resp. Goo — G, ) induces an isomorphism Go = Go

(resp. Goo = 5;0 ).

Proof. We do it for G¢o, as the same argument holds for Goo. The problem is local at = since

all three group schemes G,,Gc and §;C differ only over Spec(O,). Since §;C is smooth and has
connected fibers over Spec(O,) by [MRR20], to identify it with the Bruhat-Tits group scheme, it
is enough to identify the set of its O,-points. By [MRR20], lemma 4.1 and remark 4.2, there is a
sequence

—~cC
1—-G, (0.) = G5(0,) = Gy(F,)/Bs(Fz) — 1, (4.19)
where the last term is only a pointed set. This sequence is exact provided that the étale cohomology
group H(FF,, B,) vanishes. This follows from Lang’s theorem since I, is finite and B, is connected.

—~C
We deduce that the group of O,-points of G, (O,) is the Iwahori subgroup defined by the chamber
C, which then yields the desired isomorphism. O
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Harder Narasimhan truncations

Proceeding as in [Laf18] Section 12, we denote by G24 and G2 the adjoint groups of G, and G¢
repsectively. We fix two vector bundles V,, and V¢ together with trivialization of their determinants
and faithful representations of G2 — GL(V,) and G&' — GL(V¢). Since we have a map Go —
G,, we get an action of Q%d on V,. We let A, and Ac denote the lattice of cocharacters of

GLyx(v,) and GLyy.). The representations we have fixed define maps Bung, — Bungr,,,,,,

and Bung, — BunGer(vC ov,, Which are representable, quasi-affine and of finite presentation. For
every cocharacter y € A, (reps. in A, ® A¢), there is an open Bunéﬁ ) of Bungr,,,) (reps.

<p
of Bunz; of Bun
GLik(veave) GL

similarly for Bung,. This further defines an open Chtgﬁ ; for any finite set I and again similarly
for Go.

Remark 4.4.8. We will need some compatibility between the Harder-Narasimhan truncations for
G, and for Go, this is why we use the representation of Go given by V, @& V. Ideally we would
only use V, but then we cannot guarantee that the representation of Go on V, is faithful.

(VB y) whose inverse image in Bung, is denoted by Buna‘ and

4.4.3 Cocartesian Functors
We now recall the notion of cocartesian functors. This definition is taken from [Sal23b].

Definition 4.4.9 (Categories cofibered over FinSet). Consider the category FinSet of finite sets,
a category cofibered over FinSet is the data of a functor F : C*** — FinSet such that C*°"°P —
FinSet? is a fibered category. The functor F': C** — FinSet is given by the following data

(i). For all I € FinSet a category C; = F~1(I),
(#¢). For all morphism & : I — J a functor F(§) : C; — C; compatible with composition.

Definition 4.4.10. A cocartesian functor is a 2-functor FinSet — Cat to the 2-category of cate-
gories.

It is well known that the Grothendieck construction exchanges categories cofibered over FinSet
and cocartesian functors out of FinSet.
The examples of cofibered categories over FinSet we will use are the following. Let A €
{le Zé Fe}
(i). The category Rep, (YG)®, given by I — Rep,(FYG)!. For ¢ : I — J, we get a morphism
€:G7 — G and for W € RepG! we get a representation Wé = £*W € RepG”.

(7). The category D(X*®, A), for I — J we get a diagonal morphism A : X7 — X7 and a pullback
functor AZD(XI,A) — D(X7,A).

(#7i). The category Rep, Weil}. defined in the same way as (7).

Definition 4.4.11 (Partial Frobenius). Let I be a finite set and let Iy be a finite subset. The
partial Frobenius indexed by the set Iy is the morphism Fj, : X! — X7 defined by (x;) ~ (y:)
where y; = F(x;) is i € Iy and y; = x; otherwise.

Remark 4.4.12. It is clear that the partial Frobenius endomorphims commute with each other and
that F is the absolute Frobenius of X7.
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Definition 4.4.13 (Partial Frobenius and filtration). Let Ag an ordered free abelian group of finite
rank, a Ag-filtered coCartesian functor over FinSet is the data

7). for a € Np of a tunctor H=" : Rep — , over FindSet,
). for all € Ag of a f H<H :Rep,(*G)* — D(X*, A FinS
(ii). for all u < v of a morphism H<* — H<Y compatible with the order on Ay.

Given a filtered cocartesian functor H<# : Rep, (FG)® — D(X*, A), we say that H=<H is filtered
with respect to partial Frobenius if

(i). For all W € Rep(YG)?, there exists k € A and morphisms for all Iy C I,

* < < K
Fp, : ¥ Hoh, — HE' (4.20)

commuting with each other.
(#4). They are functorial in I.

Definition 4.4.14. Let Ay, A5 be two ordered free abelian groups of finite types. And consider
two cocartesian functor filtered with respect to partial Frobenius H<* and H'S* for p € A; and
i € Ay. A compatibility datum between (H<*) and (H'S*') is the datum of

(7). An increasing morphism ¢ : A; — Ag,

(#4). For all u € Ay, there exists g > ¢(p), and for all ' > pf, we are given a map HIS{fV — ng{f[;
functorial in (I, W) such that the following diagram commutes

<pa <p2 x r<p <ptr
HI,W HI,W FIOHI,W HI,W

r<py <uh w <y 1<p’ 45
Hyyw > Hpy Fr, Hiw > Hiy

where p1 < ps € Ay and pf > p(p1), phy > @(ue) are large enough with pf, > pf, and k and
k' are chosen as in definition 4.4.13 for H and H' respectively.

4.4.4 Geometric Satake and cohomology of stacks of chtoucas

In this section, unless indicated, the stacks Gr and Cht are the ones for G, and the Harder-
Narasimhan truncations refer to the ones induced by A,. We consider the Beilinson-Drinfeld affine
Grassmannian for G,. We recall the following version of geometric Satake due to [MV09] [Ricl5],
[Zhul5] and spelled out in [Laf18] 12.16.

Theorem 4.4.15 ([Ricl5], [Zhulb]). There is a cocartesian functor
Repy (FG)! — PervV™ (Grg 1), W + Sat(W). (4.21)
Moreover, let X,y denote the henselization of X at x. The restriction of Sat to GrgJ)‘X(z ) factors

through Rep, (X Gloc)! and we have a commutative diagram

Rep, (FG) ——— PervY4(Grg 1)

| |

Repy (£Gioe)! —— PervULA(GrgJ)lX(zz) )
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Let I be a finite set and W € Rep(¥G)!, we denote by Gr; w the support of Sat(W), it is a
finite dimensional scheme that is a finite union of orbits of Lfg, in particular the action of L?g
factors through a finite dimensional quotient L}tng, hence Sat(W) descends to the quotient stack

L}hng\GrLW as explained in [Xue20b] 2.2, we can interpret those sheaves as sheaves on L} G\Gry .

As explained in [Xue20b] 2.2.5, the action of LTZ(G) on Gr is trivial and we can also interpret
Sat(W) as a sheaf on LT G*\Gry.
Consider the diagram

ChtTh Gr;
% /
I

L?Q\Grf

We denote by f;l’f,’w = (eIS”)*Sat(W) and by Chtlgﬁt\r,w its support. Similarly we have a map

EISZd : Cht’;’N/E — L?gad\Grl, however p is a cocharacter of G,q, we refer to [Xue20b] 2.4 for
a discussion. We denote similarly FrAA9 = ¢4 Sat(W). We also denote by pr : Cht7h /2 —
(X — N)! the leg map.

Theorem 4.4.16 ([Laf18], [Xue20c]). We denote by HIS,‘J(,’W = plvgflgyl‘\‘,’;?, the association
(I,W) = Hil y € D(X — N)' A) (4.22)
defines a filtered cocartesian functor with respect to partial Frobenius.

Remark 4.4.17. As pointed out in [Xue20a], if A = F, the sheaves ’HIS’fVW are a priori not con-

tructible on (X — N)! as they may be unbounded. Indeed, the map p is not representable and ¢
may divide the order of certain groups of automorphisms of points in Chty y, n.

Definition 4.4.18 (Cohomology sheaves). Let j € Z, we set H?N,W = liénu H}ISV”W Recall that

7 — X is a generic geometric point, for all I denote by A(77) — X I the corresponding diagonal
point. We set H?,N,W = (,HJI,N7W)\A(H)-

Theorem 4.4.19 ([Xue20d], Section 6 for the non-split case). (i). Each of the A-modules H{MW
is equipped with an action of Weil(7/n)!.

(ii). The association (I, W) — H}7N7W defines a cocartesian functor Rep”G*® — Rep, Weil(77/n)®
over FinSet.

(#i1). The sheaves ’H}',N)W are ind-lisse on (X — N)'.

Remark 4.4.20. As explained in [LZ18], taking I = {0} U J in the previous theorem and the
forgetting the action of Weil on the leg indexed by 0, the functor

Repy (VG x (*G)') — Rep,Weilf,, VR W — Hy ymw,y
factors through Rep, (G x (“G)7) hence we get a cocartesian functor

Rep, (G x (FG)!) — Rep, Weilk.
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4.4.5 Excursion algebra and the stack of local Langlands parameters

We consider the group G restricted to 1, = Spec(F,). We will use the space of local Langlands
parameters for G and F, and we define the local excursion algebra. This construction was first
defined in [Lafl8].

Definition 4.4.21. An A-valued Langlands paramters is a morphism o : Weilg, — ZGloc(A) that
satisfy the following hypothesis :

(7). o is defined over a finite extension of Q, or Fy respectively and is continuous (for the ¢-adic
topology and the discrete topology) respectively).

(ii). The following diagram commutes

Weilp, —— LGloc(A)

~

Qloc

The set of all A-valued Langlands parameters is denoted by Z'(F,, G)(A). A tame parameter is
a parameter ¢ which factors through the tame Weil group Weil%z — LGiee(A). We denote by

ZY(F,, G)(A) the subset of tame parameters.

Theorem 4.4.22 ([FFS21], [DHKM?20], [Zhu2l]). There ezists an ind-scheme ZN(F,,G) over Z;
whose A-points are gl(Fw,G)(A), it is locally of finite type over Zy and lci. There is a closed
subscheme Zl’t(Fw, G) which is the modui space of tame parameters. It is both open and closed in
Z\(F,,G)

We will now recall its construction as well as the construction of the local excursion algebra.
Recall that Weill, . is the tame quotient of Weilg,. This group is topologically generated by the
elements Fp, and 7p, which are respectlvely a lift of the Frobenius of Gal(F,/F;) and a topological
generator of the tame inertia. Let Well be the discrete group generated by these two elements.
We denote by Weily, the inverse image of Well in Weilp,. If P C Pp, is an open subgroup of
the wild inertia, the quotient Weil} r/ Pi isa dlscrete group.

For all discrete groups I’ with a map I' — Qo we construct Z* (T, G’) and Exc(T, G’) which are
the moduli space of I'-cocycles in G and the excursion algebra of " and G. We now proceed as in
[Zhu21]. Let us now fix a discrete group I' and a morphism I' = Q..

Definition 4.4.23. We denote by FFS the category whose objects are finite sets written as FS(I)
and the morphisms FS(I) — FS(J) are morphisms of monoids from the free monoid generated by
I to the free monoid generated by J. We denote by FFS/T the category of pairs (FS(I), ¢) where
¢ : FS(I) — T is a morphism of monoids and morphisms are morphisms in FFS compatible with
the morphism to T'.

Definition 4.4.24. Let H be an affine algebraic group over an affine base scheme S. We denote
by Hom(T', H) the functor whose R points is the set of group morphisms Hom(T", H(R)). It is easily
seen that this functor is representable by an affine scheme over S.

The next lemma is an easy exercise.
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Lemma 4.4.25. The category FFS is generated by the maps
(1). FS(I) = FS(J) coming from a map I — J,

(#i). the map FS({1}) — FS({1,2}) sending the generator x; € FS({1}) to x1z9 € FS({1,2}) the
product of the two generators.

Lemma 4.4.26. (i). There is an isomorphism in the calegory of monoids

I= lig FS(I). (4.23)
FFS/T

(i1). There is an isomorphism in the category of schemes over S,

Hom(T', H) = lim H. (4.24)
FFS/T

Proof. The first point is restatement of the fact that the FS(I) generate the category of monoids
under colimits. The second point can be checked on R-points, namely we have

Hom(T', H)(R) = Hom(T', H(R)) = lim Hom(FS(I), H(R)) = H'(R). (4.25)
FFS/T
O

Definition 4.4.27. (). The excursion algebra Exc(I, G) is defined as

Exc(',G) = lim O((*Goe))°, (4.26)
FFS/T

where G acts on (£Goc)! by simultaneous conjugation.
(i1). The scheme Z'(I', @) € Hom(T, £Gloc) is defined as the fiber of the morphism the
Hom(T, “Gioe) — Hom(T', Qioc) (4.27)
over the point I' = Qoc-

It follows from the definition that there is a canonical map Exc(I', @) — O(Z'(T',G)). The
formation of Hom(T', H) is clearly functorial in I and H. By definition of this space of cocyles, the
following diagram is cartesian,

ZYI,G) —— Hom(I, LGy,

l | (4.28)

pt ———— Hom(T', Qioc)

the point in Hom(T, Qioc) is given by the projection I' = Qjoc. In terms of the limit description
given above, consider the following. Let ¢ : FS(I) — T’ be a morphism and consider Z, C LG

loc

be the closed subset obtained as the fiber over the point z, € Hom(FS(I), Qioc) corresponding to
FS(I) & T = Quoc-
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Lemma 4.4.28. There is a canonical isomorphism

Z'1,G) = lim  Z,. (4.29)
@EFFS/T

Remark 4.4.29. Note that the group G acts on Z, for each ¢ € FFS/I" and the the isomorphism
in lemma 4.4.28 is G'—equivariant.

Definition 4.4.30. Let (Pf )cen be an exhaustive decreasing filtration of P, .

(7). The local excursion algebra is Exc(Weilg, , G = lim Exc (Weily. /PE @), the tame excursion

algebra is Exc(Weily, , G) = Exc(Weil’, G’)
(i7). The moduli of parameters is Z°(Weilg, , G) = lim Z ! (Weilg, /PE. G). The moduli of tame
parameters is Z'"°(Weilp, , G) = Z' (Weil, G).

This definition depends on the chosen elements Fr, and 7p,, but there is an isomorphism
(depending on the same data) Z'°(Weilp, ,G) = Z'(Weilp, , () with the moduli space defined in
[FS21], [DHKM20] and [Zhu21].

Theorem 4.4.31. Let Hy : Repy (YGloe)! — RepA(Weilom/PI?I)I be Rep(Qioc ) -linear cocartesian
functor. Then there is a canonical EXC(Weil%x/sz,é)-module structure on Hyw such that

(1). This structure is compatible with the cocartesian structure, that is for all maps ¢ : I — J, the
isomorphism Hyw = H .y is Exc(Weilg, /Pf , G)-linear.

(i1). This structure is also compatible with the action of (Weily, /Pg )!.

(#43). If Hyw 1s the cocartesian functor given by the cohomology of stacks of chtoucas, then this
action is the same as the one constructed in [Laf18].

(tv). This structure is functorial in the collection of functors H.

Proof. Assume that we have constructed a functorial action of Exc(Weilg, / PI?I,CAJ) on Hy,. Let
(I, W) be as before, define f{JV = Hp,ywgry, it is clear that this defines an cocartesian functor,
hence by assumption there is an an Exc(Weily /P , G) module structure on it. The compatibilities
(¢) and (i7) are then deduced from the functorlahty of this action.

To construct the action and guarantee its compatibility with [Laf18], we follow the construction
of loc. cit.. We then construct an action of Exc(Weily /Pg. ,@) on Hp,.

Let V € Repy(FGioc)! and let = € VC and ¢ € \% )G be fixed vectors and covectors for
the diagonal action of G. Let (y;) € (Weil, /Pg )'. We then define the excursion operator
Fvp¢. (vt Hpn — Hyp,1 as the composition

i)

Hy, = Hyy1 = Hyyv = Hry SON Hrv =Hry 5, Hioy,v = Hp,1-

Let f € O(G\(*Gloc)! /G) be the function f(g) = (€, g.z) and denote by ¢., : FS(I) — Weily, /P

the morphism induced by the choice of the (v;). Then the argument of [Lafl8] Proposition 10.8
show that
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(). the map Fy ;¢ (4, depends only on the function f and not on V,z or £, we can therefore
F} (4, the previous composition.

(id). after identifying O(G\(XGloe) 1 /) @0y @) O((Quoc)’) = O((F*Gioe))€, the mor-
phism Ff (1 -,y defines an algebra morphism

O((“Groe)" ) — End(Hy ,). (4.30)

(433). This morphism is functorial in FF'S/(Weily /Pf. ) hence defines an action of Exc(Weily, /Pf , G).
The functoriality in H is clear by construction. O

Lemma 4.4.32. Let H;w be a cocartesian functor as before. Assume that for all I, W the action of
(Weilg,)! on Hyw is tame, that is, factors through (Weil}m)l. Then all the Exc(Weilp, , G)-modules
Hyw are supported on Spec(Exc(Weil%J,é’)).

Proof. Let m: Weilp, — Weil}w be the projection. It follows from the hypothesis and the definition
of the excursion operators that for all V,z, ¢ the morphism Fy . ¢ () = Fvee (x,,). Hence Hyw

is killed by all the operators FY (,) — FF (x(v,)) Which generate the kernel of Exc(Weilp,,G) —
Exc(Weil},, , G). O

Theorem 4.4.33 ( [LZ18]). Assume that A is a field. Let H be a cocartesian functor Rep, (G x
Lghy — RepA(Weﬂ;L:)I which is Rep, (QL.)-linear. Then the vector space H{0} Reg,, has a canon-

ical structure of quasicoherent sheaf on ZV°(F,,G)/G that is compatible with the EXC(Weil%I7CA¥)-
module structure.

Proof. We will follow the argument of [LZ18], Section 6. Let My = H{o} reg Where Reg denotes the

regular representation of G which we consider as an ind-object in Rep A(G’) Let us first construct
the structure of an Hom(Weili;j, LG )-module and then show that it is supported on Z Lte

We first claim that, by the presentation we have given the spaces Hom(Weil%:,LGloc) and

ZY4°(F,,G) are generated by elements Fy., where f € O(*Gloe) and 7 € Weil?l:. These ele-
ments are defined as follow. The limit description of both of these spaces yields an isomorphism
(’)(Hom(Weil?j,LGloc)) = hﬂweFFS/w‘snpg O(FGL ). The data of v € Weil?j yields a morphism

loc
¢ : FS({0}) — Weily®, then the canonical inclusion incy, : O(*Gloc) — O(Hom(Weilyy’, LGloc))
yields applied to f yields the element F'y .. To show that these elements generate the ring of func-
tion it is enough to do it for O(Hom) since @(Z') is a quotient of the former. It is then enough to
show that for any ¢ : FS(I) — Weili;: the image of O(*GL ) in O(Hom) is contained in the subring
generated by the Fy.. Let h € O(LGL ), we can assume that h = hy K --- X h,, where n = |I|.
Then inc,(h) = incy, (k1) ... incy, (hy) where @; : FS({i}) — Weili;;) is obtained via the restriction
along {i} C I.
Let V € RepAG’ be an algebraic representation. Following [LZ18], there is an G‘—equivariant
isomorphism
0:Reg®V — Reg®V, (4.31)

where V is the underlying vector space of V without the G action. The morphism 6 is given by
fox— (g fl9)g.2).
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We now define an action of the function FY . The element f can be represented as a coefficient
matrix (this is clear since we assumed that A is a field). Thus there exists a representation V' and
elements x € V and £ € V* such that f(g) = (£,9.7). The endomorphism of Hyoy reg is then
defined as the following composition.

H{0} Reg gz, Hipy Reg @V
~ H{0} RegoV
~ H{0} RegV
=~ H{0 1} Reg®V

% H{o,1} Reg®V

=~ H{o} Reg @ V.

id®§

— H{o},Reg-
Here the third line is induced by the morphism 6, the fourth one by the cocartesianity of H, the
fifth one for the action of v is on leg indexed by 1 and the sixth one is the inverse of the second,
third and fourth ones. The argument of [LZ18] shows that this construction defines an action of
O(Hom(Weil%j, LGloc)). Hence we get a quasi-coherent module on Hom(VVeilﬁé:7 LGloc)-

Let us show that this quasi-coherent module is supported on Z'*°. Let I be the ideal of Z%"°
in Hom. We first describe this ideal. Let ¢ € FFS/Weil"°. Let I be the ideal defining Z, in “G{ ..
Since the diagram 4.28 is cartesian, the ideal I, is generated by functions of the form (A — A(7¢)) f
where f € O(FGL.) is any function and A € O(QL,) is any function and A(r¢) is the value at
the morphism FS(TI) 2y Weil® = Qloc- We show that the relation F) f 4 = F)(rg)f,¢ holds in
O(Zl’t’o). By the presentation of I = li_n>1¢ Iy, it is clear that Ho) Rreg is then killed by all functions
in I and thus that this module is supported on Z'"°. Let us choose V,z € V,£ € V* representing
fand W,zw € W and & representing A where W is a representation of Q{,.. Then the following
diagram is commutative

H{0} Reg
lid@a:@mw
H{0} Regovow

I T

Ho1} RegR(vew) < H{o1},Regmy @ W

' '
<+ <+
Ho1} RegR(vew) < H{o1} Regmy @ W

L

H{oy Regoveow
|
d®EREW
~

H{o} Reg
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where the first and last vertical maps are induced by x ® xw, 6 and £ ® &y as before. The two
horizontal maps are the RepQL -linearity of the functor H, the action of v on the left column
is given by the action of Weil on the leg indexed by 1 while the action on the right column is
induced by the action of Qi,c on W. Hence the composition along the left column is FY 4 while
the composition along the right column is Fry(y),¢-

We now show that it is equipped with an action of G. Since we used the left regular representa-
tion, there is still a right action of G on Reg hence Hg} reg acquires the structure of a G-module.

Now, arguing as in [LZ18] this action is compatible with the action of G on Hom(Weili;::, LGioe),
in the following sense. Let f € O(FGioe) and denote by 9f the function on ZGi,. defined as
h— f(g~'hg). Then we have g.(Ff(a)) = Fof(g.) for o € Hypy Reg- O

Let V € Rep, (YG)! and consider its restriction Vi to G along the diagonal embedding G —
(EQ)!. Letw: ZV"°(F,, G)/G — pt/G, the morphism induced by the structure map of ZV1°(Fy,, @).
Then 7*V = Ey is a vector bundle on Z*"°(F,, G)/G. Moreover it has an action of (Weﬂ;lz)l, such

~ O'I
that its fiber over a points o € Z""°(F,,G) is the representation (Weilﬁ,’;))l T (FG)! — GL(V).

We consider the functors (I, W) H ; ~Nw given by the cohomology of stacks of chtoucas. For

all j, there is a quasicoherent sheaf M?; corresponding to this functor given by theorem 4.4.33.

Lemma 4.4.34. (i). If A = Qy, then for all W € Rep(L'G)!, there is a (Weiliij)l-linear isomor-
phism (MY @ Ew ) = Hi 5 -

(ii). In general there is a spectral sequence
EYT = HP (G, MY @ &w) = HI i . (4.32)

Proof. Firstly, note that if A = Q, then Hi(é,—) = 0 for all 4+ > 0 hence the first point
follows from the second. In general, for V € Rep,(*G)’, consider the sheaf Sat(Regs) ® V
on L?O}QU\GI"{O}. Using the notations of [F'S21] section VIII-5, the sheaf pf“e*(Sat(Regé) ®
V) naturally lifts to IndPerf(B(*G)’) @ D(7,A). After forgetting along the G — (“G)! we
get an object of IndPerf(B(G)) ® D(7,A). Taking RT(G, —) yields RT(G,p;"¢* (Sat(Regg) ©
V) = p;“e*RF(G’, (Sat(Reggs) ® V)) = pF“e*Sat(V};). After taking colimits over u, we get
RI(G, H{o},reg ® V) = H{o},v,- Taking cohomology yields H(RT(G, H{o} reg ® V) = Hyoy,v;) =
HEO}%, the spectral sequence is then the hypercohomology spectral sequence for the functor

RI'(G, —) applied to the complex Hg} reg @ V. 0

Lemma 4.4.35. Let Zgy. C Spec(Exc(Weil%$7CA¥)) be a closed subscheme of Spec(Exc(Weﬂ%w,é))
and let Z‘C Zl’t’o(Fz,G) be its inverse image. Suppose that for all (I, W) the Exc(Weil}m,CA?)-
module H v, n is supported on Zgxe then M}, is supported on Z.

Proof. This is immediate since M ]JV = H{o} Reg and the Exc(Weil%I,G’)-module is compatible with
the O(Z2""°(F,, G))-module structure. O
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4.5 Deligne-Lusztig theory and cohomology of stacks of chtou-
cas

The goal of this section of to explain how to geometrically compute the Deligne-Lusztig restriction
of the cohomology of stacks of chtoucas. Consider the stack Chtg  n,r for the level structure NV as
above. This is a stack over (X — N)!| it is equipped with an action of the finite group G, (F,).

4.5.1 The morphism emb
Lemma 4.5.1. Consider the stack

Chtg, n.; x977=F) G o /B,. (4.33)
This is a stack over (X — N)! Xp, Fy. Let S be an Fy-scheme, its groupoid of S-points classifies

(1). An I-tuple of points z; : S — (X — N) x x and denote by y; : S — (X — N) the composition
of z; with the projection,

(ii). A Go-chtouca ¢ : € — TE over S with legs at (y;).
(iii). A principal level structure on (N — x) xg, S, we denote it by ¢*.
(iv). A B,-reduction of the corresponding Go r, -torsor Eyx s, we denote it by Py

Proof. Let us denote by Chtg:,}fﬁgw the stack classifying the data (¢)-(iv) of the lemma. Similarly

denote by Chtgz;fﬁlw the stack classfying both a G,-chtouca with level structure N and a B,-
reduction of the first torsor at . We claim that there is a G, r, (F;)-equivariant isomorphism
Chtg:;fﬁ,dz — Chtg, 1 n X Gor, /B, making the following diagram commute

Cht57 s —— Chtg, 1.5 X Gor, /Bo

— |

Chtga7[7Nm

where the vertical maps are given by forgetting the B,-reduction at x and the level structure and
by the first projection respectively. Taking quotients by G, 5, (Fs) yields the desired isomorphism

Chtie "\ ~ Chtg, v x97% ) G, p /B,. (4.34)

Let us now prove the claim. Since the level structures on N* play no role we will ignore them. Let
S be an Fy-scheme and let ((2;),&, ¢,%.,%57) be an S-point of Chtg:;fﬁ,d’” where

(i). zi: S = (X = N) xp, F; and y; : § — X — N its composition with the projection,
(4). 1, the principal level structure at x,

(iii). 1B the B,-reduction at = x S.
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The level structure v, is an isomorphism of G,-torsor over z x S
Elaxs = Epxss (4.35)

where E&X g is as before the trivial G,-torsor. The B,-reduction is the data of a section of an
S x x-point of €55 g/(Bs)exs. The isomorphism ¢, induces an isomorphism

€|z><S/BU :gﬁvXS/BU' (436)

Under this isomorphism the point ¥Z- yields an S x 2 point of Gor,/Bo denoted by pBotriv,
It is clear the map sending ((2;),&, ¢, ¥, W37) = (((2:), &, ¢, s, B 11V) is functorial in S and
therefore defines a morphism of stacks

Chtg* ' — Chtg, 1§ X Gor,/Bo. (4.37)

It is clear that this map is an isomorphism on S-points hence an isomorphism. Moreover the
commutativity of the above diagram is clear since we have not modified the level structure outside
of « nor the underlying G,-chtouca. Finally the G, r_ (F;)-equivariance follows from the fact that the
action on v, is given by right translation and the action on G, r, /B, is given by left translations. [

Remark 4.5.2. Note that we have G, r, /B, = M,/B,, hence we can also write
Chtg, n.; x97%=F) G g /B, = Chtg, n.; x9=%=F) M, /B,. (4.38)

By lemma 4.4.7, we identified Go with the dilatation of B, in G,, we can then apply the following
theorem.

Theorem 4.5.3 ([MRR20]). There is a functorial isomorphism of stacks over F,.
Bung, g, = Bung,, (4.39)
between the stacks of G,-torsor with B, level structure at x and the stack of Go-torsor.
Using theorem 4.5.3, we define a map of stacks
emb : Chtg, ;,n x97F) M, /Bys — (Chtg,, ri{o}.8+) (X V) xz (4.40)

over (X — N)! x x as follows. On the right hand side this is the stack of chtoucas for the group
scheme G¢ with |[I]| 4+ 1 legs and the last one fixed at x. Let S be a scheme, and ((y;), &, ¢, V", ,)
be an S-point of the left hand side. From theorem 4.5.3, the data (&, ,) yields a Go-torsor £¢ and
similarly for 7€, 7¢,. We then define the following S-point of the right hand side

(7). The legs are ((y:),x),
(#4). The chtoucas is (¢ : Ec — "Ec),
(#4i). The level structure on N — z is given by ¢ using the isomorphism (EC)SX(X,I) = Esx(X-x)

This construction is clearly functorial in S and therefore defines a morphism of stacks over (X —
N) x .
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4.5.2 A key diagram

We denote by Iw" = LfGeo and by Iw = LfGe. From now on, instead of the double coset
Uni\M, /Ups we will consider Tw"\ M, /Uy, where Iw" is the pro-unipotent part of the Iwahori Tw
which acts on M through its quotient Iw® — Ups. Since the kernel of this map is unipotent, we
have an equivalence induced by pullback

D(Upn\M, /Ups, A) = D(Iw°\M,, /Uxs, ). (4.41)

We have LT G, /Iw’ = M, /Upy;. This induces an embedding M, /Uy C LG /Iw".

Let S be a scheme and let Eco be a Goo-torsor over z x S. Let t € Ty (S) be a point in Ty,
we define a Geo-torsor £L, by twisting the action by Ad(t). That is, the underlying space of £, is
Eco and the action of Goo is given by

gle = (tgt™ ).z (4.42)

where .* denotes the action of Geo on €.
Consider the map of stacks over (X — N*)! x

Chtg_,,ruf0y — Chtge, 1oy (4.43)

induced by Goo — Ge. Using the above action on Goo torsors over x, this map of stacks is a
T-torsor. Consider now the map € for the group Gco,

Chtg,o,n= 10f0})|(X - N=) T xo = (L}ru{()}gco \Grg_o . 10{0}) (X~ N#)! xa- (4.44)

The right hand side is equipped with two actions of T'. Indeed the S-points of the right hand side
classify

(7). Some points (y;) : S — X,
(it). Two Geo-torsors on Uﬁx, £ &,
(#i1). An isomorphism between £ and £’ on the punctured neighborhood of the graphs.

On the stack (qu{o}gco\Grgco IL{0})|(X—N=)! xz, there are two actions of T" obtained by rescal-
ing both torsors £ and £’. The map e is equivariant for the action of T on the source, and for the
Adg-action on the target. That is, the action induced by restriction along the map ¢ — (¢, F(t71)).
We now get a cartesian diagram, where the vertical maps are T-torsors.

(Chtg_o N+ 1U{0})|(X—N=)Tx& — (L;_,{()}QCO\GI‘QCO,IU{O})\(Xme)Ixx

| |

(L}'—U{O}QCO\GFQCU ,Iu{O})
(Chtgc,N’I,Iu{O})KX—N””)I><:v : AdpTay [(X—N*) xa

On (X — N)! x 2, we have a decomposition

(LL{O}QCO \Grg_o,10{0})
AdpTyy,

Iw’\ LG /Tw"
AdFTM

= L+gco\G1“gco,] X (4.45)

0 (] (]
Consider now the map emb : L*Gco\Grg_, 1 X W AMe /Unt _y 4G o \Grg_, 1 X IwALG/Iw

AdFTM AdFTJW
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Lemma 4.5.4. Assume that deg(z/F,) = 1. The following diagram is Cartesian (X — N)! x x

b
Chtg, n,r x97F) M, /By ——==2—— Chtg, n+.11{0)
I I
+ Iw\M, /Unr + Iw°\LG/Tw"
LI gCO\GrLgC(’ X AdrTym emb LI gCO\GrI’gCU X AdrTyM

where the left vertical map is induced by the map My(F,)\My/By =~ Ad];I]‘;,M — U”A\é\g}l/f”’ —
Iw\M, /Unm

AdrTo where the first isomorphism comes from the Lang map of M, .

Proof. Let o = ((y;),& 2, 7€, 9, ¥") be an S-point of Chtg, n.; x9 ) M, /Byy.

(i). The S-point € oemb(a) is the S-point of Chtg, n.r x9 =) M, /By, given by the legs (y;), the
restriction of the modification ¢ to I'y for the first projection and by the modification of the
Geo-torsors corresponding to (&) %) — "(€), ") induced by ¢ where I'; is the formal
neighborhood of S x x in S x X.

(¢4). Similarly, the S-point obtained as emboe(a) is given by the restriction of ¢ to Iy for the first
factor. For the second factor, it is given by the Goo-torsors corresponding to (€. ,¥z) —
"(&r, s Fu,z) induced by ¢.

The commutativity of the diagram follows from the fact that "1, = Fas_1), since z is a degree one
point hence Fj;_ is naturally the g-power absolute Frobenius.
To show the cartesianity of the diagram, let us describe the closed substack L}rgco\Gr 1,Goo X

% C LT Gco\Grrg,, x%. Let o = ((y:), € 2, &) be an S-point of L?gco\GrI,gco X

0 0
% then this substack the locus where the modification ¢ induces an isomorphism of G-
torsors on S x x. The pullback

Two\ M, /Uy

Z = Ch - Lt -2 AN/ M
Chtge,Ne.1010) X L6 \Gry g, x 2yt L7 G0 \GLG o0 X =1 g

then classifies a Goo-chtouca such that over x x S the modification of Geo-torsors extends to an
isomorphism of G,-torsors and thus yields a point in Chtg, n s x 9o (Fz) M, /By O

Corollary 4.5.5. The map emb is a closed immersion.

(L?ru{o}gco \Grgco ,Iu{o})

; x\1
AdeTor is smooth over (X —N®)' xz.

Lemma 4.5.6. The map € : Chtg. n= 110} —

Proof. The proof of [Laf18] 2.8 yields immediatly that € for the group Geo is smooth, indeed it the
argument of loc. cit. only requires that Bung_, and Bung_, n are smooth but both statements
follow from the smoothness of the group scheme Goo. Modding out by the action of Th; yields the
result. O

4.5.3 The case of higher degree points

If deg(x) > 1 the diagram of lemma 4.5.4 is a priori not commutative. To go around this issue, we
modify the map eg.. What we do here is a variation of the construction of the restriction morphism
of [GL17].
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Definition 4.5.7. Denote by eqg. : Chtg. rigoy,ne — LjGc\Grrge x % the map of

stacks over X! x z that sends a chtoucas ((y;), &, $) (we ignore the level structure on N%) to the
following datum. Firstly denote by ¢4 the modification

A N S (4.46)

between € and 7' €. The map €4 is obtained by restricting the modification ¢4 to UJZFF%.
Remark 4.5.8. Note that the modification ¢4 happens at the legs (y;), ("v:),... and .

Definition 4.5.9. Let U; C X! be the open subset corresponding to the equations y; # 7%y, and
yi 7T for k=1,...,d—1andi,i € I. Asin [GL17], this open contains the diagonal geometric
point A(Z).

Lemma 4.5.10. Over Uy N X! the following diagram of stacks is cartesian

emb

Chtgg,N’[ x (Go)(Fe) MU/BM _ Chth,Nl',Il_l{O}

+ Iwo\ M, /U + Iwo\LG/Iw°
L ga\GrLgU X T AdeTa emb Ly gc\GI'],gc X T RdpTa

Proof. Asin the proof of lemma 4.5.4, we can decouple the problem in checking what happens for the
G,-torsors and for the B,-reductions separately. The condition on Uy implies that the modification
h... Td_l(,b is an isomorphism along the graph of the (y;). Hence in the stack L} Gco\Gry g, the
two modifications & — 7€ and £ — '€ are isomorphic. Therefore it only remains to check, what
happens near x. Since the map £ — 7€ is an isomorphism of G,-torsors at x, we only need to check
what happens for the B,-structures. But it follows that the Frobenius 7¢ agrees with the Frobenius
F of M. O

The following lemma is a particular case of [GL17] 2.15, obtained by taking r = 0 and n = 0 in
loc. cit..

Lemma 4.5.11. The map €4 is formally smooth over Uy.

4.5.4 The Deligne-Lusztig restriction of the cohomology

Recall that there is an action of G,(F,) on Chtg,_ ;n and that the sheaf Fg_ ; nw is Go(Fy)-
equivariant. Hence the sheaves Hg, 1 nw canonically lifts to D((X — N)!, A[G, (F,)]).
We consider the variant of the map e defined previously. Namely we have the map

€r: ChtgmNJ/E — L}_g07ad\Grga7[, (447)
defined in section 4.4.2. We also have the map induced by the Lang map defined in section 4.2.1

M, R U \M, /Uy
AdFBM AdFTM

q: MJ/B]\/[ — MO’(F:L’)\MD'/BM = (448)

It induces a map

Uni\M, /U

Cht EX M,/By — LTG,2a\G ;
G, N.I1/Z X My /By 1 Go,aa\Grg, 1 X AdeTor

(4.49)
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which descends to a map

Un\M, /U

€: Chtg N]/E Xg”(]Fm) MU/BM — L}_ga ad\GI‘g 1 X
o ’ 7’ AdpT)y,

(4.50)

Let w € Wj,. Recall that we have the following diagram over T

Um\BuvwBrm/Um  Jw | Uu\Mo/Unm
AdFT]w AdFTM

pt/TwF X UM,w

Js

pt/TwF

Lemma 4.5.12. We have an isomorphism of sheaves on (X — N)! x T, compatible with the T*F -
action.
R (M zw) ")) = e (Sat(W) R F=) i,k Regrpur), (4.51)

where (—)Y=F=) denotes the invariants under V,(F,), it is equipped with an action of M, (F,) and we
take the Deligne-Lusztig restriction with respect to this restriction, that is RHomps (g, )(RLe(Yar, (), A), —).

Proof. By lemma 4.2.2, we have R['(M/ B, ¢* juw ki, Regpwr) = RI(Yay, (w), A). The lemma then
follows from the Kunneth formula. O

Remark 4.5.13. We have base changed everything to T to take into account the fact that By;wBjs
is a priori only defined over T and not over x.
4.5.5 Compatibility of Harder-Narasimhan truncations

In 4.4.2, we fixed some Harder-Narasimhan truncations for both groups G, and Go. We now discuss
the following compatibility of the morphism emb with these truncations.

Lemma 4.5.14. Let i/ € A¢ and p its projection onto A, then we have embfl(Chtég/IU{o}) C
Chtz" .

Proof. We have a commutative diagram

Chtgm[’N x M (Fz) MU/BM E— Chtgcﬁju{o}’Nz

\ i

Bung,

l

Bung,

where the map Bung, — Bung, is induced by the map Go — G,. In terms of torsors, a Go-torsor
is given by a G,-torsor and a B,-reduction at x of this G,-torsor, then this map simply forgets the
B,-reduction. By our choice of representations of Go and G, the image of Bunég in Bung, is

contained in Buna‘ , this yields the desired inclusion. 0
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On cohomology sheaves, we then have two filtered cocartesian functors Rep’G! — D((X —
N)I A) given by

(3). (1, W, ) = B (e5,Sat (W) BM ) ¥, (Regrur) = RYHTS, oz and

(). (LW, ) = pi* (embres, Sat(W) BM ) ¥, (Reggur ).

Using lemma 4.5.14, the adjunction maps id — j,5* along all inclusions corresponding to p’ > p
define a compatibility datum between these two cocartesian functors filtered with respect to partial
Frobenii. In particular, on colimits, we get a canonical isomorphism

@R;H%gaw,w,a = “ﬂpf“/ (embyezgSat(W) KM E) ¥, (Reggur)). (4.52)
Iz u

4.6 Iterated tame nearby cycles

Let S be a strict henselian trait over an algebraically closed field k of characteristic p and let A
be a finite ring killed by a power of {. We study iterated tame nearby cycles. This construction
is an analog of a construction of Gaitsgory [Gai04], extended by Salmon [Sal23b] which relies on
the unipotent nearby cycles of Beilinson . We follow their strategy and this construction essentially
only requires to replace the unipotent nearby cycles by the tame ones.

We denote by s and 7 the closed and generic points of S, we denote by 7 — n* — 1, an algebraic
closure of 77 and the maximal tame extension respectively. We denote by .S; the normalization of .S
in nt. Let f : X — S be a scheme of finite type over S, and denote by X; = X xgn'. Let us sum
up the preceding data in the following diagrams

. A
X, — Xy 2 X,

|

XS—Z_>X<]fX,,

lying over

s it St Jt nt

L]

where X, = X xg n and similarly for s and 7' in place of 7. The tame nearby cycle functors are
given by, for A € DY(X,,A),
U (A) = i ji,up} A
This functor is equipped with a continuous action of Gal(n’/n). We will write it \I/? if we want to
put emphasis on the map f.
Let n > 0 be an integer prime to p and 0 — n, RN 7 be the degree n-extension of 7. Let n
divide m and denote by p™ : n,, — 1, the corresponding map. It is clear that n’ = @n Nn- Denote
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by Ap = pn«A. The adjunction map id — p',pp»* on 7, induces a morphism ;" : A,, = Ay, on .
Consider the diagram

; A
X, —2 s X, <2 Xt

!
| i 3
. ~ i
in n
Xy~ X, e X,
|
Pn J/ n
+

X +— X,

J

where all the squares are Cartesian. We have a natural map i*j.(f*A, ® —) — ¥!(—) of functors
obtained as follows

ga ([ An @ =) =0 jupn «Pp (=)
= iy Pn,xJn,sPn(—)
=i py G ()
= 13 Je,e D P ()
= iy ji,+pi (—)
— ()
where the only nontrivial map the base change map from the top right square. Note that this

base map is compatible with the adjunction maps id — p;', pp"*. We obtain an inductive diagram
(i* . (f*Ay, @ (—))) = Wi(—), and therefore a map from the homotopy colimit of this diagram

can : lim i j.(f* Ay ® () = W'(-).

Lemma 4.6.1. The map can is an isomorphism.

Proof. We only need to check that for all geometric points x — X the stalk at = is an isomorphism.
We fix such a geometric point and A € D%(X, A), we first compute the stalk of the source of can.

We have

li

=

F(( )(I)’i*j*(f*An ®A))

(lm 7. (F* A © 4)), = li R
RI

I
JE :LE *|F

(X(2) X5 M, A).

<
3

Now since nt = @n Mn, We also have imn Xy X5 = X(z) X5 n'. By [GVT2] 8.7.7, we have

hgﬂRF(X(I) Xs nn,A) = RF(X(I) Xg nt,A) = \I/t(A)w
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Consider now the following setup, S is a strict trait, n > 0 is a positive integer and f : X — S™
is a scheme of finite presentation. We define three functors.

(4)-

().

For a tuple m = (m1,...,my), we denote by A,,, the sheaf A,,, ®---KA,, onn". Following
[Gai04] and [Sal23b] we define the functor Y : D2(X,, A) — Db(X, A) by

T(A) = limi*j.(f* Ay @ A) (4.53)

where j : X;» — X and i : Xyn — X are the inclusion.

. Consider the Cartesian diagram

XA%X

o

S & 4 gl

where the map A is the diagonal. We then define WA the composition of the pullback to Xa
and the nearby cycle functor with respect to the map XA — S. Replacing nearby cycles by
tame nearby cycles, we get a functor WY,

We define the functor ¥, ... ¥, iteratively. Let A be a sheaf on X. Consider the projection
onto the last factor S™ — S, and the composition X — S™ — S, then apply the corresponding
nearby cycles functor. The resulting special fiber, X x g s now lives over S"~!'. We then iterate
the construction. For an ordering I = {1,...,n}, we denote by ¥; = ¥;...¥,. Replace
nearby cycles with tame nearby cycles, we get a functor WY.

Remark 4.6.2. In [Sal23b] and [Gai04], they work with unipotent nearby cycles while we work here
with tame nearby cycles.

Lemma 4.6.3 (Tame variant of [Sal23b], 4.1). (i). There are natural transformations

(ii).

(iid).

Let 7 : X — X' be a morphism of finite type over S™, then there is a natural base change
map m'Y — Ym making the following diagram commute

FI\I’tI mY ﬂ'g\I’tA[n— 1]
\Iﬂ}m Tm \IftA[n—l]m.

Moreover, all vertical maps are isomorphisms if ® is proper.

Let m : X — X' be a morphism of finite type over S™, then there is a natural base change
map ™Y — Y* making the following diagram commute

T —— Y —— 70 [n — 1]

| J

Ulr* «——— Tr* —— Uh[n— 17",

Moreover, all vertical maps are isomorphisms if w is smooth.
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(iv). Suppose that n =2 and X = X1 x Xo and that the map X — S? is the product of two maps
X; — S, and let A= A1 K Ay on X. Then the maps T(A) — VL WE(A) and Y(A) — U are
isomorphisms.

Proof. The proof of [Sal23b] 4.1 translates verbatim after replacing 'unipotent nearby cycles’ by
Ut and L, by A,,. We want to indicate where the map A,,, ® A, — Alem(mi,m) comes from.
Consider the diagram

Ay ,m

Mem(n,m) — Tn X Nm

plcrn(n,vn)J/ J{pnxpm

n——Qx——NXx1.

The base change map yields an map A*(p, X Pm)«A = Plem(n,m),«A which is the desired map. [

4.7 Central functors and their monodromy

4.7.1 Monodromic sheaves and Verdier’s lemma

We let A be a coefficient ring, in this section, we work over F,. Let T be a torus over F, let 7 (T)
be the tame fundamental (geometric) group of T at the point 1. It is canonically isomorphic to

TH(T) = X (T) @ 7t (Gpn) = X (T) @ ZP)(1). (4.55)
Definition 4.7.1. We denote by CH,(T)

(i). If A = Qy, then CHA(T) = Hom(r! (T),@Z)tors, where tors denotes the group of characters
of finite order,

(ii). If A = Z¢,Fy then CHA(T) = Hom (7w} (T)e, AX)*™, where ¢’ denotes the prime to f-part of
the group.

For each x € CH(T), there is a corresponding Kummer sheaf on 7" which we denote by L,.

Definition 4.7.2. Let X be a scheme with a T-action. A sheaf A € D(X, A) is monodromic if its
pullback along all T-orbits is a lisse and tame sheaf.

Theorem 4.7.3 ([Ver83]). Let X be a scheme with a T-action, the full subcategory of monodromic
sheaves D(X )mon is stable and stable under the 6-operations. If A is a monodromic sheaf, then
there is a canonical action of wt(T) on A. It is given by a morphism

¢4 Alm(T)] — End(A), (4.56)

which is called the canonical monodromy of A. Moreover this action commutes with all morphism
of sheaves.

Definition 4.7.4. Let x € CHA(T) and let X be a scheme with a T-action. A monodromic sheaf
A € D(X, A)mon is x-monodromic, if the canonical monodromy ¢ factors through the completion
along the kernel of the morphism A[r}(T")] — A determined by x. We denote by D(X, A)y_mon the
full subcategory of x-monodromic sheaves on X.
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Lemma 4.7.5. Let X be a scheme with a T-action. We have a canonical decomposition

D(X,A) = @O D(X, M)y (4.57)

Proof. This is immediate since for y # x’, we have Homr(x, x’) = 0. O

Consider the following situation. Let X be a scheme with an action of G,,, and let f : X — G,
be a map that is equivariant for the natural dilatation action on A'. Denote by Xy and X° the
inverse images of 0 and Gy,,.

Xy — X« xo

i i Jf

0 —— Al — G,
Theorem 4.7.6 ([Ver83]). Consider (X, f) as above. Let A be a monodromic sheaf on X°, then

(i). the nearby cycles W(A) is a monodromic sheaf on Xy and V¢(A) = Ut(A).

(13). The canonical monodromy of m1(G,,) on W;(A) is the opposite of the monodromy on the
nearby cycles.

4.7.2 Twisted equivariant sheaves

Let x € CHA(T). The sheaf £, € D(T, A) is a multiplicative sheaf, that is, it is equipped with an
isomorphism

m*Ly =Ly R L, (4.58)

where m : T x T — T is the multiplication map. Since x is a character of finite order, there exists
n > 0, which is prime to ¢ if A = F, such that E%" = Ap. The sheaf £, is a direct summand of
Dn A where p,, : T x T is the map ¢ — t".

Let X be scheme with a T-action and denote by a : T'x X — X the action map. We denote by
an : T X X — X the action dilated by n, that is, the action given by a,(t,2) = t".z. We consider
the quotient stack X/, T which is the quotient stack for this action. Since the group T'[n] = ker p,,
is of order invertible in A and acts trivially on X, the category D(X/,, T, A) splits canonically as

D(X/,T,A) = &, D(X/(T, Ly), ), (4.59)

where y ranges through the characters of T'[n]. We refer to [LY20] Section 2 for a more detailed
construction. We call the category D(X/(T, L,),A), the category of (T, L, )-equivariant sheaves.
This terminology slightly deviates from the literature, as this category is called the category of
x-monodromic sheaves in loc. cit.

Remark 4.7.7. Note that if x = 1, then a (T, £, )-equivariant sheaf is simply a T-equivariant sheaf.
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4.7.3 The central functor construction

Recall that we have fixed ' C Iw C LG an Iwahori subgroup (defined over F,) and that Iw" is its

(0] 0
unipotent radical. We consider the stack % which we define as the quotient stack

Iw’\ LG /Tw"

AT (LG/Tw®)/Ad(Iw). (4.60)

We denote by

(). Daax = D(%, A) as the category of sheaves that (7, £, )-equivariant sheaves for

the action of T given by right translations

.. w0 w0
(ZZ). DAdF = D(%,A)

Iw’\LG/(Iw,Ly s
(’LZZ). DAdF,X = D(W,A) as 1 (Z)

(iv). We denote by Pervag , and Pervagq, the associated categories of perverse sheaves.

Remark 4.7.8. The category Daqg, is also equivalent to the category of sheaves on Iw’\ LG /Tw"
that are equivariant under (T x T, £, K L, ) where the action is given by (¢,t').x = tat’.

We refer to [LY20] Section 4 and [Li22] for a precise construction of the monoidal structure on
Dad,y- Consider the following convolution diagram

IwO\LG x™° LG/Iw® —" Tw®\LG/Iw"

%k

Iw’\ LG /Tw" Iw’\ LG /Tw"
where pr; are induced by the projections and m by the multiplication. Consider the actions of
T x T on Iw*\LG x™° LG /Iw° defined as
Ad (t,t).(x,y) = (tat’~L t'yt™1),
Adp t.(z,y) = (tat' "L tyF(th)).

Let A, B € Daq,y then the sheaf prj A ® pr5 B descends is equivariant for the action of 7' x T" hence

descends to a sheaf
Iw’\LG x™ LG/Tw"

AXB €D A). 4.61
The convolution product is defined as
Ax B =mAXB, (4.62)
0 Iw 0
where m : W — Dad,y-

Lemma 4.7.9 ([LY20], [Li22]). The convolution product defines a monoidal structure on Dag,y.
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Replacing B € Dag,y by B € Daq,,y in the construction above first yields a sheaf AXB €
D(IWO\LGXIWLG/IWO A

Ade (T) ,A) and then a sheaf A % B € Daq,,. The same argument as in [LY20] and
[Li22].

Lemma 4.7.10. The bifunctor

Dad,x X Dade,x = DAde,x>
(A,B) — Ax B,

defines a Dag-module structure on Dagy -

We now recall the construction of the central functors and their twisted versions. We choose a
uniformizer of 7, at x. This gives an identification of the completion at x of X with F,((¢)). We
then identify the completion of X at x with the completion of A' at 0 over F,. We consider the
group scheme ggi, over A!, defined in the same way as Goo. We consider ngi,, note that there

is an action of G,,, on _the fiber at ()_of (Lgéﬁ_)o = LG. This one dimensional torus is called the
rotation torus, on the Fg-points LG (F,) = G(F4(())) it acts by rescaling t. More specifically it is
given by

z.g(t) = g(z7't), (4.63)

where z € G,,, and g(t) € LG(F,;). There is also an action of G,, on Al by dilatation, given by
(z,z) = zx.

Theorem 4.7.11 ([BR22a] 4.3). There are actions of G, on LGco and LT Geo such that the maps
LGco — Al and LY Geo are equivariant for the action of G,, and induce the rotation action on the
fiber at 0.

We consider the affine Grassmannian of Goo with two legs, that is Grg_, (1,2}, this is an (ind)-

scheme over A? and we restrict to to A! x {0}. The fiber at 0 is isomorphic to LG/Iw". Over G,p,,
it is isomorphic to Grg 1} x LG /IWO. We consider the the following nearby cycles diagram

LG/Tw’ —— (Grgélmm}),%lxo +—— Grg (1} x LG/Iw°

| l |

0 Al Gm

Let x € CH,, the x-twisted central functor is defined as
Z,: RepAG — Pervag

W > U(Sat(W) X £, [dim 7))

where £, [dim 77 is the perverse shift of £, on T'C LG/Iw". The perversity of Z, follows from the
fact that the nearby cycle functor is perverse t-exact.

Theorem 4.7.12 ([Gai01], [Gai04], [BFO09]). (i). The functor Z, well defined and is monoidal.
(i1). The monodromy on the nearby cycles is tame.

(#i1). The action of the monodromy on the nearby cycles is monoidal.
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We want to point out a few key facts about the proof of this theorem. Firstly, the tameness
of these nearby cycles follows from Verdier’s theorem 4.7.6, see also [AB09] Section 5.2. The
monoidality in [Gai01] follows from the properness of the convolution maps and the monoidality of
the action of the monodromy follows in [Gai04] from the fact that both maps

U0y T — Uy, (4.64)

are isomorphism when the considered nearby cycles are unipotent nearby cycles. In our setting, the
same argument provides an isomorphism for tame nearby cycles.

4.7.4 Wakimoto sheaves

We assume that A = Q, and we fix x € CH(T). We recall the construction of [AB09] and [BFO09)
about Wakimoto sheaves. Let A € X,.(T") we get a canonical point A(t) € LG obtained as the image
of t under LG,, — LG. We also fix a set of lifts w of the elements of the Weyl group of W and we
assume that ww' = ww’ if L(ww') = f(w) + £(w'). For an element wqff = wA € W, we then get a
point W = ’LU)\(f) € LG.

Definition 4.7.13 (Standard and costandard). Recall that W denotes the extended affine Weyl
group. For w € W, using the choice of w, the stratum i,, : IW'wIWO/IWO - LG/IWO is T-equivariantly
isomorphic to 7' x AY®) where £(w) is the lenght of w. We define

(i). The standard objects Ay, = iy 1Ly K Q,[dim T + £(w)],
(44). The costandard objects Vi, = iy Ly B Q,[dim T + £(w)].
Since the inclusion i, is affine, all the sheaves A, , and V,, , are perverse sheaves.

Theorem 4.7.14 ([AB09], [BFO09] for the Q, case, see Appendix 4.A for the F, case). (). There
is a fully faithful tensor functor J, : RepAT — Pervaa,, such that J(A) =V, if A\ € X is
dominant and J(A) = Ay, is A € X, is antidominant. The objects in the essential image of
Jy are called x-monodromic Wakimoto sheaves.

(i1). Denote by Pervigil the category of sheaves equipped with a filtration whose graded pieces are
Wakimoto sheaves. Then the central functor Z, lifts to a monoidal functor

2, :Rep,G — Pervigil. (4.65)

(#i). The functor gr : Pervigil — J(Rep,T) that takes the graded pieces of the filtration is
monoidal. The composition

Rep, G Zx, Perv;{g,ﬁ; — J(Rep,T) = Rep, T, (4.66)

is monoidal and isomorphic to the restriction from GitoT.
(tv). The canonical monodromy action on grZ, is given by the action of x € T.

Remark 4.7.15. In [BFO09], the authors obtain the opposite monodromy x !, this follows from the
fact that we have normalized the rotation torus action using the normalization of [BR22a] which is
the opposite normalization to the one of [BFO09].
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4.8 Main theorems

4.8.1 Statement of the results

We now go back to our setup of section 4.4.2. The following theorem is an extension of theorem
5.2 of [Sal23b].

Theorem 4.8.1. Consider the sheaf embie*(Satyw X V,,(Regpwr)) as before. This is a sheaf on
Chtg,. rufoy,n=- The canonical map

h_r)np,g”\lll e \I/nembgefd“’*(SatW KVy(Regpur)) = Uy ... \Ilnp!g“emblefd”’*(SatW@Vw(RegTu,p)),
m

(4.67)
is an isomorphism, where I = {iy,...,in}.
Note that this map a priori depends on the order of the coordinates.

Theorem 4.8.2. Let I,W be as before, let s € (T W)F and let j € Z, then

(i). The (Weilg,)! -module es((HémI’W’N)VU(FI)) is tamely ramified, i.e. the action of Weilfpz
factors through (Weilﬁ;m)l .

(ii). As an Exc(F,,GQ)-module, es((HémI7W7N)V<’(FI)) is supported on evT’Flz (s).

Corollary 4.8.3. Let MJJV be the quasicoherent sheaf on Z24°(Fy, G)/G corresponding to the func-
tor (I, W) — (HémlvaN)VU(Fz). Using the same notations as in theorem 4.8.2, the quasi-coherent
sheaf es(MY,) is supported on evy) (s).

Proof. By lemma 4.4.35, corollary 4.8.3 follows from theorem 4.8.2. 0

Corollary 4.8.4. All parameters attached by [GL17] to depth O cuspidal representations are tame
and the diagram

e H(K) 2S5 (ZV(K, H) ) H)(A)
LS\L lev,—K
(T ) W)F ——— (T ) W)F
commutes.

Remark 4.8.5. The recent result of Li-Huerta [LH23] shows that the semisimple Langlands cor-
respondence of Lafforgue and Genestier [GL17] and the one of Fargues and Scholze [FS21] agree
hence our result is also valid for the Fargues-Scholze correspondence.

4.8.2 Commutation of nearby cycles and pushforward

For the proof of theorem 4.8.1, we will follow Salmon’s proof [Sal23b] Theorem 5.2 with the necessary
generalizations.
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Lemma 4.8.6. Let I = {iy,...,in}, K € Pervaq, and V € Rep, (YG)! then the sheaf

limy pi"ef o (Sat (V) B K)
n

is constant on 17 Xg - Xg_ 1.

Corollary 4.8.7. Let ¢ : I — J be a morphism of finite sets. Let V € Rep,(YG)! and V; is
restriction along the morphism (*G)? — (YG)! induced by (. Let K € Pervaq,. Then there is a
canonical isomorphism

Uy lim pit' e o (Sat(V) KUK = 0 lim pej ,q(Sat(Ve) K K). (4.68)

1 I

Lemma 4.8.8. Let ¢ : I — I’ be a morphism of finite sets, K € Pervagn, J a finite set and let
W € Repy (YG)? and V € Rep, (YG)!. There is a canonical isomorphism

U rembyel o (Sat(W B V) R K) = Wpembie) o (Sat(W K V) K K). (4.69)

Proof of theorem 4.8.1. We can now apply the proof of [Sal23b], we reproduce the key argu-
ment here. Let V € Rep,(Y*G)? and W € Rep,(*G)!. We show that the canonical map
li_r)nu pISLj‘Jy!\I'Je*(Sat(W X V)X V(Regpuwr)) — ¥y hgﬂ pISLﬁLJJe*(Sat(W X V)X V(Regpuwr)) is an

isomorphism. First note that there is a canonical isomorphism over (X — N)/V{0}

Chtgc,N,IU{O},ngl ~ Chtch’I’W X (X — N) (4.70)

where Chtg, v ru0y,wm1 is the closure of the support of €*(Sat(WW) X 1) and 1 denotes the trivial

representation of G.
Let Jy, Ja, J3 be three disjoint copies of J. As in loc. cit, consider the following composition.

0, @p?&,e*(sat(w X V)X V(Regpor))
"

= W, i pity, g, Vo€ (Sat (W RV K 1) K V(Regpur))
w

— Uy, ligp?jJIUJ27,\I/J26*(Sat(W XV K (V*®V)) K V(Regpuor))
I

~ U ligquSL’lequuJ&!\I/b\I/J3e*(Sat(W RVRV*RV)KXV(Regpor))
N

= U Wy, lim ph) g Ve (Sat(W RV RV K V) KV (Reggr)

0

~ W, i 7 g, Vs (Sat(W B (V @ V) {V) BV (Regrur)
"

— Uy, ligp%‘huh,&,\lljae*(Sat(W X1K V)R V(Regrur))
i

~ li_n>quSLj‘J37!\IlJ36*(Sat(W X V)R V(Regror))
o
where the maps are
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). the first one is 4.70,

). the second one is obtained from the canonical map 1 - V*® V,

)
)
(¢41). the third one is the cocartesianity to pass from (V*® V) to V* XV from lemma 4.8.8.
). the fourth one is the base change map p)¥;, — ¥ 1, pi,

)

. the fifth one is from lemma 4.8.7 using fusion to pass from (V K V*) to (V ® V*) for the
nearby cycles U ;, ¥ ;,,

(vi). the sixth one is by functoriality of V @ V* — 1,
(vii). the last one is by 4.70.

We refer to loc. cit. for the argument that the previous composition is indeed the inverse of the
canonical map. O

Proof of lemma 4.8.6. 1If there were no K in the statement this would be the first part of the main
theorem of [Xue20d]. We need to extend the argument. The argument of loc. cit. requires two
properties of the functors

(I, W) = pTleq aa(Sat(W) R K)

to hold.
(7). That this defines a cocartesian functor filtered with respect to partial Frobenius morphisms,
(#4). That the Eichler shimura relations of [Lafl8] Proposition 7.1 hold for all v € X — N.

We now show that these two properties hold. Note that if A = Q, then it is shown in [Sal23b]
Section 3 that the first point implies the second, his proof however does not extend to the modular
setting as it requires dividing by n! for all n.

Partial Frobenius. The partial Frobenius morphisms are constructed as in [Xue20a] Section 7.1.

Eichler-Shimura relations. We adapt to our setting an argument of [XZ17]. We have a cocarte-
sian functor filtered with respect to partial Frobenius endomorphism (I, W) — p?“e;d(Sat(W)ﬁK).
Let us denote it by ”HIS’;V N Let V € Rep A PG, the Eichler-Shimura relations is the statement
that the morphism '

S =) TFE S paimv iy, (4.71)

K3
vanishes in Hom((H}f{%})ng’N’K)‘(X_N)IX“, (H}E{%T)';V&V)MK)‘(X_N)IXv), where v € X — N is a
place, I is the partial Frobenius at the leg 0, & is large enough and Syaimv-iy,, is the excursion
operator defined in [Laf18] Section 6.1. Let z — (X — N)! and ¥ — v be geometric points and let
U — Z X U be a geometric point of this product. Let us introduce the auxiliary cocartesian functor

[73,SH j,<
Hivft - (H‘}Ufwgv/7N,K)‘A(f,)? (472)

where A(9) is the geometric point of (X — N) x v/ given by © — 2 x 0 — 2 x A(v) — (X —
N) x v/, On hﬂgu Hﬂ‘gﬂ there is an action of Gal(/v)! coming from the partial Frobenius

morphisms. Hence we have collection of functors H : Repy (“Gioc.w)? — Rep,Gal(7/v)! where
LGloc,U is the local L-group at v. By theorem 4.4.33 and lemma 4.4.34, and since the moduli of
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unramified parameters is isomorphic to G/ G, there are coherent sheaves M% on G.F / Gcla / G

and a spectral sequence HP(G,M% @V = ﬁg}}‘% for all V! € Repp((Y!Giocw)”). Tt is then

enough to show that the endomorphism Zi(fl)iFgeg(v)lSAd;mv_ivﬂ, of M3 ®V is zero. Under
. . . ideg(v)i

the isomorphism Mg-l @AV = M% ®0L,, €v the endomorphism > (=1)Fy &) Sdimv—iy,

corresponds to the endomorphism Zi(fl)iFgeg(“)iTr(Fgeg(U),Adim(v)*iV) which is zero by the
Cayley-Hamilton theorem. O

Proof of corollary 4.8.7. We know by 4.8.6 that the sheaf liﬂupfuezyad(Sat(V) X K) is constant
on 7 X -+ Xg, 7. The nearby cycle functor ¥; is isomorphic to the functor D(7", A) — D(z, A)
given by M — M;, where 7); is a generic geometric point of X!. Similarly, ¥/ is isomorphism to
M — Mjy,,, the choice of a specialization morphism 7j; — 7y induces the desired isomorphism. [J

Proof of lemma 4.8.8. We have a diagram of stacks

Chtgm]’N XM”(]F“”) MU/BM _— Chth,Iu{O}J\[I

| J

(Chtg, 1,n xM>®) M, /By)/E —— Chtg 140,50 /=

since the vertical map are étale and surjective it is enough to show the desired isomorphism before
modding out by =. Similarly, since the map € is smooth, we only need to show the corresponding
statement on affine Grassamannians which now follows from theorem 4.7.12. O

4.8.3 Control of the monodromy

In this section we show theorem 4.8.2. We start by showing the tameness assertion. There is a
canonical decomposition

)Vg (Fz) Vo (Fy),tame P (

Héa,I,W,N)VU(FZ)’Wﬂd (4.73)

(Hg, 1.w.N = (Hg, rw.)

where (—)®™¢ (resp. (—)"!) denotes the direct factor where Pf, C WeilIFz7 the product of the wild
inertia subgroups, acts trivially (resp. non trivially on any irreducible subquotient). The tameness
assertion is then equivalent the property

(HE, ) =M = 0. (4.74)
Similarly, since P}I;m is a pro-p-group, the complex (Hg, 1w, N)VU(FI) splits as

)VU(IFI) )Vg(FI),tame e (

(Hg, 1,w,N = (Hg,,1,w,N Hg, 1w,n)"e Fe)wild (4.75)

such that H7((Hg, )V Fe)tamey — (Hég’I’W’N)V"(IFI)’”““e (resp. with (—)"d). Tt is then

enough to show that (Hg, rw.n)"> ) Wild = 0. Since the collection of functors (*Ru,)wew,, is

conservative by theorem 4.2.1, it is enough to show that for all w € W}, we have

*Rw((Hga_’],W,N)VU(F””)’WHd) =0. (4.76)
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Fix an ordering I = {1,...,n}. We have

*Ro((Hg,,rwn) " E)) = 0y 0, Ry (M, rwn) "))
= Uy W, lim piF e’ (Sat (W) B V. (Regrur)
o

— ngp?“e*q/l U, (Sat(W) B Vo (Regrur)),
i

where the first line follows from the computation of nearby cycles on (X — N)!, the second one
from lemma 4.5.12 and the third one from theorem 4.8.1 and the smoothness of €. As these
isomorphisms are equivariant for the action of V\/eilf;m7 it is enough to show that the action of
VVeilf;z on Uy ... U, (Sat(W) K V. (Regpwr) is tame by theorem 4.7.12. This establishes the first
point of theorem 4.8.2. A

Let us now show the second point. Let s € (T J W)¥. We want to show that the Exc(F,, G)-
module es((HémLW’N)VU(]Fw)) is supported on ev-! s. Let I, C O(G)C the ideal defining the point
seG / G. It is enough to show that for all f € I, the excursion operator Fy ., € Exc is nilpotent
on es((HémI7W7N)V<’(Fm)). It is then enough to show that for all J,V € Rep,(*G)’,2 € V& and

e (V*)G such that the function on G given by f(9) = (g.2,§) € O(GJ) lies in (ISO(G))®J, that
the excursion operator Fj vy ;¢ (7, ),c, 18 nilpotent on es((HémLW,N)VU(]Fw)). This endomorphism
is obtained as the composition

es((Héa,I,W,N)VU(]Fm)) = es((Hég,Iu{O},W&LN)VU(]FI))

Ly e(HY, 1y wivn) " E)

(Trg)jet VG(JFI))

J
es((Hg, uswav,.n)
3 J Vo (Fy
> es((H, 100y wen )" )
= 68((Héa,I,W,N)VU(Fw))'
This endomorphism is obtained after applying H7(—) to corresponding morphism of complex
es((Hg, 1w.n)"T)) — e ((Hg, 1w.n)""F=)) hence it enough to show the corresponding prop-
erty for the complex. Let (w,X) be a pair w € Wy, and x a character of T%F such that the pair
(w, x) corresponds to s. Since the Deligne-Lusztig restriction functors are conservative, it is enough
to show the statement for the complex *Ry,  ((Hg, r.w.n) ")), As before we have

Ru((He, rw.n)" =) =l p e Wy . 0, (Sat (W) B V., (e Reggur)). (4.77)
n

It is therefore enough to show this property for the object ¥y ... ¥, (Sat(W) X V(e Regruwr)).

0 0
By theorem 4.7.12, this object is a perverse sheaf on %. It has a filtration coming from a
composition series of e, Regrwr, its graded pieces are the sheaves Wy ... ¥, (Sat(W) X V,(x)). By

theorem 4.8.1, we have

Uy W (Sat(W) BV (x) = Z5(W) * Vi (x)- (4.78)
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The excursion operator on central functors is then the composition

Z (W) % V(X)) = 2x(1) * 2, (W) * Vau (x)
= Zy (V) % Z (W) * Vi (x)
CEdied, 2 (V) % Zy(W) % Vu()
5 Z(W) %V (x).

By theorem 4.7.14, the functor Z, is equipped with a monoidal functorial filtration. We consider
this filtration for the sheaves Z, (1) and Z, (V) in the previous composition. Passing to graded
pieces yields a composition

Z (W) % Vi (x) = grZ, (1) * Z, (W) * Vi (x)
5 gr(Z (V) % Z (W) % Vi (x)
M} gr(Zx (V) x 2, (W) * Vi (x)
AN Z (W) % Vi (x)-

By theorem 4.7.14, the action of the composition £ o gr(7p,) o  is induced by the function 1 — 1
obtained by multiplying by f(x). Since f(x) = 0, on the graded pieces this composition is 0, hence
it is nilpotent before taking the graded pieces. This concludes the proof of theorem 4.8.2.

4.8.4 Consequences for the local Langlands correspondence

In this section, we want to show corollary 4.8.4. Let m € Irr) (G(F;)) be a depth 0 irreducible
cuspidal representation of G(F,). By theorem 4.3.5, there exists a depth 0 type (o,7) for .

By [GL17], there exists a level N = z + N7 such that Homry, (ﬂg”(on)OﬂHK‘)’}aiw?V) # 0, where T,

denotes the local Hecke algebra of G(F;) with level G, (OF, )o+. In particular Homyr (7, H {Vé’}(ﬁﬁj)\,) +
Vo (]Fm)

0. Let s = LS(w), by theorem 4.8.2, Hgy (" is an Exc(F,, G)-module supported on ev~'(s) hence
by the main theorem of [GL17], for any 7’ such that 7/9¢(Orz)o+ -£ () that appears as a subquotient

of e,H 2/6’}(7]%])\,, its Langlands parameter o, is tame and satisfies o/ (7F, )ss ~ S

4.A Filtration by Wakimoto sheaves

In this appendix we want to extend theorem 4.7.14 to the modular setting. The proof consists
essentially in reproducing the argument of [AB09], [BFO09], [BR22a], [ARon] to the correct setting.
All categories considered have coefficients in Fy. All the geometric objects are considered as schemes
(or stacks) defined over F,.

We will use the following notations (some of them were introduced in the core of this paper, we
recall them).

(7). W =W x X, is the extended affine Weyl group.
(ii). F1= LG/Iw°.
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(1) iy : Fly, = Iwwlw/Iw® — FI be the inclusion.

(iv). Given x € CHg,(T'), we have Daq,Daq,y the category of sheaves that are Ad(I)-equivariant
on Fl and x-equivariant for the right action of 7'

(v). Given x € CH,(T) and a T-equivariant isomorphism Fl,, = T' x Al

(8) Ay = s (L B (Fo) e [dim T + £(w)],
(B) Vi = twx(Ly X (Fp)gecu)[dim T + £(w)]
(¢) ICu,y = tw1x(Ly B (Fo) pew) ) [dim T + £(w)]
the standard, costandard and IC sheaves respectively.

(vi). We define Perv, the category of perverse sheaves of D,. Since the embedding 4,, are affine
all sheaves Ay v, Vi, and IC,, .

(vit). We have the central functor R
2, : Repf,G — Pervy, (4.79)

that was defined in section 4.7.

Remark 4.A.1. The group W naturally acts on CHg, (T') through its quotient W.

Remark 4.A.2. The sheaves Ay, y, Vi y, ICy, y are perverse sheaves which are (7', L.,y )-equivariant
for the left action of T" on F1.

Remark 4.A.3. We fix a collection of elements w € Ng(T') lifting the elements of W such that

ww' = ww' if (w) + £(w') = L(ww'). For X € X, we have a canonical map L*T — LG, the image
of t determines a point t* in Fly. Given w € W, we can write it uniquely as w = Awy, we set
W = t M.

Remark 4.A.4. There is a well defined convolution

D, x D,» = Dy, (4.80)

defined as in section 4.7.3. We refer to [LY20] for a careful discussion about this kind of convolution
and to lemma 3.3 and 3.4 of loc. cit. for a proof of the following lemma.

Lemma 4.A.5. With the choice of trivialization of 4.A.3, we have canonical isomorphisms
(1), Awwy * Dy nr = Doy o if L(w) + L(w') = L(ww'),

(13). Vawx * V' xr = Vpw o if L(w) + L(w”) = L(ww’),

(#17). A1,y * Vx = Dey = Vg1 oy ¥ Doy -

From now on we fix the choices of w of 4.A.3 and we fix a total order < on W refining the
Bruhat order. From now on we stick to the strategy of [AB09] Section 3.6. We also refer to [ARon]
Chapter 4. We now construct the Wakimoto sheaves.
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Lemma 4.A.6 (Construction of the Wakimoto sheaves). We fiz x € CHg,. There exists a fully
faithful tensor functor .
J = Repg,T" — Pervy, (4.81)

such that
J(A) = Vya, (4.82)

if X is dominant.

Proof. Arguing as in [AB09], the functor defined X — Perv,, A — V, ) is monoidal. As all the
objects V, ) are ®-invertible, it extends to a monoidal functor X, — Perv,. Taking direct sums
of each objects yields the desired ®-functor Repg, 1" — Perv,. O

Objects in the image of J are called Wakimoto sheaves. We define Pervi for the essential
J—fil
X —
X.-filtration such that all the A-graded pieces are isomorphic to V) ® J(A) where V) is a Fy-vector

space.

image of J. We define Perv for the category of objects of Perv, equipped with a decreasing

Theorem 4.A.7 (Analog of [AB09] Theorems 4 and 6 and [BFO09] 2.5). (i). There is a unique
monoidal lift of Z, to Pervifﬁl.

(ii). The composition
J—fil

gr J ?
x | — Pervy =~ Repg, T, (4.83)

Repmé — Perv
1s monoidal and monoidally isomorphic to the restriction functor RepEG — Repmf

(ii). The monodromy endomorphism (coming from the nearby cycles) acts by x € T' on this functor.

Lemma 4.A.8 (Analog of [AB09] lemma 13). (i). We have Hompery, (J(N),J(n)) # 0 only if
A < g and Hompery, (J(A), J(N)) = F,.

(ii). The forgetful functor Pervifﬁl — Perv, is faithful and an object in the essential image of the

forgetful functor has a unique filtration compatible with the order <.

Proof. The first point comes from the fact that F1, C FI, only if 1 < X and that F1, is open in the
support of J(A).

The second point reduces down to the fact that an object in Perv, has at most one J-filtration.
Let us show this fact. If A is such an object and A>y, AL, are two such filtrations on A we want
to show that A>y = AL,. We proceed by induction. If A has only one term in its filtration, the
statement is clear. Let A € X, and assume by induction that for all w>NAs, = AIZ#' Then we
have A\ = AL, after replacing A by A/A-, we can assume that A>, is the first term of the
filtration, but then the condition (i) forces A>y = J(A)* for some k, the same applies to AL,. O

Definition 4.A.9. (i). An object X € Perv, is convolution exact if the functor X % — is t-exact.

(77). An object X € Perv, is weakly central if for all L € Perv,,, we have L *x X ~ X % L, (though
we do not assume this isomorphism to be functorial).

Definition 4.A.10. Let w = \ws € W and assume that w;.x = x so that Vuw; x € Perv,. We
define J,, = Jy * Vy, sx € Dy and we call those sheaves the extended Wakimoto sheaves.
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Proposition 4.A.11 ([AB09] Theorem 5). The object J,, is perverse.

Lemma 4.A.12 ([AB09] Proposition 5). Let X € Perv, be a convolution exact object then X has
a filtration whose graded pieces are extended Wakimoto sheaves, if furthermore X is weakly central
then then only J,, that appear are those such that w € X,.

The proof of the above lemma and proposition in loc. cit. only uses some fact about the perverse
t-structure as well as the geometry of the convolution map which all hold in the present setting.

Lemma 4.A.13 (Compare with [AB09] Lemma 9). For A\ dominant,
Jx2x(Va) # 0, (4.84)
where V) denotes the Weyl module of highest weight .

Proof. We reduce to the characteristic 0 situation. By loc. cit., Fly is open in the support of
Z,(V)). Consider a lift of x to Zj, the construction of the central functor is then the reduction mod
¢ of the Z,-version of the central functor. After inverting ¢, we know that this stalk is non-zero and
free of rank one by [BFO09]. By constructibility of the Z-version, the mod/-reduction is therefore
nonzero. 0

Proof. We now prove theorem 4.A.7. By theorem 4.7.12, the object Z, (V) is weakly central since
it comes equipped with a central structure and is convolution exact. By lemma 4.A.12 there is
Wakimoto filtration on Z, (V). By lemma 4.A.8, this filtration is unique. By the lemmas 16,17
and 18 of [AB09], which hold for arbitrary monoidal categories, this filtration is monoidal and
the compomtlon ngX is monoidal. Composing with the inverse on J, we get a monoidal functor
Repg, G — Repg, T, which therefore corresponds to a morphism of 7' — G. It only remains to check
that this is the inclusion of the maximal torus. By 4.A.13, X is direct summand of grZ, (V)), this
implies that T — G is injective and is identified with the prescribed maximal torus. This yields
the first two points of theorem 4.A.7. O

Lemma 4.A.14. Consider the action of (G )rot, and let X € X* The sheaves 1Cy  and Jy are
Ax~ 1) monodromic where X : T — Gy, = (G,)Y., is considered as a cocharacter of T.

Proof. By [BR22a] Section 4.4, the normalized loop rotation on Fl is given on Fly by z.t* =
A(z71)t*. Hence the rotation monodromy on IC, , is given by A(x~1). For the case of J, we
proceed by induction on the length of A and reduce to the case where A is of minimal lenght and
thus Jy = IC,\7X. ]

This last lemma yields the last point of theorem 4.A.7.

Lemma 4.A.15. The monodromy action coming from the nearby cycles on Z,(V) is given on
gr(Z,(V)) by the action of x.

Proof. Since by point (i¢) of theorem 4.A.7, under the functor J, gr(Z, (V') corresponds to ResgV
and the graded piece corresponding to A € X, corresponds to the direct summand of of weight
A. The torus monodromy acts on this direct summand by the character A(x~!) by lemma 4.A.14.
By theorem 4.7.6, the action of the monodromy on the nearby cycles is given by A(x). This also
concludes the proof of theorem 4.A.7. O
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