
École Doctorale Sciences Mathématiques de Paris Centre
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Abstract. Let G be a reductive group over a finite field Fq of characteristic p > 0. In this
thesis we first discuss some links between the free monodromic Hecke categories and Deligne-
Lusztig theory. We start by giving a new construction of the free monodromic categories of Z.
Yun [BY13] using twisted equivariant sheaves. We then use this to construct a Z`-lift of the
free monodromic Hecke categories studied by Bezrukavnikov, Riche, Yun and by Gouttard. In a
second direction, we discuss how the monodromic formalism interacts with the (twisted) horocycle
correspondence introduced by Lusztig and how to use it to recover some key facts of the theory.
We then proceed to compute the trace of Frobenius on the monodromic Hecke category and show
that we recover the category of representations of the finite group GF. We apply this formalism to
study the endomorphism algebra of the Gelfand-Graev representation of GF and recover a result of
Li expressing this algebra in terms of the dual torus.

Finally, assume that G is a quasi-split unramified group defined over local field of equal charac-
teristic F . In this setting Lafforgue and Genestier have constructed a semisimple local Langlands
correspondence. We show two expected properties for the depth 0 part of this correspondence.
Namely, we show that the Langlands parameter associated to a depth 0 representation of G(F ) is
tame and we describe the semisimple part of the image of a generator of the tame monodromy.

Résumé. Soit G un groupe réductif sur un corps fini Fq de caractéristique p > 0. Dans cette
thèse, nous discutons tout d’abord des liens entre les catégories de Hecke monodromiques libres et la
théorie de Deligne-Lusztig. Nous commençons par donner une nouvelle construction des catégories
de faisceaux monodromiques libres de Z. Yun [BY13] en utilisant des faisceaux équivariants tor-
dus. Nous utilisons ensuite cela pour construire un relèvement Z`-linéaire des catégories de Hecke
monodromiques libres étudiées par Bezrukavnikov, Riche, Yun et Gouttard. Dans une deuxième
direction, nous discutons de l’interaction du formalisme monodromique avec la correspondance horo-
cyclique (tordue) introduite par Lusztig dont nous nous servons pour donner de nouvelles preuves
de certain résultats de la théorie de Deligne-Lusztig. Nous procédons ensuite au calcul de la trace de
Frobenius sur la catégorie de Hecke monodromique et montrons que cette dernière est équivalente
à la catégorie des représentations du groupe fini GF. Nous appliquons ce formalisme à l’étude de
l’algèbre d’endomorphismes de la représentation de Gelfand-Graev de GF et retrouvons un résultat
de Li exprimant cette algèbre en termes du tore dual.

Enfin, supposons que G soit un groupe quasi-déployé non ramifié défini sur un corps local
d’égale caractéristique F . Dans ce contexte, Lafforgue et Genestier ont construit une correspon-
dance de Langlands locale semi-simple. Nous montrons deux propriétés attendues pour la partie
de profondeur 0 de cette correspondance. Plus précisément, nous montrons que le paramètre de
Langlands associé à une représentation de profondeur 0 de G(F ) est modéré, et nous décrivons la
partie semi-simple de l’image d’un générateur de la monodromie modéré.
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Dennis Gaitsgory pour plusieurs discussions chez Vincent concernant les traces catégoriques et le
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Chapter 1

Introduction en Français

1.1 Catégories de Hecke monodromiques libres

Soit p > 0 un nombre premier et k un corps algébriquement clos de caractéristique p.

1.1.1 Faisceaux monodromiques en tant que faisceaux équivariants

Soit T un tore sur k. Soit π1(T ) le groupe fondamental étale de T au point géométrique 1, et soit

πt1(T ) le quotient premier à p (ou quotient modéré). On sait que πt1(T ) = X∗(T ) ⊗ Ẑ(p)(1), où
X∗(T ) désigne l’ensemble des cocaractères de T .

Soit X un schéma muni d’une action de T . Dans [Ver83], Verdier définit (pour T = Gm) la
notion de faisceaux monodromiques de la manière suivante. Soit ` 6= p un nombre premier, notons
par Dcons(X,Z`) la catégorie dérivée des faisceaux constructibles `-adiques sur X.

Définition 1.1.1 ([Ver83]). Un faisceau A ∈ Dcons(T,Z`) est monodromique si, pour tout j, le
faisceau de cohomologie Hj(A) est lisse sur T et que la représentation correspondante de π1(T ) est
modérée, c’est-à-dire qu’elle se factorise par par πt1(T ).

Définition 1.1.2 ([Ver83]). Un faisceau A ∈ Dcons(X,Z`) est monodromique si, pour tout x ∈ X,
le faisceau a∗xA ∈ Dcons(T,Z`) est monodromique, où ax : T ×X → X est l’application orbite de x.
Nous notons Dcons(X,Z`)mon la sous-catégorie pleine des faisceaux monodromiques.

Théorème 1.1.3 ([Ver83]). La catégorie Dcons(X,Z`)mon est une catégorie triangulée (ou stable
si nous travaillons avec des ∞-catégories). De plus, tout objet A ∈ Dcons(X,Z`)mon possède une
action canonique de πt1(T ) appelée la monodromie canonique. Cette action commute avec tous les
morphismes de faisceaux.

Notons CH(T ) l’ensemble de tous les caractères continus πt1(T ) → Z×` d’ordre fini premier à `.
Pour chaque χ ∈ CH(T ), il existe un faisceau de Kummer Lχ sur T . Nous dirons qu’un faisceau
A ∈ Dcons(X,Z`) est χ-monodromique si sa monodromie canonique φA : Z`[πt1(T )] → End(A) se
factorise à travers la complétion de Z`[πt1(T )] le long du noyau de l’homomorphisme défini par χ.
Nous notons Dcons(X,Z`)χ,mon la sous-catégorie pleine des faisceaux χ-monodromiques. Si χ est le
caractère trivial, les faisceaux χ-monodromiques sont également appelés faisceaux monodromiques
unipotents.
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Proposition 1.1.4. La catégorie Dcons(X,Z`)mon est la somme directe

Dcons(X,Z`)mon = ⊕χ∈CH(T )Dcons(X,Z`)χ,mon. (1.1)

Nous notons ΩT,Z` l’anneau

ΩT,Z` = lim←−
n,m

Z`/`nZ`[T [`m]]. (1.2)

Après avoir choisi une trivialisation πt1(Gm) ' Ẑ(p) et une base de X∗(T ), cet anneau devient
isomorphe à Z`Jt1, . . . , tnK, un anneau de séries formelles. Nous notons ΩT = ΩT,Z` ⊗Z` Z`.
Exemple 1.1.5. En prenant la fibre en 1 ∈ T , on obtient une équivalence de catégories Dcons(T,Z`)unip,mon '
Dcoh,m(ΩT ) entre la catégorie des faisceaux monodromiques unipotents sur T et la catégorie dérivée
des faisceaux cohérents sur ΩT supportés sur l’idéal d’augmentation de ΩT .

L’anneau ΩT n’est pas un anneau régulier, mais il est tout de même cohérent, c’est-à-dire que
tout module de type fini est finiment présenté, la catégorie Dcoh(ΩT ) se comporte ainsi comme si ΩT
était noéthérien. Cependant, la catégorie Dcoh,m(ΩT ) n’est pas aussi raisonnable. Pour remédier
à cela, Z. Yun introduit dans [BY13], Appendice A, la notion de faisceaux monodromiques libres.
Plus précisément, il construit une sous-catégorie pleine Dcons(X ( T,Z`) ⊂ ProDcons(X,Z`)mon

functorielle en X et compatible avec les 6-foncteurs telle que lorsque X = T , nous obtenons une
équivalence Dcons(T ( T,Z`) = Dcoh(ΩT,Z`).

La difficulté de la construciton de loc. cit. est qu’il n’y a a priori pas de structure triangulée
sur la catégorie des pro-objets dans une catégorie dérivée. L’un des points techniques est alors de
construire la structure triangulée et les t-structures sur cette catégorie. Nous souhaitons donner
une construction différente de cette catégorie. Jusqu’à présent, nos résultats fonctionnent bien pour
les versions sur Z` ou F` de ces catégories, mais la version Q` nécessite davantage de travail. L’idée
principale est de réaliser cette catégorie comme une certaine catégorie de faisceaux équivariants
tordus. Nous exposons maintenant les grandes lignes de cette construction.

Le formalisme des faisceaux adiques, ainsi que sa généralisation en utilisant le topos proétale de
[BS15], nous permettent, en utilisant le formalisme de [HRS21], de définir pour tous les schémas de
type fini X sur k deux catégories

Dcons(X,ΩT ) ⊂ Dindcons(X,ΩT ), (1.3)

de faisceaux constructibles et ind-constructibles sur X respectivement. Ce sont naturellement des
∞-catégories.

Nous ajoutons une autre idée provenant de [GL96]. Il existe une application canonique

can : π1(T )→ Ω×T . (1.4)

Cette application définit un ΩT -système local de rang un sur T , que nous notons LT . Cet objet est
un faisceau multiplicatif sur T , c’est-à-dire qu’il existe un isomorphisme

m∗LT = LT �ΩT LT (1.5)

équipé de certaines compatibilités.
La catégorie Dindcons(T,ΩT ) est munie d’une structure monöıdale provenant de la convolution.

Plus précisément, pour A,B ∈ Dindcons(T,ΩT ), nous définissons

A ∗B = m!(A�B), (1.6)
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où m est la multiplication. De même, si X est un schéma avec une action de T , la catégorie
Dindcons(T,ΩT ) agit sur Dindcons(X,ΩT ). L’action est donnée par

A ∗B = a!(A�B), (1.7)

où a : T ×X → X est l’action.
Nous suivons maintenant la construction de Gaitsgory [Gai20]. Nous pouvons tordre l’action

de Dindcons(T,ΩT ) sur Dindcons(X,ΩT ) par le faisceau multiplicatif LT . En d’autres termes, nous
définissons :

A ∗new B = (A⊗ LT ) ∗B (1.8)

où A et B sont comme précédemment.

Définition 1.1.6. La catégorie des faisceaux équivariants tordus (T, LT ) sur X est la catégorie des
invariants, au sens de loc. cit., de la catégorie Dindcons(X,ΩT ) pour l’action tordue de Dindcons(T,ΩT ).
Nous la notons Dindcons(X,ΩT )unip.

Remarque 1.1.7. D’une manière très imprécise, on peut considérer les objets de Dindcons(X,ΩT )unip

comme des objets A ∈ Dindcons(X,ΩT ) équipés d’un isomorphisme

a∗A ' LT � ΩTA. (1.9)

De même, si χ ∈ CH(T ), le faisceau LT ⊗Z` Lχ est également un faisceau multiplicatif sur
T . Ainsi, nous pouvons reproduire la même construction et définir Dindcons(X,ΩT )χ comme la
catégorie des faisceaux (T, LT ⊗Z` Lχ)-équivariants sur X. Nous pouvons également effectuer la

même construction sur F`,F` ou Z` au lieu de Z`.

Théorème 1.1.8 (3.2.46). Il existe une équivalence naturelle de catégories

ho(Dcons(X,ΩF`,T )) ' Dcons(X ( T,F`). (1.10)

Le théorème affirme non seulement que nous avons produit une nouvelle construction de la
catégorie des faisceaux monodromiques libres sur X, mais nous avons également produit un relevé
∞-catégorique. Notre construction présente plusieurs avantages, les plus importants étant que nous
n’avons pas à manipuler des pro-objets et que les six foncteurs s’étendent naturellement à ce cadre.

Remarque 1.1.9. Ce qui rend cette construction possible est la remarque vague suivante. La con-
struction de [BY13] consiste à compléter la catégorie Dcons(X,Z`)mon le long de la monodromie de
Verdier. Alors que notre construction considère la catégorie de tous les faisceaux à coefficients dans
ΩT et impose ensuite que la ΩT -structure soit la même que celle de la monodromie de Verdier.

1.1.2 Catégories de Hecke

Soit G un groupe réductif sur k, B = TU une paire de Borel et W le groupe de Weyl de (G,T ).
L’étude des catégories de Hecke a une longue histoire. Pour les applications à la théorie de Deligne-
Lusztig que nous souhaitons discuter dans cette thèse, nous nous intéresserons aux variantes mon-
odromiques libres de ces catégories [BY13], [BR22b], [Gou21]. Plus précisément, nous souhaitons
discuter des versions Z` de ces catégories de Hecke monodromiques libres. Elles ont été étudiées
dans [BY13] pour le cas unipotent sur Q`, dans [BR22b] pour le cas unipotent sur F` et dans
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[Gou21] pour le cas non unipotent sur F`. Le travail de Gouttard est lui-même une généralisation
de [BR22b] et [LY20].

Considérons le champ U\G/U équipé de sa stratification de Bruhat. Il y a deux actions de T
sur ce champ induites par translations à gauche et à droite. Ainsi, il existe trois versions de la
catégorie des faisceaux monodromiques libres que nous pouvons définir.

(i). Hleft =
⊕

χ∈CH(T ) Dindcons(U\G/U,ΩT )left
χ où l’équivariance est relative à l’action de T à

gauche.

(ii). Hright =
⊕

χ∈CH(T ) Dindcons(U\G/U,ΩT )right
χ où l’équivariance est relative à l’action de T à

droite.

(iii). Hleft,right =
⊕

χ,χ′∈CH(T ) Dindcons(U\G/U,ΩT×T )left,right
χ,χ′ où l’équivariance est relative à l’action

de T × T et l’indice (χ, χ′) fait référence aux faisceaux qui sont équivariants pour LT×T ⊗Z`
(Lχ �Z` Lχ′).

Nous montrons qu’il existe des foncteurs d’oubli naturels

Hleft Forleft

←−−−− Hleft,right Forright

−−−−−→ Hright, (1.11)

et que ces foncteurs sont des équivalences, voir le lemme 3.4.4. Nous notons H l’une de ces catégories
équivalentes et nous l’appelons la catégorie de Hecke universelle, empruntant la terminologie de
[LNY23]

Nous suivons ensuite la construction de [BR22b] et [Gou21] pour étudier cette catégorie. Nous
commençons par équiper cette catégorie d’une structure monoidale donnée par la convolution.
Considérons le diagramme

U\G×U G/U U\G/U

U\G/U U\G/U
p1 p2

m

où m est induit par l’application de multiplication. Ensuite, nous définissons pour A,B ∈ Hleft,right

A ∗B = For m!(A�̂Z`B)[dimT ]. (1.12)

Décrivons maintenant ce foncteur. Tout d’abord, (A�Z`B) est naturellement un faisceau ΩT×T ⊗
ΩT×T sur U\G×U G/U . Étant donné que les six foncteurs que nous utilisons se comportent mieux
pour les anneaux complets, nous complétons d’abord ce faisceau pour passer à un ΩT×T×T×T -

faisceau, ce qui explique le symbole �̂. Après avoir appliqué m!, nous obtenons un faisceau
ΩT×T×T×T sur U\G/U , le foncteur For est le foncteur d’oubli induit par l’inclusion ΩT×T →
ΩT×T×T×T induite par les deux inclusions extérieures.

Une fois cette structure monoidale construite, nous procédons à l’étude de la catégorie H en
reprenant certaines des constructions principales de [Gou21]. Fixons (ẇ) un ensemble compatible
de relèvements des éléments w ∈ W . Le choix de ẇ donne un morphisme T -équivariant pour les
actions par translation à droite kw : U\BwB/U → T . Comme c’est standard en théorie de Soergel,
nous définissons les faisceaux standard et costandard de la manière suivante.

Définition 1.1.10. Soit w ∈W et χ ∈ CH(T ).
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(i). Le faisceau standard indexé par (w,χ) est ∆w,χ = iw,!k
∗
w(LT ⊗Z` Lχ)[dimT + `(w)].

(ii). Le faisceau costandard indexé par (w,χ) est ∇w,χ = iw,∗k
∗
w(LT ⊗Z` Lχ)[dimT + `(w)].

Comme les inclusions iw sont affines, tous ces faisceaux sont pervers.
Nous pouvons maintenant introduire les objets d’intérêt principal pour la théorie de Soergel.

Définition 1.1.11. Soit A un faisceau pervers dans H. Une ∆-filtration (resp. une ∇-filtration)
pour A est une filtration telle que toutes les gradués sont isomorphes à des faisceaux standards (resp.
costandards). Le faisceau A est tilting s’il possède à la fois une ∆-filtration et une ∇-filtration.

Théorème 1.1.12 (3.B.12). Pour tous χ et w comme ci-dessus, il existe un unique faisceau tilting
indécomposable qui est supporté sur la fermeture de U\BwB/U et tel que la multiplicité de ∆w,χ

dans toute ∆-filtration (resp. la multiplicité de ∇w,χ dans toute ∇-filtration) soit égale à un.

La démonstration de ce théorème consiste essentiellement à relever à Z` la preuve déjà connue
dans la littérature. Nous désignons par Tilt(U\G/U) la catégorie des faisceaux tilting pervers.

Supposons maintenant, pour simplifier, que le centre de G est connexe. Sinon, nous devrons
introduire les notions de blocs, voir la section 3.4.2. Soient χ, χ′ ∈ CH(T ) dans la même orbite sous
l’action de W . Nous notons

χ′Wχ = {w ∈W,wχ = χ′}. (1.13)

En particulier, χ′Wχ = Wχ est le stabilisateur de χ. Nous équipons W de l’ordre de Bruhat,
c’est-à-dire l’ordre induit par les spécialisations dans U\G/U .

Lemme 1.1.13 ([LY20]). L’ensemble χ′Wχ, muni de l’ordre induit par W , possède un unique
élément maximal. Nous notons cet élément wmax

χ′,χ.

Remarque 1.1.14. Si χ = χ′ est trivial, alors cet élément maximal est w0, l’élément le plus long du
groupe de Weyl.

Nous notons Tχ′,χ le tilting correspondant à χ et wmax
χ′,χ. Nous pouvons maintenant énoncer les

principaux théorèmes de la théorie.

Théorème 1.1.15 (Endomorphismensatz, 3.4.34). Pour tous les couples (χ′, χ) comme précédemment,
il existe un isomorphisme

End(Tχ′,χ) = ΩT ⊗Ω
Wχ
T

ΩT . (1.14)

Définition 1.1.16. Nous définissons
T =

⊕
χ′,χ

Tχ′,χ, (1.15)

et nous l’appelons le grand faisceau tilting.

Définissons le schéma C(T ) comme suit :

C(T ) =
⊔
χ

Spec(ΩT )× χ. (1.16)

Cet espace a été introduit pour la première fois dans [GL96] en tant qu’espace de modules des
faisceaux multiplicatifs sur T . Nous considérons le schéma suivant :

C(T )×C(T )�W C(T ). (1.17)
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Ce schéma est l’union de tous les graphes des actions des éléments w ∈ W . Ses composantes
connexes sont indexées par les paires (χ′, χ) dans la même orbite sous l’action de W . Pour une telle
paire, la composante connexe correspondante est isomorphe à

Spec(ΩT ⊗Ω
Wχ
T

ΩT ). (1.18)

Nous introduisons le foncteur global V qui est défini comme suit :

Tilt(U\G/U)→ Coh(C(T )×C(T )�W C(T ))

T 7→ Hom(T, T ).

La catégorie cible est la catégorie abélienne des faisceaux cohérents sur C(T ) ×C(T )�W C(T ). Elle
est équipée d’une structure monoidale provenant de la convolution.

Théorème 1.1.17 (3.4.57, 3.4.45). (i). Le foncteur V est pleinement fidèle.

(ii). Le foncteur V est monoidal.

La première affirmation dans le théorème précédent est appelée le Struktursatz.

1.2 Quelques résultats en théorie de Deligne-Lusztig

1.2.1 Une formulation champêtre de la théorie

Soit G un groupe réductif sur F̄q avec un endomorphisme de Frobenius F : G→ G provenant d’une
Fq-structure. Soit B = TU une paire de Borel stable par F et soit W = NG(T )/T le groupe de Weyl
de (G,T ). Soit Λ ∈ F`,Q`,Z` un anneau de coefficients avec ` 6= p. La théorie de Deligne-Lusztig,
qui tire son nom de l’article original [DL76], étudie les représentations du groupe fini GF = G(Fq)
sur des Λ-modules. Notons également par

L : G→ G

g 7→ g−1F(g),

l’application de Lang. Classiquement, les variétés de Deligne-Lusztig sont définies comme suit. Soit
w ∈W et définissons

X(w) = {gB,L(g) ∈ BwB} ⊂ G/B, (1.19)

et étant donné un relèvement ẇ ∈ NG(T ) de w,

Y (ẇ) = {gU,L(g) ∈ UẇU} ⊂ G/U. (1.20)

L’application naturelle G/U → G/B induit une application π : Y (ẇ) → X(w). Les faits suivants
sont connus :

(i). Le groupe fini GF agit par translations à gauche sur X(w) et Y (ẇ), et l’application π est
GF-équivariante.

(ii). Le groupe fini TwF agit par translations à droite sur Y (ẇ), et l’application π est un TwF-
torseur pour cette action. De plus, les deux actions de TwF et GF sur Y (ẇ) commutent.
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Nous n’utiliserons pas X(w) dans cette thèse et travaillerons exclusivement avec Y (ẇ). Considérons
la cohomologie

RΓc(Y (ẇ),Λ) ∈ Db(RepΛ(GF × TwF)). (1.21)

Ce complexe a deux actions, celle de GF et celle de TwF, et est donc un (Λ[GF],Λ[TwF])-bimodule.
Par abstract nonsense, nous obtenons une paire de foncteurs adjoints :

Rw : D(RepΛT
wF)→ D(RepΛG

F) M 7→M ⊗TwF RΓc(Y (ẇ),Λ),

et

∗Rw : D(RepΛG
F)→ D(RepΛT

wF) N 7→ RHomGF(RΓc(Y (ẇ),Λ), N),

appelés respectivement foncteurs d’induction et de restriction de Deligne-Lusztig.
Le fait le plus important concernant ces foncteurs est le théorème suivant.

Théorème 1.2.1 ([DL76] pour le cas Q`, [BR03] pour un Λ général). La collection des complexes
RΓc(Y (ẇ),Λ) engendre la catégorie Perf(Λ[GF]),la catégorie des complexes parfaits de représentations
de GF.

Corollaire 1.2.2 ([BR03]). Si Λ est un corps, alors pour toute représentation irréductible ρ de
GF, il existe w ∈W et j ∈ Z tels que ρ soit un sous-quotient de Hj

c (Y (ẇ),Λ).

L’étude des complexes RΓc(Y (ẇ),Λ) et des foncteurs correspondants revêt une importance
primordiale pour la théorie des représentations de GF. L’un de ses succès les plus impressionnants
est la classification des représentations irréductibles de GF par Lusztig [Lus84].

Nous introduisons maintenant la correspondance F-horocyclique. Notons par AdF l’action de
G sur lui-même par conjugaison tordue, c’est-à-dire l’action donnée par g.x = gxF(g−1). Nous
considérons la correspondance de champs algébriques :

G

AdFG

q←− G

AdFB

r−→ U\G/U
AdFT

. (1.22)

Cette correspondance a été introduite sous une forme non champêtre dans [Lus15], [Lus17] et
également étudiée dans [BDR20]. Cette correspondance est une version tordue de la correspondance
horocyclique utilisée par Lusztig pour construire les faisceaux caractères [Lus85].

D’après le théorème de Lang, il existe un isomorphisme de champs G
AdFG

= pt/GF. Le côté
droit de la correspondance ci-dessus est stratifié à l’aide de la stratification de Bruhat. Soit w ∈W
et ẇ un relèvement de W . Il existe des isomorphismes de champs

U\BwB/U
AdFT

= ẇT/AdF(T n (U ∩Ad(ẇ)U)) = pt/(TwF n (U ∩Ad(ẇ)U)). (1.23)

Cet isomorphisme dépend du choix de ẇ. L’application naturelle (TwF o (U ∩ Ad(ẇ)U)) → TwF

induit une application

kw :
U\BwB/U

AdFT
→ pt/TwF. (1.24)

Notons également par iw : U\BwB/UAdFT
→ U\G/U

AdFT
l’inclusion. Considérons le foncteur

Dindcons(pt/TwF,Λ)→ Dindcons(pt/GF,Λ)

M 7→ q!r
∗iw,!k

M
w

Sous l’équivalence naturelle D(pt/TwF,Λ) = D(Λ[GF]), nous montrons :
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Théorème 1.2.3 (3.3.8). Le foncteur q!r
∗iw,!k

∗
w est isomorphe à Rw.

Nous désignons par HCF = r!q
∗ et par CHF = q∗r

! son adjoint à droite, et nous les appelons re-
spectivement la correspondance horocyclique et la correspondance des F-caractères. Nous donnons
ensuite une nouvelle démonstration du théorème 1.2.1 en montrant que

Théorème 1.2.4 (3.5.30). Le foncteur HCF est conservatif.

La démonstration de ce théorème est essentiellement une variation d’un argument de [BBM04b]
et [MV88].

1.2.2 Trace catégorique de Frobenius

La catégorie H est une catégorie monoidale, le morphisme F : G → G induit un endofoncteur
monoidal F∗ : H→ H de H. Dans la situation présente, nous pouvons définir le F-centre et la trace
catégorique F de H. Ce F-centre est un raffinement ∞-catégorique du F-centre de Drinfeld tordu.
Rappelons d’abord la théorie classique. Soit C une 1-catégorie monoidale munie d’un endofoncteur
monoidal F : C → C. Son centre de F-Drinfeld tordu est la catégorie Z1

F(C) définie comme suit (où
le symbole (−)1 fait référence à la version 1-catégorique de cette construction).

(i). Ses objets sont des paires (X,ψX) où X est un objet de C et ψX : F(−) ∗X → X ∗ − est un
isomorphisme de foncteurs compatible avec la structure tensorielle (nous n’expliciterons pas
ce point).

(ii). Ses morphismes sont des morphismes de paires u : (X,ψX) → (Y, ψY ) où u : X → Y est un
morphisme dans C compatible avec ψX et ψY .

Pour nos besoins, nous devons passer à la version ∞-catégorique de cette construction.

Définition 1.2.5. Soit C une Λ-catégorie stable présentable cocomplète Λ-linéaire ∞-catégorique
munie d’un endomorphisme F : C → C. Alors son centre F est défini comme suit :

ZF(C) = FunLC⊗Crev(C, CF), (1.25)

où cette catégorie de foncteurs est la catégorie des foncteurs de C vers C qui sont linéaires pour
l’action de C ⊗ Crev, où Crev est la même catégorie C mais avec la structure tensorielle opposée, et
l’indice (−)F signifie que nous tordons l’action à droite de C sur elle-même par l’endomorphisme F.

De manière duale, dans le cadre∞-catégorique, il existe une notion de trace catégorique qui est
définie comme suit.

Définition 1.2.6. Supposons que C et F sont comme ci-dessus. Alors la trace catégorique est la
catégorie :

Tr(F, C) = C ⊗C⊗Crev CF. (1.26)

Dans le contexte des catégories de Hecke, le centre et les traces ∞-catégoriques ont été étudiés
par D. Ben-Zvi et D. Nadler [BZN09]. L’idée de prendre la trace catégorique de Frobenius est venue
du programme de Langlands. Plus précisément, il y a eu une tentative de concilier la construc-
tion de V. Lafforgue [Laf18] avec le programme de Langlands géométrique. L’un des résultats les
plus impressionnants dans cette direction est le travail de [AGK+21]. Essentiellement, en suivant
l’argument de Ben-Zvi et Nadler, nous calculons le F-centre et la F-trace sur la catégorie H.
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Théorème 1.2.7 (3.5.19). Le foncteur CHF induit une équivalence :

Tr(F,H) = Dindcons(pt/GF,Z`). (1.27)

Le foncteur HCF induit une équivalence :

ZF(H) = Dindcons(pt/GF,Z`). (1.28)

Comme application de ce calcul, nous donnons une autre construction des `-séries géométriques
de Lusztig.

Théorème 1.2.8 (3.5.31). Il existe une collection complète d’idempotents orthogonaux es ∈ Z`[GF],
où s ∈ (T∨ �W )(F`). Ils sont caractérisés par la propriété suivante : soit ρ une représentation F`-
irréductible de GF, alors esρ = ρ si et seulement s’il existe (w,χ) où w ∈W et χ ∈ CH(T ) = T∨(F`)
dans l’orbite correspondant à s telle que ∗Rw,χ(ρ) 6= 0.

1.2.3 Endomorphismes de la représentation de Gelfand-Graev

Discutons maintenant d’une application du théorème du centre à la description de l’algèbre d’endomorphismes
de la représentation de Gelfand-Graev. Notons Ū le radical unipotent du Borel opposé à B. Le
choix d’un épinglage de G détermine un morphisme

φ : Ū → Ūab '
∏
Ga

Σ−→ Ga, (1.29)

où (−)ab désigne l’abélianisé et l’isomorphisme provient du choix de l’épinglage.
Soit ψ : Fq → Λ× un caractère additif de Fq. Nous notons encore ψ : ŪF → Λ× sa composition

avec φ. La représentation de Gelfand-Graev est Γψ = indG
F

ŪF(ψ). Cette représentation est centrale
dans la théorie des représentations de GF et est la version pour les groupes réductifs finis de la
représentation de Whittaker des groupes p-adiques.

Exemple 1.2.9. Si G = GLn et F est la Fq-structure provenant de la forme déployée de GLn sur
Fq, il est connu que tous les caractères ψ de ŪF sont conjugués, et donc la représentation Γψ ne
dépend pas du choix de ψ. De plus, si Λ = Q`, toutes les représentations cuspidales irréductibles
de GF sont des facteurs directs de Γψ.

Pour les groupes autres que GLn, toutes les représentations cuspidales ne sont pas nécessairement
facteur direct de la représentation Γψ, mais cette représentation contrôle néanmoins une grande
partie de la structure de la catégorie RepΛG

F.

Théorème 1.2.10 ([Ste16]). Si Λ = Q`, alors la représentation Γψ est sans multiplicité. Pour un
Λ général, l’algèbre d’endomorphismes EndΛ[GF](Γψ) est commutative.

Sur Q`, étant donné que cette représentation est sans multiplicité, sa décomposition produit de
nombreuses représentations irréductibles. Plus précisément, nous avons le théorème suivant.

Théorème 1.2.11 ([DL76]). Si Λ = Q`, alors Γψ contient exactement un facteur direct irréductible
dans chaque série de Lusztig.

Ce théorème a été initialement démontré en calculant le caractère de Γψ et en le décomposant
par rapport aux caractères virtuels des complexes RΓc(Y (ẇ),Λ). Cependant, cela peut être déduit
du théorème suivant.
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Théorème 1.2.12 ([Dud09]). Pour tout Λ et tout w, il existe un isomorphisme

∗Rw(Γψ) = Λ[TwF][`(w)]. (1.30)

Nous donnons une preuve différente de ce dernier théorème en généralisant un argument de
[BT22].

Théorème 1.2.13. Il existe un isomorphisme à décalage près

HCF(Γψ) = p!T, (1.31)

où T est le grand faisceau tilting.

Notre démonstration du théorème 1.2.12 découle alors du théorème 1.2.13 et de la connaissance
des fibres et des cofibres de T. Par fonctorialité, ce théorème définit une application canonique

Curw : EndΛ[GF](Γψ)→ Λ[TwF], (1.32)

appelée morphisme de w-Curtis. Elle a été initialement construite par Curtis [Cur94], en utilisant
le théorème 1.2.11. Notons

Cur = ⊕wCurw : EndΛ[GF](Γψ)→ ⊕wΛ[TwF], (1.33)

la somme directe de tous les morphismes de w-Curtis. Cette application est injective. Un problème
clé est de calculer son image et de l’exprimer en termes du tore dual.

Du côté dual, soit T∨ le tore dual sur Λ et F∨ : T∨ → T∨ le morphisme dual à F. Soit w ∈ W
et considérons le schéma des points fixes (T∨)wF∨ sous wF∨. C’est le schéma tel que le diagramme
suivant soit cartésien.

(T∨)wF∨ T∨

T∨ T∨ × T∨
∆

id×F∨

De même, nous considérons également le schéma quotient GIT : T∨�W où F∨ le morphisme induit
par F∨ de T∨. Par fonctorialité des invariants, nous avons un morphisme

CurSpec
w : O((T∨ �W )F∨)→ O((T∨)wF∨)

que nous appelons le morphisme de w-Curtis spectral. En prenant la somme directe sur w, comme
précédemment, nous obtenons le morphisme de Curtis spectral,

CurSpec = ⊕wCurSpec
w : O((T∨ �W )F∨)→ ⊕wO((T∨)wF∨). (1.34)

Après avoir choisi un ensemble de trivialisations des racines de l’unité de F̄q, nous obtenons des

isomorphismes Λ[TwF] = O((T∨)wF∨) pour tout w ∈W .

Théorème 1.2.14 ([Li21], [LS22]). Supposons que ` soit bon pour G et que G ait un centre connexe.
Il existe un isomorphisme EndGF(Γψ) = O((T∨�W )F∨) qui rend le diagramme suivant commutatif.

EndGF(Γψ) O((T∨ �W )F∨)

Λ[TwF] O((T∨)wF∨)

Curw CurSpec
w
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La preuve de ce théorème dans loc. cit. se déroule comme suit. Tout d’abord, si Λ = Q`,
les deux algèbres EndQ`[GF](Γψ) et O((T∨ � W )F∨) sont isomorphes à Qn` pour un certain n et

sont donc isomorphes. Maintenant, les Z`-versions de ces algèbres sont des réseaux à l’intérieur de
chacune d’elles, ils montrent ensuite que l’isomorphisme sur Q` préserve ces réseaux essentiellement
en calculant la matrice de ce morphisme et en vérifiant qu’il n’y a pas de dénominateurs. Nous
donnons une preuve différente de ce théorème.

Théorème 1.2.15 (3.6.3). Il existe une application canonique O((T∨ � W )F∨) → EndGF(Γψ)
compatible avec les morphismes de Curtis et de Curtis spectraux.

Une fois cette application construite, le théorème 1.2.14 découle d’un argument de formes
symétrisantes. Nous donnons une construction de cette application en utilisant le théorème de
centre catégorique 1.2.7.

1.3 Cohomologie des champs de chtoucas

1.3.1 Chtoucas et le programme de Langlands

Soit X une courbe lisse, projective et géométriquement connexe sur Fq, et soit F le corps des
fonctions de X. Soit G un groupe réductif sur X et notons A l’anneau des adèles de F . Supposons
pour simplifier que G est déployé et notons Ĝ le groupe dual de G sur Q`. Choisissons η̄ → X un
point générique géométrique de X et WeilF le groupe de Weil absolu de X au point géométrique η̄.

Définition 1.3.1. Une représentation automorphe lisse et irréductible de G(A) est un sous-quotient
irréductible de Cc(G(F )\G(A),Q`), l’espace des formes automorphes à support compact.

Définition 1.3.2. Un paramètre de Langlands pour G et F est un morphisme WeilF → Ĝ(Q`)
qui est continu, défini sur une extension finie de Q` et presque partout non ramifié. On dit qu’un
paramètre est semi-simple si chaque fois qu’il se factorise à travers un parabolique de Ĝ, alors il se
factorise à travers un Levi de ce parabolique.

Conjecturalement, la correspondance de Langlands globale est une application

GLC : Irrautom(G(A))→ Z1(F, Ĝ)/Ĝ(Q`), (1.35)

qui associe à chaque représentation automorphe lisse et irréductible une classe de conjugaison de
paramètre de Langlands globaux.

Conjecture 1.3.3. Il existe une application GLC qui est compatible avec l’induction parabolique,
avec l’isomorphisme de Satake aux places non ramifiées et avec la théorie du corps de classes globale
pour les tores.

Cette conjecture a été démontrée pour G = GL2 par [Dri77], puis pour G = GLn par [Laf02].
En général, nous avons le théorème suivant :

Théorème 1.3.4 ([Laf18]). Il existe une application GLCss : Irrautom(G(A))→ Z1(F, Ĝ)ss/Ĝ(Q`)
qui associe à chaque représentation automorphe lisse et irréductible un élément de classe de conju-
gaison dans l’ensemble des paramètres de Langlands semi-simples.

Théorème 1.3.5 ([Xue20b]). L’application GLCss de [Laf18] est compatible avec l’induction parabolique.
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La construction de cette application se fait en étudiant la cohomologie des champs de chtoucas.
Nous rappelons quelques faits clés concernant cette construction, en ignorant pour le moment les
problèmes posés par les troncatures de Harder-Narasimhan ou par le centre de G. Soit N ⊂ X un
diviseur effectif, et soit I un ensemble fini et W ∈ RepΛĜ

I . Alors il existe un champ algébrique
ChtN,I,W sur (X −N)I et un faisceau `-adique FN,I,W provenant de la correspondence de Satake
géométrique. Les faisceaux de cohomologie sont ensuite définis comme suit :

HN,I,W = p!FN,I,W , (1.36)

où p : ChtN,I,W → (X − N)I est l’application des pattes. En général, ChtN,I,W n’est pas quasi-
compact, il faut donc le filtrer en utilisant les troncatures de Harder-Narasimhan. Une propriété
importante qu’ils possèdent est qu’ils sont munis d’actions des endomorphismes de Frobenius par-
tiels. Plus précisément, pour I0 ⊂ I un sous-ensemble fini de I, il existe un endomorphisme
FI0 : (X − N)I → (X − N)I donné par FI0(xi) = (yi) avec yi = F(xi) si i ∈ I0 et yi = xi sinon.
Soit ∆(η̄) → (X −N)I le point géométrique obtenu en composant η̄ → X −N avec la diagonale.
En utilisant le lemme de Drinfeld [Laf18] et [Xue20d], on montre que

Hj
N,I,W = (HjN,I,W )|∆(η̄), (1.37)

n’est pas seulement muni d’une action de Weil((X −N)I ,∆(η̄)), mais que cette action se factorise
à travers Weil(X −N)I . En conséquence, nous obtenons une application

RepΛ(ĜI)→ RepΛWeil(X −N)I

W 7→ Hj
N,I,W .

Cette application est fonctorielle à la fois en I et en W . Une fois ce foncteur construit, la machinerie
des opérateurs d’excursion de [Laf18] entre en jeu. En particulier, il existe une algèbre Exc(F, Ĝ)
telle que les Λ-points(pour Λ un corps) de Spec(Exc(F, Ĝ)) sont en bijection avec les paramètres de
Langlands globaux semi-simples. De plus, étant donné tout système de foncteurs (I,W ) 7→ HI,W

comme décrit ci-dessus, l’espace vectoriel H{0},1 où 1 est la représentation triviale de Ĝ est muni
d’une action de cette algèbre d’excursion.

Nous nous tournons maintenant vers le cadre des corps locaux d’égale caractéristique. Soit K
un corps local de caractéristique résiduelle fixée et soit H un groupe réductif sur K, que nous
supposons dans cette section être un groupe déployé. La correspondance de Langlands locale est
une application conjecturale

LLC : IrrQ`(H(K))→ Z1(WeilK , Ĥ)/Ĥ(Q`) (1.38)

qui associe à chaque représentation lisse et irréductible de H(K) un paramètre de Langlands local.
L’existence de cette application est connue pour GLn [LRS93]. Bien que cette application n’ait
pas été construite, il existe une version semi-simple de la correspondance qui a été construite par
[GL17] et [FS21].

Théorème 1.3.6. Il existe une application

LLCss : IrrQ`(H(K))→ Z1(WeilK , Ĥ)ss/Ĥ(Q`) (1.39)

compatible avec la théorie du corps de classe et l’induction parabolique.

D’après un résultat de Li-Huerta [LH23], nous savons que les deux correspondances de Fargues-
Scholze et de Lafforgue-Genestier cöıncident.
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1.3.2 Langlands local en profondeur 0

Nous énonçons maintenant nos principaux théorèmes concernant la correspondance locale de Genestier-
Lafforgue pour les représentations de profondeur 0. Plus précisément, nous montrons une certaine
compatibilité entre différentes paramétrisations de type Langlands local. Nous rappelons d’abord
le théorème sur la structure des représentations de profondeur 0.

Théorème 1.3.7 ([Lan18], [Lan21]). La catégorie Rep0
ΛH(K) des représentations de profondeur

0 de H(K) se décompose en une somme directe

Rep0
ΛH(K) =

⊕
s∈(T̂�W )F̂(Λ)

RepsΛH(K), (1.40)

où T̂ désigne le tore dual sur Λ, T̂ �W le quotient GIT par l’action de W et (−)F̂ le schéma des
invariants sous le morphisme dual de Frobenius.

Cette décomposition du théorème 1.3.7 induit une application

LS : Irr0
Λ(H(K))→ (T̂ �W )F̂(Λ), (1.41)

où Irr0
Λ(H(K)) est l’ensemble des représentations irréductibles de profondeur 0 de H(K), car-

actérisées par LS(π) = s si et seulement si π appartient au sous-groupe direct indexé par s.

Théorème 1.3.8 (4.1.6). Soit π ∈ Irr0
Λ(H(K)). Alors LLCGL(π) est un paramètre de Langlands

local modéré. De plus, le diagramme suivant est commutatif.

Irr0H(K) (Z1,t(K, Ĥ) � Ĥ)(Λ)

(T̂ �W )F̂ (T̂ �W )F̂

evτK

LLCGL

LS

La démonstration de ce théorème repose sur l’étude de certains faisceaux de cohomologie des
champs de chtoucas. Pour accéder aux représentations de profondeur 0, nous commençons par
fixer un tore T déployé et maximal inclus dans H sur K. Cela détermine un appartement A dans
l’immeuble de Bruhat-Tits de H(K). Soit σ un polysimplexe dans A et Hσ le schéma en groupe
parahorique correspondant sur OK . Nous choisissons un point x dans X et un isomorphisme entre
K et la complétion de F en x. Soit Gσ un schéma de groupe affine et lisse sur X, réductif sur X−x,
et isomorphe à Hσ sur OK . Soit N = x + Nx une structure de niveau telle que x /∈ Nx. Nous
considérons les groupes de cohomologie Hj

I,N,W pour le groupe Gσ. Notons Vσ le radical unipotent

de la fibre spéciale de Hσ et Mσ son quotient réductif. Le groupe Hσ(Fx) agit sur Hj
I,N,W .

Théorème 1.3.9 (4.1.7). (i). Pour tout I,W , le WeilIFx-module (Hj
I,W,N )Vσ(Fx) est modérément

ramifié, c’est-à-dire que l’action se factorise à travers le quotient modéré (WeiltFx)I .

(ii). Soit s ∈ (T̂ �W )F̂(Λ), alors en tant que Exc(WeiltFx , Ĝ)-module, es(H
j
I,W,N )Vσ(Fx) est sup-

porté sur ev−1
τFx

(s), où es est l’idempotent dans Λ[Mσ(Fx)] correspondant à la série de Lusztig
associée à s, nous renvoyons à la Section 4.2 pour les notations.
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Enfin, la construction principale de [LZ18] produit un faisceau quasi-cohérent Mj
N sur le

champ des paramètres de Langlands locaux, qui est canoniquement associé au système de fonc-
teurs (I,W ) 7→ Hj

I,N,W .

Corollaire 1.3.10 (4.1.8). (i). Le faisceau quasi-cohérent (Mj
N )Vσ(Fx) est supporté sur Z1,t(Fx, Ĝ).

(ii). En utilisant les mêmes notations que dans 4.1.7, soit s ∈ (T̂ �W )F̂(Q`), alors le faisceau
quasi-cohérent es(Mj

N )Vσ(Fx) est supporté sur ev−1
τFx

(s).

Organisation

Cette thèse comporte deux chapitres indépendants. Le premier contient les résultats concernant
les faisceaux monodromiques, la théorie de Soergel et le théorie de Deligne-Lusztig. Le deuxième
contient les résultats concernant les champs de chtoucas et la correspondence de Langlands locale.
Chacun des deux chapitres est précédé d’une introduction détaillée.
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Chapter 2

Introduction in English

2.1 Free monodromic Hecke categories

Let p > 0 be a prime number and let k be an algebraically closed field of characteristic p.

2.1.1 Monodromic sheaves as equivariant sheaves

Let T be a torus over k. Let π1(T ) be the étale fundamental group of T at the geometric point 1 and

let πt1(T ) be the itd prime to p-quotient (or tame quotient). It is known that πt1(T ) = X∗(T )⊗Ẑ(p)(1)
where X∗(T ) denotes the set of cocharacters of T .

Let X be a scheme with an action of T . In [Ver83], Verdier defines (for T = Gm) the notion of
monodromic sheaves as follows. First let ` 6= p be a prime and let us denote by Dcons(X,Z`) the
derived category of constructible `-adic sheaves on X.

Definition 2.1.1 ([Ver83]). A sheaf A ∈ Dcons(T,Z`) is monodromic if for all j, the cohomology
sheaf Hj(A) is lisse on T and the corresponding representation of π1(T ) is tame, that is, factors
through πt1(T ).

Definition 2.1.2 ([Ver83]). A sheaf A ∈ Dcons(X,Z`) is monodromic if for all x ∈ X, the sheaf
a∗xA ∈ Dcons(T,Z`) is monodromic, where ax : T × X → X is the orbit map of x. We denote by
Dcons(X,Z`)mon the full subcategory of monodromic sheaves.

Theorem 2.1.3 ([Ver83]). The category Dcons(X,Z`)mon is a triangulated (or stable if we work
with ∞-categories) category. Furthermore any object A ∈ Dcons(X,Z`)mon has a canonical action
of πt1(T ) called the canonical monodromy. This action commutes with all morphism of sheaves.

Let us denote by CH(T ) the set of all continuous characters πt1(T )→ Z×` of finite order prime to
`. For each χ ∈ CH(T ), there is a Kummer sheaf Lχ on T . We say that a sheaf A ∈ Dcons(X,Z`) is
χ-monodromic if its canonical monodromy φA : Z`[πt1(T )]→ End(A) factors through the completion
of Z`[πt1(T )] along the kernel of the morphism defined by χ. We denote by Dcons(X,Z`)χ,mon the
full subcategory of χ-monodromic sheaves. If χ is the trivial character, χ-monodromic sheaves are
also called unipotent monodromic.
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Proposition 2.1.4. The category Dcons(X,Z`)mon is the direct sum

Dcons(X,Z`)mon = ⊕χ∈CH(T )Dcons(X,Z`)χ,mon. (2.1)

We denote by ΩT,Z` the ring

ΩT,Z` = lim←−
n,m

Z`/`nZ`[T [`m]]. (2.2)

After choosing a trivialization πt1(Gm) ' Ẑ(p) and a basis of X∗(T ), this ring becomes isomorphic
to Z`Jt1, . . . , tnK a ring of power series. We denote by ΩT = ΩT,Z` ⊗Z` Z`.
Example 2.1.5. Taking the fiber at 1 ∈ T , yields an equivalence of categories Dcons(T,Z`)unip,mon '
Dcoh,m(ΩT ) between the category of unipotent monodromic sheaves on T and the derived category
of coherent sheaves on ΩT supported on the augmentation ideal of ΩT .

The ring ΩT is not a regular ring but is still coherent, that is, every finite type module is
finitely presented, hence the category Dcoh(ΩT ) is well behaved. However the category Dcoh,m(ΩT )
is not as nice. To remedy this Z. Yun introduced the notion of free monodromic sheaves in [BY13],
Appendix A. Namely, he constructs a full subcategory Dcons(X ( T,Z`) ⊂ ProDcons(X,Z`)mon

functorial in X and compatible with the 6-functors such that when X = T , we have an equivalence
Dcons(T ( T,Z`) = Dcoh(ΩT,Z`).

The construction of loc. cit. is highly non trivial as there is a priori no triangulated structure
on the category of pro-objects on a derived category. One of the difficult technical points is then
to construct the triangulated structure and the t-structures on it. We want to give a different
construction of this category. So far our results work well for the Z` or F` versions of these
categories, the Q`-version requires more work. The main idea is to realize this category as a certain
category of twisted equivariant sheaves. We now outline this construction.

The formalism of adic sheaves, and its generalization using the proétale topos of [BS15] allows
us, using the formalism of [HRS21], to define for all finite type schemes X over k two categories

Dcons(X,ΩT ) ⊂ Dindcons(X,ΩT ), (2.3)

of constructible and ind-constructible sheaves on X respectively. These are naturally∞-categories.
We add in another idea coming from [GL96]. There is a canonical map

can : π1(T )→ Ω×T . (2.4)

This map defines a rank one ΩT -local system LT on T . This object is multiplicative sheaf on T ,
that is, there is an isomorphism

m∗LT = LT �ΩT LT (2.5)

equipped with certain compatibilities.
The category Dindcons(T,ΩT ) is equipped with a monoidal structure coming from convolution.

Namely, for A,B ∈ Dindcons(T,ΩT ), we define

A ∗B = m!(A�B), (2.6)

where m is the multiplication map. Similarly, if X is a scheme with an action of T , the category
Dindcons(T,ΩT ) acts on Dindcons(X,ΩT ). The action is given for A ∈ Dindcons(T,ΩT ) and B ∈
Dindcons(X,ΩT ) by

A ∗B = a!(A�B), (2.7)
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where a is the action map.
Now we follow a construction of Gaitsgory [Gai20]. We can twist the action of Dindcons(T,ΩT )

on Dindcons(X,ΩT ) by the multiplicative sheaf LT . Namely, we set

A ∗new B = (A⊗ LT ) ∗B (2.8)

where A and B are as before.

Definition 2.1.6. The category of (T, LT )-twisted equivariant sheaves on X is the category of
invariants, in the sense of loc. cit. of the category Dindcons(X,ΩT ) for the twisted action of
Dindcons(T,ΩT ). We denote it by Dindcons(X,ΩT )unip.

Remark 2.1.7. In some very imprecise way, we can think of objects in Dindcons(X,ΩT )unip as objects
A ∈ Dindcons(X,ΩT ) equipped with an isomorphism

a∗A ' LT �ΩT A. (2.9)

Similarly, if χ ∈ CH(T ), the sheaf LT ⊗Z` Lχ is also a multiplicative sheaf on T . Hence we can
reproduce the same construction and define Dindcons(X,ΩT )χ to be the category (T, LT ⊗Z` Lχ)-

equivariant sheaves on X. We can also do the same over F`,F` or Z` in place of Z`.

Theorem 2.1.8 (3.2.46). There is a natural equivalence of categories

ho(Dcons(X,ΩF`,T )) ' Dcons(X ( T,F`). (2.10)

The theorem not only states that we have produced a new construction of the category of
free monodromic sheaves on X but we have also produced an ∞-categorical enhancement of this
category. Our construction has has several advantages, the most important ones are that we do not
have to manipulate pro-objects and that the six functors naturally extend to this setting.

Remark 2.1.9. What makes this construction work is the following vague remark. The construction
of [BY13] consists in completing the category Dcons(X,Z`)mon along Verdier’s monodromy. While
our construction consider the category of all sheaves with ΩT -coefficients and then enforces the
ΩT -structure to be the same structure as Verdier’s monodromy.

2.1.2 Hecke categories

Let G be a reductive group over k, let B = TU be a Borel pair and W be the Weyl group of (G,T ).
The study of Hecke categories has a long story. For the applications to Deligne-Lusztig theory
we want to discuss in this thesis, we will be interested in the free monodromic variants of these
categories [BY13], [BR22b], [Gou21]. More specifically, we want to discuss Z`-versions of these free
monodromic Hecke categories. They were studied in [BY13] for the unipotent Q`-case, [BR22b] for
the F` unipotent case and in [Gou21] for the non-unipotent F`-case. The work of Gouttard is itself
a generalization of [BR22b] and [LY20].

Consider the stack U\G/U equipped with its Bruhat stratification. There are two actions of T
on this stack induced by left and right translations. Hence there are three versions of the category
of free monodromic sheaves that we can define.

(i). Hleft =
⊕

χ∈CH(T ) Dindcons(U\G/U,ΩT )left
χ where the equivariance is relative to the action of

T on the left.
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(ii). Hright =
⊕

χ∈CH(T ) Dindcons(U\G/U,ΩT )right
χ where the equivariance is relative to the action

of T on the right.

(iii). Hleft,right =
⊕

χ,χ′∈CH(T ) Dindcons(U\G/U,ΩT×T )left,right
χ,χ′ where the equivariance is relative to

the action of T ×T on the right and the index (χ, χ′) refer to sheaves that are equivariant for
LT×T ⊗Z` (Lχ �Z` Lχ′).

We show that there are natural forgetful functors

Hleft Forleft

←−−−− Hleft,right Forright

−−−−−→ Hright. (2.11)

And that these are are equivalences, see lemma 3.4.4. We denote by H either of these equivalent
categories and we call it the universal Hecke category, borrowing the terminology from [LNY23].

We then follow most of the construction of [BR22b] and [Gou21] to study this category. We
start by equipping this category with a monoidal structure given by convolution. Namely, consider
the diagram

U\G×U G/U U\G/U

U\G/U U\G/U
p1 p2

m

where m is induced by the multiplication map. Then we define for A,B ∈ Hleft,right

A ∗B = For m!(A�̂Z`B)[dimT ]. (2.12)

Let us describe this functor. Firstly, (A�Z`B) is naturally an ΩT×T ⊗ΩT×T sheaf on U\G×UG/U .
Since the six functors we are using behave best for complete rings, we first complete this sheaf to
pass to an ΩT×T×T×T , this explains the �̂. After applying m! we get an ΩT×T×T×T -sheaf on
U\G/U , the functor For is the forgetful functor induced by the inclusion ΩT×T → ΩT×T×T×T
induced by the two outer inclusions.

Once this monoidal structure is constructed we proceed with the study of the category H by
lifting some of the main constructions of [Gou21]. Let us fix (ẇ) a compatible set of lifts of
the elements w ∈ W . The choice of ẇ gives a T -equivariant morphism for the actions by right
translations kw : U\BwB/U → T . As it is standard in Soergel theory, we define the standard and
costandard sheaves as follows.

Definition 2.1.10. Let w ∈W and χ ∈ CH(T ).

(i). The standard sheaf indexed by (w,χ) is ∆w,χ = iw,!k
∗
w(LT ⊗Z` Lχ)[dimT + `(w)].

(ii). The costandard sheaf indexed by (w,χ) is ∇w,χ = iw,∗k
∗
w(LT ⊗Z` Lχ)[dimT + `(w)].

Since the inclusions iw are affine all those sheaves are perverse. We can now introduce the
objects of main interest for Soergel theory.

Definition 2.1.11. Let A be a perverse sheaf in H. A ∆-filtration (resp. a ∇-filtration) for A is a
filtration such that all graded pieces are isomorphic to standard sheaves (resp. costandard sheaves).
The sheaf A is tilting if A has both a ∆ and a ∇-filtration.
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Theorem 2.1.12 (3.B.12). For all χ and w as above, there exists a unique indecomposable tilting
sheaf that is supported on the closure of U\BwB/U and such that the multiplicity of ∆w,χ in any
∆-filtration (reps the multiplicity of ∇w,χ in any ∇-filtration) is one.

The proof of this theorem consists essentially in lifting to Z` the already known proof from the
literature. We denote by Tilt(U\G/U) the category of perverse tilting sheaves.

Let us now assume that G has connected center for simplicity, otherwise we will have to introduce
the notions of blocks, see section 3.4.2. Let χ, χ′ ∈ CH(T ) be in the same W -orbit. We denote by

χ′Wχ = {w ∈W,wχ = χ′}. (2.13)

In particular χ′Wχ = Wχ is the stabilizer of χ. We equip W with the Bruhat order, that is, the
order induced by specializations in U\G/U .

Lemma 2.1.13 ([LY20]). The set χ′Wχ equipped with the order induced from W has a unique
maximal element. We denote this element by wmax

χ′,χ.

Remark 2.1.14. If χ = χ′ is trivial, then this maximal element is w0, the longest element in the
Weyl group.

We denote by Tχ′,χ the tilting corresponding to χ and wmax
χ′,χ. We can now state the main

theorems of the theory.

Theorem 2.1.15 (Endomorphismensatz, 3.4.34). For all pairs (χ′, χ) as above. There is an iso-
morphism

End(Tχ′,χ) = ΩT ⊗Ω
Wχ
T

ΩT . (2.14)

Definition 2.1.16. We define
T =

⊕
χ′,χ

Tχ′,χ, (2.15)

and we call it the big tilting sheaf.

Define the scheme C(T ) to be

C(T ) = tχSpec(ΩT )× {χ}. (2.16)

This space was first introduced in [GL96] as the moduli space of multiplicative sheaves on T . We
consider the scheme

C(T )×C(T )�W C(T ). (2.17)

This scheme is the union of all the graphs of the actions of the elements w ∈ W . Its connected
components are indexed by pairs (χ′, χ) in the same W -orbit. For such a pair the corresponding
connected component is isomorphic to

Spec(ΩT ⊗Ω
Wχ
T

ΩT ). (2.18)

We introduce the global V-functor which is defined as

Tilt(U\G/U)→ Coh(C(T )×C(T )�W C(T ))

T 7→ Hom(T, T ).

The target category is the abelian category of coherent sheaves on C(T )×C(T )�W C(T ). It is equipped
with a monoidal structure coming from convolution.
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Theorem 2.1.17 (3.4.57, 3.4.45). (i). The functor V is fully faithful.

(ii). The functor V is monoidal.

The first statement in the previous theorem is called the Struktursatz.

2.2 Topics in Deligne-Lusztig theory

2.2.1 Stacky formulation of the theory

Let G be a reductive group over F̄q with a Frobenius endomorphism F : G→ G coming from some
Fq-structure. Let B = TU be a F-stable Borel pair and let W = NG(T )/T be of the Weyl group
of (G,T ). Let Λ ∈ {F`,Q`,Z`} be a coefficient ring with ` 6= p. Deligne-Lusztig theory, taking its
name from the original paper [DL76], is a theory that studies the theory of representations of the
finite group GF = G(Fq) on Λ-modules. Let us also denotes by

L : G→ G

g 7→ g−1F(g),

the Lang map. Classically, the Deligne-Lusztig varieties are defined as follows. Let w ∈ W and
define

X(w) = {gB,L(g) ∈ BwB} ⊂ G/B, (2.19)

and given a lift ẇ ∈ NG(T ) of w,

Y (ẇ) = {gU,L(g) ∈ UẇU} ⊂ G/U. (2.20)

The natural map G/U → G/B induces a map π : Y (ẇ)→ X(w). The following facts are known to
hold

(i). The finite group GF acts by left translations on X(w) and Y (ẇ) and the map π is GF-
equivariant.

(ii). The finite group TwF acts by right translations on Y (ẇ) and the map π is a TwF-torsor for
this action. Moreover the two actions of TwF and GF on Y (ẇ) commute.

We will not use X(w) in this thesis and work exclusively with Y (ẇ). Consider the cohomology

RΓc(Y (ẇ),Λ) ∈ Db(RepΛ(GF × TwF)). (2.21)

This complex has two actions of GF and TwF and is thus a (Λ[GF],Λ[TwF])-bimodule. By general
nonsense, we get a pair of adjoint functors

Rw : D(RepΛT
wF)→ D(RepΛG

F)

M 7→M ⊗TwF RΓc(Y (ẇ),Λ),

and

∗Rw : D(RepΛG
F)→ D(RepΛT

wF)

N 7→ RHomGF(RΓc(Y (ẇ),Λ), N),

called respectively Deligne-Lusztig, or Lusztig, induction and restriction functors.
The most important fact concerning these functors is the following theorem.
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Theorem 2.2.1 ([DL76] for the Q`-case, [BR03] for a general Λ). The collection of complexes
RΓc(Y (ẇ),Λ) generate the category Perf(Λ[GF]) or perfect complexes of representations of GF.

Corollary 2.2.2 ([BR03]). If Λ is a field, then for all irreducible representations ρ of GF, there
exists w ∈W and j ∈ Z such that ρ is a subquotient of Hj

c (Y (ẇ),Λ).

The study of the complexes RΓx(Y (ẇ),Λ) and the corresponding functors is of prime importance
for the theory of representations of GF. One of its most impressive success is the classification of
irreducible representations of GF by Lusztig [Lus84].

We now introduce the F-horocycle correspondence. Denote by AdF the action of G on itself by
twisted conjugation, that is, the action given by g.x = gxF(g−1). We consider the correspondence
of stacks

G

AdFG

q←− G

AdFB

r−→ U\G/U
AdFT

. (2.22)

This correspondence was introduced in a somewhat non stacky form in [Lus15], [Lus17] and also
studied in [BDR20]. This correspondence is a twisted version of the horocycle correspondence used
by Lusztig to construct character sheaves [Lus85].

By Lang’s theorem there is an isomorphism of stacks G
AdFG

= pt/GF. The right hand side
stack is stratified using the Bruhat stratification. Let w ∈ W and ẇ be a lift of W . There are
isomorphisms of stacks

U\BwB/U
AdFT

= ẇT/AdF(T o (U ∩Ad(ẇ)U)) = pt/(TwF o (U ∩Ad(ẇ)U)). (2.23)

This isomorphism depends on the choice of ẇ. The natural map (TwF o (U ∩ Ad(ẇ)U)) → TwF

induces a map

kw :
U\BwB/U

AdFT
→ pt/TwF. (2.24)

Let us also denote by iw : U\BwB/UAdFT
→ U\G/U

AdFT
the inclusion. Consider the functor

Dindcons(pt/TwF,Λ)→ Dindcons(pt/GF,Λ)

M 7→ q!r
∗iw,!k

∗
wM

Under the natural equivalence D(pt/TwF,Λ) = D(Λ[GF]) we show.

Theorem 2.2.3 (3.3.8). The functor q!r
∗iw,!k

∗
w is isomorphic to Rw.

We denote by HCF = r!q
∗ and by CHF = q∗r

! its right adjoint and we call them the F-horocycle
and F-character correspondence. We then give a new proof of theorem 2.2.1 by showing that

Theorem 2.2.4 (3.5.30). The functor HCF is conservative.

The proof of this theorem is essentially a variation on an argument of [BBM04b] and [MV88].

2.2.2 Categorical traces of Frobenius

The category H is a monoidal category, the morphism F : G→ G induces a monoidal endofunctor
F∗ : H → H of H. In the present situation, we can define the F-center and the F categorical trace
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of H. This F-center is an ∞-categorical refinement of the F-twisted Drinfeld center. Let us first
recall the classical theory. Let C be a monoidal 1-category equipped with a monoidal endofunctor
F : C → C. Its F-twisted Drinfeld center is the category Z1

F(C) defines as follows (where the (−)1

refers to the 1-categorical version of this construction).

(i). Its objects are pairs (X,ψX) where X is an object of C and ψ : F(−) ∗ X → X ∗ − is an
isomorphism of functors compatible with the tensor structure (we do not make this point
explicit).

(ii). Its morphisms are morphisms of pairs u : (X,ψX)→ (Y, ψY ) where u : X → Y is a morphism
in C compatible with ψX and ψY .

For our purposes, we need to move up to the ∞-categorical version of this construction.

Definition 2.2.5. Let C be monoidal stable presentable cocomplete Λ-linear∞-category equipped
with an endomorphism F : C → C. Then its F-center is defined as

ZF(C) = FunLC⊗Crev(C, CF), (2.25)

where this category of functors is the category of functors from C to C that are linear for the action
of C ⊗ Crev where Crev is the same category C but with the opposite tensor structure and the index
(−)F means that we twist the right action of C on itself by the endomorphism F.

Dually, in the ∞-categorical setting there is a notion of categorical trace which is defined as
follows.

Definition 2.2.6. Assume C and F are as above. Then the categorical trace is the category

Tr(F, C) = C ⊗C⊗Crev CF. (2.26)

In the context of Hecke categories, the ∞-categorical center and traces were studied by D. Ben-
Zvi and D. Nadler [BZN09]. The idea to take the categorical trace of Frobenius came from the
Langlands program. Namely, there was an attempt to reconcile V. Lafforgue’s construction [Laf18]
with the geometric Langlands program. One of the most impressive results in this direction is the
work of [AGK+21]. Essentially by following the argument of Ben-Zvi and Nadler, we compute the
F-center and F-trace on the category H.

Theorem 2.2.7 (3.5.19). The functor CHF induces an equivalence

Tr(F,H) = Dindcons(pt/GF,Z`). (2.27)

The functor HCF induces an equivalence

ZF(H) = Dindcons(pt/GF,Z`). (2.28)

As an application of this computation. We give another construction of Lusztig’s geometric
`-series.

Theorem 2.2.8 (3.5.31). There is a complete collection of orthogonal idempotent es ∈ Z`[GF]
where s ∈ (T∨ �W )(F`). They are characterized by the following property, let ρ be an irreducible
F`-representation of GF then esρ = ρ if and only if there exists (w,χ) where w ∈ W and χ ∈
CH(T ) = T∨(F`) in the orbit corresponding to s such that, ∗Rw,χ(ρ) 6= 0.
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2.2.3 Endomorphism of the Gelfand-Graev representation

Let us discuss an application of the center theorem to the endomorphism of the Gelfand-Graev
representation. Denote by Ū the unipotent radical of the Borel opposite to B. The choice of a
pinning of G determines a morphism

φ : Ū → Ūab '
∏
Ga

Σ−→ Ga, (2.29)

where (−)ab denotes the abelianization and the isomorphism comes from the choice of the pinning.
Let ψ : Fq → Λ× be an additive character of Fq. We still denote by ψ : ŪF → Λ× its composition

with φ. The Gelfand-Graev representation is Γψ = indG
F

ŪF(ψ). This representation is central to the
representation theory of GF and is the finite group version of the Whittaker representation of p-adic
groups.

Example 2.2.9. If G = GLn and F is the Fq-structure coming from the split form of GLn over Fq.
It is known that all characters ψ of ŪF are conjugate and therefore representation Γψ does not
depend on the choice of ψ. Moreover, if Λ = Q`, all irreducible cuspidal representations of GF are
direct summands of Γψ.

For groups other than GLn, not all cuspidal representations need to appear in the representation
Γψ, but this representation still sees a lot of the structure of the category RepΛG

F.

Theorem 2.2.10 ([Ste16]). If Λ = Q`, then the representation Γψ is multiplicity free. For a general
Λ, the endomorphism algebra EndΛ[GF](Γψ) is commutative.

Over Q`, since this representation is multiplicity free decomposing it produces many irreducible
representations. More precisely, we have the following theorem.

Theorem 2.2.11 ([DL76]). If Λ = Q`, then Γψ contains exactly one irreducible direct factor for
each Lusztig series.

This theorem was shown originally by computing the character of Γψ and decomposing it with
respect to the virtual characters of the complexes RΓc(Y (ẇ),Λ). This can however be deduced out
of the following theorem.

Theorem 2.2.12 ([Dud09]). For all Λ and all w, there is an isomorphism

∗Rw(Γψ) = Λ[TwF][`(w)]. (2.30)

We give a different proof of this theorem generalizing an argument of [BT22].

Theorem 2.2.13. There is an isomorphism up to shifts

HCF(Γψ) = p!T, (2.31)

where T is the big tilting sheaf.

Our proof of theorem 2.2.12 then follows from theorem 2.2.13 and the knowledge of the stalks
and costalks of T. By functoriality, this theorem defines a canonical map

Curw : EndΛ[GF](Γψ)→ Λ[TwF], (2.32)
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called the w-Curtis morphism. It was first constructed by Curtis [Cur94], using theorem 2.2.11.
Let us denote by

Cur = ⊕wCurw : EndΛ[GF](Γψ)→ ⊕wΛ[TwF], (2.33)

the direct sum of all w-Curtis morphisms. This map is injective. A key problem is computing its
image and express it in terms of the dual torus.

On the dual side let T∨ be the dual torus over Λ and F∨ : T∨ → T∨ be the morphism dual to
F. Let w ∈ W and consider the scheme of fixed points (T∨)wF∨ under wF∨. This is the scheme
making the following diagram cartesian.

(T∨)wF∨ T∨

T∨ T∨ × T∨
∆

id×F∨

Similarly, we also consider the GIT quotient scheme T∨ �W and F∨ the morphism induced by F∨.
By functoriality of taking the scheme of invariants, we have a morphism

Curspec
w : O((T∨ �W )F∨)→ O((T∨)wF∨)

which we call the w-spectral Curtis morphism. Taking the direct sum over w, as before, we get the
spectral Curtis morphism,

Curspec = ⊕wCurSpec
w : O((T∨ �W )F∨)→ ⊕wO((T∨)wF∨). (2.34)

After choosing a set of trivializations of roots of unity of F̄q, we get isomorphisms Λ[TwF] =

O((T∨)wF∨) for all w ∈W .

Theorem 2.2.14 ([Li21], [LS22]). Assume that ` is good for G and that G has connected center.
There is an isomorphism EndGF(Γψ) = O((T∨�W )F∨ making the following diagram commutative.

EndGF(Γψ) O((T∨ �W )F∨)

Λ[TwF] O((T∨)wF∨)

Curw Curspec
w

The proof of this theorem in loc. cit. proceeds as follows. Firstly, if Λ = Q`, both algebras
EndQ`[GF](Γψ) and O((T∨ � W )F∨) are isomorphic to Qn` for some n and thus are isomorphic.

Now the Z`-versions of these algebras are lattices inside each of them, they then show that the
isomorphism over Q` preserve these lattices essentially by computing the matrix of this morphism
and checking that there are no denominators. We give a different proof of this theorem.

Theorem 2.2.15 (3.6.3). There is a canonical map O((T∨�W )F∨)→ EndGF(Γψ) compatible with
the Curtis and spectral Curtis morphisms.

Once this map is constructed theorem 2.2.14 follows from some symmetrizing form argument.
We give a construction of this map using the center theorem 2.2.7.
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2.3 Cohomology of stacks of chtoucas

2.3.1 Chtoucas and the Langlands correspondence

Let X be a smooth projective geometrically connected curve over Fq and let F be the function field
of X. Let G be a reductive group of X and denote by A the ring of adèles of F . Let us assume for
simplicity that G is split and denote by Ĝ the dual group of G over Q`. Choose η̄ → X a generic
geometric point of X and WeilF the absolute Weil group of X at the geometric point η̄.

Definition 2.3.1. A smooth irreducible automorphic representation of G(A) is an irreducible
subquotient of Cc(G(F )\G(A),Q`) of the space of compactly supported automorphic forms.

Definition 2.3.2. A Langlands parameter for G and F is a morphism WeilF → Ĝ(Q`) that is
continuous, defined over a finite extension of Q` and almost everywhere unramified. We say that
a parameter is semisimple, if whenever it factors through a parabolic of Ĝ then it factors trough a
Levi of this parabolic.

Classically, the global Langlands correspondence is a map

GLC : Irrautom(G(A))→ Z1(F, Ĝ)/Ĝ(Q`), (2.35)

from the set of smooth irreducible automorphic representation to the set of conjugacy classes of
global parameters.

Conjecture 2.3.3. There exists a map GLC that is compatible with parabolic induction, compatible
with the Satake isomorphism at the unramified places and with global class field theory for tori.

This conjecture was first shown for G = GL2 by [Dri77], then G = GLn [Laf02]. In general we
have the following theorem

Theorem 2.3.4 ([Laf18]). There exists a map GLCss : GLC : Irrautom(G(A))→ Z1(F, Ĝ)ss/Ĝ(Q`)
to the set of conjugacy classes of semisimple Langlands parameters.

Theorem 2.3.5 ([Xue20b]). The map GLCss of [Laf18] is compatible with parabolic induction.

The construction of this map is done by studying the cohomology of stacks of chtoucas. We
recall some key facts about this construction, for now let us ignore the problem coming from the
Harder-Narasimhan truncations or from the center. Let N ⊂ X be an effective divisor and let I
be a finite set and W ∈ RepΛĜ

I . Then there is an algebraic stack ChtN,I,W over (X − N)I and
an `-adic sheaf FN,I,W coming from geometric Satake over it. The cohomology sheaves are then
defined as

HN,I,W = p!FN,I,W , (2.36)

where p : ChtN,I,W → (X − N)I is the leg map. In general ChtN,I,W is not quasi-compact so we
have to filter it using Harder-Narasimhan truncations.

Theorem 2.3.6 ([Xue20d]). The sheaves HjN,I,W are ind-lisse on (X −N)I .

One important piece of structure that they carry is that they are equipped with actions of the
partial Frobenius endomorphisms. Namely for I0 ⊂ I a finite subset of I, there is an endomorphism
FI0 : (X−N)I → (X−N)I given by FI0(xi) = (yi) with yi = F(xi) if i ∈ I0 and yi = xi otherwise.
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Let ∆(η̄)→ (X−N)I be the geometric point obtained by composing η̄ → X−N with the diagonal.
Then using Drinfeld’s lemma [Laf18] and [Xue20d] show that

Hj
N,I,W = (HjN,I,W )|∆(η̄), (2.37)

is not only equipped with an action of Weil((X −N)I ,∆(η̄)) but that this action factors through
Weil(X −N)I . In turn we get a map

RepΛ(ĜI)→ RepΛWeil(X −N)I

W 7→ Hj
N,I,W .

This map is functorial in both I and W . Once this functor is constructed the machinery of excursion
operators of [Laf18] takes over. Namely, there is an algebra Exc(F, Ĝ) such that the Λ-points (for Λ
a field) of Spec(Exc(F, Ĝ)) are in bijection with semisimple global Langlands parameters. Moreover
given any system of functors (I,W ) 7→ HI,W as above, the vector space H{0},1 where 1 is the trivial

representation of Ĝ is equipped with an action of this excursion algebra.
We now turn towards the local function field setting. Let K be a local field of equal characteristic

and let H be a reductive group over K, which we assume for this section to be split. The local
Langlands correspondence is a conjectural map

LLC : IrrQ`(H(K))→ Z1(WeilK , Ĥ)/Ĥ(Q`) (2.38)

from smooth irreducible representations of H(K) to local Langlands parameters. The existence of
this map is known for GLn [LRS93]. While this map has not been constructed, there is a semisimple
version of the correspondence that has been constructed by [GL17] and [FS21].

Theorem 2.3.7. There exists a map

LLC : IrrQ`(H(K))→ Z1(WeilK , Ĥ)ss/Ĥ(Q`) (2.39)

compatible with class field theory and parabolic induction.

By a result of Li-Huerta [LH23], we know that the two correspondences of Fargues-Scholze and
of Lafforgue-Genestier agree.

2.3.2 Depth 0 local Langlands

We know state our main theorems concerning the Genestier Lafforgue local Langlands correspon-
dence for depth 0 representations. More specifically, we show some compatibility between different
local Langlands type parametrizations. We first recall the structure theorem of depth 0 represen-
tations.

Theorem 2.3.8 ([Lan18], [Lan21]). The category Rep0
ΛH(K) of depth 0 representations of H(K)

decomposes as a direct sum

Rep0
ΛH(K) =

⊕
s∈(T̂�W )F̂(Λ)

RepsΛH(K), (2.40)

where T̂ denotes the dual torus over Λ, T̂ �W the GIT-quotient by the action of W and (−)F̂ the
scheme of invariants under the morphism dual to the Frobenius.
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This decomposition of theorem 2.3.8, yields a map

LS : Irr0
Λ(H(K))→ (T̂ �W )F̂(Λ), (2.41)

where Irr0
Λ(H(K)) is the set of irreducible depth 0 representations of H(K), characterized by

LS(π) = s if and only if π lies in the direct summand indexed by s.

Theorem 2.3.9 (4.1.6). Let π ∈ Irr0
Λ(H(K)) then LLCGL(π) is a tame local Langlands parameter.

Furthermore the following diagram is commutative.

Irr0H(K) (Z1,t(K, Ĥ) � Ĥ)(Λ)

(T̂ �W )F̂ (T̂ �W )F̂

evτK

LLCGL

LS

Our proof of this theorem will follow from the study of certain cohomology sheaves of stacks of
chtoucas. To access depth 0 representations, we first fix a maximally split maximally unramified
torus T ⊂ H over K. This determines an apartment A in the Bruhat-Tits building of H(K), we let
σ be a polysimplex in A and Hσ be the corresponding parahoric group scheme over OK . We choose
x ∈ X a point and an isomorphism between K and the completion of F at x. Let Gσ be a smooth
affine group scheme over X that is reductive over X − x and such that over OK it is isomorphic to
Hσ. Let N = x + Nx be a level structure such that x 6∈ Nx. We consider the cohomology groups
Hj
I,N,W for the group Gσ. Denote by Vσ the unipotent radical of the special fiber of Hσ and Mσ its

reductive quotient. The group Hσ(Fx) acts on Hj
I,N,W .

Theorem 2.3.10 (4.1.7). (i). For all I,W the WeilIFx-module (Hj
I,W,N )Vσ(Fx) is tamely ramified,

that is, the action factors through the tame quotient (WeiltFx)I .

(ii). Let s ∈ (T̂ �W )F̂(Λ), then as an Exc(WeiltFx , Ĝ)-module es(H
j
I,W,N )Vσ(Fx) is supported on

ev−1
τFx

(s), where es is the idempotent in Λ[Mσ(Fx)] corresponding to the Lusztig series attached
to s, we refer to Section 4.2 for the notations.

Finally, following a construction of [LZ18], we construct a quasi-coherent sheafMN on the stack
of local Langlands parameters that is canonically attached to the system of functors (I,W ) 7→
HI,N,W .

Corollary 2.3.11 (4.1.8). (i). The quasi-coherent sheaf (Mj
N )Vσ(Fx) is supported on Z1,t(Fx, Ĝ).

(ii). Using the same notations as in 4.1.7, let s ∈ (T̂ � W )F̂(Q`) then the quasi-coherent sheaf
es(Mj

N )Vσ(Fx) is supported on ev−1
τFx

(s).

Organization

This thesis is composed of two independent chapters. The first one contains the results on mon-
odromic sheaves, Soergel theory and Deligne-Lusztig theory. The second one contains the results on
stacks of chtoucas and the local Langlands correspondence. Both chapters have their own detailed
introduction.
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Chapter 3

Soergel theory and Deligne-Lusztig
theory

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Free monodromic categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Deligne-Lusztig theory and the F-horocycle space . . . . . . . . . . . . . . . . . . . . 53
3.4 Integral Soergel theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 F-Categorical center of the Hecke category . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6 Endomorphism of the Gelfand-Graev representation . . . . . . . . . . . . . . . . . . 101
3.A Equivariant sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.B Monodromic Tilting sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.C Twisted categorical centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.1 Introduction

Let p be a prime number and Fq be the finite field with q elements and characteristic p and let
F̄q be an algebraic closure. Let G be a reductive group over F̄q equipped with an endomorphism
F coming from a Fq-structure, fix a Borel pair B = TU which is F-stable. In this paper we are
interested in understanding some links between the theory of representations of G(Fq) = GF and
the theory of monodromic sheaves on U\G/U . We also fix ` a prime number different from p.

The modern way to study the theory of representations of GF is via the cohomology of the
Deligne-Lusztig variety [DL76]. Let W denote the Weyl group of G and fix multiplicative liftings
(ẇ) of W inside of N(T ). For any w ∈ W there is a pair of varieties π : Y (ẇ) → X(w) with
GF-actions and the map π is a TwF-torsor, where F is the Frobenius of T , induced from the one
of G. The cohomology RΓc(Y (ẇ),Z`) is then equipped with two commuting actions of GF and of
TwF and yields a pair of adjoint functors

Rw : Db(RepZ`(T
wF))� Db(RepZ`(G

F)) : ∗Rw
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called the Deligne-Lusztig induction and restriction functors, given byRw(M) = M⊗TwFRΓc(Y (ẇ,Z`)
and ∗Rw(N) = RHomGF(RΓc(Y (ẇ,Z`), N). While in the original article, Deligne and Lusztig
worked mostly with characters of representations and Q`-cohomology, a functorial treatment for
the integral setting has been worked out, see for instance [BR03] and [BDR17]. One of the out-
put of the present article will be to recover these functors in a way that does not involve the
Deligne-Lusztig varieties.

On the other side, consider the category of `-adic sheaves on B\G/B or U\G/B. These cate-
gories are well understood and are now described in terms of purely algebraic datum called Soergel
bimodules. When passing from U\G/B to U\G/U , we loose the key property that there are finitely
many irreducible objects, this is partially regained when considering the full subcategory of unipo-
tent monodromic sheaves, that is the category generated by pullback of objects from U\G/B. Then,
to get a category with good properties [BY13] have introduced a ’completed category’ and a corre-
sponding description of the completed category in terms of these Soergel bimodules. When passing
from the `-adic setting to the mod` setting, a corresponding description has been worked out by
[BR22b]. In his thesis Gouttard [Gou21] has gotten a similar description for the non-unipotent
case.

The two theories are related in via the following diagram

U\G/U G
AdFB

U\G/U
AdFT

G
AdFG

r q
p (3.1)

where the quotient always denote the quotient stack and the AdF refers to the action by Frobenius
conjugation, that is (g, x) 7→ gxF(g)−1 and the maps are the quotient maps for the various groups
and actions, see also section 3.3.1. Lusztig had previously introduced the functors q!r

∗ and r!q
∗ in

[Lus15] and [Lus17]. Lang’s theorem yields an isomorphism G
AdFG

' pt/GF, while on each of the

Bruhat strata we also have an isomorphism of stacks U\BwB/U
AdF(T ) ' pt/(Uw × TwF) where Uw ⊂ U is

a closed connected subgroup. In particular considering the functor q!r
∗iw,!, where iw is induced by

the inclusion BwB ⊂ G, gives a functor between the representations of TwF and that of GF. We
will compare this functor with the Deligne-Lusztig induction functor.

The initial motivation of this paper was to gain a geometric insight into the following theorem.
Let U denote the unipotent radical of the opposite Borel, and let U → Ga be a generic morphism,
denote by Lψ the pullback along this morphism of an Artin-Schreier sheaf. The trace of Frobenius

function of this sheaf produces a character of U
F

and an idempotent eψ ∈ Z`[U
F

]. Denote by

Γψ = indG
F

U
F(ψ) the Gelfand-Graev representation.

Theorem 3.1.1 ([Li21], [LS22]). Assume that ` is good for G and that G has connected center,
then we have an isomorphism

EndGF(Γψ) ' O(T∨�W )F∨ ,

where T∨ is the dual torus of T defined over Z`, F∨ : T∨ → T∨ is the morphism dual to FT and
(T∨ �W )F∨ is the scheme of invariant, that is the one deduced by intersection of the diagonal and
the graph of F∨.
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We give a proof of this theorem in section 3.6.2 by using a twist of a method of [BT22] and
relating the representation Γψ to Soergel theory. More precisely, we show that

r!q
∗Γψ ' p!T, (3.2)

where T is an explicit object coming from Soergel theory. We then use the Endomorphismensatz
3.4.34, to produce a map

End(Γψ)→ O(T∨�W )F∨ . (3.3)

We now describe our main results in more details.

3.1.1 Monodromic categories

We want to work with a Z` version of the completed categories of [BY13] and [BR22b]. We could
follow their approach and define this completed category in terms of pro-objects of Z`-sheaves, we
instead want to rebuild them using the proétale topology of [BS15].

Let T be a torus over F̄q and denote by

ΩT,Z` = lim←−
m,n

Z/`mZ[T [`n]],

and by ΩT = ΩT ⊗Z` Z`. We first discuss the existence of a good sheaf theory with coefficients in
ΩT . Namely for all schemes X of finite type over F̄q there is a stable (∞, 1)-category Dcons(X,ΩT )
of constructible sheaves of ΩT -modules. The formalism of [BS15] and [HRS21] yields a family of
categories

X → Dcons(X,ΩT )

equipped with a 6-functor formalism. They are furthermore equipped with a pair of t-structures,
one classical and one perverse.

Denote by π1(T ) the étale fundamental group of T at the geometric point 1 and πt1(T ) the tame
fundamental group, that is its largest prime to p quotient. It is isomorphic to lim←−(n,p)=1

T [n]. Given

a Z`-character of order prime to ` of π1(T ) we get a Kummer sheaf Lχ on T .
With the above setup, we give a new definition of the completed monodromic categories. The

ring ΩT was introduced in [GL96], and there they define a rank one ΩT character sheaf on T which
we denote by LT , which is given by the canonical map π1(T )→ ΩT . Let π : X → Y be a T -torsor,
we then define the completed category of unipotent monodromic sheaves on X as the category of
equivariant sheaves for (T, LT ) and we denote this category by Dcons(X,ΩT )unip.

We then show in section 3.2.7 that when one performs the same construction for the ring
ΩT,F` = ΩT,Z` ⊗Z` F`, there is a natural equivalence with the construction of [BR22b]. We do not
however compare with the Q`-version of [BY13] but we plan to return to this case in a later work.
We also discuss a non-unipotent version, but here this is simply requiring equivariance with respect
to a character sheaf of the form LT ⊗Z` Lχ where χ is as above a character of πt1(T ) of order prime
to ` and we denote this category by Dcons(X,ΩT )χ.

Finally, in the Appendix 3.B, we discuss how to set up the basics of Soergel theory, namely we
place ourselves in the following situation : there is a stratification of Y =

⋃
s Ys into strata that are

affine spaces and we consider sheaves on X such that their pushforward to Y are constant along
the strata. The results of this section are very easy generalizations of [BR22b] Section 1-5 and
of [Gou21] Section 7., since we have to rebuild some of the theory we also have to discuss some
variants of results of [RSW13] and [AR16].
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3.1.2 Deligne-Lusztig theory

Let us now explain how to recover the Deligne-Lusztig induction and restriction functors. We will

use the notations of (3.1). We first fix an element w ∈W and consider the category Dcons(
U\UTwU/U

AdFT
,Z`).

The choice of a lifting ẇ determines an isomorphism of stacks

U\UTwU/U
AdFT

= pt/(TwF o Uw),

where Uw is a closed unipotent connected subgroup of U . Hence the category Dcons(
U\UTwU/U

AdFT
,Z`)

is equivalent to the category Dcons(pt/TwF,Z`), which is nothing else than the category of repre-

sentations of TwF on Z`-modules. Consequently, the category Dcons(
U\G/U
AdFT

,Z`) is obtained as the

gluing of all the categories of representations of the finite groups TwF. Consider now the functor

q!r
∗iw,! : Dcons(

U\UTwU/U
AdFT

,Z`)→ Dcons(pt/GF,Z`), we first show the following theorem.

Theorem 3.1.2 (Theorem 3.3.8). Under the equivalence Db(RepZ`T
wF) ' Dcons(

U\UTwU/U
AdFT

,Z`),
the functor q!r

∗iw,! is isomorphic up to a shift to the Deligne-Lusztig induction functor.

Remark 3.1.3. Passing to right adjoints yields the Deligne-Lusztig restriction functor.

We then want to relate the Deligne-Lusztig induction and restriction functors with Soergel
theory. Since we reformulate Soergel theory in terms of LT -equivariant sheaves, we first produce a
second functor Dcons(pt/TwF,Z`) → Dcons(pt/GF,Z`) that is defined using monodromic sheaves.
On the stratum UTwU there are two commuting actions : one of T by right translations and one

of T by Frobenius conjugation, consider now Dcons(
U\UTwU/U

AdFT
,ΩT )χ the same category but with

an equivariance condition for the right action of T .

Lemma 3.1.4 (Lemma 3.3.9). There is an equivalence

Dcons(
U\UTwU/U

AdFT
,ΩT )unip ' e1Dcons(pt/TwF,Z`),

where e1 denote the projector onto the principal block. Similarly replacing unip by χ we get the
projection onto the corresponding block provided that wF(χ) = χ.

This results follows from the computation of the averaging of LT under Frobenius conjugation
of T . We are now able to construct a functor from the category of Z` representations of TwF to the
category of GF-representations. Namely consider the following composition

Dcons(pt/TwF,Z`)
'−→

⊕
χ

Dcons(
U\UTwU/U

AdFT
,ΩT )χ

→ Dcons(
U\UTwU/U

AdFT
,ΩT )

iw,!−−→ Dcons(
U\G/U
AdFT

,ΩT )

q!r
∗

−−→ Dcons(pt/GF,ΩT )

ForΩT−−−−→ Dcons(pt/GF,Z`),
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where the first functor is the one of 3.1.4, the second one is a forgetful functor (we refer to 4.2.1 for
the precise definition of this forgetful functor) and the last one is simply forgetting the ΩT -structure
down to a Z`-structure. In particular we show the following theorem

Theorem 3.1.5 (Theorem 3.3.13). There is an isomorphism of functors between the composition
of these functors and Rw.

Remark 3.1.6. For w ∈W , we have outlined the construction of two functors Dcons(pt/TwF,Z`)→
Dcons(pt/GF,Z`) and that they are both isomorphic with the Deligne-Lusztig induction. They are
in particular isomorphic. Going the other way, we have two functors

r!q
∗ and For⊕χ Avχr!q

∗(−⊗Z` ΩT ) : Dcons(pt/GF,Z`)→ Dcons(
U\G/U
AdFT

,Z`).

We refer to lemma 3.3.15 for their definition. We show that these two functors are isomorphic.

3.1.3 Soergel theory

The fourth section of our paper deals with the integral version of the results of [BR22b] and [Gou21].
All the results are generalization of loc. cit.. The category of equivariant sheaves with respect to a
non trivial character χ had already been studied in [LY20]. Let us fix some notations, let w ∈ W
and χ be as before. We then have at our disposal

(i). The standard and costandard sheaves ∆w,χ and ∇w,χ which are the ! and ∗-extension of the
sheaf a Bruhat stratum corresponding to LT ⊗ Lχ, they are in particular perverse.

(ii). The tilting sheaves Tw,χ that are perverse sheaves on U\G/U with both a ∆-filtration and a∇-
filtration, where a ∆-filtration (resp. ∇-filtration) is a filtration with graded pieces belonging
to the set {∆w,χ, w ∈W,χ ∈ CH(T )} (reps. {∇w,χ, w ∈W,χ ∈ CH(T )}).

We then carry out the study of the category Dcons(U\G/U,ΩT )χ. We equip this category with
a convolution structure, it is built to ensure compatibility with the modular version of [BR22b] and
[Gou21]. Assuming that G has connected center, we get a decomposition of the category

Dcons(U\G/U,ΩT )χ =
⊕
χ′

Dcons(U\G/U,ΩT )[χ′,χ],

where χ′ ranges through the orbit of χ, and the category Dcons(U\G/U,ΩT )[χ′,χ] is the category
generated by all ∆w,χ for w such that wχ = χ′.

The next step is to show the Endomorphismensatz in our setup. Let us fix χ as before and χ′ in
the W -orbit of χ, there is a distinguished tilting object in Dcons(U\G/U,ΩT )[χ′,χ] which we denote
by Tχ,χ′ . Denote by Wχ the stabilizer of χ.

Theorem 3.1.7 (Endomorphismensatz, 3.4.34). Assume that ` is good for G. There is an isomor-
phism

ΩT ⊗Ω
Wχ
T

ΩT ' End(Tχ,χ′).

With this theorem in place we can define the Vχ,χ′ functor which is nothing else than Hom(Tχ,χ′ ,−).
The last result we need out of Soergel’s theory is that this functor is fully faithful on tilting objects,
which is done in section 3.4.7. We finally consider the direct sum category⊕

χ

Dcons(U\G/U,ΩT )χ
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and we take the direct sum of all the V functors on all the blocks at once. Following [GL96],
we introduce C(T ) =

⊔
χ Spec(ΩT ) × {χ}, which is the space of rank one character sheaves on

T . With this notation the global V functor takes values in the category of coherent sheaves on
C(T )×C(T )�W C(T ) and the structure sheaf is the image of the direct sum of all the tilting sheaves
Tχ,χ′ , which we denote by T. Only in defining the global V-functor we require that G has connected
center, all the other results extend to the non-connected center case.

3.1.4 Categorical centers

In the fifth section of this paper we consider the problem of realizing the category of representations
of GF as a twisted categorical center. This notion of categorical center is well behaved in the infini-
categorical world and generalizes the more classical notion of Drinfeld centers. We refer to Appendix
3.C for some basic definitions about categorical centers.

Consider the functor

p!HCF : Dindcons(pt/GF,Z`)→
⊕

χ∈CH(T )

Dindcons(U\G/U,ΩT )χ. (3.4)

Theorem 3.1.8 (Theorem 3.5.19). The functor p!HCF is equipped with a canonical F-central struc-
ture and induces a isomorphism

Dindcons(pt/GF,Z`) ' ZF(
⊕

χ∈CH(T )

Dindcons(U\G/U,ΩT )χ). (3.5)

In [Lus15] and [Lus17], Lusztig has shown a similar statement using abelian categories. There
are two advantages to our method. The first one is that it works over Z`, whereas Lusztig uses the
theory of weights which is only valid over Q`. Secondly our proof is almost formal, it is a variation
(with Frobenius) of an argument of [BZN09], whereas Lusztig’s construction inputs some knowledge
about the classification of irreducible representations of GF.

The only nonformal input in the proof of this theorem is the celebrated theorem of Deligne-
Lusztig.

Theorem 3.1.9 ([DL76]). Let ρ ∈ IrrQ`(G
F), then there exists, w ∈W and j an integer such that

Hom(Hj
c (Y (ẇ,Q`), ρ) 6= 0.

The proof of this theorem in loc. cit. relies on some character computations. We give a geometric
proof of this fact using a technique from [BBM04b]. Namely, we compute the functor CHFHCF.
A first remark is that the category Dcons(

G
Ad(G) ,Λ), where Ad denotes the adjoint action acts on

Dcons(
G

AdFG
,Λ) via convolution, we refer to section 3.5.5 for the definition of this action. We then

show the following lemma, which is a F-twisted version of a theorem of [MV88].

Lemma 3.1.10. There is an isomorphism of functors

CHFHCF ' Spr ∗ −, (3.6)

where Spr ∈ Dcons(
G

Ad(G) ,Λ) denotes the Springer sheaf.

In characteristic 0, the sheaf δ1, is a direct summand of the Springer sheaf. This is enough to
imply the conservativity of the functor HCF and then the generation statement. This proof also
works with modular coefficients, in particular we get a new proof of the following theorem.

Theorem 3.1.11 ([BR03]). The complexes RΓc(Y (ẇ),Λ) span Perf(Λ[GF]).
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3.1.5 Endomorphism of the Gelfand Graev representation

We finally come to our last section and we want to illustrate how to recover the theorem of [Li21]
in geometric terms. From now on we assume that G has connected center and that ` is good for G.
The idea here is a twisted version of [BT22]. The main novelty is that we construct a map

EndGF(Γψ)→ O(T∨�W )F .

Once this map is constructed, the theorem will follow by standard arguments of symmetrizing
forms. Let us explain how to construct this map.

Firstly, we compute r!q
∗Γψ. We show the following lemma, we refer to lemma 3.6.8 for the

normalization.

Lemma 3.1.12. There is an isomorphism, up to shift,

r!q
∗Γψ = p!T.

Once this is in place we consider

V(p!r!q
∗Γψ) = Hom(p!T, p!T).

This is a coherent sheaf on C(T )×C(T )�W C(T ). We then show that this sheaf is the structure sheaf
of Z = (C(T ) ×C(T )�W C(T )) ×C(T )×C(T ) C(T ), where the C(T ) is embedded via the graph of F∨.
The closed subscheme Z ⊂ C(T )×C(T ) is stable under the W -action given w.(x, y) = (wx,F(w)y).
We then show that Z �W = (T∨ �W )F. With this presentation we get two actions of End(Γψ)
and W on OZ , we show that they commute using the centrality statement of the previous section.
This induces the desired map

End(Γψ)→ End(OWZ ) = OT∨�W .

3.1.6 Conventions and notations

∞-categories.

We will use the language of (∞, 1)-categories of Lurie [Lur09] [Lur]. We introduce the following
notations concerning them. Given an (∞, 1)-category C, we denote by ho(C) the homotopy category.
Given a stable category C with a t-structure, we denote by C♥ its heart, the notion of stable ∞
is defined in [Lur] 1.1.1.9. Recall that if C is a stable ∞-category, the category ho(C) is naturally
a triangulated category, and the data of a t-structure on C is the data of a t-structure on ho(C),
[Lur] 1.2.1.4. Let Λ be ring, we denote by D(Λ) the ∞-derived category of Λ, constructed in [Lur]
1.3.5.8., its homotopy category is naturally identified with the usual derived category of Λ. If Λ
is commutative, then this category is a closed monoidal symmetric category. We will consider Λ-
linear categories, that is categories that are modules over D(Λ). Given a Λ-linear stable category
C, we denote for x, y ∈ C by HomC(x, y) ∈ D(Λ) the mapping space between x and y. Its image in
ho(D(Λ)) is a complex such that Hi(HomC(x, y)) = HomC(x, y[i]) = Homi

C(x, y), if the context is
clear, we will drop the C. In the usual cases of categories of étale sheaves, this complex is simply given
by the functor RHom. If A ⊂ C is the heart of a t-structure on C, then we will denote by HomA(x, y)
the Hom-set in the abelian category of A, for x, y ∈ A. Note that HomA(x, y) = Hom0

C(x, y).
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Bar resolutions.

We denote by ∆ the simplex category. In a category with products C (either ∞ or 1), given a
group object G acting on an object X. We denote by X×G•+1 → X the augmented Bar simplicial
objects. That is the simplicial object ∆op → C, [n] 7→ X × Gn+1 and whose degeneracy maps are
given by the action map and partial multiplications.

Categories of étale sheaves.

We fix p a prime number. We will denote by Λ a coefficient ring which is either Z`,F` or ΩT . We
will denote by Dcons(X,Λ) the bounded category of constructible Λ sheaves on a stack X. For
a morphism f : X → Y , we denote by f∗, f

∗, f!, f
! the corresponding derived functors, they are

recalled in section 3.2. In general all functors will be understood in the derived sense. We fix once
and for all a trivialization of the Tate twist (1) = id.

Categories of coherent sheaves.

Given a ring A or more generally for X a(n underived) scheme, we denote by D(A),Dqcoh(X), the
derived category of A-modules and the derived category of quasicoherent sheaves on X. We denote
by Perf(A),Perf(X) the full subcategories of D(A) and D(X) respectively of perfect complexes.
We denote by Dcoh(A),Dcoh(X) the full subcategories of D(A),Dqcoh(X) respectively of complexes
which are cohomologically bounded and with coherent cohomologies. We denote by Coh(A) and
Coh(X) the category of finite type A-modules and coherent OX -modules respectively. The cate-
gories D(A),Dqcoh(X) and Dcoh(A),Dcoh(X) all carry standard t-structures. The categories Coh(A)
and Coh(X) are then identified with the hearts of Dcoh(A) and Dcoh(X) respectively.

Reductive groups.

We let G be a reductive group over k, we fix a Borel pair B = TU and we let Ū be the unipotent
radical of the opposite Borel. We let W be the Weyl group of (G,T ) and we denote by ∆ ⊂ Φ+ ⊂ Φ
the simple, positive and roots associated to (G,B), similarly we denote by Φ∨ the set of coroots
corresponding to (G,T ). For a root α ∈ Φ we denote by sα ∈ W the corresponding reflection and
by α∨ the corresponding coroots. We also fix a multiplicative family of liftings (ẇ) of the elements
of W into NG(T ), that is we impose that

ẇẇ′ = ˙ww′

whenever `(w) + `(w′) = `(ww′). This choice produces natural trivializations BwB ' Uw × T ×U ,
where Uw is U ∩ w−1Uw and in particular is an affine space and we denote νw : BwB/U → T the
corresponding projection.
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3.2 Free monodromic categories

3.2.1 Setting up the 6-functors

Let k be an algebraically closed field of characteristic p > 0, and T be a torus over k. We denote
by X = X(T ) and Y = Y (T ) its character and cocharacter lattices. We denote by π1(T ) the étale
fundamental group of T at the base point 1 ∈ T . We denote by πt1(T ) the tame quotient, that is
the largest quotient of pro-order prime to p. It is known that

πt1(T ) = lim←−
(n,p)=1

T [n] = Y (T )⊗ πt1(Gm).

We also denote by π1(T )wild the kernel of the projection π1(T )→ πt1(T ).
Let ` be a prime different from p, as in [GL96] we define π1(T )` the largest pro-` quotient of

πt1(T ) and by
ΩT,Z` = Z`Jπ1(T )`K = lim←−

n,m

Z/`nZ[T [`m]].

Remark 3.2.1. We fix once and for all a topological generator γ ∈ π1(Gm)`.

Remark 3.2.2. Note that we also have πt1(T ) =
∏

(`′,p)=1 π1(T )`′ hence we can also see π1(T )` as a

subgroup of πt1(T ).

If R is a Z`-algebra we denote by ΩT,R = ΩT ⊗Z` R, and by ΩT = ΩT,Z` .

Definition 3.2.3. Let X be a k-scheme of finite type and let Λ ∈ {F`,Z`,ΩT }. We set Dcons(X,Λ),
resp. Dlis(X,Λ), resp Dindcons(X,Λ) to be the (∞, 1) stable category of constructible, resp. lisse,
resp ind-constructible sheaves of Λ-modules as defined in [HRS21].

We recall a modern presentation of the 6-functors formalism. This presentation is due to Mann
[Man22] based on work of [LZ17], we also refer to the lectures notes of P. Scholze [Sch23]. We
consider the category Schft

k of separated finite type k-schemes. As explained in [Man22], Liu and
Zheng construct an ∞-symmetric monoidal category Corr(Schft

k ) whose objects are the same as
the objects of Schft

k and whose morphisms X 99K Y in Corr(Schft
k ) are given by correspondences

X ← Z → Y .

Definition 3.2.4. An abstract 3-functors formalism on Schft
k is the data of lax symmetric monoidal

functor
D : Corr(Schft

k )→∞− Cat, (3.7)

to the symmetric monoidal ∞-category of ∞-categories equipped with symmetric monoidal struc-
ture given by cartesian product. Given such a lax-monoidal functor, we define for f : X → Y a
morphism of schemes

(i). f∗ : D(Y )→ D(X) as the image of the correspondence Y
f←− X = X,

(ii). f! : D(X)→ D(Y ) as the image of the correspondence X = X
f−→ Y .

For X ∈ Schft
k , we define a symmetric monoidal structure on D(X) by

D(X)×D(X)→ D(X ×X)
∆∗−−→ D(X), (3.8)

where the first map is the data of the lax-monoidality of the functor D and the second one is the
pullback along the diagonal.
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Definition 3.2.5. A 6-functors formalism on Schft
k is the data of a 3-functors formalism such that

for all maps f in Schft
k and all objects A ∈ D(X), the functors f∗, f! and A⊗− admit right adjoints.

These right adjoints are then called f∗, f
! and Hom respectively.

Remark 3.2.6. As explained in [Sch23], the data of a 6-functors formalism encodes all the base
change maps, the Kunneth maps, the adjunctions maps as well as the compatibilities between
them.

Theorem 3.2.7 (6 functors, [BS15] 6.7, [HRS21] 3.44). There exists 6-functors formalisms Dcons(−,ΩT )
and Dindcons(X,ΩT ) on Schft

k such that for all X ∈ Schft
k

Dcons(−,ΩT )(X) = Dcons(X,ΩT ), (3.9)

and
Dindcons(−,ΩT )(X) = Dindcons(X,ΩT ). (3.10)

Proof. As explained in Lecture IV of [Sch23], to construct a 6-functors formalism, it is enough to
construct a functor

Schft,op
k → CMon(∞− Cat), (3.11)

to the category of symmetric monoidal ∞-categories and two collections of morphisms I and P
such that (see the conditions (1)− (4) of loc. cit.) :

(i). The class I and P are stable under composition, pullbacks and contain all isomorphisms.
Moreover any morphism f can be decomposed into a composition p ◦ j where p ∈ P and
j ∈ I.

(ii). For all f ∈ I, the functor f∗ has a left adjoint denoted by f! satisfying the base change formula
and the projection formula,

(iii). For all p ∈ P , the functor f∗ has a right adjoint denoted by f∗ satisfying the base change
formula and the projection formula,

(iv). For any cartesian diagram with j ∈ I and p ∈ P ,

Y ′ Y

X ′ X
j

p

j′

p′

the natural map j!p
′
∗ → p∗j

′
! , adjoint to the base change map, is an isomorphism.

Let us now apply this to our context, firstly the construction of [HRS21] produces the two

desired functor Dcons : Schft,op
k → CMon(∞−Cat). Indeed, they define the categories Dcons(X,ΩT )

and Dindcons(X,ΩT ) as certain monoidal symmetric subcategories of D(Xproet,ΩT ) which depends
functorially upon X. Next, we take P the class of proper morphisms and I the class of étale maps.
The four statements above follow from classical statements about proper and smooth base change.
They are checked (using the proétale setting) in [BS15] 6.7 and [HRS21].

We now explain how this construction extends to stacks. First, we need the following descent
properties.
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Definition 3.2.8. Let D be a 6-functors formalism on Schft
k . Let f : X → Y be a morphism of

schemes, we say that D satisfies ∗ or !-descent along f if

(f∗n) : D(Y )→ lim
∆

D(Xn/Y ) (3.12)

or
(f !
n) : D(Y )→ lim

∆
D(Xn/Y ) (3.13)

are isomorphisms respectively, where Xn/Y denotes the n-fold product of X over Y and fn :
Xn/Y → Y is the projection.

Theorem 3.2.9. For all X ∈ Schft
k the category Dindcons(X,ΩT ) is presentable. Furthermore the

functor X 7→ Dindcons(X,ΩT ) satisfies smooth ∗ and ! descent.

Proof. The presentability statement is done in [HRS21] 3.49. The ∗-descent property holds for
v-cover by a result of [BM21] Theorem 1.8, see also the introduction of [HS23]. The !-descent is a
consequence of Proposition 6.18 and Theorem 7.19 of [Sch23].

Notation 3.2.10. Denote by Stk, the category of Artin stacks locally of finite type over k.

Proposition 3.2.11 ([Man22] A.5.16). There is a canonical extension of the 6-functors formalism
Dindcons(−,ΩT ) to Corr(Stk), the category of correspondences on Artin stacks locally of finite type
over k. For X an Artin stack locally of finite type, the category Dindcons(X,ΩT ) is given by

Dindcons(X,ΩT ) = lim←−
S→X

Dindcons(S,ΩT ), (3.14)

where the limit is taken over all schemes S ∈ Schft
k and all maps S → X and transition maps are

given by ∗-pullbacks.

Definition 3.2.12. For a stack X, denote by Dcons(X,ΩT ) ⊂ Dindcons(X,ΩT ) the full subcategory
of Dindcons(X,ΩT ) of objects A such that for all f : S → X, f∗A is in Dcons(S,ΩT ).

Remark 3.2.13. Contrary to schemes, the natural map Ind(Dcons(X,ΩT ))→ Dindcons(X,ΩT ) is not
necessarily an isomorphism.

Remark 3.2.14. Since we allow non representable maps in Stkk, the 6-functors formalism Dcons(−,ΩT )
a priori does not extend to Stkk. Consider the subcategory Stkrepr

k of Stkk composed of the same
objects but with only representable maps. Consider the restriction of the 6-functors Dindcons(X,ΩT )
to Stkrepr

k , then X 7→ Dcons(X,ΩT ) ⊂ Dindcons(X,ΩT ) defines a 6-functors formalism. This follows
from the fact that constructible sheaves are preserved under !-pushforward along all representable
maps.

Remark 3.2.15. Recall that for a scheme X, all objects in Dcons(X,ΩT,Z`) are derived complete,
we refer to [BS15] section 3.5 for a discussion about derived completions. By [BS15] 3.5.1. a sheaf
K ∈ Dcons(X,ΩT,Z`) is derived complete if the natural map

K → lim←−
n,m

K ⊗ΩT,Z`
Z/`nZ[T [`m]]

is an isomorphism. Moreover a sheaf M ∈ D(Xproet,ΩT,Z`) is constructible if and only is M/m =
M ⊗ΩT,Z`

ΩT,Z`/m is a constructible F`-sheaf where m denotes the maximal ideal of ΩT,Z` .
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Lemma 3.2.16 (Derived Nakayama). Let M ∈ Dcons(X,ΩT,Z`), if M/m = 0 then M = 0.

Proof. Choose a stratification X = tXi for which M is constructible. After pulling back to each
strata we can assume that M is lisse. Let X ′ → X be a proétale cover such that M|X′ is perfect
constant. Such a cover exists by [HRS21] 3.26. Then M|X′ ' NX′ is isomorphic to a constant
complex. The statement then reduces down to the derived Nakayama lemma for rings which holds
by [Aut] Tag 0G1U.

Remark 3.2.17. By [HRS21] 3.29, an object A ∈ Dcons(X,Λ) is in Dlis(X,Λ) if and only if all
cohomology sheaves are lisse in the classical sense.

3.2.2 Setting up the perverse t-structures

Theorem 3.2.18. There is a t-structure on Dcons(X,ΩT ) such that for all geometric points x :
Spec(k)→ X the functor x∗ : Dcons(X,ΩT )→ PerfΩT is t-exact.

Definition 3.2.19. We call the t-structure of theorem 3.2.18 the standard t-structure.

Proof. We first check that Dcons(X,ΩT,Z`) has a natural t-structure. It is enough to show that the
ring ΩT is t-admissible in the sense of [HRS21] 3.27. The ring ΩT,Z` is clearly regular and noetherian,
in particular coherent. Let S be an extremally disconnected set and write it S = lim←−i Si as a limit
of finite sets. Then we have

Γ(S,ΩT,Z`) = lim←−
n,m

lim−→
i

Γ(Si,Z/`nZ[T [m]]).

Now each Γ(Si,Z/`nZ[T [m]]) is flat over Z/`nZ[T [m]] and therefore so is lim−→i
Γ(Si,Z/`nZ[T [m]]),

we can now apply [Aut] Tag 0912 and get that ΩT,Z` → Γ(S,ΩT,Z`) is flat. The same argument
holds for ΩT,OE ) for any finite extension E/Q`, then Dcons(X,ΩT ) = lim−→E

Dcons(X,ΩT,OE ) and it
is easy to see that the transition are t-exact and therefore induce a t-structure on the colimit.

Theorem 3.2.20. Let X be a k-scheme of finite type, there is a unique t-structure on Dcons(X,ΩT )
which we call the middle perversity t-structure such that A is in Dcons(X,ΩT )≥

p0 if and only if

∀i dim suppH−i ≤ i.

Sketch of proof. We only sketch the construction to convince the reader that the argument of
[BBD82] 3.4 applies to our situation. Consider pairs (S,L) where S is a stratification X =⊔
s∈S Xs and L is a collection of F`-local systems Ls on each strata. We consider now the cat-

egory Dcons,(S,L)(X,ΩT ) defined as the full subcategory of Dcons(X,ΩT ) of (S,L)-constructible
sheaves, that is sheaves A that are constructible and such that for all i ∈ Z and s ∈ S, we have
Hi(i∗sA ⊗ΩT,Z`

F`) and Hi(i!sA ⊗ΩT,Z`
F`) are successive extension of local systems in Ls where

is : Xs → X is the inclusion of the stratum corresponding to s. Using the constructibility results
of [BS15], we can always refine the pair (S,L) such that if A is an (Xs,Ls)-constructible sheaf on
Xs then is,!A and is,∗A are (S,L)-constructible. Once this is in place, we can apply the gluing
formalism of [BBD82].

Remark 3.2.21. Just as in the case of Z`-sheaves, this perverse t-structure is not stable under
Verdier duality.
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3.2.3 The canonical sheaf and the unipotent categories

There is a canonical morphism
can : π1(T )→ (ΩT )× (3.15)

which defines an ΩT -rank one local system on T which we denote by LT .

Lemma 3.2.22 ([GL96] 3.1). Let p : T → T ′ be a morphism of tori, it induces a morphism
p∗ : ΩT → ΩT ′ .

(i). p∗LT ′ = LT ⊗ΩT ΩT ′ .

(ii). Assume p is a quotient map of relative dimension d then we have p!LT = LT ′ [−2d](−d).

Remark 3.2.23. In loc. cit., a quotient map means the projection on a direct factor.

Corollary 3.2.24. The sheaf LT is multiplicative, that is we have an isomorphism m∗LT ' LT�ΩT

LT where m : T × T → T is the multiplication.

Let X be a scheme with an action of T . In [BY13], the authors have defined the free monodromic
completion of sheaves on X. We define an integral version using the categories Dcons(X,ΩT ).

Remark 3.2.25. It should be possible to use a similar strategy as in [BY13] and [BR22b] using
categories of monodromic sheaves and then completing the category, our method has the advantage
to not have to use pro-objects.

Definition 3.2.26. We define Dcons(X,ΩT )unip to be the category of (T, LT )-equivariant sheaves
on X. We refer to Appendix 3.A for the definition of equivariant sheaves.

Remark 3.2.27. In appendix 3.A, we also define Dindcons(X,ΩT )unip. The category Dcons(X,ΩT )unip

is then the full subcategory of Dindcons(X,ΩT )unip of objects such that their image in Dindcons(X,ΩT )
is constructible.

Lemma 3.2.28. There is a perverse t-exact equivalence

Db(ΩT ) ' Dcons(T,ΩT )unip

M 7→M ⊗ΩT LT [dimT ].

Proof. A sheaf A on T is (T, LT )-equivariant if and only if A ⊗ L∨T is T -equivariant and therefore
descends to the point, which yields the equivalence, the t-exactness is immediate.

Proposition 3.2.29. Consider the category SchT,tf of schemes with a T -action. There exists a six
functors formalism Dcons(−,ΩT )unip (resp Dindcons(−,ΩT )unip) given by

Dcons(−,ΩT )unip(X) = Dcons(X,ΩT )unip. (3.16)

(resp Dindcons(−,ΩT )unip(X) = Dindcons(X,ΩT )unip), for all X ∈ SchT,tf .

Proof. We show it for Dindcons, the case of Dcons follows by taking constructible objects in Dindcons.
First consider the 6-functors formalism constructed previously X ∈ Schtf 7→ Dindcons(X,ΩT ).
Consider the functor Schft

k → Corr(Schft
k ) sending X 7→ X and f : X → Y to the correspon-

dence X = X → Y . This functor is lax monoidal. Composing it with the lax monoidal functor
Dindcons(−,ΩT ) yields a lax monoidal functor Schft

k → ∞ − Cat. By lax monoidality, the group
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object T is sent to the category Dindcons(T,ΩT ) which is then canonically equipped with a monoidal
structure. This monoidal structure is nothing else than the !-convolution of Appendix 3.A.

Similarly, if X is a scheme with an action of T , the category Dindcons(X,ΩT ) has a natu-
ral action of Dindcons(T,ΩT ). More generally, the functor X → Dindcons(X,ΩT ) yields a functor
Corr(SchT,tf)→ Dindcons(T,ΩT )−Mod, the∞-category of categories with an action of Dindcons(T,ΩT ).
Taking (twisted)-invariants yields a lax monoidal functor X 7→ Dindcons(X,ΩT )unip. This defines a
3-functor formalism, all categories in sight are presentable and cocomplete and all three functors
commutes with all colimits, the existence of right adjoint follows from the adjoint functor theorem
5.5.2.9.

3.2.4 Twisted variants

We keep the scheme X with a T -action. We introduce the following notational convention, we
denote by χ a finite order character of πt1(T ) of order prime to ` defined over OE where E/Q` is a
finite extension. We use the notation of [LY20] and denote by CH(T ) the set of all such character,
note however that we do not allow characters of order ` contrary to loc. cit. and we consider them
as defined over Z`. Then the sheaf LT ⊗ Lχ is an ΩT rank one character sheaf on T . We define
Dcons(X,ΩT )χ to be the category of (LT ⊗Lχ)-equivariant sheaves on X and extend the 6-functors
as in the previous section to the twisted variants.

3.2.5 Functoriality with respect to finite étale isogenies

Lemma 3.2.30. Let [`] : T → T be the `-power map. It induces a map of rings [`]∗ : ΩT → ΩT for
which the target is free over the source of rank |T [`]|.

Proof. We only need to prove the corresponding assertions for ΩT,Z` since the rest follows after
tensoring with Z`. We first choose an isomorphism T ' Grm to generators (γ1, . . . , γr) of π1(T )` so
that ΩT,Z` ' Z`Jt1, . . . trK where ti + 1 = γi . The map [`]∗ is given by

[`]∗(ti) = (ti + 1)` − 1.

Reducing everything mod ` yields [`]∗(ti) = t`imod` and the induced map [`]∗mod` clearly defines
a structure of a free module for the target, we can now apply [Aut] Tag 00NS, which implies the
freeness hypothesis and the rank.

Let f : T ′ → T be a finite étale isogeny. Consider f∗LT ′ , this is a lisse ΩT ′ -sheaf of rank the
degree of f . Note that since LT ⊗ΩT Z` = Z`, where ΩT → Z` is the augmentation, we have

f∗LT ′ ⊗ΩT ′ Z` = f∗Z`.

We denote by CH(ker(f)) ⊂ CH(T ) the set of characters of πt1(T ) of order prime to ` that factor
through ker(f).

We denote by ForTT ′ the forgetful functor Dcons(X,ΩT )→ Dcons(X,ΩT ′).

Lemma 3.2.31. There is an isomorphism of ΩT ′-sheaves on T .

f∗LT ′ =
⊕

χ∈CH(ker(f))

ForTT ′(LT )⊗Z` Lχ.
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Proof. The sheaf f∗LT ′ is lisse and the corresponding representation of π1(T ) is the induction
along the embedding π1(T ′)→ π1(T ) of the character can. We can factor f into f1 : T ′ → T1 and
f2 : T1 → T such that f1 is a finite isogeny of degree prime to ` and f2 is of degree a power of `.
Since the induced map ΩT ′ → ΩT1

is an isomorphism and the map ΩT1
→ ΩT is a finite extension

of degree | ker f2|, it is enough to show the lemma for f1 and f2 separately.
For f1, we have f1,∗LT = ⊕χ∈CH(ker f1)LT1 ⊗Z` Lχ. To show the statement for f2, by choosing

isomorphism between T, T ′ and GdimT
m , we can reduce to T = T ′ = Gm and f2 = [`]. Now note

that LT = lim←−n[`n]Z`, now we have [`]∗LT = lim←−n[`]∗[`
n]∗Z` = lim←−n[`n+1]∗Z` = LT . Note however

that the ΩT -structure is given by ForTT along the map [`]∗.

3.2.6 Monodromic sheaves

We keep X with a T -action and let Λ ∈ {F`,Z`,ΩT } be a coefficient ring.

Definition 3.2.32. Let Y be a connected scheme and ȳ a geometric point of Y . We define
RepΛ(π1(Y, ȳ)) = Dlis(Y,Λ)♥. We say Y is a categorical K(π, 1) if the realization functor

Db(RepΛ(π1(Y, ȳ)))→ Dlis(Y,Λ),

is an equivalence.

Remark 3.2.33. The category RepΛ(π1(Y )) is the usual abelian category of continuous representa-
tions of π1(Y ) on Λ-modules of finite type.

Lemma 3.2.34 ([Ach17]). The torus T is a categorical K(π, 1).

Let A in RepΛ(π1(T )). Since π1(T )wild is normal in π1(T ) and of pro-order prime to `, the
sheaf A splits as a direct sum Atame⊕Awild. The two summands are characterized by the fact that
π1(T )wild acts trivially on Atame and non trivially on all subquotients of Awild.

Lemma 3.2.35. The category Dlis(T,Λ) splits as a direct sum

Dlis(T,Λ) = Dlis(T,Λ)tame ⊕Dlis(T,Λ)wild,

such that A ∈ Dlis(T,Λ)tame, resp. Dlis(T,Λ)wild if and only if for all i, Hi(A) = Hi(A)tame resp.
Hi(A) = Hi(A)wild.

Definition 3.2.36. Let A ∈ Dlis(T,Λ). We denote by Atame and Awild the two direct factors of
lemma 3.2.35 and we call the objects of Dlis(T,Λ)tame tame sheaves.

Proof of lemma 3.2.35. The abelian category RepΛ(π1(T )) splits as RepΛ(π1(T ))tame⊕RepΛ(π1(T ))wild

hence so does the derived category. This induces the splitting on Dlis(T,Λ) in view of lemma
3.2.34.

Definition 3.2.37. Let A ∈ Dcons(X,Λ) be a sheaf on X. The sheaf A is monodromic if for all
x ∈ X, the pullback along ax : T → X, t 7→ t.x is lisse and tame on T .

Theorem 3.2.38 ([Ver83]). Let A be a sheaf of Λ-modules on X, suppose A is monodromic then
there is a canonical action of πt1(T ) on A. This action is functorial on monodromic sheaves.
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Proof. We recall its construction. Let T̃ = lim←−n T where n is prime to p and the transition maps

are given by T 7→ T, x 7→ xn. Since all transition maps are affine, T̃ is an affine group scheme. The
map τ : T̃ → T is pro-étale covering with group πt1(T ). Consider the action of T̃ on X given by the
composition of τ with the action map. We prove that for all monodromic sheaves A ∈ Dcons(X,Λ)
there is a unique isomorphism

φ : a∗A→ p∗A

on T̃ × X, where a is the action map and p is the projection, such that the induced map along
1 × X is the identity. By [Ver83], we have RΓ(T̃ ,Λ) = Λ. The Kunneth formula then implies
that a∗ is fully faithful, that is the map Hom(A,B) → Hom(a∗A, a∗B) is an isomorphism for all
A,B ∈ Dcons(X,Λ) monodromic. This in particular implies the unicity of the map φ.

By [Ver83] 5.1, if Λ is a torsion ring, there exists n prime to p, such that a∗nA ' p∗A for an the
n-dilated action map, that is, the action of T given by (t, x) 7→ tnx. Pulling back to T̃ produces the
map φ. To pass from Λ a torsion ring to a general Λ, we present Λ as a limit and pass to the limit.
Since πt1(T ) = ker(T̃ → T ) acts trivially on X, the map φ defines an action of π1(T ) on A.

Remark 3.2.39. Verdier works a priori only with T = Gm but as explained in [BY13] Appendix A,
the construction naturally extends to any torus T .

Definition 3.2.40. For a monodromic sheaf A, we denote by φA : Λ[πt1(T )]→ End(A) the corre-
sponding monodromy action. We say A is unipotent monodromic is φA factors through Λ[π1(T )`],
we denote by Dcons(X,Λ)mon,unip the full subcategory of Dcons(X,Λ) of unipotent monodromic
sheaves.

Lemma 3.2.41. Consider the category of SchT,ft of schemes with a T -action. The functor X 7→
Dcons(X,Λ)mon,unip satisfies descent in the smooth topology of SchT,ft.

Proof. Let Y → X be a smooth T -equivariant cover. Firstly since Dcons(−,Λ) satisfies descent
along smooth cover, we have an isomorphism

(f∗n) : Dcons(X,Λ) ' lim←−
∆

Dcons(Y
X/n,Λ), (3.17)

where as before Y n/X denotes the n-fold product of Y over X. As such Y n/X is equipped with
the diagonal T -action and we consider Dcons(Y

n/X ,Λ)mon,unip, since pullbacks along T -equivariants
maps preserve the category Dcons(−,Λ)mon,unip. We have an induced cosimplicial category n 7→
Dcons(Y

n/X ,Λ)mon,unip. Taking limits yields a commutative diagram of categories

Dcons(X,Λ) lim←−∆
Dcons(Y

n/X ,Λ)

Dcons(X,Λ)mon,unip lim←−∆
Dcons(Y

n/X ,Λ)mon,unip

Note that the map lim←−∆
Dcons(Y

n/X ,Λ)mon,unip → lim←−∆
Dcons(Y

n/X ,Λ) is fully faithful since taking
limits preserves fully faithfulness. We want to show that the bottom map is an equivalence. Since
all three other maps are fully faithful, the bottom map is fully faithful. It remains to control the
essential surjectivity. If (An) is an object of lim←−∆

Dcons(Y
n/X ,Λ)mon,unip, we can descend it to an

object A ∈ Dcons(X,Λ). We only need to check that this object is unipotent monodromic. Let
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x ∈ X and y ∈ Y over x. Let Ox be the T -orbit of x and Oy the one of y. We then have a
commutative diagram

T Ox

Oy

ax

ay

induced by the orbit maps of x and y. By construction a∗xA = a∗yA1 which is unipotent monodromic
hence A is unipotent monodromic.

Consider now the full subcategory Dcons(X,ΩT )Z`−cons of Dcons(X,ΩT ) of objects such that
their image under the forgetful functor Dcons(X,ΩT )→ D(Xproet,Z`) is in Dcons(X,Z`). This then

induces a well defined functor For : Dcons(X,ΩT )Z`−cons
unip → Dcons(X,Z`).

Lemma 3.2.42. The forgetful functor induces an equivalence Dcons(X,ΩT )Z`−cons
unip → Dcons(X,Z`)mon,unip.

Proof. Consider the Bar resolution X × Tn+1 → X of X, since both sides satisfy smooth descent,
we have a commutative diagram

Dcons(X,ΩT )Z`−cons
unip lim←−∆

Dcons(X × Tn+1,ΩT )Z`−cons
unip

Dcons(X,Z`)mon,unip lim←−∆
Dcons(X × Tn+1,Z`)mon,unip

Hence, it is enough to show the statement for X × Tn+1. More generally assume that X = Y × T
splits T -equivariantly as a product where T -acts trivially on Y .

We first show that the forgetful functor is fully faithful. Let A′ = A �Z` (Z`)T ∈ Dcons(Y ×
T,Z`)mon,unip, since (Z`)T = LT /m, where m denotes the augmentation ideal of ΩT , we have
A′ = For(A0), where A0 = (A ⊗Z` ΩT ) �ΩT LT /m. Let A′ = A �Z` (Z`)T , B′ = B �Z` (Z`)T be

two such objects and denote by A0 and B0 ∈ Dcons(X,ΩT )Z`−cons
unip the corresponding lifts, then the

Kunneth formula implies that

Hom(A0, B0) = HomZ`(A,B)⊗Z` HomDcons(T,ΩT )unip
((Z`)T , (Z`)T ). (3.18)

Let us evaluate HomDcons(T,ΩT )unip
((Z`)T , (Z`)T ). We have

HomDcons(T,ΩT )unip
((Z`)T , (Z`)T ) = HomΩT (ΩT /m,ΩT )⊗ΩT HomDcons(T,ΩT )unip

(LT , LT )⊗ΩT ΩT /m

= HomΩT (ΩT /m,ΩT )⊗ΩT ΩT ⊗ΩT ΩT /m

= EndΩT (ΩT /m)

= RΓ(T,Z`).

The second line comes from the fact that HomDcons(T,ΩT )unip
(LT , LT ) = ΩT which can be seen

through the equivalence Dcons(T,ΩT )unip = Db
coh(ΩT ). The last line comes from lemma 3.2.43. On

the other hand after applying the forgetful functor, we get that

HomDcons(Y×T,Z`)mon−unip
(A′, B′) = HomZ`(A,B)⊗Z` RΓ(T,Z`), (3.19)
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as RΓ(T,Z`) = End((Z`)T ). Therefore the forgetful functor is fully faithful on objects of the

form A0. We show that these objects generate the category Dcons(Y × T,ΩT )Z`−cons
unip . Let A0 ∈

Dcons(Y × T,ΩT )Z`−cons
unip , as A0 is (T, LT )-equivariant A0 can be written as A0 = A′ � LT , where

A′ is an ΩT -constructible sheaf on Y . But as A0 is also Z`-constructible, the ΩT -structure of A′

factors is of m∞-torsion. As such A′ is in the full subcategory of Dcons(Y,ΩT ) generated by the
essential image of the functor Dcons(Y,Z`) → Dcons(Y,ΩT ) induced by the forgetful functor along
the augmentation ΩT → Z`. Let A′ ∈ Dcons(Y,ΩT ) be in the essential image of Dcons(Y,Z`), then
we have

A′ �ΩT LT = A′ �Z` LT /m = A′ �Z` (Z`)T . (3.20)

Let C,D ∈ Dcons(X,ΩT )Z`−cons
unip , since objects of the form A′ � (Z`)T generate the category we

can write C = lim−→i
(A′i � (Z`)T ) and D = lim−→j

(B′j � (Z`)T ) where both colimits are finite. As

the forgetful functor is a right adjoint it commutes with limits hence it also commutes with finite
colimits [Lur] 1.1.4.1. We then have

Hom(C,D) = lim←−
i

lim−→
j

Hom((A′i � (Z`)T ), (B′j � (Z`)T ))

= lim←−
i

lim−→
j

Hom(For(A′i � (Z`)T ),For(B′j � (Z`)T ))

= Hom(For(A),For(B)).

Hence For is fully faithful. Since the objects of the form For(A′ �Z` (Z`)T ) generate the category

Dcons(Y × T,Z`)mon,unip under finite colimits, the essential surjectivity is clear. Indeed let A ∈
Dcons(Y ×T,Z`)mon,unip, we can then write A = lim−→i

For(A′�Z` (Z`)T ) = For(lim−→i
A′�Z` (Z`)T ).

Lemma 3.2.43. There is a canonical isomorphism EndΩT (ΩT /m) = RΓ(T,Z`).

Proof. Consider the following functors Dcons(pt,ΩT )Z`−cons p∗−→ Dcons(T,ΩT )Z`−cons For−−→ Dcons(T,Z`),
where p : T → pt is the structure map. By fonctoriality we get a map

EndΩT (ΩT /m)→ EndT ((Z`)T ) = RΓ(T,Z`). (3.21)

It remains to check that this is an isomorphism. This can be done after taking cohomology, namely,
we want that the induced map

Ext∗ΩT (ΩT /m,ΩT /m)→ H∗(T,Z`), (3.22)

is an isomorphism. Since it is deduced from functoriality, this map is a map of algebras. It is known
that both sides are exterior algebras on their degree one parts. For the left hand this is (m/m2)∨

(where the (−)∨ is the Z`-linear dual) and for the right hand side this is H1(T,Z`). But those two
are canonically isomorphic to Hom(π`1(T ),Z`))⊗Z` Z` where this Hom denotes the set of morphism
in the 1-category of profinite groups.

Let A ∈ Dcons(X,ΩT )Z`−cons
unip and consider the object A′ ∈ Dcons(X,Z`)unip,mon be the image of

A under the forgetful functor. Consider the Z`[πt1(T )]-module structure on A′, since A′ is unipotent
monodromic the morphism Z`[πt1(T )]→ End(A′) factors through ΩT .
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Lemma 3.2.44. The two ΩT -structures on A′, one coming from Verdier’s monodromy and one
coming from the forgetful functor, coincide.

Proof. The object A ∈ Dcons(X,ΩT )Z`−cons is an ΩT -unipotent monodromic, its canonical mon-
odromy is a morphism ΩT [πt1(T )]→ End(A). As A comes from an equivariant sheaf this morphism
factors through ΩT [πt1(T )]/I where I is the ideal generated by elements (t − can(t)) for t ∈ πt1(T )
and can is the canonical map (3.15). where the second map is the forgetful map and is the inverse

functor to Dcons(X,ΩT )Z`−cons
unip → Dcons(X,Z`)mon,unip. Consider now the following diagram

Z`[πt1(T )]

ΩT ΩT [πt1(T )]

ΩT [πt1(T )]/I

End(A′)

where the map Z`[πt1(T )]→ ΩT is induced by the morphism can and the other morphisms are the
natural ones. The triangle does not commute but it commutes after projecting in ΩT [πt1(T )]/I.
The canonical monodromy is the ΩT -structure coming from the vertical composition while the
ΩT -structure on the forgetful functor is the map ΩT → End(A′).

We now denote by Φunip : Dcons(X,Z`)unip,mon → Dcons(X,ΩT )unip the inverse of the forgetful
functor.

Remark 3.2.45. The previous construction naturally extends to the non unipotent setting, for
χ ∈ CH(T ) we get a fully faithful functor

Φχ : Dcons(X,Z`)mon,χ → Dcons(X,ΩT )χ.

3.2.7 Reduction mod ` and the completed categories of [BY13]

Denote by ΩT,F` = ΩT ⊗Z` F`, this is the ring denoted by RT in [BR22b] defined for the ring k = F`.
We can work as previously using this ring instead of ΩT and define the category Dcons(X,ΩT,F`),
the sheaf LT,F` and the monodromic categories Dcons(X,ΩT,F`)χ as before for X with a T action.
We now give a comparison between our categories of monodromic sheaves and the completion of
the categories of monodromic sheaves of [BR22b] and [Gou21]. In this section, let Y be a scheme
and let X → Y be a T -torsor.

Theorem 3.2.46. We have a natural equivalence

ho(Dcons(X,ΩT,F`)unip) ' D̂b
c(X ( T )

where the category on the right is the completed monodromic category of [BR22b]. In the non-
unipotent case there is an equivalence

ho(Dcons(X,ΩT,F`n )χ) ' D̂b
c(X ( T )Lχ , (3.23)
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which holds after passing from F` to a finite extension F`n where χ is defined.

Proof. We only show the version for χ = 1, the generalization to other χ is straightforward. To
define the desired functor, first note that the category D̂b

c(X(T ) is a full subcategory of the category
ProDb

c(X ( T ) of monodromic objects on X, see [BR22b] 3.1 and 10.1. We first define a functor

Ψ : hoDcons(X,ΩT,F`)unip → ProDb
c(X ( T )

by A 7→ ” lim←− ”A⊗ΩT,F`
ΩT,F`/m

n where m is the maximal ideal of ΩT,F` . The ring ΩT,F`/m
n is an

Artin ring over F` so in particular it is finite dimension and A⊗ΩT,F`
ΩT,F`/m

n lives in Dcons(X,F`)
after forgetting the ΩT,F`/m

n-structure. For any y ∈ Y the restriction to the fiber Xy = π−1(y)
of A is isomorphic to M ⊗ΩT,F`

LT for some ΩT,F` -module M and therefore the restriction of
A ⊗ΩT,F`

ΩT,F`/m
n is isomorphic to the sheaf denoted by M ⊗ΩT,F`

LT,n in [BR22b] 3.2 and in
particular is monodromic on T . This implies that A⊗ΩT,F`

ΩT,F`/m
n is monodromic as an F`-sheaf

on X and that Ψ is well defined.
We first check that it factors through the category D̂b

c(X ( T ), which means checking the
two properties of [BR22b] definition 3.1. The pro-object Ψ(A) is π-constant, indeed we have the
following computation

lim←−π!(A⊗ΩT,F`
ΩT,F`/m

n) = lim←−(π!A)⊗ΩT,F`
ΩT,F`/m

n

= π!A.

The first line follows from the compatibility of the formation of π! with change of coefficients and
the second comes from the completeness property of the objects of Dcons(X,ΩT ) by 3.2.15. The
object π!A a priori lives in Dcons(Y,ΩT ), but fiberwise it is isomorphic to M ⊗ΩT,F`

RΓc(T, LT,F`) '
M ⊗ΩT,F`

F`[2 dimT ] and therefore the ΩT,F` -structure factors trough an F`-structure via ΩT,F` →
ΩT,F`/m ' F`, which is a well defined constructible F`-sheaf on Y .

The pro-object Ψ(A) is also uniformly bounded in degrees. There exists a ≤ b two integers such
that F ∈ Dcons(X)[a,b], the functor − ⊗ΩT,F`

ΩT,F`/m
n is of cohomological dimension [−dimT, 0]

and the forgetful functor Dcons(X,ΩT,F`/m
n)→ Dcons(X,F`) is t-exact. This implies that A⊗ΩT,F`

ΩT,F`/m
n lives in cohomological degree [a−dimT, b] and the functor Ψ factors through D̂b

c(X (T ).
The functor Ψ is fully faithful. Let A,B ∈ Dcons(X,ΩT,F`)unip, we have

Hom(A,B) = lim←−
n

Hom(A,B ⊗ΩT,F`
ΩT,F`/m

n)

= lim←−
n

lim−→
m

Hom(A⊗ΩT,F`
ΩT,F`/m

m, B ⊗ΩT,F`
ΩT,F`/m

n).

The first equality comes from the isomorphism B = lim←−nB⊗ΩT,F`
ΩT,F`/m

n and the second from the

same isomorphism for A and the fact that each B⊗ΩT,F`
ΩT,F`/m

n is discrete and thus a morphism

from A factors through one of its quotients. We apply H0 to this isomorphism, there is a Milnor
short exact sequence

0→ R1 lim←−H
−1(Hom(A,B ⊗ΩT,F`

ΩT,F`/m
n)→ H0 lim←−

n

Hom(A,B ⊗ΩT,F`
ΩT,F`/m

n))

→ lim←−
n

H0(Hom(A,B ⊗ΩT,F`
ΩT,F`/m

n)))→ 0.
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Note that as a complex Hom(A,B) ∈ D(ΩT,F`) is perfect and thus derived complete, indeed the cat-
egory of derived complete objects is stable and contains ΩT,F` hence all perfect complexes. By [Aut]
Tag 091P, all the cohomologies of Hom(A,B) are derived complete hence H−1(Hom(A,B)) is de-
rived complete. Since it is an ΩT,F` -module of finite type, by Nakayama’s lemma it is also m-adically
separated and therefore m-adically complete by [Aut] Tag 091T hence lim←−nH

−1(Hom(A,B))/mn =

H−1(Hom(A,B)) and the first term of the above exact sequence vanishes. Hence H0 commutes
with the limit, since the colimit filtered it is exact and commutes with H0. The fully faithfulness
now follows from the description of the morphisms in D̂b

c(X ( T ) [BR22b] 3.1 and [BY13] Section
A.2.

It remains to show that Ψ is essentially surjective, note that we have a compatibility between
free monodromic local systems as Ψ(LT ) = LT where the second sheaf is the free monodromic local
system of [BR22b] 3.2. Let A = ” lim←−n ”An be an object in D̂b

c(X ( T ), we can assume that for

each An, the Verdier’s monodromy φAn : ΩT,F` → End(An)-factors through ΩT,F`/m
n. Consider

now Ã = lim←−n Φunip(An) ∈ Dcons(X,ΩT,F`)unip. By construction Ã/mn = Φunip(An) and forgetting

the ΩT,F`/m
n-structure yields back An hence Ψ(Ã) = A and Ψ is essentially surjective.

3.2.8 The functor π†

We define two functors

π† : Dcons(X,ΩT )χ → Dcons(X/(T,Lχ),Z`)

and
π†,F` : Dcons(X,ΩT )χ → Dcons(X/(T,Lχ),F`).

by

(i). π† = −⊗ΩT Z` and

(ii). π†,F` = −⊗ΩT F`, where ΩT → Z` → F` is the augmentation.

The equivariant structure is clear since LT ⊗ΩT Z` = Z`.
Remark 3.2.47. Under the equivalence of theorem 3.2.46, the functors π† and π†,F` correspond to
the same functors π† of [BR22b] and [Gou21].

Remark 3.2.48. These functors have a canonical right adjoint which we denote by π† and π†F`
.

Remark 3.2.49. In the unipotent case, the functor π† is isomorphic to the functor π∗π![2 dimT ].

3.2.9 Pushforward to the base on unipotent monodromic categories.

Consider a Cartesian diagram

X X ′

Y Y ′

p′

f

f ′

p

where the stacks X and X ′ are equipped with an action of T , f ′ is T -equivariant and p and p′ are
T -torsors. Let χ ∈ CH(T ) and consider the categories Dcons(X,ΩT )unip and Dcons(X

′,ΩT )unip.
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Lemma 3.2.50 (Analog of [BY13] A.3.4). The canonical base change maps

(i). p′!f
′
! → f!p!,

(ii). p′!f
′
∗ → f ′∗p!,

(iii). p!f
′∗ → f∗p′!,

(iv). p!f
′! → f !p′!

are isomorphisms of functors Dcons(X,ΩT )unip → Dcons(Y
′,Z`) and Dcons(X

′,ΩT )unip → Dcons(Y,Z`).

Proof. The cases of f! and f∗ are immediate by the compatibility of the composition of lower shrieks
and proper base change. For the two other maps, both statements are Zariski local on Y and Y ′

respectively. We may assume that the T -torsors X and X ′ are trivial and we fix trivializations X =
Y ×T and X ′ = Y ′×T . We do the case for f ′!, the case of f ′∗ is similar. Let A ∈ Dcons(X

′,ΩT )unip

then A ' A′ � LT for some sheaf A′ on Y ′. Then we have

p!f
′!A = p!(f × id)!A

= p!(f
!A′ � LT )

= f !A′ ⊗ RΓc(T, LT )

= f !p′!(A
′ ⊗ LT )

= f !p′!A.

3.3 Deligne-Lusztig theory and the F-horocycle space

3.3.1 The F-twisted horocycle transform.

We consider a variant of the horocycle transform that was used by Lusztig to define character
sheaves. This variant was already considered by Lusztig in [Lus15] and [Lus17]. We also refer to
[BDR20]. Consider the following diagram.

(G×G)/∆FU

G/U ×G/U (G×G)/∆FB

(G/U ×G/U)/∆FT (G×G)/∆FG

Here ∆F refers to the action on the right given by (x, y).g = (xg, yF(g)). All maps are the obvious
quotient maps. They are equivariant for the diagonal left action of G on all objects. Passing to
the quotient and using the isomorphism a : ∆(G)\(G×G) ' G, (x, y) 7→ x−1y yields the following
commutative diagram of algebraic stacks over F̄q.
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G
AdFU

U\G/U G
AdF(B)

(U\G/U)
AdFT

G
AdF(G)

r̃

r
p

p̃

q̃

q

where AdF refers to the action given by g.x = gxF(g)−1.

Remark 3.3.1. Consider the isomorphism (G×G)/∆FB ' G×G/B given by (x, y) 7→ (F(x)y−1, xB).
This morphism is equivariant for the diagonal action of G on the source and the action of G on
the target given by g.(x, yB) = (F(g)xg−1, gyB). Passing to the quotient yields the following
isomorphism

G

AdFB
' GF\G/B. (3.24)

Note that we can freely replace B by any F-stable subgroup of G.

We call the space (U\G/U)
AdFT

the F-twisted horocycle space. We also define the three functors
F-character, F-horocycle correspondence and the ∗ − F-horocycle correspondence as

HCF = r!q
∗

CHF = q!r
!

HC∗F = r∗q
!.

The ∗ in HC∗F refers to the ∗-pushforward. Since q is proper we have an adjunction (HCF,CHF)
and since r is smooth of relative dimension dimU , we have an adjunction (CHF[2 dimU ],HC∗F).
These functors were introduced in [Lus15], [Lus17] and [BDR20] but in a non stacky form.

Consider the category Dindcons(pt/GF,Λ), s : pt → pt/GF and the adjunction s! : D(Λ) �
Dindcons(pt/GF,Λ) : s!. By general nonsense, the functor s!s! : D(Λ)→ D(Λ) is a monad acting on
D(Λ). Recall that we say that the functor s! is monadic if it identifies Dindcons(pt/GF,Λ) with the
category of algebras over the monad s!s!.

Lemma 3.3.2. The functor s! is monadic and the monad s!s! is canonically identified with the
functor Λ[GF]⊗− seen as monad using the group algebra structure of Λ[GF].

Proof. To check the monadicity assertion, we apply the Barr-Beck-Lurie theorem [Lur] 4.7.0.3. First
note that both categories are cocomplete, it is then enough to check that s! is conservative and
commutes with geometric realization (i.e. ∆op-shaped colimits). But since s is surjective and étale
s! = s∗ is conservative and commutes with all colimits this concludes the first part of the lemma.

For the second, since the functor s!s! is a continuous endofunctor of D(Λ), by proper base change
it is given by ⊗ΛΛ[GF] together with its group algebra structure.

Corollary 3.3.3. There is a canonical equivalence of ∞-categories

Dindcons(pt/GF,Λ) = D(Λ[GF]). (3.25)
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Proof. By lemma 3.3.2, there is a canonical equivalence Dindcons(pt/GF,Λ) = Λ[GF]−Mod(D(Λ))
where the right hand side category is the category of Λ[GF]-modules in D(Λ). Identifying D(Λ[GF])
with Λ[GF]−Mod(D(Λ)) is standard and follows from the Barr-Beck-Lurie theorem. Let us recall
the argument, consider the adjunction Λ[GF] ⊗Λ − : D(Λ) � D(Λ[GF]) : For. The forgetful
functor is conservative and commutes with all colimits (since it has itself a right adjoint given by
HomΛ(Λ[GF],−)), hence For is monadic and the monad For ◦ (Λ[GF] ⊗Λ −) is simply given by
tensoring with the algebra Λ[GF].

Remark 3.3.4. The subcategory Dcons(pt/GF,Λ) is then identified with the full subcategory of
Dindcons(pt/GF,Λ) of objects such that their pullback to pt is constructible, i.e., is a perfect complex
of Λ-modules. In classical terms, this is nothing else than (the ∞-enhancement of) the derived
category D(Repft

ΛG
F) of modules of Λ[GF]-modules of finite type.

Lemma 3.3.5. We have a canonical isomorphism of functors.

Dcons(U\G/U,Λ)→ D(Λ)

RΓc(G/U, (id× FG/U )∗a∗−) = 1∗CHF(p!−)[−2 dimU ],

where 1 is the map pt→ pt/GF.

Proof. Consider the diagram

G/U ×G/U G/U pt

∆(G)\(G/U ×G/U) GF\G/U GF\pt

U\G/U G
AdFU

G
AdFGq̃r̃

a

(id×F)

where the bottom vertical maps are isomorphims by the map a : (x, y) 7→ x−1y, the top vertical
maps are the quotient maps and the top squares are Cartesian. We now have by proper and smooth
base change

RΓc(G/U, (id× FG/U )∗a∗−) = 1∗q̃!r̃
∗

= 1∗q!p!r̃
![−2 dimU ]

= 1∗q!r
!p![−2 dimU ] = 1∗CHF(p!−).

Finally we denote by ForΩT : Dindcons(pt/GF,ΩT ) → Dindcons(pt/GF,Z`) the forgetful functor
along the inclusion Z` → ΩT and by −⊗Z` ΩT its left adjoint.

55



3.3.2 Sheaves on the F-twisted horocycle space and Deligne-Lusztig the-
ory.

In this section we discuss some links between Deligne-Lusztig theory and twisted horocycle trans-
form. In the next subsection, we will discuss a monodromic variant of the construction here. We first

consider the space U\G/U
AdF(T ) together with the stratification induced from the Bruhat stratification.

Let w ∈W and consider the corresponding stratum U\UwTU/U
AdF(T ) .

We first note that we have an isomorphism of stacks, after choosing a lift ẇ of w,

U\UwTU/U
AdF(T )

' pt/(Uw o TwF).

In particular after passing to categories of sheaves, we get Dcons(pt/(UwoTwF),Λ) ' Dcons(pt/TwF,Λ).

We will also denote by iw : U\UwTU/UAdF(T ) → U\G/U
AdF(T ) the inclusion.

Remark 3.3.6. The category Dcons(
U\G/U
AdFT

,Λ) is obtained by gluing all the categories Dcons(pt/TwF,Λ)
in a nontrival way.

Remark 3.3.7. Let us also highlight the dependency on the lift ẇ. We have an isomorphism of
stacks

U\G/U
AdF(T )

= ∆(G)\(G/U ×G/U)/∆F(T ),

induced by the map a : G/U ×G/U → U\G/U . Let Ow be the ∆(G) ×∆F(T )-orbit of the point
(1, ẇ) in G/U ×G/U , as a locally closed subscheme of G/U ×G/U it is idenpendant of the choice

of ẇ. Under this isomorphism ∆(G)\Ow/∆F(T ) is sent to U\UwTU/U
AdF(T ) . Now Uw o TwF is identified

with the stabilizer of the point (1, ẇ) which yield the desired isomorphism.

We recall that to w and ẇ, Deligne and Lusztig [DL76] have attached a pair of varieties

X(w) = {gB,L(g) ∈ BwB} ⊂ G/B,

and
Y (ẇ) = {gU,L(g) ∈ UẇU} ⊂ G/U.

The following facts hold, we refer to loc. cit.

(i). Both varieties X(w) and Y (ẇ) are GF-stable in G/B and G/U respectively.

(ii). Consider the right action of T on G/U . The variety Y (ẇ) is TwF-stable. The TwF and
GF-actions on Y (ẇ) commute.

(iii). The map induced by the projection G/U → G/B induces a map Y (ẇ)→ X(w). This map is
a TwF-torsor.

In particular the cohomology RΓc(Y (ẇ),Λ) has two commuting actions of TwF and GF. We can
now define the Deligne-Lusztig induction functor as

Rw : Dcons(pt/TwF,Λ)→ Dcons(pt/GF,Λ),M 7→M ⊗TwF RΓc(Y (ẇ),Λ).
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Consider now the following diagram

U\G/U
AdFT

G
AdFB

G
AdFG

∆(G)\(G/U ×G/U)/∆FT GF\G/B GF\pt

∆(G)\Ow/∆F(T ) GF\X(w) GF\pt

where the first line is the F-twisted horocycle correspondence, the second line is isomorphic to the

first via the two isomorphisms ∆(G)\(G/U × G/U)/∆F(T ) = U\G/U
AdFT

and G
AdFB

= ∆(G)\(G ×
G)/∆F(B) = GF\G/B induced by the map a. The bottom line is induced by the inclusion of the
orbit Ow and the fact that X(w) is the intersection of BwB/B with the graph of Frobenius.

Denote by kw : U\BwB/UAdFT
→ pt/TwF the map induced by the quotient map TwF o Uw → TwF.

Under the isomorphism ∆(G)\Ow/∆F(T ) = pt/(TwF o Uw), the map GF\X(w) → pt/(TwF n
Uw)

kw−−→ pt/TwF corresponds to a TwF-torsor over GF\X(w). It is nothing else than GF\Y (ẇ). To
sum up we have the following diagram

U\G/U
AdFT

G
AdFB

G
AdFG

U\BwB/U
AdFT

GF\X(w) GF\ptr

iw

r

iw

q

q

Let M be a sheaf on U\BwB/U
AdFT

, proper base change implies that

q!r
∗iw,!M = q!r

∗M.

We then deduce the following theorem.

Theorem 3.3.8. There are canonical isomorphisms of functors Dcons(pt/TwF,Λ)→ Dcons(pt/GF,Λ)
and Dcons(pt/GF,Λ)→ Dcons(pt/TwF,Λ) respectively,

q!r
∗iw,!k

∗
w ' RΓc(Y (ẇ),Λ)⊗TwF −

kw,∗i
∗
wr!q

∗ ' RΓc(Y (ẇ),Λ)⊗GF −.

Proof. Using the above diagram, both functors can be summarized with the following correspon-
dence

pt/TwF kw←−− pt/(TF o Uw)
r←− GF\Y (ẇ)/TwF q−→ pt/GF. (3.26)

The result now follows from the Kunneth formula.
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3.3.3 Sheaves on a torus

Before reconstructing Deligne-Lusztig theory we first study the case of a torus. Let us now introduce
some notations for the representations of TwF. Note that TwF is naturally a quotient of πt1(T ),
induced by the Lang map LwF : T → T which is a TwF-covering. We denote by CH(TwF) the set
of Z`-characters of TwF of order prime to `, the quotient map πt1(T ) → TwF defines an inclusion
CH(TwF) ↪→ CH(T ). For χ ∈ CH(TwF) there is a corresponding block of Z`[TwF] and we denote
the corresponding idempotent by eχ ∈ Z`[TwF]. We want to relate the two equivariance conditions
on T : the AdwF-equivariance and the (T, LT )-equivariance.

Lemma 3.3.9. We have an equivalence of categories

Dcons(
T

AdwFT
,ΩT )unip ' e1Dcons(pt/TwF,Z`). (3.27)

Proof. Consider the adjunction

For : Dcons(
T

AdwF(T )
,ΩT )unip � Dcons(T,ΩT )unip : AvAdwF ,

where the functor AvAdwF = a!(− �ΩT ΩT [2 dimT ]) for a : T × T → T, (x, y) 7→ xLwF(y) and For
is the forgetful functor which is right adjoint to AvAdwF .

We compute the monad ForAvAdwF acting on Dcons(T,ΩT )unip ' PerfΩT . It is enough to

compute AvAdwF(LT ) = a!(p
∗LT ) where p : T × T → T is the first projection. By lemma 3.2.22,

we have
p∗LT = LT×T ⊗ΩT×T ,p∗ ΩT .

We have a = m◦(id×LwF) and by using lemma 3.2.31 we have (id×LwF)!LT×T =
⊕

χ∈CH(TwF) LT×T⊗Z`
Lχ×1. Then m!LT×T ⊗Z` Lχ×1 is 0 for non trivial χ and m!LT×T = LT [−2 dimT ] by lemma 3.2.22
and the ΩT -module structure is the one obtained from m∗ : ΩT×T → ΩT . Putting everything
together we have a!p

∗LT [2 dimT ] = LT ⊗ΩT×T ΩT . Taking the fiber at 1 yields ΩT ⊗ΩT×T ΩT where
the left ΩT is an ΩT×T -modules via the composition m∗(id×LwF)∗ = a∗ and the right one via the
first projection. But now we have

ΩT ⊗a∗ΩT×T ,p∗ ΩT ' ΩT ⊗LwF,∗ΩT Z` ' Z`[TwF[`∞]].

Now it follows from the Barr-Beck-Lurie theorem as in lemma 3.3.3 that the category of algebras
over this monad is equivalent to Db(Z`[TwF[`∞]]), that is e1Dcons(pt/TwF,Z`).

Remark 3.3.10. Let us comment on the right hand side of 3.27, the category Dcons(pt/TwF,Z`) is
equivalent to the bounded derived category of modules over Z`[TwF] which has a natural direct sum
decomposition according to the idempotent eχ. For the idempotent e1, first note that e1Z`[TwF] '
Z`[TwF[`∞]] hence the category e1Dcons(pt/TwF,Z`) is equivalent to the bounded derived category
of Z`[TwF[`∞]] modules. Consider now the composition of functors

e1Dcons(pt/TwF,Z`) ' Dcons(
T

AdwFT
,ΩT )unip

For−−→ Dcons(pt/TwF,ΩT )

1∗−→ Dcons(pt,ΩT ) ' PerfΩT
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where 1 : pt → pt/TwF is the universal torsor. Then for A ∈ e1Dcons(pt/TwF,Z`) the ΩT -module
obtained by applying all these functors is the following. Consider the Lang map LwF : T → T by
functoriality if induces a map of rings LwF,∗ : ΩT → ΩT , then by lemma 3.2.31 we have a natural
isomorphism

Z` ⊗ΩT ,LwF,∗ ΩT ' Z`[TwF[`∞]]

and that the composite of the functors is simply the forgetful functor corresponding to the map
ΩT → Z`[TwF[`∞]].

Similarly we have the following in the non unipotent setting.

Lemma 3.3.11. Let χ ∈ CH(TwF) we have a canonical equivalence

Dcons(
T

AdwF(T )
,ΩT )χ ' eχDcons(pt/TwF).

Corollary 3.3.12. Combining all previous equivalences, we get the following equivalence

Dcons(pt/TwF,Z`) '
⊕

χ∈CH(TwF)

Dcons(
T

AdwF(T )
,ΩT )χ.

3.3.4 Monodromic variant

We now give a second construction of the Deligne-Lusztig induction functors but this time using
monodromic sheaves. We will also show that the two constructions are equivalent. This second
construction will make it much easier to compare the Deligne-Lusztig theory with Soergel theory
and will be relevant in the last section to compute the image under HCF of a Gelfand-Graev
representation.

Denote by ForT,χ the functor

Dcons(
T

AdwF(T )
,ΩT )χ → Dcons(

T

AdwF(T )
,ΩT )

k∗w−−→ Dcons(
T

AdwF(T ) n Uw
,ΩT )

' Dcons(
U\BwB/U

AdF(T )
,ΩT )

where the first functor is the forgetful functor of the (T, LT ⊗ Lχ)-equivariance, the second is
a pullback under kw : T

AdwF(T )nUw →
T

AdwF(T ) and the last one is induced by the isomorphism
U\BwB/U

AdF(T ) ' T
AdwF(T )nUw . Consider now the following composition of functors
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Dcons(pt/TwF,Z`) '
⊕

χ∈CH(TwF)

Dcons(
T

AdwF(T )
,ΩT )χ

⊕
χ∈CH(TwF) ForT,χ

−−−−−−−−−−−−−→ Dcons(
U\BwB/U

AdF(T )
,ΩT )

iw,!−−→ Dcons(
U\G/U
AdF(T )

,ΩT )

q!r
∗

−−→ Dcons(pt/GF,ΩT )

ForΩT−−−−→ Dcons(pt/GF,Z`).

Lemma 3.3.13. The previous composition of functors is isomorphic to the functor

Dcons(pt/TwF,Z`)→ Dcons(pt/GF,Z`)
A 7→ A⊗TwF RΓc(Y (ẇ),Z`),

where Y (ẇ) is the Deligne-Lusztig variety associated to ẇ.

Proof. Consider the diagram

T T × pt/Uw U\BwB/U U\G/U

pt/TwF pt/(TwF n Uw) U\BwB/U
AdF(T )

U\G/U
AdF(T )

p

iw

iw

pw,1

∼

pw,2

∼
kw

k′w
pw,3

where all squares are Cartesian and the vertical arrows are the quotient maps for the AdwF-action.
In the proof of lemma 3.3.9, we showed that pw,3,!(LT ⊗ Lχ) = eχZ`[TwF][−2 dimT ]. Proper base
change implies

p!iw,!(k
′
w)∗(LT ⊗ Lχ) = iw,!ForT,χ(eχZ`[TwF])[−2 dimT ].

We can now apply lemma 3.3.5, to get that

ForΩT q!r
∗iw,!ForT,χ(eχZ`[TwF]) = RΓc(G/U, (id× FG/U )∗a∗iw,!(k

′
w)∗(LT ⊗ Lχ))[2 dimT ].

We now have to identify the right hand side with the cohomology of the Deligne-Lusztig varieties,
which is lemma 3.3.14.

Lemma 3.3.14. There is a canonical isomorphism, compatible with the actions of GF and TwF

RΓc(G/U, (id× FG/U )∗a∗iw,!ν
∗
w(LT ⊗ Lχ))[2 dimT ] ' eχRΓc(Y (w),Z`),

where Y (ẇ) is the Deligne-Luszig variety associated to ẇ and the map νẇ : BwB/B → T is the
projection onto T using the splitting BwB = U × T × Uw induced by the choice of ẇ.

Proof. Denote by Ỹ (w) ⊂ G/U the subvariety of {gU, g−1F(g) ∈ BwB}. Note that Ỹ (w) is
independent of the choice of ẇ. The map νẇ : BwB → T induces a map ν′ẇ : Ỹ (w) → T defined
as ν′w(gU) = νẇ(g−1F(g)). Denote by X(w) ⊂ G/B the Deligne-Lusztig variety associated to w,
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that is X(w) = {gB, g−1F(g) ∈ BwB}. The variety Y (ẇ) ⊂ G/U is {gU, g−1F(g) ∈ UẇU}, it
is therefore identified with the fiber at 1 of ν′ẇ. Let us summarize the situation via the following
diagram

Y (ẇ) 1

X(w) Ỹ (w) T

U\BwB/U T.

ν′ẇ

νẇ

q

q′

The subscheme Ỹ (w) ⊂ G/U is T -stable for the action of T by right translation and the map
ν′ẇ is equivariant for the action of T on itself via the map LwF. The map q is a T -torsor and the
map q′ is a TwF-torsor. The action of T on Ỹ (w) then induces an isomorphism

Y (ẇ)×T
wF

T ' Ỹ (w).

Where ×TwF

denotes the quotient by the action of TwF given by t.(x, y) = (xt−1, ty). In particular
this induces a canonical isomorphism

ν′∗ẇ (LT ⊗ Lχ) = ΩT �
TwF

ΩT L
∗
wF(LT ⊗ Lχ).

where �T
wF

ΩT
denotes the sheaf on Y (ẇ)×TwF

T descended from the sheaf �ΩT on Y (ẇ)× T . The
Kunneth formula now yields

q!ν
′∗
ẇ (LT ⊗ Lχ) = (q′!ΩT ⊗ΩT RΓc(T,L∗wF(LT ⊗ Lχ)))T

wF

.

We claim that RΓc(T,L∗wF(LT ⊗ Lχ)) = eχZ`[TwF][−2 dimT ]. Let us first show that this implies
the result,

q!ν
′∗
ẇ (LT ⊗ Lχ) = (q′!ΩT ⊗ΩT RΓc(T,L∗wF(LT ⊗ Lχ)))T

wF

= (q′!ΩT ⊗ΩT eχZ`[TwF][−2 dimT ])T
wF

= eχq
′
!Z`[−2 dimT ].

We now prove the claim. Decompose TwF = T1 × T2 where T2 is of `-torsion and T1 is of prime to

`-torsion. We factor LwF : T → T into T
f1−→ T

f2−→ T where f1 is the quotient by T1 and f2 the
quotient by T2.

As T2 is of `-torsion, we have an isomorphism f∗2Lχ = Lχ. On the other hand, by lemma 3.2.22,
f∗2LT = LT ⊗ΩT ,f2,∗ ΩT where f2,∗ : ΩT → ΩT is the map induced by f2. Combining both of those
facts, we have f∗2 (LT ⊗Z` Lχ) = (LT ⊗Z` Lχ)⊗ΩT ,f2,∗ ΩT .

As f1 is the quotient by T1 which is of prime to `-torsion, the induced map f1,∗ : ΩT → ΩT is
an isomorphism, hence f∗1LT = LT . We have

f∗1 f
∗
2 (LT ⊗ Lχ) = f∗1 (LT ⊗Z` Lχ)⊗ΩT ,f2,∗ ΩT

= f∗1 (LT ⊗Z` Lχ)⊗ΩT ,f2,∗ ΩT

= LT ⊗Z` f
∗
1Lχ ⊗ΩT ,f2,∗ ΩT .
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To compute the cohomology, we first apply f1,∗. This yields

f1,∗(LT ⊗Z` f
∗
1Lχ)⊗ΩT ,f2,∗ ΩT = f1,∗LT ⊗Z` Lχ ⊗ΩT ,f2,∗ ΩT

by the projection formula. The sheaf f1,∗LT decompose as
⊕

χ”∈CH(TwF) Lχ” ⊗Z` LT . We have

RΓc(T, f1,∗(LT ⊗Z` Lχ)⊗ΩT ,f2,∗ ΩT ) =
⊕
χ”

RΓc(T, (LT ⊗Z` Lχ” ⊗Z` Lχ)⊗ΩT ,f2,∗ ΩT )

= RΓc(T, LT ⊗Z` Lχ−1 ⊗Z` Lχ)⊗ΩT ,f2,∗ ΩT

= χ⊗Z` Z`[−2 dimT ]⊗ΩT ,f2,∗ ΩT

= χ⊗Z` Z`[T
wF][`∞][−2 dimT ]

= eχZ`[TwF][−2 dimT ]

where the second line comes from the fact that the cohomology of LT ⊗ Lχ is 0 if χ is non trivial,
the third one comes from the identification of the action of T1 on the cohomology and χ denotes
the one dimensional representation of T1 corresponding to χ.

3.3.5 Comparison of the two functors

Consider the two functors Dcons(pt/GF,Z`)→ Dcons(pt/TwF,Z`),

(i). i!wHC∗F(−), where HC∗F = r∗q
! as before,

(ii). i!w ⊕χ AvχHC∗F(− ⊗Z` ΩT ), where Avχ = a!(− �ΩT (LT ⊗ Lχ[2 dimT )]) and a is the action
map of T acting by right translations.

These functors are the right adjoints of the functors of theorem 3.3.8 and lemma 3.3.13, which we
have shown to be isomorphic to the Deligne-Lusztig induction functors. By the unicity of right
adjoints, these functors are isomorphic.

Let M ∈ Dcons(
U\G/U
AdFT

,Z`) and consider the action of T by right translation. On each T -orbit,
the sheaf M is monodromic for this action. The inverse of the forgetful functor of lemma 3.2.44 is
a functor

Φ = ⊕χΦχ : Dcons(
U\G/U
AdFT

,Z`)→
⊕
χ

Dcons(
U\G/U
AdFT

,ΩT )χ.

Lemma 3.3.15. The functor Φ is an equivalence and the following diagram commutes.

Dcons(
U\G/U
AdFT

,Z`)
⊕

χ Dcons(
U\G/U
AdFT

,ΩT )χ

Dcons(pt/GF,Z`)

Φ

HC?
F

⊕χAvχHC?
F(−⊗Z`

ΩT )

where HC?
F denotes either the functor HCF or the functor HC∗F.

Proof. We show the statement for HC∗F the same proof applies to the functor HCF. By construction,
the functor Φ is an equivalence onto its image. It is therefore enough to see that Φ is essentially
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surjective. Let M ∈ Dcons(
U\G/U
AdFT

,ΩT )χ, then on all strata the ΩT -structure factors through a
quotient ΩT /I

n where I is the augmentation ideal. Hence this happens globally, therefore M is in
the category of constructible Z`-sheaves, which lies in the essential image of Φ.

To show the commutativity, note that AvχHC∗F(−⊗Z` ΩT ) = Avχ(HC∗F(−)⊗Z` ΩT ). Now

Avχ((−⊗Z` ΩT ) = a!((LT ⊗ Lχ)[2 dimT ]�ΩT (−⊗Z` ΩT ))

= a!((LT ⊗ Lχ)[2 dimT ]�Z` (−)).

But on χ-monodromic sheaves the functor a!((LT ⊗ Lχ)[2 dimT ]�Z` (−)) is nothing else than the
functor Φ.

3.3.6 Parabolic variants and parabolic Deligne-Lusztig functors

In the previous section we have discussed the link between the Deligne-Lusztig induction functors
from a torus. In this section we give a a more direct construction of the Deligne-Lusztig induction
and restriction functor but which also recovers the parabolic induction/restriction functors.

Consider the following situation. Let L ⊂ G be an F-stable Levi subgroup and P = LV a
parabolic with Levi L and unipotent radical V , we do not require P to be F-stable. We will denote
by F(V ) the image of V under F.

Consider now the correspondence

V \G/F(V )

AdFL

rP←−− G

AdFP

qP−−→ G

AdFG
.

Consider the inclusion i : PF(P ) ⊂ G. We have V \PF(P )/F(V )
AdFL

= pt/(LFo(V ∩F−1(V )). Denote

by kL : pt/(LF o (V ∩ F−1(V ))→ pt/LF the map induced by the projection LF o (V ∩ F−1(V )→
pt/LF. We consider the functor qP,!r

∗
P i!. Attached to the data of (P,L,F), there are parabolic

Deligne-Lusztig varieties, see for instance [DM14],

XP = {gP,L(g) ∈ PF(P )} ⊂ G/P

and
YP = {gV,L(g) ∈ V F(V )} ⊂ G/V.

The map YP → XP is an LF-torsor and the cohomology RΓc(YP ,Λ) is equipped with commuting
actions of GF and LF.

Theorem 3.3.16. We have an isomorphism of functors Dcons(pt/LF,Λ)→ Dcons(pt/GF,Λ),

qP,!r
∗
P i!k

∗
L ' RΓc(YP ,Λ)⊗LF −.

Definition 3.3.17. We denote this functor by iL⊂P . It is usually called the parabolic Deligne-
Lusztig induction functor. Its right adjoint is denoted by rL⊂P and is usually called the parabolic
Deligne-Lusztig restriction functor.
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Proof. The proof is very similar to the proof of theorem 3.3.8. Consider the diagram

V \G/F(V )
AdFL

G
AdFP

G
AdFG

V \PF(P )/V
AdFL

GF\XP GF\pt

pt GF\ỸP

rP

i

rP

i

qP

qP

1 π

where the two left squares are Cartesian and ỸP = {g ∈ G,L(g) ∈ V }. Note that the map ỸP → YP
is a V ∩ F−1(V )-torsor. Then we have by proper base change for M ∈ Dcons(pt/LF,Λ)

qP,!r
∗
P i!M = qP,!r

∗
P (1!1

∗M)LF [2 dim(V ∩ F−1(V ))]

= (qP,!i!r
∗
P 1!1

∗M)LF [2 dim(V ∩ F−1(V ))]

= (qP,!r
∗
P 1!1

∗M)LF [2 dim(V ∩ F−1(V ))]

= 1∗M ⊗LF RΓc(ỸP ,Λ)[2 dim(V ∩ F−1(V ))]

= RΓc(YP ,Λ)⊗LF −.

The first line follows from the fact that the map 1 : pt→ pt/(LF o (V ∩ F−1(V ))) is a LF o (V ∩
F−1(V ))-torsor and the last one by the fact that RΓc(ỸP ,Λ)[2 dim(V ∩F−1(V ))] = RΓc(YP ,Λ).

3.3.7 Compatibility with parabolic induction

Finally we want to discuss some compatibilities with parabolic induction. There are two statements
we will be interested in

(i). compatibility of the F-horocycle transform with parabolic induction,

(ii). transitivity of the Deligne-Lusztig induction.

The second point is already well known but we give a proof with the stacky formalism for com-
pleteness.

Let us consider the first situation. Let B ⊂ P ⊂ G be a F-stable standard parabolic with
F-stable Levi F. Denote by V the unipotent radical of P , by BL = L ∩ B, this is a Borel of L
and by UL the unipotent radical of BL. In particular, we have B = BLV . We define the parabolic
induction functors

(i). For the horocycle correspondence, consider the correspondence

UL\L/UL
AdFT

s←− U\P/U
AdFT

t−→ U\G/U
AdFT

, (3.28)

where the left map is induced by projection P → L and the quotient U → UL and the right
map is induced by the inclusion P → G. The parabolic induction functor is iHC

L⊂P = t!s
∗.
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(ii). On the representation side, consider the correspondence

pt/LF s′←− pt/PF t′−→ pt/GF, (3.29)

the parabolic induction functor is iL⊂P = t′!s
′∗.

Lemma 3.3.18. There is an isomorphism of functors Dcons(
UL\L/UL

AdFT
,Λ)→ Dcons(pt/GF,Λ),

HCGF i
HC
L⊂P = iL⊂PHCLF, (3.30)

where HCGF and HCLF denote the horocycle transform for G and L respectively.

Proof. Consider the following commutative diagram of stacks.

UL\L/UL
AdFT

U\P/U
AdFT

U\G/U
AdFT

L
AdFBL

P
AdFB

G
AdFB

pt/LF pt/PF pt/GF

rL

qL

s′

s t

rP

qP

s1

r

q

t′

t1

where the bottom and top lines are the maps defining the functors iL⊂P and iHC
L⊂P , the middle

horizontal line is induced by the projections P → L and B → BL and by the inclusion P → G.
The exterior vertical lines are the maps defining the functors HCLF and HCGF . The map rP is the
quotient by U acting on the left and the map qP is the map P

AdFB
→ P

AdFP
induced by the inclusion

B ⊂ P . It follows from these descriptions that the top right square is Cartesian and the bottom
left one is Cartesian as well. The lemma is a proper base change exercise

iL⊂PHCLF = t′!s
′∗qL,!r

∗
L

= t′!qP,!s
∗
1r
∗
L

= q!t1,!r
∗
P s
∗

= q!r
∗t!s
∗

= HCGF i
HC
L⊂P .

We now pass to the second statement. Consider now the following tower of groups

M ⊂ Q ⊂ L ⊂ P ⊂ G, (3.31)

where P is a parabolic of G with Levi L and Q is a parabolic of L with Levi M . Denote by UP
and UQ the unipotent radicals of Q and P and by Q′ = QUP ⊂ G. This is a parabolic of G with
Levi M . The following lemma is well known, see for instance [CE04] 7.1.9 for a different proof.

Lemma 3.3.19. There is an isomorphism of functors Dcons(pt/MF,Λ)→ Dcons(pt/GF,Λ) a

iL⊂P iM⊂Q = iM⊂Q′ . (3.32)
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Proof. Consider the following diagram.

G
AdFG

G
AdFQ′

G
AdFP

UP \G/F(UP )
AdFQ

Q′F(Q′)
AdFQ′

PF(P )
AdFP

UQ′\G/F(UQ′ )

AdFM
UP \(Q′F(Q′))/F(UP )

AdFQ
UP \(PF(P ))/F(UP )

AdFL

UQ′\(Q
′F(Q′))/F(UQ′ )

AdFM
QF(Q)
AdFQ

L
AdFL

UQ\(QF(Q))/F(UQ)
AdFM

L
AdFQ

M
AdFM

UQ\L/F(UQ)
AdFM

We will detail this diagram while doing the proof of the lemma. Consider the two functors
Dcons(

M
AdFM

,Λ) → Dcons(
G

AdFG
,Λ) obtained by doing ∗-pullbacks and !-pushforwards along two

exterior paths M
AdFM

99K G
AdFG

, doing so along the leftmost exterior path computes iM⊂Q′ and
doing so along the right exterior path computes the composition iL⊂P iM⊂Q. Therefore once we
show that this diagram commutes and that enough squares are cartesian the statement will follow
from the proper base change theorem.

Firstly, the square
G

AdFQ′
G

AdFP

Q′F(Q′)
AdFQ′

PF(P )
AdFP

is induced by the inclusion of Q′ ⊂ P ⊂ G hence it is commutative.
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The squares
G

AdFQ′

UP \G/F(UP )
AdFQ

Q′F(Q′)
AdFQ′

UQ′\G/F(UQ′ )

AdFM
UP \(Q′F(Q′))/F(UP )

AdFQ

UQ′\(Q
′F(Q′))/F(UQ′ )

AdFQ

are horizontally induced by the inclusion Q′F(Q′) ⊂ G and by the quotient by UP and UQ vertically
hence these commute and are cartesian.

The square
Q′F(Q′)
AdFQ′

PF(P )
AdFP

UP \(Q′F(Q′))/F(UP )
AdFQ

UP \(PF(P ))/F(UP )
AdFL

is horizontally induced by the inclusion Q′ ⊂ P and vertically taking quotients by UP acting on by
left translations. In particular, both vertical maps are UP -torsors hence the square commutes and
is cartesian.

The square
UP \(Q′F(Q′))/F(UP )

AdFQ
UP \(PF(P ))/F(UP )

AdFL

QF(Q)
AdFQ

L
AdFL

is induced by the commutative diagram of groups

P L

Q′ Q

where both horizontal maps are the quotients by UP . There is a canonical isomorphism of stack
UP \(Q′F(Q′))/F(UP )

AdFQ
= QF(Q)

AdFQn(UP∩F−1(UP )) induced by the inclusion Q ⊂ Q′ and the left vertical map

of the former square is isomorphic to the projection QF(Q)
AdFQo(UP∩F(UP )) →

QF(Q)
AdFQ

, in particular the

left vertical map is a trivial UP ∩ F−1(UP )-gerbe. The same applies the the right vertical map and
both trivializations of these gerbes are compatible. Indeed these trivializations are induced by the
splittings of P → L and Q′ → Q which are by hypothesis compatible, hence the square we are
interested in is commutative and cartesian.

67



The square
UP \(Q′F(Q′))/F(UP )

AdFQ

UQ′\(Q
′F(Q′))/F(UQ′ )

AdFM
QF(Q)
AdFQ

UQ\(QF(Q))/F(UQ)
AdFM

is induced by the maps Q′ → Q→M and both vertical maps are UQ-torsor hence is it commutative
and cartesian.

The triangle
UQ′\(Q

′F(Q′))/F(UQ′ )

AdFQ

UQ\(QF(Q))/F(UQ)
AdFM

M
AdFM

is isomorphic to the triangle

M
AdFMn(UQ′∩F−1(UQ′ ))

M
AdFMn(UQ∩F−1(UQ))

M
AdFM

and the maps are induced by the quotient UQ′ → UQ, hence the triangle is commutative.
The remaining right hand side of the diagram is clear commutative and the remaining square

is cartesian. The lemma now follows from iterated applications of the proper base change theorem
and the commutativity of the diagram.

3.4 Integral Soergel theory

In this section we set up an integral version of the results of [BR22b] and [Gou21]. Most of our
arguments will reduce to their statements.

3.4.1 Setting up the geometry

Consider the stack U\G/U . There are three actions of tori that we can consider :
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(i). the action of T induced by left translations U\G/U ,

(ii). the action of T on U\G/U induced by the action of T on G given by t.x = xt, we will refer
to this action as the right action of T ,

(iii). the action of T × T induced by left and right translations.

The quotients by these actions are the stacks B\G/U,U\G/B and B\G/B respectively. There are
therefore three version of the free monodromic categories that we can attach to this stack, we will
soon see that they are isomorphic. We refer to Appendix 3.A for the definition of the equivariant
categories. Denote by

(i). Hleft =
⊕

χ∈CH(T ) Dindcons(U\G/U,ΩT )left
χ where the equivariance is relative to the action of

T on the left.

(ii). Hright =
⊕

χ∈CH(T ) Dindcons(U\G/U,ΩT )right
χ where the equivariance is relative to the action

of T on the right.

(iii). Hleft,right =
⊕

χ,χ′∈CH(T ) Dindcons(U\G/U,ΩT )left,right
χ,χ′ where the equivariance is relative to

the action of T ×T on the right and the index (χ, χ′) refer to sheaves that are equivariant for
LT×T ⊗Z` (Lχ �Z` Lχ′).

We equip the space U\G/U with its Bruhat stratification. The strata are indexed by the Weyl
group W , and the stratum corresponding to w ∈W is U\BwB/U . We denote by iw : U\BwB/U →
U\G/U . We first need a lemma to deal with the case of a torus.

Lemma 3.4.1. The category Dindcons(T,ΩT×T )left,right
χ,χ′ is zero unless χ′ = χ. In this case, this

category is equivalent to D(ΩT ).

Proof. Consider the multiplication map m : T × T → T . Consider the monad m!m! acting on
Dindcons(T × T,ΩT×T )χ,χ′ . Since the map m is surjective, m! is conservative as it is continuous,

we can apply the Barr-Beck-Lurie theorem [Lur] 4.7.0.3 and identify Dindcons(T,ΩT )left,right
χ,χ′ with

the category of m!m!-algebras in Dindcons(T × T,ΩT×T )χ,χ′ = D(ΩT×T ). The sheaf m!(LT×T ⊗Z`
(Lχ � Lχ′) is 0 if χ 6= χ′ and isomorphic to LT ⊗Z` Lχ[2 dimT ] by lemma 3.2.22 if χ = χ′. Hence

if χ = χ′, we have 1∗m!m!(LT×T ⊗Z` (Lχ � Lχ′)) = ΩT . The algebra ΩT ∈ D(ΩT×T ) is the

quotient of ΩT×T → ΩT induced by the map m. Hence Dindcons(T,ΩT )left,right
χ,χ′ is equivalent to

ΩT −Mod(D(ΩT×T )) = D(ΩT ).

Lemma 3.4.2. All three categories Hleft,Hright and Hleft,right are compactly generated. The cate-
gories of compact objects are the categories

(i).
⊕

χ∈CH(T ) Dcons(U\G/U,ΩT )left
χ ,

(ii).
⊕

χ∈CH(T ) Dcons(U\G/U,ΩT )right
χ ,

(iii). and
⊕

χ,χ′∈CH(T ) Dcons(U\G/U,ΩT )left,right
χ,χ′ ,

respectively.
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Proof. First since the inclusion iw are quasi-compact and schematic all functors iw,!, i
!
w, iw,∗, i

∗
w be-

tween the categories H? and
⊕

χ∈CH(T ) Dindcons(U\BwB/U,ΩT )?
χ where ? ∈ {left, right, (left, right)}

commute with arbitrary direct sums. For iw,! and i∗w this is clear since they are left adjoints. We
show it for iw,∗, the case i!w can be deduced from the case of iw,∗ using excision triangles. We only
need to check that the canonical map ⊕iiw,∗Ai → iw,∗ ⊕i Ai for Ai ∈ H? is an isomorphism, since
the functor iw,∗ commutes with the forgetful functor and smooth pullbacks this can checked after
pulling back to G/U , where this now follows from the statement on schemes by [BS15] 6.4.5.

Since i!w and iw,∗ are continuous, their left adjoints preserve compact objects. We now show the

lemma by induction on the strata. Denote by V
j−→ U\G/U i←− Z the inclusion of the open stratum

U and Z its closed complement. Using the exicision triangles for A ∈ H?,

j!j
∗A→ A→ i∗i

∗A, (3.33)

we see that A is a colimit of compact objects if and only if j∗A and i∗A are so. By induction this
reduces to showing that

⊕
χ∈CH(T ) Dindcons(U\BwB/U,ΩT )?

χ is compactly generated. But this

category is equivalent to the category
⊕

χ D(ΩT ). This is clear for ? ∈ {left, right} and by lemma
3.4.1 for the case of the action of T × T . This proves the compact generation statement.

We now identify the compact objects. Again by induction on the strata, and using the same
triangle, we see that an object A is compact if and only if for all w, i∗wA is compact. Hence the
category of compact objects is the stable category generated by all objects of the form iw,!A for
varying w and A ∈

⊕
χ∈CH(T ) Dindcons(U\BwB/U,ΩT )?

χ a compact object. On U\BwB/U the

category of compact objects is
⊕

χ∈CH(T ) Dcons(U\BwB/U,ΩT )?
χ. And the category generated by

all iw,!A for varying w and A compact is then
⊕

χ Dcons(U\BwB/U,ΩT )?
χ.

The inclusions of T
ileft−−→ T × T iright←−−− T given by ileft(t) = (t, 1) and iright(t) = (1, t) induce

inclusions ΩT
ileft,∗−−−→ ΩT×T

iright,∗←−−−− ΩT .

Lemma 3.4.3. There are well defined functors

Hleft Forleft

←−−−− Hleft,right Forright

−−−−−→ Hright (3.34)

induced by forgetting the (T × T, LT×T ⊗Z` (Lχ �Z` Lχ′))-equivariance along ileft,∗ and iright,∗ re-
spectively.

Proof. To check that these functors are well defined we have to check that the functors Forleft and
Forright preserve constructibility. Let A ∈ Dcons(U\G/U,ΩT×T )left,right

χ,χ′ . As in the previous lemma,
we can assume A = iw,!A0 for some object

A0 ∈
⊕

χ,χ′∈CH(T )

Dcons(U\BwB/U,ΩT×T )χ,χ′ .

We can further assume that A0 ∈ Dcons(U\BwB/U,ΩT×T )χ,χ′ and that wχ′ = χ otherwise
this category is zero. By lemma 3.4.1, the category Dcons(U\BwB/U,ΩT×T )χ,χ′ is equivalent to
Dcoh(ΩT ). We can assume that A0 corresponds to ΩT as this objects generates the stable category
Dcoh(ΩT ). Therefore A0 ' ν∗w((LT×T ⊗ΩT×T ΩT ) ⊗Z` Lχ)[`(w) + dimT ] as an ΩT×T -sheaf. Since
LT×T ⊗ΩT×T ΩT ' LT as an ΩT -sheaf after forgetting along either the left of right inclusion, we
get the desired constructibility statement.
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Lemma 3.4.4. Both functors Forleft and Forright are equivalences.

Proof. We first show that Forleft and Forright induce equivalence on each strata.⊕
χ,χ′∈CH(T )

Dcons(U\BwB/U,ΩT×T )χ,χ′ '
⊕

χ∈CH(T )

Dcons(U\BwB/U,ΩT )left
χ , (3.35)

and ⊕
χ,χ′∈CH(T )

Dcons(U\BwB/U,ΩT×T )χ,χ′ '
⊕

χ′∈CH(T )

Dcons(U\BwB/U,ΩT )right
χ′ . (3.36)

We do it for the for the first one. Note that we have an equivalence of categories Dcons(U\BwB/U,ΩT×T )χ,χ′ =
Dcons(wT,ΩT×T )χ,χ′ where wT ⊂ N(T ) is the closed subscheme of N(T ), the normalizer of T in
G, over the element w ∈ W . Let ẇ ∈ wT , this choice determines a map mw : T × T × T, (t, h) 7→
ẇ(Ad(w)(t)h) where Ad(w) denotes the adjoint action of W on T . Arguing as in lemma 3.4.1 with
the map mw instead of m, we get that Dcons(U\BwB/U,ΩT×T )χ,χ′ = 0 if wχ′ 6= χ and if χ = wχ′,
then Dcons(U\BwB/U,ΩT×T )χ,χ′ = ΩT − Mod(Dcons(ΩT×T ) where ΩT is the ΩT×T -algebra in-
duced by the map mw. In particular, if wχ′ = χ then Dcons(U\BwB/U,ΩT×T )χ,χ′ ' Dcoh(ΩT ).
Moreover we have Dcons(U\BwB/U,ΩT )left

χ ' Dcoh(ΩT ) and the left forgetful functor therefore
induces a functor Dcoh(ΩT ) → Dcoh(ΩT ) which sends ΩT to itself and is therefore an equivalence.
To conclude that the functor Forleft is an equivalence, we proceed by induction on the strata. Let
V ⊂ U\G/U be a stratum and let Z = V − V be the closed complementary of the closure of
V . Denote by i and j the inclusions Z ⊂ V and V ⊂ V respectively. Assume by induction that
Forleft induces an equivalence on the full subcategory of Hleft and Hleft,right supported on Z. Let
A,B ∈ Hleft,right be supported on V . Using excision triangles, we can assume that A = i∗A0 or
A = j!A0 and that B = j!B0 or B = i∗B0. We now have

(i). if A = i∗A0 and B = i∗B0, then Hom(A,B) = Hom(Forleft(A),Forleft(B)) by induction,

(ii). if A = j!A0 and B = j!B0, then Hom(A,B) = Hom(Forleft(A),Forleft(B)) using the stratum
case,

(iii). if A = j!A0 and B = i∗B0, then Hom(A,B) = 0 and Hom(Forleft(A),Forright(B)) = 0,

(iv). finally if A = i∗A0 and B = j!B0, then as the forgetful functor commutes with i! and j!, we
have

Hom(A,B) = Hom(A0, i
!j!B0) = Hom(ForleftA0,Forlefti!j!B0)

= Hom(ForleftA0, i
!j!ForleftB0)

= Hom(ForleftA,ForleftB).

This establishes that Forleft is fully faithful, as the subcategories of Hleft,right and Hleft of
sheaves supported on V are generated by the sheaves of the form i∗A0 and j!A0, we get the
essential surjectivity.

Remark 3.4.5. Note that the functor Forright,−1Forleft is an equivalence that is not ΩT -linear.
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From now on we denote by H either of the categories Hleft,Hright or Hleft,right which are identified
through Forleft and Forright. This category is equipped with its perverse t-structure. For most
constructions, we will work with Hright. We denote by Hω the full subcategory of compact objects
and by Hωχ the category Dcons(U\G/U,ΩT )χ.

Remark 3.4.6. Since Forright is an equivalence, the category H is equipped with an ΩT×T -linear
structure.

We will need to apply some classical results of Soergel theory, which are recalled in Appendix
3.B. Consider the schemes

G/B = tw∈WBwB/B and G/U = tw∈WBwB/U.

equipped with their Bruhat stratification. The map G/U → G/B is a T -torsor. The pullback along
G/B → U\G/B yields an equivalence Dcons(U\G/B,Z`) ' D′cons(G/B,Z`) where the category is
defined in Appendix 3.B. Recall that we have chosen a compatible system (ẇ) of lifts of the elements
of the Weyl group W . Each ẇ induces a T -equivariant splitting BwB = U × T × Uw. For w ∈W ,
recall that we denote by νw : U\BwB/U → T the induced projection onto T . Furthermore, it is
known that the schemes BwB/B are affine spaces and that the inclusions BwB/B → G/B are
affine hence we can apply the results of Appendix 3.B.

We thus have

(i). the standard and costandard sheaves ∆w,χ = iw,!ν
∗
w(LT ⊗Z` Lχ)[dimT + `(w)] and ∇w,χ =

iw,∗ν
∗
w(LT ⊗Z` Lχ)[dimT + `(w)]. These sheaves are perverse sheaves on U\G/U .

(ii). For all pairs (w,χ), there exists an indecomposable perverse tilting sheaf Tw,χ by theorem
3.B.12. This is a sheaf that is supported on the closure of U\BwB/U and which admits a ∆
and a ∇-filtration in Perv(U\G/U,ΩT ). We refer to Appendix 3.B for the definitions.

Since we used the torsor G/U → G/B for the construction of the tilting sheaves all these sheaves
are a priori considered as (twisted) equivariant sheaves for the right action of T . By lemma 3.4.4,
they also carry an equivariant structure with respect to the left action of T . Note that, while the
categories Hright and Hleft,right are equivalent, we cannot apply the construction of Appendix 3.B
to the T × T -torsor U\G/U → B\G/B as the strata of the target are the stacks B\BwB/B which
are not cohomologically contractible.

Definition 3.4.7. We define Tilt(U\G/U) ⊂ Hω,♥ the full subcategory of tilting objects. We will
also denote by Tilt(U\G/U)χ the corresponding full subcategory of Hωχ.

Definition 3.4.8 (Weyl groups). Let χ, χ′ ∈ CH(T ) be two characters, we set

(i). Wχ = StabW (χ),

(ii). W ◦χ the subgroup of Wχ generated by all sα such that α∨,∗Lχ is trivial,

(iii). χWχ′ = {w ∈W,χ = wχ′}.

Definition 3.4.9. Let χ, χ′ ∈ CH(T ) we denote by Hω[χ′,χ] the full subcategory of Hωχ generated

by the ∆w,χ such that wχ = χ′.

Lemma 3.4.10. Let χ ∈ CH(T ) and w,w′ ∈W we have HomHωχ (∆w,χ,∆w′,χ) = 0 if wχ 6= w′χ.

72



Proof. We have

HomHωχ (∆w,χ,∆w′,χ) = Hom(i!w′∆w,χ, ν
∗
w(LT ⊗ Lχ[dimT + `(w′)]))

= HomDcons(T,ΩT )χ(νw′,!i
!
w′∆w,χ, (LT ⊗ Lχ[dimT + `(w′)− 2N ])).

where N is the relative dimension of the smooth morphism νw, hence we have ν∗w = ν!
w[−2N ]. The

sheaf νw′,!i
!
w′∆w,χ is by construction (T, LT ⊗Lχ)-equivariant on the right and (T, (LT ⊗Lw′−1wχ)-

equivariant on the left. As Hom(Lw′−1wχ,Lχ) = 0 if w′−1wχ 6= χ, we get the desired vanishing.

Lemma 3.4.11. We have
Hωχ =

⊕
χ′

Hω[χ′,χ].

Proof. First note that Hω[χ′,χ] is zero if χ′ is not in the W -orbit of χ. The result then follows from
Lemma 3.4.10

3.4.2 Blocks

For this whole section we refer to [LY20] Section 4. We equip the group W with the Bruhat order,
this is the order induced by the closure relations of the Bruhat stratification, ie w ≤ w′ if and only
if BwB ⊂ Bw′B.

Definition 3.4.12. We call the elements of

χWχ′ = χWχ′/W
◦
χ′ = W ◦χ′\χWχ′

the blocks for [χ, χ′]. Given a block β ∈ χWχ′ , we denote by Hω,β[χ′,χ] the full subcategory of Hω[χ′,χ]

generated by the objects ∆w,χ for w ∈ β.

Definition 3.4.13. Let α ∈ χWχ′ , β ∈ χ′Wχ” and w ∈ α, v ∈ β then wv lie in a block called
αβ ∈ χWχ”. The formation (α, β) 7→ αβ does not depend on the chosen representative and is
associative.

Definition 3.4.14. Let χ ∈ CH(T ) and denote by

(i). Φ∨χ = {α∨ ∈ Φ∨, (α∨)∗Lχ ' (Z`)T },

(ii). Φχ = {α ∈ Φ, α∨ ∈ Φ∨χ},

(iii). Φ∨,+χ = Φ∨χ ∩ Φ∨,+.

(iv). Denote by Sχ = {sα ∈W ◦χ , such that α∨ is indecomposable in Φ∨χ,+}.

It is known that (W ◦χ , Sχ) is a Coxeter group and that (Φχ,Φ
∨
χ) is a subroot system of (Φ,Φ∨)

with Coxeter group (W ◦χ , Sχ).

Definition 3.4.15. Let β ∈ χ′Wχ be a block, and consider it as a poset with order induced by
W , then there is a unique maximal element and a unique minimal element wmax

β and wmin
β .

Lemma 3.4.16 ([LY20] 4.2, 4.3). Let α ∈ χWχ′ and β ∈ χ′Wχ” then the following holds

(i). wmin
α wmin

β = wmin
αβ ,

(ii). wmax
α wmax

β = wmax
αβ .
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3.4.3 Tilting objects

Let χ ∈ CH(T ) and consider the ring ΩT ⊗
Ω
W◦χ
T

ΩT , where Ω
W◦χ
T ⊂ ΩT is the ring of W ◦χ-invariants.

This ring is naturally a quotient of ΩT ⊗Z` ΩT .

Lemma 3.4.17 ([BR22b] 8.4). The map ΩT ⊗Z` ΩT → ΩT ⊗
Ω
W◦χ
T

ΩT factors through ΩT×T making

the following diagram commutative

ΩT ⊗Z` ΩT ΩT×T

ΩT ⊗
Ω
W◦χ
T

ΩT .

Proof. The proof of [BR22b] is done for the mod ` variant but the same argument applies.

Lemma 3.4.18. We have EndHω (∆w,χ) = ΩT and the ΩT×T -module structure is given by the map
ΩT×T → ΩT induced from T × T 7→ T, (t, h)→ w(t)h. One can replace ∆w,χ by ∇w,χ. And for all
A ∈ Perv(U\G/U,ΩT )χ the ΩT×T -structure factors through ΩT ⊗

Ω
W◦χ
T

ΩT .

Proof. Since i!w∆w,χ = ν∗(LT ⊗Lχ)[dimT +`(w)] as U\BwB/U is open in the support of ∆w,χ, we
have EndHω (∆w,χ) = End(ν∗(LT⊗Lχ)[dimT+`(w)]) ' ΩT . The statement about the factorization
follows from the proof of lemma 3.4.4. The last statement follows from the fact that the sheaves
∆w,χ generate Hωχ.

Lemma 3.4.19. Let χ ∈W and w 6= w′ ∈W . Then we have

HomPerv(U\G/U,ΩT )χ(∆w,χ,∆w′,χ) = 0.

Proof. The proof of [BR22b] 6.2 extends verbatim after replacing R∨T ⊗R∨T by ΩT×T and inputing
lemma 3.4.18.

As in [BR22b] 6.3, we define the graded functor on tilting sheaves. We fix a total ordering on
W extending the Bruhat order. For w ∈ W denote by (U\G/U)<w the union of all Bruhat strata
corresponding to w′ < w and j<w : (U\G/U)<w ⊂ G. For a tilting sheaf T denote by T≥w the
kernel of the adjunction map T → j<w,∗j

∗
<wT . The set of subobjects (T≥w)w forms an exhaustive

decreasing filtration of T , the corresponding graded parts grw(T ) = T≥w/T>w is a direct sum of
copies of ∆w,χ.

Lemma 3.4.20. The filtration (T≥w)w is functorial and the associated graded functor⊕
w

grw = gr : Tilt(U\G/U)χ → Perv(U\G/U,ΩT )χ

is faithful.

Proof. The functoriality of the filtration follows from the fact that Hom(∆w,χ,∆w′,χ) = 0 if w > w′.
The faithfulness follows from lemma 3.4.19.

Lemma 3.4.21. Let T ∈ Tilt(U\G/U) then there is canonical isomorphism grw(T ) = iw,!i
∗
wT .
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Proof. Denote by j≥w : (U\G/U)≥w → U\G/U and j>w : (U\G/U)>w → U\G/U the inclusions
of all strata indexed by y ≥ w and y > w respectively. Both of these maps are open immersions.
We then have an excision triangle,

j≥w,!j
!
≥wT → T → j<w,∗j

∗
<wT. (3.37)

Since the adjunction map T → j<w,∗j
∗
<wT is surjective, this triangle is a short exact sequence

of perverse sheaves and T≥w = j≥w,!j
!
≥wT . Let i>w : (U\G/U)>w → (U\G/U)≥w denote the

inclusion and i′w : U\BwB/U → (U\G/U)≥w the inclusion of the stratum w. We then have an
excision triangle in (U\G/U)≥w

i>w,!i
!
>wj

!
≥wT → j!

≥wT → i′w,∗i
′∗
wj

!
≥wT. (3.38)

We apply j≥,! to this triangle and using the fact that i>w is an open immersion and that i′w is a
closed immersion we get a triangle

j>w,!j
!
>wT → j≥w,!j

!
≥wT → iw,!i

∗
wT. (3.39)

By definition the first map is an injection of perverse sheaves and as T is tilting i∗w is perverse hence
iw,!i

∗
wT is perverse and this triangle is a short exact sequence of perverse sheaves.

3.4.4 Convolution structure

We define the convolution structure on Hω. We do it in several steps. We will use the model of H
given by Hleft,right.

First let X be a stack. We define a functor

⊗̂Z` : Dcons(X,ΩT )×Dcons(X,ΩT )→ Dcons(X,ΩT×T )

(A,B) 7→ (A⊗̂Z`B).

For A0, B0 ∈ Dcons(X,ΩT,Z`) we first construct a sheaf (A0⊗̂Z`B0) ∈ Dcons(X,ΩT×T,Z`). First
consider A0 ⊗Z` B0, this is naturally an ΩT,Z` ⊗Z` ΩT,Z` -sheaf on Xproet. Let mT×T be the ideal
of ΩT,Z` ⊗Z` ΩT,Z` given by ΩT,Z` ⊗Z` m + m ⊗Z` ΩT,Z` . The ring ΩT×T is then the completion of
ΩT,Z` ⊗Z` ΩT,Z` along I. We then denote by (A0⊗̂Z`B0) the derived completion of A0⊗Z` B0 along
the ideal I in D(Xproet,ΩT,Z`⊗Z` ΩT,Z`) in the sense of [BS15] Section 3.5. This derived completion
is the functor D(Xproet,ΩT,Z` ⊗Z` ΩT,Z`)→ D(Xproet,ΩT×T,Z`) given by

C0 7→ lim
n

(C0 ⊗(ΩT,Z`⊗Z`ΩT,Z` )
(ΩT,Z` ⊗Z` ΩT,Z`)/I

n). (3.40)

Lemma 3.4.22. For A0, B0 ∈ Dcons(X,ΩT,Z`) the ΩT×T,Z`-sheaf (A0⊗̂Z`B0) is constructible.

Proof. Recall that an ΩT×T,Z`-complete sheaf A0 is constructible if A0 ⊗ΩT×T,Z`
ΩT×T,Z`/mT×T is

constructible, where mT×T is the maximal ideal of ΩT×T,Z` . But we have

(A0⊗̂Z`B0)⊗ΩT×T,Z`
ΩT×T,Z`/mT×T = (A0 ⊗ΩT,Z`

ΩT,Z`/m)⊗F` (B0 ⊗ΩT,Z`
ΩT,Z`/m). (3.41)

But (A0 ⊗ΩT,Z`
ΩT,Z`/m) and (B0 ⊗ΩT,Z`

ΩT,Z`/m) are constructible F`-sheaf therefore this tensor
product is also constructible.
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Definition 3.4.23. The functor

⊗̂Z` : Dcons(X,ΩT )×Dcons(X,ΩT )→ Dcons(X,ΩT×T )

(A,B) 7→ (A⊗̂Z`B).

is defined as the Z`-extension of the functor

⊗̂Z` : Dcons(X,ΩT,Z`)×Dcons(X,ΩT,Z`)→ Dcons(X,ΩT×T,Z`). (3.42)

Then we define a functor

Dcons(U\G/U,ΩT×T )×Dcons(U\G/U,ΩT×T )→ Dcons(U\G/U,ΩT×T×T×T )

as follows. Consider the following diagram

U\G×U G/U U\G/U

U\G/U U\G/U
p1 p2

m

where m is induced by the multiplication map. Then we set for A,B ∈ Dcons(U\G/U,ΩT×T )

A ∗B = m!(A�̂Z`B)[dimT ].

Lemma 3.4.24. Assume that A ∈ Hω[χ1,χ2] and B ∈ Hω[χ3,χ4], if χ3 6= χ2 then A ∗ B = 0 and in
general the ΩT×T×T×T -structure on A ∗B is constructible as an ΩT×T -sheaf after forgetting along
the inclusion ΩT×T → ΩT×T×T×T induced by the outer inclusions.

Proof. We argue as in [BY13] 4.3. We decompose the map m in two steps

U\G×U G/U q−→ U\G×B G/U m̃−→ U\G/U,

where m̃ is the map induced by the multiplication in G and q is the quotient by the T -action
t.(g, g′) = (gt−1, tg), in particular the map q is a T -torsor. It is enough to check the triviality of

q!(A�̂Z`B) if χ2 6= χ3. The triviality can be checked after reducing modulo mT×T×T×T . We have
an isomorphism

q!(A�̂Z`B)/mT×T×T×T = q!((A/mT×T )�F` (B/mT×T )). (3.43)

The sheaf A/mT×T is (T,Lχ2,F`)-equivariant for the right action of T and B/mT×T is (T,Lχ3,F`)-
equivariant for the left action of T . Hence their tensor product is (T,Lχ−1

2 χ3,F`)-equivariant for

the action of T given by t.(x, y) = (xt−1, ty). The pushforward along q! is therefore 0 if χ2 6= χ3.
The constructibility assertion follows from the fact that A�̂Z`B is already ΩT×T -constructible after
forgetting along the outer inclusions. This follows from lemma 3.4.4, indeed A is ΩT -constructible
after forgetting the right action of ΩT and B is constructible after forgetting the left action of
ΩT .

We can now define the convolution functor

Hω ×Hω → Hω

(A,B) 7→ Forextm!(A�̂Z`B),

where Forext is the forgetful functor induced by the map ΩT×T → ΩT×T×T×T induced by the outer
inclusions.
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Remark 3.4.25. Replacing ΩT by ΩT,F` in all this construction yields the same structure as in
[BR22b]. Moreover if we denote byA∗F`B the convolution of two sheavesA,B ∈ Dcons(U\G/U,ΩT,F`)unip.
Then for all C,D ∈ Dcons(U\G/U,ΩT )unip we have

(C ∗D)⊗Z` F` = (C ⊗Z` F`) ∗F` (D ⊗Z` F`).

Corollary 3.4.26. The convolution defines a monoidal structure on Hω and Hω[χ,χ].

As H = Ind(Hω), we can extend the monoidal structure to H using the universal property
of ind-completions. In particular we have a monoidal structure on H that is continuous on both
variables.

The following lemma is standard, we refer to [BR22b] 7.7 and [Gou21] 8.4.2.

Lemma 3.4.27. We have isomorphism

(i). ∆w,w′χ ∗∆w′,χ = ∆ww′,χ if `(ww′) = `(w) + `(w′).

(ii). ∇w,w′χ ∗ ∇w′,χ = ∇ww′,χ if `(ww′) = `(w) + `(w′).

(iii). ∆w−1,wχ ∗ ∇w,χ = ∆e,χ = ∇w,χ ∗∆w−1,wχ.

Proof. We only prove that ∆e is the unit in Dcons(U\G/U,ΩT )unip as the rest is standard. It is a
computation done on T , consider LT [dimT ] ∗ LT [dimT ] on T where ∗ is defined as previously, by
3.2.22 we have LT [dimT ] ∗ LT [dimT ] = m!LT×T [3 dimT ] = LT [dimT ].

Lemma 3.4.28. Let α, β ∈ χ′Wχ be two distinct blocks then for all w ∈ α, v ∈ β we have
Hom(∆w,χ,∆v,χ) = 0. In particular we get a direct sum decomposition of

Hω[χ′,χ] =
⊕
β

Hω,β[χ′,χ].

Proof. Using the presentation of both objects as pro-objects, we reduce to the case π†,F`π†,F`∆w,χ

and π†,F`π†,F`∆v,χ which is done in [Gou21] 8.5.6.

Definition 3.4.29. For each character χ ∈ CH(T ) and each block β we denote by Tβ,χ the tilting
sheaf corresponding to wmax

β .

Lemma 3.4.30. Let χ ∈ CH(T ) and β be a block. The multiplicity of ∆w,χ in a ∆-filtration of
Tβ,χ is one. Similarly the multiplicity of ∇w,χ in a ∇-filtration of Tβ,χ is one.

Proof. Reducing mod ` preserves the multiplicities of ∆-filtrations and ∇-filtrations, hence the
statement follows from [Gou21] 9.3.3.

Lemma 3.4.31. The convolution is compatible with the block decomposition. Let χ1, χ2, χ3 ∈
CH(T ) in the same W -orbit and fix two blocks α ∈ χ3Wχ2

and β ∈ χ2Wχ1
, then for all A ∈ Hα[χ3,χ2]

and B ∈ Hβ[χ2,χ1] we have A ∗B ∈ Hαβ[χ3,χ1].

Proof. The statement follows from [Gou21] 8.5.1 after reducing mod `.
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Lemma 3.4.32 ([BR22b] 7.10, [Gou21] 9.7.6). Let χ1, χ2, χ3, χ4 ∈ CH(T ) in the same W -orbit,
fix three blocks δ ∈ χ4Wχ3

, β ∈ χ3Wχ2
and γ ∈ χ2Wχ1

. Let α ∈ χ4Wχ1
be the block δβγ. For any

w ∈ δ and v ∈ γ we have an isomorphism

∆w,χ3 ∗ Tχ2,β ∗∆v,χ1 = Tχ1,α.

Sketch of proof. We will indicate the main reduction. It is enough to prove both isomorphisms

∆w,χ3
∗ Tχ2,β ' Tχ2,δβ , Tχ2,β ∗∆v,χ1

= Tχ1,βγ .

For both isomorphism, it is enough to identify π†,F`(∆w,χ3 ∗ Tχ2,β) by theorem 3.B.12 but this is
checked to be the corresponding tilting in loc. cit..

3.4.5 The Endomorphismensatz

Definition 3.4.33. A torsion prime for G is either a prime dividing the order of the fundamental
group of Gder the derived subgroup of G or a prime in one of the table of [SS68] 4.3. for each quasi-
simple quotient of G. A bad prime is a prime in one of the tables of loc. cit. for each quasi-simple
quotient of G.

The goal of the section is to formulate a version of the Endomorphismensatz in our setting.

Theorem 3.4.34 (Endomorphismensatz). Assume that ` is not a torsion prime for Ĝ. Let χ1, χ2 ∈
CH(T ) and β ∈ χ2

Wχ1
. There is a canonical isomorphism

ΩT ⊗
Ω
W◦χ1
T

ΩT → End(Tχ1,β).

Remark 3.4.35. If we assume further that G has connected center, then the hypothesis is satisfied
if ` is good for G.

Remark 3.4.36. The condition on ` comes from [Gou21], it is here to control the problems of the
non connectedness of the center of G or of its endoscopic groups. If we assume that G has connected
center and that χ = 1, then the Endomorphismensatz holds without the hypothesis on `. This is
almost the case that appears in [BR22b] as they assume that G is adjoint.

We will explain the key steps of the proof which is in essence the proof from [BR22b] Section 9.
and [Gou21] 10.4. The key input is theorem 3.4.38. This last theorem is a technical result which
is an immediate generalization of the corresponding statements in loc. cit., their proof extends
verbatim, note that the only external input in their proofs is a result of [KK90] which is valid over
Z.

Theorem 3.4.37 (Completed Steinberg Pitie, [Gou21] 10.2.3). Assume that ` is not a torsion

prime for Ĝ. Let χ ∈ CH(T ), the module ΩT is free of rank |W ◦χ | over Ω
W◦χ
T .

Recall that we have fixed a generator γ of πt1(Gm). For α ∈ Φχ we denote by eα
∨ ∈ ΩT the

element obtained by image of the generator of π1(Gm)` along the map α∨ : Gm → T .

Theorem 3.4.38 ([BR22b] 8.4,[Gou21] 10.3.4). Assume that ` is not a torsion prime for Ĝ. Con-
sider the map τ : ΩT ⊗

Ω
W◦χ
T

ΩT → Fun(W ◦χ ,ΩT ) defined by

a⊗ b 7→ (w 7→ a.w−1(b)).

Then this map is injective and its image is the space of functions f such that f(w) = f(wsα∨) mod (1−
eα
∨

) for w ∈W ◦χ and α ∈ Φχ.
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Sktech of proof of theorem 3.4.34. We only sketch the proof for the block β = 1, the other blocks
are deduced from this one as in [Gou21] 10.4.3. We have already gotten a morphism

ΩT ⊗
Ω
W◦χ
T

ΩT → End(Tχ,1),

consider the composition

ΩT ⊗
Ω
W◦χ
T

ΩT → ΩT ⊗
Ω
W◦χ
T

ΩT → End(Tχ,1)
grw−−→

⊕
w∈W◦χ

End(∆w,χ) ' Fun(W ◦χ ,ΩT )

where the first map is induced by a⊗ b 7→ b⊗ a. The key remark is that this composite is the map
τ of theorem 3.4.38. This yields the injectivity of the map ΩT ⊗

Ω
W◦χ
T

ΩT → End(Tχ,1). To get the

surjectivity, by lemma 3.4.20, it is enough to show that any tuple (aw) in the image of this map
satisfies the condition of theorem 3.4.38, that is for all α ∈ Φ∨,+χ , we have aws∨α = aw mod (1−eα∨).

The proof of [BR22b] and [Gou21] is split in two key steps.

(i). First build a W ◦χ ×W ◦χ-action on End(Tχ,1) such that all maps in the previous composition

are W ◦χ ×W ◦χ-equivariant. This allows one to reduce to showing that asα∨ = a1mod1 − eα∨

for all α.

(ii). Then show the claim of (i), which is then reduced to a computation in rank one.

For the first point the action on End(Tχ,1) is defined as follows. For w, v ∈W ◦χ , set

End(Tχ,1)→ End(∆w,χ ∗ Tχ,1 ∗∆v,χ)→ End(Tχ,1),

where the first morphism is induced by the functor ∆w,χ ∗ (−) ∗ ∆v,χ and the second by the
isomorphisms of 3.4.32. We then refer to [BR22b] 9.6 and [Gou21] 10.4.5 for the argument why this
does not depend on the chosen isomorphisms and the compatibility with the action.

For the second point, the first step is to set Ts = js,∗j
∗
sTχ,1 where s ∈ Sχ and js is the inclusion

of both strata corresponding to s and e. This sheaf is the tilting sheaf corresponding to s as it is
the case after applying π†,F` by [BR22b] 6.10 and [Gou21] 10.4.4. This implies that as in [BR22b]
9.4, the map

grw(Tχ,1)→ grw(Ts)

is an isomorphism for w ∈ {e, s}. We then have a commutative diagram

End(Tχ,1) End(Ts) ΩT ⊕ ΩT

ΩT ⊗
Ω
W◦χ
T

ΩT .

The diagonal map is simply the composite ΩT ⊗
Ω
W◦χ
T

ΩT → Fun(W,ΩT ) → Fun({e, s},ΩT ) where

the second map is the restriction. The map ΩT ⊗
Ω
W◦χ
T

ΩT → End(Ts) is surjective. This is a direct

application of Nakayama’s lemma once we see that after reducing mod the maximal ideal of ΩT is
becomes surjective, but this follows from using [BR22b] 6.6 after applying the functor π†,F` . The
rest follows as in [Gou21] 10.4.7.
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3.4.6 Whittaker model

We define Lψ a rank one character sheaf on Ū as follows, consider the following composition

φ : Ū → Ū/[Ū , Ū ] '
∏
α∈∆

U−α '
∏
α∈∆

Ga
∑
−→ Ga,

where the third map comes from the chosen pinning of G. We fix a character ψ : Fp → Z×` and
denote by AS : Ga → Ga the Artin-Schreier covering. The choice of ψ determines a direct summand
of AS!Z` called the Artin-Schreier sheaf, denoted by Lψ. We then still denote by Lψ = φ∗Lψ.

Remark 3.4.39. The Artin-Schreier sheaf we have chosen takes its values in Z` but we can also see
it as an ΩT -sheaf if we need to.

We consider sheaves on G/U that are Lχ ⊗ LT equivariant on the right and Lψ-equivariant on
the left. We denote the category of those sheaves by

Dcons((Ū , ψ)\G/U,ΩT )χ.

We have averaging functors Avψ,! and Avψ,∗ : Dcons(U\G/U,ΩT )χ → Dcons((Ū , ψ)\G/U,ΩT )χ
defined by

a?(Lψ �−)[dimU ],

where ? ∈ {!, ∗} and a : Ū ×G/U → G/U is the multiplication. By standard arguments [BBM04b],
the natural map Avψ,! → Avψ,∗ is an isomorphism, and from now on we drop the ! and ∗ in its
definition. Note that as a is affine a! right perverse exact and a∗ is left perverse exact hence Adψ is
perverse exact. The functor Avψ has both a left and right adjoint given by AvU,! and AvU,∗ defined
similarly.

Lemma 3.4.40. Any sheaf in Dcons((Ū , ψ)\G/U,ΩT )χ is supported on ŪB.

Proof. This follows immediatly from the genericity of ψ and [BBM04b].

Corollary 3.4.41. The functor i∗T : Dcons((Ū , ψ)\G/U,ΩT )χ → Dcons(T )χ realizes a perverse
t-exact equivalence.

We denote the image of LT ⊗ Lχ under the inverse equivalence by δχ,ψ.

Lemma 3.4.42. There is an isomorphism AvU,!(δχ,ψ) =
⊕

χ′
⊕

β∈χ′Wχ
Tχ,β.

Proof. The proof is the same as in loc. cit.. Using the characterization of theorem 3.B.12 of
tilting perverse sheaves and their classification, it is enough to show the corresponding statement
for π†,F`AvU (δχ,ψ), which is done in [Gou21] 12.9.3.(ii).

Corollary 3.4.43. The sheaves Tχ,β for varying χ and β are projective in Perv(U\G/U,ΩT )χ.

Proof. It is enough to show that AvU (δχ,ψ) is projective since Tχ,β is a direct factor of it. But by
adjunction we have

Hom(AvU (δχ,ψ),−) = Hom((δχ,ψ),Avψ−),

the result now follows from the exactness of Avψ and the projectivity of δχ,ψ in Perv((Ū , ψ)\G/U,ΩT )χ.

Notation 3.4.44. We define Tχ = AvU,!Avψ∆1,χ = AvU,!δχ,ψ. We will also denote by Hωψ the
category ⊕

χ

Dcons((U,ψ)\G/U,ΩT )χ. (3.44)
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3.4.7 The functors V
Following [Gou21] 9.10, given a pair of characters (χ′, χ) in the same W -orbit and a block β ∈ χ′Wχ

we define the functor

Vχ,β : Tilt(U\G/U)χ,β → End(Tχ,β)−mod

T 7→ HomPerv(U\G/U)(Tχ,β , T ).

Theorem 3.4.45 (Struktursatz). The functor Vχ,β is fully faithful.

Proof. The proof is adapted from [BY13] 4.7, [BR22b] 11.2 and [Gou21] 9.10.2. The functor

Vχ,β , defined on the whole category Perv(U\G/U,ΩT )β[χ′,χ] with values in the abelian category

End(Tχ,β)−mod has a left adjoint given by M 7→M ⊗End(Tχ,β) Tχ,β . This is well defined because
Tχ,β is projective. This then reduces to showing that for T ∈ Tilt(U\G/U)χ,β the adjunction map
adjT : Tχ,β ⊗End(Tχ,β) Vχ,β(T )→ T is an isomorphism. Consider the exact sequence

0→ A→ Tχ,β ⊗End(Tχ,β) Vχ,β(T )
adjT−−−→ T → B → 0.

We have to show that both A and B vanish. There is a corresponding statement after applying
π†,F` which is shown in the first part of loc. cit. and as in loc. cit. we will reduce to it. Applying
π†,F` the arrow adjT produces an isomorphism by loc. cit. and as π†,F` is right perverse t-exact this

implies that pH0(π†,F`B) = 0 and hence that B = 0 by lemma 3.B.10 which yields the surjectivity
of the arrow adjT . For the injectivity, it is enough to show that HomPerv(A, T ′) = 0 for all
tilting sheaves and then that HomPerv(A,∆w,χ) = 0. As in loc. cit., writing the object ∆w,χ

as an inverse limit and then each term as a successive extension of π†F`
∆w,χ, it is enough to have

HomPerv(A, π†F`
π†,F`∆w,χ) = HomPerv(π†,F`A, π†,F`∆w,χ) = HomPerv(pH0π†,F`A, π†,F`∆w,χ) vanish.

But this garanteed by the fact that the map π†,F`(adjT ) is an isomorphism.

3.4.8 The global V functor

From now on we assume that G has connected center so that there is a unique block in each Hω[χ,χ′].
Let us consider the scheme

C(T ) =
⊔

χ∈CH(T )

Spec(ΩT )× {χ} (3.45)

in a similar fashion as the scheme of characters of [GL96] 3.2. This is a scheme that is not of finite
type over Z` because it has infinitely many connected components.

Lemma 3.4.46. The scheme C(T ) is canonically isomorphic to
⊔
x∈T∨Z`,cl

T∨,∧Z`,x ×Z` Z`, where T∨Z`
is the torus dual to T defined over Z`, the set {x ∈ T∨Z`,cl} is the set of all closed points of T∨Z` (in

particular they are all points of the special fiber of T∨Z`) and T∨,∧Z`,x ×Z` Z` denotes the completion of

T∨Z` at the point x then base changed to Z`.

Remark 3.4.47. The statement of the previous lemma is made to avoid introducing the field of
definition of a given character χ ∈ CH(T ).
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Proof. First note that there is a bijection CH(T ) = T∨(F`). Let x be a closed point of T∨F` and let

F`(x) be the residue field of T∨F` at x. Let ox ⊂ CH(T ) be the Gal(F`/F`)-orbit corresponding to x.
And let E/Q` be the unramified extension of Q` correspoding to the extension F`(x)/F`. We then
have

T∨,∧Z`,x ⊗Z` Z` =
⊔
y∈ox

T∨,∧OE ,y ⊗OE Z`. (3.46)

We further make the identification T∨,∧OE ,y ⊗OE Z` = Spec(ΩT ) × {y}. Since CH(T ) = tx∈T∨Z`,cl
ox,

taking a disjoint union yields the lemma.

We now consider the action of W on C(T ) and we consider the GIT quotient C(T )�W . For all
W -orbits o ⊂ CH(T ) of characters, we choose a representative χo ∈ o.

Lemma 3.4.48. There is an isomorphism

C(T ) �W =
⊔
o

Spec(Ω
Wχo

T ). (3.47)

Proof. We have C(T ) = tχ∈CH(T )Spec(ΩT )×{χ} = totχ∈oSpec(ΩT )×{χ} and each tχ∈oSpec(ΩT )×
{χ} is stable under the action of W . The inclusion of the component χo then induces an isomor-

phism (tχ∈oSpec(ΩT )× {χ}) �W = Spec(ΩT ) �Wχo
= Spec(Ω

Wχo

T ).

We finally consider the scheme C(T )×C(T )�W C(T ). As before it has infinitely many connected
components. By definition it is the closed subscheme of C(T )× C(T ) obtained as the union of the
graphs Γw ⊂ C(T ) × C(T ) of the actions of the elements of W . Let us now describe its connected
components.

Lemma 3.4.49. There is a canonical isomorphism

C(T )×C(T )�W C(T ) =
⊔

o,χ,χ′∈o
Spec(ΩT ⊗Ω

Wχ
T

ΩT )× {χ′ × χ}, (3.48)

where the union is indexed over all W -orbits in CH(T ).

Proof. We have

C(T )×C(T )�W C(T ) =
⊔
χ,χ′

(Spec(ΩT )× {χ})×C(T )�W (Spec(ΩT )× {χ′})

=
⊔

o,χ,χ′∈o
(Spec(ΩT )× {χ})×(tχ′′∈oSpec(ΩT )×{χ})�W (Spec(ΩT )× {χ′})

=
⊔

o,χ,χ′∈o
(Spec(ΩT )× {χ})×

Spec(Ω
Wχ
T )

(Spec(ΩT )× {χ′}).

Lemma 3.4.50. There is a unique fully faithful functor

V : Tilt(U\G/U)→ Coh(C(T )×C(T )�W C(T )),

that restricts to the functor Vχ on each Tilt(U\G/U)χ.
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Proof. The existence and unicity are immediate from the fact that both categories on the left and
right hand side are direct sums and we have prescibed the functor on each direct factor.

Definition 3.4.51. The objects in the essential image of V are called Soergel bimodules.

Remark 3.4.52. Note that the functor V induces a well defined functor Hω → Dcoh(C(T )×C(T )�W

C(T ). It is however not fully faithful on all of Hω.

Definition 3.4.53. We define T =
⊕

χ∈CH(T ) Tχ ∈ H and we call it the big tilting sheaf.

Remark 3.4.54. Note that the object T is not compact.

Lemma 3.4.55. Under the functor V, the sheaf T corresponds to OC(T )×C(T )�W C(T ).

Proof. This is clear since it holds on all connected component of C(T )×C(T )�W C(T ).

3.4.9 Monoidality of the global V functor

We still assume that G has connected center.

Lemma 3.4.56. The category Tilt(U\G/U) is monoidal.

Proof. Let T, T ′ ∈ Tilt(U\G/U). The statement breaks down in two steps :

(i). the convolution T ∗ T ′ is perverse,

(ii). the convolution T ∗ T ′ is tilting.

Both properties can be checked after reducing mod ` by theorem 3.B.12. For the mod ` version,
this is then [Gou21] 9.7.5.

Consider the category Dqcoh(C(T ) ×C(T )�W C(T )), it is equipped with a convolution monoidal
structure as explained in Appendix 3.C.

Theorem 3.4.57 (Analog of [Gou21] 12.10.1 and [BR22b] 11.5). The functor V is equipped with
a canonical monoidal structure.

Proof. Consider the category Hωψ. By corollary 3.4.41, the functor

Hom(⊕δχ,ψ,−) : Hωψ →
⊕
χ

Dcons(T,ΩT )χ = Perf(C(T )),

is an equivalence. The category Hω acts on Hψ and therefore on Perf(C(T )). By lemma 3.C.11, we
have a monoidal equivalence

End(Perf(C(T )) ' Perf(C(T )× C(T ))

F 7→ F (OC(T )),

where OC(T ) is a considered as a OC(T )-bimodule and therefore F (OC(T )) has two OC(T ) actions
: one coming from functoriality and one from the fact that F takes its values in the category
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Perf(OC(T )). The target category is equipped with the convolution of bimodules structure. We
therefore have a monoidal functor

V′ : Hω → Perf(C(T )× C(T )).

It is then enough to check that this functor is naturally isomorphic to V. By the above description,
we can compute the functor V′ as follows

V′(T )(OC(T )) = Hom(⊕χδχ,ψ,⊕χδχ,ψ ∗ T )

= Hom(⊕χδχ,ψ,AvψT )

= Hom(AvU ⊕χ δχ,ψ, T )

= Hom(T, T )

= V(T ).

Hence we have a commutative diagram

Hω Perf(C(T )×C(T )�W C(T ))

Perf(C(T )× C(T )).

V

V′

After restricting to tilting objects, we get a natural commutative diagram

Tilt(U\G/U) Coh(C(T )×C(T )�W C(T ))

Coh(C(T )× C(T )).

On the abelian category of coherent sheaves the vertical functor is fully faithful and monoidal.
Hence as V′ is monoidal, there exists a unique lift of this monoidal structure to V.

Consider the full subcategory 〈T〉 ⊂ Hω generated by T and all its direct summands.

Lemma 3.4.58. The category 〈T〉 is a monoidal subcategory of ⊕χDcons(U\G/U,ΩT )χ and the
functor V induces a monoidal equivalence

Perf(C(T )×C(T )�W C(T )) ' 〈T〉. (3.49)

Proof. Since T satisfies Hom(T,T) = OC(T )×C(T )�W C(T ), it is enough to check that 〈T〉 is a monoidal
subcategory. For this we compute V(T ∗ T) = V(T)⊗OC(T )

V(T). Let

p13 : C(T )×C(T )�W C(T )×C(T )�W C(T )→ C(T )×C(T )�W C(T ), (3.50)

be the map given by the projection on the outer factors. Then we have,

V(T ∗ T) = p13,∗O. (3.51)
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The map p13 is finite and faithfully flat. We argue component by component on C(T ) and we show
that the restriction to a component (χ′, χ) of p13,∗O is free. We do it for the case (χ′, χ) = (1, 1)
the other are similar. Consider the map

p′13 : Spec(ΩT )×Spec(ΩWT ) Spec(ΩT )×Spec(ΩWT ) Spec(ΩT )→ Spec(ΩT )×Spec(ΩWT ) Spec(ΩT ), (3.52)

given by the projection on the outer coordinates. The restriction to the component (1, 1) of p13,∗O
is given by p′13O. The ring ΩT ⊗ΩWT

ΩT is local by [BR22b] 8.5. Since the map p′13 is finite and

faithfully flat so is p′13O. A finite flat module over a local ring is free, see [Aut] Tag 00NZ.

3.5 F-Categorical center of the Hecke category

In this section, we compute the F-categorical center for the category H. We consider all relevant
categories to live in D(Z`)-Mod. This is a variation on [BZN09] [GKRV22]. In the abelian setting
[Lus15], [Lus17] has shown a similar statement, the key difference is that Lusztig inputs the classi-
fication of representations of GF whereas our construction is formal. We have to work with H and
not Hω to be able to dualize the relevant categories.

3.5.1 Duality on monodromic categories

In [BT22], the authors define a duality functor on completed unipotent monodromic categories ex-
tending the usual Verdier duality on Q`-constructible monodromic sheaves. We give a construction
here that does not involve pro-objects, works for all schemes X equipped with an action of T and
is valid in the non-unipotent setting.

Lemma 3.5.1. Let Λ be a coefficient ring. Let X be a stack with a T action and let A be a
Λ constructible T -monodromic sheaf. The Verdier dual DΛ(A) is monodromic and its canonical
monodromy is given by

φ∨ : Λ[πt1(T )]→ End(A), (3.53)

where φ is the canonical monodromy of A and φ∨ = φ◦ inv∗ with inv : Λ[πt1(T )]→ Λ[πt1(T )] induced
by t 7→ t−1.

Proof. We only need to check this on the fibers of X → X/T which are all isomorphic to T . This
now follows from the fact that since T is smooth, the Verdier dual of a lisse sheaf is lisse and
corresponds to the dual representation of π1(T ).

Definition 3.5.2. The map inv : T → T induces a map inv∗ : ΩT → ΩT . Given an ΩT module
M , we denote by M(ε) = M ⊗ΩT ,inv∗ ΩT .

Remark 3.5.3. Note that LT (ε) = L∨T is the ΩT -linear dual of LT .

Definition 3.5.4. Let X be a stack with an action of T . We define

Dcons(X,ΩT )χ → Dcons(X,ΩT )χ−1

D′ = DΩT (−)(ε),

where DΩT is the ΩT -linear Verdier duality functor.
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Lemma 3.5.5. The functor D′ satisfies

(i). On the full subcategory Dcons(X,Z`)χ,mon, we have a canonical isomorphism of functors

D′ = DZ` [−dimT ], (3.54)

(ii). D′D′ = id,

(iii). For A,B ∈ Dcons(X,ΩT )χ we have Hom(A,B) = Hom(D′(B),D′(A)).

(iv). Given f : X → Y a morphism of T -scheme, we have D′f! = f∗D′ and D′f ! = f∗D′.

Proof. The last three points follow from the definition. We discuss the first one. We can work
locally in the lisse topology and assume that we have a T -equivariant splitting X = Y × T .
We can then further assume that Y is a point. Let A be a χ-monodromic sheaf on T , we can
write A = M ⊗ΩT (LT ⊗ Lχ)[dimT ] for the ΩT -module M = 1∗[−dimT ]A. Then by definition
D′(A) = HomΩT (M,ΩT )⊗ΩT (LT⊗Lχ−1)[dimT ]. On the other hand, we have 1∗[−dimT ]DZ`(A) =

HomZ`(M,Z`), where M is the Z`-module obtained by forgetting the ΩT -stucture along the inclu-

sion Z` → ΩT .
We claim, that there is a natural ΩT -linear isomorphism

HomZ`(M,Z`) = HomΩT (M,ΩT )(ε)[dimT ], (3.55)

which is induced by local Serre duality for the pushforward along the map Spec(ΩT )→ Spec(Z`).
Let us show this claim. Let I ⊂ ΩT be the augmentation ideal. Since A is Z`-constructible, M

is of I-power torsion. Then we have

HomZ`(M,Z`) = HomΩT (M,HomZ`(ΩT ,Z`))

= HomΩT (M,ΓI(HomZ`(ΩT ,Z`))

= HomΩT (M, lim−→
n

(HomΩT (ΩT /I
n,HomZ`(ΩT ,Z`))

= HomΩT (M, lim−→
n

(HomZ`(ΩT /I
n,Z`))

= lim−→
n

HomΩT (M, (HomZ`(ΩT /I
n,Z`))

where the first line comes from the adjunction between forgetful and Hom, the second one from the
fact that M is of I-power torsion, the third one from the definition of local cohomology, the fourth
one again from the adjunction and the last one from the compacity of M as an ΩT -module.

On the other side, we have

HomΩT (M,ΩT ) = HomΩT (M,ΓI(ΩT ))

= HomΩT (M, lim−→
n

HomΩT (ΩT /I
n,ΩT ))

= lim−→
n

HomΩT (M,HomΩT (ΩT /I
n,ΩT )).
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Let T ′ be the torus dual to T defined over Spec(Z) and let R = O(T ′) and let I ′ ⊂ R be the
augmentation ideal. There is a natural flat map R → ΩT and such that I ′ΩT = I. This implies
in particular that HomΩT (ΩT /I

n,ΩT ) = ΩT ⊗ HomR(R/I ′n, R). Let f : T ′ → Spec(Z) be the
structure map. Embedding the categories of R-modules and Z-modules into the categories of solid
R-modules and solid Z-modules, built in [CS18]. We get a pair of adjoint functors

f! : D(R�)� D(Z�) : f !. (3.56)

Moreover by [CS18] Observation 8.12, f !Z = R[dimT ]. A priori f! can be difficult to compute, but
for the R-module R/I ′, we have f!R/I

′n = f∗R/I
′n since R/I ′n = i∗R/I

′n where i : Spec(R/I ′n)→
Spec(R) is the closed embedding. Indeed, the formation of i! is compatible with composition
and i! = i∗ for proper maps,see [CS18] Theorem 11.1 and the following discussion, but the map
Spec(R/I ′n) → Spec(Z) is finite hence proper. The adjunction and base change therefore provide
a canonical Z`-linear isomorphism

HomZ`(M,Z`)→ HomΩT (M,ΩT )[dimT ]. (3.57)

We still need to promote this to an ΩT -linear isomorphism. Note that by our construction, it is
enough to do so for the objects ΩT /I

n. We further note that for M = ΩT /I
n both complexes lie in

degree 0. We now check the ΩT -linearity on H0, it amounts to the ΩT -linearity of the isomorphism,

Hom0
Z`

(M,Z`)→ ExtdimT
ΩT (M,ΩT )(ε). (3.58)

On the LHS, the ΩT -structure comes from Verdier’s monodromy which is obtained by twisting by
(ε) by lemma 3.5.1. We now have a commutative diagram

D(ΩT ) D(Z`)

D♥(ΩT ) D♥(Z`)

where the horizontal maps are the forgetful functors and the vertical ones the inclusions. The map
we consider therefore lives in D♥(ΩT ) and thus we get the desired ΩT -linearity.

Remark 3.5.6. The setup of [CS18] requires to consider rings that are of finite type over Z which
is why we reduced everything to the ring R.

3.5.2 Rigidity of H
Definition 3.5.7 (Rigid category, [GR17]). Let C be a monoidal compactly generated category.
Then C is quasi-rigid if it is generated by left and right compact dualizable objects. The category
C is rigid if the unit object is also compact.

Lemma 3.5.8. The category H is quasi-rigid.

Proof. The ∆w,χ generate it and are compact and dualizable.

Remark 3.5.9. The only failure to rigidity here is the fact that the unit is not compact since it is an
infinite direct sum. If we consider the category Ho = ⊕χ∈oDindcons(U\G/U,ΩT )χ where o ⊂ CH(T )
is a W -orbit then this category is rigid.
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3.5.3 Duality in H
We now work out the left and right duals in Hω.

Definition 3.5.10. We define the following duality functor

D− : Hω → Hω,M 7→ inv∗D′(M)(ε)[−dimT ],

where inv : G→ G denotes the inversion map.

Lemma 3.5.11. There is a canonical isomorphism

D′(− ∗ −) = (D′(−) ∗ D′(−))[−2 dimT ]. (3.59)

Proof. Recall that the convolution 3.4.4 was defined as

A ∗B = ForΩT
ΩT×T

m!(A�̂Z`B)[dimT ], (3.60)

where the forgetful functor is induced by the second inclusion ΩT → ΩT×T . Consider the ΩT×T -
module ΩT×T (εT×T )⊗ΩT ΩT (εT ) where ΩT → ΩT×T is induced via the second inclusion. Tensoring
by this module defines a twist M 7→M(εT×T/T ) for M ∈ D(ΩT ). We claim that there are natural
ΩT×T -linear isomorphism of functors

(i). D′ΩT (ForΩT
ΩT×T

(−)) = ForΩT
ΩT×T

(D′ΩT×T (−))[−dimT ](εT×T/T ), where the index ΩT or ΩT×T
specifies where we use the version of the duality D′ we use.

(ii). m! = m∗[dimT ] on objects that are LT×T ⊗ Lχ,χ′ -equivariant.

Let us assume both claims. And let us show how this implies the theorem

D′ΩT (A ∗B) = ForΩT
ΩT×T

D′ΩT×Tm!(A�̂Z`B)(εT×T/T )

= ForΩT
ΩT×T

m∗D′ΩT×T (A�̂Z`B)(εT×T/T )

= ForΩT
ΩT×T

m!(D′ΩT (A)�̂Z`D
′
ΩT (B))(εT×T/T )[−dimT ].

The first line follow from the first point and the last one from the compatibility between ⊗,Hom
and the Kunneth formula. Note that once we forget along ΩT → ΩT×T the second inclusion, the
twist (εT×T/T ) becomes trivial.

To prove the first claim, we show more a general statement. Let X be a scheme with a T -action,
and let T = T1 × T2 be a decomposition into a product of tori. Define the twist M 7→M(εT/T1

) in
a similar way. There is ΩT -linear isomorphism of functors Dcons(X,ΩT )op

χ → Dcons(X,ΩT )

For
ΩT1

ΩT
D′ΩT = D′ΩT1

For
ΩT1

ΩT
[dimT2](εT/T1

) (3.61)

This isomorphism can be constructed locally in the smooth topology of X/T , hence we can assume
that X = Y ×T . We can furthermore assume that Y is a point. The compatibility with the duality
follows from the same argument of the proof of lemma 3.5.1 (i) with the pair (Z`,ΩT ) replaced by
(ΩT1 ,ΩT ).

For the second point, we show that there is an ΩT -linear isomorphism of functors Dcons(U\G×U
G/U,ΩT×T )χ′,χ → Dcons(U\G/U,ΩT )χ

m![dimT ] = m∗. (3.62)
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Recall that m is the composition of a T -torsor and a proper map. We show that for a T -torsor f :
X → Y there is an isomorphism of functors Dcons(X,ΩT )unip → Dcons(X,ΩT )unip, f! = f∗[−dimT ].
This isomorphism can be constructed locally in the smooth topology and as before we can assume
that X = T and Y is a point. The statement then follows from the computation of RΓ(T, LT ) =
Z`[−dimT ] which is done in [GL96] 3.1.1.

Lemma 3.5.12. Let X be a T -scheme, there is a canonical isomorphism

HomD(X,ΩT )χ(A,B)[dimT ] = RΓ(X,D′(A)⊗̂!
Z`B) (3.63)

where ⊗!
Z`

denotes ∆!(−�Z` −) and the completion as in section 3.4.4.

Proof. By descent, we can assume that X = Y × T . We assume that χ = 1. Let A,B ∈
D(X,ΩT )unip. Then A = A′ �ΩT LT and B = B′ �ΩT LT . We can thus compute

HomD(X,ΩT )unip
(A,B) = HomDcons(Y,ΩT )(A

′, B′)

= RΓ(Y,D′ΩT (A)⊗!
ΩT B).

On the other side, we have

D′(A)⊗̂!
Z`B = (DΩT (A)⊗̂!

Z`B)�ΩT×T ∆∗LT×T . (3.64)

Applying the functor RΓ(X,−) we get

RΓ(X,D′(A)⊗̂!
Z`B) = RΓ(Y,DΩT (A)⊗̂!

Z`B)⊗ΩT×T RΓ(T,∆∗LT×T )

= RΓ(Y,DΩT (A)⊗̂!
Z`B)⊗ΩT×T ΩT [dimT ]

= RΓ(Y,DΩT (A)⊗ΩT B)[dimT ].

Theorem 3.5.13. All objects A ∈ Hω are left and right dualizable with left and right duals canon-
ically identified with D−(A).

Proof. We want to show that there are canonical isomorphisms for all A,B,C ∈ Hω,

Hom(A ∗B,C) = Hom(A,C ∗ D−(B)) = Hom(B,D−(A) ∗ C). (3.65)

By symmetry we will only show the first one. We follow the construction of [BZN09]. Assume that
A,B,C ∈ Hω. Then we have by lemma 3.5.12

Hom(A ∗B,C) = RΓ(U\G/U,D′(A ∗B)⊗̂!
Z`C) = RΓ(U\G/U,D′(A) ∗ D′(B)⊗! C) (3.66)

and
Hom(A,C ∗ D−(B)) = RΓ(U\G/U,D′(A)⊗̂!

Z`(C ∗ D
−(B)). (3.67)

Replacing A,B by D′(A) and D′(B), it is enough to show that

RΓ(U\G/U,A⊗̂!
Z`(C ∗ inv∗B)) = RΓ(U\G/U, (A ∗B)⊗̂!

Z`C). (3.68)
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Consider the following diagram

U\G×U G/U U\G×U G/U × U\G/U U\G/U × U\G/U × U\G/U

U\G/U U\G/U × U\G/U

m

∆

∆1

id×m

q1

where m is the multiplication and ∆1 = id×m and q1 is simply the projection. The square in this
diagram is Cartesian. We have

(A ∗B)⊗̂!
Z`C = ∆!(m× id)!q

∗
1(A�̂Z`B�̂Z`Z`C))

= m!∆
!
1q
∗
1(A�̂Z`B�̂Z`C).

This follows from the fact that m!(A�B) ' m∗(A�B)[dimT ] as in the proof of lemma 3.5.11.
Similarly, we have

U\G×U G/U U\G×U G/U × U\G/U U\G/U × U\G/U × U\G/U

U\G/U U\G/U × U\G/U

m

∆

∆2

id×m

q2

where ∆2(x, y) = (m× id) and q2 is induced by the maps G3 → G3, (a, b, c) 7→ (a, inv(c), b) and the
square is cartesian. Then we have

A⊗̂!
Z`(C ∗ inv∗B) = ∆!(id×m)!q

∗
2(A�̂Z`B�̂Z`C)

= m!∆
!
2q
∗
2(A�̂Z`B�̂Z`C)

Consider now the diagram

U\G×U G/U U\G/U × U\G/U × U\G/U

U\G/U U\G×U G/U

m

m

q1∆1

q2∆2

r

where r is the map induced by the map G × G → G × G, (x, y) 7→ (xy, inv(y)). This diagram is
commutative. We therefore have

RΓ(U\G/U,m!∆
!
2q
∗
2(A�̂Z`B�̂Z`C)) = RΓ(U\G/U,m!r

!∆!
1q
∗
1(A�̂Z`B�̂Z`C))

= RΓ(U\G/U,m!r!r
!∆!

1q
∗
1(A�̂Z`B�̂Z`C))

= RΓ(U\G/U,m!∆
!
1q
∗
1(A�̂Z`B�̂Z`C)).

The first line comes from the remark that q1 and q2 are smooth of relative dimension dimU hence
since ∆!

2q
!
2 = r!∆!

1q
!
1 after shifting by [−2 dimU ] we get ∆!

2q
∗
2 = r!∆!

1q
∗
1 . The passage from the

third to the fourth line follows from the fact that r is an isomorphism.
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The proof of this theorem yields a finer information. Since all objects of Hω are dualizable,
there are well defined functors L,R : Hω,op → H such that for all x ∈ Hω, the sheaf L(x) (resp.
R(x)) is the left dual of x (reps. the right dual of x). The next corollary is then also a consequence
of the proof theorem 3.5.13.

Corollary 3.5.14. There is a monoidal isomorphism of functors Hω,op → Hω, L→ R.

We now pass to the Ind-extensions. Recall that we extended the convolution product to all of H
by continuity. Recall also the following facts from Appendix 3.C. Since the category H is compactly
generated, it is dualizable and its dual is canonically identified with H∨ = Ind(Hω,op). By extending
by continuity the functors L and R, we get continuous functor L,R : H∨ → H defined on compact
objects by taking left and right duals.

Definition 3.5.15. A pivotal structure on H is the data of a monoidal isomorphism L→ R.

Remark 3.5.16. We refer to [BZN09] Section 3.4 for a discussion about pivotal structures in the
context on quasi-rigid categories.

Theorem 3.5.17 ([BZN09], 3.13). Assume that C is a monoidal quasi-rigid category, and let M
be a C-bimodule. Assume further that C is equipped with a pivotal structure. Then it induces an
isomorphism

C ⊗C⊗Crev M = HomC⊗Crev(C,M). (3.69)

We can now also reformulate theorem 3.5.13 as follows.

Corollary 3.5.18. The category H is equipped with a canonical pivotal structure.

3.5.4 F-center and F-trace of H
We refer to Appendix 3.C for the notion of F-central functors and of F-trace functors. We consider
the functor

Dcons(pt/GF,Z`)
HC∗F−−−→ Dcons(

U\G/U
AdFT

,Z`)
p!Φ−−→ Hω (3.70)

where Φ is the functor defined in section 3.3.5. We will abbreviate this functor to p!HC∗F. Similarly
we denote by CHFp! its left adjoint.

Consider the functor F∗ : Hω → Hω. Note that this functor is monoidal.

Theorem 3.5.19. The functor p!HC∗F is equipped with a canonical F∗-central structure and the
functor CHFp! is equipped with a canonical F-trace structure. That is, we have a diagram with two
commuting triangle.

Dindcons(pt/GF,Z`)

ZF(H) H Tr(F,H)

p!r∗q
! q∗r

∗p!

where the functors ZF(H) → H and H → Tr(F,H) are the canonical functors. Moreover, both
functors Dindcons(pt/GF,Z`)→ ZF(H) and Tr(F,H)→ Dindcons(pt/GF,Z`) are equivalences.

Corollary 3.5.20. The functor HCF is equipped with a canonical F∗-central structure.
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Proof. By lemma 3.5.11, the functor D′ is equipped with a monoidal structure hence induces an iso-
morphism ZF(H)→ ZF(H) since D′F∗D′ = F! = F∗. The functor D′HCFD : Dindcons(pt/GF,Z`)→
H is isomorphic up to a shift to HC∗F hence is equipped with a canonical central structure. There-
fore HCFD : Dindcons(pt/GF,Z`)∨ → H is equipped with a central structure. Since the functor D
induces an equivalence Dindcons(pt/GF,Z`)∨ ' Dindcons(pt/GF,Z`) we get a F-central structure on
HCF.

Proof of theorem 3.5.19. The argument closely follows the one of [BZN09]. First recall that H is a
HT -bimodule, consider the following augmented simplicial object H⊗HT •+2,

H H⊗HT H H⊗HT H⊗HT H . . .

where the maps are given by the partial convolutions. This gives a resolution of H as an H-bimodule,
therefore we have

H = lim−→
∆op

H⊗HT •+2. (3.71)

We first build the F-central structure. The F-center of H is

ZF(H) = EndH⊗Hrev(H,HF), (3.72)

where HF denotes H with its right H-module structure twisted by F∗. We use the previous resolution
to compute it.

HomH⊗Hrev(H,HF) = HomH⊗Hrev(lim−→H⊗HT •+2,HF)

= lim←−HomH⊗Hrev(H⊗HT •+2,HF)

= lim←−HomHT⊗HT (H⊗HT •,HF)

Let us identify the object HomHT⊗HT (H⊗HT •,HF). By lemma 3.5.21, we have

H⊗HT n =
⊕
χ

Dindcons(U\G/U ×T U\G/U ×T · · · ×T U\G/U,ΩT )χ, (3.73)

where there are n-copies of G and T × T -acts on the left of the first copy of G and on right of the
last copy of G. By lemma 3.5.22, we have

HomHT⊗HT (H⊗HT n,HF) =
⊕
χ

Dindcons(
U\G/U ×T U\G/U ×T · · · ×T U\G/U

AdFT
,ΩT )χ, (3.74)

where there are (n+ 1)-copies of G. The maps in the simplicial diagram⊕
χ

Dindcons(
U\G/U ×T U\G/U ×T · · · ×T U\G/U

AdFT
,ΩT )χ (3.75)

are given by the right adjoints of the partial convolutions. The functor Φ of section 3.3.5 induces
an equivalence⊕

χ

Dindcons(
U\G/U ×T · · · ×T U\G/U

AdFT
,ΩT )χ ' Dindcons(

U\G/U ×T · · · ×T U\G/U
AdFT

,Z`). (3.76)
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Consider the following map of simplicial stacks

pn :
G×B G×B · · · ×B G

AdFB
→ U\G/U ×T · · · ×T U\G/U

AdFT
, (3.77)

given in degree n by the quotient map for the action of Un+1 on the left of each copies of G. In
particular, at level n, this map is a torsor over a unipotent group scheme. We claim that the
pushforward map

pn,∗ : Dindcons(
G×B G×B · · · ×B G

AdFB
,Z`)→ Dindcons(

U\G/U ×T U\G/U ×T · · · ×T U\G/U
AdFT

,Z`),

(3.78)
defines a morphism of cosimplicial objects. The source cosimplicial object is nothing else than the
category of sheaves on the simplicial stack obtained as the Čech nerve of the map G

AdFB
→ G

AdFG
.

And the morphism are given by the !-pullbacks along partial multiplication maps. Denote by

m′i : G×BG×B ···×BG
AdFB

→ G×BG×B ···×BG
AdFB

the partial multiplication map. We now prove the claim.
After passing to left adjoints, we need to show that there is a canonical isomorphism

p∗i [c
j
i ] = m′i,!p

∗
i+1, (3.79)

where [cji ] : Dindcons(
U\G/U×

T (i+1)

AdFT
,Z`) → Dindcons(

U\G/U×
T (i)

AdFT
,Z`) denotes the j-th convolution.

For clarity of exposition, we show it in the first degree. Consider the diagram

U\G/U×TU\G/U
AdFT

U\G×BG/U
AdFT

U\G/U
AdFT

G×BG
AdFB

G
AdFB

p0

m′

p1

pr m

p̃1

where pr is the quotient map and m induced by the multiplication. The right slanted square is
Cartesian and the left triangle is commutative. Then we have

p∗0[c] = p∗0m!pr∗

= m′!p̃
∗
1pr∗

= m′!p
∗
1,

as desired.
By !-descent theorem 3.2.9, this defines a map

Z : Dindcons(pt/GF,ΩT )→ ZF(H). (3.80)

Furthermore the following diagram commutes

Dindcons(pt/GF,ΩT ) ZF(H)

H.
p!HC∗F
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By theorems 3.5.17 and 3.5.13, there is an identification ZF(H) with Tr(F,H). Under this
identification the two canonical maps

ZF(H)→ H→ Tr(F,H) (3.81)

are adjoints, with H → Tr(F,H) being the left adjoint. We now build the map Tr(F,H) →
Dindcons(pt/GF,Z`). This is roughly the same argument but with left adjoints instead. Using
the previous resolution we get

Tr(F,H) = H⊗H⊗Hrev HF = lim−→
∆op

H⊗HT • ⊗HT⊗HT HF. (3.82)

As before we identify the terms

H⊗HT n ⊗HT⊗HT HF = Dindcons(
U\G/U ×T · · · ×T U\G/U

AdFT
,Z`) (3.83)

with (n+ 1)-copies of G. The pullback along the maps pn defines a morphism of simplicial objects

p∗• : H⊗HT n ⊗HT⊗HT HF → Dindcons(
G×B G×B · · · ×B G

AdFB
,Z`), (3.84)

where the right simplicial object is, as before, the category of sheaves on the simplicial stack obtained
as the Čech nerve of the map
fracGAdFB → G

AdFG
. This in turn induces a map

T : Tr(F,H)→ Dindcons(pt/GF,Z`). (3.85)

Moreover the following diagram commutes

Dindcons(pt/GF,Z`)

H Tr(F,H)

T
q∗r
∗p!

We want to show that T is fully faithful. For this we compute its right adjoint and verify that
id→ TRT is an isomorphism. We consider now the morphisms

p•,∗ : Dindcons(
G×B G×B · · · ×B G

AdFB
,Z`)→ H⊗HT n ⊗HT⊗HT HF, (3.86)

and we claim that this induces a morphism of simplicial objects. We check it as before on the first
term. Consider the following diagram

U\G/U×TU\G/U
AdFT

U\G×BG/U
AdFT

U\G/U
AdFT

Z

G×BG
AdFB

G
AdFB

p2

q1

pr

q2

m′

p1

m

p̃2
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where the maps are the same as before and Z is the fiber product of both maps p2 and pr. Note
that the triangle (q1, p̃2, q2) is commutative. We then have

m!pr∗p2,∗ = m!q2,∗q
∗
1

= m!p̃2,∗q1,∗q
∗
1

= m∗p̃2,∗

= p1,∗m
′
∗

= p1,∗m
′
!,

where the first line follows from smooth base change, the second one from the commutativity of
the tringle, the third one from the fact that q1 is a U -torsor and thus the map id → q1,∗q

∗
1 is an

isomorphism and the fact that m is proper, the fourth one from the commutativity of the square
(p̃2,m, p1,m

′) and the last one from the properness of the map m′.
This in turns induces a morphism

TR : Dindcons(pt/GF,Z`)→ Tr(F,H), (3.87)

which is right adjoint to 3.85. The composition id → TRT is computed as the colimit of the
corresponding id → p•,∗p

∗
• all of which are isomorphism. This implies that T is fully faithful. Its

essential image contains all the complexes RΓc(Y (ẇ),Z`). By [BR03], these are known to generate
the category Perf(Z`[GF]) and hence all of Dindcons(pt/GF,Z`). The functor T is therefore also
essentially surjective and thus an equivalence.

Lemma 3.5.21. The exterior tensor product induces a natural equivalence

H⊗HT n =
⊕
χ

Dindcons(U\G/U ×T U\G/U ×T · · · ×T U\G/U,ΩT )χ. (3.88)

Proof. First consider the functor

H⊗D(Z`) · · · ⊗D(Z`) H→
⊕

χ1,...,χn

Dindcons(U\G/U × · · · × U\G/U,ΩTn)χ1,...,χn

A1 ⊗ · · · ⊗An 7→ A1�̂Z` . . . �̂Z`An,

where the χi refers to the right action of T on the i-th factor of U\G/U . Denote by p the projection

U\G/U × · · · × U\G/U → U\G/U ×T · · · ×T U\G/U. (3.89)

By the universal property of tensor products, there is a commutative diagram

H⊗D(Z`) · · · ⊗D(Z`) H
⊕

χ1,...,χn
Dindcons(U\G/U × · · · × U\G/U,ΩTn)χ1,...,χn

H⊗HT · · · ⊗HT H
⊕

χ1,...,χn
Dindcons(U\G/U ×T · · · ×T U\G/U,ΩTn)χ1,...,χn .

p!

We want to show that the bottom functor is an equivalence. Proceeding as in lemma 3.4.4, both
sides are stratified with strata indexed by tuples (w1, . . . , wn) ∈Wn. As the functor �̂Z` commutes
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with the functors i∗, i!, i
∗ and i! for i the inclusion of a stratum, the gluing is immediate, it is then

enough to show that the bottom map induces an equivalence on each strata. Let (w1, . . . , wn) ∈Wn

be tuple and let χ1, . . . , χn ∈ CH(T ). Note that the category

Dindcons(U\Bw1B/U,ΩT )χ1 ⊗HT · · · ⊗HT Dindcons(U\BwnB/U,ΩT )χn , (3.90)

is zero unless χi−1 = wiχi for i = 2, . . . , n. Clearly the same applies to the category Dindcons(U\Bw1B/U×T
· · ·×TU\BwnB/U,ΩTn)χ1,...,χn . We now assume that χi−1 = wiχi for i = 2, . . . , n. We can simplify
the tensors as follows

Dindcons(U\Bw1B/U,ΩT )χ1 ⊗HT · · · ⊗HT Dindcons(U\Bw1B/U,ΩT )χn

= Dindcons(U\Bw1B/U,ΩT )χ1 ⊗HT,χ1
· · · ⊗HT,χn−1

Dindcons(U\BwnB/U,ΩT )χn .

The right hand side is then equivalent to

D(ΩT )⊗D(ΩT ) · · · ⊗D(ΩT ) D(ΩT ) ' D(ΩT ). (3.91)

On the other hand after forgetting along the last inclusion, proceeding as in lemma 3.4.4, we have
equivalences

Dindcons(U\G/U ×T · · · ×T U\G/U,ΩTn)χ1,...,χn = D(U\G/U ×T · · · ×T U\G/U,ΩT )χn , (3.92)

and

Dindcons(U\Bw1B/U ×T · · · ×T U\BwnB/U,ΩTn)χ1,...,χn

= Dindcons(U\Bw1B/U ×T · · · ×T U\BwnB/U,ΩT )χn = D(ΩT ).

Using this second equivalence, we see that the bottom functor of the above diagram is an equivalence.
Using the first equivalence, we get the desired equivalence of the lemma.

Lemma 3.5.22. There is a natural equivalence

HomHT⊗HT (H⊗HT n,HF) =
⊕
χ

Dindcons(
U\G/U ×T U\G/U ×T · · · ×T U\G/U

AdFT
,ΩT )χ. (3.93)

Proof. Since the category H⊗HT n is compactly generated, it is dualizable. The duality functor D−
defines a self duality on H⊗HT n. Furthermore, since the category HT ⊗HT is quasi-rigid, by [BZN09]
3.14 the category H and thus H⊗HT n is dualizable as an HT ⊗HT -module. Hence we get that

HomHT⊗HT (H⊗HT n,HF) = H⊗HT n ⊗HT⊗HT HF. (3.94)

The duality D− exchanges the left and right actions of T on the first factor and also twists them
by t 7→ t−1. As previously, the category on the right hand side is identifies with the category of
sheaves on the product of the spaces, that is sheaves on U\G/U ×T U\G/U ×T · · · ×T U\G/U . By
the same argument of lemma 3.5.21, taking invariants by T × T firstly contract above T for one of
the action of T and for the second one takes the AdF invariants.
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3.5.5 Generation of the category Perf(Z`[G
F])

The last argument of theorem 3.5.19 requires the input of the following theorem.

Theorem 3.5.23 ([BR03]). The category Perf(Z`[GF]) is generated by the complexes RΓc(Y (ẇ),Z`).

The proof of loc. cit. reduces to the following statement of [DL76].

Theorem 3.5.24 ([DL76]). For all irreducible Q`-representations ρ of GF, there exists w ∈W and
i an integer such that

Hom0(ρ,Hi
c(Y (ẇ),Q`)) 6= 0. (3.95)

We want to give a second proof of both these statements using a geometric argument. The
strategy is to compute the functor CHFHCF and show as in [MV88] that it is given by convolution
against the Springer sheaf. We consider the category Dcons(G,Λ). This category is equipped with
the following convolution product. Consider the diagram

G×G G

G G

m

p2p1

where m is the multiplication and pi are the projections. Then for A,B ∈ Dcons(G,Λ), the convo-
lution is defined as

A ∗B = m!(A�B). (3.96)

Consider the two categories Dcons(
G

AdG ,Λ) and Dcons(
G

AdFG
,Λ) where Ad and AdF denote the

adjoint and F-adjoint action as before. The convolution structure induces a convolution structure
on Dcons(

G
AdG ,Λ) and a module structure over it on Dcons(

G
AdFG

,Λ).

Definition 3.5.25. The (multiplicative) Springer resolution is the space Ũ = {(g,B0), g ∈ UB0
} ⊂

G × G/B where B0 is a Borel subgroup and UB0
is its unipotent radical. Let s : Ũ → G be the

projection. The space Ũ is equipped with the G-action induced by the adjoint action on G and the
natural action on G/B. The Springer sheaf is defined as

Spr = s!Λ[dim Ũ ]. (3.97)

The following lemma is well known, [BM83].

Lemma 3.5.26. The sheaf Spr is a perverse sheaf equipped with a W -action and over Q` the sheaf
δ1 is a direct summand of Spr.

Remark 3.5.27. There are two possible normalization of the Springer action on Spr. They differ by
a twist by the sign representation of W . For one of them the irreducible representation yielding δ1
is the trivial representation, for the other one, it is the sign representation.

Lemma 3.5.28. There is an isomorphism of functors

q!r
∗r!q

∗ ' Spr[−2 dimU ] ∗ −. (3.98)

where r and q are the maps defining the horocycle correspondence.
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Proof. The proof follows closely the argument of [MV88]. Consider the following diagram

(G×G)/∆FG

(G×G)/∆FG Z (G×G)/∆FB

(G×G)/∆FB (G/U ×G/U)/∆FT

p1

p2

where Z is defined such that the bottom right square is Cartesian. Note that it is equipped with
a G action such that the two maps p1 and p2 are equivariant for the diagonal left action of G on
their target. Under the identification G

AdFG
' ∆G\(G × G)/∆FG, the functor q!r

∗r!q
∗ = p2,!p

∗
1.

We identify (G×G)/∆FG ' G via (x, y) 7→ F(x)y−1.
We compute the space Z, let (g, g′), (h, h′) ∈ (G×G)/∆FB such that (gU, g′U) = (hU, h′U)mod∆FT .

Then there exists t ∈ T, u, u′ ∈ U such that g = hut, g′ = h′u′F(t). Since the pair (h, h′) is only
considered up to ∆FB, we can assume g = h and g′ = h′u for some u ∈ U . There is an isomorphism
Z = Y/B where Y = {(g, g′, h), h′−1g ∈ U} ⊂ G × G × G and B acts by id × F × F. Under the
identification (G×G)/∆FG ' G, the maps p1 and p2 are then given as p1(g, g′, h′) = F(g)g′−1 and
p2(g, g′, h′) = F(g)h′−1.

Consider (p1, p2) : Z → G × G be the product of the two maps. And let K = (p1, p2)!Λ, this
sheaf is G-equivariant on G × G for the diagonal action of G (not twisted by Frobenius) and we
have a canonical isomorphism

p2,!p
∗
1 = pr2,!(K ⊗ pr∗1−), (3.99)

where pri : G ×G → G are the two projections. Recall a : G ×G → G is the map (x, y) 7→ x−1y.
Using the ∆(G) equivariance of the sheaf K, there exists a sheaf K◦ and isomorphisms K = a∗K◦

and
pr2,!(K ⊗ pr∗1−) = K◦ ∗ −. (3.100)

We now compute the sheaf K◦. Let 1 × G ⊂ G × G be the inclusion of the second factor. Then
K◦ = (1× id)∗K. Let Z◦ be the pullback of Z to 1×G.

Z◦ Z

G G×G
(1,id)

(p1,p2)q

Then Z◦ is the space of pairs (g, h′) ∈ (G×G)/∆FB such that h′−1F(g) ∈ U and the map q(g, h) =
F(g)h′−1. Let z0 = F(g)h′−1, then h′−1F(g) = F(g−1)z0F(g). Let Z ′◦ = {(gB, h), h ∈ Ad(F(g))(U))
and let q′ : Z ′◦ → G be the second projection. Then the map Z◦ → Z ′◦, (g, h′) 7→ (gB,F(g)h′−1)} ⊂
G/B ×G is an isomorphism over G. Finally the map Ũ → Z ′◦ given by (gB, h) 7→ (F(g)B, h) is a
universal homeomorphism, hence K◦ = q!Λ ' Spr[−2 dimU ].

Z◦ Z ′◦ Ũ

G

q′
q
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Lemma 3.5.29. Over F`, the simple perverse sheaf δ1 is a subquotient of Spr.

Proof. The Sringer sheaf is a perverse sheaf on the stack U
Ad(G) , where U denotes the unipotent

variety of G. It is known that there are finitely many irreducible perverse sheaves on this stack up to
isomorphism with coefficients in either Q` or F`. We are interested in the multiplicity [SprF` : δ1,F` ]

where the indexed F` is here to indicate over which coefficients we consider this multiplicity. Let

d : K0(Perv(
U

Ad(G)
,Q`))→ K0(Perv(

U
Ad(G)

,F`)), (3.101)

be the decomposition morphism, we refer to [Jut09] for a discussion about this morphism. We
write [SprQ` ] (resp. [SprF` ]) for the image of SprQ` (resp. SprF`) in his K0. It is then enough to

check that in the basis of K0(Perv( U
Ad(G) ,F`)) indexed by irreducible objects, we have [SprF` ] =

a[δ1,F` ] +
∑
ρ6=δ1,F`

aρρ, where ρ ranges through the irreducible objects in Perv( U
Ad(G) ,F`) different

from δ1,F` , that a is a positive integer. We have [SprF` ] = d([SprQ` ]) and in the basis composed of
irreducible objects, the matrix of d has nonnegative entries.

Proof of theorems 3.5.24 and 3.5.23. The following argument already appeared in [BBM04b]. By
lemmas 3.5.28 and 3.5.29, the identity functor is subquotient functor of CHFHCF over both Q` and
F`. This implies in particular that the functor HCF is conservative, over any coefficient ring. We
want to show that the category Perf(Λ[GF]) is generated by the complexes RΓc(Y (ẇ),Λ). Arguing
as in [BR03], it is enough to show that for all irreducible representations ρ either over Q` or over
F`, there exists w ∈W such that Hom(RΓc(Y (ẇ,Λ), ρ) 6= 0. But we have by adjunctions

Hom(RΓc(Y (ẇ,Λ), ρ) = Hom(q!r
∗iw,!k

∗
wΛ[TwF], ρ)

= Hom(Λ[TwF], kw,∗i
!
wr∗q

!ρ).

By Verdier duality the functor r∗q
! is conservative. There is thus one of the costalks of r∗q

!ρ that
is nonzero. For such a costalk, kw,∗i

!
wr∗q

!ρ is nonzero and therefore Hom(Λ[TwF], kw,∗i
!
wr∗q

!ρ) is
nonzero.

The following corollary is a consequence of the above proof of theorem 3.5.23.

Corollary 3.5.30. The functor HCF : Dcons(pt/GF,Z`)→ Dcons(
U\G/U
AdFT

,Z`) is conservative.

3.5.6 Lusztig’s `-series

As a corollary of theorem 3.5.19, we explain how to recover Lusztig’s geometric `-series, see [BR03]
Section 8. Denote by CH(T )/W the set of W -orbits of CH(T ).

Theorem 3.5.31. For each W -orbit o ⊂ CH(T )/W such that F(o) = o, there exists a central
idempotent eo ∈ Λ[GF] satisfying the following properties.

(i). The collection of all eo for o ranging trough the set of orbits such that F(o) = o is a complete
set of orthogonal idempotents in Z`[GF].

(ii). Let ρ be an irreducible F`-representation of GF, then eoρ = ρ if and only if there exists a pair
(w,χ) with w ∈W and χ ∈ o, such that the Deligne-Lusztig restriction ∗Rw,χ(ρ) 6= 0.
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Before giving a proof of the theorem we first need the following classical lemma.

Lemma 3.5.32. Let A be a ring. There exists a natural isomorphism of rings

Z(A) = End0(idD(A)), (3.102)

between the center of A and the algebra of endomorphisms of the identity functor of D(A).

Proof. Let us construct the bijection by hand. Let a : idD(A) → idD(A) be an endomorphism of the

identity functor. Then evaluating it at A ∈ D(A) yields an endomorphism z ∈ End0
D(A)(A) = A. It

remains to check that it is central. Let f ∈ A then the multiplication by f is an endomorphism of
A, as a is a natural transformation the following diagram commutes

A A

A A

z

z

ff

and therefore fz = zf and thus z is central in A.
Conversely let z ∈ Z(A), then the left multiplication by z defines an endomorphism of all

A-modules. After passing to the derived category this defines an endomorphism of all object
M ∈ D(A) functorial in M hence an endomorphism of the identity functor. It is clear that the two
constructions are inverse of each other and that they are morphisms of algebras.

Remark 3.5.33. Let A be a ring and assume that we have a direct sum decomposition D(A) = C1⊕C2.
Then the identity functor decomposes as idD(A) = idC1 ⊕ idC2 and the morphism idD(A) → idC1 →
idD(A) induced by the projection and the inclusion yields an endomorphism of the identity functor
idD(A). This endomorphism is idempotent hence the corresponding element of Z(A) is a also
idempotent.

Proof of theorem 3.5.31. First note that we can write H as a direct sum as follows

H =
⊕

o∈CH(T )/W

Ho (3.103)

where Ho =
⊕

χHχ. The Frobenius acts on the set CH(T )/W , let A ⊂ CH(T )/W be an orbit of
the Frobenius and denote by HA =

⊕
o∈AHo. This category is a monoidal subcategory of H and

F∗ acts on HA for all A. The theorem is now a consequence of the following facts

(i). there is a direct sum decomposition

Tr(F∗,H) =
⊕
A

Tr(F∗,HA), (3.104)

where A ranges through the collection of all F-orbits in CH(T )/W .

(ii). If A is a F-orbit in CH(T )/W that is not reduced to a single element then Tr(F∗,HA) = 0.
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Assuming these two points, let us show the theorem. We have

Dindcons(pt/GF,Z`) = Tr(F∗,H)

=
⊕
A

Tr(F∗,HA)

=
⊕

o,F(o)=o

Tr(F∗,Ho).

By remark 3.5.33, corresponding to each orbit o such that F(o) = o there is a central idempotent
eo ∈ Z(Z`[GF]) such that for all M ∈ Dindcons(pt/GF,Z`), we have eoM = M if and only if M ∈
Tr(F∗,Ho). Furthermore the collection of all eo is a complete collection of orthogonal idempotents
of Z`[GF]. It remains to check that this implies the desired property on irreducible representations.
Let ρ ∈ Tr(F∗,Ho) be an irreducible F`-representation and consider HCF(ρ). By theorem 3.5.19,
p!HCF(ρ) is an object of Ho. By corollary 3.5.30, the functor HCF is conservative hence HCF(ρ) is
non-zero, and therefore there exists (w,χ), with χ ∈ o, such that HomZ`[TwF](χ, kw,∗i

!
wHCF(ρ)) 6= 0.

By lemma 3.3.8, this implies that ∗Rw,χ(ρ) 6= 0.
Let us now prove the two claims. Firstly let us recall that Lurie’s tensor product of categories

commutes with colimits in both variables [Lur] 4.8.1.24. Therefore we have

Tr(F∗,H) = H⊗H⊗Hrev HF

=
⊕
A,B

HA ⊗H⊗Hrev HB,F.

Futhermore if A 6= B then HA ⊗H⊗Hrev HB,F = 0 and for A = B, we have HA ⊗H⊗Hrev HB,F =
Tr(F,HA). This yields (i).

For the second point, let A be an F-orbit in CH(T )/W . Assume that A is not reduced to a
single element and denote by A = {o1, . . . , on} the elements of A ordered such that F(oi) = oi+1.
We then have

Tr(F∗,HA) = ⊕i,jHoi ⊗H⊗Hrev Hoj ,F.

But Hoi ⊗H Hoj = 0 with respect to the left action of H if i 6= j. Similarly, Hoi ⊗Hrev Hoj ,F = 0 if
i+1 6= j mod n. As these two conditions are mutually exclusive if n > 1, we have Tr(F,HA) = 0.

3.6 Endomorphism of the Gelfand-Graev representation

We keep the notations of the previous sections, we further assume that G has connected center and
that ` is good so that we can use the global V functor. The sheaf Lψ on Ū is equipped with an
Fq-structure and the trace of Frobenius function corresponding to it is a generic character of the
group ŪF which we still denote by ψ. We let eψ be the idempotent

1

|ŪF|

∑
ŪFŪ

ψ(u−1)u ∈ Z[ζp][
1

p
][ŪF],

where ζp is a primitive p-th roof of 1.

We also denote by Γψ = indG
F

ŪFψ the corresponding Gelfand-Graev representation. On the dual
side consider the dual torus T∨ over Z`. The Frobenius of T induces an endomorphism F∨ which
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we still call the Frobenius. Consider the scheme (T∨ � W )F∨ defined as the intersection of the
diagonal and the graph of F∨ in T∨ �W × T∨ �W , that is the scheme fitting into the following
cartesian diagram

(T∨ �W )F∨ T∨ �W

T∨ �W T∨ �W × T∨ �W.

∆

(id×F∨)

The main goal of this section is to give a new geometric proof of the following theorem.

Theorem 3.6.1 ([Li21] 0.3 and [LS22] Main theorem). Assume that G has connected center and
that ` is good for G. There is an isomorphism of algebras

EndGF(Γψ) = O((T∨ �W )F∨) (3.105)

Let us outline our construction. We first recall the construction of the Curtis morphisms. The
modern way to define them is through the computation of the Deligne-Lusztig restriction of the
Gelfand-Graev representation.

Theorem 3.6.2 ([Dud09]). Let w ∈W , there is a TwF-equivariant isomorphism

RΓc(Y (ẇ),Z`)⊗GF Γψ ' Z`[TwF][−`(w)].

This isomorphism then induces a canonical map

Curw : End(Γψ)→ Z`[TwF] = EndTwF(Z`[TwF][−`(w)]) (3.106)

which we call the w-Curtis morphism. The full Curtis morphism is then defined as the direct sum
of all w-Curtis morphisms,

Cur : End(Γψ)
⊕Curw−−−−→ ⊕wZ`[TwF]. (3.107)

Consider the following commutative diagram

T∨ T∨

T∨ �W T∨ �W
F∨

wF∨

where the vertical maps are the quotient maps. This diagram is commutative and thus induces a
map on fixed points

(T∨)wF∨ → (T∨ �W )F∨ .

Taking rings of global sections, we have a map, which we call the spectral Curtis morphism

Curspec
w : O(T∨�W )F∨ → O(T∨)wF∨ = Z`[TwF]. (3.108)

We show the following theorem
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Theorem 3.6.3. Assume that G has connected center and that ` is good for G. Then the map Cur
factors through ⊕wCurspec

w and we have a commutative diagram

End(Γψ)

O(T∨�W )F∨ ⊕wZ`[TwF].
⊕wCurspec

w

Cur

Once this factorization is constructed, we show by a standard argument of symmetrizing forms
that the map End(Γψ)→ O(T∨�W )F∨ is an isomorphism.

Remark 3.6.4. Let us highlight the difference between our construction and the constructions of
[Li21] and [LS22]. It is known that after inverting ` both algebras are isomorphic, the problem
then lies in comparing two Z` -lattices inside. The key idea in loc. cit. is to show that for
suitable bases, the matrix giving the isomorphism is in fact defined over Z`. The proof is then a
difficult computation to check that this property holds, in particular it uses non trivial facts about
almost characters. Our construction on the other hand is purely geometric and free of Lusztig’s
classification.

Remark 3.6.5. In the proof of 3.6.3, we will also deduce a new proof of theorem 3.6.2.

3.6.1 Intersection with the graph of Frobenius on Soergel bimodules.

We have defined Soergel bimodules as certain coherent sheaves on C(T )×C(T )�W C(T ). Consider the
dual torus T∨ over Z`. Recall that there is a canonical isomorphism between C(T ) and a disjoint
union of completions of T∨, hence there is a canonical map :

can : C(T )→ T∨Z`
.

Consider now the space T∨ × T∨ over Z` and denote by ΓF∨ the closed subscheme equal to the
graph of F∨. This is the image of T∨ under id × F∨. We also denote by Γ̃F∨ ⊂ C(T ) × C(T ) the
graph of F∨. Note that we have

OΓ̃F∨
= (can× can)∗OΓF∨ .

Lemma 3.6.6. We have an isomorphism of functors Hω → Dcoh(C(T )×C(T )�W C(T )),

V(−)⊗OC(T )×C(T )
OΓ̃F∨

= V(p!p!−).

Proof. The statement is an analog of [BT22] 4.4. Let A ∈ Dcons(U\G/U,ΩT )χ. All the sheaves
∆w,χ are T -monodromic for the action of T given by AdF hence so is A. Suppose A is unipotent
monodromic for this action then p!p!A = A ⊗ΩT Z` by remark 3.2.49. In general A splits as
A = ⊕χAχ such that each Aχ is χ-monodromic. Applying p! to a non-unipotent monodromic
sheaf kills it hence p!p!A = A ⊗OC(T )

Z` where OC(T ) → Z` is the augmentation of the component
corresponding to the trivial character. Consider the following Cartesian diagram,

T∨ T∨ × T∨

1 T∨

ΓF∨

t
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where t(x, y) = x−1F∨(y). The functor V is ΩT ⊗ ΩT -linear. We then have

V(−)⊗ΩT⊗ΩT OΓ̃F∨
= V(−⊗OC(T )×C(T )

OΓ̃F
)

= V(−⊗OC(T )
Z`)

= V(p!p!−),

where the third line come from the cartesianity of the above diagram.

Lemma 3.6.7. There is a canonical W -action on OC(T )×C(T )�W C(T )⊗OC(T )×C(T )
OΓ̃F∨

and we have
an isomorphism

(OC(T )×C(T )�W C(T ) ⊗OC(T )×C(T )
OΓ̃F

)W ' O(T∨�W )F∨ .

Proof. We will do the proof in two steps, firstly we will prove an analog statement for T∨ in place
of C(T ) and then use the flatness of can and an analog of [BR22b] 8.5 to pass from T∨ to C(T ).

Let Z the derived scheme obtained as the derived intersection of T∨ ×T∨�W T∨ and the graph
of F∨,

Z T∨

T∨ ×T∨�W T∨ T∨ × T∨
(id×F∨)

i

where i is the closed immersion. By definition of OΓF∨ we have an isomorphism of OT∨×T∨-modules

OZ = OT∨×T∨�WT∨ ⊗OT∨×T∨ OΓF∨ .

Consider the natural action of W ×W on T∨ × T∨, the closed subscheme T∨ ×T∨�W T∨ is
stable under this action. The closed subspace T∨ embedded via the graph of F∨ is stable under the
action of W obtained by restriction along (id× F) : W →W ×W . Consider further the diagram

Z T∨

T∨ ×T∨�W T∨ T∨ × T∨

(T∨ �W )F∨ T∨ �W

T∨ �W T∨ �W × T∨ �W

(id×F∨)

(id×F)

∆

where ∆ is the diagonal and the long arrows are induced by the natural map T∨ → T∨ �W . We
claim that the top face is Cartesian. By construction the back, front and bottom are Cartesian. In
particular the composition of the top and front faces is Cartesian, to deduce that the top face is
Cartesian it is enough to know that the map (T∨ �W )F∨ → T∨ �W is a monomorphism, but this
map is a closed immersion as it is obtained via the pullback of one and is therefore a monomorphism.
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We furthermore want to identify Z �W with (T∨ �W )F∨ . First note that T∨ → T∨ �W is
faithfully flat and finite of rank |W | then so is Z → (T∨ �W )F∨ , in particular Z is a finite flat
Z`-scheme. The claim is clear after inverting `, we now have the following diagram

O(T∨�W )F O(T∨�W )F [ 1
` ]

(OT∨ ⊗OT∨�W O(T∨�W )F)W (OT∨ ⊗OT∨�W O(T∨�W )F)W [ 1
` ].

We first claim that the scheme (T∨ � W )F∨ is underived. This intersection over Z` is the base
change of the same intersection over Z`. Over Z`, both copies of (T∨ �W ) are regularly immersed
in (T∨ �W ) × (T∨ �W ) via the diagonal and the graph of F∨ since T∨ �W is regular by the
Pittie-Steinberg theorem. By [Li21] 3.16, we know that the classical part of (T∨�W )F∨ is finite free
over Z`, hence the underived intersection has the expected codimension. This is enough to imply
that the intersection is itself underived. Indeed any regular sequence that determines locally ΓF∨ is
still regular when restricted to the diagonal by the Cohen-Macaulay property [Aut] Tag 02JN. As
the map Z → (T∨ �W )F∨ is faithfully flat, the scheme Z is also underived. We are dealing with
classical finite free Z`-algebra.

After inverting `, the map Z �W → (T∨ �W )F∨ is an isomorphism by the exactness of the
functor of W -invariants. This implies that over Z` both algebras have the same rank. It is then
enough to show that the map O((T∨ � W )F∨) → O(Z � W ) is `-saturated. Since we have a
commutative diagram

Z Z �W

(T∨ �W )F∨

it is enough to show that the map O((T∨ � W )F∨) → O(Z) is `-saturated. Over F`, the map
O((T∨ �W )F∨)→ O(Z) is faithfully flat hence injective and thus our original map is `-saturated.

We now pass to C(T ), the statement will follow from the fact that the following diagram is
Cartesian.

C(T )×C(T )�W C(T ) C(T )× C(T )

T∨ ×T∨�W T∨ T∨ × T∨

Let us assume this and show the lemma. Firstly this implies that

(can× can)∗OZ = OC(T )×C(T )�W C(T ) ⊗OC(T )×C(T )
OΓ̃F∨

.

Since the map can×can is compatible with the W ×W action on both the source and target, we get
the desired action on OC(T )×C(T )�W C(T ) ⊗OC(T )×C(T )

OΓ̃F∨
. Moreover since can is flat it commutes

with taking invariants under W , hence after taking invariants we get an isomorphism

(OC(T )×C(T )�W C(T ) ⊗OC(T )×C(T )
OΓ̃F∨

)W ' O(C(T )�W )F .
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But now we have a natural morphism (C(T ) � W )F → (T∨ � W )F, and we show that it is an
isomorphism, consider the following diagram

C(T )×C�W C(T ) C(T )× C(T )

T∨ ×T∨�W T∨ T∨ × T∨

Z ′ C(T )

Z T∨

where Z ′ is defined to make the top square Cartesian. By hypothesis the back square is Cartesian,
and so are the right, bottom and front ones. Hence the diagonal square

Z ′ C(T )× C(T )

Z T∨ × T∨

is Cartesian. It is enough to check that Z ' Z ′ since we want to show that Z �W ' Z ′ �W . But
Z is just a collection of copies of Z` and all of them factor through torsion points in T∨ × T∨. We
choose one of them for instance the point (1, 1) but then the fiber over (1, 1) in Z ′ is Spec((ΩT ⊗
ΩT ))×T∨×T∨ Spec(Z`) = SpecZ`.

It remains to check the claim about the Cartesianity of the above diagram. This can be checked
one pair of torsion points at a time in T∨ × T∨, the proof is similar for all pairs of torsion points,
we do it for the point (1, 1), but then this is lemma 8.4 of [BR22b] (again suitably lifted to Z`).

3.6.2 Isomorphism of the two functors and proof of theorem 3.6.1.

The representation Γψ defines a sheaf on pt/GF and we denote by Ξψ the sheaf Γψ ⊗Z` ΩT . We
now want to relate HCF(Ξψ) with p!T.

Lemma 3.6.8. We have an isomorphim

ΦHCF(Γψ) = p!T[dimT ]. (3.109)

Proof. We show the following. ⊕
χ∈CH(T )

AvχHCF(Ξψ) ' p!T[dimT ]

where Avχ is as before a!(LT ⊗ Lχ[2 dimT ] �ΩT −). In view of the equivalence of lemma 3.3.15
this is equivalent to proving the lemma. The proof follows the argument of [BT22] 5.5.1, but we
have to bypass the use of the vanishing conjecture of [Che21] which is not available in the integral
setting.
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Recall that we have a sheaf Lψ on U which we interpret as an ΩT sheaf. As a sheaf on U

it is AdF-equivariant and the corresponding object in Dcons(
U

AdFU
,ΩT ) is nothing else than the

representation ψ. Denote by v : U → G the embedding, and consider the sheaf v!Lψ on G
AdFU

. Now

denote by c the map G
AdFU

→ G
AdFG

, we have a commutative diagram

Dcons(
U

AdFU
,ΩT ) Dcons(

G
AdFU

,ΩT ) Dcons(
G

AdFG
,ΩT )

Db(ΩT [U
F

]) Db(ΩT [GF])

v! c!

indG
F

UF

where the vertical arrows are the usual identification with categories of representations and the
bottom horizontal one is the usual induction for finite groups. In particular we get that c!v!Lψ = Ξψ.

Consider now the diagram

G
AdFU

∆G\(G×G)/∆FU (G×G)/∆FU

G
AdFG

∆G\(G×G)/∆FG (G×G)/∆FG

G
AdFB

∆G\(G×G)/∆FB (G×G)/∆FB (G×G)/∆FU

U\G/U
AdFT

∆G\(G/U ×G/U)/∆FT (G/U ×G/U)/∆FT G/U ×G/U

π1i1

c

q

r

i2

c1

π2

c2

i3

q1

π3

q2

p2

i4

r1 r3r2

π4 p1

where the maps are as follow

(i). The maps ij for j = 1, . . . , 4 are isomorphisms induced by G×G 7→ G, (x, y) 7→ x−1y.

(ii). The maps π are the quotient maps for the diagonal action of G on the left.

(iii). The maps p1 and p2 are the quotient maps with respect to the right ∆F-action of T .

(iv). The maps c, r and q have already been defined and the other maps are defined so that all
squares are Cartesian, they are all quotient maps for the obvious groups.

Consider the sheaf Lψ−1 � Lψ on (U × U)/∆F(U) and the diagram

(U × U)/∆FU (G×G)/∆FU

∆U\(U × U)/∆FU ∆U\(G×G)/∆FU ∆G\(G×G)/∆FU

U
AdFU

G
AdF(U)

v

i1

c̃1v1

π̃1

v2

π0

i0

π1
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where all maps are either the obvious quotient maps or induced by the inclusion U → G. Note that
the two squares are Cartesian and the maps i1 and i0 isomorphisms. There is an isomorphism

π∗0i
∗
0Lψ = Lψ−1 � Lψ.

We then deduce

i∗1v!Lψ = c̃1,!v1,!i
∗
0Lψ

= c̃1,!v1,!π0,!π
∗
0i
∗
0Lψ[2 dimU ]

= π1,!v2,!(Lψ−1 � Lψ)[2 dimU ]

where, in the second line, we have used the fact that π0,!π
∗
0 ' id[−2 dimU ] since π0 is a U -torsor.

We now want to compute i∗4HCF(Ξψ) as follows.

i∗4HCF(Ξψ) = i∗4r!q
∗c!v!Lψ

= r1,!q
∗
1c1,!i

∗
1v!Lψ

= r1,!q
∗
1c1,!π1,!v2,!(Lψ−1 � Lψ)[2 dimU ]

= π4,!r2,!q
∗
2c2,!v2,!(Lψ−1 � Lψ)[2 dimU ]

We now want to discuss p∗1r2,!q
∗
2c2,!v2,!(Lψ−1 � Lψ). First note that v2,!Lψ−1 � Lψ was (U ×

U,ψ−1 × ψ)-equivariant on the left and remains so after applying all the functors p∗1r2,!q
∗
2c2,! the

resulting sheaf is ψ−1 × ψ-equivariant on the left on G/U × G/U hence has to be supported on
the open cell, which is UTU/U × UTU/U . We now compute its pullback to T × T . Consider the
following diagram

T (TU × TU)/∆FU TU/U × TU/U

(G×G)/∆FU G/U ×G/U

(U × U)/∆FU (G×G)/∆FG (G×G)/∆FB (G/U ×G/U)/∆FT

p2

r2

p1

r3

j1

r4

j2

j3

q2

triv

c2v2

γ

where the maps j1 and j2 are induced by the inclusion TU ⊂ G, the map j3 = q2p2j2, the map triv is
the map with constant value 1. Both of the right squares are Cartesian. We identify (U×U)/∆FU '
U via the inclusion of the second factor, in particular the map U × U → (U × U)/∆FU ' U is
nothing else than the map (x, y) 7→ (yF(x−1)). Similarly we identify (G × G)/∆FG with G and
(TU × TU)/∆FU ' T × T × U . Under these identification, we set the map γ to be given by the
graph of F on T × T and the map with constant value 1 on U . With these choices, the left square
is also Cartesian. We have

j∗1p
∗
1r2,!q

∗
2c2,!v2,!(Lψ−1 � Lψ)[2 dimU ] = r4,!j

∗
2p
∗
2q
∗
2c2,!v2,!(Lψ−1 � Lψ)[2 dimU ]

= r4,!j
∗
3c2,!v2,!(Lψ−1 � Lψ)[2 dimU ]

= r4,!γ!triv
∗(Lψ−1 � Lψ)[2 dimU ]

= r4,!γ!ΩT [2 dimU ].
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Under the identification TU/U × TU/U ' T × T , the sheaf j∗1p
∗
1r2,!q

∗
2c2,!v2,!(Lψ−1 � Lψ)[2 dimU ]

is therefore nothing else than the sheaf (id× F)!ΩT .
Consider the following cartesian diagram

G/U ×G/U U\G/U

(G/U ×G/U)/∆FT
U\G/U
AdFTπ4

p1

a

p

We now compute
a!p
∗
1r2,!q

∗
2c2,!v2,!(Lψ−1 � Lψ)[2 dimU ].

By the preceding discussion, the sheaf p∗1r2,!q
∗
2c2,!v2,!(Lψ−1 � Lψ)[2 dimU ] is nothing else than

the sheaf p∗1p1,!(Lψ−1 � Lψ)[2 dimU ] where Lψ is considered as a sheaf on G/U via the inclusion
Ū ↪→ G/U . Note that the maps a, p1, p and π4 are equivariant for the action of T by translation
either on the right or on the second copy of G/U , hence Avχ commutes with the functors p!, p

∗, ....
We now compute

Avχa!p
∗
1p1,!(Lψ−1 � Lψ)[2 dim Ū ] = Avχp

∗π4,!p1,!(Lψ−1 � Lψ)[2 dim Ū ]

= p∗p!a!Av2
χ(Lψ−1 � Lψ)[2 dim Ū ]),

where Av2
χ refers to the averaging functor on the second copy of G/U . Let us now evaluate

a!Av2
χ(Lψ−1 � Lψ)[2 dim Ū ]). Consider the following diagram

G×G/U G/U

ŪU/U × ŪTU/U G/U ×G/U U\G/U

ŪU/U × ŪTU/U

b

a

zz̃
j̃

z̃
j

where z and z̃ are the quotient maps for the action of U , the maps j and j̃ are the obvious inclusions
and the map b is (x, yU) 7→ x−1yU . Note that both squares are Cartesian. Since U is a unipotent
group the map id→ z!z

! is an isomorphism.

a!Av2
χ(Lψ−1 � Lψ)[2 dim Ū ]) = a!j!(Lψ−1 � (Av2

χLψ))[2 dim Ū ])

= z!z
!a!j!(Lψ−1 � (Av2

χLψ))[2 dim Ū ])

= z!b!z̃
!j!(Lψ−1 � (Av2

χLψ))[2 dim Ū ])

= z!b!j̃!(Lψ−1 � (Av2
χLψ))[4 dim Ū ])

= z!(δχ,ψ)[dimT + dim Ū ]

= AvU (δχ,ψ)[dimT ] = Tχ[dimT ].
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Putting everything together, we have,

Avχp
∗HCF(Ξψ) = p∗π4,!Av2

χr2,!q
∗
2c2,!v2,!(Lψ−1 � Lψ)[2 dimU ]

= a!p
∗
1Av2

χr2,!q
∗
2c2,!v2,!(Lψ−1 � Lψ)[2 dimU ]

= p∗p!Tχ[dimT ].

The sheaf p!Tχ[dimT ] is concentrated in a single perverse degree. Indeed, since Tχ is tilting,
both the stalks and costalks of Tχ are direct sums of copies of ν∗wLT ⊗ Lχ[dimT + `(w)] . Since
the map p is a T -torsor, by lemma 3.2.50, the stalks and costalks of p!Tχ[dimT ] are direct sums of
copies of p!ν

∗
wLT ⊗ Lχ[2 dimT + `(w)] which is concentrated in a single degree.

We can now apply [BBD82] 4.2.5, to deduce that

p!Tχ[dimT ] = AvχHCF(Ξψ).

Taking a direct sum over all χ yields the lemma.

Proof of theorem 3.6.2. Let w ∈W . Using theorem 3.3.8, we have that

kw,∗i
∗
wHCF(Γψ) = Γψ ⊗GF RΓc(Y (ẇ),Z`).

Applying the functor kw,∗i
∗
w to both sides of 3.6.8, we deduce that

Γψ ⊗GF RΓc(Y (ẇ),Z`) = kw,∗i
∗
wp!T = kw,∗p!i

∗
wT[dimT ]. (3.110)

Since T is tilting and by lemma 3.4.30, we get

i∗wT =
⊕

χ∈CH(T )

ν∗w(LT ⊗ Lχ)[dimT + `(w)].

By lemma 3.3.9, the right hand side of 3.110 is isomorphic to the regular representation of TwF.

Proof of theorem 3.6.3. By functoriality the isomorphism ΦHCFΓψ ' p!T[dimT ] defines a map

End(Γψ)→ End(p!T). (3.111)

The right hand side is isomorphic to V(p!p!T) ' OZ . By lemma 3.6.7, there is a W -action on Z
such that Z�W ' (T∨�W )F∨ . In particular the statement is equivalent to the commutation of the
action of End(Γψ) with the W -action. We will use the F∗-central structure to obtain a factorization
by the W -invariants.

Recall that 〈T〉 denotes the stable subcategory of H generated by T. By lemma 3.4.58, this is
monoidal subcategory of Hω. We have p!p!T ∈ 〈T〉. Indeed, choosing a regular sequence determining
the graph of Frobenius in C(T )×C(T ) and then restricting it to C(T )×C(T )�W C(T ) is still a regular

sequence by the proof of lemma 3.6.7. The object p!p!T is then isomorphic to the totalization of
the complex of T ⊗C(T )×C(T )�W C(T ) Kos where Kos denotes the Koszul complex corresponding to
our chosen regular sequence.

Consider the full subcategory 〈Γψ〉 ⊂ Dcons(pt/GF,Z`) generated by Γψ. The F∗-central functor
p!HCF then defines an F∗-central functor

〈Γψ〉 → 〈T〉. (3.112)
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By lemma 3.4.58, the functor V induces a monoidal equivalence 〈T〉 ' Dqcoh(C(T )×C(T )�W C(T )).

Therefore V(p!HCF(−)) then defines a F∨-central functor 〈Γψ〉 → Dqcoh(C(T ) ×C(T )�W C(T )). By
theorem 3.C.12, we have an equivalence

ZF∨(Dqcoh(C(T )×C(T )�W C(T ))) ' Dqcoh((C(T ) �W )F∨) ' Dqcoh((T∨ �W )F∨). (3.113)

We then get a well defined functor

〈Γψ〉 → Dqcoh((T∨ �W )F∨) (3.114)

making the following diagram commute

〈Γψ〉 Dqcoh((T∨ �W )F∨)

Dqcoh(C(T )×C(T )�W C(T ))

where the map Dqcoh((T∨ �W )F∨) → Dqcoh(C(T ) ×C(T )�W C(T )) is given by i∗z
∗ where i and z

are the following maps

C(T )×C(T )�W C(T )
i←− Z z−→ (T∨ �W )F∨ . (3.115)

The image of Γψ is then an O((T∨ �W )F∨)-module M whose image in Dqcoh(C(T )×C(T )�W C(T ))

is V(p!p!T) = i∗OZ . Hence we have an isomorphism z∗M = OZ . As Z → (T∨ �W )F∨ is faithfully
flat, we see that M is locally free of rank one. Moreover, since (T∨ �W )F∨ is a finite disjoint of
(Artinian) local schemes, M is free of rank one. We therefore have a map

φ : End(Γψ)→ O(T∨�W )F∨ = End(M), (3.116)

compatible with the map End(Γψ)→ End(p!T).
To conclude the proof of the theorem, we still need to prove that Curspec

w φ = Curw. Firstly recall
from the proof of the Endomorphismensatz 3.4.34, that there is an embedding ΩT⊗Ω

Wχ
T

ΩT → ⊕wΩT

and that the following diagram commutes

End(Tχ) End(grwTχ)

ΩT ⊗Ω
Wχ
T

ΩT ΩTprw

where prw is the map induced by the projection ⊕wΩT → ΩT onto the w-th component. Recall from
lemma 3.4.21 that grwTχ = iw,!i

∗
wTχ and thus End(grwTχ) = Hom(i∗wTχ, i

∗
wTχ). We take a direct

sum over all χ and then apply the functor OZ ⊗OC(T )×C(T )�W C(T )
− to the previous diagram. Using

lemma 3.6.6 and the fact that OZ ⊗OC(T )×C(T )�W C(T )
OC(T ) = O(T∨)wF∨ , we have a commutative

diagram.

End(Γψ) End(p!T) End(p!i
∗
wT)

O(T∨�W )F∨ OZ O(T∨)wF∨
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By lemma 3.3.8, and since End(p!i
∗
wT) = Z`[TwF] the top line is the w-Curtis morphism and the

bottom one is the w-spectral Curtis morphism.

Proof of theorem 3.6.1. To conclude we use a symmetrizing form argument. Firstly consider the
map (T∨)wF → (T∨ � W )F∨ . We have O(T∨)wF = Z`[TwF], and we therefore have a map

O(T∨�W )F∨ → Z`[TwF].

Consider the composition End(Γψ) → O(T∨�W )F∨ → Z`[TwF]. By theorem 3.6.3, this map is

the Curtis morphism. By [BK08], the map End(Γψ)→
⊕

w∈W Z`[TwF] is injective and both sides

are equipped with compatible symmetrizing forms. As Q` ⊗ End(Γψ) ' O(T∨�W )F∨ ⊗Q` the map

End(Γψ)→ O(T∨�W )F∨ is an isomorphism by loc. cit. Lemma 3.8.

3.A Equivariant sheaves

We will recall a construction of [Gai20]. We let T be a torus over k and X be a scheme with a
T -action and Λ be a coefficient ring. We first equip the category Dcons(T,Λ) with the ∗-convolution
structure defined as follow. Consider the convolution diagram

T × T T

T T

p1 p2

m

where pi are the projections and m is the multiplication. The ∗ convolution is defined as

A ∗∗ B = m∗(A�B)

where A,B ∈ Dcons(T,Λ).

Remark 3.A.1. This monoidal structure extends to the category Dindcons(T,Λ) by the continuity of
m∗.

Similarly the category Dcons(X,Λ) is a module over Dcons(T,Λ), namely there is an action

A ? B = a∗(A�B),

where a : T ×X → X is the action map and A ∈ Dcons(T,Λ) and B ∈ Dcons(X,Λ). As before this
action extends to an action on the ind-completions. Consider the category D(Λ) as a Dindcons(T,Λ)-
module with the trivial action, that is the action given by (A,M) 7→ RΓ(T,A)⊗Λ M , we denote it
D(Λ)triv.

Definition 3.A.2. Let C be a stable cocomplete Dindcons(T,Λ)-module. We define the categorical
invariants and coinvariants as

(i). CT = HomDindcons(T,Λ)(D(Λ)triv, C),

(ii). CT = C ⊗Dindcons(T,Λ) D(Λ)triv.

The evaluation at Λ ∈ D(Λ)triv defines the forgetful functor ForT : CT → C. Its right adjoint is
denoted by AvT,∗. The functor AvT,∗ : C → CT factors through a functor

CT → CT .
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Theorem 3.A.3 ([Gai20], B.1.2). The functor CT → CT is an equivalence.

Remark 3.A.4. By [Gai20] 1.4.5, the category CT is identified with the category of comodules over
the comonad AvT,∗ForT .

Definition 3.A.5. For the category C = Dindcons(X,Λ), the categorical invariants/coinvariants
are identified with the category Dindcons(X/T,Λ) of sheaves on the quotient stack by [Gai20] 1.4.6.
The category Dcons(X/T,Λ) is the full subcategory of Dindcons(X/T,Λ) of sheaves such that their
pullback to Dindcons(X,Λ) is in Dcons(X,Λ).

Remark 3.A.6. In the rest of the paper, we have used the !-convolution instead. As Verdier duality
exchanges ! and ∗-convolution, we get variants of the previous results. In particular, the category
Dcons(X/T,Λ) is identified with the modules over the monad ForTAvT,!.

The twisted case.

Definition 3.A.7. A multiplicative sheaf L ∈ Dcons(T,Λ) is a sheaf equipped with the following
data

(i). a trivialization at 1 ∈ T , i.e., an isomorphism 1∗L = Λ,

(ii). an isomorphism m∗L ' L� L where m : T × T → T is the multiplication map such that the
restriction at (1, 1) ∈ T × T of this isomorphism is compatible with the trivialization of (i).

For this section we refer to [Gai20] 1.5. Let L be a multiplicative sheaf on T of Λ-modules. Let C
be a category with a Dindcons(T,Λ)-action, denote this action by A, c 7→ A?c for A ∈ Dindcons(T,Λ)
and c ∈ C. We twist the action and define a new action ?new

A ?new c = (A⊗Λ L) ? c

where A ∈ Dindcons(T,Λ) and c ∈ C.

Definition 3.A.8. The category of (T,L)-equivariant sheaves on X is defined to be the category
of invariants Dindcons(X/(T,L),Λ) = Dindcons(X,Λ)T for the twisted action of Dindcons(T,Λ). Sim-
ilarly we define Dcons(X/(T,L),Λ) to be the full subcategory of Dindcons(X/(T,L),Λ) of sheaves
such that their pullback to Dindcons(X,Λ) is constructible.

Locally constant actions and monodromic sheaves

Denote by Dindcons(T,Λ)0 the subcategory generated by the constant sheaf. This is nothing else than
the ind-completion of the category of unipotent monodromic sheaves Dcons(T,Λ)mon,unip. The in-
clusion Dindcons(T,Λ)0 ⊂ Dindcons(T,Λ) has a right adjoint, which is monoidal for the ∗-convolution.

Definition 3.A.9. Let C be a category with an action of Dindcons(T,Λ). We set

C0 = Dindcons(T,Λ)0 ⊗Dindcons(T,Λ) C.

The adjunction Dindcons(T,Λ)0 � Dindcons(T,Λ) induces an adjunction C0 � C.

Lemma 3.A.10 ([Gai20] B.5). The arrow C0 → C is fully faithful and induces an equivalence
(C0)T ' CT . Moreover the subcategory C0 is the one generated by the image of the forgetful functor
from (C0)T .
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Remark 3.A.11. Lemma 3.A.10 implies that for Lχ a tame character sheaf on T and for the corre-
sponding twisted action of Dindcons(T,Λ) on Dindcons(X,Λ), the category Dindcons(X,Λ)0 is identi-
fied with the category of Lχ-monodromic sheaves on X.

3.B Monodromic Tilting sheaves

3.B.1 Stratified spaces and tilting objects in the unipotent case

We consider a T torsor X → Y and we assume that the scheme Y = ts∈SYs is equipped with a
finite stratification such that

(i). For each s the scheme Ys is smooth and has trivial cohomology, that is RΓ(Ys,Z`) = Z`.

(ii). For each s, the torsor Xs = π−1(Ys) → Ys is trivial and we fix a trivialization Xs = T × Ys
and denote by νs : Xs → T the projection.

(iii). The inclusion is : Xs → X are affine.

For s ∈ S denote by i′s : Ys → Y the inclusion. We denote by D′cons(Y,Z`) the full subcategory
of Dcons,S(Y,Z`), of S-constructible sheaves on Y , generated by the sheaves is,!(Z`)Ys . We will also
make the following assumption

(C) For all s, t, all cohomology sheaves Hi(i∗t is,∗(Z`)Ys) are constant.

We now adapt to our setup several of the definitions of [BY13] Appendix A. We first do it in
the unipotent case.

Definition 3.B.1 (Unipotent standard and costandard objects). We define the free monodromic
standard and costandard objects as

(i). ∆s = is,!ν
∗
sLT [dimXs],

(ii). ∇s = is,∗ν
∗
sLT [dimXs].

and similarly on Y as

(i). ∆Y
s = i′s,!(Z`)Ys [dimYs],

(ii). ∇Ys = i′s,∗(Z`)Ys [dimYs].

Remark 3.B.2. Reducing modulo ` the sheaves ∆s and ∇s gives ∆s ⊗Z` F` and ∇s ⊗Z` F` which
are the pro-monodromic standard and costandard sheaves of [BR22b] 5.3.

Remark 3.B.3. The hypothesis (C) implies that the perverse t structure on the category D′cons(Y,Z`)
is obtained by gluing the perverse t-structures on the stratification S and for the constant local
system on each Ys.

Lemma 3.B.4. We have HomDcons(X,ΩT )unip
(∆s,∇t) = ΩT [0] if s = t and 0 otherwise.

Proof. This is immediate.
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Definition 3.B.5. We define D′cons(X,ΩT )unip to be the full subcategory of Dcons(X,ΩT )unip of
sheaves A such that π†(A) ∈ D′cons(Y,Z`) ⊂ Dcons(Y,Z`).

Lemma 3.B.6. (i). The perverse t-structure of Dcons(X,ΩT )unip induces a well defined t-structure
on D′cons(X,ΩT )unip, with heart denoted by Perv′(X,ΩT )unip.

(ii). The category D′cons(X,ΩT )unip is generated as a triangulated category, either by the (∆s) or
by the (∇s).

Proof. For the first point, note that all sheaves in D′cons(X,ΩT )unip are constructible with respect
to the (Xs)-stratification. We then do an induction on the number of strata. If there is only one
strata the statement is obvious. Now let Xs be the open strata and let A ∈ D′cons(X,ΩT ), denote
by i : X \ Xs → X the inclusion of the other strata. Since the inclusion Xs → X is affine the
functors is,! and is,∗ are perverse t-exact. The functors i∗ and i! are respectively right and left
t-exact. Consider the two fiber sequence

is,!i
∗
sA→ A→ i∗i

∗A

i∗i
!A→ A→ is,∗i

∗
sA

and apply the perverse truncation functors pτ≥n and pτ≤n respectively. We get two fiber sequence

is,!
pτ≥ni

∗
sA→ pτ≥nA→ i∗

pτ≥ni
∗A

i∗
pτ≤ni

!A→ pτ≤nA→ is,∗
pτ≤ni

∗
sA.

Now by induction and the one stratum case, all the sheaves pτ≥ni
∗
sA,

p τ≥ni
∗A,p τ≤ni

!A and pτ≤ni
∗
sA

are in their corresponding D′cons and therefore so are pτ≥nA and pτ≤nA. Hence the subcategory
D′cons(X,ΩT ) is stable under perverse truncations and we have a well defined induced t-structure.

For the second point, one argues again by induction on the number of strata, if there is only
one stratum this is trivial. In general let A ∈ D′cons(X,ΩT )unip, as before let Xs → X be the open
stratum and i : X \Xs → X be the inclusion of the other strata. Using the excisions triangles for
(i, is) as before, we reduce to the case of a single stratum (using the one with is, ∗ for the ∇s and
is,! for the ∆s).

Definition 3.B.7. A sheaf A ∈ Perv(X,ΩT )unip is said to have a ∆-filtration (reps. ∇-filtration),
if it has a filtration whose graded parts are isomorphic to some ∆s (resp. ∇s). A perverse sheaf is
tilting if it has both a ∆-filtration and a ∇-filtration. There is a corresponding definition on Y , we
refer to [AR16].

Lemma 3.B.8. Let A ∈ Perv′(X,ΩT )unip be a perverse sheaf with a ∆-filtration and B with a
∇-filtration then

(i). Hom(A,B) is concentrated in degree 0 and is a free ΩT -module of finite rank.

(ii). Hom(A,B)⊗ΩT F` ' Hom(π†,F`A, π†,F`B).

(iii). An object in A ∈ Dcons(X,ΩT )unip is a tilting perverse sheaf if and only if π†,F`A is a tilting
perverse sheaf on Y .
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Proof. As explained in [BR22b], for (i), this is an immediate induction on the number of terms in
the filtrations of A and B. For (ii) this is a consequence of the five lemma together with lemma
3.B.4. For the third point, the proof of [BR22b] 5.9 works verbatim in our setup after replacing π†
in loc. cit. by π†,F` .

Remark 3.B.9. Let T be a tilting sheaf, then TF` is a tilting sheaf in Dcons(X,ΩT,F`)mon,unip.

Lemma 3.B.10. Let A ∈ Perv′(X,ΩT )unip be a perverse sheaf on X such that pH0π†,F`(A) = 0
then A = 0.

Proof. The same statement is proved for ΩT,F` in place of ΩT in [BR22b] 5.2. We can therefore
reduce to their statement. First consider pH0(A ⊗ΩT ΩT,F`) then this is an ΩT,F` -perverse sheaf

and pH0π†
pH0(A⊗ΩT ΩT,F`) = pH0π†,F`A = 0. By loc. cit., (A⊗ΩT ΩT,F`) = 0. Furthermore, the

reduction mod ` is conservative on perverse sheaves by derived Nakayama.

Lemma 3.B.11. The realization functor Db(Perv′(X,ΩT )unip) → D′cons(X,ΩT )unip is an equiva-
lence.

Proof. We will prove this in several steps, this is essentially the proof of [RSW13] 2.3.1 and 2.3.4.
Since the perverse t-structure of D′cons(X,ΩT ) is glued from the one on each stratum, for Xs a
stratum, we have an intermediate extension is,!∗ : Perv(Xs,ΩT )unip → Perv(X,ΩT )unip. Since the
category Perv(Xs,ΩT )unip is equivalent to the abelian category ΩT −mod, for M ∈ ΩT −mod we
will denote by IC(Xs,M) the corresponding object in Perv(X,ΩT )unip.

Step 1: Every object in Perv(X,ΩT )unip has a finite filtration with graded components of the
form IC(Xs,M) for varying s and M . One can just apply the proof of lemma 2.1.4 of [RSW13] as
the proof requires only the formalism of recollement of t-structures and our geometric setup.

Step 2: For all M and s there exists a projective object with a ∆-filtration in Perv(X,ΩT )unip

that surjects onto IC(s,M). The proof essentially copies the one of [RSW13] 2.3.1 and of [BGS96].
The argument is an induction on the strata, if there is only one stratum then the statement is
clear. Let Xs ⊂ X be an open stratum and i′ : X ′ ⊂ X be the closed complement. The functor
i′! is t-exact and induces an isomorphism Ext1

X′(A,B) = Ext1(i′!A, i
′
!B) for A,B ∈ Perv(X ′). It is

enough to show the statement for IC(Xt,ΩT ) = ICt as IC(−,−) preserve surjections, see [Jut09]
2.27. Since i∗ = i! is t-exact the sheaf ∆s is projective and surjects onto ICs. Let t 6= s and let
P ′ → ICt be a surjection on X ′. Since i′! is exact the map i′!P

′ → i′!ICt = ICt is still surjective.
Let E = Ext1(P ′,∆s) and Ef → E be a free ΩT -module of finite rank surjecting onto E and

let E∨f be its ΩT -dual. The map

ΩT → Ef ⊗ΩT E
∨
f → E ⊗ΩT E

∨
f ' Ext1

X(P ′, E∨f ⊗ΩT ∆s),

sends 1 to an element which corresponds to an extension

0→ E∨f ⊗ΩT ∆s → P → P ′ → 0. (3.117)

The object P surjects onto ICt and has a ∆-filtration. It remains to see that it is projective. This
follows from the following points.

(i). For all B ∈ Perv(X ′), we have Ext1(P,B) = 0. This follows from the long exact sequence
attached to 3.117 and the projectivity of ∆s.
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(ii). We have Ext1(P,∆s) = 0. Again the long exact sequence from (3.117) yields

Hom(E∨f ⊗ΩT ∆s,∆s)→ Ext1(P ′,∆s) = E → Ext1(P,∆s)→ Ext1(E∨f ⊗ΩT ∆s,∆s) = 0.

The first map identifies with the map Ef → E and is then surjective, the third term is
therefore 0.

(iii). We have Ext2(P,B) = 0 for all B ∈ Perv(X). It is enough to show it for all ICu for varying
u. For such u we have a short exact sequence 0→ ICu → ∇u → K → 0 which induces a long
exact sequence

Ext1(P,K)→ Hom2
Dcons(X,ΩT )unip

(P, ICu)→ Hom2
Dcons(X,ΩT )unip

(P,∇u).

We can assumeK lives onX ′ and then Ext1(P,K) = 0 and since P is ∆-filtered Hom2(P,∇) =
0.

(iv). Now use the exact sequence 0 → K ′ → ∆s → ICs → 0 and the corresponding long exact
sequence

Ext1(P,∆s)→ Ext1(P, ICs)→ Hom2(P,K ′).

But we have already killed the first and last terms. Hence Ext1(P, ICs) = 0.

Step 3: For this step, we repeat the arguement of [RSW13] 2.3.4. Since Perv′(X,ΩT ) generates

both the categories Dcons(X,ΩT )unip and Db(Perv′(X,ΩT )unip), we only need to show that for all
A,B ∈ Perv′(X,ΩT )unip the map

ExtiPerv′(A,B)→ Homi
Dcons(X,ΩT )mon

(A,B)

is an isomorphism. First assume that A is projective with a ∆ filtration, we already know that for
i = 0, 1 both side coincide, we want to show that for i > 0 both sides vanish. For the left hand side
this is clear, for the right hand side, by the first step, we can reduce to the case B = IC(Xs,M),
using the exact sequence

0→ IC(Xs,M)→ ∇s ⊗ΩT M → K → 0

and the induced long exact sequence after applying Hom∗, using lemma 3.B.4 we get that Homi−1(A,K) =
0 implies Homi(A, IC(Xs,M)) = 0. Now we use step 2, to find a surjection from a projective P
with a ∆-filtration onto A, then one argues as in [RSW13] 2.3.4. to conclude.

Theorem 3.B.12 (Structure of Tilting sheaves). (i). For all s ∈ S there exists an indecompos-
able tilting sheaf Ts on Xs such that i∗sTs ' ν∗sLT [dimXs].

(ii). The isomorphism classes of indecomposable tilting sheaves are in bijection with S and the sheaf
Ts corresponding to s is characterized by the fact that π†,F`Ts is an indecomposable tilting in
the sense of [BBM04a].

(iii). It T is a tilting sheaf then T ⊗Z` F` is a free monodromic tilting sheaf in the sense of [BR22b].
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Proof. For the points (ii) and (iii) we refer to [BR22b] 5.12. We discuss the first point, which is
the most technical, the proof is just essentially the same as the one of [AR16] B.2.

The proof is by induction on the number of strata in Xs. If there is only one stratum this is

clear. Otherwise let Xt ⊂ Xs be a closed stratum and U = Xs \Xt
j−→ Xs be the open complement.

By induction there exists TU on U satisfying the assumption. We consider j!TU , it is a perverse
sheaf since j is affine and it is equipped with a ∆-filtration. Let E = Ext1(∆t, j!TU ) and Ef → E
a surjection from a free ΩT -module of finite type. Consider the composition ΩT → E∨f ⊗ E '
Ext1(∆t ⊗ΩT E

∨
f , j!T ) it sends 1 to an extension

0→ j!TU → T → ∆t ⊗ΩT E
∨
f → 0 (3.118)

where T is a perverse sheaf, which clearly has a ∆-filtration. We now claim that T is tilting. Firstly
let ĩu : Xu → U be a stratum and iu : Xu → U → Xs be the composite, then i!u = ĩ!uj

! applying it
to 3.118 yields i!uT = ĩ!uTU which is a perverse sheaf made of direct sums of copies of ν∗uLT [dimXu].
We now want to show Exti(∆t, T ) vanishes for all i > 0.

(i). First applying the functor Hom(∆t,−) to 3.118, yields an exact sequence

Ef → E → Ext1(∆t, T )→ Ext1(∆t,∆t ⊗ΩT E
∨
f ) = 0

hence Ext1(∆t, T ) = 0.

(ii). Since TU has a ∇-filtration, j!T has a filtration with graded of the form j!∇u, it is therefore
enough to show that Homi(∆t, j!∇u) = 0 for i > 1.

(iii). There are two fiber sequence

M → j!∇u → j!∗∇u, and j!∗∇u → j∗∇u → N.

Both M and N are supported on Xt and in negative perverse degrees, hence Homk(∆t,M) =
Homk(∆t, N) = 0 for k > 0.

(iv). We now apply the functor Hom(∆t,−) to both triangles and get long exact sequences, inputing
that Homk(∆t, j∗∇u) = 0 for k > 0, we first get that Exti(∆t, j!∗∇u) = 0 for i > 1 and then
that Homi(∆t, j!∇u) = 0 for i > 1.

This yields that i!tT is perverse and it remains to see that is a direct sum of copies of ν∗t LT (only
the freeness is non trivial here). To check this we apply the functor π†,F` . The stalks of π†,F`i

!
tT are

the reductions mod m, the maximal ideal of ΩT , and therefore the stalks of π†,F`i
!
tT are projective

ΩT -modules if and only if their mod m reduction is concentrated in a single degree. But after
reducing mod m, the construction we have done is nothing else than the construction of [AR16],
Appendix B.

3.B.2 Tilting sheaves in the non unipotent case

We extend the definitions of the previous section to this one to cover the non unipotent case. We
fix χ ∈ CH(T ).
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Definition 3.B.13. We define

(i). the category D′cons(X/(T,Lχ),Z`) to be the full subcategory of Dcons(X/(T,Lχ),Z`)) of
sheaves generated by the collection isν

∗
s (Lχ).

(ii). The standard and costandard sheaves as ∆s,χ = is,!ν
∗
s (LT ⊗ Lχ)[dim(Xs)] and ∇s,χ =

is,∗ν
∗
s (LT ⊗ Lχ)[dim(Xs)].

(iii). The category D′cons(X,ΩT )χ as a full subcategory of Dcons(X,ΩT )χ of sheaves A such that
π†(A) ∈ D′cons(X/(T,Lχ),Z`).

The perverse sheaves with a ∆ or ∇-filtration are defined accordingly and so are the tilting sheaves.

We also assume the following condition :

(C)χ For all s, t, all cohomology sheaves Hi(i∗t is,∗ν
∗
sLχ) are of the form M ⊗ΩT ν

∗
t Lχ where M is

an ΩT -module.

Remark 3.B.14. The category of sheaves satisfying condition (C)χ is independent of the choice of
the trivializations νs.

Theorem 3.B.15. All results of the previous section remain valid in the twisted setting.

Proof. All statements, except lemma 3.B.10 do not require the fact that we deal with unipotent
sheaves and the proof are very axiomatic. For the remaining statement we refer to [Gou21] 7.5.6.

3.C Twisted categorical centers

In this appendix, we recall some known facts about categorical centers and traces. We will mostly
follow [BZNF10]. We refer to [GKRV22] for the various twisted versions.

3.C.1 Monoidal structure and categorical centers

Let Λ ∈ {Q`,Z`,F`} and consider DGCatΛ the category of all presentable stable cocomplete Λ-
linear categories. It is equipped with the Lurie tensor product defined in [Lur] Section 4.8. We
refer to [GR17] Chapter 1 for a construction of this category. In this section, we call a category an
object of DGCatΛ.

Definition 3.C.1 (F-categorical center). Let C be a monoidal category in DGCatΛ and let F : C →
C be a monoidal endofunctor of C. We denote by Crev the category C equipped with the opposite
monoidal structure.

The category C has the structure of a C ⊗ Crev-module. We denote by CF the same category C
but with its bimodule structure twisted on the right by F. The F-categorical center of C is then
defined as

ZF(C) = HomC⊗Crev(C, CF). (3.119)

Definition 3.C.2 (F-categorical trace). Let C be a monoidal category and F : C → C be a monoidal
endofunctor of C. The (2)-categorical trace of F on C is defined as

Tr2(F, C) = C ⊗C⊗Crev CF. (3.120)
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Definition 3.C.3. Let C be a monoidal category. An object x ∈ C is left dualizable (resp. right
dualizable) if there exists an object ∨x and morphisms

ev : x⊗ ∨x→ 1C , coev : 1C → ∨x⊗ x, (3.121)

where 1C denotes the unit of C, (resp. if there exists an object x∨ and morphisms,

ev : x∨ ⊗ x→ 1C , coev : 1C → x⊗ x∨) (3.122)

satisfying usual identities.

Remark 3.C.4. If C is symmetric monoidal, we will freely identify left and right adjoints.

Definition 3.C.5. A category C is called dualizable if it is dualizable as an object of DGCatΛ.

Lemma 3.C.6 ([GR17], 1.7.3.2). If C is compactly generated, i.e. C = IndCω, where Cω is the full
subcategory of compact objects of C, then C is dualizable. Its dual is identified with C∨ = IndCω,op

and the evaluation is given by
ev : C ⊗ C∨ → D(Λ), (3.123)

for A,B ∈ Cω, ev(A⊗B) = Hom(B,A).

Remark 3.C.7 ([GR17]). Let C be a compactly generated category. Then an equivalence D : Cω,op →
Cω induces a equivalence C ' C∨.

Remark 3.C.8. The cateogry D(Λ) is the unit object of DGCatΛ. We have Hom(D(Λ),D(Λ)) =
D(Λ).

Lemma 3.C.9. Let C be a dualizable category. Then for all categories D, there is a natural
isomorphism

C∨ ⊗D ' Hom(C,D). (3.124)

Lemma 3.C.10. Let X be a quasi-compact Λ-scheme, then Dqcoh(X) is compactly generated by
the category of perfect complexes. The naive duality

D : Perf(X)op → Perf(X),M 7→ HomX(M,OX) (3.125)

induces a self duality on Dqcoh(X).

Lemma 3.C.11. There is a natural equivalence

End(Dqcoh(X)) ' Dqcoh(X ×X). (3.126)

3.C.2 Twisted centers of Hecke categories

Let f : X → Y be a faithfully flat finite type morphism of schemes. We consider the category
QCoh(X ×Y X) which we call the Hecke category of f . The category Dqcoh(X ×Y X) is equipped
with the convolution structure of [BZNF10]. On objects A,B it is given by

A ∗B = p13,∗(p
∗
12A⊗ p∗23B), (3.127)
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where the maps are the projections in the following diagram

X ×Y X ×Y X

X ×Y X X ×Y X X ×Y X.

p23
p13

p12

Let FX : X → X and FY : Y → Y be morphisms commuting with f . We denote by LFY the
intersection of the diagonal and the graph of FY . It fits into the following cartesian diagram.

LFY Y

Y Y × Y
∆

(id×F)

We introduce as [BZNF10], the (twisted) horocycle transform

LFY
q←− X ×Y Y ×Y×Y Y = X ×X×Y X

r−→ X ×Y X, (3.128)

where in the fiber product X×X×Y X, the two maps X → X×Y are given by (id×f) and (FX×f)
respectively. The F-horocycle transform is then defined as the functor r∗q

∗.

Theorem 3.C.12 (Twisted variant of [BZNF10] Theorem 5.3). There is an equivalence

ZF (Dqcoh(X ×Y X)) ' Dqcoh(LFY ), (3.129)

such that following diagram commutes

ZF(Dqcoh(X ×Y X)) Dqcoh(LFY )

Dqcoh(X ×Y X).

r∗q
∗

Remark 3.C.13. In [BZNF10], they show this statement for the categorical center and not its twisted
version. The proof in the twisted version is shown in the same way.
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Chapter 4

On depth 0 local Langlands and
global Chtoucas
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4.1 Introduction

Let q = pr be a power of prime number p > 0 and let Fq be the finite field with q elements. Let K
be a local field of equal characteristic with ring of integers OK and let X be a smooth projective
curve over Fq with function field F . Let G be a reductive group over X with generic fiber G and let
H be a reductive group over OK with generic fiber H. Denote by WeilF and WeilK the absolute
Weil groups of F and K and by LG = Ĝo WeilF and LH = Ĥ o WeilK the L-groups of G and H
respectively. Finally fix ` 6= p a prime and denote by Λ ∈ {F`,Q`} a coefficient field.

Theorem 4.1.1. (i). [Laf18] There is a map GLC : π 7→ σπ from cuspidal irreducible automor-
phic Λ-linear representations of G(AF ) to conjugacy classes of semisimple global Langlands
parameters, where AF denotes the ring of adèles of F . They are morphisms WeilF → LG(Λ)
satisfying the hypothesis of loc. cit.

(ii). [GL17] There is a map LLCGL : π 7→ σπ from the set of smooth irreducible Λ-linear repre-
sentation of H(K) to conjugacy classes of semisimple local Langlands parameters. They are
morphisms WeilK → LH(Λ) satisfying the hypothesis of loc. cit.
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(iii). [GL17] The two constructions are compatible in the following sense. Let x ∈ X be a closed
point and choose an isomorphism between Fx the completion of F at x with K and an isomor-
phism GFx = H. This defines an inclusion of WeilK ⊂WeilF and a morphism LH → LG. Let
π = ⊗′y∈Xπy be a cuspidal automorphic representation of G(AF ). Then the semisimplification
of the restriction of σπ to WeilK is conjugate to σπx .

Remark 4.1.2. If the group G is split, then using the compatibility with parabolic induction estab-
lished in [Xue20b], we can remove the words ’cuspidal’ in (i).

The main goal of this paper is to discuss, in the local setting, the structure of local Langlands
parameters associated to depth 0 representations of H(K). In the global setting, we want to
discuss the local structure of global parameters associated to automorphic representations whose
local component at a place x has depth 0. In view of (iii) of theorem 4.1.1, those two questions are
essentially equivalent.

Let us now formulate our main results. We consider the local situation. Let T ⊂ H be a
maximal torus and let W be the Weyl group of TKalg , where Kalg is an algebraic closure of K. We
first need to recall some properties of the structure of Λ-linear smooth representations of H(K), we
refer to section 4.3 for a more detailed account.

Theorem 4.1.3 ([Lan18], [Lan21]). The category Rep0
ΛH(K) of depth 0 representations of H(K)

decomposes as a direct sum

Rep0
ΛH(K) =

⊕
s∈(T̂�W )F̂(Λ)

RepsΛH(K), (4.1)

where T̂ denotes the dual torus over Λ, T̂ �W the GIT-quotient by the action of W and (−)F̂ the
scheme of invariants under the morphism dual to the Frobenius of T .

Remark 4.1.4. We consider the decomposition into geometric series of loc. cit.. There is however a
finer decomposition into rational series, this will play no role in this paper.

The decomposition of theorem 4.1.3, yields a map

LS : Irr0
Λ(H(K))→ (T̂ �W )F̂(Λ), (4.2)

where Irr0
Λ(H(K)) is the set of irreducible depth 0 representations of H(K), characterized by

LS(π) = s if and only if π lies in the direct summand indexed by s.

Definition 4.1.5. Let φ : WeilK → LH(Λ) be a Langlands parameter. We say that this parameter
is tame if it factors through WeiltK = WeilK/PK , the tame Weil group, where PK denotes the wild
inertia subgroup. We denote by (Z1,t(K, Ĥ) � Ĥ)(Λ) the set conjugacy classes of semisimple tame
local Langlands parameters.

We fix τK a topological generator of the tame inertia. Given a tame local Langlands parameter
φ, we denote by evτK (φ) the image in Ĥ � Ĥ = T̂ �W of φ(τK). We can now state our main
theorem.
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Theorem 4.1.6. Let π ∈ Irr0
Λ(H(K)) then LLCGL(π) is a tame local Langlands parameter. Fur-

thermore the following diagram is commutative.

Irr0
ΛH(K) (Z1,t(K, Ĥ) � Ĥ)(Λ)

(T̂ �W )F̂ (T̂ �W )F̂

evτK

LLCGL

LS

We fix a closed point x ∈ X, an isomorphism Fx = K between the completion of F at x and
K and an isomorphism GOx = H. This last isomorphism yields an isomorphism GFx = H. Let σ
be a polysimplex in the Bruhat-Tits building of H(K) and let Hσ be the parahoric group scheme
over OK corresponding to σ. Using the isomorphism GFx = H, we glue Hσ with G|(X−x) and we
get a smooth group scheme Gσ over X whose restriction to OK is Hσ. Finally let N = x + Nx

be an effective divisor of X with x 6∈ Nx and I be a finite set. The stack of chtoucas ChtGσ,I,N
with |I|-legs and level structure N is an algebraic stack over (X −N)I , its definition is recalled in
section 4.4. Let us for now ignore the Harder-Narasimhan truncations and the role of the center.
Let W ∈ RepΛ(LG)I , there is a sheaf FI,W on ChtGσ,I,N coming from geometric Satake. Denote

by p : ChtGσ,I → (X − N)I the leg map and by HjI,N,W = Rjp!FI,W the cohomology sheaf. This

sheaf is an ind-lisse sheaf on (X −N)I by the main theorem of [Xue20d]. Let us further fix η̄ → X
a generic geometric point, we take

Hj
I,N,W = (HjI,N,W )|∆(η̄), (4.3)

the fiber of HjI,N,W at the geometric point ∆(η̄). As this sheaf is ind-lisse, taking its fiber at

a geometric point yields a representation of Weil((X − N)I ,∆(η̄)). Using Drinfeld’s lemma, Xue
[Xue20d], generalizing an argument of [Laf18], shows that the representation of Weil((X−N)I ,∆(η̄))
factors through Weil(X −N, η̄)I . Hence we have a functor

RepΛ((LG)I)→ RepΛ(Weil(X −N, η̄)I)

W 7→ Hj
I,N,W .

The collection of these functors as I-varies carries a lot more structure. This structure is the data
of morphism of cocartesian functors over FinSet, the category of finite sets. The definition of this
structure is recalled in section 4.4. We will systematically restrict the action of Weil(X − N)I to
WeilIFx . The formalism of excursion of [Laf18] produces an algebra Exc(WeilFx , Ĝ) whose Λ-points
are in bijection with conjugacy classes of semisimple local Langlands parameters. There is also an
evaluation morphism Spec(Exc(WeilFx , Ĝ)) → Ĝ � Ĝ, such that on Λ-points this map is identified
with the evaluation and semisimplification on τFx . Moreover given such a cocartesian functor, each
of vector spaces Hj

I,N,W is equipped with a canonical action of Exc(WeilFx , Ĝ). Denote by Vσ the

unipotent radical of the special fiber of Hσ and Mσ is reductive quotient. The vector space Hj
I,N,W

carries an action of the finite group Hσ,Fx(Fx). We consider the vector space (Hj
I,N,W )Vσ(Fx) which

then also carries an action of Mσ(Fx).

Theorem 4.1.7. (i). For all I,W the WeilIFx-module (Hj
I,W,N )Vσ(Fx) is tamely ramified, that is,

the action of WeilIFx factors through the tame quotient (WeiltFx)I .
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(ii). Let s ∈ (T̂ �W )F̂(Λ), then as an Exc(WeiltFx , Ĝ)-module es(H
j
I,W,N )Vσ(Fx) is supported on

ev−1
τFx

(s), where es is the idempotent in Λ[Mσ(Fx)] corresponding to the Lusztig series attached
to s, we refer to Section 4.2 for the notations.

Finally let Z1(Fx, Ĝ) be the moduli space of local Langlands parameters as constructed in
[DHKM20], [Zhu21] and [FS21]. In this setting a construction of [LZ18] attaches to the cocarte-
sian functor (I,W ) 7→ Hj

I,N,W a canonical Ĝ-equivariant quasi-coherent sheaf on Z1(Fx, Ĝ). Let

us denote this coherent sheaf Mj
N , whose construction is recalled in section 4.4.5. Let us select

Z1,t(Fx, Ĝ) the closed subscheme of tame Langlands parameters, this is a union of connected com-
ponents of Z1(Fx, Ĝ). We still denotes by evτFx : Z1,t(Fx, Ĝ) → Ĝ � Ĝ the morphism induced by

evaluation at τFx . The quasi-coherent sheaf Mj
N still carries an action of Hσ(Fx).

Corollary 4.1.8. (i). The quasi-coherent sheaf (Mj
N )Vσ(Fx) is supported on Z1,t(Fx, Ĝ).

(ii). Using the same notations as in theorem 4.1.7, let s ∈ (T̂ �W )F̂(Q`), then the quasi-coherent
sheaf es(Mj

N )Vσ(Fx) is supported on ev−1
τFx

(s).

While preparing this paper, we learned that Andrew Salmon was working on a similar project,
[Sal23a]. Let us highlight the overlap and differences between our work. In [Sal23a], Salmon shows
theorem 4.1.7 assuming the following hypothesis, Λ = Q`, G is constant and split, σ is a hyperspecial
point and the degree of x/Fq is one. On the other hand, in this situation, he is able to describe the
unipotent part of the parameters while we restrict ourselves to the semisimple part.

4.1.1 Outline of the proof

We now give an outline of the proof. For simplicity, we will keep on ignoring Harder-Narasimhan
truncations and the role of the center in this introduction. These technicalities will be addressed
in section 5 through 8.

There is a map recalled in section 4.4

ε : ChtGσ,I,N → L+
I Gσ\GrGσ,I .

Over (X − N)I , the geometric Satake equivelence provides a fully-faithful functor RepΛ(LG)I →
Perv(L+

I Gσ\GrGσ,I ,Λ). The cohomology sheaves of stacks of chtoucas are then defined as

HI,N,W = p!ε
∗Sat(W ), (4.4)

where p : ChtGσ,I,N → XI is the leg map. By the main theorem of [Xue20d], these sheaves are
ind-lisse on (X −N)I .

The local Langlands correspondence of [GL17] relies on the formalism of excursion applied to the
functor (I,W ) 7→ HI,N,W . The properties of the parameters we want to discuss can be read off the

Galois representations corresponding to the sheaves HjI,N,W . We choose a maximal torus T ⊂ H
over OK , this choice then defines a maximal torus TM ⊂Mσ, we denote by WM the corresponding
Weyl group of the pair (Mσ,F̄q , TM,F̄q ). Combining the formalism of excursion and of type theory
for depth 0 representations reduces the problem to computing the local Weil representation of
∗Rw,χHVσ(kx)

I,N,W , where ∗Rw,χ denotes the χ-isotypic component of the Deligne-Lusztig restriction

functor attached to an element w ∈ WM the Weil group of Mσ and χ is a character of TwF
M the

corresponding finite torus.
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We compute the action of the inertia on this sheaf via a nearby cycles construction. In section
4.2, we reformulate the Deligne-Lusztig induction and restriction functors in a geometric way. We
then introduce the following correspondence

(X −N)I × x ChtGσ,I,N ×Mσ(Fx) Mσ/BM L+
I Gσ\GrGσ,I ×

UM\Mσ/UM
AdFTp ε

and there is a sheaf∇w(RegTwF) on UM\Mσ/UM
AdFT

such that ∗Rw,χHVσ(Fx)
I,N,W = p!ε

∗(Sat(W )�∇w(RegTwF)).
We refer to section 4.5 for the details of this construction.

The second step in this construction is to extend all three stacks to stacks over (X − Nx)I so
that we can take some nearby cycles to x. For this, we construct a map emb from ChtGσ,I,N×Mσ(Fx)

Mσ/BM to a stack of chtoucas for a different group. This new group is GC which is a group scheme
over X that differs from Gσ only at x. The group GC is the group that is obtained by dilating a
Borel subgroup in the special fiber of Gσ and as such its group of Ox-points is an Iwahori in G(Fx).
Similarly we also introduce GC0 , obtained by dilating the unipotent radical of the same Borel in
the special fiber. On the right side of the above correspondence, there is also a map emb making
the following diagram commute and the right square Cartesian.

(X −N)I ChtGσ,I,N ×M(Fx) Mσ/BM L+
I Gσ\GrGσ,I ×

UM\Mσ/UM
AdFT

(X −Nx)I ChtGC ,It{0},Nx
L+
It{0}GC0\GrG

C0 ,I

AdFT

p ε

emb

Now that we have extended our stacks to stacks that live over (X −Nx)I , we can take nearby
cycles. Since we are over a power of a curve and not simply over one copy of the curve there
are several way to take nearby cycles. The main construction of Salmon [Sal23b] shows that
these different nearby cycles coincide and that the functor p! commutes with these nearby cycles.
We extend his proof to our setting. In the end, we are interested in the local monodromy of
p!ε
∗(Sat(W )�∇w(RegTwF)), this local monodromy can be extracted from the nearby cycles (with

respect to the identity map (X − N)I → (X − N)I) applied the the cohomology sheaves. Since
these nearby cycles commute with p!, it is enough to show their property on stacks of chtoucas.
Furthermore, the map ε is smooth and thus the nearby cycles commute with smooth pullbacks,
hence, the control of the monodromy can be done on the side of affine Grassmannians. On the
geometric side, we can compute the nearby cycles of the sheaf Sat(W ) �∇w(RegTwF) in terms of
(a variation of) Gaitsgory’s central functors [Gai01]. We refer to section 4.7 for a discussion about
these central functors. Finally, we use the Wakimoto filtration on these central functors constructed
in [AB09] and [BFO09] to control the monodromy action on the nearby cycles.

4.1.2 Organization of the paper

In section 4.2, we recall some aspects of Deligne-Lusztig theory and the F-twisted horocycle trans-
form. In section 4.3, we recall results of type theory of depth 0 representations of H(K). In section
4.4, we recall some of the main player for the geometry of the problem, that is, affine Grassman-
nian, stacks of chtoucas, the excursion algebra and the space of parameters. We also recall the key
structural properties of the cohomology of stacks of chtoucas which we will use. In section 4.5, we
construct the morphism emb and discuss its main properties. In section 4.6, we discuss tame nearby
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cycles over a self product of a curve. In section 4.7, we recall the construction of (non unipotent)
central functors and their Wakimoto filtration. Section 4.8 is the heart of this paper, we assemble
the results of the previous sections and we show the main theorem. Finally, in the appendix 4.A,
we extend the result of [AB09] and [BFO09] for the Wakimoto filtrations on the central functors to
modular coefficients.
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4.1.4 Notations

Etale sheaves

We will use the following notations. We fix Λ ∈ {F`,Q`} a coefficient field. If X is a stack, we
denote by D(X,Λ) the category of ind-constructible `-adic sheaves on X. If X is a scheme, this
category is defined in [HRS21] Section 3. If X is a stack, we define this category by descent. For
all algebraic stacks X, the category D(X,Λ) is a closed symmetric monoidal Λ-linear triangulated
category. We will denote by ⊗ the tensor product or ⊗Λ if we want to put some emphasis on the
coefficients. We denote by Hom the internal mapping spaces. If f : X → Y , we denote by f∗, f∗, f

!

and f! the usual derived functors between the categories D(X,Λ) and D(Y,Λ).

Finite group actions

Let Γ be a finite group. By classical theory, we have D(pt/Γ,Λ) = D(RepΛΓ), we refer to section
3.3.1 for a proof. The same argument shows that for all algebraic stacks Y , we have D(Y ×pt/Γ,Λ) =
D(Y,Λ[Γ]). If X is a stack with an action of Γ and f : X → Y is a Γ-equivariant morphism for the
trivial action of Γ on Y . Then for A ∈ D(X,Λ) a Γ-equivariant sheaf on X, the pushforward f!A
canonically lifts to D(Y,Λ[Γ]). This can be seen as follows, since A is Γ-equivariant it descends to
X/Γ, and denote by f ′ : X/Γ → Y/Γ = Y × pt/Γ the map on quotients stacks. The lift is then
provided by f ′!A ∈ D(Y,Λ) = D(Y,Λ[Γ]). It moreover clear that this construction is compatible
with the 6-functors.

Geometric objects

We fix X a smooth projective geometrically connected curve over Fq. We choose x ∈ X a point
(not necessarily of degree one) and x̄ : Spec(F̄q)→ X a geometric point over x. We denote by

(i). η = Spec(Fq(X)) ∈ X the generic point of X, we let ηnr = Spec(F̄q(X)) = η ×Fq F̄q denote
the generic point of XF̄q .

(ii). We let Fx be the completion at x, Ox its ring of integers and Fx be the residue field of Fx.
We denote by ηx = Spec(Fx) and ηnr

x = Spec(F nr
x ).
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Roots of unity

We fix a trivialization of the group of roots of unity F̄×q ' (Q/Z)p′ where p′ denotes the prime to
p-part. We also fix a trivialization of the Tate twist (1) = id.

Local field

Let K be a local field of equal characteristic. We introduce the following notations

(i). Knr denotes the maximal unramified extension of K.

(ii). OK is the ring of integers of K and kK its residue field,

(iii). OKnr the ring of integers of Knr and k̄K its residue field.

(iv). We fix an algebraic closure of K ⊂ Knr ⊂ Kalg and denote by ΓK = Gal(Kalg/K).

(v). We let PK ⊂ IK ⊂ ΓK denote the wild inertia and inertia subgroup respectively.

(vi). We identify ΓK/IK with Gal(k̄K/kK) and denote by F the topological generator obtained as
the Frobenius x 7→ xqK . We denote by WeilK the Weil group of K.

Adelic notations

We now fix some adelic notations.

(i). We denote by A the ring of adèles of X.

(ii). We fix a divisor N ⊂ X, which we assume to be of the form N = x+Nx where x 6∈ Nx.

(iii). We denote by O the ring of integral adèles. We have a canonical map O → ON . The kernel
of this map is denoted by ON and is the compact open subgroup of principal adèles of level
N .

(iv). Denote by Z the center of G. We fix Ξ ⊂ Z(F )\Z(A) a cocompact lattice of the center of G.

Dual groups

We fix some notations for the dual group. Let F ′/F be a finite Galois extension of F such that
G|F ′ is split and we let Q = Gal(F ′/F ). Similarly, we fix x′ be a place of F ′ over x and denote
by Qloc = Gal(F ′x′/Fx) the corresponding Galois group. Since G is the generic fiber of a reductive
group over X, we can assume that F ′/F is everywhere unramified.

(i). We denote by Ĝ the Langlands dual group of G over Λ.

(ii). We denote by LG = ĜoQ the global L-group.

(iii). We denote by LGloc = ĜoQloc the local L-group at x.
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4.2 Deligne-Lusztig theory.

4.2.1 Basics of Deligne-Lusztig theory

Let M be a reductive group over F̄q equipped with a Frobenius endomorphism F : M →M coming
from some Fq structure. We fix BM = TUM a F-stable Borel pair and we let WM = NM (T )/T be
the corresponding Weyl group.

The Deligne-Lusztig varieties are defined as follows. Let w ∈ WM and fix a lift ẇ ∈ NM (T ),
then consider the variety

Y (ẇ) = {mUM ,m−1F(m) ∈ UM ẇUM} ⊂M/UM . (4.5)

It is equipped with two commuting actions of MF and TwF acting by left and right translations on
Y (ẇ). The cohomology Rw = RΓc(Y (ẇ),Λ) is then equipped with two commuting actions of the
same finite groups. We can then introduce the Deligne-Lusztig induction and restriction functors

Rw : Db(RepΛ(TwF))→ Db(RepΛ(MF))

A 7→ A⊗TwF Rw

∗Rw : Db(RepΛ(MF))→ Db(RepΛ(TwF))

B 7→ RHomMF(Rw, B).

The key theorem we will need is the following one.

Theorem 4.2.1 ([DL76] for Q`-version, [BR03] for a general Λ). The collections of functors ∗Rw
is conservative.

We also introduce the following notations. Let T̂wF be the set of characters of TwF of order

invertible in Λ. For each θ ∈ T̂wF, there is an idempotent eθ ∈ Λ[TwF] projecting onto the θ-isotypic
part. We denote by ∗Rw,θ the functor the θ-isotypic part of ∗Rw,θ.

Consider the action of M on itself by F-conjugation. This is the action given by m.x =
mxF(m−1) and we denote it by AdF. By Lang’s theorem, the quotient stack for this action is

M

AdFM
= pt/MF.

The Lang map L : M →M,m 7→ m−1F(m) induces an isomorphism of quotient stacks

MF\M/BM =
M

AdFBM
. (4.6)

We introduce now the correspondence

MF\pt
r←−MF\M/BM =

M

AdFBM

q−→ UM\M/UM
AdFT

, (4.7)

where r is induced by the map M/BM → pt and q is the quotient map for the left (equivalently
right) action of UM acting by translations.

The stack UM\M/UM
AdFT

is stratified using the Bruhat stratification. Let w ∈ WM and fix ẇ a

lift of w. We have an isomorphism UM\BMwBM/UM
AdFT

= Tẇ
AdFTnUM,w = pt/(TwF n UM,w) where

UM,w = UM ∩Ad(ẇ)UM .
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Consider now the following diagram

UM\BMwBM/UM
AdFT

UM\M/UM
AdFT

pt/(TwF n UM,w)

pt/TwF

kw

jw

Lemma 4.2.2 (3.3.1). There is an isomorphism of functor Db(RepΛT
wF)→ Db(RepΛG

F )

Rw = r!q
∗jw,!k

∗
w. (4.8)

Definition 4.2.3. Let w ∈WM . We define

∇w : RepΛT
wF → D(

UM\M/UM
AdFT

,Λ)

M 7→ jw,∗k
∗
wM.

Note that we do not normalize it to be perverse.

4.2.2 Lusztig series

Let T̂ be the torus dual to T defined over Λ. We recall the construction of the Lusztig series [DL76].
We denote by F̂ the isogeny dual to T̂ . Note that we have an isomorphism (depending on the fixed
trivialization of roots of unity of F̄q),

Λ[TwF] = O(T̂wF̂), (4.9)

as both side are isomorphic to Λ[X∗(T )/(wF− id)X∗(T )]. We therefore have a bijection

Hom(TwF,Λ×) = T̂wF̂(Λ). (4.10)

Let θ be a character of TwF and let π be an irreducible representation of MF. We say that π lie in
the Lusztig series of (w, θ) if π is a subquotient of a cohomology group of Rw(θ). Conversely, by
theorem 4.2.1, for every π there exist a pair (w, θ) such that π lie in the Lusztig series of (w, θ).

Consider the morphism ξ : T̂ → T̂ �WM . We still denote by F̂ the morphism induced by F̂ on
T̂ �WM .

Theorem 4.2.4 ([DL76] if Λ = Q`, [BR03] if Λ = F`). (i). Let π be an irreducible representation
of MF. Suppose that π belong to the Lusztig series (w, θ) and (w′, θ′) then ξ(θ) = ξ(θ′). Hence
we have a well defined map

LS : IrrΛM
F → (T̂ �WM )F̂(Λ). (4.11)

(ii). There is a complete collection of central orthogonal idempotents es ∈ Λ[MF] for s ∈ (T̂ �

WM )F̂(Λ) such that for all π ∈ IrrΛM
F, we have esπ = π if and only if LS(π) = s.
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4.3 Depth 0 representations of unramified groups

4.3.1 Parahoric subgroups and transfer of dual semisimple conjugacy
classes

Let H be a reductive group over OK with generic fiber H. We recall the setup of [Lan18]. The
group H splits over an unramified extension. We introduce the following notations.

(i). Let T ⊂ H be a maximally K-split maximal torus. We denote its generic fiber by T ⊂ H.
Let X∗(T ) and X∗(T ) be the groups of cocharacters and characters respectively defined over
Knr. The group Gal(k̄K/kK) naturally acts on them.

(ii). We denote by B(H) the reduced Bruhat-Tits building of H(K) and by B(HKnr) the one
H(Knr), by A the apartment corresponding to T and by Ã the one corresponding to TKnr .

(iii). For a point x ∈ B(H), we denote by Hx the corresponding parahoric group scheme over OK .
We denote by Mx the reductive quotient of Hx,kK the special fiber of Hx.

The integral model H of H yields a hyperspecial point x0 ∈ A. We choose C ⊂ A a chamber
containing x0 in its closure. We denote by C̃ ⊂ Ã the chamber containing C.

The group Hx(OK) comes equipped with its Moy-Prasad filtration [MP94] denoted by Hx(OK)r
for r ∈ R≥0. We have a canonical identificationHx(OK)/Hx(OK)>0 = Mx(kK), whereHx(OK)>0 =
∪r>0Hx(OK)r.

Let x ∈ B(H). The choices of T and C determine a Borel pair BM = TMUM of Mx over kK .
Let WM be the Weyl group of TM,k̄K .

Let W̃ be the extended affine Weyl group of H and Waff be the affine Weyl group, that is, the
group generated by reflection along all hyperplanes in Ã. The Weyl group WM of Mx is canonically
identified with the subgroup of W̃ generated by reflections along hyperplanes in Ã containing the
image of the point x. Consider the composition WM ⊂ W̃ →W , since the kernel W̃ →W is torsion
free, the morphism WM →W is injective.

There are isomorphisms
X∗(TM ) ' X∗(TOKnr ) ' X∗(T ), (4.12)

their composition is equivariant under WM → W and under the action of Gal(k̄K/kK). Subse-
quently taking group algebras over Λ, taking quotient under WM and W and taking Frobenius
fixed points we get a well defined transfer morphism

ξx : (T̂M �WM )F̂ → (T̂ �W )F̂, (4.13)

where ˆ(−) always denote the dual torus over Λ.

4.3.2 Depth and inertial decomposition of the depth 0 part

We let RepΛH(K) be the category of smooth representations of H(K) on Λ-modules. We recall
the definition of the depth of an irreducible representation.

Definition 4.3.1. Let π be an irreducible representation of H(K). We say that π has depth r if

π =
⋃

x∈B(H)

πHx(OK)>r , (4.14)

131



where Hx(OK)>r = ∪r′>rHx(OK)r′ .

Theorem 4.3.2 ([MP94]). Every representation has a well defined depth.

Theorem 4.3.3. The category RepΛH(K) canonically split as

RepΛH(K) =
⊕
r

ReprΛH(K). (4.15)

The direct summand ReprΛH(K) is characterized by the fact that an irreducible representation π
lies in ReprΛH(K) if an only if π has depth r.

We refer to [Dat09], Appendix A for a proof of this theorem over any coefficient ring. We now
recall how to construct types for depth 0 representations.

Definition 4.3.4. (i). An unrefined minimal depth 0 type is a pair (x, τ) where x is a point in
B(H) and τ is an irreducible supercuspidal representation of Mx(kK).

(ii). Let π be an irreducible depth 0 representation of H(K). A depth 0 type for π is an unrefined

minimal depth 0 type (x, τ) such that there is exists a non zero map c − ind
H(K)
Hx(OK)τ → π

where τ is a representation of Hx(OK) obtained by inflation along Hx(OK)→Mx(kK).

Theorem 4.3.5 ([MP94]). Every irreducible depth 0 representation admits a depth 0 type.

Remark 4.3.6. Given a depth 0 irreducible representation π, a depth 0 type (x, τ) for it can be
chosen such that x lies in the closure of the chamber C.

Theorem 4.3.7 ([Lan18], [Lan21]). (i). Let π be an irreducible depth 0 representation of H(K)
and let (x, τ), (x′, τ ′) be two depth 0 types for π such that x, x′ ∈ A. We have ξx(LS(τ)) =
ξx′(LS(τ ′)). In particular, we have a well defined map

LSH : Irr(Rep0
ΛH(K))→ (T̂ �W )F̂(Λ). (4.16)

(ii). Let Z0
H be the Bernstein center of Rep0

ΛH(K). There is a complete collection (es)s∈(T̂�W )F̂

of orthogonal idempotents in Z0
H such that for all π ∈ Irr(Rep0

ΛH(K)), we have esπ = π if
and only if LSH(π) = s.

4.4 Recollections about stacks of chtoucas and excursion

4.4.1 Stacks of chtoucas

Let Q be a smooth affine group scheme over X. We assume that Q is generically reductive.

Definition 4.4.1 (Loop groups). Let x = (xi) : S → XI be a tuple of S-points in X, we denote
by Γx ⊂ X × S the union

⋃
i Γxi the graphs of the xi, by Γx,n the nth infinitesimal neighborhood

of x, by Γ̂x the formal neighborhood of Γx and by
◦
Γx = Γ̂x \ Γx.

We denote by
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(i). L+
I Q the functor over Fq defined as S 7→ {(x, g)|x : S → XI , g ∈ Q(Γ̂x)}, it is representable

by a group scheme of infinite type, it is equipped with a map L+
I Q → XI that induced by

(x, g) 7→ x,

(ii). LIQ the functor over Fq defined as S 7→ {(x, g)|x : S → XI , g ∈ Q(
◦
Γx)}, it is representable

by an group ind-scheme of infinite type and equipped with a map to XI .

(iii). LI,nQ the functor over Fq defined as S 7→ {(x, g)|x : S → XI , g ∈ Q(Γx,n)}, it is representable
by a group scheme of finite type and is equipped as before with an map to XI .

The inclusion Γx,n → Γ̂x induces a map of group schemes L+
I Q → LI,nQ whose kernel is a

pro-unipotent group.

Definition 4.4.2 (BunQ and Hecke stacks). We denote by BunQ the algebraic stack over Fq defined
as S 7→ {E} the groupoid of Q-torsors over X × S.

The Hecke stack HeckeI is the stack whose S-point classifies the following data

(i). x : S → XI a tuple of S-points of X,

(ii). A pair of Q-torsors (E , E ′) over X × S,

(iii). A isomorphism of Q-torsors φ : E → E ′ over X × S − Γx.

This stack is equipped with a map HeckeI
h−→ BunQ × BunQ and a map to XI .

Definition 4.4.3 (Principal level structure). Given N ⊂ X a divisor, we define BunQ,N to be the
stack that classifies the same data as BunQ plus a trivialization of the Q-torsor E on N . We have
HeckeI,N the stack whose S-points is the groupoid of tuples (x, (E , ψ), (E ′, ψ′), φ) where

(i). (x, (E , E ′), φ) ∈ HeckeI(S),

(ii). x ∈ (X −N)I(S),

(iii). ψ and ψ′ are trivializations of E and E ′ respectively on N ×S such that the following diagram
commutes

E|N×S E ′|N×S

E0
|N×S

φ|N×S

φ φ′

where E0 denotes the trivial Q-torsor over X × S.

Definition 4.4.4 (Beilinson-Drinfeld Affine Grassmannian). The Beilinson-Drinfeld affine grass-
mannian is defined as GrI,Q = LIQ/L+

I Q. It is an ind-projective ind-scheme of ind-finite type
over U I , where U is the open of X where Q is reductive. It represents the functor whose S-points
classifies the following data

(i). x : S → XI a tuple of S-points of X,

(ii). a Q-torsor E over X × S,
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(iii). a isomorphism of Q-torsors φ : E → E0 over X×S−Γx, where E0 denotes the trivial Q-torsor.

Remark 4.4.5. There is an action of L+
I Q on GrI,Q by left translation. The quotient stack

L+
I Q\GrI,Q is the stack whose groupoid of S-points classifies the following data

(i). x : S → XI a tuple of S-points of X,

(ii). a pair E1, E2 of Q-torsors on Γ̂x,

(iii). and an isomorphism of Q-torsors
E

1,|
◦
Γx
→ E

2,|
◦
Γx
. (4.17)

This stack is not algebraic. There is a map of stacks ε : HeckeQ,I → L+
I Q\GrI,Q such that the

image of a modification ((xi), E1, E2, φ) is given by the restriction of both torsors and of φ to Γ̂x.

Definition 4.4.6 (Stacks of Chtoucas). For a Q-torsor E over X × S denote by τE the Q-torsor
(idX ×FS)∗E , where FS is the absolute q-power Frobenius of S. We define the stack of G-chtoucas
with I-legs as the following pullback

ChtI HeckeI

BunQ BunQ × BunQ
(id,τ )

Replacing HeckeI by HeckeI,N in the previous diagram yields the stack ChtI,N , which is the stack
of chtoucas with level structure N .

4.4.2 The setup for the main construction

Group schemes from Bruhat-Tits theory

Recall that we have fixed G be reductive group over X and that we denote by G its generic fiber.
We consider the restriction of G to Ox, we fix a maximally Fx-split maximal torus TOx ⊂ GOx with
generic fiber TFx . This choice determines an apartment Ax ⊂ B(GFx) and the integral model GOx
determines a hyperspecial point s0 ∈ A. Let C be a chamber in A containing s0 in its closure and
let σ be polysimplex in the closure of C. The choices of C and σ determine three smooth group
schemes over Ox.

(i). Gσ,Ox the parahoric group scheme corresponding to σ,

(ii). GC,Ox the Iwahori group scheme corresponding to C. Its group of Ox-points is an Iwahori
subgroup of G(Fx).

(iii). Finally let GC0,Ox be the smooth group scheme over Ox whose group of Ox-points is the
pro-unipotent radical of the Iwahori GC,Ox(Ox).

We also denote by Gσ,GC and GC0 the smooth group schemes over X obtained by gluing G|(X−x)

with Gσ,Ox ,GC,Ox and GC0,Ox respectively. They are summed up in the following diagram of group
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schemes over X.
G Gσ

GC

GC0

Note that all these groups schemes are isomorphic over X − x.

Special fibers.

We denote by Vσ ⊂ Gσ,Fx the unipotent radical of the special fiber of Gσ,Ox (equivalently the fiber
at x of Gσ). We denote by Mσ the reductive quotient of Gσ,Fx . In particular we have a short exact
sequence of algebraic groups over Fx,

1→ Vσ → Gσ,Fx →Mσ → 1. (4.18)

The choice of C and TOx determines a Borel pairs BM = TMUM of Mσ. We also denote their
inverse image in Gσ,Fx by Bσ and Mσ. Hence we have short exact sequences of algebraic groups
over Fx

1 Vσ Bσ BM 1

1 Vσ Uσ UM 1.

Let G̃σ
C

(resp G̃σ
C0

) be the dilatation of the subgroup Bσ of the fiber at x of Gσ (resp the
dilatation of Uσ) in the sense of [MRR20].

Lemma 4.4.7. The morphism GC → Gσ (resp. GC0 → Gσ) induces an isomorphism GC = G̃σ
C

(resp. GC0 = G̃σ
C0

).

Proof. We do it for GC , as the same argument holds for GC0 . The problem is local at x since

all three group schemes Gσ,GC and G̃σ
C

differ only over Spec(Ox). Since G̃σ
C

is smooth and has
connected fibers over Spec(Ox) by [MRR20], to identify it with the Bruhat-Tits group scheme, it
is enough to identify the set of its Ox-points. By [MRR20], lemma 4.1 and remark 4.2, there is a
sequence

1→ G̃σ
C

(Ox)→ Gσ(Ox)→ Gσ(Fx)/Bσ(Fx)→ 1, (4.19)

where the last term is only a pointed set. This sequence is exact provided that the étale cohomology
group H1(Fx, Bσ) vanishes. This follows from Lang’s theorem since Fx is finite and Bσ is connected.

We deduce that the group of Ox-points of G̃σ
C

(Ox) is the Iwahori subgroup defined by the chamber
C, which then yields the desired isomorphism.
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Harder Narasimhan truncations

Proceeding as in [Laf18] Section 12, we denote by Gad
σ and Gad

C the adjoint groups of Gσ and GC
repsectively. We fix two vector bundles Vσ and VC together with trivialization of their determinants
and faithful representations of Gad

σ → GL(Vσ) and Gad
C → GL(VC). Since we have a map GC →

Gσ, we get an action of Gad
C on Vσ. We let Λσ and ΛC denote the lattice of cocharacters of

GLrk(Vσ) and GLrk(VC). The representations we have fixed define maps BunGσ → BunGLrk(Vσ)

and BunGC → BunGLrk(VC⊕Vσ)
which are representable, quasi-affine and of finite presentation. For

every cocharacter µ ∈ Λσ (reps. in Λσ ⊕ ΛC), there is an open Bun≤µGLrk(Vσ ) of BunGLrk(Vσ ) (reps.

of Bun≤µGLrk(VC⊕Vσ ) of BunGLrk(VC⊕Vσ )) whose inverse image in BunGσ is denoted by Bun≤µGσ and

similarly for BunGC . This further defines an open Cht≤µGσ,I for any finite set I and again similarly
for GC .

Remark 4.4.8. We will need some compatibility between the Harder-Narasimhan truncations for
Gσ and for GC , this is why we use the representation of GC given by Vσ ⊕ VC . Ideally we would
only use Vσ but then we cannot guarantee that the representation of GC on Vσ is faithful.

4.4.3 Cocartesian Functors

We now recall the notion of cocartesian functors. This definition is taken from [Sal23b].

Definition 4.4.9 (Categories cofibered over FinSet). Consider the category FinSet of finite sets,
a category cofibered over FinSet is the data of a functor F : Ctot → FinSet such that Ctot,op →
FinSetop is a fibered category. The functor F : Ctot → FinSet is given by the following data

(i). For all I ∈ FinSet a category CI = F−1(I),

(ii). For all morphism ξ : I → J a functor F (ξ) : CI → CJ compatible with composition.

Definition 4.4.10. A cocartesian functor is a 2-functor FinSet → Cat to the 2-category of cate-
gories.

It is well known that the Grothendieck construction exchanges categories cofibered over FinSet
and cocartesian functors out of FinSet.

The examples of cofibered categories over FinSet we will use are the following. Let Λ ∈
{Q`,Z` F`}.

(i). The category RepΛ(LG)•, given by I 7→ RepΛ(LG)I . For ξ : I → J , we get a morphism
ξ : GJ → GI and for W ∈ RepĜI we get a representation W ξ = ξ∗W ∈ RepĜJ .

(ii). The category D(X•,Λ), for I → J we get a diagonal morphism ∆ξ : XJ → XI , and a pullback
functor ∆∗ξD(XI ,Λ)→ D(XJ ,Λ).

(iii). The category RepΛWeil•F defined in the same way as (i).

Definition 4.4.11 (Partial Frobenius). Let I be a finite set and let I0 be a finite subset. The
partial Frobenius indexed by the set I0 is the morphism FI0 : XI → XI defined by (xi) 7→ (yi)
where yi = F(xi) is i ∈ I0 and yi = xi otherwise.

Remark 4.4.12. It is clear that the partial Frobenius endomorphims commute with each other and
that FI is the absolute Frobenius of XI .
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Definition 4.4.13 (Partial Frobenius and filtration). Let Λ0 an ordered free abelian group of finite
rank, a Λ0-filtered coCartesian functor over FinSet is the data

(i). for all µ ∈ Λ0 of a functor H≤µ : RepΛ(LG)• → D(X•,Λ) over FinSet,

(ii). for all µ ≤ ν of a morphism H≤µ → H≤ν compatible with the order on Λ0.

Given a filtered cocartesian functor H≤µ : RepΛ(LG)• → D(X•,Λ), we say that H≤µ is filtered
with respect to partial Frobenius if

(i). For all W ∈ Rep(LG)I , there exists κ ∈ Λ and morphisms for all I0 ⊂ I,

FI0 : F∗I0H
≤µ
I,W → H≤µ+κ

I,W (4.20)

commuting with each other.

(ii). They are functorial in I.

Definition 4.4.14. Let Λ1,Λ2 be two ordered free abelian groups of finite types. And consider
two cocartesian functor filtered with respect to partial Frobenius H≤µ and H ′≤µ

′
for µ ∈ Λ1 and

µ′ ∈ Λ2. A compatibility datum between (H≤µ) and (H ′≤µ
′
) is the datum of

(i). An increasing morphism ϕ : Λ1 → Λ2,

(ii). For all µ ∈ Λ1, there exists µ′0 ≥ ϕ(µ), and for all µ′ ≥ µ′0, we are given a map H≤µI,W → H≤µ
′

I,W

functorial in (I,W ) such that the following diagram commutes

H≤µ1

I,W H≤µ2

I,W F∗I0H
≤µ
I,W H≤µ+κ

I,W

H
′≤µ′1
I,W H

≤µ′2
I,W F∗I0H

′≤µ′
I,W H ′≤µ

′+κ′

I,W

where µ1 ≤ µ2 ∈ Λ1 and µ′1 ≥ ϕ(µ1), µ′2 ≥ ϕ(µ2) are large enough with µ′2 ≥ µ′1, and κ and
κ′ are chosen as in definition 4.4.13 for H and H ′ respectively.

4.4.4 Geometric Satake and cohomology of stacks of chtoucas

In this section, unless indicated, the stacks Gr and Cht are the ones for Gσ and the Harder-
Narasimhan truncations refer to the ones induced by Λσ. We consider the Beilinson-Drinfeld affine
Grassmannian for Gσ. We recall the following version of geometric Satake due to [MV09] [Ric15],
[Zhu15] and spelled out in [Laf18] 12.16.

Theorem 4.4.15 ([Ric15], [Zhu15]). There is a cocartesian functor

RepΛ(LG)I → PervULA(GrG,I),W 7→ Sat(W ). (4.21)

Moreover, let X(x) denote the henselization of X at x. The restriction of Sat to GrG,I)|XI
(x)

factors

through RepΛ(LGloc)I and we have a commutative diagram

RepΛ(LG)I PervULA(GrG,I)

RepΛ(LGloc)I PervULA(GrG,I)|XI
(x)

)
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Let I be a finite set and W ∈ Rep(LG)I , we denote by GrI,W the support of Sat(W ), it is a
finite dimensional scheme that is a finite union of orbits of L+

I G, in particular the action of L+
I G

factors through a finite dimensional quotient L+
I,nG, hence Sat(W ) descends to the quotient stack

L+
I,nG\GrI,W as explained in [Xue20b] 2.2, we can interpret those sheaves as sheaves on L+

I G\GrI,W .

As explained in [Xue20b] 2.2.5, the action of L+Z(G) on Gr is trivial and we can also interpret
Sat(W ) as a sheaf on L+

I Gad\GrI .
Consider the diagram

Cht≤µI,N GrI

L+
I G\GrI

ε
≤µ
I

We denote by F≤µI,N,W = (ε≤µI )∗Sat(W ) and by Cht≤µI,N,W its support. Similarly we have a map

ε≤µI,ad : ChtµI,N/Ξ → L+
I Gad\GrI , however µ is a cocharacter of Gad, we refer to [Xue20b] 2.4 for

a discussion. We denote similarly F≤µ,ad
I,N,W = ε≤µI,adSat(W ). We also denote by pI : Cht≤µI,N/Ξ →

(X −N)I the leg map.

Theorem 4.4.16 ([Laf18], [Xue20c]). We denote by H≤µI,N,W = pI,!F≤µ,ad
I,N,W the association

(I,W ) 7→ H≤µI,N,W ∈ D((X −N)I ,Λ) (4.22)

defines a filtered cocartesian functor with respect to partial Frobenius.

Remark 4.4.17. As pointed out in [Xue20a], if Λ = F` the sheaves H≤µI,N,W are a priori not con-

tructible on (X − N)I as they may be unbounded. Indeed, the map p is not representable and `
may divide the order of certain groups of automorphisms of points in ChtI,W,N .

Definition 4.4.18 (Cohomology sheaves). Let j ∈ Z, we set HjI,N,W = lim−→µ
Hj,≤µI,N,W . Recall that

η → X is a generic geometric point, for all I denote by ∆(η) → XI the corresponding diagonal
point. We set Hj

I,N,W = (HjI,N,W )|∆(η).

Theorem 4.4.19 ([Xue20d], Section 6 for the non-split case). (i). Each of the Λ-modules Hj
I,N,W

is equipped with an action of Weil(η/η)I .

(ii). The association (I,W ) 7→ Hj
I,N,W defines a cocartesian functor RepLG• → RepΛWeil(η/η)•

over FinSet.

(iii). The sheaves HjI,N,W are ind-lisse on (X −N)I .

Remark 4.4.20. As explained in [LZ18], taking I = {0} t J in the previous theorem and the
forgetting the action of Weil on the leg indexed by 0, the functor

RepΛ(LG× (LG)I)→ RepΛWeilJF , V �W → HI,V�W,N

factors through RepΛ(Ĝ× (LG)I) hence we get a cocartesian functor

RepΛ(Ĝ× (LG)I)→ RepΛWeilIF .
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4.4.5 Excursion algebra and the stack of local Langlands parameters

We consider the group G restricted to ηx = Spec(Fx). We will use the space of local Langlands
parameters for G and Fx and we define the local excursion algebra. This construction was first
defined in [Laf18].

Definition 4.4.21. An Λ-valued Langlands paramters is a morphism σ : WeilFx → LGloc(Λ) that
satisfy the following hypothesis :

(i). σ is defined over a finite extension of Q` or F` respectively and is continuous (for the `-adic
topology and the discrete topology) respectively).

(ii). The following diagram commutes

WeilFx
LGloc(Λ)

Qloc

The set of all Λ-valued Langlands parameters is denoted by Z1(Fx, Ĝ)(Λ). A tame parameter is
a parameter σ which factors through the tame Weil group WeiltFx →

LGloc(Λ). We denote by

Z1,t(Fx, Ĝ)(Λ) the subset of tame parameters.

Theorem 4.4.22 ([FS21], [DHKM20], [Zhu21]). There exists an ind-scheme Z1(Fx, Ĝ) over Z`
whose Λ-points are Z1(Fx, Ĝ)(Λ), it is locally of finite type over Z` and lci. There is a closed
subscheme Z1,t(Fx, Ĝ) which is the modui space of tame parameters. It is both open and closed in
Z1(Fx, Ĝ)

We will now recall its construction as well as the construction of the local excursion algebra.
Recall that WeiltFx is the tame quotient of WeilFx . This group is topologically generated by the
elements FFx and τFx which are respectively a lift of the Frobenius of Gal(F̄q/Fx) and a topological
generator of the tame inertia. Let Weilt,◦Fx be the discrete group generated by these two elements.

We denote by Weil◦Fx the inverse image of Weilt,◦Fx in WeilFx . If P eFx ⊂ PFx is an open subgroup of
the wild inertia, the quotient Weil◦Fx/P

e
Fx

is a discrete group.

For all discrete groups Γ with a map Γ→ Qloc we construct Z1(Γ, Ĝ) and Exc(Γ, Ĝ) which are
the moduli space of Γ-cocycles in Ĝ and the excursion algebra of Γ and Ĝ. We now proceed as in
[Zhu21]. Let us now fix a discrete group Γ and a morphism Γ→ Qloc.

Definition 4.4.23. We denote by FFS the category whose objects are finite sets written as FS(I)
and the morphisms FS(I) → FS(J) are morphisms of monoids from the free monoid generated by
I to the free monoid generated by J . We denote by FFS/Γ the category of pairs (FS(I), φ) where
φ : FS(I) → Γ is a morphism of monoids and morphisms are morphisms in FFS compatible with
the morphism to Γ.

Definition 4.4.24. Let H be an affine algebraic group over an affine base scheme S. We denote
by Hom(Γ, H) the functor whose R points is the set of group morphisms Hom(Γ, H(R)). It is easily
seen that this functor is representable by an affine scheme over S.

The next lemma is an easy exercise.
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Lemma 4.4.25. The category FFS is generated by the maps

(i). FS(I)→ FS(J) coming from a map I → J ,

(ii). the map FS({1}) → FS({1, 2}) sending the generator x1 ∈ FS({1}) to x1x2 ∈ FS({1, 2}) the
product of the two generators.

Lemma 4.4.26. (i). There is an isomorphism in the category of monoids

Γ = lim−→
FFS/Γ

FS(I). (4.23)

(ii). There is an isomorphism in the category of schemes over S,

Hom(Γ, H) = lim←−
FFS/Γ

HI . (4.24)

Proof. The first point is restatement of the fact that the FS(I) generate the category of monoids
under colimits. The second point can be checked on R-points, namely we have

Hom(Γ, H)(R) = Hom(Γ, H(R)) = lim←−
FFS/Γ

Hom(FS(I), H(R)) = HI(R). (4.25)

Definition 4.4.27. (i). The excursion algebra Exc(Γ, Ĝ) is defined as

Exc(Γ, Ĝ) = lim−→
FFS/Γ

O((LGloc)I)Ĝ, (4.26)

where Ĝ acts on (LGloc)I by simultaneous conjugation.

(ii). The scheme Z1(Γ, Ĝ) ⊂ Hom(Γ, LGloc) is defined as the fiber of the morphism the

Hom(Γ, LGloc)→ Hom(Γ, Qloc) (4.27)

over the point Γ→ Qloc.

It follows from the definition that there is a canonical map Exc(Γ, Ĝ) → O(Z1(Γ, Ĝ)). The
formation of Hom(Γ, H) is clearly functorial in Γ and H. By definition of this space of cocyles, the
following diagram is cartesian,

Z1(Γ, Ĝ) Hom(Γ, LGloc)

pt Hom(Γ, Qloc)

(4.28)

the point in Hom(Γ, Qloc) is given by the projection Γ → Qloc. In terms of the limit description
given above, consider the following. Let ϕ : FS(I) → Γ be a morphism and consider Zϕ ⊂ LGIloc

be the closed subset obtained as the fiber over the point zϕ ∈ Hom(FS(I), Qloc) corresponding to

FS(I)
ϕ−→ Γ→ Qloc.

140



Lemma 4.4.28. There is a canonical isomorphism

Z1(Γ, Ĝ) = lim←−
ϕ∈FFS/Γ

Zϕ. (4.29)

Remark 4.4.29. Note that the group Ĝ acts on Zϕ for each ϕ ∈ FFS/Γ and the the isomorphism

in lemma 4.4.28 is Ĝ-equivariant.

Definition 4.4.30. Let (P eFx)e∈N be an exhaustive decreasing filtration of PFx .

(i). The local excursion algebra is Exc(WeilFx , Ĝ) = lim←−e Exc(Weil◦Fx/P
e
Fx
, Ĝ), the tame excursion

algebra is Exc(WeiltFx , Ĝ) = Exc(Weilt,◦Fx , Ĝ).

(ii). The moduli of parameters is Z1,◦(WeilFx , Ĝ) = lim−→e
Z1(Weil◦Fx/P

e
Fx
, Ĝ). The moduli of tame

parameters is Z1,t,◦(WeilFx , Ĝ) = Z1(Weilt,◦Fx , Ĝ).

This definition depends on the chosen elements FFx and τFx , but there is an isomorphism
(depending on the same data) Z1,◦(WeilFx , Ĝ) = Z1(WeilFx , Ĝ) with the moduli space defined in
[FS21], [DHKM20] and [Zhu21].

Theorem 4.4.31. Let HI : RepΛ(LGloc)I → RepΛ(Weil◦Fx/P
e
Fx

)I be Rep(Qloc)I-linear cocartesian

functor. Then there is a canonical Exc(Weil◦Fx/P
e
Fx
, Ĝ)-module structure on HI,W such that

(i). This structure is compatible with the cocartesian structure, that is for all maps ζ : I → J , the
isomorphism HI,W = HJ,Wζ) is Exc(Weil◦Fx/P

e
Fx
, Ĝ)-linear.

(ii). This structure is also compatible with the action of (Weil◦Fx/P
e
Fx

)I .

(iii). If HI,W is the cocartesian functor given by the cohomology of stacks of chtoucas, then this
action is the same as the one constructed in [Laf18].

(iv). This structure is functorial in the collection of functors H.

Proof. Assume that we have constructed a functorial action of Exc(Weil◦Fx/P
e
Fx
, Ĝ) on H∅,1. Let

(I,W ) be as before, define H̃J,V = HItJ,W�V , it is clear that this defines an cocartesian functor,

hence by assumption there is an an Exc(Weil◦Fx/P
e
Fx
, Ĝ)-module structure on it. The compatibilities

(i) and (ii) are then deduced from the functoriality of this action.
To construct the action and guarantee its compatibility with [Laf18], we follow the construction

of loc. cit.. We then construct an action of Exc(Weil◦Fx/P
e
Fx
, Ĝ) on H∅,1.

Let V ∈ RepΛ(LGloc)I and let x ∈ V Ĝ and ξ ∈ (V ∗)Ĝ be fixed vectors and covectors for
the diagonal action of Ĝ. Let (γi) ∈ (Weil◦Fx/P

e
Fx

)I . We then define the excursion operator
FV,x,ξ,(γi) : H∅,1 → H∅,1 as the composition

H∅,1 = H{0},1
x−→ H{0},V = HI,V

(γi)−−→ HI,V = HI,V
ξ−→ H{0},V = H∅,1.

Let f ∈ O(Ĝ\(LGloc)I/Ĝ) be the function f(g) = 〈ξ, g.x〉 and denote by φγ : FS(I)→Weil◦Fx/P
e
Fx

the morphism induced by the choice of the (γi). Then the argument of [Laf18] Proposition 10.8
show that
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(i). the map FV,x,ξ,(γi) depends only on the function f and not on V, x or ξ, we can therefore
Ff,(γi) the previous composition.

(ii). after identifying O(Ĝ\(LGloc){0}tI/Ĝ) ⊗O((Qloc){0}tI) O((Qloc)I) = O((LGloc)I)Ĝ, the mor-
phism Ff,(1,γi) defines an algebra morphism

O((LGloc)I)Ĝ → End(H∅,1). (4.30)

(iii). This morphism is functorial in FFS/(Weil◦Fx/P
e
Fx

) hence defines an action of Exc(Weil◦Fx/P
e
Fx
, Ĝ).

The functoriality in H is clear by construction.

Lemma 4.4.32. Let HI,W be a cocartesian functor as before. Assume that for all I,W the action of

(WeilFx)I on HI,W is tame, that is, factors through (WeiltFx)I . Then all the Exc(WeilFx , Ĝ)-modules

HI,W are supported on Spec(Exc(WeiltFx , Ĝ)).

Proof. Let π : WeilFx →WeiltFx be the projection. It follows from the hypothesis and the definition
of the excursion operators that for all V, x, ξ the morphism FV,x,ξ,(γi) = FV,x,ξ,(πγi ). Hence HI,W

is killed by all the operators Ff,(γi) − Ff,(π(γi)) which generate the kernel of Exc(WeilFx , Ĝ) →
Exc(WeiltFx , Ĝ).

Theorem 4.4.33 ( [LZ18]). Assume that Λ is a field. Let H be a cocartesian functor RepΛ(Ĝ ×
LGI)→ RepΛ(Weilt,◦Fx)I which is RepΛ(QIloc)-linear. Then the vector space H{0},RegĜ

has a canon-

ical structure of quasicoherent sheaf on Z1,t,◦(Fx, Ĝ)/Ĝ that is compatible with the Exc(WeiltFx , Ĝ)-
module structure.

Proof. We will follow the argument of [LZ18], Section 6. LetMH = H{0},Reg where Reg denotes the

regular representation of Ĝ which we consider as an ind-object in RepΛ(Ĝ). Let us first construct
the structure of an Hom(Weilt,◦Fx ,

LGloc)-module and then show that it is supported on Z1,t,◦.

We first claim that, by the presentation we have given the spaces Hom(Weilt,◦Fx ,
LGloc) and

Z1,t,◦(Fx, Ĝ) are generated by elements Ff,γ where f ∈ O(LGloc) and γ ∈ Weilt,◦Fx . These ele-
ments are defined as follow. The limit description of both of these spaces yields an isomorphism
O(Hom(Weilt,◦Fx ,

LGloc)) = lim−→ϕ∈FFS/Weilt,◦Fx
O(LGIloc). The data of γ ∈ Weilt,◦Fx yields a morphism

ϕ : FS({0}) → Weilt,◦Fx , then the canonical inclusion incϕ : O(LGloc) → O(Hom(Weilt,◦Fx ,
LGloc))

yields applied to f yields the element Ff,γ . To show that these elements generate the ring of func-
tion it is enough to do it for O(Hom) since O(Z1) is a quotient of the former. It is then enough to
show that for any φ : FS(I)→Weilt,◦Fx the image of O(LGIloc) in O(Hom) is contained in the subring

generated by the Ff,γ . Let h ∈ O(LGIloc), we can assume that h = h1 � · · · � hn where n = |I|.
Then incϕ(h) = incϕ1(h1) . . . incϕn(hn) where ϕi : FS({i})→Weilt,◦Fx is obtained via the restriction
along {i} ⊂ I.

Let V ∈ RepΛĜ be an algebraic representation. Following [LZ18], there is an Ĝ-equivariant
isomorphism

θ : Reg ⊗ V → Reg ⊗ V, (4.31)

where V is the underlying vector space of V without the Ĝ action. The morphism θ is given by
f ⊗ x 7→ (g 7→ f(g)g.x).
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We now define an action of the function Ff,γ . The element f can be represented as a coefficient
matrix (this is clear since we assumed that Λ is a field). Thus there exists a representation V and
elements x ∈ V and ξ ∈ V ∗ such that f(g) = 〈ξ, g.x〉. The endomorphism of H{0},Reg is then
defined as the following composition.

H{0},Reg
id⊗x−−−→ H{0},Reg ⊗ V
' H{0},Reg⊗V

' H{0},Reg⊗V

' H{0,1},Reg�V
γ−→ H{0,1},Reg�V

' H{0},Reg ⊗ V
id⊗ξ−−−→ H{0},Reg.

Here the third line is induced by the morphism θ, the fourth one by the cocartesianity of H, the
fifth one for the action of γ is on leg indexed by 1 and the sixth one is the inverse of the second,
third and fourth ones. The argument of [LZ18] shows that this construction defines an action of
O(Hom(Weilt,◦Fx ,

LGloc)). Hence we get a quasi-coherent module on Hom(Weilt,◦Fx ,
LGloc).

Let us show that this quasi-coherent module is supported on Z1,t,◦. Let I be the ideal of Z1,t,◦

in Hom. We first describe this ideal. Let φ ∈ FFS/Weilt,◦. Let Iφ be the ideal defining Zφ in LGIloc.
Since the diagram 4.28 is cartesian, the ideal Iφ is generated by functions of the form (λ−λ(πφ))f
where f ∈ O(LGIloc) is any function and λ ∈ O(QIloc) is any function and λ(πφ) is the value at

the morphism FS(I)
φ−→ Weilt,◦

π−→ Qloc. We show that the relation Fλ.f,φ = Fλ(πφ)f,φ holds in

O(Z1,t,◦). By the presentation of I = lim−→φ
Iφ, it is clear that H{0},Reg is then killed by all functions

in I and thus that this module is supported on Z1,t,◦. Let us choose V, x ∈ V, ξ ∈ V ∗ representing
f and W,xW ∈W and ξW representing λ where W is a representation of QIloc. Then the following
diagram is commutative

H{0},Reg

H{0},Reg⊗V⊗W

H{0,1},Reg�(V⊗W ) H{0,1},Reg�V ⊗W

H{0,1},Reg�(V⊗W ) H{0,1},Reg�V ⊗W

H{0},Reg⊗V⊗W

H{0},Reg

id⊗x⊗xW

γγ

id⊗ξ⊗ξW
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where the first and last vertical maps are induced by x ⊗ xW , θ and ξ ⊗ ξW as before. The two
horizontal maps are the RepQIloc-linearity of the functor H, the action of γ on the left column
is given by the action of Weil on the leg indexed by 1 while the action on the right column is
induced by the action of Qloc on W . Hence the composition along the left column is Ffλ,φ while
the composition along the right column is Ffλ(γ),φ.

We now show that it is equipped with an action of Ĝ. Since we used the left regular representa-
tion, there is still a right action of Ĝ on Reg hence H{0},Reg acquires the structure of a Ĝ-module.

Now, arguing as in [LZ18] this action is compatible with the action of Ĝ on Hom(Weilt,◦Fx ,
LGloc),

in the following sense. Let f ∈ O(LGloc) and denote by gf the function on LGloc defined as
h 7→ f(g−1hg). Then we have g.(Ff,γ(α)) = Fgf,γ(g.α) for α ∈ H{0},Reg.

Let V ∈ RepΛ(LG)I and consider its restriction Vδ to Ĝ along the diagonal embedding Ĝ →
(LG)I . Let π : Z1,t,◦(Fx, Ĝ)/Ĝ→ pt/Ĝ, the morphism induced by the structure map of Z1,t,◦(Fx, Ĝ).
Then π∗V = EV is a vector bundle on Z1,t,◦(Fx, Ĝ)/Ĝ. Moreover it has an action of (Weilt,◦Fx)I , such

that its fiber over a points σ ∈ Z1,t,◦(Fx, Ĝ) is the representation (Weilt,◦Fx)I
σI−→ (LG)I → GL(V ).

We consider the functors (I,W ) 7→ Hj
I,N,W given by the cohomology of stacks of chtoucas. For

all j, there is a quasicoherent sheaf Mj
N corresponding to this functor given by theorem 4.4.33.

Lemma 4.4.34. (i). If Λ = Q`, then for all W ∈ Rep(LG)I , there is a (Weilt,◦Fx)I-linear isomor-

phism (Mj
N ⊗ EW )Ĝ = Hj

I,N,W .

(ii). In general there is a spectral sequence

Ep,q2 = Hp(Ĝ,Mq
N ⊗ EW )⇒ Hp+q

I,W,N . (4.32)

Proof. Firstly, note that if Λ = Q` then Hi(Ĝ,−) = 0 for all i > 0 hence the first point
follows from the second. In general, for V ∈ RepΛ(LG)I , consider the sheaf Sat(RegĜ) ⊗ V

on L+
{0}Gσ\Gr{0}. Using the notations of [FS21] section VIII-5, the sheaf p≤µ! ε∗(Sat(RegĜ) ⊗

V ) naturally lifts to IndPerf(B(LG)I) ⊗ D(η̄,Λ). After forgetting along the Ĝ → (LG)I we

get an object of IndPerf(B(Ĝ)) ⊗ D(η̄,Λ). Taking RΓ(Ĝ,−) yields RΓ(Ĝ, p≤µ! ε∗(Sat(RegĜ) ⊗
V )) = p≤µ! ε∗RΓ(Ĝ, (Sat(RegĜ) ⊗ V )) = p≤µ! ε∗Sat(Vδ). After taking colimits over µ, we get

RΓ(Ĝ,H{0},Reg ⊗ V ) = H{0},Vδ . Taking cohomology yields Hi(RΓ(Ĝ,H{0},Reg ⊗ V ) = H{0},Vδ) =
Hi
{0},Vδ , the spectral sequence is then the hypercohomology spectral sequence for the functor

RΓ(Ĝ,−) applied to the complex H{0},Reg ⊗ V .

Lemma 4.4.35. Let ZExc ⊂ Spec(Exc(WeiltFx , Ĝ)) be a closed subscheme of Spec(Exc(WeiltFx , Ĝ))

and let Z ⊂ Z1,t,◦(Fx, Ĝ) be its inverse image. Suppose that for all (I,W ) the Exc(WeiltFx , Ĝ)-

module Hj
I,W,N is supported on ZExc then M j

N is supported on Z.

Proof. This is immediate since M j
N = H{0},Reg and the Exc(WeiltFx , Ĝ)-module is compatible with

the O(Z1,t,◦(Fx, Ĝ))-module structure.
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4.5 Deligne-Lusztig theory and cohomology of stacks of chtou-
cas

The goal of this section of to explain how to geometrically compute the Deligne-Lusztig restriction
of the cohomology of stacks of chtoucas. Consider the stack ChtGσ,N,I for the level structure N as
above. This is a stack over (X −N)I , it is equipped with an action of the finite group Gσ(Fx).

4.5.1 The morphism emb

Lemma 4.5.1. Consider the stack

ChtGσ,N,I ×Gσ,Fx (Fx) Gσ,Fx/Bσ. (4.33)

This is a stack over (X −N)I ×Fq Fx. Let S be an Fq-scheme, its groupoid of S-points classifies

(i). An I-tuple of points zi : S → (X −N)× x and denote by yi : S → (X −N) the composition
of zi with the projection,

(ii). A Gσ-chtouca φ : E → τE over S with legs at (yi).

(iii). A principal level structure on (N − x)×Fq S, we denote it by ψx.

(iv). A Bσ-reduction of the corresponding Gσ,Fx-torsor Ex×S, we denote it by ψx.

Proof. Let us denote by ChtBσ−redx
Gσ,I,Nx the stack classifying the data (i)-(iv) of the lemma. Similarly

denote by ChtBσ−redx
Gσ,I,N the stack classfying both a Gσ-chtouca with level structure N and a Bσ-

reduction of the first torsor at x. We claim that there is a Gσ,Fx(Fx)-equivariant isomorphism

ChtBσ−redx
Gσ,I,N → ChtGσ,I,N × Gσ,Fx/Bσ making the following diagram commute

ChtBσ−redx
Gσ,I,N ChtGσ,I,N × Gσ,Fx/Bσ

ChtGσ,I,Nx

where the vertical maps are given by forgetting the Bσ-reduction at x and the level structure and
by the first projection respectively. Taking quotients by Gσ,Fx(Fx) yields the desired isomorphism

ChtBσ−redx
Gσ,I,Nx ' ChtGσ,N,I ×Gσ,Fx (Fx) Gσ,Fx/Bσ. (4.34)

Let us now prove the claim. Since the level structures on Nx play no role we will ignore them. Let
S be an Fq-scheme and let ((zi), E , φ, ψx, ψBσx ) be an S-point of ChtBσ−redx

Gσ,I,N where

(i). zi : S → (X −N)×Fq Fx and yi : S → X −N its composition with the projection,

(ii). ψx the principal level structure at x,

(iii). ψBσx the Bσ-reduction at x× S.
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The level structure ψx is an isomorphism of Gσ-torsor over x× S

E|x×S ' E0
|x×S , (4.35)

where E0
|x×S is as before the trivial Gσ-torsor. The Bσ-reduction is the data of a section of an

S × x-point of E|x×S/(Bσ)x×S . The isomorphism ψx induces an isomorphism

E|x×S/Bσ ' E0
|x×S/Bσ. (4.36)

Under this isomorphism the point ψBσx yields an S × x point of Gσ,Fx/Bσ denoted by ψBσ,trivx .
It is clear the map sending ((zi), E , φ, ψx, ψBσx ) 7→ (((zi), E , φ, ψx, ψBσ,trivx ) is functorial in S and
therefore defines a morphism of stacks

ChtBσ−redx
Gσ,I,N → ChtGσ,I,N × Gσ,Fx/Bσ. (4.37)

It is clear that this map is an isomorphism on S-points hence an isomorphism. Moreover the
commutativity of the above diagram is clear since we have not modified the level structure outside
of x nor the underlying Gσ-chtouca. Finally the Gσ,Fx(Fx)-equivariance follows from the fact that the
action on ψx is given by right translation and the action on Gσ,Fx/Bσ is given by left translations.

Remark 4.5.2. Note that we have Gσ,Fx/Bσ = Mσ/Bσ, hence we can also write

ChtGσ,N,I ×Gσ,Fx (Fx) Gσ,Fx/Bσ = ChtGσ,N,I ×Gσ,Fx (Fx) Mσ/Bσ. (4.38)

By lemma 4.4.7, we identified GC with the dilatation of Bσ in Gσ, we can then apply the following
theorem.

Theorem 4.5.3 ([MRR20]). There is a functorial isomorphism of stacks over Fq.

BunGσ,Bσ = BunGC , (4.39)

between the stacks of Gσ-torsor with Bσ level structure at x and the stack of GC-torsor.

Using theorem 4.5.3, we define a map of stacks

emb : ChtGσ,I,N ×Gσ(Fx) Mσ/BM → (ChtGC ,It{0},Nx)(X−N)I×x (4.40)

over (X − N)I × x as follows. On the right hand side this is the stack of chtoucas for the group
scheme GC with |I|+ 1 legs and the last one fixed at x. Let S be a scheme, and ((yi), E , φ, ψx, ψx)
be an S-point of the left hand side. From theorem 4.5.3, the data (E , ψx) yields a GC-torsor EC and
similarly for τE , τψx. We then define the following S-point of the right hand side

(i). The legs are ((yi), x),

(ii). The chtoucas is (φ : EC → τEC),

(iii). The level structure on N − x is given by ψx using the isomorphism (EC)S×(X−x) = ES×(X−x)

.

This construction is clearly functorial in S and therefore defines a morphism of stacks over (X −
N)I × x.

146



4.5.2 A key diagram

We denote by Iw0 = L+
x GC0 and by Iw = L+

x GC . From now on, instead of the double coset
UM\Mσ/UM we will consider Iw0\Mσ/UM , where Iw0 is the pro-unipotent part of the Iwahori Iw
which acts on M through its quotient Iw0 → UM . Since the kernel of this map is unipotent, we
have an equivalence induced by pullback

D(UM\Mσ/UM ,Λ) = D(Iw0\Mσ/UM ,Λ). (4.41)

We have L+
x Gσ/Iw

0 = Mσ/UM . This induces an embedding Mσ/UM ⊂ LxG/Iw0.
Let S be a scheme and let EC0 be a GC0 -torsor over x × S. Let t ∈ TM (S) be a point in TM ,

we define a GC0-torsor EtC0 by twisting the action by Ad(t). That is, the underlying space of EtC0 is
EC0 and the action of GC0 is given by

g.tx = (tgt−1).x (4.42)

where .t denotes the action of GC0 on EtC0 .
Consider the map of stacks over (X −Nx)I × x

ChtGC0 ,It{0} → ChtGC ,It{0} (4.43)

induced by GC0 → GC . Using the above action on GC0 torsors over x, this map of stacks is a
T -torsor. Consider now the map ε for the group GC0 ,

ChtGC0 ,Nx,It{0})|(X−Nx)I×x → (L+
It{0}GC0\GrGC0 ,It{0})|(X−Nx)I×x. (4.44)

The right hand side is equipped with two actions of T . Indeed the S-points of the right hand side
classify

(i). Some points (yi) : S → X,

(ii). Two GC0-torsors on ̂∪iΓi ∪ x, E , E ′,

(iii). An isomorphism between E and E ′ on the punctured neighborhood of the graphs.

On the stack (L+
It{0}GC0\GrGC0 ,It{0})|(X−Nx)I×x, there are two actions of T obtained by rescal-

ing both torsors E and E ′. The map ε is equivariant for the action of T on the source, and for the
AdF-action on the target. That is, the action induced by restriction along the map t 7→ (t,F(t−1)).
We now get a cartesian diagram, where the vertical maps are T -torsors.

(ChtGC0 ,Nx,It{0})|(X−Nx)I×x (L+
It{0}GC0\GrGC0 ,It{0})|(X−Nx)I×x

(ChtGC ,Nx,It{0})|(X−Nx)I×x
(L+
It{0}GC0\GrG

C0 ,It{0})

AdFTM |(X−Nx)I×xε̃

ε

On (X −N)I × x, we have a decomposition

(L+
It{0}GC0\GrGC0 ,It{0})

AdFTM
= L+GC0\GrGC0 ,I ×

Iw0\LG/Iw0

AdFTM
. (4.45)

Consider now the map emb : L+GC0\GrGC0 ,I ×
Iw0\Mσ/UM

AdFTM
→ L+GC0\GrGC0 ,I ×

Iw0\LG/Iw0

AdFTM
.

147



Lemma 4.5.4. Assume that deg(x/Fq) = 1. The following diagram is Cartesian (X −N)I × x

ChtGσ,N,I ×Gσ(Fx) Mσ/BM ChtGC ,Nx,It{0}

L+
I GC0\GrI,GC0 ×

Iw0\Mσ/UM
AdFTM

L+
I GC0\GrI,GC0 ×

Iw0\LG/Iw0

AdFTM

emb

ε

emb

ε

where the left vertical map is induced by the map Mσ(Fx)\Mσ/BM ' Mσ

AdFBM
→ UM\Mσ/UM

AdFTM
→

Iw0\Mσ/UM
AdFTM

where the first isomorphism comes from the Lang map of Mσ.

Proof. Let α = ((yi), E
φ−→ τE , ψx, ψx) be an S-point of ChtGσ,N,I ×Gσ(Fx) Mσ/BM .

(i). The S-point ε ◦ emb(α) is the S-point of ChtGσ,N,I ×Gσ(Fx)Mσ/BM given by the legs (yi), the
restriction of the modification φ to Γy for the first projection and by the modification of the
GC0-torsors corresponding to (E|Γx , ψx) → τ (E|Γx ,

τψx) induced by φ where Γx is the formal
neighborhood of S × x in S ×X.

(ii). Similarly, the S-point obtained as emb◦ ε(α) is given by the restriction of φ to Γy for the first
factor. For the second factor, it is given by the GC0-torsors corresponding to (E|Γx , ψx) →
τ (E|Γx ,FMσ

ψx) induced by φ.

The commutativity of the diagram follows from the fact that τψx = FMσ
ψx since x is a degree one

point hence FMσ
is naturally the q-power absolute Frobenius.

To show the cartesianity of the diagram, let us describe the closed substack L+
I GC0\GrI,GC0 ×

Iw0\Mσ/UM
AdFTM

⊂ L+
I GC0\GrI,GC0×

Iw0\LG/Iw0

AdFTM
. Let α = ((yi), E

φ−→ E ′) be an S-point of L+
I GC0\GrI,GC0×

Iw0\LG/Iw0

AdFTM
then this substack the locus where the modification φ induces an isomorphism of Gσ-

torsors on S × x. The pullback

Z = ChtGC ,Nx,It{0} ×L+
I GC0\GrI,G

C0
× Iw0\LG/Iw0

AdFTM

L+
I GC0\GrI,GC0 ×

Iw0\Mσ/UM
AdFTM

then classifies a GC0-chtouca such that over x × S the modification of GC0 -torsors extends to an
isomorphism of Gσ-torsors and thus yields a point in ChtGσ,N,I ×Gσ(Fx) Mσ/BM .

Corollary 4.5.5. The map emb is a closed immersion.

Lemma 4.5.6. The map ε : ChtGC ,Nx,It{0} →
(L+
It{0}GC0\GrG

C0 ,It{0})

AdFTM
is smooth over (X−Nx)I×x.

Proof. The proof of [Laf18] 2.8 yields immediatly that ε for the group GC0 is smooth, indeed it the
argument of loc. cit. only requires that BunGC0 and BunGC0 ,N are smooth but both statements
follow from the smoothness of the group scheme GC0 . Modding out by the action of TM yields the
result.

4.5.3 The case of higher degree points

If deg(x) > 1 the diagram of lemma 4.5.4 is a priori not commutative. To go around this issue, we
modify the map εGC . What we do here is a variation of the construction of the restriction morphism
of [GL17].
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Definition 4.5.7. Denote by εd,GC : ChtGC ,It{0},Nx → L+
I GC\GrI,GC ×

Iw0\LG/Iw0

AdFTM
the map of

stacks over XI × x that sends a chtoucas ((yi), E , φ) (we ignore the level structure on Nx) to the
following datum. Firstly denote by φd the modification

E φ−→ τE
τφ−−→ · · · → τdE , (4.46)

between E and τdE . The map εd is obtained by restricting the modification φd to ̂∪iΓyi ∪ Γx.

Remark 4.5.8. Note that the modification φd happens at the legs (yi), (
τyi), . . . and x.

Definition 4.5.9. Let Ud ⊂ XI
x be the open subset corresponding to the equations yi 6= τkyi′ and

yi 6= τkx for k = 1, . . . , d− 1 and i, i′ ∈ I. As in [GL17], this open contains the diagonal geometric
point ∆(x).

Lemma 4.5.10. Over Ud ∩ X̊I the following diagram of stacks is cartesian

ChtGσ,N,I ×(Gσ)(Fx) Mσ/BM ChtGC ,Nx,It{0}

L+
I Gσ\GrI,Gσ ×

Iw0\Mσ/UM
AdFTM

L+
I GC\GrI,GC ×

Iw0\LG/Iw0

AdFTM

emb

εd

emb

ε

Proof. As in the proof of lemma 4.5.4, we can decouple the problem in checking what happens for the
Gσ-torsors and for the Bσ-reductions separately. The condition on Ud implies that the modification
τφ . . . τ

d−1

φ is an isomorphism along the graph of the (yi). Hence in the stack L+
I GC\GrI,GC the

two modifications E → τE and E → τdE are isomorphic. Therefore it only remains to check, what
happens near x. Since the map E → τE is an isomorphism of Gσ-torsors at x, we only need to check
what happens for the Bσ-structures. But it follows that the Frobenius τd agrees with the Frobenius
F of M .

The following lemma is a particular case of [GL17] 2.15, obtained by taking r = 0 and n = 0 in
loc. cit..

Lemma 4.5.11. The map εd is formally smooth over Ud.

4.5.4 The Deligne-Lusztig restriction of the cohomology

Recall that there is an action of Gσ(Fx) on ChtGσ,I,N and that the sheaf FGσ,I,N,W is Gσ(Fx)-
equivariant. Hence the sheaves HGσ,I,N,W canonically lifts to D((X −N)I ,Λ[Gσ(Fx)]).

We consider the variant of the map ε defined previously. Namely we have the map

εI : ChtGσ,N,I/Ξ→ L+
I Gσ,ad\GrGσ,I , (4.47)

defined in section 4.4.2. We also have the map induced by the Lang map defined in section 4.2.1

q : Mσ/BM →Mσ(Fx)\Mσ/BM =
Mσ

AdFBM
→ UM\Mσ/UM

AdFTM
. (4.48)

It induces a map

ChtGσ,N,I/Ξ×Mσ/BM → L+
I Gσ,ad\GrGσ,I ×

UM\Mσ/UM
AdFTM

, (4.49)
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which descends to a map

ε : ChtGσ,N,I/Ξ×Gσ(Fx) Mσ/BM → L+
I Gσ,ad\GrGσ,I ×

UM\Mσ/UM
AdFTM

. (4.50)

Let w ∈WM . Recall that we have the following diagram over x

UM\BMwBM/UM
AdFTM

UM\Mσ/UM
AdFTM

pt/TwF n UM,w

pt/TwF

jw

kw

Lemma 4.5.12. We have an isomorphism of sheaves on (X −N)I × x, compatible with the TwF-
action.

∗RMw ((H≤µI,N,Ξ,W )Vσ(Fx)) = p!ε
∗(Sat(W )�Gσ(Fx) jw,∗k

∗
wRegTwF), (4.51)

where (−)Vσ(Fx) denotes the invariants under Vσ(Fx), it is equipped with an action of Mσ(Fx) and we
take the Deligne-Lusztig restriction with respect to this restriction, that is RHomMσ(Fx)(RΓc(YMσ (ẇ),Λ),−).

Proof. By lemma 4.2.2, we have RΓ(M/BM , q
∗jw,∗k

∗
wRegTwF) = RΓ(YMσ

(ẇ),Λ). The lemma then
follows from the Kunneth formula.

Remark 4.5.13. We have base changed everything to x to take into account the fact that BMwBM
is a priori only defined over x and not over x.

4.5.5 Compatibility of Harder-Narasimhan truncations

In 4.4.2, we fixed some Harder-Narasimhan truncations for both groups Gσ and GC . We now discuss
the following compatibility of the morphism emb with these truncations.

Lemma 4.5.14. Let µ′ ∈ ΛC and µ its projection onto Λσ, then we have emb−1(Cht≤µ
′

GC ,I∪{0}) ⊂
Cht≤µGσ,I .

Proof. We have a commutative diagram

ChtGσ,I,N ×M(Fx) Mσ/BM ChtGC ,It{0},Nx

BunGC

BunGσ

where the map BunGC → BunGσ is induced by the map GC → Gσ. In terms of torsors, a GC-torsor
is given by a Gσ-torsor and a Bσ-reduction at x of this Gσ-torsor, then this map simply forgets the

Bσ-reduction. By our choice of representations of GC and Gσ, the image of Bun≤µ
′

GC in BunGσ is

contained in Bun≤µGσ , this yields the desired inclusion.
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On cohomology sheaves, we then have two filtered cocartesian functors RepLGI → D((X −
N)I ,Λ) given by

(i). (I,W, µ) 7→ p≤µ! (ε∗adSat(W )�M(Fx) ∇w(RegTwF) = R∗wH
≤µ
I,Gσ,N,W,Ξ and

(ii). (I,W, µ′) 7→ p≤µ
′

! (emb!ε
∗
adSat(W )�M(Fx) ∇w(RegTwF)).

Using lemma 4.5.14, the adjunction maps id→ j!j
∗ along all inclusions corresponding to µ′ 7→ µ

define a compatibility datum between these two cocartesian functors filtered with respect to partial
Frobenii. In particular, on colimits, we get a canonical isomorphism

lim−→
µ

R∗wH
≤µ
I,Gσ,N,W,Ξ = lim−→

µ′
p≤µ

′

! (emb!ε
∗
adSat(W )�M(Fx) ∇w(RegTwF)). (4.52)

4.6 Iterated tame nearby cycles

Let S be a strict henselian trait over an algebraically closed field k of characteristic p and let Λ
be a finite ring killed by a power of `. We study iterated tame nearby cycles. This construction
is an analog of a construction of Gaitsgory [Gai04], extended by Salmon [Sal23b] which relies on
the unipotent nearby cycles of Beilinson . We follow their strategy and this construction essentially
only requires to replace the unipotent nearby cycles by the tame ones.

We denote by s and η the closed and generic points of S, we denote by η → ηt → η, an algebraic
closure of η and the maximal tame extension respectively. We denote by St the normalization of S
in ηt. Let f : X → S be a scheme of finite type over S, and denote by Xt = X ×S ηt. Let us sum
up the preceding data in the following diagrams

Xs Xt Xηt

Xs X Xηi

pt

j

it jt

pt

lying over

s St ηt

s S η
i j

it jt

where Xη = X ×S η and similarly for s and ηt in place of η. The tame nearby cycle functors are
given by, for A ∈ Db

c(Xη,Λ),
Ψt(A) = i∗t jt,∗p

∗
tA.

This functor is equipped with a continuous action of Gal(ηt/η). We will write it Ψt
f if we want to

put emphasis on the map f .

Let n > 0 be an integer prime to p and ηt → ηn
pn−→ η be the degree n-extension of η. Let n

divide m and denote by pmn : ηm → ηn the corresponding map. It is clear that ηt = lim←−n ηn. Denote
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by Λn = pn,∗Λ. The adjunction map id→ pmn,∗p
m,∗
n on ηn induces a morphism imn : Λn → Λm on η.

Consider the diagram

Xs Xt Xηt

Xs Xn Xηn

Xs X Xη

in

it

ptn

pn

i

ptn

pn

jt

jn

j

where all the squares are Cartesian. We have a natural map i∗j∗(f
∗Λn ⊗−) → Ψt(−) of functors

obtained as follows

i∗j∗(f
∗Λn ⊗−) = i∗j∗pn,∗p

∗
n(−)

= i∗npn,∗jn,∗p
∗
n(−)

= i∗t p
t,∗
n j∗np

∗
n(−)

→ i∗t jt,∗p
t,∗
n p∗n(−)

= i∗t jt,∗p
∗
t (−)

= Ψt(−)

where the only nontrivial map the base change map from the top right square. Note that this
base map is compatible with the adjunction maps id→ pmn,∗p

m,∗
n . We obtain an inductive diagram

(i∗j∗(f
∗Λn ⊗ (−)))→ Ψt(−), and therefore a map from the homotopy colimit of this diagram

can : lim−→
n

i∗j∗(f
∗Λn ⊗ (−))→ Ψt(−).

Lemma 4.6.1. The map can is an isomorphism.

Proof. We only need to check that for all geometric points x→ Xs the stalk at x is an isomorphism.
We fix such a geometric point and A ∈ Db

c(X,Λ), we first compute the stalk of the source of can.
We have

(lim−→
n

i∗j∗(f
∗Λn ⊗A))x = lim−→

n

RΓ((Xs)(x), i
∗j∗(f

∗Λn ⊗A))

= lim−→
n

RΓ(X(x) ×S η, (f∗Λn ⊗A))

= lim−→
n

RΓ(X(x) ×S ηn, A).

Now since ηt = lim←−n ηn, we also have lim←−nX(x) ×S ηn = X(x) ×S ηt. By [GV72] 8.7.7, we have

lim−→
n

RΓ(X(x) ×S ηn, A) = RΓ(X(x) ×S ηt, A) = Ψt(A)x.
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Consider now the following setup, S is a strict trait, n > 0 is a positive integer and f : X → Sn

is a scheme of finite presentation. We define three functors.

(i). For a tuple m = (m1, . . . ,mn), we denote by Λm the sheaf Λm1
� · · ·�Λmn on ηn. Following

[Gai04] and [Sal23b] we define the functor Υ : Db
c(Xηn ,Λ)→ Db

c(X,Λ) by

Υ(A) = lim−→
n

i∗j∗(f
∗Λn ⊗A) (4.53)

where j : Xηn → X and i : Xsn → X are the inclusion.

(ii). Consider the Cartesian diagram

X∆ X

S SI∆

where the map ∆ is the diagonal. We then define Ψ∆ the composition of the pullback to X∆

and the nearby cycle functor with respect to the map X∆ → S. Replacing nearby cycles by
tame nearby cycles, we get a functor Ψt

I .

(iii). We define the functor Ψ1 . . .Ψn iteratively. Let A be a sheaf on X. Consider the projection
onto the last factor Sn → S, and the composition X → Sn → S, then apply the corresponding
nearby cycles functor. The resulting special fiber, X×S s now lives over Sn−1. We then iterate
the construction. For an ordering I = {1, . . . , n}, we denote by ΨI = Ψ1 . . .Ψn. Replace
nearby cycles with tame nearby cycles, we get a functor Ψt

I .

Remark 4.6.2. In [Sal23b] and [Gai04], they work with unipotent nearby cycles while we work here
with tame nearby cycles.

Lemma 4.6.3 (Tame variant of [Sal23b], 4.1). (i). There are natural transformations

Ψt
1 . . .Ψ

t
n ← Υ→ Ψt

∆(−|f−1(∆))[1− n]. (4.54)

(ii). Let π : X → X ′ be a morphism of finite type over Sn, then there is a natural base change
map π!Υ→ Υπ! making the following diagram commute

π!Ψ
t
I π!Υ π!Ψ

t
∆[n− 1]

Ψt
Iπ! Υπ! Ψt

∆[n− 1]π!.

Moreover, all vertical maps are isomorphisms if π is proper.

(iii). Let π : X → X ′ be a morphism of finite type over Sn, then there is a natural base change
map π∗Υ→ Υπ∗ making the following diagram commute

π∗Ψt
I π∗Υ π∗Ψt

∆[n− 1]

Ψt
Iπ
∗ Υπ∗ Ψt

∆[n− 1]π∗.

Moreover, all vertical maps are isomorphisms if π is smooth.
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(iv). Suppose that n = 2 and X = X1 ×X2 and that the map X → S2 is the product of two maps
Xi → S, and let A = A1 �A2 on X. Then the maps Υ(A)→ Ψt

1Ψt
2(A) and Υ(A)→ Ψt

∆ are
isomorphisms.

Proof. The proof of [Sal23b] 4.1 translates verbatim after replacing ’unipotent nearby cycles’ by
Ψt and Lm by Λm. We want to indicate where the map Λm1 ⊗ Λm2 → Λlcm(m1,m2) comes from.
Consider the diagram

ηlcm(n,m) ηn × ηm

η η × η.

∆n,m

∆

pn×pmplcm(n,m)

The base change map yields an map ∆∗(pn × pm)∗Λ→ plcm(n,m),∗Λ which is the desired map.

4.7 Central functors and their monodromy

4.7.1 Monodromic sheaves and Verdier’s lemma

We let Λ be a coefficient ring, in this section, we work over F̄q. Let T be a torus over F̄q, let πt1(T )
be the tame fundamental (geometric) group of T at the point 1. It is canonically isomorphic to

πt1(T ) = X∗(T )⊗ πt1(Gm) = X∗(T )⊗ Ẑ(p)(1). (4.55)

Definition 4.7.1. We denote by CHΛ(T )

(i). If Λ = Q`, then CHΛ(T ) = Hom(πt1(T ),Q×` )tors, where tors denotes the group of characters
of finite order,

(ii). If Λ = Z`,F` then CHΛ(T ) = Hom(πt1(T )`′ ,Λ
×)tors, where `′ denotes the prime to `-part of

the group.

For each χ ∈ CH(T ), there is a corresponding Kummer sheaf on T which we denote by Lχ.

Definition 4.7.2. Let X be a scheme with a T -action. A sheaf A ∈ D(X,Λ) is monodromic if its
pullback along all T -orbits is a lisse and tame sheaf.

Theorem 4.7.3 ([Ver83]). Let X be a scheme with a T -action, the full subcategory of monodromic
sheaves D(X)mon is stable and stable under the 6-operations. If A is a monodromic sheaf, then
there is a canonical action of πt1(T ) on A. It is given by a morphism

φA : Λ[π1(T )]→ End(A), (4.56)

which is called the canonical monodromy of A. Moreover this action commutes with all morphism
of sheaves.

Definition 4.7.4. Let χ ∈ CHΛ(T ) and let X be a scheme with a T -action. A monodromic sheaf
A ∈ D(X,Λ)mon is χ-monodromic, if the canonical monodromy φ factors through the completion
along the kernel of the morphism Λ[πt1(T )]→ Λ determined by χ. We denote by D(X,Λ)χ−mon the
full subcategory of χ-monodromic sheaves on X.
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Lemma 4.7.5. Let X be a scheme with a T -action. We have a canonical decomposition

D(X,Λ) =
⊕
χ

D(X,Λ)χ. (4.57)

Proof. This is immediate since for χ 6= χ′, we have HomT (χ, χ′) = 0.

Consider the following situation. Let X be a scheme with an action of Gm and let f : X → Gm
be a map that is equivariant for the natural dilatation action on A1. Denote by X0 and X◦ the
inverse images of 0 and Gm.

X0 X X◦

0 A1 Gmji

i

ff f

j

Theorem 4.7.6 ([Ver83]). Consider (X, f) as above. Let A be a monodromic sheaf on X◦, then

(i). the nearby cycles Ψf (A) is a monodromic sheaf on X0 and Ψf (A) = Ψt(A).

(ii). The canonical monodromy of π1(Gm) on Ψf (A) is the opposite of the monodromy on the
nearby cycles.

4.7.2 Twisted equivariant sheaves

Let χ ∈ CHΛ(T ). The sheaf Lχ ∈ D(T,Λ) is a multiplicative sheaf, that is, it is equipped with an
isomorphism

m∗Lχ = Lχ � Lχ, (4.58)

where m : T × T → T is the multiplication map. Since χ is a character of finite order, there exists
n > 0, which is prime to ` if Λ = F` such that L⊗nχ = ΛT . The sheaf Lχ is a direct summand of
pn,!Λ where pn : T × T is the map t 7→ tn.

Let X be scheme with a T -action and denote by a : T ×X → X the action map. We denote by
an : T ×X → X the action dilated by n, that is, the action given by an(t, x) = tn.x. We consider
the quotient stack X/nT which is the quotient stack for this action. Since the group T [n] = ker pn
is of order invertible in Λ and acts trivially on X, the category D(X/nT,Λ) splits canonically as

D(X/nT,Λ) = ⊕χD(X/(T,Lχ),Λ), (4.59)

where χ ranges through the characters of T [n]. We refer to [LY20] Section 2 for a more detailed
construction. We call the category D(X/(T,Lχ),Λ), the category of (T,Lχ)-equivariant sheaves.
This terminology slightly deviates from the literature, as this category is called the category of
χ-monodromic sheaves in loc. cit.

Remark 4.7.7. Note that if χ = 1, then a (T,Lχ)-equivariant sheaf is simply a T -equivariant sheaf.
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4.7.3 The central functor construction

Recall that we have fixed T ⊂ Iw ⊂ LG an Iwahori subgroup (defined over Fq) and that Iw0 is its

unipotent radical. We consider the stack Iw0\LG/Iw0

Ad(T ) which we define as the quotient stack

Iw0\LG/Iw0

Ad(T )
= (LG/Iw0)/Ad(Iw). (4.60)

We denote by

(i). DAd,χ = D(
Iw0\LG/(Iw,Lχ)

Ad(T ) ,Λ) as the category of sheaves that (T,Lχ)-equivariant sheaves for

the action of T given by right translations

(ii). DAdF
= D( Iw0\LG/Iw0

AdF(T ) ,Λ).

(iii). DAdF,χ = D(
Iw0\LG/(Iw,Lχ)

AdF(T ) ,Λ) as in (i).

(iv). We denote by PervAd,χ and PervAdF
the associated categories of perverse sheaves.

Remark 4.7.8. The category DAd,χ is also equivalent to the category of sheaves on Iw0\LG/Iw0

that are equivariant under (T × T,Lχ � Lχ) where the action is given by (t, t′).x = txt′.

We refer to [LY20] Section 4 and [Li22] for a precise construction of the monoidal structure on
DAd,χ. Consider the following convolution diagram

Iw0\LG×Iw0

LG/Iw0 Iw0\LG/Iw0

Iw0\LG/Iw0 Iw0\LG/Iw0

m

pr1 pr2

where pri are induced by the projections and m by the multiplication. Consider the actions of

T × T on Iw0\LG×Iw0

LG/Iw0 defined as

Ad (t, t′).(x, y) = (txt′−1, t′yt−1),

AdF t.(x, y) = (txt′−1, t′yF(t−1)).

Let A,B ∈ DAd,χ then the sheaf pr∗1A⊗ pr∗2B descends is equivariant for the action of T ×T hence
descends to a sheaf

A�̃B ∈ D(
Iw0\LG×Iw LG/Iw0

Ad(T )
,Λ). (4.61)

The convolution product is defined as

A ∗B = m!A�̃B, (4.62)

where m : Iw0\LG×IwLG/Iw0

Ad(T ) → DAd,χ.

Lemma 4.7.9 ([LY20], [Li22]). The convolution product defines a monoidal structure on DAd,χ.
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Replacing B ∈ DAd,χ by B ∈ DAdF,χ in the construction above first yields a sheaf A�̃B ∈
D( Iw0\LG×IwLG/Iw0

AdF(T ) ,Λ) and then a sheaf A ∗ B ∈ DAdF,χ. The same argument as in [LY20] and

[Li22].

Lemma 4.7.10. The bifunctor

DAd,χ ×DAdF,χ → DAdF,χ,

(A,B) 7→ A ∗B,

defines a DAd,χ-module structure on DAdF,χ.

We now recall the construction of the central functors and their twisted versions. We choose a
uniformizer of πx at x. This gives an identification of the completion at x of X with F̄q((t)). We
then identify the completion of X at x with the completion of A1 at 0 over Fx. We consider the
group scheme GA1

C0 over A1, defined in the same way as GC0 . We consider LGA1

C0 , note that there

is an action of Gm on the fiber at 0 of (LGA1

C0)0 = LG. This one dimensional torus is called the
rotation torus, on the F̄q-points LG(F̄q) = G(F̄q((t))) it acts by rescaling t. More specifically it is
given by

z.g(t) = g(z−1t), (4.63)

where z ∈ Gm and g(t) ∈ LG(F̄q). There is also an action of Gm on A1 by dilatation, given by
(z, x) 7→ zx.

Theorem 4.7.11 ([BR22a] 4.3). There are actions of Gm on LGC0 and L+GC0 such that the maps
LGC0 → A1 and L+GC0 are equivariant for the action of Gm and induce the rotation action on the
fiber at 0.

We consider the affine Grassmannian of GC0 with two legs, that is GrGC0 ,{1,2}, this is an (ind)-

scheme over A2 and we restrict to to A1 × {0}. The fiber at 0 is isomorphic to LG/Iw0. Over Gm,
it is isomorphic to GrG,{1} × LG/Iw0. We consider the the following nearby cycles diagram

LG/Iw0 (GrGA1

C0 ,{1,2}
)A1×0 GrG,{1} × LG/Iw0

0 A1 Gm

Let χ ∈ CHΛ, the χ-twisted central functor is defined as

Zχ : RepΛĜ→ PervAd,χ

W 7→ Ψ(Sat(W )� Lχ[dimT ])

where Lχ[dimT ] is the perverse shift of Lχ on T ⊂ LG/Iw0. The perversity of Zχ follows from the
fact that the nearby cycle functor is perverse t-exact.

Theorem 4.7.12 ([Gai01], [Gai04], [BFO09]). (i). The functor Zχ well defined and is monoidal.

(ii). The monodromy on the nearby cycles is tame.

(iii). The action of the monodromy on the nearby cycles is monoidal.
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We want to point out a few key facts about the proof of this theorem. Firstly, the tameness
of these nearby cycles follows from Verdier’s theorem 4.7.6, see also [AB09] Section 5.2. The
monoidality in [Gai01] follows from the properness of the convolution maps and the monoidality of
the action of the monodromy follows in [Gai04] from the fact that both maps

Ψ1Ψ2 ← Υ→ Ψ∆, (4.64)

are isomorphism when the considered nearby cycles are unipotent nearby cycles. In our setting, the
same argument provides an isomorphism for tame nearby cycles.

4.7.4 Wakimoto sheaves

We assume that Λ = Q` and we fix χ ∈ CH(T ). We recall the construction of [AB09] and [BFO09]
about Wakimoto sheaves. Let λ ∈ X∗(T ) we get a canonical point λ(t) ∈ LG obtained as the image
of t under LGm → LG. We also fix a set of lifts ẇ of the elements of the Weyl group of W and we
assume that ˙ww′ = ẇẇ′ if `(ww′) = `(w) + `(w′). For an element waff = wλ ∈ W̃ , we then get a
point ẇaff = ẇλ(t) ∈ LG.

Definition 4.7.13 (Standard and costandard). Recall that W̃ denotes the extended affine Weyl
group. For w ∈ W̃ , using the choice of ẇ, the stratum iw : IwwIw0/Iw0 ⊂ LG/Iw0 is T -equivariantly
isomorphic to T × A`(w) where `(w) is the lenght of w. We define

(i). The standard objects ∆w,χ = iw,!Lχ �Q`[dimT + `(w)],

(ii). The costandard objects ∇w,χ = iw,∗Lχ �Q`[dimT + `(w)].

Since the inclusion iw is affine, all the sheaves ∆w,χ and ∇w,χ are perverse sheaves.

Theorem 4.7.14 ([AB09], [BFO09] for the Q` case, see Appendix 4.A for the F` case). (i). There
is a fully faithful tensor functor Jχ : RepΛT̂ → PervAd,χ such that J(λ) = ∇λ,χ if λ ∈ X+

∗ is
dominant and J(λ) = ∆w,χ is λ ∈ X∗ is antidominant. The objects in the essential image of
Jχ are called χ-monodromic Wakimoto sheaves.

(ii). Denote by PervJ−fil
Ad,χ the category of sheaves equipped with a filtration whose graded pieces are

Wakimoto sheaves. Then the central functor Zχ lifts to a monoidal functor

Zχ : RepΛG→ PervJ−fil
Ad,χ . (4.65)

(iii). The functor gr : PervJ−fil
Ad,χ → J(RepΛT̂ ) that takes the graded pieces of the filtration is

monoidal. The composition

RepΛĜ
Zχ−−→ PervJ−fil

Ad,χ → J(RepΛT̂ ) = RepΛT̂ , (4.66)

is monoidal and isomorphic to the restriction from Ĝ to T̂ .

(iv). The canonical monodromy action on grZχ is given by the action of χ ∈ T̂ .

Remark 4.7.15. In [BFO09], the authors obtain the opposite monodromy χ−1, this follows from the
fact that we have normalized the rotation torus action using the normalization of [BR22a] which is
the opposite normalization to the one of [BFO09].
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4.8 Main theorems

4.8.1 Statement of the results

We now go back to our setup of section 4.4.2. The following theorem is an extension of theorem
5.2 of [Sal23b].

Theorem 4.8.1. Consider the sheaf emb!ε
∗(SatW � ∇w(RegTwF)) as before. This is a sheaf on

ChtGC ,It{0},Nx . The canonical map

lim−→
µ

p≤µ! Ψ1 . . .Ψnemb!ε
≤µ,∗
ad (SatW �∇w(RegTwF))→ Ψ1 . . .Ψnp

≤µ
! emb!ε

≤µ,∗
ad (SatW �∇w(RegTwF)),

(4.67)
is an isomorphism, where I = {i1, . . . , in}.

Note that this map a priori depends on the order of the coordinates.

Theorem 4.8.2. Let I,W be as before, let s ∈ (T̂ �W )F̂ and let j ∈ Z, then

(i). The (WeilFx)I-module es((H
j
Gσ,I,W,N )Vσ(Fx)) is tamely ramified, i.e. the action of WeilIFx

factors through (WeiltFx)I .

(ii). As an Exc(Fx, Ĝ)-module, es((H
j
Gσ,I,W,N )Vσ(Fx)) is supported on ev−1

τFx
(s).

Corollary 4.8.3. Let M j
N be the quasicoherent sheaf on Z1,t,◦(Fx, Ĝ)/Ĝ corresponding to the func-

tor (I,W ) 7→ (Hj
Gσ,I,W,N )Vσ(Fx). Using the same notations as in theorem 4.8.2, the quasi-coherent

sheaf es(M
j
N ) is supported on ev−1

τFx
(s).

Proof. By lemma 4.4.35, corollary 4.8.3 follows from theorem 4.8.2.

Corollary 4.8.4. All parameters attached by [GL17] to depth 0 cuspidal representations are tame
and the diagram

Irr0H(K) (Z1,t(K, Ĥ) � Ĥ)(Λ)

(T̂ �W )F̂ (T̂ �W )F̂

evτK

LLCGL

LS

commutes.

Remark 4.8.5. The recent result of Li-Huerta [LH23] shows that the semisimple Langlands cor-
respondence of Lafforgue and Genestier [GL17] and the one of Fargues and Scholze [FS21] agree
hence our result is also valid for the Fargues-Scholze correspondence.

4.8.2 Commutation of nearby cycles and pushforward

For the proof of theorem 4.8.1, we will follow Salmon’s proof [Sal23b] Theorem 5.2 with the necessary
generalizations.
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Lemma 4.8.6. Let I = {i1, . . . , in}, K ∈ PervAdF and V ∈ RepΛ(LG)I then the sheaf

lim−→
µ

p≤µ! ε∗d,ad(Sat(V )�K)

is constant on η̄ ×F̄q · · · ×F̄q η̄.

Corollary 4.8.7. Let ζ : I → J be a morphism of finite sets. Let V ∈ RepΛ(LG)I and Vζ is
restriction along the morphism (LG)J → (LG)I induced by ζ. Let K ∈ PervAdF . Then there is a
canonical isomorphism

ΨI lim−→
µ

p≤µ! ε∗d,ad(Sat(V )�K) = ΨJ lim−→
µ

p≤µ! ε∗d,ad(Sat(Vζ)�K). (4.68)

Lemma 4.8.8. Let ζ : I → I ′ be a morphism of finite sets, K ∈ PervAdF , J a finite set and let
W ∈ RepΛ(LG)J and V ∈ RepΛ(LG)I . There is a canonical isomorphism

ΨIemb!ε
∗
d,ad(Sat(W � V )�K) = ΨI′emb!ε

∗
d,ad(Sat(W � Vζ)�K). (4.69)

Proof of theorem 4.8.1. We can now apply the proof of [Sal23b], we reproduce the key argu-
ment here. Let V ∈ RepΛ(LG)J and W ∈ RepΛ(LG)I . We show that the canonical map

lim−→µ
p≤µI∪J,!ΨJε

∗(Sat(W � V ) � ∇(RegTwF)) → ΨJ lim−→µ
p≤µI∪J,!ε

∗(Sat(W � V ) � ∇(RegTwF)) is an

isomorphism. First note that there is a canonical isomorphism over (X −N)I∪{0}

ChtGC ,N,I∪{0},W�1 ' ChtGCN,I,W × (X −N) (4.70)

where ChtGC ,N,I∪{0},W�1 is the closure of the support of ε∗(Sat(W )� 1) and 1 denotes the trivial

representation of Ĝ.
Let J1, J2, J3 be three disjoint copies of J . As in loc. cit, consider the following composition.

ΨJ lim−→
µ

p≤µI∪J,!ε
∗(Sat(W � V )�∇(RegTwF))

' ΨJ1
lim−→
µ

p≤µI∪J1∪J2,!
ΨJ2

ε∗(Sat(W � V � 1)�∇(RegTwF))

→ ΨJ1
lim−→
µ

p≤µI∪J1∪J2,!
ΨJ2

ε∗(Sat(W � V � (V ∗ ⊗ V ))�∇(RegTwF))

' ΨJ1
lim−→
µ

p≤µI∪J1∪J2∪J3,!
ΨJ2

ΨJ3
ε∗(Sat(W � V � V ∗ � V )�∇(RegTwF))

→ ΨJ1
ΨJ2

lim−→
µ

p≤µI∪J1∪J2∪J3,!
ΨJ3

ε∗(Sat(W � V � V ∗ � V )�∇(RegTwF))

' ΨJ2
lim−→
µ

p≤µI∪J2∪J3,!
ΨJ3

ε∗(Sat(W � (V ⊗ V ∗)� V )�∇(RegTwF))

→ ΨJ2
lim−→
µ

p≤µI∪J2∪J3,!
ΨJ3

ε∗(Sat(W � 1� V )�∇(RegTwF))

' lim−→
µ

p≤µI∪J3,!
ΨJ3

ε∗(Sat(W � V )�∇(RegTwF))

where the maps are
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(i). the first one is 4.70,

(ii). the second one is obtained from the canonical map 1→ V ∗ ⊗ V ,

(iii). the third one is the cocartesianity to pass from (V ∗ ⊗ V ) to V ∗ � V from lemma 4.8.8.

(iv). the fourth one is the base change map p!ΨJ2
→ ΨJ2

p!,

(v). the fifth one is from lemma 4.8.7 using fusion to pass from (V � V ∗) to (V ⊗ V ∗) for the
nearby cycles ΨJ1ΨJ2 ,

(vi). the sixth one is by functoriality of V ⊗ V ∗ → 1,

(vii). the last one is by 4.70.

We refer to loc. cit. for the argument that the previous composition is indeed the inverse of the
canonical map.

Proof of lemma 4.8.6. If there were no K in the statement this would be the first part of the main
theorem of [Xue20d]. We need to extend the argument. The argument of loc. cit. requires two
properties of the functors

(I,W ) 7→ p≤µI,! ε
∗
d,ad(Sat(W )�K)

to hold.

(i). That this defines a cocartesian functor filtered with respect to partial Frobenius morphisms,

(ii). That the Eichler shimura relations of [Laf18] Proposition 7.1 hold for all v ∈ X −N .

We now show that these two properties hold. Note that if Λ = Q` then it is shown in [Sal23b]
Section 3 that the first point implies the second, his proof however does not extend to the modular
setting as it requires dividing by n! for all n.

Partial Frobenius. The partial Frobenius morphisms are constructed as in [Xue20a] Section 7.1.
Eichler-Shimura relations. We adapt to our setting an argument of [XZ17]. We have a cocarte-

sian functor filtered with respect to partial Frobenius endomorphism (I,W ) 7→ p≤µ! ε∗ad(Sat(W )�K).

Let us denote it by H≤µI,W,N,K . Let V ∈ RepΛ
LG, the Eichler-Shimura relations is the statement

that the morphism ∑
i

(−1)iF
deg(v)i
0 SΛdimV−iV,v (4.71)

vanishes in Hom((Hj,≤µIt{0},W�V,N,K)|(X−N)I×v
, (Hj,≤µ+κ

It{0},W�V,N,K)|(X−N)I×v
), where v ∈ X − N is a

place, F0 is the partial Frobenius at the leg 0, κ is large enough and SΛdimV−iV,v is the excursion
operator defined in [Laf18] Section 6.1. Let z̄ → (X −N)I and v̄ → v be geometric points and let
ṽ → z̄ × v̄ be a geometric point of this product. Let us introduce the auxiliary cocartesian functor

H̃j,≤µ
J,V ′ = (Hj,≤µItJ,W�V ′,N,K)|∆(ṽ)

, (4.72)

where ∆(ṽ) is the geometric point of (X − N)I × vJ given by ṽ → z̄ × v̄ → z̄ × ∆(v) → (X −
N)I × vJ . On lim−→≤µ H̃

j,≤µ
J,V ′ there is an action of Gal(v̄/v)I coming from the partial Frobenius

morphisms. Hence we have collection of functors H̃j
J : RepΛ(LGloc,v)

J → RepΛGal(v̄/v)I where
LGloc,v is the local L-group at v. By theorem 4.4.33 and lemma 4.4.34, and since the moduli of
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unramified parameters is isomorphic to LG/Ĝ, there are coherent sheavesMj

H̃ on Ĝ.F/Ĝ ⊂ LG/Ĝ

and a spectral sequence Hp(Ĝ,Mq

H̃ ⊗ V ′) ⇒ H̃p+q
J,V ′ for all V ′ ∈ RepΛ((LGloc,v)

J). It is then

enough to show that the endomorphism
∑
i(−1)iF

deg(v)i
0 SΛdimV−iV,v of Mq

H̃ ⊗ V is zero. Under

the isomorphism Mq

H̃ ⊗Λ V = Mq

H̃ ⊗OLG/Ĝ EV the endomorphism
∑
i(−1)iF

deg(v)i
0 SΛdimV−iV,v

corresponds to the endomorphism
∑
i(−1)iF

deg(v)i
0 Tr(F

deg(v)
0 ,Λdim(V )−iV ) which is zero by the

Cayley-Hamilton theorem.

Proof of corollary 4.8.7. We know by 4.8.6 that the sheaf lim−→µ
p≤µ! ε∗d,ad(Sat(V ) � K) is constant

on η̄ ×F̄q · · · ×F̄q η̄. The nearby cycle functor ΨI is isomorphic to the functor D(η̄n,Λ) → D(x̄,Λ)

given by M 7→ Mη̄I where η̄I is a generic geometric point of XI . Similarly, ΨI′ is isomorphism to
M 7→Mη̄I′ , the choice of a specialization morphism η̄I → η̄I′ induces the desired isomorphism.

Proof of lemma 4.8.8. We have a diagram of stacks

ChtGσ,I,N ×Mσ(Fx) Mσ/BM ChtGC ,It{0},Nx

(ChtGσ,I,N ×Mσ(Fx) Mσ/BM )/Ξ ChtGC ,It{0},Nx/Ξ

since the vertical map are étale and surjective it is enough to show the desired isomorphism before
modding out by Ξ. Similarly, since the map ε is smooth, we only need to show the corresponding
statement on affine Grassamannians which now follows from theorem 4.7.12.

4.8.3 Control of the monodromy

In this section we show theorem 4.8.2. We start by showing the tameness assertion. There is a
canonical decomposition

(Hj
Gσ,I,W,N )Vσ(Fx) = (Hj

Gσ,I,W,N )Vσ(Fx),tame ⊕ (Hj
Gσ,I,W,N )Vσ(Fx),wild (4.73)

where (−)tame (resp. (−)wild) denotes the direct factor where P IFx ⊂WeilIFx , the product of the wild
inertia subgroups, acts trivially (resp. non trivially on any irreducible subquotient). The tameness
assertion is then equivalent the property

(Hj
Gσ,I,W,N )Vσ(Fx),wild = 0. (4.74)

Similarly, since P IFx is a pro-p-group, the complex (HGσ,I,W,N )Vσ(Fx) splits as

(HGσ,I,W,N )Vσ(Fx) = (HGσ,I,W,N )Vσ(Fx),tame ⊕ (HGσ,I,W,N )Vσ(Fx),wild (4.75)

such that Hj((HGσ,I,W,N )Vσ(Fx),tame) = (Hj
Gσ,I,W,N )Vσ(Fx),tame (resp. with (−)wild). It is then

enough to show that (HGσ,I,W,N )Vσ(Fx),wild = 0. Since the collection of functors (∗Rw)w∈WM
is

conservative by theorem 4.2.1, it is enough to show that for all w ∈WM , we have

∗Rw((HGσ,I,W,N )Vσ(Fx),wild) = 0. (4.76)

162



Fix an ordering I = {1, . . . , n}. We have

∗Rw((HGσ,I,W,N )Vσ(Fx)) = Ψ1 . . .Ψn
∗Rw((HGσ,I,W,N )Vσ(Fx))

= Ψ1 . . .Ψn lim−→
µ

p≤µ! ε∗(Sat(W )�∇w(RegTwF))

= lim−→
µ

p≤µ! ε∗Ψ1 . . .Ψn(Sat(W )�∇w(RegTwF)),

where the first line follows from the computation of nearby cycles on (X − N)I , the second one
from lemma 4.5.12 and the third one from theorem 4.8.1 and the smoothness of ε. As these
isomorphisms are equivariant for the action of WeilIFx , it is enough to show that the action of

WeilIFx on Ψ1 . . .Ψn(Sat(W ) � ∇w(RegTwF) is tame by theorem 4.7.12. This establishes the first
point of theorem 4.8.2.

Let us now show the second point. Let s ∈ (T̂ �W )F̂. We want to show that the Exc(Fx, Ĝ)-

module es((H
j
Gσ,I,W,N )Vσ(Fx)) is supported on ev−1

τFx
s. Let Is ⊂ O(Ĝ)Ĝ the ideal defining the point

s ∈ Ĝ� Ĝ. It is enough to show that for all f ∈ Is, the excursion operator Ff,τFx ∈ Exc is nilpotent

on es((H
j
Gσ,I,W,N )Vσ(Fx)). It is then enough to show that for all J, V ∈ RepΛ(LG)J , x ∈ V Ĝ and

ξ ∈ (V ∗)Ĝ such that the function on ĜJ given by f(g) = 〈g.x, ξ〉 ∈ O(ĜJ) lies in (IsO(Ĝ))⊗J , that
the excursion operator FJ,V,x,ξ,(τFx )j∈J is nilpotent on es((H

j
Gσ,I,W,N )Vσ(Fx)). This endomorphism

is obtained as the composition

es((H
j
Gσ,I,W,N )Vσ(Fx)) = es((H

j
Gσ,It{0},W�1,N )Vσ(Fx))

x−→ es((H
j
Gσ,ItJ,W�V,N )Vσ(Fx))

(τFx )j∈J−−−−−−→ es((H
j
Gσ,ItJ,W�V,N )Vσ(Fx))

ξ−→ es((H
j
Gσ,It{0},W�1,N )Vσ(Fx))

= es((H
j
Gσ,I,W,N )Vσ(Fx)).

This endomorphism is obtained after applying Hj(−) to corresponding morphism of complex
es((HGσ,I,W,N )Vσ(Fx)) → es((HGσ,I,W,N )Vσ(Fx)) hence it enough to show the corresponding prop-
erty for the complex. Let (w,χ) be a pair w ∈ WM and χ a character of TwF

M such that the pair
(w,χ) corresponds to s. Since the Deligne-Lusztig restriction functors are conservative, it is enough
to show the statement for the complex ∗Rw,χ((HGσ,I,W,N )Vσ(Fx)). As before we have

∗Rw,χ((HGσ,I,W,N )Vσ(Fx)) = lim−→
µ

p≤µ! ε∗Ψ1 . . .Ψn(Sat(W )�∇w(eχRegTwF)). (4.77)

It is therefore enough to show this property for the object Ψ1 . . .Ψn(Sat(W ) � ∇w(eχRegTwF)).

By theorem 4.7.12, this object is a perverse sheaf on Iw0\LG/Iw0

AdFT
. It has a filtration coming from a

composition series of eχRegTwF , its graded pieces are the sheaves Ψ1 . . .Ψn(Sat(W )�∇w(χ)). By
theorem 4.8.1, we have

Ψ1 . . .Ψn(Sat(W )�∇w(χ)) = Zχ(W ) ∗ ∇w(χ). (4.78)
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The excursion operator on central functors is then the composition

Zχ(W ) ∗ ∇w(χ) = Zχ(1) ∗ Zχ(W ) ∗ ∇w(χ)
x−→ Zχ(V ) ∗ Zχ(W ) ∗ ∇w(χ)

(τFx )j∈J−−−−−−→ Zχ(V ) ∗ Zχ(W ) ∗ ∇w(χ)

ξ−→ Zχ(W ) ∗ ∇w(χ).

By theorem 4.7.14, the functor Zχ is equipped with a monoidal functorial filtration. We consider
this filtration for the sheaves Zχ(1) and Zχ(V ) in the previous composition. Passing to graded
pieces yields a composition

Zχ(W ) ∗ ∇w(χ) = grZχ(1) ∗ Zχ(W ) ∗ ∇w(χ)
x−→ gr(Zχ(V )) ∗ Zχ(W ) ∗ ∇w(χ)

gr(τFx )j∈J−−−−−−−→ gr(Zχ(V )) ∗ Zχ(W ) ∗ ∇w(χ)

ξ−→ Zχ(W ) ∗ ∇w(χ).

By theorem 4.7.14, the action of the composition ξ ◦ gr(τFx) ◦ x is induced by the function 1 → 1
obtained by multiplying by f(χ). Since f(χ) = 0, on the graded pieces this composition is 0, hence
it is nilpotent before taking the graded pieces. This concludes the proof of theorem 4.8.2.

4.8.4 Consequences for the local Langlands correspondence

In this section, we want to show corollary 4.8.4. Let π ∈ Irr0
Λ(G(Fx)) be a depth 0 irreducible

cuspidal representation of G(Fx). By theorem 4.3.5, there exists a depth 0 type (σ, τ) for π.

By [GL17], there exists a level N = x+Nx such that HomTσ (πGσ(OFx )0+ , H
Vσ(Fx)
{0},1,N ) 6= 0, where Tσ

denotes the local Hecke algebra of G(Fx) with level Gσ(OFx)0+. In particular HomMF
σ

(τ,H
Vσ(Fx)
{0},1,N ) 6=

0. Let s = LS(π), by theorem 4.8.2, H
Vσ(Fx)
{0},1,N is an Exc(Fx, Ĝ)-module supported on ev−1(s) hence

by the main theorem of [GL17], for any π′ such that π′Gσ(OFx )0+ 6= 0 that appears as a subquotient

of esH
Vσ(Fx)
{0},1,N , its Langlands parameter σπ′ is tame and satisfies σπ′(τFx)ss ∼ s.

4.A Filtration by Wakimoto sheaves

In this appendix we want to extend theorem 4.7.14 to the modular setting. The proof consists
essentially in reproducing the argument of [AB09], [BFO09], [BR22a], [ARon] to the correct setting.
All categories considered have coefficients in F`. All the geometric objects are considered as schemes
(or stacks) defined over F̄q.

We will use the following notations (some of them were introduced in the core of this paper, we
recall them).

(i). W̃ = W nX∗ is the extended affine Weyl group.

(ii). Fl = LG/Iw0.
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(iii). iw : Flw = IwwIw/Iw0 → Fl be the inclusion.

(iv). Given χ ∈ CHF`(T ), we have DAd,DAd,χ the category of sheaves that are Ad(I)-equivariant
on Fl and χ-equivariant for the right action of T .

(v). Given χ ∈ CHF`(T ) and a T -equivariant isomorphism Flw = T × A`(w),

(a) ∆w,χ = iw,!(Lχ � (F`)A`(w))[dimT + `(w)],

(b) ∇w,χ = iw,∗(Lχ � (F`)A`(w))[dimT + `(w)]

(c) ICw,χ = iw,!∗(Lχ � (F`)A`(w))[dimT + `(w)]

the standard, costandard and IC sheaves respectively.

(vi). We define Pervχ the category of perverse sheaves of Dχ. Since the embedding iw are affine
all sheaves ∆w,χ,∇w,χ and ICw,χ.

(vii). We have the central functor
Zχ : RepF`Ĝ→ Pervχ, (4.79)

that was defined in section 4.7.

Remark 4.A.1. The group W̃ naturally acts on CHF`(T ) through its quotient W .

Remark 4.A.2. The sheaves ∆w,χ,∇w,χ, ICw,χ are perverse sheaves which are (T,Lwχ)-equivariant
for the left action of T on Fl.

Remark 4.A.3. We fix a collection of elements ẇ ∈ NG(T ) lifting the elements of W such that
ẇẇ′ = ˙ww′ if `(w) + `(w′) = `(ww′). For λ ∈ X∗, we have a canonical map L+T → LG, the image
of t determines a point tλ in Flλ. Given w ∈ W̃ , we can write it uniquely as w = λwf , we set
ẇ = tλẇ.

Remark 4.A.4. There is a well defined convolution

Dχ ×Dχ′ → Dχ′ , (4.80)

defined as in section 4.7.3. We refer to [LY20] for a careful discussion about this kind of convolution
and to lemma 3.3 and 3.4 of loc. cit. for a proof of the following lemma.

Lemma 4.A.5. With the choice of trivialization of 4.A.3, we have canonical isomorphisms

(i). ∆w,wχ′ ∗∆w′,χ′ = ∆ww′,χ′ if `(w) + `(w′) = `(ww′),

(ii). ∇w,wχ′ ∗ ∇w′,χ′ = ∇ww′,χ′ if `(w) + `(w′) = `(ww′),

(iii). ∆w−1,wχ ∗ ∇w,χ = ∆e,χ = ∇w−1,wχ ∗∆w,χ.

From now on we fix the choices of ẇ of 4.A.3 and we fix a total order ≤ on W̃ refining the
Bruhat order. From now on we stick to the strategy of [AB09] Section 3.6. We also refer to [ARon]
Chapter 4. We now construct the Wakimoto sheaves.
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Lemma 4.A.6 (Construction of the Wakimoto sheaves). We fix χ ∈ CHF` . There exists a fully
faithful tensor functor

J = RepF` T̂ → Pervχ, (4.81)

such that
J(λ) = ∇χ,λ, (4.82)

if λ is dominant.

Proof. Arguing as in [AB09], the functor defined X+
∗ → Pervχ, λ 7→ ∇χ,λ is monoidal. As all the

objects ∇χ,λ are ⊗-invertible, it extends to a monoidal functor X∗ → Pervχ. Taking direct sums

of each objects yields the desired ⊗-functor RepF` T̂ → Pervχ.

Objects in the image of J are called Wakimoto sheaves. We define PervJχ for the essential

image of J . We define PervJ−fil
χ for the category of objects of Pervχ equipped with a decreasing

X∗-filtration such that all the λ-graded pieces are isomorphic to Vλ ⊗ J(λ) where Vλ is a F`-vector
space.

Theorem 4.A.7 (Analog of [AB09] Theorems 4 and 6 and [BFO09] 2.5). (i). There is a unique
monoidal lift of Zχ to PervJ−fil

χ .

(ii). The composition

RepF`Ĝ→ PervJ−fil
χ

gr−→ PervJχ ' RepF` T̂ , (4.83)

is monoidal and monoidally isomorphic to the restriction functor RepF`Ĝ→ RepF` T̂ .

(iii). The monodromy endomorphism (coming from the nearby cycles) acts by χ ∈ T̂ on this functor.

Lemma 4.A.8 (Analog of [AB09] lemma 13). (i). We have HomPervχ(J(λ), J(µ)) 6= 0 only if

λ ≤ µ and HomPervχ(J(λ), J(λ)) = F`.

(ii). The forgetful functor PervJ−fil
χ → Pervχ is faithful and an object in the essential image of the

forgetful functor has a unique filtration compatible with the order ≤.

Proof. The first point comes from the fact that Flµ ⊂ Flλ only if µ ≤ λ and that Flλ is open in the
support of J(λ).

The second point reduces down to the fact that an object in Pervχ has at most one J-filtration.
Let us show this fact. If A is such an object and A≥λ, A

′
≥λ are two such filtrations on A we want

to show that A≥λ = A′≥λ. We proceed by induction. If A has only one term in its filtration, the
statement is clear. Let λ ∈ X∗ and assume by induction that for all µ > λ,A≥µ = A′≥µ. Then we
have A>λ = A′>λ, after replacing A by A/A>λ, we can assume that A≥λ is the first term of the
filtration, but then the condition (i) forces A≥λ = J(λ)k for some k, the same applies to A′≥λ.

Definition 4.A.9. (i). An object X ∈ Pervχ is convolution exact if the functor X ∗− is t-exact.

(ii). An object X ∈ Pervχ is weakly central if for all L ∈ Pervχ, we have L ∗X ' X ∗ L, (though
we do not assume this isomorphism to be functorial).

Definition 4.A.10. Let w = λ.wf ∈ W̃ and assume that wf .χ = χ so that ∇wf ,χ ∈ Pervχ. We
define Jw = Jλ ∗ ∇wf ,χ ∈ Dχ and we call those sheaves the extended Wakimoto sheaves.
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Proposition 4.A.11 ([AB09] Theorem 5). The object Jw is perverse.

Lemma 4.A.12 ([AB09] Proposition 5). Let X ∈ Pervχ be a convolution exact object then X has
a filtration whose graded pieces are extended Wakimoto sheaves, if furthermore X is weakly central
then then only Jw that appear are those such that w ∈ X∗.

The proof of the above lemma and proposition in loc. cit. only uses some fact about the perverse
t-structure as well as the geometry of the convolution map which all hold in the present setting.

Lemma 4.A.13 (Compare with [AB09] Lemma 9). For λ dominant,

j∗λZχ(Vλ) 6= 0, (4.84)

where Vλ denotes the Weyl module of highest weight λ.

Proof. We reduce to the characteristic 0 situation. By loc. cit., Flλ is open in the support of
Zχ(Vλ). Consider a lift of χ to Z`, the construction of the central functor is then the reduction mod
` of the Z`-version of the central functor. After inverting `, we know that this stalk is non-zero and
free of rank one by [BFO09]. By constructibility of the Z`-version, the mod`-reduction is therefore
nonzero.

Proof. We now prove theorem 4.A.7. By theorem 4.7.12, the object Zχ(V ) is weakly central since
it comes equipped with a central structure and is convolution exact. By lemma 4.A.12 there is
Wakimoto filtration on Zχ(V ). By lemma 4.A.8, this filtration is unique. By the lemmas 16, 17
and 18 of [AB09], which hold for arbitrary monoidal categories, this filtration is monoidal and
the composition grZχ is monoidal. Composing with the inverse on J , we get a monoidal functor

RepF`Ĝ→ RepF` T̂ , which therefore corresponds to a morphism of T̂ → Ĝ. It only remains to check
that this is the inclusion of the maximal torus. By 4.A.13, λ is direct summand of grZχ(Vλ), this

implies that T̂ → Ĝ is injective and is identified with the prescribed maximal torus. This yields
the first two points of theorem 4.A.7.

Lemma 4.A.14. Consider the action of (Gm)rot, and let λ ∈ X̊∗. The sheaves ICλ,χ and Jλ are

λ(χ−1) monodromic where λ : T̂ → Gm = (Gm)∨rot is considered as a cocharacter of T̂ .

Proof. By [BR22a] Section 4.4, the normalized loop rotation on Fl is given on Flλ by z.tλ =
λ(z−1)tλ. Hence the rotation monodromy on ICλ,χ is given by λ(χ−1). For the case of Jλ, we
proceed by induction on the length of λ and reduce to the case where λ is of minimal lenght and
thus Jλ = ICλ,χ.

This last lemma yields the last point of theorem 4.A.7.

Lemma 4.A.15. The monodromy action coming from the nearby cycles on Zχ(V ) is given on
gr(Zχ(V )) by the action of χ.

Proof. Since by point (ii) of theorem 4.A.7, under the functor J , gr(Zχ(V ) corresponds to ResĜ
T̂
V

and the graded piece corresponding to λ ∈ X∗ corresponds to the direct summand of of weight
λ. The torus monodromy acts on this direct summand by the character λ(χ−1) by lemma 4.A.14.
By theorem 4.7.6, the action of the monodromy on the nearby cycles is given by λ(χ). This also
concludes the proof of theorem 4.A.7.
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and a categorical künneth formula. 2021.

[HS23] David Hansen and Peter Scholze. Relative perversity. 2023.

[Jut09] Daniel Juteau. Decomposition numbers for perverse sheaves. Annales de l’Institut
Fourier, 59(3):1177–1229, 2009.

[KK90] Bertram Kostant and Shrawan Kumar. T -equivariant K-theory of generalized flag
varieties. Journal of Differential Geometry, 32(2):549 – 603, 1990.

[Laf02] Laurent Lafforgue. Chtoucas de drinfeld et correspondence de langlands. Inventiones
Mathematicae, 147, 2002.

[Laf18] Vincent Lafforgue. Chtoucas pour les groupes réductifs et paramétrisation de langlands
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