Non-abelian Lubin-Tate theory and elliptic representations

October 10th, 2007
What is non abelian Lubin-Tate theory?
What is non abelian Lubin-Tate theory?

Notation: K a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} and residue field k. Choose alg. closure \overline{K} and let $W_K \subset \text{Gal}(\overline{K}|K)$ be the Weil group.
What is non abelian Lubin-Tate theory?

Notation: K a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} and residue field k. Choose alg. closure \overline{K} and let $W_K \subset \text{Gal}(\overline{K}|K)$ be the Weil group.

Lubin-Tate ’65: constructed explicitly abelian extensions of K via torsion points of one dimensional formal Lie groups.
What is non abelian Lubin-Tate theory?

Notation: K a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} and residue field k. Choose alg. closure \overline{K} and let $W_K \subset \text{Gal}(\overline{K}|K)$ be the Weil group.

Lubin-Tate ’65: constructed explicitly abelian extensions of K via torsion points of one dimensional formal Lie groups.

Langlands ’67: local class field theory should be the case $d = 1$ of a family of correspondences between

- d-dimensional continuous representations of W_K
- smooth irreducible representations of $GL_d(K)$
What is non abelian Lubin-Tate theory?

Notation: \(K \) a finite extension of \(\mathbb{Q}_p \) with ring of integers \(\mathcal{O} \) and residue field \(k \). Choose alg. closure \(\overline{K} \) and let \(W_K \subset \text{Gal}(\overline{K}|K) \) be the Weil group.

Lubin-Tate ’65: constructed explicitly abelian extensions of \(K \) via torsion points of one dimensional formal Lie groups.

Langlands ’67: local class field theory should be the case \(d = 1 \) of a family of correspondences between

- \(d \)-dimensional continuous representations of \(W_K \)
- smooth irreducible representations of \(GL_d(K) \)

NALT: aims at realizing Langlands’ correspondences via étale cohomology of suitable moduli spaces of formal Lie groups.
An example: the Lubin-Tate tower

Lubin-Tate ’66: systematic study of 1-dimensional formal \mathcal{O}-modules.

1. Over k, formal \mathcal{O}-modules are classified by their height. Say $d \in \mathbb{N} \mapsto H^d$. The automorphism group of H^d is the group $\mathcal{O} \times D_d$ of invertible elements in the ring of integers of the division algebra with invariant $1/d$ over K.

2. The deformation space of H^d is a $W(k)$-analytic open disk of dimension $d-1$.

Drinfeld ’74: the “space” M_{LT} of torsion sections of the universal deformation has a natural action of $GL_d(K)$.

Hence $H^\ast_c(M_{LT} \hat{\otimes} K, \mathbb{Q}_l)$ are endowed with an action of the triple product $GL_d(K) \times D \times D_d \times W_K$.
An example: the Lubin-Tate tower

Lubin-Tate ’66: systematic study of 1-dimensional formal \mathcal{O}-modules.

1. Over \overline{k}, formal \mathcal{O}-modules are classified by their height. Say $d \in \mathbb{N} \mapsto \mathbb{H}_d$. The automorphism group of \mathbb{H}_d is the group $\mathcal{O}_{D_d}^\times$ of invertible elements in the ring of integers of the division algebra with invariant $1/d$ over K.

Drinfeld ’74: the “space” \mathcal{M}_{LT} of torsion sections of the universal deformation has a natural action of $\text{GL}_d(K)$. Hence

$$H^*(\mathcal{M}_{\text{LT}} \hat{\otimes} K, \mathbb{Q}_l)$$

are endowed with an action of the triple product $\text{GL}_d(K) \times D_d \times W_K$.

An example: the Lubin-Tate tower

Lubin-Tate ’66: systematic study of 1-dimensional formal \mathcal{O}-modules.

1. Over \overline{k}, formal \mathcal{O}-modules are classified by their height. Say $d \in \mathbb{N} \mapsto H_d$. The automorphism group of H_d is the group $\mathcal{O}_{D_d}^{\times}$ of invertible elements in the ring of integers of the division algebra with invariant $1/d$ over K.

2. The deformation space of H_d is a $W(\overline{k})$-analytic open disk of dimension $d - 1$.
Lubin-Tate ’66: systematic study of 1-dimensional formal \mathcal{O}-modules.

1. Over \bar{k}, formal \mathcal{O}-modules are classified by their height. Say $d \in \mathbb{N} \mapsto H_d$. The automorphism group of H_d is the group $\mathcal{O}_{D_d}^\times$ of invertible elements in the ring of integers of the division algebra with invariant $1/d$ over K.

2. The deformation space of H_d is a $W(\bar{k})$-analytic open disk of dimension $d - 1$.

Drinfeld ’74: the "space" \mathcal{M}_{LT} of torsion sections of the universal deformation has a natural action of $GL_d(K)$.
An example: the Lubin-Tate tower

Lubin-Tate ’66: systematic study of 1-dimensional formal \mathcal{O}-modules.

1. Over \overline{k}, formal \mathcal{O}-modules are classified by their height. Say $d \in \mathbb{N} \mapsto H_d$. The automorphism group of H_d is the group $\mathcal{O}_{D_d}^\times$ of invertible elements in the ring of integers of the division algebra with invariant $1/d$ over K.

2. The deformation space of H_d is a $W(\overline{k})$-analytic open disk of dimension $d - 1$.

Drinfeld ’74: the ”space” \mathcal{M}_{LT} of torsion sections of the universal deformation has a natural action of $GL_d(K)$.

Hence $H^*_c(\mathcal{M}_{LT} \hat{\otimes}_K \overline{K}, \mathbb{Q}_l)$ are endowed with an action of the triple product $GL_d(K) \times D_d^\times \times W_K$.
Harris-Taylor theorem '99

For an irreducible supercuspidal representation π of $GL_d(K)$, we have

$$\text{Hom}_{GL_d(K)}(H_c^{d-1}(\mathcal{M}_{LT}), \pi) \xrightarrow{\sim} \mathcal{LJ}(\pi) \otimes \mathcal{L}(\pi)(?)$$
For an irreducible supercuspidal representation π of $GL_d(K)$, we have

$$\text{Hom}_{GL_d(K)}(H_{c}^{d-1}(\mathcal{M}_{LT}), \pi) \cong D^{\times} \times W_K \mathcal{L} \mathcal{J}(\pi) \otimes \mathcal{L}(\pi)(?)$$

- $\mathcal{L} \mathcal{J} : \mathcal{R}(G) \longrightarrow \mathcal{R}(D^{\times})$ is the map between Grothendieck groups which is dual to the transfer map from conjugacy classes in D^{\times} to conjugacy classes in G.
- \mathcal{L} denotes Langlands correspondence.
Harris-Taylor theorem ’99

For an irreducible supercuspidal representation \(\pi \) of \(GL_d(K) \), we have

\[
\text{Hom}_{GL_d(K)}(H^{d-1}_c(\mathcal{M}_{LT}), \pi) \cong \mathcal{LJ}(\pi) \otimes \mathcal{L}(\pi)(?)
\]

- \(\mathcal{LJ} : \mathcal{R}(G) \longrightarrow \mathcal{R}(D^\times) \) is the map between Grothendieck groups which is dual to the transfer map from conjugacy classes in \(D^\times \) to conjugacy classes in \(G \).
- \(\mathcal{L} \) denotes Langlands correspondence.

Supercuspidal representations have very special features
- they are the only projective/injective irreducible objects in the smooth category.
- they correspond to *irreducible* representations of \(W_K \).
Harris-Taylor theorem ’99

For an irreducible supercuspidal representation π of $GL_d(K)$, we have

$$\text{Hom}_{GL_d(K)}(H^{d-1}_c(\mathcal{M}_{LT}), \pi) \cong \mathcal{L}(\mathcal{J}(\pi)) \otimes \mathcal{L}(\pi)(?)$$

- $\mathcal{LJ} : \mathcal{R}(G) \longrightarrow \mathcal{R}(D^\times)$ is the map between Grothendieck groups which is dual to the transfer map from conjugacy classes in D^\times to conjugacy classes in G.
- \mathcal{L} denotes Langlands correspondence.

Supercuspidal representations have very special features

- they are the only projective/injective irreducible objects in the smooth category.
- they correspond to irreducible representations of W_K.
- all representations of $GL_d(K)$ are obtained as subquotients of parabolically induced representations from supercuspidal ones.
Recent developments

Boyer ’05: computed all cohomology spaces.
Recent developments

Boyer ’05: computed all cohomology spaces. It turns out that

- the set of representations of $GL_d(K)$ is somehow "asymmetric".
- Langlands correspondence is not realized for non supercuspidals.
Recent developments

Boyer ’05: computed all cohomology spaces. It turns out that

- the set of representations of $GL_d(K)$ is somehow "asymmetric".
- Langlands correspondence is not realized for non supercuspidals.

Idea: more information might be encoded in a suitable cohomology complex.
Recent developments

Boyer ’05: computed all cohomology spaces. It turns out that
 - the set of representations of $GL_d(K)$ is somehow ”asymmetric”.
 - Langlands correspondence is not realized for non supercuspidals.

Idea: more information might be encoded in a suitable cohomology complex.

Dat ’06: constructed a complex $R\Gamma_c(M_{LT}) \in D^b(GL_d(K))$ with action of $D_d^\times \times W_K$, with the right cohomology, and showed
Recent developments

Boyer ’05: computed all cohomology spaces. It turns out that

- the set of representations of $GL_d(K)$ is somehow "asymmetric".
- Langlands correspondence is not realized for non-supercuspidals.

Idea: more information might be encoded in a suitable cohomology complex.

Dat ’06: constructed a complex $R\Gamma_c(\mathcal{M}_{\text{LT}}) \in D^b(GL_d(K))$ with action of $D^\times_d \times W_K$, with the right cohomology, and showed

$$R\text{Hom}_{D^b(\text{GL}_d)}(R\Gamma_c(\mathcal{M}_{\text{LT}}), \pi) \xrightarrow{\sim} \mathcal{L}\mathcal{J}(\pi) \otimes \mathcal{L}(\pi)| - \frac{d-1}{2}$$

for any smooth irreducible representation π of $GL_d(K)$.
Recent developments

Boyer ’05 : computed all cohomology spaces. It turns out that
 - the set of representations of $GL_d(K)$ is somehow ”asymmetric”.
 - Langlands correspondence is not realized for non supercuspidals.

Idea : more information might be encoded in a suitable cohomology complex.

Dat ’06 : constructed a complex $R\Gamma_c(M_{LT}) \in D^b(GL_d(K))$ with action of $D_d^\times \times W_K$, with the right cohomology, and showed

$$R\text{Hom}_{D^b(GL_d)}(R\Gamma_c(M_{LT}), \pi) \underset{D^\times \times W_K}{\simeq} \mathcal{L}\mathcal{J}(\pi) \otimes \mathcal{L}(\pi)| - | \frac{d-1}{2}$$

for any smooth irreducible representation π of $GL_d(K)$.

Unfortunately, $\mathcal{L}\mathcal{J}(\pi)$ may be 0.
A toy example: Drinfeld symmetric spaces
A toy example: Drinfeld symmetric spaces

Ω^{d-1} is the complement of all K-rational hyperplanes in \mathbb{P}^{d-1}. It is an open K-analytic subspace of \mathbb{P}^{d-1}.
A toy example: Drinfeld symmetric spaces

Ω^{d-1} is the complement of all K-rational hyperplanes in \mathbb{P}^{d-1}. It is an open K-analytic subspace of \mathbb{P}^{d-1}.

Schneider-Stuhler ’91: computed the l-adic cohomology spaces of Ω^{d-1}, as $GL_d(K) \times W_K$-modules.
A toy example: Drinfeld symmetric spaces

\(\Omega^{d-1} \) is the complement of all \(K \)-rational hyperplanes in \(\mathbb{P}^{d-1} \). It is an open \(K \)-analytic subspace of \(\mathbb{P}^{d-1} \).

Schneider-Stuhler ’91: computed the \(l \)-adic cohomology spaces of \(\Omega^{d-1} \), as \(GL_d(K) \times W_K \)-modules.

Interlude on representations of \(GL_d(K) \)

Let \(B \) be the Borel subgroup of upper triangular matrices in \(GL_d(K) \), and let \(S \) be the set of simple roots of the diagonal torus in \(B \).

Subsets of \(S \) are in natural bijection \(I \mapsto P_I \) with parabolic subgroups containing \(B \).
Interlude on representations of $GL_d(K)$ (continued)

Define $\pi_I := \mathcal{C}^\infty(G/P_I)/(\sum_{J \supset I} \mathcal{C}^\infty(G/P_J))$.

It is known that $I \mapsto \pi_I$ is a bijection between the set of irreducible constituents of $\mathcal{C}^\infty(G/B)$ and the set of subsets of S.

For convenience, identify $S \cong \{1, \ldots, d-1\}$ by numbering the first upper diagonal from left to right.

Schneider-Stuhler computation for $i = 0, \ldots, d-1$, $H_{d-1+i}c(\Omega_{d-1}^\hat{\otimes}^\hat{\otimes} K, \mathbb{Q}_l) \cong \pi\{1, \ldots, i\}(-i)$.

The $GL_d(K)$ action is asymmetric and the Galois action is not interesting. But uniformization theory suggests that more information should be encoded in a suitable cohomology complex.

Want a complex $R\Gamma_c(\Omega_{d-1}^\hat{\otimes} K, \mathbb{Q}_l)$ in the derived category $D^b(G)$ of smooth representations.

Observation: because weights are distinct, $R\Gamma_c$ is split in $D^b(G)$.

Define $\pi_I := \mathcal{C}^\infty(G/P_I)/(\sum_{J \supset I} \mathcal{C}^\infty(G/P_J))$.

It is known that $I \mapsto \pi_I$ is a bijection between the set of irreducible constituents of $\mathcal{C}^\infty(G/B)$ and the set of subsets of S.
Interlude on representations of $GL_d(K)$ (continued)

Define $\pi_I := C^\infty(G/P_I)/(\sum_{J \supset I} C^\infty(G/P_J))$.

It is known that $I \mapsto \pi_I$ is a bijection between the set of irreducible constituents of $C^\infty(G/B)$ and the set of subsets of S.

For convenience, identify $S \simeq \{1, \cdots, d - 1\}$ by numbering the first upper diagonal from left to right.
Interlude on representations of $GL_d(K)$ (continued)

Define $\pi_I := C^\infty(G/P_I)/(\sum_{J \supset I} C^\infty(G/P_J))$.

It is known that $I \mapsto \pi_I$ is a bijection between the set of irreducible constituents of $C^\infty(G/B)$ and the set of subsets of S.

For convenience, identify $S \simeq \{1, \cdots, d-1\}$ by numbering the first upper diagonal from left to right.

Schneider-Stuhler computation

For $i = 0, \cdots, d-1$, $H^{d-1+i}_c(\Omega^{d-1} \hat{\otimes} \hat{K}, \mathbb{Q}_l) \simeq \pi_{\{1, \cdots, i\}}(-i)$.
Interlude on representations of $GL_d(K)$ (continued)

Define $\pi_I := C^\infty(G/P_I)/(\sum_{J \supset I} C^\infty(G/P_J))$.

It is known that $I \mapsto \pi_I$ is a bijection between the set of irreducible constituents of $C^\infty(G/B)$ and the set of subsets of S.

For convenience, identify $S \simeq \{1, \cdots, d-1\}$ by numbering the first upper diagonal from left to right.

Schneider-Stuhler computation

for $i = 0, \cdots, d-1$, $H_d^d-1+i(\Omega^d-1 \hat{\otimes} \hat{K}, \mathbb{Q}_l) \simeq \pi_{\{1,\cdots,i\}}(-i)$.

The $GL_d(K)$ action is asymmetric and the Galois action is not interesting.
Interlude on representations of $GL_d(K)$ (continued)

Define $\pi_I := \mathcal{C}\mathcal{C}(G/P_I) / (\sum_{J \supset I} \mathcal{C}\mathcal{C}(G/P_J))$.

It is known that $I \mapsto \pi_I$ is a bijection between the set of irreducible constituents of $\mathcal{C}\mathcal{C}(G/B)$ and the set of subsets of S.

For convenience, identify $S \simeq \{1, \cdots, d-1\}$ by numbering the first upper diagonal from left to right.

Schneider-Stuhler computation

for $i = 0, \cdots, d-1$, $H^{d-1+i}_c(\Omega^{d-1} \hat{\otimes} \hat{K}, \overline{\mathbb{Q}}_l) \simeq \pi\{1, \cdots, i\}(-i)$.

The $GL_d(K)$ action is asymmetric and the Galois action is not interesting.

But *uniformization theory* suggests that more information should be encoded in a suitable cohomology complex.
Interlude on representations of $GL_d(K)$ (continued)

Define $\pi_I := C^\infty(G/P_I) / (\sum_{J \supset I} C^\infty(G/P_J))$.

It is known that $I \mapsto \pi_I$ is a bijection between the set of irreducible constituents of $C^\infty(G/B)$ and the set of subsets of S.

For convenience, identify $S \simeq \{1, \cdots, d-1\}$ by numbering the first upper diagonal from left to right.

Schneider-Stuhler computation

for $i = 0, \cdots, d-1$, $H^{d-1+i}_c(\Omega^{d-1} \hat{\otimes} \hat{K}, \overline{Q}_l) \simeq \pi_{\{1,\cdots,i\}}(-i)$.

The $GL_d(K)$ action is asymmetric and the Galois action is not interesting.

But *uniformization theory* suggests that more information should be encoded in a suitable cohomology complex. Want a complex $R\Gamma_c(\Omega^{d-1} \hat{\otimes} \hat{K}, \overline{Q}_l)$ in the derived category $D^b(G)$ of smooth representations.
Interlude on representations of $GL_d(K)$ (continued)

Define $\pi_I := \mathcal{C}^\infty(G/P_I)/\left(\sum_{J \supset I} \mathcal{C}^\infty(G/P_J)\right)$.

It is known that $I \mapsto \pi_I$ is a bijection between the set of irreducible constituents of $\mathcal{C}^\infty(G/B)$ and the set of subsets of S.

For convenience, identify $S \simeq \{1, \cdots, d-1\}$ by numbering the first upper diagonal from left to right.

Schneider-Stuhler computation

for $i = 0, \cdots, d-1$, $H^d_{c-1+i}(\Omega^{d-1} \hat{\otimes} \hat{K}, \overline{Q}_l) \simeq \pi_{\{1, \cdots, i\}}(-i)$.

The $GL_d(K)$ action is asymmetric and the Galois action is not interesting.

But *uniformization theory* suggests that more information should be encoded in a suitable cohomology complex. Want a complex $R\Gamma_c(\Omega^{d-1} \hat{\otimes} \hat{K}, \overline{Q}_l)$ in the derived category $D^b(G)$ of smooth representations.

Observation: because weights are distinct, $R\Gamma_c$ is split in $D^b(G)$.
Theorem

(Holds for any split semi-simple G) For all $I, J \subseteq S$, put
\[\delta(I, J) := |I \cup J| - |I \cap J|. \]

Let I, J be two subsets of S, then:

\[\text{Ext}_G^*(\pi_I, \pi_J) = \begin{cases} \overline{\mathbb{Q}}_l & \text{if } * = \delta(I, J) \\ 0 & \text{if } * \neq \delta(I, J) \end{cases}. \]
Theorem

(Holds for any split semi-simple G) For all $I, J \subseteq S$, put

$$\delta(I, J) := |I \cup J| - |I \cap J|.$$

- Let I, J be two subsets of S, then:

$$\Ext^*_G(\pi_I, \pi_J) = \begin{cases} \overline{\mathbb{Q}}_l & \text{if } * = \delta(I, J) \\ 0 & \text{if } * \neq \delta(I, J) \end{cases}.$$

- Let I, J, K be three subsets of S such that

$$\delta(I, J) + \delta(J, K) = \delta(I, K),$$

then the cup-product

$$\cup : \Ext^\delta(I, J)_G(\pi_I, \pi_J) \otimes_{\overline{\mathbb{Q}}_l} \Ext^\delta(J, K)_G(\pi_J, \pi_K) \longrightarrow \Ext^\delta(I, K)_G(\pi_I, \pi_K)$$

is an isomorphism.
Corollary

The algebra $\text{End}_{D^b(G)}(R\Gamma_c(\Omega^{d-1}, Q_l))$ is isomorphic to the algebra of $d \times d$ upper triangular matrices.
Corollary

The algebra $\text{End}_{D^b(G)}(R\Gamma_c(\Omega^{d-1}, \mathbb{Q}_l))$ is isomorphic to the algebra of $d \times d$ upper triangular matrices.

We may choose an isomorphism so that the action of a fixed Frobenius lifting ϕ in W_F be diagonal and that of the inertia group I_K be given by the formula $i \mapsto \exp(t_l(i)N)$ with N a nilpotent matrix in Jordan’s form.
Corollary

The algebra $\text{End}_{D^b(G)}(R\Gamma_c(\Omega^{d-1}, \overline{Q}_l))$ is isomorphic to the algebra of $d \times d$ upper triangular matrices.

We may choose an isomorphism so that the action of a fixed Frobenius lifting ϕ in W_F be diagonal and that of the inertia group I_K be given by the formula $i \mapsto \exp(t_l(i)N)$ with N a nilpotent matrix in Jordan’s form.

Proposition

The nilpotent matrix is the regular one. Equivalently we have $N^{d-1} \neq 0$.
Corollary

The algebra $\text{End}_{\text{Db}(G)}(R\Gamma_c(\Omega^{d-1}, \overline{Q}_l))$ is isomorphic to the algebra of $d \times d$ upper triangular matrices.

We may choose an isomorphism so that the action of a fixed Frobenius lifting ϕ in W_F be diagonal and that of the inertia group I_K be given by the formula $i \mapsto \exp(t_l(i)N)$ with N a nilpotent matrix in Jordan’s form.

Proposition

The nilpotent matrix is the regular one. Equivalently we have $N^{d-1} \neq 0$.

Follows from the formula

$$\overline{Q}_l \otimes_{\overline{Q}_l[\Gamma]} R\Gamma_c(\Omega^{d-1} \hat{\otimes} \hat{K}, \overline{Q}_l) \simeq R\Gamma(\Omega^{d-1}/\Gamma \otimes \hat{K}, \overline{Q}_l).$$
A simple but somehow miraculous computation gives:

Corollary

For each $I \subseteq S$, we have

$$\text{RHom}_{D^b(G)}(R\Gamma_c(\Omega^{d-1}, \overline{\mathbb{Q}}_l), \pi_I)[1 - d] \sim \bigoplus_{k=0}^{\lvert I \rvert} \text{Sp}_{d_k}(i_k)[-\lvert I \rvert + 2k]$$
A simple but somehow miraculous computation gives:

Corollary

For each $I \subseteq S$, we have

$$\text{RHom}_{D^b(G)}(R\Gamma_c(\Omega^{d-1}, \mathbb{Q}_l), \pi_I)[1 - d] \sim \bigoplus_{k=0}^{\lfloor |I| \rfloor} \text{Sp}_{d_k}(i_k)[-|I| + 2k]$$

Forgetting the graded structure, this gives

$$\mathcal{H}^*(\text{RHom}_{D^b(G)}(R\Gamma_c(\Omega^{d-1}, \mathbb{Q}_l), \pi_I)) \sim \mathcal{L}(\pi_I)(\frac{d - 1}{2})$$

where \mathcal{L} denotes local Langlands correspondence.
Ongoing problems

- Find spaces to achieve geometric realization of Langlands’ correspondence for all representations.
- What happens for $\overline{\mathbb{F}}_l$ coefficients? Link with Broué’s conjecture for Deligne-Lusztig varieties.
- What about other period domains, other RZ spaces?