Finiteness properties of Hecke algebras of p-adic groups

June 8th, 2007
Notation: let G be a reductive p-adic group, H be an open compact subgroup of G, R a commutative ring and $R[H\backslash G/H]$ the relative Hecke R-algebra.
Notation: let G be a reductive p-adic group, H be an open compact subgroup of G, R a commutative ring and $R[H\backslash G/H]$ the relative Hecke R-algebra.

Theorem Assume $p \in R^\times$ and G classical. Then R noetherian implies $R[H\backslash G/H]$ noetherian.
Notation: let G be a reductive p-adic group, H be an open compact subgroup of G, R a commutative ring and $R[H\backslash G/H]$ the relative Hecke R-algebra.

Theorem Assume $p \in R^\times$ and G classical. Then R noetherian implies $R[H\backslash G/H]$ noetherian.

Formerly known:

- H Iwahori subgroup, no restrictions on G and R (Bernstein, Vignéras).
Notation: let G be a reductive p-adic group, H be an open compact subgroup of G, R a commutative ring and $R[H\backslash G/H]$ the relative Hecke R-algebra.

Theorem Assume $p \in R^\times$ and G classical. Then R noetherian implies $R[H\backslash G/H]$ noetherian.

Formerly known:
- H Iwahori subgroup, no restrictions on G and R (Bernstein, Vignéras).
- $R = \mathbb{C}$, no restrictions on G and H (Bernstein).
Notation: let G be a reductive p-adic group, H be an open compact subgroup of G, R a commutative ring and $R[H\backslash G/H]$ the relative Hecke R-algebra.

Theorem Assume $p \in R^\times$ and G classical. Then R noetherian implies $R[H\backslash G/H]$ noetherian.

Formerly known:
- H Iwahori subgroup, no restrictions on G and R (Bernstein, Vignéras).
- $R = \mathbb{C}$, no restrictions on G and H (Bernstein).

Proposition Assume $|G| \in R^\times$ and R noetherian. Then $R[H\backslash G/H]$ is a finitely generated module over its center which is a finitely generated R-algebra.
Second version of main results. Assume R noetherian, $p \in R^\times$ and let $\text{Mod}_R(G)$ be the category of all smooth RG-modules.

Theorem Assume G classical. Then any finitely generated $V \in \text{Mod}_R(G)$ is noetherian.
Second version of main results. Assume R noetherian, $p \in R^\times$ and let $Mod_R(G)$ be the category of all smooth RG-modules.

Theorem Assume G classical. Then any finitely generated $V \in Mod_R(G)$ is noetherian.

Let $Z(Mod_R(G))$ be the center of the category $Mod_R(G)$.

Proposition Assume $|G| \in R^\times$. Then any finitely generated $V \in Mod_R(G)$ is admissible over $Z(Mod_R(G))$.
Second version of main results. Assume R noetherian, $p \in R^\times$ and let $\text{Mod}_R(G)$ be the category of all smooth RG-modules.

Theorem Assume G classical. Then any finitely generated $V \in \text{Mod}_R(G)$ is noetherian.

Let $\mathcal{Z}(\text{Mod}_R(G))$ be the center of the category $\text{Mod}_R(G)$.

Proposition Assume $|G| \in R^\times$. Then any finitely generated $V \in \text{Mod}_R(G)$ is admissible over $\mathcal{Z}(\text{Mod}_R(G))$.

Strategy of proof: inductive arguments using parabolic induction and restriction functors.
Second version of main results. Assume R noetherian, $p \in R^\times$ and let $\text{Mod}_R(G)$ be the category of all smooth RG-modules.

Theorem Assume G classical. Then any finitely generated $V \in \text{Mod}_R(G)$ is noetherian.

Let $\mathcal{Z}(\text{Mod}_R(G))$ be the center of the category $\text{Mod}_R(G)$.

Proposition Assume $|G| \in R^\times$. Then any finitely generated $V \in \text{Mod}_R(G)$ is admissible over $\mathcal{Z}(\text{Mod}_R(G))$.

Strategy of proof : inductive arguments using parabolic induction and restriction functors. To initialize the induction let $Cusp_R(G)$ be the subcategory of cuspidal objects and Z_G be the center of G.

Lemma Any f.g. $V \in Cusp_R(G)$ is $R[Z_G]$-admissible.
Bernstein’s strategy revisited

If $P = M.U \subset G$ is a parabolic subgroup, note i_P and r_P the parabolic functors. We have ring morphisms

$$\mathcal{Z}(\text{Cusp}_R(M)) \longrightarrow \text{End}(i_P|\text{Cusp}_R(M)) \longleftarrow \mathcal{Z}(\text{Mod}_R(G)).$$
Bernstein’s strategy revisited

If $P = M.U \subset G$ is a parabolic subgroup, note i_P and r_P the parabolic functors. We have ring morphisms

$$\mathcal{Z}(\text{Cusp}_R(M)) \longrightarrow \text{End}(i_P|\text{Cusp}_R(M)) \leftarrow \mathcal{Z}(\text{Mod}_R(G)).$$

The first one is an isomorphism, whence a map

$$\mathcal{Z}(\text{Mod}_R(G)) \xrightarrow{\alpha} \prod_{\{M\}} \mathcal{Z}(\text{Cusp}_R(M))^N_G(M).$$
Bernstein’s strategy revisited

If $P = M.U \subset G$ is a parabolic subgroup, note i_P and r_P the parabolic functors. We have ring morphisms

$$\mathcal{Z}(\text{Cusp}_R(M)) \longrightarrow \text{End}(i_P|\text{Cusp}_R(M)) \longleftarrow \mathcal{Z}(\text{Mod}_R(G)).$$

The first one is an isomorphism, whence a map

$$\mathcal{Z}(\text{Mod}_R(G)) \xrightarrow{\alpha} \prod_{\{M\}} \mathcal{Z}(\text{Cusp}_R(M))^{N_G(M)}.$$

Assume the following two properties hold :

- $\text{Mod}_R(G) = \bigoplus_{\{M\}} i_P(\text{Cusp}_R(M))^{ab}$.
- r_P is faithful on $i_P(\text{Cusp}_R(M))^{ab}$.
Bernstein’s strategy revisited

If $P = M.U \subset G$ is a parabolic subgroup, note i_P and r_P the parabolic functors. We have ring morphisms

$$3(\text{Cusp}_R(M)) \longrightarrow \text{End}(i_P|\text{Cusp}_R(M)) \longleftarrow 3(\text{Mod}_R(G)).$$

The first one is an isomorphism, whence a map

$$3(\text{Mod}_R(G)) \xrightarrow{\alpha} \prod_{\{M\}} 3(\text{Cusp}_R(M))^\mathcal{N}_G(M).$$

Assume the following two properties hold :

- $\text{Mod}_R(G) = \bigoplus_{\{M\}} i_P(\text{Cusp}_R(M))^{ab}$.
- r_P is faithful on $i_P(\text{Cusp}_R(M))^{ab}$.

Then α is an isomorphism and the statement of Proposition follows easily.
Idea: replace decomposition by filtration of the identity functor Id of $\text{Mod}_R(G)$.
Idea: replace decomposition by filtration of the identity functor Id of $\text{Mod}_R(G)$.

Frobenius reciprocity gives such a filtration: refine the partial order on standard parabolic subgroups in a total order P_1, \cdots, P_g. Then put $\mathcal{F}^0 := \text{Id}$ and $\mathcal{F}^i := \ker(\mathcal{F}^{i-1} \xrightarrow{\text{Adj}} i_{P_i} \circ r_{P_i} \circ \mathcal{F}^{i-1})$.

Totally useless for our purposes!
Idea: replace decomposition by filtration of the identity functor Id of $\text{Mod}_R(G)$.

Frobenius reciprocity gives such a filtration: refine the partial order on standard parabolic subgroups in a total order P_1, \cdots, P_g. Then put $\mathcal{F}^0 := \text{Id}$ and $\mathcal{F}^i := \ker (\mathcal{F}^{i-1} \xrightarrow{\text{Adj}} i_{P_i} \circ r_{P_i} \circ \mathcal{F}^{i-1})$.

If $V \in \text{Mod}_R(G)$, $\text{gr}^i_{\mathcal{F}}(V)$ is a submodule of i_{P_i} of some cuspidal submodule of $r_{P_i}V$. Totally useless for our purposes!
Idea: replace decomposition by filtration of the identity functor Id of $\text{Mod}_R(G)$.

Frobenius reciprocity gives such a filtration: refine the partial order on standard parabolic subgroups in a total order P_1, \ldots, P_g. Then put $\mathcal{F}^0 := \text{Id}$ and $\mathcal{F}^i := \ker(\mathcal{F}^{i-1} \xrightarrow{Adj} i_{P_i} \circ r_{P_i} \circ \mathcal{F}^{i-1})$.

If $V \in \text{Mod}_R(G)$, $\text{gr}^i_{\mathcal{F}}(V)$ is a submodule of i_{P_i} of some cuspidal submodule of $r_{P_i}V$.

Totally useless for our purposes!
Idea: replace decomposition by filtration of the identity functor Id of $\text{Mod}_R(G)$.

Frobenius reciprocity gives such a filtration: refine the partial order on standard parabolic subgroups in a total order P_1, \ldots, P_g. Then put $\mathcal{F}^0 := \text{Id}$ and $\mathcal{F}^i := \ker(\mathcal{F}^{i-1} \xrightarrow{\text{Adj}} i_{P_i} \circ r_{P_i} \circ \mathcal{F}^{i-1})$.

If $V \in \text{Mod}_R(G)$, $\text{gr}^i_{\mathcal{F}}(V)$ is a submodule of i_{P_i} of some cuspidal submodule of $r_{P_i}V$.

Totally useless for our purposes!

Second adjointness (Bernstein) when $R = \mathbb{C}$, (i_P, r_P) is an adjoint pair.
Idea: replace decomposition by filtration of the identity functor \(\text{Id} \) of \(\text{Mod}_R(G) \).

Frobenius reciprocity gives such a filtration: refine the partial order on standard parabolic subgroups in a total order \(P_1, \cdots, P_g \).

Then put \(\mathcal{F}^0 := \text{Id} \) and \(\mathcal{F}^i := \ker \left(\mathcal{F}^{i-1} \xrightarrow{\text{Adj}} i_{P_i} \circ r_{P_i} \circ \mathcal{F}^{i-1} \right) \).

If \(V \in \text{Mod}_R(G) \), \(gr^j_{\mathcal{F}}(V) \) is a submodule of \(i_{P_i} \) of some cuspidal submodule of \(r_{P_i} V \).

Totally useless for our purposes!

Second adjointness (Bernstein) when \(R = \mathbb{C} \), \((i_P, r_P) \) is an adjoint pair.

Unfortunately, both the available proofs use noetherian properties!
Assume second adjointness holds on R and let us prove noetherianity by induction.
Assume second adjointness holds on R and let us prove noetherianity by induction.

Note that this formally implies that r_P commutes with arbitrary limits and i_P sends finitely generated objects on finitely generated objects.
Assume second adjointness holds on R and let us prove noetherianity by induction.

Note that this formally implies that r_P commutes with arbitrary limits and i_P sends finitely generated objects on finitely generated objects.

We now have an increasing filtration \mathcal{F}_\bullet of Id such that for any object V, the graded piece $\text{gr}^{\mathcal{F}_i}_i(V)$ is a quotient of i_{P_i} of the maximal cuspidal quotient of $r_{P_i}V$.
Assume second adjointness holds on R and let us prove noetherianity by induction.

Note that this formally implies that r_P commutes with arbitrary limits and i_P sends finitely generated objects on finitely generated objects.

We now have an increasing filtration \mathcal{F}_\bullet of Id such that for any object V, the graded piece $\text{gr}^F_i(V)$ is a quotient of i_{P_i} of the maximal cuspidal quotient of $r_{P_i}V$.

Using the filtration and the induction hypothesis, we are left to show:

for any parabolic P and any $W \in \text{Cusp}_R(M)$ finitely generated, all cuspidal subquotients of i_PW are finitely generated.
Assume second adjointness holds on R and let us prove noetherianity by induction.

Note that this formally implies that r_P commutes with arbitrary limits and i_P sends finitely generated objects on finitely generated objects.

We now have an increasing filtration \mathcal{F}_{\bullet} of Id such that for any object V, the graded piece $\text{gr}^F_i(V)$ is a quotient of i_{P_i} of the maximal cuspidal quotient of $r_{P_i}V$.

Using the filtration and the induction hypothesis, we are left to show: for any parabolic P and any $W \in \text{Cusp}_R(M)$ finitely generated, all cuspidal subquotients of i_PW are finitely generated.

The main ingredient here is:

Theorem Let K be a field with a valuation ν s.t. $\nu(p) = 0$, and $\sigma \in \text{Irr}_K(M)$ such that $\nu \circ \omega_{\sigma}|_{Z_M \cap G^0}$ is not uniformly zero. Then $i_P\sigma$ has no cuspidal subquotient.
How to prove second adjointness?
How to prove second adjointness?

Fix a parabolic subgroup $P = MU$. Quite formal considerations (already in Bernstein) show that:

- i_P has a right adjoint i^*_P defined by $i^*_P(V) := \delta_P.Hom_G(C^\infty,c(R)(G/U),V)^\infty$.

How to prove second adjointness?

Fix a parabolic subgroup $P = MU$. Quite formal considerations (already in Bernstein) show that:

- i_P has a right adjoint i^*_P defined by $i^*_P(V) := \delta_P.\text{Hom}_G(C^\infty_c(G/U), V)\!^\infty$.
- There is a natural transformation $i^*_P \xrightarrow{\varphi} r_P$ defined by evaluating α on any function of the form $1_{U_cH_M,\alpha U}$.

The problem is to show the latter is an isomorphism.
How to prove second adjointness?

Fix a parabolic subgroup $P = MU$. Quite formal considerations (already in Bernstein) show that:

- i_P has a right adjoint i_P^* defined by $i_P^*(V) := \delta_P.\text{Hom}_G(C_{\infty}^c(G/U), V)^\infty$.

- There is a natural transformation $i_P^* \xrightarrow{\varphi} r_P$ defined by evaluating α on any function of the form $1_{U^cH_{M,\alpha}U}$.

The problem is to show the latter is an isomorphism.

Need more notation:

$B(G) = \text{extended building of } G$.

$G_x = \text{fixator of } x \in B(G)$.

$G_x^+ = \text{pro-}p\text{-radical of } G_x$.

For any $H \subset G$, put $H_x := H \cap G_x$ and $H_x^+ := H \cap G_x^+$.
Even more notation:

\[RG = \text{algebra of compactly supported } R\text{-valued distributions.} \]
\[e_H = \text{idempotent distribution defined by averaging along the closed pro}-p\text{-subgroup } H. \]
Even more notation:

\[RG = \text{algebra of compactly supported } R\text{-valued distributions.} \]
\[e_H = \text{idempotent distribution defined by averaging along the closed pro-}p\text{-subgroup } H. \]

Definition Let \(P = MU \) be a parabolic subgroup and \(x \in B(M) \). An idempotent \(\varepsilon \in RM_x \) is said to be \(P \)-good if for any embedding \(B(M) \hookrightarrow B(G) \) we have

\[
e_{U_x}e_{\overline{U}_x}\varepsilon \in RG_xe_{U_x}e_{\overline{U}_x}\varepsilon.
\]
Even more notation:

\(RG = \) algebra of compactly supported \(R \)-valued distributions.
\(e_H = \) idempotent distribution defined by averaging along the closed pro-\(p \)-subgroup \(H \).

Definition Let \(P = MU \) be a parabolic subgroup and \(x \in B(M) \). An idempotent \(\varepsilon \in RM_x \) is said to be \(P \)-good if for any embedding \(B(M) \hookrightarrow B(G) \) we have

\[
e_{U_x} + e_{U_x} \varepsilon \in RG_x e_{U_x} e_{U_x} \varepsilon.
\]

Proposition If \(\varepsilon \) is \(P \)-good and \(\overline{P} \)-good, then \(\varphi_V \) restricts to an isomorphism \(\varepsilon(i_P^* V) \xrightarrow{\sim} \varepsilon(r_{\overline{P}} V) \).
Even more notation:

\(RG = \) algebra of compactly supported \(R \)-valued distributions.

\(e_H = \) idempotent distribution defined by averaging along the closed pro-\(p \)-subgroup \(H \).

Definition Let \(P = MU \) be a parabolic subgroup and \(x \in B(M) \). An idempotent \(\varepsilon \in RM_x \) is said to be \(P \)-good if for any embedding \(B(M) \hookrightarrow B(G) \) we have

\[
e_{U_x^c} e_{U_x} \varepsilon \in RG_x e_{U_x} e_{U_x} \varepsilon.
\]

Proposition If \(\varepsilon \) is \(P \)-good and \(\overline{P} \)-good, then \(\varphi_V \) restricts to an isomorphism \(\varepsilon(i_P^* V) \sim \rightarrow \varepsilon(r_{\overline{P}} V) \).

Say that a set \(\mathcal{E} \) of idempotents of \(RM \) is generating if

\[
\mathcal{C}_R^\infty,^c(G) = \sum_{\varepsilon \in \mathcal{E}} \varepsilon \cdot \mathcal{C}_R^\infty,^c(G).
\]

Corollary If one can find a generating set of \(P \)-good and \(\overline{P} \)-good idempotents in \(RM \), then the pair \((i_P, r_{\overline{P}})\) is adjoint.
How to produce P-good idempotents?
How to produce P-good idempotents? 1: smooth models.

Suppose $G = G(F)$ and let \overline{G} be a smooth “connected” model of G on \mathcal{O}_F. Put $\underline{G} := \overline{G}(\mathcal{O}_F)$ and let G^\dagger be the pro-p-radical of G.
How to produce P-good idempotents? 1: smooth models.

Suppose $G = \overline{G}(F)$ and let \overline{G} be a smooth “connected” model of G on \mathcal{O}_F. Put $G := \overline{G}(\mathcal{O}_F)$ and let G^\dagger be the pro-p-radical of G.

Definition A parabolic pair $(\mathcal{P} = \mathcal{M}\mathcal{U}, \overline{\mathcal{P}} = \mathcal{M}\overline{\mathcal{U}})$ is called \overline{G}-admissible if \mathcal{M} is the centralizer of a split torus of \overline{G} whose schematic closure in \overline{G} is a torus.

Then, the respective schematic closures $\overline{\mathcal{P}}, \overline{\mathcal{M}}, \overline{\mathcal{U}}$ are smooth.
How to produce P-good idempotents? 1: smooth models.

Suppose $G = G(F)$ and let \mathcal{G} be a smooth “connected” model of G on O_F. Put $\mathcal{G} := \mathcal{G}(O_F)$ and let \mathcal{G}^\dagger be the pro-p-radical of \mathcal{G}.

Definition A parabolic pair $(\mathcal{P} = \mathcal{M}\mathcal{U}, \mathcal{P} = \mathcal{M}\mathcal{U})$ is called \mathcal{G}-admissible if \mathcal{M} is the centralizer of a split torus of \mathcal{G} whose schematic closure in \mathcal{G} is a torus.

Then, the respective schematic closures \mathcal{P}, \mathcal{M}, \mathcal{U} are smooth.

Definition A central idempotent $\varepsilon \in RG$ is called essentially of depth zero if for any \mathcal{G}-admissible pair $(\mathcal{P}, \mathcal{P})$, we have

$$\varepsilon \in RG^\dagger e_{U^\dagger} e_{U^\dagger} RG^\dagger.$$

Examples: e_{G^\dagger}, and 1 if there’s no nontrivial admissible pair.
How to produce P-good idempotents? 1: smooth models.

Suppose $G = G(F)$ and let \mathcal{G} be a smooth “connected” model of G on \mathcal{O}_F. Put $\mathcal{G} := \mathcal{G}(\mathcal{O}_F)$ and let \mathcal{G}^\dagger be the pro-p-radical of \mathcal{G}.

Definition A parabolic pair $(\mathcal{P} = \mathcal{M}\mathcal{U}, \overline{\mathcal{P}} = \overline{\mathcal{M}\mathcal{U}})$ is called G-admissible if \mathcal{M} is the centralizer of a split torus of \mathcal{G} whose schematic closure in \mathcal{G} is a torus.

Then, the respective schematic closures $\mathcal{P}, \mathcal{M}, \mathcal{U}$ are smooth.

Definition A central idempotent $\varepsilon \in RG$ is called essentially of depth zero if for any G-admissible pair $(\mathcal{P}, \overline{\mathcal{P}})$, we have

$$\varepsilon \in RG^\dagger e_U^\dagger e_U^\dagger RG^\dagger.$$

Examples: e_{G^\dagger}, and 1 if there’s no nontrivial admissible pair.

Theorem Let $(\mathcal{P}, \overline{\mathcal{P}})$ be a G-admissible pair and ε an idempotent of RM which is essentially of depth zero. Then

$$e_U^\dagger e_U^\varepsilon \in RG e_U e_U R \varepsilon.$$
Direct application of last theorem: fix $(\mathcal{P}, \overline{\mathcal{P}})$ and $x \in B(M)$, and let G_x be the Bruhat-Tits model.

- **Minimal case.** If M is minimal, there’s no p-pair in M_x, so the unit 1 is trivially a \mathcal{P}-good idempotent.
Direct application of last theorem: fix \((\mathcal{P}, \mathcal{P})\) and \(x \in B(M)\), and let \(G_x\) be the Bruhat-Tits model.

- **Minimal case.** If \(M\) is minimal, there's no \(p\)-pair in \(M_x\), so the unit 1 is trivially a \(\mathcal{P}\)-good idempotent. Since \(\{1\}\) is a generating family, get second adjointness for the pair \((P, \overline{P})\) by the foregoing theorem.
Direct application of last theorem: fix (P, \overline{P}) and $x \in B(M)$, and let G_x be the Bruhat-Tits model.

- **Minimal case.** If \mathcal{M} is minimal, there’s no p-pair in \mathcal{M}_x, so the unit 1 is trivially a P-good idempotent. Since $\{1\}$ is a generating family, get second adjointness for the pair (P, \overline{P}) by the foregoing theorem.

- **Depth zero case.** Since $e^+_{M_x}$ is P-good, the last theorem gives second adjointness on restriction to “depth 0” subcategories.
How to produce P-good idempotents? 2: types theory.

Connections with types theory: let (J, θ) consist

- either of a group of the form $J(\Lambda, \beta)$ and a semisimple character in Stevens’ sense (classical groups),

For classical groups, the generating property follows from Stevens’ work.
How to produce P-good idempotents? 2: types theory.

Connections with types theory: let (J, θ) consist

- either of a group of the form $J(\Lambda, \beta)$ and a semisimple character in Stevens’ sense (classical groups),
- or of a group and a tame generic character in Yu’s sense.

they have common features:
How to produce P-good idempotents? 2: types theory.

Connections with types theory: let (J, θ) consist

- either of a group of the form $J(\Lambda, \beta)$ and a semisimple character in Stevens’ sense (classical groups),
- or of a group and a tame generic character in Yu’s sense.

they have common features:

- $J = J(O_F)$ for some unique smooth model \mathcal{J} of G
How to produce P-good idempotents? 2: types theory.

Connections with types theory: let (J, θ) consist

- either of a group of the form $J(\Lambda, \beta)$ and a semisimple character in Stevens’ sense (classical groups),
- or of a group and a tame generic character in Yu’s sense.

they have common features:

- $J = J(O_F)$ for some unique smooth model \mathcal{J} of G
- For \mathcal{J}-admissible Levi \mathcal{M}, $\theta|_{J \cap \mathcal{M}}$ is essentially of depth zero
How to produce P-good idempotents? 2: types theory.

Connections with types theory: let (J, θ) consist
- either of a group of the form $J(\Lambda, \beta)$ and a semisimple character in Stevens’ sense (classical groups),
- or of a group and a tame generic character in Yu’s sense.

they have common features:
- $J = J(\mathcal{O}_F)$ for some unique smooth model \mathcal{J} of G
- For \mathcal{J}-admissible Levi M, $\theta|_{J \cap M}$ is essentially of depth zero
- There is some $x \in B(G)$ such that $G_x \supset J$ and $\text{Int}_{G_x}(\theta) = J$.

It follows that $\theta|_{J \cap M}$ is P-good for any $P = MU$. Moreover any (J, θ) may be “extended” to (J, θ_M). So if such data form a generating set, get second adjointness.

For classical groups, the generating property follows from Stevens’ work.
How to produce P-good idempotents? 2: types theory.

Connections with types theory: let (J, θ) consist

- either of a group of the form $J(\Lambda, \beta)$ and a semisimple character in Stevens' sense (classical groups),
- or of a group and a tame generic character in Yu's sense.

they have common features:

- $J = J(\mathcal{O}_F)$ for some unique smooth model \mathcal{J} of G
- For \mathcal{J}-admissible Levi \mathcal{M}, $\theta|_{J \cap \mathcal{M}}$ is essentially of depth zero
- There is some $x \in B(G)$ such that $G_x \supset J$ and $\text{Int}_{G_x}(\theta) = J$.

It follows that $\theta|_{J \cap \mathcal{M}}$ is P-good for any $P = MU$.
How to produce \(P \)-good idempotents? 2: types theory.

Connections with types theory: let \((J, \theta)\) consist

- either of a group of the form \(J(\Lambda, \beta)\) and a semisimple character in Stevens’ sense (classical groups),
- or of a group and a tame generic character in Yu’s sense.

They have common features:

- \(J = \underline{J}(\mathcal{O}_F)\) for some unique smooth model \(\mathcal{J}\) of \(G\)
- For \(\mathcal{J}\)-admissible Levi \(M\), \(\theta|_{J\cap M}\) is essentially of depth zero
- There is some \(x \in B(G)\) such that \(G_x \supset J\) and \(\text{Int}_{G_x}(\theta) = J\).

It follows that \(\theta|_{J\cap M}\) is \(P\)-good for any \(P = MU\). Moreover any \((J_M, \theta_M)\) may be “extended” to a \((J, \theta)\). So if such datas form a generating set, get second adjointness.
How to produce P-good idempotents? 2: types theory.

Connections with types theory: let (J, θ) consist
- either of a group of the form $J(\Lambda, \beta)$ and a semisimple character in Stevens’ sense (classical groups),
- or of a group and a tame generic character in Yu’s sense.

they have common features:
- $J = J(O_F)$ for some unique smooth model J of G
- For J-admissible Levi M, $\theta|_{J \cap M}$ is essentially of depth zero
- There is some $x \in B(G)$ such that $G_x \supset J$ and $\text{Int}_{G_x}(\theta) = J$.

It follows that $\theta|_{J \cap M}$ is P-good for any $P = MU$. Moreover any (J_M, θ_M) may be “extended” to a (J, θ). So if such datas form a generating set, get second adjointness. For classical groups, the generating property follows from Stevens’ work.