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Abstract. We state a conjecture, local Langlands in families, connecting the centre of the category
of smooth representations on Z[

√
q−1]-modules of a quasi-split p-adic group G (where q is the

cardinality of the residue field of the underlying local field), the ring of global functions on the

stack of Langlands parameters for G over Z[
√
q−1], and the endomorphisms of a Gelfand–Graev

representation for G. For a class of classical p-adic groups (symplectic, unitary, or split odd special
orthogonal groups), we prove this conjecture after inverting an integer depending only on G. Along

the way, we show that the local Langlands correspondence for classical p-adic groups (1) preserves

integrality of `-adic representations; (2) satisfies an “extended” (generic) packet conjecture; (3) is
compatible with parabolic induction up to semisimplification (generalizing a result of Moussaoui),

hence induces a semisimple local Langlands correspondence; and (4) the semisimple correspondence

is compatible with automorphisms of C fixing
√
q.
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1. Introduction

1.1. LLIF for general linear groups. Let F be a p-adic field and ` 6= p prime. In [EH14], the second
author and Emerton conjectured an interpolation of the (generic) local Langlands correspondence
for GLn(F) across families of `-adic representations. The existence of this correspondence was reduced
by the second author in [Hel16, Hel20] to showing that there is a (unique) isomorphism

LLIF : (RGLn,Z`)
GLn → EndZ`[GLn(F)](ind

GLn(F)
Un(F) (ψ)),

compatible with the local Langlands correspondence, where (RGLn,Z`)
GLn is the ring of global func-

tions on the stack of Langlands parameters for GLn over Z`, and ind
GLn(F)
Un(F) (ψ) is a Gelfand–Graev

representation. This statement was finally proven using an inductive argument in a pair of papers:
by the second author, and the second and fourth authors [Hel20, HM18], thus establishing “local
Langlands in families” for GLn. This paper is the second in a series of articles devoted to generalizing
this picture to a general connected reductive p-adic group.
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1.2. Reductive groups and LLC. Let G be the F-points of a connected reductive group G defined

over F. Let Ĝ denote the dual group of G considered as a Z[1/p]-group scheme. The F-rational

structure on G induces a finite action of the Weil group WF of F on Ĝ and we set GL = ĜoWF, the
Langlands dual group of G.

The local Langlands correspondence for G is expected to take the following form: there is a unique
(finite-one) map LLG from the set ΠC(G) of isomorphism classes of irreducible smooth representations

of G to the set ΦSL2,C(G) of Ĝ(C)-conjugacy classes of “SL2-parameters” ρ : WF × SL2(C)→ GL (C)
for G satisfying a list of natural desiderata (see Section 6.7 for a precise statement).

It is known for GLn(F) and classical p-adic groups (see Section 7.3 for a list of references). In this
work, we take as an input the local Langlands correspondence for G together with some of its expected
properties. We will verify these properties are satisfied for “classical p-adic groups” (which, for us,
means symplectic, unitary, and odd special orthogonal groups), either by referencing the literature
or giving proofs, so those who wish to stand on more stable ground can assume for this introduction
that G is classical.

1.3. The work of Bernstein and Haines. There is a natural semisimplification map on the set
of ΦSL2,C(G) (see Section 6.7), which associates to a Langlands parameter ρ : WF×SL2(C)→ GL (C)
a semisimple parameter (or infinitesimal character) ρss : WF → GL (C). Write Φss,C(G) for the set

of Ĝ(C)-conjugacy classes of semisimple parameters for G.
The analogue of “semisimplification” on ΠC(G) is given by the supercuspidal support map. Compat-

ibility of the local Langlands correspondence with parabolic induction implies that the local Langlands
correspondence for G induces a semisimple correspondence

LL : {supercuspidal supports}/G-conjugacy→ Φss,C(G).

In [Ber84], Bernstein described the centre ZC(G) of the category of all smooth C-representations
of G, identifying the C-points of the centre with the set {supercuspidal supports}/G(F)-conjugacy.
This naturally gives the left hand side of LL the structure of an ind-affine variety over C.

In [Hai14], Haines introduced the structure of an ind-affine variety on Φss,C(G), so that (under
the local Langlands correspondence for G and some desiderata for it) LL is induced by a morphism
of C-algebras: OHaines → ZG,C.

1.4. Moduli of Langlands parameters. In our first paper [DHKM20], we introduced a stack of
Langlands parameters over Z[1/p] generalizing a construction of the second author for GLn [Hel20].
The construction depends on some auxilary choices – the choice of a discretization of the tame quotient
of the Weil group – and it is not currently known if the stack over Z[1/p] is independent of these

choices. However, its base change to Z`, and its ring of global functions (R GL )Ĝ are independent of

these choices. In general, the ring (R GL )Ĝ is quite complicated and admits no simple description (in
particular, it is far from being normal). However, its base change to C has a simpler structure, and

we show in [DHKM20, 6.3] that (R GL ,C)Ĝ ' OHaines. Thus, under local Langlands for G (and some
desiderata for it), we obtain a map

(R GL ,C)Ĝ → ZG,C,

compatible with local Langlands.

1.5. An isomorphism of Bushnell and Henniart. When G is quasi-split, Bushnell and Henniart
proved that the action of ZG,C on a Gelfand-Graev representation indG

U(ψ) for G induces a canonical
isomorphism

Zψ-gen
G,C → EndC[G](indG

U(ψ)),

from the ψ-generic factor Zψ-gen
G,C of the Bernstein centre to the endomorphism algebra of the Gelfand–

Graev representation. For general linear groups Zψ-gen
GLn(F),C = ZGLn(F),C. Under expected properties

of the local Langlands correspondence (listed in Section 6, and verified for classical groups in Section
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7 – in particular Conjecture 6.14 is added to Haines’ desiderata), we then obtain that the composi-

tion (R GL ,C)Ĝ → EndC[G](indG
U(ψ)) is an isomorphism of C-algebras.

1.6. Integral models of Gelfand–Graev representations. We write ZG,Z[
√
q−1] for the centre of

the category of all smooth representations of G on Z[
√
q−1]-modules.

If G is F-quasi-split we can associate Whittaker data to G, and their compactly induced repre-
sentations — Gelfand-Graev representations— satisfy many remarkable properties. Gelfand–Graev
representations are naturally defined with coefficients in Z[1/p, µp∞ ]-algebras, and to state our con-
jecture in broadest generality we need to consider integral models of their endomorphism algebras
over Z[

√
q−1]. In Proposition 5.2, we show that the full Gelfand-Graev representation indG

U(ψ) de-
scends to a OK[1/p][G]-module WU,ψ for a small Galois extension K/Q contained in Q(µp3) (and hence
the endomorphism algebra also descends to this ring). In fact, for their endomorphism algebras we
can do better: writing WU,ψ,n for the depth n component of WU,ψ, we show there exists a natural
finite type, flat Z[1/p]-algebra EG,n, and natural isomorphisms

EG,n ⊗Z[1/p] R ' EndR[G](WU′,ψ′,n ⊗OK[1/p] R)

for each OK [1/p]-algebra R and each Whittaker datum (U′, ψ′) of G. Let Zad
G,Z[1/p] be the subring

of ZG,Z[1/p] which is invariant under the natural action of (G/Z)(F). Then there is a natural map:

Zad
G,Z[1/p] → EG,n

that, after base change to Z[1/p, µp∞ ] and the identifications above, coincides with the canonical map
arising from the action of the Bernstein centre. Set EG =

∏
n EG,n.

1.7. The main conjecture.

Conjecture 1.1. There exists a unique morphism

LLIF : (R GL ,Z[
√
q−1])

Ĝ → ZG,Z[
√
q−1]

interpolating the semisimple local Langlands correspondence for G. Moreover, the image of LLIF
is contained in Zad

G,Z[
√
q−1]

and, if G is quasi-split, then composing LLIF with the natural map

to EG,Z[
√
q−1] defines an isomorphism (R GL ,Z[

√
q−1])

Ĝ ∼−→ EG,Z[
√
q−1].

In particular, when G is quasi-split, we expect that LLIF is injective.

1.8. The main theorem. We axiomatize some expected properties of the semisimple local Langlands
correspondence in Definition 6.18 (which we verify for classical groups) and in Theorem 8.2 we prove
Conjecture 1.1 after inverting an integer depending only on G.

Let NG be the product of all primes that divide the pro-order of a compact open subgroup of G
(that is, the product of the primes which are “non-banal” for G). Let N GL denote the product of all

primes which either divide the integer NĜ or are non- GL -banal primes, both introduced in [DHKM20,
Sections 4, 5.4]. Finally let MG denote the lowest common multiple of NG and N GL .

Note that, if G is unramified with no exceptional factor, then MG = NG by [DHKM20, Corollary
5.29 and Remark 6.3].

Theorem 8.2. Suppose C = (CM) is a semisimple correspondence for G over Q as in Definition 6.18.

(1) There exists a unique morphism

C IFG : (R GL ,Z[
√
q−1,1/NG])

Ĝ → ZG,Z[
√
q−1,1/NG]

interpolating C .
(2) The image of C IFG is contained in the subrings ZSt

G,Z[
√
q−1,1/NG]

of Definition 8.1, and Zad
G,Z[
√
q−1,1/NG]

.
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(3) Suppose further G is F-quasi-split. Then, the composition with the natural map Zad
G,Z[
√
q−1,1/MG]

→
EZ[
√
q−1,1/MG](G),

(R GL ,Z[
√
q−1,1/MG])

Ĝ C IFG−−−−→ Zad
G,Z[
√
q−1,1/MG] → EZ[

√
q−1,1/MG](G)

is an isomorphism, and these maps induce isomorphisms

(R GL ,Z[
√
q−1,1/MG])

Ĝ ' ZSt
G,Z[
√
q−1,1/MG] ' EZ[

√
q−1,1/MG](G).

1.9. Bernstein’s decomposition in the banal setting. For a Levi subgroup M of G let M◦

denote the subgroup of M generated by all compact open subgroups. Write BQ(G) for the set of

inertial equivalence classes of supercuspidal supports of Q-representations of G. For [M, ρ]G ∈ BQ(G)

we write P(M,ρ) for the lattice we introduce in (4.5). It is defined over the ring of integers in a number

field, and P(M,ρ) ⊗ Q is a finitely generated projective generator of Bernstein for the direct factor
subcategory of RepQ(G) associated to [M, ρ]G.

The first step in our proof of the conjecture in the banal case is to obtain the following description
of ZG,Z[1/NG] analogous to Bernstein’s description of ZG,Q:

Theorem 4.22. The category RepZ[1/NG](G) decomposes as

RepZ[1/NG](G) =
∏

[M,ρ]G∈BQ(G)

RepZ[1/NG](G)[M,ρ]G ,

where RepZ[1/NG](G)[M,ρ]G is the direct factor subcategory generated by the finitely generated pro-

jective P(M,ρ) ⊗ Z[1/NG]. Moreover, the choice of P(M,ρ) identifies the centre of RepZ[1/NG](G)[M,ρ]G

with

(Z[1/NG][M/M◦]H(M,ρ))W(M,ρ) .

Here, H(M,ρ) and W(M,ρ) denote finite groups introduced in Bernstein’s decomposition (summarised
in Theorem 4.11).

This description has long been expected (see, for example, the discussion in [Dat05, Section 6]).
On our way to establishing it we prove the following pleasing lifting result for cuspidals in banal
characteristic (the proof of which uses second-adjointness):

Proposition 4.15. Let ` be a banal prime for G. Then the reduction modulo ` of any irreducible
integral cuspidal Q`-representation of G is irreducible and cuspidal, and conversely all irreducible
cuspidal F`-representations of G lift.

1.10. An application to finiteness. While it lies outside the main thrust of this paper, as explained
in the introduction of [DHKM24], the description of ZG,Z[1/NG] above is the final ingredient in our

proof of finiteness of Hecke algebras over Z[1/p], and we obtain:

Theorem 1.2. For any Noetherian Z[1/p]-algebra R, and any compact open subgroup H, the alge-
bra R[H\G/H] is a finitely generated module over its centre, which is a finitely generated R-algebra.

1.11. Integrality of Langlands parameters. Our approach to Theorem 8.2 requires us to transfer
integrality over a semisimple correspondence; we do this using criteria for integrality. Recall that an
irreducible Q`-representation of G is integral if and only if its supercuspidal support is integral by
[DHKM24], and a supercuspidal Q`-representation is integral if and only if its central character is
integral by [Vig96, II 4.12]. We provide a complete analogue of this characterization for Langlands
parameters:

Proposition 6.22. Let φ` : WF → GL (Q`) be a continuous L-homomorphism.

(1) Suppose φ` is discrete and Frobenius semisimple. Then φ` is integral if and only if its central
character is integral.

(2) In general, the following are equivalent:
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(a) φ` is integral;
(b) the Frobenius-semisimplification of φ` is integral.
(c) the semisimplification of φ` is integral.

(d) the Q`-point of Z1(WF, Ĝ) � Ĝ corresponding to φ` factors through Spec(Z`).

These characterizations of integrality show that if the local Langlands correspondence for G exists
and satisfies some natural desiderata then it preserves integrality, cf. Remark 6.23.

1.12. Proof of the main theorem. For banal primes `, our description of the centre ZG,Z` , together
with compatibility of the local Langlands correspondence with twisting by unramified characters,
parabolic induction, and with central characters, then allows us to show that there exists a unique

morphism (R GL ,Z`)
Ĝ → ZG,Z` , interpolating the semisimple correspondence for G.

If, moreover, G is quasi-split, then fixing a Whittaker datum over Z`, we show that an analogue of
Bushnell–Henniart’s isomorphism holds over Z` (for ` banal), and together with the description of the

connected components of (R GL ,Z`)
Ĝ in [DHKM20] (here we need to also assume ` does not divide N GL )

we obtain the second statement of the conjecture over Z` for ` not dividing MG = lcm(NG,N GL ).
Galois equivariance of the semisimple local Langlands correspondence allows us to descend these
maps to Z`[

√
q], and considering these maps together, for all ` not dividing MG, in the simpler case

over Q(
√
q) gives us our result over Z[

√
q−1, 1/MG].

1.13. Classical groups. For our (conditionless) results for classical p-adic groups, we need to verify
that the (semisimple) local Langlands correspondence and the desiderata for it we use in our proof
are known in these cases. This is the subject of Section 7.

Let G be a classical p-adic group. Firstly we show that the local Langlands correspondence is
compatible with parabolic induction, generalizing a result of Moussaoui [Mou17] in the split case by
a different method, in the following sense:

Proposition 7.9. Let P a parabolic subgroup of G with Levi decomposition P = MN, ρ be an
irreducible representation of M, and π be an irreducible subquotient of iGP (ρ). Then, letting ιM,G :

ML (C) ↪→ GL (C) denote an embedding dual to M ↪→ G, the semisimple parameters ιM,G◦(LLM(ρ))ss
and (LLG(π))ss are conjugate in Ĝ(C).

We prove this using properties of the Plancherel measure – in particular, its compatibility with
parabolic induction, and its interpretation in terms of gamma factors of Langlands parameters (also
known as “Langlands’ conjecture on the Plancherel measure”) – together with a semisimple converse
theorem (Proposition 7.7). This approach is inspired by recent approaches of Gan–Savin [GS12], and
Gan–Ichino [GI14, GI16] to the local theta correspondence.

For this we have to extend the proof of Gan–Ichino[GI14, B.5] of compatibility of the Plancherel
measure with subrepresentations of parabolic inductions to compatibility with subquotients of para-
bolic inductions. We follow the pattern of their proof, but have added some more details (cf., Remark
C.9) in the form of Appendices B and C to establish some basic properties of the Plancherel measure
following the algebraic treatments of the Plancherel measure of [Wal03] and [Dat05].

Similarly, using compatibilities of the Plancherel measure and gamma factors with field automor-
phisms, we show that ( )ss ◦ LLG is compatible with field automorphisms fixing

√
q:

Proposition 7.11. Let π be an irreducible representation of G, and σ : C→ C be an automorphism

of fields fixing
√
q. Then LLG(πσ)ss is conjugate to (LLG(π)σ)ss in Ĝ(C).

We also need to show LLG preserves integrality of supercuspidal Q`-representations (after rewriting
the correspondence for Q`-representations via choosing an isomorphism Q` ' C). In fact, we prove
this for all irreducible representations:

Proposition 7.14. An irreducible representation of G is integral if and only if its associated `-adic
Langlands parameter is integral.
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Proposition 7.14 follows from the characterizations of integrality mentioned in Section 1.11, together
with the compatibility of local Langlands for general linear groups with central characters and the
compatibility of local Langlands for classical groups with parabolic induction.

The fibres of LLG are called L-packets. We collect L-packets with the same semisimple parameter
together into extended L-packets, and conjecture for a quasi-split group G, and a Whittaker da-
tum (U, ψ) in G, that each extended L-packet contains a unique ψ-generic representation (Conjecture
6.14). We prove this for quasi-split classical groups:

Proposition 7.15. Let G be a quasi-split classical p-adic group and (U, ψ) be a Whittaker datum
for G. In each extended L-packet of G there exists a unique ψ-generic representation.

The proof of this proposition follows from results in the literature on generic representations in L-
packets, and a geometric interpretation of a conjecture of Gross, Prasad, and Rallis – see Conjecture
6.11, and Propositions 6.10 and 6.15.

1.14. Connections. Some of the ideas for this article took shape and were circulating for several
years before it was completed (for example, Conjecture 1.1 was announced in 2018 in talks including
[Kur19]). There have been many developments in the literature since then, we now explain some
connections to our work.

In a tour de force, for any connected reductive p-adic group G and ` a very good prime for Ĝ,
Fargues–Scholze [FS20] construct a map

(R GL ,Z`[
√
q])

Ĝ → ZG,Z`[
√
q]

by developing the geometric Langlands programme on the Fargues–Fontaines curve. Not much is
known about this map beyond the basic properties of [FS20, Theorem I 9.6], which include that
for GLn(F) their construction is compatible with the usual (semisimple) local Langlands correspon-
dence for GLn(F). Recently, Hamann [Ham21] has shown their construction is compatible with the
(semisimple) local Langlands correspondence of Gan–Takeda for GSp4(F), Hansen–Kaletha–Weinstein
[HKW22] have shown compatibility for inner forms of general linear groups, and Bertoloni-Meli–
Hamann–Nguyen [BMHN22] have shown compatibility for odd unramified unitary groups with the
(semisimple) local Langlands correspondence of Mok. For quasi-split unitary groups of odd dimension
Bertoloni-Meli–Hamann–Nguyen [BMHN22, Proposition 2.11] also establish compatibility of Mok’s
correspondence with parabolic induction, a special case of Proposition 7.9 of this paper.

More recently, at a late stage in the preparation of this paper, Cunningham–Dijols–Fiori–Zhang
[CDFZ24, Prop. 4.1] have independently established the equivalence between properties (1) and (2)
Proposition 6.10. (Note that the definition of “open parameter” in ibid. is equivalent to our defini-
tion of a “parameter with maximal monodromy”). This equivalence gives a geometric reformulation
of Gross–Prasad–Rallis’ conjecture on generic representations in L-packets (cf., Conjecture 6.11 or
[CDFZ24, Conjecture 4.6]). We provide a further geometric characterization here: Proposition 6.10
(3) in terms of the moduli space of Langlands parameters of [DHKM20] which does not appear
in [CDFZ24].

Initial versions of this article were written under weak hypotheses on G, which were known to be
satisfied for all classical p-adic groups (with p 6= 2) and all “tame” groups thanks to [Dat09]. We
needed these hypotheses so that we could apply “second-adjointness” of parabolic functors integrally.
Recently, in [DHKM24], using Fargues–Scholze’s morphism, we proved second-adjointness holds in
general, so we have been able to remove this hypothesis – however, this means some of our results
(notably, Theorems 4.22 and 8.2) depend on Fargues and Scholze’s construction whenever we fall out
of the range of [Dat09] (see Remark 4.2 for more details).

There has also been a race towards a categorification of the local Langlands correspondence, begin-
ning with conjectures inspired by categorical statements and conjectures in the geometric Langlands
programme. See [BZCHN24] and [Hel23] for early ideas towards this, and [FS20] and [Zhu20] for
the most ambitious conjectures which relate (derived) categories of smooth representations to (de-
rived) categories of ind-coherent sheaves on stacks of Langlands parameters. Integral versions of these
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conjectures also predict, for quasi-split groups, a natural map from the ring of global functions on
the stack of Langlands parameters to the endomorphisms of a Gelfand–Graev representation (as in
Conjecture 1.1), as they fix their equivalence by sending (a choice of) Gelfand-Graev representation of
a quasi-split connected reductive group to the structure sheaf on the stack of Langlands parameters.

1.15. Acknowledgements. The first author was partially supported by ANR grant COLOSS ANR-
19-CE40-0015. The second author was partially supported by EPSRC New Horizons grant EP/V018744/1.
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and DMS-2302591. We thank Jessica Fintzen, David Hansen, Nadir Matringe, Ahmed Moussaoui,
Gordan Savin, Shaun Stevens, and Marie-France Vignéras for helpful conversations on the subject of
the paper.

2. Notation

Let F be a non-archimedean local field with finite residue field of cardinality q a power of p. For
any non-archimedean local field E (for example, for finite extensions of F), we write OE for its ring of
integers, PE for the unique maximal ideal, and kE for its residue field OE/PE.

Let G be a connected reductive algebraic group defined over F and G = G(F).
Unless otherwise stated “module” means “left module”, and R denotes a commutative Z[1/p]-

algebra. We suppose that all R[H]-modules for a locally profinite group H, equivalently that all R-
representations of H, henceforth considered are smooth, and we denote by RepR(H) the abelian
category of all (smooth) R[H]-modules.

Let ` 6= p be prime. Let Q` denote an algebraic closure of Q`, Z` the ring of integers of Q`, and F`
its residue field. We fix an algebraic closure Q of Q, and denote by Z the subring of algebraic integers.
We fix once and for all embeddings Q ↪→ Q` and Q ↪→ C.

3. The integral centre

3.1. The centre. The centre ZG,R of the category of R[G]-modules RepR(G) is the ring of endomor-
phisms of the identity functor 1RepR(G) : RepR(G)→ RepR(G). We can identify an element z ∈ ZG,R

with a collection (zM), over all R[G]-modules M of endomorphisms zM ∈ EndR[G](M), satisfying for
all morphisms of R[G]-modules f : M→ M′,

(†) zM′ ◦ f = f ◦ zM;

i.e. commuting with all morphisms in the category. The ring structure on the collections (zM) is
given by componentwise addition and composition of endomorphisms, and applying (†) to all en-
domorphisms f ∈ EndR[G](M), we see that zM belongs to the centre of EndR[G](M) and ZG,R is a
commutative R-algebra which acts naturally on all R[G]-modules.

Let φ : R → R′ be a homomorphism of commutative rings (with identity). Then we have a
restriction of scalars functor

φ∗ : RepR′(G)→ RepR(G),

which takes a smooth R′[G]-module M to the smooth R[G]-module M, whose underlying set and
action of G is the same and on which r · m := φ(r) · m, and which is the identity on morphisms.
Note that, with this prescribed scalar action, it is obvious that g ∈ G acts on M by R-linear scalar
automorphisms of M.

Lemma 3.1. The morphism φ induces a homomorphism

φ∗ : ZG,R → ZG,R′

where, for z ∈ ZG,R and a smooth R′[G]-module M, we set φ∗(z)M := zφ∗(M).
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Proof. As φ∗(z)M is an element of the centre of EndR[G](M), it commutes with multiplication by
elements of R′ hence, and defines an element of EndR′[G](M). Moreover, the (φ∗(z)M) commute with
all morphisms of smooth R[G]-modules, so in particular commute with all morphisms of smooth R′[G]-
modules. �

Lemma 3.2. Suppose φ∗ : R→ R′ is a monomorphism, then φ∗ : ZG,R → ZG,R′ is monomorphism.

Proof. To show injectivity we need to show that if z ∈ ZG,R annihilates all R′[G]-modules then z = 0.
For this, it suffices to prove that zV = 0 for a generating family of objects of RepR(G). So we can
consider those V of the form R[G/K] with K compact open, and then zV is certainly zero since it is
zero on R′[G/K]. �

Corollary 3.3. Let R be an integral domain with field of fractions K of characteristic 0. The integral
centre ZG,R is a reduced torsion free R-algebra. If R is Dedekind, then ZG,R is flat over R.

Proof. The centre ZG,R is torsion free and reduced as it embeds in ZK(G) which is torsion free and
reduced by [Ber84]. If R is a Dedekind domain, then as ZG,R is torsion free, it is flat. �

3.2. The decomposition by level. Now using our basic assumption that p is invertible in our
coefficient ring, Moy–Prasad theory allows one to give a coarse decomposition of RepR(G). Following
[Dat09, Appendice A], there is a family of finitely generated projective Z[1/p][G]-modules Qn (n ∈ N),
defined by the finite sums

Q0 :=
⊕

x∈Vert(G)/G

indG
Gx,0+(1),

Qm :=
⊕

x∈Opt(G)/G

indG
Gx,rm

 ⊕
χ∈URm,x

χ

 , (m > 0),

where Vert(G)/G (respectively Opt(G)/G) denotes a set of representatives for the G-conjugacy
classes of vertices (respectively optimal points) of the Bruhat–Tits building of G; and URm,x de-
notes a set of Z[1/p, ζp]-valued characters of Gx,rm/Gx,rm+: the unrefined minimal types of level m
(where (rm)m∈N denotes the increasing sequence of rational numbers indexing the jumps in filtrations
of the parahorics associated to optimal points in the building of G as in [Dat09, Appendice A]).

Suppose R is a Z[1/p]-algebra, and set Qn,R = Qn ⊗ R for all n ∈ N. By [Dat09, Lemma A.3], we
have a decomposition by level

RepR(G) =
∏
n∈N

RepR(G)n,

ZG,R =
∏
n∈N

ZG,R,n,

where Qn,R is a progenerator for RepR(G)n and we (hence) can identify ZG,R,n with the centre
of EndR[G](Qn,R). In particular, an element (zM) in ZG,R is completely determined by the endomor-
phisms (zQn,R), for n ∈ N.

Proposition 3.4. Suppose R is a Noetherian Z[1/p]-algebra, and R′ is a flat commutative R-algebra.
Then the natural map

ZG,R,n ⊗ R′ → ZG,R′,n,

is an isomorphism.

Proof. Pick an open pro-p-subgroup H of G such that Qn is generated by its H-invariants, and denote
by εn,H the central idempotent in Z[1/p][H\G/H] given by the projection on the level n factor of
Z[1/p][G/H]. We still write εn,H for its image in R[H\G/H] or R′[H\G/H]. Then εn,HR[G/H] is a
finitely generated projective generator of RepR(G)n, hence ZG,R,n = εn,HZ(R[H\G/H]). Similarly
we have ZG,R′,n = εn,HZ(R′[H\G/H]), and we see that it suffices to prove that the natural map
Z(R[H\G/H])⊗R R′ → Z(R′[H\G/H]) is an isomorphism, which follows from Lemma A.2 (1). �
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Corollary 3.5. If R is flat over Z[1/p], then ZG,R,n is flat over R. If R is also Noetherian, then ZG,R

is flat over R.

Proof. By Proposition 3.4, ZG,R,n ' ZG,Z[1/p],n⊗R and ZG,Z[1/p],n is flat over Z[1/p] by Corollary 3.3,
hence ZG,R,n is flat. When R is Noetherian, a product of flat R-modules is flat, hence ZG,R is flat. �

Corollary 3.6. In the context of Proposition 3.4, assume further that R is flat over Z[1/p], and is
the fixed subring (R′)Γ of R′ under a finite group of ring automorphisms Γ of R′. Then the group Γ

acts naturally on ZG,R′ and the natural map induces an isomorphism ZG,R
∼−→ (ZG,R′)

Γ.

Proof. The action is induced by functoriality of R′ 7→ ZG,R′ (for R′ in the category of R-algebras)
and preserves the decomposition ZG,R′ =

∏
n ZG,R′,n since it is induced from R. By construction, the

natural map ZG,R,n⊗R R′ → ZG,R′,n is Γ-equivariant if we let Γ act on the source via its action on R′.
By Proposition 3.4, it thus suffices to prove that the canonical map ZG,R,n → (ZG,R,n ⊗R R′)Γ is an
isomorphism. Writing R = (R′)Γ as the kernel of the map R′ → (R′)⊕Γ, a 7→ (a, · · · , a)− (γ(a))γ∈Γ,
this follows from flatness of ZG,R,n over R, as in the previous corollary. �

Note that the last corollary applies in particular to the case where R is a field and R′ is a Galois
extension with group Γ, or when R is a Dedekind ring flat over Z and R′ is its normalization in a
Galois extension of its field of fractions with group Γ.

4. The Bernstein decomposition in banal characteristics

The aim of this section is to prove an integral version of Bernstein’s decomposition theorem (which
originally holds over C or Q). This will be done after inverting the so-called “non-banal” primes, whose
definition is recalled in Subsection 4.4. Note that no banal hypothesis is required in the definitions
and results of subsections 4.1 and 4.2.

4.1. Parabolic induction and cuspidal support. Let P be a parabolic subgroup of G and let P =
MU be a Levi decomposition of P. We write WM for the Weyl group of M and ZM for its centre. We
set Z = ZG and W = WG.

Write IG
M,P for the (non-normalized) parabolic induction functor IG

M,P : RepR(M) → RepR(G),

and RG
M,P for its left adjoint the (non-normalized) parabolic restriction functor RG

M,P : RepR(G) →
RepR(M). These functors are exact, by [Vig96, II 2.1]. A much subtler property is the so-called
“second-adjointness” of parabolic functors, famously established by Bernstein for complex represen-
tations and which we recently extended to all Z[1/p]-algebras:

Theorem 4.1 ([DHKM24, Corollary 1.3]). For all pairs of opposite parabolic subgroups (P,P◦)
in G with common Levi component M = P ∩ P◦, the twisted opposite Jacquet functor δPR

G
M,P◦ :

RepR(G)→ RepR(M) is right adjoint to the parabolic induction functor IG
M,P : RepR(M)→ RepR(G),

where δP denotes the modulus character of P.

Remark 4.2. The proof of [DHKM24, Corollary 1.3] uses the main result of Fargues–Scholze [FS20],
however second-adjointness with coefficients in Z[1/p]-algebras was proved in [Dat09, Théorème 1.5]
by purely representation theoretic methods, under the hypothesis that some loose form of type theory
exists for G. In particular, these methods apply to classical groups (with p 6= 2, by [Ste08]), or any
group for which Yu’s construction of “generic types” is exhaustive for G (e.g., when p does not divide
the order of the Weyl group, by Fintzen [Fin21]).

We fix a choice of square root
√
q of q. When R is a Z[

√
q−1]-algebra, we consider the normalized

variants of the parabolic functors iGM,P(−) := IG
M,P(δ

1/2
P ⊗ −) and rG

M,P(−) := δ
−1/2
P ⊗ RG

M,P(−). As

the modulus character δP of P takes values in qZ, these are well-defined as we have fixed
√
q.

Let G◦ denote the subgroup of G generated by all compact open subgroups, it is open and normal
in G, cf. [Vig96, I 1.3]. Moreover, as in ibid., G/G◦ is a free abelian group of finite rank equal to
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the rank of a maximal F-split torus in the centre of G; and G/ZG◦ is finite. We define the set of
unramified R-valued characters of G by

ΨG(R) := {χ : G→ R× : χ|G◦ = 1}.
We can identify ΨG(R) with the group of R-points of the algebraic torus ΨG := Spec(Z[G/G◦]).

We recall some preliminary definitions and results from Vignéras’ book [Vig96].

Definition 4.3. (1) Let H be a locally profinite group, and suppose R is Noetherian. An R[H]-
module π is called admissible if πK is finitely generated for all compact open subgroups K
of H.

(2) An R[G]-module is called cuspidal if it is admissible and is annihilated by all proper parabolic
restrictions (that is, by all parabolic restrictions defined by a proper parabolic subgroup of G).

When an R[H]-module π has a central character, we denote this character by ωπ.

Theorem 4.4 ([Vig96, II 2.8]). Suppose R is an algebraically closed field and π is a simple smooth R[G]-
module. Then π is admissible, EndR[G](π) = R, and π has a central character.

Suppose R is an algebraically closed field and π is a simple R[G]-module. The cuspidal support
(resp. supercuspidal support) of π consists of all pairs (M, ρ), where M is a Levi subgroup of G and ρ is
a simple cuspidal (resp. supercuspidal) R[M]-module, such that there is a parabolic subgroup P = MU
with π a submodule (resp. subquotient) of iGM,P(ρ).

Theorem 4.5 ([Vig96, II 2.20]). Suppose R is an algebraically closed field. Then the cuspidal
support of a simple R[G]-module is unique up to conjugacy, i.e. any two cuspidal supports of a given
simple R[G]-module are conjugate in G.

It is interesting that the supercuspidal support of a simple R[G]-module is not necessarily unique
up to conjugacy, cf. [Dat18] for a counterexample when G = Sp8(F) and R = F` for ` dividing q2 + 1.
However, when R has characteristic zero, any cuspidal irreductible representation is supercuspidal, so
the supercuspidal support of a simple R[G]-module is unique up to conjugacy.

4.2. Integral representations.

Definition 4.6. Let H be a locally profinite group, and O be an integral domain with field of frac-
tions K. An admissible K[H]-module π is called O-integral if there exists an H-stable O-submodule L
of π satisfying:

(1) the natural map L⊗O K→ π is an isomorphism;
(2) L is admissible as an O[H]-module.

Such an L is called an O-lattice in π.

If O is a principal ideal domain, then by [Vig96, Appendice C] a lattice in an admissible K[G]-
module of countable dimension is O-free.

Remark 4.7. If L is a lattice (a Z`-lattice) in an integral simple Q`[G]-module, then it is realisable
over a principal ideal domain: the ring of integers O of a finite extension of the maximal unramified
extension Qur

` of Q` by [Vig96, II 4.9, 4.10], and hence the lattice L is O-free, so the definition of
integrality is consistent with [Vig96, II 4.11].

Proposition 4.8. Let π be an irreducible cuspidal Q[G]-module, and suppose that ωπ has finite order.
Then there exists a number field K, such that π is realisable over K and OK-integral. Moreover, any
stable OK-lattice in π is projective as an OK-module.

See [Vig96, I 9.4] for an analogue with coefficients in a principal complete local ring.

Proof. As ωπ is algebraic over Q, π is realisable over a number field K by [Vig96, II 4.9]. As ωπ has finite
order, it is is trivial on some cocompact subgroup S of G. Let ṽ ∈ HomK(π,K)∞ be a (smooth) vector
in the K-contragredient of π. As π is cuspidal it is Z-compact, and the map ϕ : v 7→ (g 7→ ṽ(π(g)v))
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defines an embedding ϕ : π ↪→ C∞c (S\G,K) from π to C∞c (S\G,K) the space of compactly supported
smooth functions S\G→ K.

We consider L := ϕ(π) ∩ C∞c (S\G,OK) the image of π in the OK-valued functions. We can make
any element of ϕ(π) integrally valued by scaling it, hence L is non-zero and hence L⊗K = ϕ(π) as π
is irreducible. For any compact open subgroup U of G, πU is a finite dimensional K-vector space, and
hence the image of πU ↪→ C∞c (S\G/U,K) is contained in S\S/U for some compact mod S subset S
of G. Hence LU = ϕ(πU) ∩ C∞c (S\G,OK) is an OK-submodule of C∞c (S\S/U,OK) which is finitely
generated. Hence L is an OK-lattice.

Now, let L be any stable OK-lattice in π, and U as above. As LU is a finitely generated torsion-
free OK-submodule of the finite dimensional K-vector space πU, it is projective. Hence, L = lim→ LU

is a colimit of projective OK-modules, and we can take the colimit over a system of compact open
pro-p subgroups of G, thus HomOK

(L,−) = lim←HomOK
(LU,−) is a limit over split surjections and L

is projective.
�

Suppose π is a finite length integral Q`[G]-module and L is a Z`-lattice in π. Then by the Brauer–
Nesbitt principle of Vignéras, L⊗Z` F` has finite length as an F`[G]-module and its semisimplification

is independent of the choice of L. We write r`(π) for its semisimplification and call it the reduction
modulo ` of π. Given an admissible Z`[G]-module L, we say that L lifts the F`[G]-module L⊗Z` F`.

It is quite easy to see that a supercuspidal simple Q`[G]-module π is integral if and only if its central

character ωπ takes values in Z`
×

, see [Vig96, II 4.12]. A consequence of second-adjointness (Theorem
4.1), is that the Jacquet functor preserves admissibility over R. This, and the easier admissibility of
parabolic induction, shows that a simple Q`[G]-module π is integral if and only if its supercuspidal
support is integral [DHKM24, Corollary 1.6].

Proposition 4.9. Let π be a simple supercuspidal F`[G]-module Then there exists a simple integral
cuspidal Q`[G]-module π such that r`(π) contains π as a subquotient.

Proof. Using the level decomposition, we can find a finitely generated projective Z`[G]-module Π
which surjects onto π for some compact open subgroup H of G. By [DHKM24, Lemma 3.4], we
can embed Π into a product

∏
(P,ρ) I

G
M,P(ρ) of representations parabolically induced from finitely

generated `-torsion free cuspidal Z`-representations. Thus, π is a subquotient of (at least) one of
the IG

M,P(ρ). Thus, π is a subquotient of IG
M,P(ρ ⊗ F`), and hence of some parabolic induction from

a simple F`-subquotient of ρ ⊗ F` by the main result of [Dat18] (note that second adjointness is a
hypothesis of this theorem so we are implicitly using deep techniques when we are out of the range of
type theoretic constructions, cf. Remark 4.2). Hence, by supercuspidality of π, we have M = P = G.
Thus, π is a subquotient of the reduction of ρ, and hence is a subquotient of the reduction modulo `
of an irreducible integral Q`-representation. �

4.3. The Bernstein decomposition and centre. We first introduce some notation:

Definition 4.10. (1) Let M,M′ be Levi subgroups of G, and ρ, ρ′ simple cuspidal R-representations
of M,M′ respectively. We say that (M, ρ) and (M′, ρ′) are inertially equivalent (over G) if there
exists g ∈ G and χ ∈ ΨM′(R) such that

M′ = Mg, ρ′ = χ⊗ ρg.
We write [M, ρ]G for the inertial equivalence class (over G) of (M, ρ).

(2) Let BR(G) denote the set of inertial equivalence classes of pairs (M, ρ) consisting of a Levi
subgroup M of G and a simple supercuspidal R[M]-module ρ.

(3) We denote by χuniv,M,R : M→ R[M/M◦]× the universal unramified R-valued character of the
Levi subgroup M. In settings where the ring R is clear, we write this more simply as χuniv,M.

Following [Ber84], we recover the Bernstein decomposition and an explicit description of the Bern-
stein centre:
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Theorem 4.11. Suppose K is an algebraically closed field of characteristic zero.

(1) The category RepK(G) decomposes as an infinite product

RepK(G) =
∏

[M,ρ]G∈BK(G)

RepK(G)[M,ρ]G

of indecomposable full abelian subcategories RepK(G)[M,ρ]G where a K[G]-module is an object
of RepK(G)[M,ρ]G if and only if all of its simple subquotients have supercuspidal support in
the inertial class [M, ρ]G.

(2) Choose (M, ρ) ∈ [M, ρ]G, then iGM,P(ρ ⊗ χuniv,M) is a progenerator of RepK(G)[M,ρ]G , and its

isomorphism class in RepK(G)[M,ρ]G is independent of the choice of representative for the
inertial class.

(3) For [M, ρ]G ∈ BK(G) with representative (M, ρ), the subgroup H(M,ρ) = stabΨM(K)(ρ) is finite

and depends only on the inertial class [M, ρ]M. Moreover, the subgroup

W(M,ρ) = {g ∈ G : Mg = M, and (M, ρg) ∈ [M, ρ]M}/M

depends only on the inertial class [M, ρ]M.
(4) Let e[M,ρ] denote the idempotent of ZK(G) corresponding to the factor RepK(G)[M,ρ]G and

set ZG,K,[M,ρ]G
= e[M,ρ]GZG,K. The space of representations of M inertially equivalent to ρ

is a torsor for the torus ΨM(K)/H(M,ρ) = Spm(K[M/M◦]H(M,ρ)) with an action of the finite
group W(M,ρ), and the centre ZG,K,[M,ρ]G

is the ring of W(M,ρ)-invariant regular functions on

this torus. In particular, a choice of (M, ρ) ∈ [M, ρ]G yields an isomorphism

ZG,K,[M,ρ]G
' (K[M/M◦]H(M,ρ))W(M,ρ) .

4.4. Supercuspidal representations in banal characteristics.

Definition 4.12. (1) A prime ` is called banal for G if it does not divide the pro-order of any
compact open subgroup of G.

(2) We write NG for the product of all primes which are non-banal for G.

Remark 4.13. If G is unramified then it has an integral model G as a reductive group over OF

and NG is equal to the product of the primes dividing |G(kF)| and p by [DHKM20, Lemma 5.22].

In banal characteristics, the `-modular representation theory of M is expected to resemble the
complex representation theory of M. The goal of this section is to establish a description of ZZ[1/NG](G)

akin to Bernstein’s description of ZC(G). For this we need basic results on cuspidal representations
in banal characteristics. Using sheaves on the building, Vignéras shows:

Theorem 4.14 ([Vig97, Theorem p373]). Suppose ` is banal for M. A simple cuspidal F`[M]-module
is ZM-projective.

It follows from this that for ` banal:

(1) Any simple cuspidal F`[M]-module is supercuspidal. In particular, the supercuspidal support
of a simple F`[M]-module is unique up to conjugacy.

(2) There are no non-trivial extensions between cuspidal representations with the same central
characters.

We will need some reduction and lifting results we first prove in the local setup:

Proposition 4.15. (1) Let π be a simple integral cuspidal Q`[G]-module with ` banal. Then r`(π)
is irreducible and cuspidal.

(2) Let π be a simple cuspidal F`[G]-module with ` banal. Then there exists a simple integral
cuspidal Q`[G]-module π with r`(π) = π.
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Proof. (1) We may reduce from Q` to a discretely valued field E of definition of π, with uni-
formizer $E. Pick an invariant lattice L0 in π, and an irreducible quotient L0/$EL0 → π.
Put

L1 := L0 +$−1
E ker(L0 → π)

This is a new invariant lattice that contains L0. Moreover, the map L0/$EL0 → L1/$EL1

factors as

L0/$EL0 → π ↪→ L1/$EL1.

Now, we know that L1/$EL1 is semisimple because it is cuspidal with central character (by
(2) above as ` is banal), so there is a retraction L1 → π whose composition with the inclusion
L0 ↪→ L1 is the map L0 → π we started with.

Now apply this construction inductively to get an increasing sequence of lattices Ln, n ∈ N
equipped with compatible surjections onto π. The colimit L∞ of this sequence is an OE [G]-
submodule of π. Its divisible part is either 0 or π, since π is irreducible. It can’t be π since
it surjects to π. So it is 0, which means that the sequence becomes constant after r >> 0.
But then, Lr+1 = Lr means that Lr/$ELr = π which in turn means that π has irreducible
reduction.

(2) By Proposition 4.9, π appears in the reduction modulo ` of an integral supercuspidal Q`[G]-
module, and by the first part, such a reduction is irreducible in the banal case.

�

With global coefficients, we have:

Proposition 4.16. Let K be a number field, and L be a lattice in an OK-integral absolutely irreducible
cuspidal K[G]-module π.

(1) For all maximal ideals m of OK not dividing NG, the (OK/m)[G]-module L/mL is absolutely
irreducible and cuspidal.

(2) The OK[1/NG]-lattice L[1/NG] is unique up to multiplication by some fractional ideal of
OK[1/NG].

(3) Let π be a simple cuspidal F`[G]-module with ` banal. Then there exists a number field K, and
an absolutely irreducible integral cuspidal K[G]-module π with OK-lattice L, and a maximal
ideal m of OK above `, such that π = (L/mL)⊗ F`.

Proof. (1) As localization is an exact functor, L/mL ' Lm/mLm, it follows from Proposition 4.15.
(2) Let L′ be another OK-lattice in π, and choose a compact open subgroup U such that L

and L′ are generated by their U-invariants. Then LU, (L′)U, and (L + L′)U are OK-lattices
in a finite dimensional K-vector space, and hence (L + L′)U/LU and (L + L′)U/(L′)U are
finitely generated torsion OK-modules, and are thus supported on a finite set of maximal
ideals. Therefore, for all but finitely many maximal ideals, Lm = L′m. Moreover, from the
first part, for all maximal ideals not dividing NG, the local lattices Lm are unique up to
homothety. Therefore there exists a collection (αm) with all but finitely many units, such
that αmLm = L′m. Therefore, αL[1/NG] = L′[1/NG] for some fractional ideal α of OK[1/NG].

(3) By Proposition 4.15, there exists a simple cuspidal Q`[G]-module πQ` lifting π. By twisting
by an unramified character of G if necessary, we can assume that the central character of πQ`
has finite order, and that π is defined over Q. Hence, by Proposition 4.8, π is defined over
a number field K and OK-integral with OK-lattice L. Moreover, as localization is an exact
functor, (L/mL)⊗ F` = π for any maximal ideal m above `.

�

Finally, we need to show that the lattices we consider are projective on restriction to G◦ in the
banal setting:

Proposition 4.17. Let K be a number field, and L be a lattice in an OK-integral absolutely irreducible
cuspidal K[G]-module π. The restriction (L⊗ OK[1/NG])|G◦ is projective in RepOK[1/NG](G

◦).
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Proof. By [Mey15, 3.11], L|G◦ is “c-projective”, meaning that for any open compact subgroup K of G,
taking HomOK[1/p][G◦](L,−) is exact on “K-split short exact sequences”, where a sequence 0→ ρ1 →
ρ→ ρ2 → 0 of OK[1/p][G◦]-modules, is called K-split if there is a K-equivariant section ρ2 → ρ. By
the level decomposition, for example, we can find a projective OK[1/p][G◦]-module P covering L with
projection π : P → L. As L is projective as an OK[1/p]-module by Proposition 4.8, we can split π
as a OK[1/p]-module morphism, and for any compact open subgroup K of G, we can average this
splitting to split p as an OK[1/NG][K]-module morphism. By c-projectivity HomOK[1/NG][G◦](L,P )→
HomOK[1/NG][G◦](L,L) is surjective, hence we can split π over OK[1/NG][G◦] and L is projective as
a OK[1/NG][G◦]-module. �

4.5. The integral centre over Z[1/NG]. Let K/Q be a number field, and π be an absolutely irre-
ducible cuspidal K[G]-module with finite order central character ωπ.

As G◦ZG is a normal subgroup of G with finite index and π has a central character we can write

(π ⊗K)|G◦ ' (π1 ⊕ · · · ⊕ πr)⊕m,
where the πi are pairwise non-isomorphic irreducible C[G◦]-modules. Moreover, the isomorphism class

of indG
G◦(πi) is independent of i. Enlarging K if necessary, so that the above decomposition is valid

over K, we can write
π|G◦ ' (π1 ⊕ · · · ⊕ πr)⊕m,

as a decomposition of π into pairwise non-isomorphic (absolutely) irreducible K[G◦]-modules.
Choose an irreducible K[G◦]-subspace W of π such that

H = {g ∈ G : π(g)W =W}
is maximal, and write πH for the natural representation of H on W. Set π◦ = ResHG◦(πH). By [BH03,

Lemma 8.3], indG
H(πH) ' π.

Let Hπ denote the ramification group of π: that is, the (finite) group of unramified characters χ
of G which satisfy π ' π ⊗ χ, and introduce the following finite index normal subgroups of G

S = {g ∈ G : (π◦)g ' π◦}; T =
⋂
χ∈Hπ

Ker(χ),

as in [BH03]. By [BH03, Lemma 8.3] we have

S ⊇ H ⊇ T ⊇ ZGG◦ with [H : T ] = [S : H] = m.

By the same argument as in Proposition 4.8 (which only used irreducibility, Z-compactness, and
finite order central character, so applies equally well to the K-representation πH of H), πH is OK-
integral and we choose an OK-lattice LH in πH.

Write L◦ = ResHG◦(LH), and LT = ResHT (LH) so that L◦ (respectively LT ) is an OK-lattice in π◦

(respectively πT = ResHT (πH)).

Lemma 4.18. Let R = OK[1/NG].

(1) The R[G◦]-module L◦ ⊗ R is finitely generated projective.

(2) The R[G]-module indG
G◦(L

◦ ⊗ R) is finitely generated projective.

(3) The natural inclusion EndR[S](indSG◦(L
◦ ⊗R)) ⊆ EndR[G](indG

G◦(L
◦ ⊗R)) is an isomorphism.

(4) The centre of EndR[G](indG
G◦(L

◦ ⊗ R)) is given by

Z(EndR[G](indG
G◦(L

◦ ⊗ R))) ' EndR[T ](indTG◦(L
◦ ⊗ R)) ' R[T /G◦] ' R[G/G◦]Hπ .

Proof. The representation indG
H(LH) is a G-stable lattice in indG

H(πH) ' π, hence

ResG
G◦(indG

H(LH))⊗ R '
⊕
G/H

(ResHG◦(LH)g ⊗ R)

is projective by Proposition 4.17. Hence, as it is a summand, L◦ ⊗ R is projective. As G◦ is open
in G, indG

G◦ is left adjoint to an exact functor (restriction), hence indG
G◦(L

◦⊗R) is a finitely generated
projective R[G]-module.



LOCAL LANGLANDS IN FAMILIES: THE BANAL CASE 15

By Frobenius reciprocity and Mackey Theory,

(4.1) EndR[G](indG
G◦(L

◦)⊗ R) '
⊕

G/G◦

HomR[G◦](L
◦, (L◦)g).

Moreover, the natural map

HomR[G◦](L
◦, (L◦)g)⊗K ' HomK[G◦](π

◦, (π◦)g),

is an isomorphism by Lemma A.1. Hence the sum in Equation 4.1 is supported on the cosets S/G◦.
Hence we have an isomorphism of algebras, given by functoriality of compact induction,

EndR[S](indSG◦(L
◦ ⊗ R)) ' EndR[G](indG

G◦(L
◦ ⊗ R)).

We next compute the endomorphism algebra EndR[T ](indTG◦(L
◦ ⊗ R)). As ResTG◦(LT ) = L◦, we

have
indTG◦(L

◦) ' LT ⊗ indTG◦(1)

where T acts diagonally on the tensor product. This decomposition induces a morphism of algebras

(4.2) EndR[T ](LT ⊗ R)⊗ R[T /G◦]→ EndR[T ](indTG◦(L
◦ ⊗ R)).

By Frobenius reciprocity, we have an isomorphism of R-modules

EndR[T ](indTG◦(L
◦ ⊗ R)) ' HomR[G◦](L

◦ ⊗ R, (L◦ ⊗ R)⊗ ResTG◦(indTG◦(1)⊗ R))

' EndR[G◦](L
◦ ⊗ R)⊗ R[T /G◦]

and the morphism of Equation 4.2, is induced by the inclusion EndR[T ](LT ⊗R) ⊆ EndR[G◦](L
◦⊗R).

As L◦, LT are OK-lattices, they are locally free (cf. Remark 4.7), hence EndR[T ](LT ⊗R), EndR[G◦](L
◦⊗

R) are locally free. Moreover,

EndR[T ](LT ⊗ R)⊗K ' EndK[T ](πT ) ' K, EndR[G◦](L
◦ ⊗ R)⊗K ' EndK[G◦](π

◦) ' K,

and hence EndR[T ](LT ⊗R) ' EndR[G◦](L
◦ ⊗R) ' R (as R is a normal domain), and hence we have

an isomorphism of algebras
EndR[T ](indTG◦(L

◦ ⊗ R)) ' R[T /G◦].
It remains to show this is Z(EndR[S](indSG◦(L

◦ ⊗ R))). Now, by [BH03, Lemma 8.4],

Z(EndK[S](indSG◦(π
◦))) ' EndK[T ](indTG◦(π

◦)) ' K[T /G◦]
and hence

(4.3) EndR[T ](indTG◦(L
◦ ⊗ R)) ⊆ Z(EndR[S](indSG◦(L

◦ ⊗ R))).

Moreover,
Z(EndR[S](indSG◦(L

◦ ⊗ R)))⊗K = Z(EndK[S](indSG◦(π
◦))) ' K[T /G◦]

by Lemmas A.1 and A.2. Hence, as R[T /G◦] is a normal Noetherian domain and EndR[S](indSG◦(L
◦⊗

R)) (hence Z(EndR[S](indSG◦(L
◦ ⊗ R)))) a finite R[T /G◦]-module (as [S : T ] = m2 is finite), the

inclusion of Equation 4.3 is an isomorphism. �

Let [M, ρ]G ∈ BQ(G) be a Q-inertial class. Choose a representative (M, ρ) such that ρ has finite

order central character, and is hence defined over a number field K/Q by Proposition 4.8. By extending
scalars if necessary, we assume that K contains

√
q and is sufficiently large for the decomposition

of ρ|M◦ .
The finite group Hρ only depends on the M-inertial class of ρ and we write H(M,ρ) as before. Recall,

from Bernstein’s decomposition, we put

W(M,ρ) = {g ∈ G : Mg = M, and (M, ρg) ∈ [M, ρ]M}/M.

As in the cuspidal case above, we choose our lattice L◦ in ρ◦, where ρ◦ is an absolutely irre-
ducible K[M◦]-submodule of ρ|M◦ . Choose a parabolic subgroup P of G with Levi factor M. We
set R = OK[1/NG] and let

P(M,ρ) = iGM,P(indM
M◦(L

◦ ⊗ R)).
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Lemma 4.19. The K[G]-module P(M,ρ) ⊗K ' iGM,P(indM
M◦(ρ

◦)) is finitely generated projective, with

Z(EndK[G](P(M,ρ) ⊗K)) ' (K[M/M◦]H(M,ρ))W(M,ρ) .

Proof. As K/K is faithfully flat, this follows from Bernstein’s Theorem 4.11 and from Lemma A.2. �

We now prove an integral form of this after inverting NG:

Lemma 4.20. Let R = OK[1/NG]. The R[G]-module P(M,ρ) = iGM,P(indM
M◦(L

◦ ⊗ R)) is finitely
generated projective, with

Z(EndR[G](P(M,ρ))) ' (R[M/M◦]H(M,ρ))W(M,ρ) .

Proof. By Lemma 4.18, second adjunction and finiteness of parabolic induction [DHKM24], P(M,ρ)

is finitely generated projective.
As P(M,ρ) is finitely generated projective, we have an embedding

(4.4) EndR[G](P(M,ρ)) ↪→ EndR[G](P(M,ρ))⊗K ' EndK[G](P(M,ρ) ⊗K).

Moreover, the isomorphism (K[M/M◦]H(M,ρ))W(M,ρ)
∼−→ Z(EndK[G](P(M,ρ) ⊗ K)) of Lemma 4.19 is

induced by the following composed map,

(K[M/M◦]H(M,ρ))W(M,ρ) ↪→ EndK[M](indM
M◦(ρ

◦)) ↪→ EndK[G](P(M,ρ) ⊗K),

where the second map is given by functoriality for parabolic induction. Therefore, the analogous map
over R

(R[M/M◦]H(M,ρ))W(M,ρ) ↪→ EndR[M](indM
M◦(L

◦ ⊗ R)) ↪→ EndR[G](P(M,ρ)),

also given by functoriality of parabolic induction, certainly induces an embedding

(R[M/M◦]H(M,ρ))W(M,ρ) ↪→ Z(EndR[G](P(M,ρ))).

To see that this embedding is an isomorphism, it then suffices to see that the target is integral over
the source, since the source is integrally closed. In turn, it is enough to show that EndR[G](P(M,ρ))

is finitely generated as a module over (R[M/M◦]H(M,ρ))W(M,ρ) , or even over R[M/M◦]H(M,ρ) . We have

already seen that EndR[M](indM
M◦(L

◦ ⊗R)) is finitely generated as a module over R[M/M◦]H(M,ρ) . On
the other hand, the Geometric Lemma implies that EndR[G](P(M,ρ)) is finitely generated as a module

over EndR[M](indM
M◦(L

◦ ⊗ R)). �

For every Q-inertial class of supercuspidal support [M, ρ]G for G, we follow the same construc-
tion, choosing representatives (M, ρ) with finite order central characters, and defining a collection of
projective modules

(4.5) P(M,ρ) = iGM,PM
(indM

M◦(L
◦
ρ)⊗ OKρ [1/NG]),

where the number field Kρ and the lattice L◦ρ depend on ρ, and the parabolic PM on M. We choose

our parabolic subgroups compatibility so that PMg = PgM. To consider all of these over the same base

ring we extend scalars to Z[1/NG], where we have:

Lemma 4.21. The Z[1/NG][G]-modules P(M,ρ) ⊗ Z[1/NG], are

(1) finitely generated projective;
(2) mutually disjoint, i.e. if [M, ρ]G and [M′, ρ′]G define different classes in BQ(G) then

HomZ[1/NG][G](P(M,ρ) ⊗ Z[1/NG], P(M′,ρ′) ⊗ Z[1/NG]) = 0.

(3) exhaust the category, i.e. for any Z[1/NG][G]-module π there exists an inertial class [M, ρ]G ∈
BQ(G) with

HomZ[1/NG][G](P(M,ρ) ⊗ Z[1/NG], π) 6= 0.

Proof. (1) It follows from Lemma 4.20 that the P(M,ρ)⊗Z[1/NG] are finitely generated projective.
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(2) Moreover, because P(M,ρ) ⊗ Z[1/NG] is finitely generated projective it is torsion free (or by
Lemma A.1), we have

HomZ[1/NG][G](P(M,ρ) ⊗ Z[1/NG], P(M′,ρ′) ⊗ Z[1/NG]) ↪→ HomC[G](P(M,ρ) ⊗ C, P(M′,ρ′) ⊗ C)

which is zero by the Bernstein decomposition 4.11.
(3) As P(M,ρ)⊗Z[1/NG] is projective and every Z[1/NG][G]-module has an irreducible subquotient,

we can reduce to the case where π is irreducible.
First assume that π is torsion free, then by Lemma A.1

HomZ[1/NG][G](P(M,ρ) ⊗ Z[1/NG], π)⊗ C ' HomC[G](P(M,ρ) ⊗ C, π ⊗ C),

so HomZ[1/NG][G](P(M,ρ) ⊗ Z[1/NG], π) is non-zero if and only if π ⊗ C ∈ RepC(G)[M,ρ]G , and

exhaustion follows as P(M,ρ) ⊗ C exhaust over C from Bernstein’s decomposition 4.11.
Now assume that there exists a banal prime ` such that `π = 0. Hence π identifies with a

simple F`[G]-module. There exists a parabolic PM = MN and an irreducible cuspidal F`[M]-
module τ such that π is a quotient of iGM,PM

(τ). By Proposition 4.16, there exists a number

field K and an absolutely irreducible integral cuspidal τ̃ with reduction r`(τ̃)⊗F` ' τ . There
exists (Mg, η) ∈ [M, τ̃ ]G in our chosen collection of representatives for the Q-inertial classes
of G, with associated projective

P(Mg,η) = iGMg,PMg
(indM

M◦η
(L◦η)⊗ OKη [1/NG]).

Moreover enlarging Kη if necessary, so that it contains K, the Kη[G]-module τ̃⊗Kη is a quotient

of indM
M◦η

(L◦η)⊗Kη. The image of (indM
M◦(L

◦
η))g

−1 ⊗ OKη in τ̃ ⊗Kη is an OKη -lattice Lτ in τ̃

([Vig96, I 9.3]). Hence iGM,PM
(τ) and hence π are quotients of P(Mg,η).

�

Hence, we obtain a decomposition of the category and from the last section a description of the
centre of each factor. Moreover, this is the finest such decomposition - the block decomposition
over Z[1/NG] – the centres of the categories (indexed by Q-inertial classes of supercuspidal supports)
have no non-trivial idempotents. We record this as a theorem:

Theorem 4.22. (1) The category RepZ[1/NG](G) decomposes as

RepZ[1/NG](G) =
∏

[M,ρ]G∈BQ(G)

RepZ[1/NG](G)[M,ρ]G ,

where RepZ[1/NG](G)[M,ρ]G is the direct factor subcategory generated by the finitely generated

projective P(M,ρ) ⊗ Z[1/NG].
(2) Moreover, the choice of P(M,ρ) identifies the centre ZG,Z[1/NG],[M,ρ]G

of RepZ[1/NG](G)[M,ρ]G

with (Z[1/NG][M/M◦]H(M,ρ))W(M,ρ) .

Remark 4.23. The block RepZ[1/NG](G)[M,ρ]G is “defined over OKρ [1/NG]”, in the sense that P(M,ρ)

generates a direct factor subcategory RepOKρ [1/NG](G)[M,ρ]G of RepOKρ [1/NG](G).

5. Gelfand–Graev representations and their endomorphism algebras

For this section, we suppose that G is F-quasi-split. Choose a maximal F-split torus S of G, and a
Borel subgroup B with Levi factor T = CG(S) and unipotent radical U. We let T = T(F), B = B(F),
and U = U(F). We write Φ for the set of roots of S in G, ∆ for the set of simple roots determined
by B, and Φ+ the set of positive roots determined by ∆. For α ∈ Φ+ we let Uα denote the root
subgroup corresponding to α, thus we have an isomorphism

∏
α∈Φ+

nd
Uα → U of F-varieties, where Φ+

nd

denotes the subset of Φ+ of non-divisible roots.
Choose in addition a pinning of G, compatible with our choices of T and B. Equivalently we fix

an isomorphism, for each absolute root α of UF, of (UF)α with the additive group over F.
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Definition 5.1. Let R0 denote the ring Z[1/p, µp∞ ], and let R be an R0-algebra.

(1) A character ψ : U → R× of U = U(F) is called non-degenerate, if it is non-trivial on Uα =
Uα(F ), for all α ∈ ∆.

(2) A Whittaker datum for G (over R) is a pair (U′, ψ) such that U′ is the F-points of the unipotent
radical of a Borel subgroup of G and ψ : U′ → R× is a non-degenerate character.

(3) A simple R[G]-module (π, V ) is called ψ-generic, for a non-degenerate character ψ : U→ R×,
if the module of (U, ψ)-coinvariants Vψ := V/〈π(u)v − ψ(u)v, u ∈ U, v ∈ V 〉 is non zero.

From a Whittaker datum (U, ψ) over R we may construct the smooth R[G]-module

indG
U(ψ) := {smooth, compactly supported mod U, f : G→ R, ∀u ∈ U, f(ug) = ψ(u)f(g)}

This module depends, up to isomorphism, only on the G-conjugacy class of (U, ψ).
Fix an additive character ψF : F+ → R×0 , trivial on OK but not on $−1OK, where $ is a uni-

formizer of F. Our chosen pinning yields a Gal(F/F)-equivariant identification of Uab
F

with the product∏
α∈∆F

Ga, where ∆F denotes the set of absolute simple roots (that is, the set of positive simple roots

of GF determined by BF.) Let ια denote the map U→ Ga determined by α and our chosen pinning.
We can then define a character ψ of U by the formula:

ψ(u) = ψF

 ∑
α∈∆F

ια(u)

 ,

noting that the sum on the right hand side is an element of F since it is fixed under Gal(F/F).
The character ψ is non-degenerate. Moreover, this construction gives a bijection between pinnings

of G (for a fixed choice of T,B) and Whittaker data of the form (U, ψ). In particular both of these
sets are torsors under the conjugation action of the group (T/Z)(F).

A choice of Whittaker datum for G also determines Whittaker data for Levi subgroups of G. Let M
be a standard Levi subgroup of G (meaning that it contains T and is a Levi factor of a parabolic
subgroup containing B, i.e., of a standard parabolic). Then by [BH03, 2.2 Proposition], UM = U ∩M
is the unipotent radical of a Borel subgroup of M, and if ψ : U → R× is a non-degenerate character
of G then ψM = ψ|UM

: UM → R× is a non-degenerate character of M.

5.1. Rings of definition. In this subsection we study various rings of definition for the representation
indG

U(ψ). In particular, our objective is to prove:

Proposition 5.2. There exists a finite Galois extension K/Q contained in Q(µp3), and a OK[1/p][G]-

submodule WU,ψ ⊂ indG
U(ψ), such that the natural map WU,ψ ⊗OK[1/p] Z[1/p, µp∞ ] → indG

U(ψ) is an
isomorphism. Moreover, the field K may be taken as follows:

(1) If one half the sum of the positive coroots of G (considered as a cocharacter of T/Z) lifts to
an integral cocharacter of T, then one can take K = Q.

(2) If (1) does not hold, and either p is odd or F has characteristic p, then one can take K = Q(µp).
(3) If (1) does not hold, p = 2, and F has characteristic zero, then one can take K = Q(µ8).

Remark 5.3. The models WU,ψ in the proposition may not be unique, in particular in case (1).
However, in cases (2) and (3) our proof will arguably provide “natural” models.

Let K0 = Q(µp∞) denote the field of fractions of R0; we begin by studying the action of Gal(K0/Q)
on the set of non-degenerate characters of U. From the last section, we already know that for each
σ ∈ Gal(K0/Q), there is a unique element tσ ∈ (T/Z)(F) such that σ(ψ)tσ = ψ. Here σ(ψ) denotes
the image of ψ under the Galois action of σ while ψtσ denotes its image under the adjoint action of
tσ, defined by ψtσ (u) = ψ(Adtσ (u)).

Lemma 5.4. The map σ 7→ tσ is a continuous group homomorphism from Gal(K0/Q) to (T/Z)(F).
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Proof. It is clearly a group homomorphism by uniqueness of tσ. To prove continuity, we will compute
tσ explicitly. We denote by σ 7→ aσ the composition of the cyclotomic character Gal(K0/Q)

∼−→ Z×p
and the natural map Z×p → F×. We then have ψF(aσx) = σ(ψF(x)) for all x. Note that the map

σ 7→ aσ is continuous and valued in O×F .
Let β be half the sum of the positive absolute coroots in X∗(T)Q. Note that β is fixed under

Gal(F/F), so we can regard β as a cocharacter of T/Z, and the map σ 7→ β(aσ) is certainly a
continuous group morphism from Gal(K0/Q) to (T/Z)(F). But since 〈β, α〉 = 1 for all α ∈ ∆F. we

have σ(ψ)β(aσ) = ψ, hence tσ = β(aσ). �

The next lemma studies when this morphism can be lifted to a morphism valued in T(F ).

Lemma 5.5. Under hypothesis (1), (2) or (3) of Proposition 5.2, and with the notation K therein,
the map σ 7→ tσ can be lifted to a continuous morphism σ 7→ t̃σ, Gal(K0/K)→ T(F).

Proof. (1) If β lifts to a cocharacter β̃ of T, then we can put t̃σ := β̃(aσ) and this defines a continuous
morphism Gal(K0/Q) to T(F) as desired. However, this will not always be the case; for example

when G = SL2. In general, there is a natural obstruction to the existence of a lift β̃ in the group
Ext1

ZGal(F/F)
(X∗(Z),Z) and it is a 2-torsion element, since 2β ∈ X∗(T).

(2) If p is odd and K = Q(µp), then Gal(K0/K) is isomorphic to Zp. Since 2 is invertible in Zp,
this means that the map σ 7→ σ2 is a continuous automorphism of Gal(K0/K). We can then put
t̃σ := 2β(a√σ) and get the desired morphism. On the other hand, if F has characteristic p, then

aσ = 1, hence also tσ = 1 for all σ ∈ Gal(K0/K), so we may just put t̃σ := 1 in this case.
(3) Suppose p = 2 and set K = Q(µ8). Then Gal(K0/Q(µ4)) ' Z2 and Gal(K0/K) is 2Z2 therein.

So any σ in Gal(K0/K) has a unique “square root”
√
σ in Gal(K0/Q(µ4)) and, as above, we can take

t̃σ := 2β(a√σ). �

Proof of Proposition 5.2. Let K be as in Proposition 5.2 and let us choose a lift σ 7→ t̃σ as in the last
lemma. We then get a semi-linear action of Gal(K0/K) on indG

U(ψ), defined by :

(σ, f) 7→
(
T̃σf : g 7→ σ(f(t̃σg))

)
for σ in Gal(K0/K) and f a left (U, ψ)-equivariant function G → R0 = OK0

[1/p]. This action is

continuous for the discrete topology on indG
U(ψ), hence it defines an effective descent datum for the

proétale Galois cover Spec(OK0 [1/p]) → Spec(OK[1/p]), and the fixed points of this action are an

OK[1/p][G]-submodule WU,ψ of indG
U(ψ) satisfying the requirements of the proposition.

�

5.2. Basic properties of GGRs. Let R be a Z[1/p, µp∞ ]-algebra. Let (U, ψ) be a Whittaker datum
over R.

For any R-algebra R′, we write ψR′ for the character ψ ⊗R′, and have indG
U(ψR′) ' indG

U(ψ)⊗R′.

In the special case R = C, Chan and Savin [CS19] show that indG
U(ψC) is flat, we now consider the

general case for the module WU,ψ.

Proposition 5.6. Let V be a right R[G]-module. Then we have a natural isomorphism of R-modules:

V ⊗R[G] indG
U(ψ) ' Vψ,

where Vψ denotes the (U, ψ)-coinvariants of V.

Proof. Let N be an arbitrary R-module. We then have an isomorphism:

HomR(V ⊗R[G] indG
U(ψ), N) ' HomR[G](V,HomR(indG

U(ψ), N)′)

by Hom-tensor adjunction, where HomR(indG
U(ψ), N)′ consists of smooth R-linear maps φ from

indG
U(ψ) to N , which has a right G-action given by (φg)(f) = φ(gf). This space of homomorphisms of

right G-modules is isomorphic to the space HomR[G](V
′,HomR(indG

U(ψ), N)), where V′ is the module
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V made into a left G-module via the map g 7→ g−1, and similarly HomR(indG
U(ψ), N) is considered as

a left G-module in the usual way.
Integration over U\G defines a perfect pairing:

indG
U(ψ)× IndG

U(ψ−1
N )→ N,

where ψ−1
N is the R[U]-module whose underling R-module is N , on which U acts via ψ−1, and therefore

identifies HomR(indG
U(ψ), N) with IndG

U(ψ−1
N ). But we then have an isomorphism:

HomR[G](V
′, IndG

U(ψ−1
N )) ' HomR(V′ψ−1 , N).

Since this isomorphism exists for all N and is functorial in N , by Yoneda’s lemma we have an isomor-
phism:

V ⊗R[G] indG
U(ψ) ' V′ψ−1 ,

and the claim follows by observing that V′ψ−1 is naturally isomorphic to Vψ. �

Remark 5.7. One can define explicitly the morphism Vψ → V ⊗R[G] indG
U(ψ) as follows. Denote

by C∞c (G,R) the R-module of smooth compactly supported R-valued functions on G, and by
∫
ψ

the

averaging map C∞c (G,R) −→ indG
U(ψ) defined by f 7→ (g 7→

∫
U
f(ug)ψ(u)−1du) after fixing a Haar

measure on U. If we identify C∞c (G,R) with the Hecke algebra (via some choice of Haar measure

on G), then the action map induces an isomorphism a :V ⊗R[G] C
∞
c (G,R)

∼−→ V and the following
composition

V
a−1

−→V ⊗R[G] C
∞
c (G,R)

id⊗
∫
ψ−→ V ⊗R[G] indG

U(ψ)

factors over Vψ, providing the desired isomorphism.

Since U is a colimit of pro-p groups, taking (U, ψ)-coinvariants is exact, so we deduce that indG
U(ψ)

is flat as a Z[1/p, µp∞ ][G]-module. Since one can check flatness after a faithfully flat base change, we
immediately deduce (recall the notation K from Proposition 5.2) :

Corollary 5.8. Any model WU,ψ as in Proposition 5.2 is flat as an OK[1/p][G]-module.

Gelfand–Graev representations behave well with respect to parabolic restriction, with the proof of
Bushnell–Henniart carrying over without change to coefficients in R:

Proposition 5.9 ([BH03, 2.2 Theorem]). Let P be a standard parabolic subgroup with Levi decom-
position P = MN where M is a standard Levi subgroup of P. Let P◦ = MN◦ denote the opposite
parabolic to P. There is a unique isomorphism

r : rG
M,P◦(indG

U(ψ))
'−→ indM

UM
(ψM)

characterized by the following property: for any compact open subgroup A of N◦, and any (right) A-

invariant element f of indG
U(ψ) supported on UMA, the element r(f) of indM

UM
(ψM) is the function

on M given by

r(f)(m) = µ(A)δ
1/2
P◦ (m)f(m),

for all m ∈ M, where µ is a Haar measure on N◦ and δP◦ is the modulus character of P◦.

The level decomposition gives us the canonical direct sum decomposition indG
U(ψ) =

⊕
indG

U(ψ)n.

In the special case R = C, Bushnell–Henniart prove in [BH03, Section 7] that indG
U(ψC)n is a finitely

generated C[G]-module. Their argument carries over, nearly without modification, in the context
of R[G]-modules (even for R non-Noetherian!):

Proposition 5.10. The module indG
U(ψ)n is a finitely generated R[G]-module.

In particular this holds for R = R0. We can thus descend our result to the depth n summand
WU,ψ,n of WU,ψ :

Corollary 5.11. Any model WU,ψ,n as in Proposition 5.2 is finitely generated as an OK[1/p][G]-
module.
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Proof. We have an isomorphism WU,ψ,n ⊗OK[1/p] R0 ' indG
U(ψ)n, so we can find a finite subset of

WU,ψ,n that generates indG
U(ψ)n as a R0[G]-module. Let W′ ⊂ WU,ψ,n be the R[G]-submodule

generated by this set. Then we have (WU,ψ,n/W
′) ⊗OK[1/p] R0 = 0, hence also WU,ψ,n/W

′ = 0 by
faithful flatness. �

Corollary 5.12. For any OK[1/p]-algebra R, the module WU,ψ,n ⊗OK[1/p] R is a finitely generated

projective R[G]-module. In particular, indG
U(ψ) is a projective R0[G]-module.

Proof. By [DHKM24, Corollary 1.4], Hecke algebras over the Noetherian ring OK[1/p] are Noetherian.
It follows that any finitely generated flat OK[1/p][G]-module is projective; in particular this applies
to WU,ψ,n. The case of arbitrary R then follows by base change. �

Remark 5.13. (1) As [DHKM24] uses the main result of [FS20], it might appear on first look
that our proof depends on their high-tech machinery. However, for the Corollary we do not
actually need to know Noetherianity of Hecke algebras. A ring H with the property that
every finitely generated flat right H-module is projective is called a right S-ring, cf. [PR04]
for details on the theory of S-rings. In particular it is proven there that an arbitrary subring
of a right S-ring is a right S-ring. Since Hecke algebras over C are Noetherian (and therefore
right S-rings), it follows from this that Hecke algebras over OK[1/p] are also right S-rings, and
this is all that is necessary for the proof of the Corollary.

(2) Hansen has recently provided another very nice proof that indG
U(ψ) is a projective Z[1/p, µp∞ ][G]-

module in [Han22], using “Rodier approximation”.

5.3. Endomorphism Rings. We now turn to the question of descending the endomorphism ring of
indG

U(ψ). For a R0-valued function f on G and σ ∈ Gal(K0/Q), define σ(f) by σ(f)(g) = σ(f(g)),
and for γ ∈ Aut(G), define fγ(g) by f(γ(g)). Then, with the notation of Lemma 5.4, the map

Tσ : f 7→ σ(f)tσ takes indG
U(ψ) into itself.

Lemma 5.14. The map (σ, ϕ) 7→ Tσ ◦ ϕ ◦ T−1
σ defines a semi-linear action of Gal(K0/Q) on the R0-

algebra EndR0[G](indG
U(ψ)). Moreover, its restriction to Gal(K0/K) coincides with the action coming

from the base change isomorphism WU,ψ ⊗OK[1/p] R0
∼−→ indG

U(ψ) of Proposition 5.2.

Proof. The first assertion is a straightforward computation. For the second one, with the notation
of the last paragraph of Subsection 5.1, we need to show that Tσ ◦ ϕ ◦ T−1

σ = T̃σ ◦ ϕ ◦ T̃−1
σ for all

σ ∈ Gal(K0/K) and ϕ ∈ EndR0[G](indG
U(ψ)). By construction, we have T̃σ = t̃σ ◦Tσ as endomorphisms

of the Z[1/p]-module indG
U(ψ), and where t̃σ denotes the action of t̃σ on that module. So the desired

equality boils down to the fact that Tσ ◦ ϕ ◦ T−1
σ commutes to the action of G. �

Beware that this semi-linear action is not continuous for the discrete topology on the R0-algebra
EndR0[G](indG

U(ψ)). This is because WU,ψ is not finitely generated, so the natural map:

EndOK[1/p][G](WU,ψ)⊗OK[1/p] R0 → EndR0[G](indG
U(ψ))

fails to be an isomorphism.

Lemma 5.15. For any depth n and any element σ ∈ Gal(K0/Q), the endomorphism Tσ takes the

summand indG
U(ψ)n into itself. Moreover, the map (σ, ϕ) 7→ Tσ ◦ ϕ ◦ T−1

σ defines a continuous semi-

linear action of Gal(K0/Q) on the R0-algebra EndR0[G](indG
U(ψ)n).

Proof. The map f 7→ σ(f) is a Z[1/p][G] endomorphism of indG
U(ψ), hence it commutes with the action

of the centre ZG,Z[1/p] and in particular with the idempotents that give the depth decomposition. On
the other hand, the map f 7→ f tσ is G-equivariant if one twists the action of G by the automorphism
tσ. This automorphism also acts on ZG,Z[1/p] and we have (zf)tσ = ztσf tσ for all z ∈ ZG,Z[1/p] and

f ∈ indG
U(ψ). But by construction, the depth decomposition is invariant under Aut(G)(F), hence in

particular the map f 7→ f tσ also commutes with the idempotents that give the depth decomposition.
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Hence the map (σ, ϕ) 7→ Tσ ◦ ϕ ◦ T−1
σ defines a semi-linar action of Gal(K0/Q) on the R0-algebra

EndR0[G](indG
U(ψ)n) and, as in the last lemma, the restriction of this action to Gal(K0/K) coincides

with the action coming from the base change isomorphismWU,ψ,n⊗OK [1/p]R0
∼−→ indG

U(ψ)n. Therefore,
the natural map:

EndOK[1/p][G](WU,ψ,n)⊗OK[1/p] R0 → EndR0[G](indG
U(ψ)n)

is Gal(K0/K)-equivariant for the natural action on the LHS. Since WU,ψ,n is finitely presented, this

map is an isomorphism, and it follows that the action we have defined on EndR0[G](indG
U(ψ)n) is

continuous. �

Let us now take Galois invariants and put

EG,n := EndR0[G](indG
U(ψ)n)Gal(K0/Q).

By descent along the proétale cover Spec(R0) → Spec(Z[1/p]), the Z[1/p]-algebra EG,n is a model

for EndR0[G](indG
U(ψ)n). Moreover, for any g ∈ (G/Z)(F), the isomorphism of EndR0[G](indG

U(ψ)n)

with EndR0[G](indG
Ug (ψg)n) induced by the endofunctor π 7→ πg is compatible with the actions of

Gal(K0/Q) on source and target. Thus the ring EG,n is independent of the choice of Whittaker
datum.

Remark 5.16. The canonical map ZG,R0
→ EndR0[G](indG

U(ψ)) is certainly Gal(K0/K)-equivariant
with respect to the Galois actions we have defined on the two rings, but may not be Gal(K0/Q)-
equivariant in general. Indeed, the action on ZG,R0

arises from the endofunctors π 7→ πσ, whereas the

action on EndR0[G](indG
U(ψ)) arises from the endofunctors π 7→ (πσ)tσ . The difference between the

two actions of σ is thus given by the automorphism of ZG,R0
induced by the endofunctor π 7→ πtσ . In

particular, if we let Zad
G,R0

denote the subring of ZG,R0
stable under the automorphisms induced by the

endofunctors π 7→ πg for g ∈ (G/Z)(F), then the action of ZG,R0
restricts to a Gal(K0/Q)-equivariant

map:

Zad
G,R0

→ EndR0[G](indG
U(ψ)n).

We summarize the above discussion as follows:

Theorem 5.17. For each n, the Z[1/p]-algebra EG,n is commutative, flat and finitely generated and,
there is a canonical isomorphism

EG,n ⊗Z[1/p] R ' EndR[G](WU′,ψ′,n ⊗OK[1/p] R)

for each OK [1/p]-algebra R and each Whittaker datum (U′, ψ′) of G. Moreover there is a natural map

Zad
G,Z[1/p] → EG,n

that, after base change to OK[1/p] and the identifications above, coincides with the map

Zad
G,OK[1/p] → EndOK[1/p][G](WU′,ψ′,n)

arising from the action of the Bernstein centre.

5.4. An isomorphism of Bushnell and Henniart in the banal setting. The aim of this section
is to point out that in the banal setting, we have an analogue of a theorem of Bushnell–Henniart
relating the “ψ-generic blocks” of the Bernstein centre with the endomorphisms of the Gelfand–Graev
representation defined by ψ.

Definition 5.18. In the case R is an algebraically closed field, we say that an inertial class [M, π]G ∈
BR(G) is ψ-generic if

dimR(HomR[M](indM
UM

(ψM,R), π′)) = 1

for all π′ ∈ [M, π].

If RepC(G)[M,π]G contains a ψ-generic representation then [M, π]G is ψ-generic (cf. [BH03, 4.5 (1)]),

and it follows that this also holds over Q.
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Lemma 5.19. Let K/Q(µp∞) be a finite extension, and π be an absolutely irreducible ψ-generic cus-

pidal K[G]-module with finite order central character. The OK[1/NG][G]-module indG
U(ψOK[1/NG])[G,π]

is a finitely generated projective generator of RepOK[1/NG](G)[G,π].

Proof. Set Q := indG
U(ψOK[1/NG])[G,π]. By Corollary 5.12, we already know that Q is projective and

finitely generated, so it remains to see it is a generator, i.e. that any simple object of RepOK[1/NG](G)[G,π]

is a quotient of Q. Note that the set of simple quotients of Q is stable under unramified twisting, since
U ⊂ G◦. On the other hand, for each algebraically closed field L over OK[1/NG], the set of irreducible
L[G]-modules in RepOK[1/NG](G)[G,π] form a single unramified orbit, by construction. Therefore, it

is enough to show that for each such L, the L[G]-module Q ⊗ L has a simple quotient. Since it is
finitely generated, it suffices to prove it is non-zero. By [BH03, 9.2], we know that Q⊗C is non-zero,
hence Q 6= 0. Moreover, since Q is a direct factor a space of OK[1/NG]-valued functions, it is certainly
`-adically separated for each banal `, meaning that Q⊗ L is non-zero for all L as above. �

Corollary 5.20. Let [G, π]G ∈ BQ(G) be a ψ-generic inertial class. The natural map

ZG,Z[1/NG],[G,π]G
→ EndZ[1/NG][G](indG

U(ψZ[1/NG])[G,π]G)

is an isomorphism.

Now, following Bushnell and Henniart, we can extend this to all ψ-generic inertial classes:

Theorem 5.21. Let [M, π]G ∈ BQ(G) be a ψ-generic inertial class. Then the canonical map

ZG,Z[1/NG],[M,π]G
→ EndZ[1/NG][G](indG

U(ψZ[1/NG])[M,π]G)

is an isomorphism.

Proof. The map becomes an isomorphism after extending scalars to Q by [BH03, 4.3]. As both rings
are torsion free, it follows that the map is injective. Since the source ZG,Z[1/NG],[M,π]G

is a normal

domain, it thus suffices to prove that the map is integral.
By functoriality of parabolic restriction, we have a commutative diagram:

ZG,Z[1/NG],[M,π]G
EndZ[1/NG][G](indG

U(ψZ[1/NG])[M,π]G)

ZM,Z[1/NG],[M,π]M
EndZ[1/NG][M](indM

U (ψZ[1/NG],|UM
)[M,π]M)∼

where the right vertical map follows from Proposition 5.9 and projection onto the [M, π]M-block, the
lower horizontal map is an isomorphism by the previous corollary, and the left vertical map is the
canonical inclusion. Moreover, the right vertical map is injective as it is injective over Q by [BH03,
9.3 Lemma 1] and both rings are torsion free. Hence, as Z[1/NG][M/M◦]H[M,π]M is finite over the
ring ZG,Z[1/NG],[M,π]G

, the map of the theorem is integral. �

6. Langlands parameters and the local Langlands correspondence

6.1. The L-group. Let WF denote the Weil group of F, the topological group obtained from the
absolute Galois group of F by discretizing its unramified quotient. Let IF and PF denote the inertia
and wild inertia subgroups of WF.

Let Ĝ denote the dual group to the underlying algebraic group of G considered as a Z[1/p]-group

scheme. We fix GL = Ĝ o W a finite form of the Langlands dual group, considered as a (possibly
non-connected) Z[1/p]-group scheme, where W is a finite quotient of the Weil group WF through

which the action of WF on Ĝ factors.
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6.2. Langlands parameters. Suppose K is an algebraically closed field of characteristic zero. A

morphism φ : WF → GL (K) is called an L-homomorphism if the composition WF
φ−→ GL (K)→W is

the natural projection.

Definition 6.1. (1) A semisimple parameter for G over K is an L-homomorphism φ : WF →
GL (K) with open kernel whose image consists of semisimple elements in GL (K). Write Φss,K(G)

for the set of Ĝ(K)-conjugacy classes of semisimple parameters for G over K.
(2) A Weil-Deligne parameter for G over K is a pair (r,N) where r : WF → GL (K) is a semisim-

ple parameter, and N ∈ Lie(Ĝ(K)) is a nilpotent element satisfying Ad(r)(w)N = |w|N .

Write ΦWD,K(G) for the set of Ĝ(K)-conjugacy classes of Weil-Deligne parameters over K
for G.

(3) An SL2-parameter for G over K is a morphism ψ : WF× SL2(K)→ GL (K) such that ψ|WF
is

a semisimple parameter, and ψ|SL2(K) is an algebraic morphism. Write ΦSL2,K
(G) for the set

of Ĝ-conjugacy classes of SL2-parameters over K for G.
(4) An `-adic Langlands parameter for G (or a Langlands parameter for G over Q`), for some ` 6=

p, is an `-adically continuous Frobenius-semisimple L-homomorphism φ` : WF → GL (Q`).
Write Φ`-adic(G) for the set of Ĝ(Q`)-conjugacy classes of Langlands parameters over Q`
for G.

Remark 6.2. In (4), Frobenius-semisimple means that there exists a lift of Frobenius w in WF

such that φ`(w) is a semisimple element in GL (Q`). This is equivalent to asking that for any lift
of Frobenius w, and more generally for any w ∈ WF \ IF, the element φ`(w) is semisimple. More
generally, as in [Del73, 8.5], if φ` : WF → GL (Q`) is any `-adically continuous L-homomorphism, then
there are :

• a unique Frobenius-semisimple `-adically continuous φ`,Fr−ss : WF → GL (Q`), and

• a unique unipotent element u ∈ GL (Q`),
such that, for any w ∈ WF \ IF, the Jordan decomposition of φ`(w) is φ`,Fr−ss(w)uν(w) where ν :
WF/IF −→ Z takes a lift of Frobenius to 1. In particular, u commutes with φ`(WF).

Remark 6.3. In (1), note that φ(IF) consists of finite order, hence semisimple, elements. So the
condition that φ(WF) consists of semi-simple elements is equivalent to the Frobenius-semisimplicity
condition of the previous remark. As explained in [DHKM20, Remark 6.9 ii)], this is also equivalent

to asking that the associated 1-cocycle φ◦ : WF → Ĝ(K) has Zariski-closed orbit under Ĝ(K) in

Z1(WF, ĜK).

Remark 6.4. (1) After fixing choices of a Frobenius lift and of a generator of IF/PF, Grothendieck’s
monodromy theorem gives a bijection between the set of Weil-Deligne representations over Q` and the
set of Langlands parameters over Q`. This bijection may depend on choices but it induces a canonical
bijection Φ`-adic(G) → ΦWD,Q`(G) on conjugacy classes, see [Del73, Lemme 8.4.3]. Note that this
construction works without the Frobenius-semisimple hypothesis and “commutes” with Frobenius
semisimplification.

(2) On the other hand, there is an obvious map that associates a Weil-Deligne parameter to an SL2-

parameter, ψ 7→ (r,N) defined by r(w) = ψ

(
w,
(
q 0

0 q−1

)ν(w)/2
)

and N = dψ ( 0 1
0 0 ). Thanks to the

Jacobson-Morozov theorem, this map induces a bijection ΦSL2,K
(G)→ ΦWD,K(G) between conjugacy

classes. Note that this map again makes sense if we drop the Frobenius semisimplicity condition on
both sides, but in general it fails to be injective or surjective on conjugacy classes (see [BMIY24,
Example 3.5]).

6.3. Moduli of Langlands parameters. Fix an arithmetic Frobenius Fr in WF, and a progener-
ator s of the tame inertia group IF/PF. Denote by W0

F the topological group obtained from WF

by discretization of WF/PF with respect to these choices: W0
F is the preimage under the quotient
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map WF →WF/PF of 〈Fr, s〉 and is endowed with the topology that extends the natural (profinite)
topology on PF and induces the discrete topology on 〈Fr, s〉.

Fix an exhaustive filtration PeF of PF by open normal subgroups of WF. And consider the functor

Z1(W0
F, Ĝ) : Z[1/p]-algebras→ Set;

R 7→ Z1(W0
F, Ĝ(R));

where Z1(W0
F, Ĝ(R)) denotes the set of 1-cocycles W0

F → Ĝ(R) continuous with respect to the discrete

topology on Ĝ(R). Then Z1(W0
F, Ĝ) = lim→ Z1(W0

F/P
e
F, Ĝ) is an ind-affine scheme (where Z1(W0

F/P
e
F, Ĝ)

is defined analagously). Let Re
GL denote the ring of functions of the affine group scheme Z1(W0

F/P
e
F, Ĝ),

and R GL = lim←Re
GL .

Definition 6.5. Let R be a Z[1/p]-algebra. A morphism φ : WF → GL (R) is `-adically continuous if
there exist f : R′ → R with R′ `-adically separated, and φ′ : WF → GL (R′) satisfying:

(1) GL (f) ◦ φ′ = φ;
(2) GL (πn) ◦ φ′ : WF → GL (R′/`nR′) is continuous for all n, where πn denotes the projection

R′ → R′/`nR′.

Theorem 6.6 ([DHKM20, Theorems 4.1, 4.18, Corollary 4.2]). (1) The scheme Z1(W0
F, Ĝ) is a

reduced, flat, locally complete intersection of relative dimension dim(Ĝ) over Z[1/p].

(2) For all ` 6= p, Re
GL is `-adically separated and the universal cocycle φeuniv : W0

F → Ĝ(Re
GL )

extends uniquely to an `-adically continuous cocycle φeuniv,` : WF → Ĝ(Re
GL ⊗ Z`) which is

universal for all `-adically continuous cocycles which are trivial on PeF.

(3) The GIT quotient Z1(W0
F, Ĝ) � Ĝ is, up to canonical isomorphism, independent of the choice

of Fr, s.

6.4. Central characters. We write ΠK(G) for the set of isomorphism classes of irreducible (smooth) K[G]-
modules. Let Grad denote the greatest central torus of G and Grad = Grad(F), then Grad → G induces
a surjective morphism

det : GL (K)→ GL rad(K),

generalizing the determinant map when G = GLn, whence by composing with local Langlands for tori
(cf. [Bor79, 9.2]) we obtain a map Φ(G)→ Π(Grad). From this, we obtain a map ω− : Φ(G)→ Π(ZG),
using a construction of Langlands [Lan89, p17-18] in cases where Grad ( ZG.

6.5. The local Langlands correspondence. In this setting it is expected that we have a local
Langlands correspondence. We include here one formulation together with some of the expected
properties we will use later (we use SL2-parameters with K = C for convenience in citing the literature
in the next section).

We call an SL2-parameter φ for G over C tempered if the projection of φ(WF) to Ĝ(C) is bounded,

and say that a tempered parameter φ is discrete if CĜ(φ)/Z(Ĝ)WF is finite.

Let M denote a Levi subgroup of G, then the inclusion M ↪→ G induces a unique up to Ĝ(C)-
conjugacy embedding

ιM,G : ML (C) ↪→ GL (C).

Let M be a standard Levi subgroup of G, and P the standard parabolic subgroup of G with Levi
factor M. Denote by A∗M the dual of the real Lie algebra AM of the split component of the centre
of M and by (A∗M)+ the positive Weyl chamber of A∗M with respect to the standard parabolic P.

Define a homomorphism HM : M → AM by demanding that |χ(m)| = q−〈χ,HM(m)〉 for all rational
characters χ of M and m ∈ M, where here 〈 , 〉 : A∗M × AM → R denotes the natural pairing. Given

an element λ ∈ A∗M we have an unramified character χλ of M defined by χλ(m) = q−〈λ,HM(m)〉.

Conjecture 6.7 (The local Langlands correspondence). There is a natural map

LLG : ΠC(G)→ ΦSL2,C(G),
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satisfying a list of desiderata (cf. [Bor79]), including:

(1) (Relevance) LLG has finite fibres called L-packets, and the image of LLG consists precisely
of the relevant parameters (cf. [Bor79, 3.3, 8.2] for the definition of relevance, and note that
if G is F-quasi-split then all parameters are relevant).

(2) (Preservation of discrete/tempered-ness) π is discrete series (resp. tempered) if and only
if LLG(π) is discrete (resp. tempered).

(3) (Twisting by a character) suppose χ : G → C× is a character of G and zχ : WF → ZĜ(C)

is a choice of 1-cocycle representing the class in H1(WF,ZĜ(C)) associated to χ by the local
Langlands correspondence for characters of G ([Bor79, 10.2]), then for ρ ∈ ΠC(G)

LLG(ρ⊗ χ)◦ = LLG(ρ)◦ · zχ, in H1(WF, Ĝ(C)).

(4) (Central characters) For all ρ ∈ ΠC(G), ωρ = ωLLG(ρ).
(5) (Langlands classification) For a conjugacy class of parameter in ΦSL2,C(G), there is a repre-

sentative φ, a standard Levi subgroup M of G, a tempered SL2-parameter φM for M, and
λ0 ∈ (A∗M)+, such that φ = ιM,G ◦ (φM)λ0

where (φM)λ0
= φM · zχλ0 . Then the L-packet Πφ

of φ is given by
Πφ = {JG

P (πλ0) : π ∈ ΠφM}
where P is the standard parabolic of G with Levi factor M, πλ0

= χλ0
π, and JG

P (πλ0
) is the

unique quotient – the “Langlands quotient” – of iGP (πλ0
).

6.6. Generic representations and L-packets. Suppose G is F-quasi-split and fix a Whittaker
datum (U, ψ) for G. Then it is expected that:

Conjecture 6.8. In each tempered L-packet there is a unique ψ-generic representation.

The existence of a ψ-generic representation in a tempered L-packet is known as the tempered packet
conjecture and originates in [Sha90, Conjecture 9.4]. Gross–Prasad and Rallis have conjectured the
following criterion for the existence of a generic representation in a general L-packet:

Conjecture 6.9 (Gross–Prasad, Rallis). The L-packet of a SL2-parameter φ contains a generic
representation if and only if the adjoint L-factor L(s,Ad ◦ φ) is holomorphic at s = 1.

This conjecture has an appealing reformulation in terms of the geometry of the moduli space of
Langlands parameters near φ. Let φ be a SL2-parameter over K, and let (r,N) be its associated

Weil-Deligne representation. We can then consider the subspace Vr of Lie(Ĝ) consisting of v ∈ Lie(Ĝ)
such that Ad(r)(w)v = |w|v; this is the space of possible monodromy operators N ′ associated to the

semisimple parameter r of φ. The centralizer Ĝr of r acts on Vr with a unique open orbit; we will
say that φ has maximal monodromy if N lies in this open orbit. On the other hand, the pair (r,N)

determines a L-homomorphism ϕ : W0
F → GL (K), i.e. a K-point of Z1(W0

F, Ĝ). We then have:

Proposition 6.10. The following are equivalent:

(1) L(s,Ad ◦ φ) is holomorphic at s = 1.
(2) φ has maximal monodromy.

(3) The K-point of Z1(W0
F, Ĝ) corresponding to φ is a smooth point of Z1(W0

F, Ĝ).

Proof. The order of the pole at s = 1 of L(s,Ad◦φ) is equal to the multiplicity of the inverse cyclotomic
character in the WF-representation (Ad ◦ r)|Lie(Ĝ)ad(N)=0 , which is also the multiplicity of the inverse

cyclotomic character in the W0
F-representation Ad ◦ ϕ, i.e. the dimension of H0(W0

F, (Ad ◦ ϕ)(1)).
Therefore, the equivalence between (1) and (3) follows from [DHKM20, Cor. 5.3].

Let C denote the Ĝr-orbit of N and consider the description of the conormal bundle of C in Vr given
in [CFM+22, Prop 6.3.1]. The fibre at N of the conormal bundle is the kernel of the map X 7→ [N,X]
on H0(W0

F, (Ad ◦ r)(1)). This kernel is precisely H0(W0
F, (Ad ◦ φ)(1)). It follows that C is open if and

only if H0(W0
F, (Ad ◦ φ)(1)) vanishes. Therefore, the equivalence between (2) and (3) follows from

[DHKM20, Cor. 5.3]. �
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Thus the Gross-Prasad-Rallis conjecture is equivalent to:

Conjecture 6.11. Let r be a semisimple parameter. Then, up to Ĝ-conjugacy, there is a unique
Langlands parameter φ whose corresponding L-packet contains a generic representation, namely the
unique parameter with semisimple parameter r and maximal monodromy.

6.7. The semisimple local Langlands correspondence. We have a natural semisimplification
map

( )ss : ΦWD,C(G)→ Φss,C(G)

(r,N) 7→ r.

Via the bijection ΦSL2,C(G)→ ΦWD,C(G), this defines semisimplification map

( )ss : ΦSL2,C(G)→ Φss,C(G),

given by restriction via the embedding WF ↪→ WF × SL2(C) defined by w 7→
(
w,
(
|w|1/2 0

0 |w|−1/2

))
.

Given φ ∈ ΦSL2,C(G), in the literature, φss is often called the infinitesimal character of φ.

Remark 6.12. We also have a natural semisimplification map Φ`-adic(G) → Φss,Q`(G) defined as

follows: for φ` ∈ Φ`-adic(G) choose a minimal parabolic subgroup of GL (Q`) which φ` factors through

then project onto a Levi factor of this parabolic and take its Ĝ(Q`)-conjugacy class in Φss,Q`(G).

This agrees with the map on Weil-Deligne representations via the bijections Φ`-adic(G)→ ΦWD,Q`(G),

and ΦWD,Q`(G) ' ΦWD,C(G) depending on choosing an isomorphism C ' Q`.

It is expected that the local Langlands correspondence for G is compatible with parabolic induction
in the following sense:

Conjecture 6.13 ([Hai14, Conjecture 5.22]). Let ρ ∈ ΠC(M) and π be an irreducible subquotient
of iGP (ρ) where P is a parabolic subgroup of G with a Levi decomposition P = M n N. Then the

semisimple parameters ιM,G ◦ (LLM(ρ))ss and (LLG(π))ss are Ĝ(C)-conjugate.

We call the fibres of ( )ss ◦LLG extended L-packets. Conjecture 6.11 implies for quasi-split groups,
in particular, that only one L-packet in an extended packet can support generic representations. We
conjecture that:

Conjecture 6.14 (Extended packet conjecture). Suppose G is F-quasi-split, and fix a Whittaker
datum (U, ψ) for G. Then in each extended L-packet there is a unique ψ-generic representation.

Proposition 6.15. Suppose G is F-quasi-split and Conjecture 6.7 holds for G. Then Conjectures 6.8
and 6.11 together imply Conjecture 6.14.

Proof. Let φ be a semisimple parameter. By Conjecture 6.11, an extended L-packet corresponding
to φ contains a generic representation and all such generic representations belong to the same L-packet
– namely with Weil–Deligne representation conjugate to (φ,N), where N is chosen from the maximal
orbit in the space of possible monodromy operators for φ. In other words, one and only one L-packet
in an extended packet contains generic representations.

It remains to show that there is at most one generic representation in the L-packet attached
to (φ,N). By the Langlands classification and Conjecture 6.7 (5), any L-packet consists of the
respective Langlands quotients associated to all members of a certain tempered L-packet of some Levi
subgroup and a certain “positive” unramified character of that Levi. By Conjecture 6.8 applied to
the Levi subgroup, the tempered L-packet contains a unique generic representation. A quotient of a
parabolic induction being generic implies that the inducing representation is generic too, so we see that
in a general L-packet there is at most one generic representation; the unique candidate for genericity
being the Langlands quotient of (the twist of) the generic member of the tempered L-packet1. �

1While we don’t need it, it is interesting to note that by the “standard modules conjecture”, now a theorem of

Heiermann–Opdam [HO13, Corollary 1.2], a Langlands quotient is generic if and only if the inducing data is generic
and the Langlands quotient is the entire induced representation.
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We will also need a semisimplified form of Haine’s invariance of the local Langlands correspondence
under isomorphisms conjecture:

Conjecture 6.16 (Haines, cf. [Hai14, Conjecture 5.2.4]). Suppose α : G → G′ is an isomorphism
of connected reductive groups, π ∈ ΠC(G), and απ the irreducible representation of G′ obtained by
pre-composing with α−1. Then the induced isomorphism Lα : LG′(C)→ LG(C) (which is well-defined

up to Ĝ(C)-conjugacy) takes the Ĝ′(C) conjugacy class of LLG′(
απ)ss to the Ĝ(C)-conjugacy class of

LLG(π)ss.

The analogue of the semisimplification of a (conjugacy class of) Langlands parameter on the p-
adic group side should be given by the supercuspidal support map. Let Πsc,K(G) denote the set of
possible supercuspidal supports of an irreducible representation of G; that is, the set of G-conjugacy
classes of pairs (M, ρ) consisting of a Levi subgroup M of a parabolic subgroup of G and a simple
supercuspidal K[M]-module. Write

( )sc : ΠK(G)→ Πsc,K(G)

for the supercuspidal support map. Under LLM for all Levi subgroups of all parabolic subgroups
of G, compatibility of the local Langlands correspondence for G with parabolic induction implies
there exists a semisimple local Langlands correspondence LLG defined by the commutative diagram:

ΠK(G) ΦSL2,K
(G)

Πsc,K(G) Φss,K(G)

LLG

( )sc ( )ss

LLG

For ease of notation, when dealing with elements of Πsc,K(G) and ΦK(G), we denote the element

(which is a conjugacy class) by any choice of representative. For descending our results to the smallest
possible base ring later, it is useful to make the following conjecture:

Conjecture 6.17. Suppose LLG exists, Let σ be an automorphism of C fixing
√
q, and (M, ρ) ∈

Πsc,K(G). Then LLG(ρσ) = LLG(ρ)σ.

Our formulation of local Langlands in families below uses only some of the basic properties of the
expected semisimple local Langlands correspondence, so we work with the following abstract setting:

Definition 6.18. Let K be an algebraically closed field of charateristic zero. A semisimple corre-
spondence for G over K is a family of maps (CM)

CM : Πsc,K(M)→ Φss,K(M),

over all Levi subgroups M of G, which satisfy:

(C 1) CM has finite fibres called semisimple L-packets, and is surjective if M is F-quasi-split.2

(C 2) (supercuspidals) for all (M, ρ) ∈ Πsc,K(M) (i.e. all classes of supercuspidal representations of M),

any parameter in CM(M, ρ) is the semisimplification of a discrete Langlands parameter.

(C 3) (unramified twisting) for all (M, ρ) ∈ Πsc,K(M) and all χ : M→ K
×

unramified,

CM(M, ρ⊗ χ)◦ = CM(M, ρ)◦ · zχ.

(C 4) (central characters) let (M, ρ) ∈ Πsc,K(M), if the centre of M is not compact, we require

ωρ = ωCM(M,ρ).

2We could call a semisimple parameter relevant if it is the semisimplification of a relevant Langlands parameters

and demand in general the image is the set of relevant semisimple parameters. However, when M is not F-quasi-split it
is not clear what this condition gives as it is given by semisimplification of Langlands parameters, (cf. [Hai14, p10]).
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(C 5) (supercuspidal supports and genericity) In the case G is F-quasi-split: For any Whittaker da-
tum (U, ψ) for G, every semisimple L-packet contains a unique “ψ-generic” supercuspidal sup-
port (Where we call a supercuspidal support ψ-generic if the support contains a representa-
tive (M, ρ) with M a standard Levi subgroup and ρ a ψM-generic representation).

(C 6) (compatibility with parabolic induction) For Levi subgroups M 6 M′ of G and a supercuspi-

dal representation ρ of M, CM′(M, ρ) is the unique M̂′(K)-conjugacy class containing ιM,M′ ◦
CM(M, ρ).

(C 7) (compatibility with field automorphisms) For all automorphisms σ of K fixing
√
q and all (M′, ρ) ∈

Πsc,K(M), CM(M′, ρσ) = CM(M′, ρ)σ.

(C 8) (compatibility with inner automorphisms) Let g ∈ (G/Z)(F), (M, ρ) ∈ Πsc,K(M), then CG(Mg, ρg) =

CG(M, ρ).

Remark 6.19. It is important to note, the properties (C 1−6) are quite mild and do not characterize
a semisimple correspondence. For example, one could interchange the semisimple parameters of
two ψ-generic supercuspidal supports on the same (conjugacy class of) Levi subgroup and get another
semisimple correspondence.

As noted before, the conjectural semisimple local Langlands correspondence defines a natural
semisimple correspondence.

Proposition 6.20. Suppose LLM exists (Conjecture 6.7), together with Conjectures 6.13, 6.14, 6.16,
and 6.17, for all Levi subgroups M of G. Then (LLM) = (( )ss ◦ LLM ◦ ( )−1

sc ) is a semisimple
correspondence for G.

Proof. The map LLM is well defined by Conjecture 6.13. Properties (C 1)− (C 4) follow at once from
Properties (1) − (4) of Conjecture 6.7. A quotient of a parabolic induction being ψ-generic implies
that the inducing representation is ψM-generic so (C 5) follows from Conjecture 6.14. Compatibility
with parabolic induction (C 6) follows from Conjecture 6.13, and (C 7) is Conjecture 6.17.

Finally, we explain how to deduce (C 8) from Conjecture 6.16. Given g in (G/Z)(F) and (M, ρ) as in
(C 8), we can fix a maximal torus T in M, and write g = th, with h in G(F) and t in (T/Z)(F). Then we
have CG(Mg, ρg) = CG(Mt, ρt) = CG(M, ρt): the first equality because our semisimple correspondence
CG is defined on G(F)-conjugacy classes of supercuspidal pairs, the second because Mt = M. So it
suffices to show CG(M, ρt) = CG(M, ρ). Conjecture 6.16 shows that CM(M, ρt) = CM(M, ρ), and then
we are done by compatibility with parabolic induction (C 6). �

6.8. Integral parameters.

Definition 6.21. A continuous L-homomorphism φ` : WF −→ GL (Q`) is called integral if its image
in GL (Q`) has compact closure.

A basic application of Bruhat-Tits theory (cf. the proof of [DHKM20, Proposition 2.9]) shows that

φ` is integral if and only if a Ĝ(Q`)-conjugate of it takes values in GL (Z`).

Proposition 6.22. Let φ` be a continuous L-homomorphism WF −→ GL (Q`).
(1) Suppose φ` is discrete and Frobenius semisimple. Then the following are equivalent:

(a) φ` is integral;
(b) det(φ`) is integral;
(c) ωφ` is integral.

(2) In general, the following are equivalent:
(a) φ` is integral;
(b) the Frobenius-semisimplification φ`Fr−ss of φ` is integral.
(c) the semisimplification φ`ss of φ` is integral.

(d) the Q`-point of Z1(WF, Ĝ) � Ĝ corresponding to φ` factors through Spec(Z`).

Proof. The equivalence between (2a) and (2b) follows from Remark 6.2 and the fact that a unipotent
element of GL (Q`) is compact (i.e. generates a subgroup that has compact closure). So we may
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assume from now on that φ` is Frobenius-semisimple. Denote by Sp2 : WF −→ SL2(Q`) the special
Langlands parameter for PGL2, which factors over WF/PF and takes a (chosen) generator of IF/PF to

( 1 1
0 1 ) and a (chosen) lift of Frobenius to

(√
q 0

0
√
q−1

)
. By the dictionary between Langlands parameters

over Q` and SL2 parameters recalled in Remark 6.4, we can factorize φ` = ψ ◦ (id × Sp2) : WF −→
WF × SL2(Q`)

ψ−→ GL (Q`) for some continuous L-homomorphism ψ such that ψ(IF × {1}) is finite
and ψ(Fr, 1) is semisimple for any Frobenius element Fr in WF. Since Sp2(WF) has compact closure in

SL2(Q`), we see that φ`(WF) is compact in GL (Q`) if and only if ψ(WF × {1}) is compact in GL (Q`).
In other words, we have

φ` is integral ⇔ ψ|WF×{1} is integral ⇔ ψ(Fr, 1) is a compact element in GL (Q`).

Let us now prove (2). Let 12 : WF −→ SL2(Q`) be the Langlands parameter of the trivial represen-

tation of PGL2, which factors over WF/IF and takes Frobenius to
(√

q 0

0
√
q−1

)
. Then φ`ss := ψ◦(id×12)

is (a representative of) the semi-simplification of φ`. As above, since 12(WF) has compact closure
in SL2(Q`), we see that

φ`ss is integral ⇔ ψ|WF×{1} is integral.

whence the equivalence between (2a) and (2c). The implication (2c) ⇒ (2d) is clear, so let us assume
that (2d) holds. Observe that, in order to prove (2c), it suffices to find a finite extension F′ of F
such that φ`ss(WF′) has compact closure in GL (Q`). Let us choose F′ such that φ`ss(IF′) = {1} and

φ`ss(WF′) ⊂ Ĝ(Q`). Denoting by Fr′ a Frobenius element in WF′ , we need to show that φ`ss(Fr′)

is compact in Ĝ(Q`), knowing that its image in (Ĝ � Ĝ)(Q`) belongs to (Ĝ � Ĝ)(Z`). But we can

conjugate φ` such that φ`ss(Fr′) ∈ T̂(Q`) and, since the morphism T̂ −→ Ĝ � Ĝ is finite, we then

actually have φ`ss(Fr′) ∈ T̂(Z`).
Let us now prove (1). Here, the implication (1a)⇒(1b) is clear and the equivalence between (1b)

and (1c) follows from the fact that the local Langlands correspondence for tori respects integrality.

Using the isogeny Gsc × Grad −→ G, we see that, to prove (1b)⇒(1a), it suffices to do it when Ĝ
is adjoint. That is, we need to prove that, in this case, any discrete parameter φ` is integral. With
the notation ψ introduced above, all we need is to check that ψ(Fr, 1) is a compact element. But,

since ψ(IF × {1}) is finite, there is an integer n such that ψ(Fr, 1)n belongs to Ĝ(Q`) and centralizes

ψ(IF×{1}). It follows that ψ(Fr, 1)n belongs to the centralizer in Ĝ(Q`) of the image ψ(WF×SL2(Q`))
of ψ, which is trivial since φ` is discrete and Ĝ is adjoint. Hence we see that ψ(Fr, 1) even has finite
order. �

Remark 6.23. Assume the conjectural local Langlands correspondence for G (Conjecture 6.7) and
its Levi subgroups, and fix an isomorphism C ' Q` to write the local Langlands correspondence
for `-adic representations.

(1) Using preservation of central characters and discrete-ness (more precisely, that the parameters
of supercuspidal representations are discrete), Proposition 6.22 (1) and [Vig96, II 4.12], show
that a supercuspidal representation of G is integral if and only if its associated `-adic Langlands
parameter is integral.

(2) Building on this (under the same hypotheses for all Levi subgroups), using compatibility with
parabolic induction, Proposition 6.22 (2) and [DHKM24, Corollary 1.6], show that an irre-
ducible representation of G is integral if and only if its associated `-adic Langlands parameter
is integral.

7. The semisimple local Langlands correspondence for classical groups

7.1. Classical groups. Let E/F be a trivial or quadratic extension of p-adic fields and c denote the
generator of Gal(E/F), and ε ∈ {±1}. Let (V, h) be an ε-hermitian space and

U(V, h) = {g ∈ GLE(V) : h(gv, gw) = h(v, w), for all v, w ∈ V},
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denote the group of isometries.

(1) When E/F is quadratic then U(V, h) is a unitary group.
(2) When E = F and ε = −1, then U(V, h) is a symplectic group
(3) When E = F and ε = 1, then U(V, h) is an orthogonal group.

If dimE(V) = 0 then we interpret G to be the trivial group. Thus, the isometry group U(V, h) is
the F-points of a possibly disconnected reductive group defined over F.

Definition 7.1. By a classical group G we mean a unitary, symplectic or split odd special orthogonal
group.

So, in particular, a “classical group” in this work is the points of a connected reductive group.

Remark 7.2. We do not consider even (special) orthogonal groups or non-quasi-split odd (special)
orthogonal groups in this work, and have not included them in our definition of a “classical group”.

7.2. Parameters for classical groups as (conjugate) self-dual parameters. We can associate
to a parameter φ : WF × SL2(C) → GL (C) a self-dual or conjugate self-dual representation R ◦ φ :

WE × SL2(C)→ GLm(C), for some m = m(Ĝ), following [GGP12, Section 8]:
Suppose G is symplectic, then GL (C) = SO2n+1(C) and we can compose with the standard repre-

sentation SO2n+1(C)→ GL2n+1(C). This allows us to consider an SL2-parameter for G as a self-dual
parameter φ : WF × SL2(C) → SO2n+1(C) ↪→ GL2n+1(C) into GL2n+1(C). The case of odd special
orthogonal groups is similar.

Suppose G is unitary. Then GL (C) = GLn(C)oGal(E/F) and restricting φ : WF×SL2(C)→ GL (C)
to WE×SL2(C) gives the required conjugate self-dual representation R◦φ : WE×SL2(C)→ GLn(C).

Proposition 7.3 ([GGP12, Theorem 8.1]). Let φ and φ′ be SL2-parameters for G. Then φ and φ′

are conjugate in Ĝ(C) if and only if R ◦ φ and R ◦ φ′ are equivalent in GLm(C).

7.3. The local Langlands correspondence for classical groups. The local Langlands correspon-
dence satisfying properties (1)-(5) of Conjecture 6.7 is known for general linear groups and classical
groups in the following cases:

- for general linear groups by [HT01, Hen00, Sch13] (after Bernstein–Zelevinsky’s reduction to the
supercuspidal case [Zel80]);

- for symplectic, and odd split special orthogonal groups by [Art13];
- for quasi-split unitary groups by [Mok15] ;
- for unitary groups by [KMSW21, Section 1.6] and [CZ21b, Theorem 2.5.1].

Remark 7.4. We do not include non-quasi-split odd special orthogonal groups in this work as while
there is the parametrization of [MR18], we did not find all of the properties we need for our geometriza-
tion later explicit in their work. Similarly, for even orthogonal groups, where while there is the local
Langlands parameterisation [Art13], [CZ21a, Theorem 4.4], and [MR18] some of our framework would
need extending (perhaps, mildly in this case) to disconnected reductive F-groups to use it.

7.4. The Plancherel measure. Let G be a classical group either equal to U(V, h) or in the special
orthogonal case the subgroup of U(V, h) of isometries of determinant one, P a maximal parabolic
subgroup of G, and M a Levi component of P. Recall that the data of (M,P) is equivalent to that of a
splitting of E-vector spaces V = W⊕V′⊕W′, where W,W′ are totally isotropic and V′ is orthogonal
to W ⊕W′, and this provides us with an identification M = GL(W) × G′ where G′ is U(V′, h) or in
the orthogonal case is the subgroup of isometries of determinant one.

Fix ψ a non-trivial character of F, and let τ ⊗ π be an irreducible representation of M. We refer to
Appendix C.4 for the construction of the Plancherel measure

µG
ψ (τ ⊗ π) ∈ C(M/M◦)

in which the intertwining operators have been normalized with respect to a certain choice of Haar
measure corresponding to ψ as in [GI14, Appendix B].
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With the aim of comparing this Plancherel measure with certain γ factors, we will slightly change
notation as follows. Observe first that the map (gW, gV′) 7→ valE(det(gW)) induces an isomorphism

M/M◦
∼−→ Z, and then an isomorphism C[M/M◦] ' C[(q−s)±1] where we see q−s as an indeterminate.

Accordingly, we denote by |det |s : GL(W) −→ C[(q−s)±1] the universal unramified character gW 7→
(q−s)valE(det(gW)) of GL(W) and we put τs ⊗ π := τ.|det |s ⊗ π. Upon identifying C(M/M◦) with
C((q−s)±1), this is the universal unramified twist of τ⊗π appearing in the definition of µG

ψ (τ⊗π). For

this reason, we will denote by µG
ψ (τs⊗π) the rational function in C(q−s) corresponding to µG

ψ (τ⊗π) ∈
C(M/M◦). We will sometimes drop the subscript ψ or the superscript G to simplify notation and
simply write µ(τs ⊗ π).

Similarly, for τ and τ ′ irreducible representations of GLk(E) and GLk′(E), setting τs = τ ⊗ | det |s
and τ ′t = τ ′ ⊗ | det |t, denote by

µ(τs ⊗ τ ′t) = µ
GLk+k′

ψE
(τ ⊗ τ ′) ∈ C(q−s, q−t)

the Plancherel measure of τ ⊗ τ ′ normalized with respect to our fixed character ψE = ψ ◦ TrE/F.

Note that this is actually a rational function in C(q−sqt). In particular, the hyperplanes q−t = 1 and
q−s = qt are not contained in its singular locus, and we simply denote by

µ(τs ⊗ τ ′) := µ(τs ⊗ τt)|q−t=1 and µ(τs ⊗ τ ′−s) := µ(τs ⊗ τ ′t)|q−t=qs

the respective rational functions in C(q−s) obtained by restriction.
Later, we will need the following multiplicativity property of the Plancherel measure:

Proposition 7.5. (1) Let M = M0 ×M1 be a Levi subgroup of G, where M0 =
∏r
i=1 GLni(E)

is a product of general linear groups and M1 is a classical group. Let ρ be an irreducible
representation of M which decomposes with respect to this decomposition as

⊗r
i=1 ρi ⊗ ρ′.

Let P be a parabolic subgroup of G with Levi factor M and π an irreducible subquotient
of iGP (ρ). Then, for τ an irreducible representation of GLk(E), we have

µ(τs ⊗ π) = µ(τs ⊗ ρ′)
r∏
i=1

µGLk+ki (E)(τs ⊗ ρi) µGLk+ki (E)(τs ⊗ ρci
∨) .

(2) Let P′ be a parabolic of GLm(E) with Levi factor GLk1(E)× · · · ×GLkl(E) and suppose τ is

an irreducible subquotient of i
GLm(E)
P′ (τ ′1 ⊗ · · · ⊗ τ ′l ), with τ ′i an irreducible representation of

GLki(E). Then, for π an irreducible representation of a classical group G′, we have

µ(τs ⊗ π) =

 ∏
16i<j6l

µGLki+kj (E)((τ ′i)s ⊗ ((τ ′j)
c)∨−s)

 ∏
16i6l

µ((τ ′i)s ⊗ π)

(3) Let m = k1 + · · · + kr, and let n = k′1 + · · · + k′l, and suppose τ (resp. τ ′) is an irreducible

subquotient of i
GLm(E)
P′ (τ1⊗· · ·⊗τr) (resp. i

GLn(E)
P′′ (τ ′1⊗· · ·⊗τ ′l )), with τi (resp. τ ′i) an irreducible

representation of GLki(E) (resp. GLk′i(E)). Then

µGLm+n(E)(τs ⊗ (τ ′)t) =
∏

16i6r
16j6l
i6j

µ
GLki+k′j

(E)
((τi)s ⊗ (τ ′j)t)

Parts (1) and (2 of this proposition are proved in [GI14, B.5] in the special case where π (respectively,

τ) is an irreducible subrepresentation of iGP (ρ) (respectively, i
GLm(E)
P′ (τ ′1 ⊗ · · · ⊗ τ ′l )). The general case

stated here will be deduced from our results in Appendix C, specifically Corollary C.8; this is carried
out in Subsection C.4.
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7.5. Gamma factors and a semisimple converse theorem. On the other hand, let (r,N) be a
Weil-Deligne representation for GLn(F). We denote by

L(s, (r,N)) = det(1− q−sr(Fr)| ker(N)IF )−1,

the L-factor of (r,N), and by ε(s, (r,N), ψ) ∈ C[q−s]× the epsilon factor of [Del73]. We define the
gamma factor of (r,N) by

γ(s, (r,N), ψ) = ε(s, (r,N), ψ)
L(1− s, (r,N)∗)

L(s, (r,N))
,

where (r,N)∗ is the dual Weil-Deligne representation. As above, we view q−s as a formal variable and
consider γ(s, (r,N), ψ) as an element of C(q−s).

For a semisimple parameter φ for G, we define its L-factor, epsilon, and gamma factor, to be the
factors of the Weil–Deligne representation (φ, 0). The standard properties we use of the gamma factors
are:

(1) The γ-factor only depends on the semisimplification of a Weil-Deligne representation: for φ =
r = (r,N)ss, we have γ(s, φ, ψ) = γ(s, (r,N), ψ),;

(2) The γ-factor is multiplicative: for φ ' φ1 ⊕ φ2, we have γ(s, φ, ψ) = γ(s, φ1, ψ)γ(s, φ2, ψ).

See [HM17, Corollary 4.5] for precise references.
Moreover, in this setting, Langlands’ conjecture on the Plancherel measure [Lan76, Appendix II]

is known:

Proposition 7.6. Let π be an irreducible representation of G, k a positive integer, τ an irreducible
representation of GLk(E), τ ′ an irreducible representation of GLk′(E).

(1) Writing, φτ = LLGLk(E)(τ) and φτ ′ = LLGLk′ (E)(τ
′), we have

µ(τs ⊗ τ ′r) = γ(s− r, φτ ⊗ φ∗τ ′ , ψE)γ(r − s, φ∗τ ⊗ φτ ′ , ψE).

(2) Writing, φ = R ◦ LLG(π) and φτ = LLGLk(E)(τ), we have

µ(τs ⊗ π) = γ(s, φτ ⊗ φ∗, ψE)γ(−s, φ∗τ ⊗ φ, ψE)γ(2s,R ◦ φτ , ψ)γ(−2s,R ◦ φ∗τ , ψ),

where

R =


Sym2 if G is odd special orthogonal;

∧2 if G is even orthogonal or symplectic;

As+ if G is even unitary;

As− if G is odd unitary.

Proof. Part (1) follows from [Sha90], multiplicativity of the Plancherel measure and of gamma factors,
and compatibility of the local Langlands correspondence for general linear groups with Langlands–
Shahidi gamma factors of pairs. (See [Kak21, Proposition 16.6] for a similar statement for inner forms
of general linear groups.)

It remains to show (2). For tempered π and τ , Gan–Ichino in [GI16, A.7] explain that this equality
follows from [Art13, Theorem 2.3.1], [Mok15, Proposition 3.3.1], and [KMSW21, Lemma 2.2.3], as a
consequence of the normalization of intertwining operators. For unitary groups, with π irreducible
and τ square integrable, it is also contained in [CZ21b, Theorem 2.5.1].

By the Langlands quotient theorem and multiplicativity of both sides, using (1) for the general
linear groups part of the Levi, we can reduce to the case where π is tempered.

Furthermore, by multiplicativity of the Plancherel measure, multiplicativity of gamma factors, and
as the local Langlands correspondence for general linear groups is compatible with parabolic induction,
we can reduce to the case where τ is supercuspidal and π is tempered. So it is sufficient to show we can
further reduce to where τ is unitary supercuspidal, and this is possible as twisting τ by an unramified
character |det |r translates each variable s by r (noting that in each case R|det |r = |det |2r). �
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For φ1, φ2 : WF → GLn(C) semisimple parameters, denote by Γ(φ1, φ2) the divisor of the rational
function γ(s, φ∗1⊗φ2, ψE)γ(−s, φ1⊗φ∗2, ψE). As the ε-factor is a monomial in q−s, this is equal to the
divisor of the ratio of L-factors

L(1− s, φ1 ⊗ φ∗2)L(1 + s, φ∗1 ⊗ φ2)

L(s, φ∗1 ⊗ φ2)L(−s, φ1 ⊗ φ∗2)

(and does not depend on ψ).

Proposition 7.7. Let φ1, φ2 : WF → GLn(C) be semisimple parameters. If,

Γ(τ, φ1) = Γ(τ, φ2),

for all irreducible semisimple parameters τ : WF → GLm(C) and all m 6 n, then φ1 ' φ2.

Proof. Let χs be the unramified character of WF such that χs(Fr) = q−s and set ν = χ1. Thus
viewing the local factors as a function of χs, we have

L(χs, τ
∗ ⊗ φ) = det(1− τ∗ ⊗ φ⊗ χs(Fr)|VIF

τ∗⊗φ
)−1.

From this description, we see at once that if τ and φ are irreducible, then L(χs, τ
∗ ⊗ φ) = 1 if τ

is not an unramified twist of φ, and otherwise has a pole of order 1 precisely at those χs such that
τ ' φ⊗ χs.

Viewing Γ(τ, φ) as a formal sum of unramified characters by the above translation, considering
each L-factor in turn, it follows that the divisor Γ(τ, φ) has contributions of:

(i) poles of order 1 at those characters χs such that τ ' φχsν;
(ii) poles of order 1 at those characters χs such that τ ' φχsν−1;
(iii) zeroes of order 2 at those characters χs such that τ ' φχs.
For an arbitrary semisimple parameter φ, as the divisor is additive with respect to direct sums, it is
determined by the irreducible summands in the reducible case.

More precisely, for a fixed irreducible τ : WF → GLn(C), let Hτ be the group of unramified
characters χ such that χτ ' τ . and let Gτ = Hom(WF/IF,C×)/Hτ . Then [χ] 7→ τχ−1 defines a
bijection from Gτ to the set of unramified twists of τ , where [χ] denotes the class of χ in Gτ .

With this notation, the divisor Γ(τ, φ) is equal to the sum, over [χ] ∈ Gτ of the expression:

m[χ](−[χν] + 2[χ]− [χν−1])

where m[χ] is the multiplicity of χ−1τ in φ.
Put another way, if we regard both the summands of φ isomorphic to unramified twists of τ and the

divisor Γ(τ, φ) as expressions in the group ring Z[Gτ ], then the map that computes the latter from the
former is simply multiplication by −[ν] + 2[1]− [ν−1] = ([1]− [ν])([1]− [ν−1]). Since this is a non-zero
divisor in Z[Gτ ], this map is injective; that is, we can recover the multiplicites of all summands of φ
that are unramified twists of τ from Γ(τ, φ), so we have proven the desired converse theorem. �

This semisimple converse theorem is inspired by the following tempered converse theorem of Gan
and Savin:

Proposition 7.8 ([GI16, Lemma A.6] and [GS12, Lemma 12.3]). Let φ1, φ2 be tempered SL2-
parameters for GLn(F). If

Γ(τ, φ1) = Γ(τ, φ2),

for all irreducible semisimple parameters τ : WF → GLm(C) and all m 6 n, then φ1 ' φ2.

The proof of this tempered converse theorem is simpler than that of the semisimple converse
theorem as no cancellation can occur in the products of L-factors considered; note that the added
tempered hypothesis allows Gan and Savin to deduce that the full SL2-parameters are isomorphic
(rather than just their semisimplifications).
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7.6. Compatibility with parabolic induction. Compatibility with parabolic induction, Conjec-
ture 6.13, is built into the construction of local Langlands for general linear groups using the classi-
fication of Bernstein and Zelevinsky, and for symplectic and split special orthogonal groups is shown
in [Mou17]. Using Plancherel measures, gamma factors, and the semisimple converse theorem we
establish this conjecture for classical groups (in the special case of symplectic groups and split special
orthogonal groups recovering Moussaoui’s result by a different method):

Proposition 7.9. Let G be a classical p-adic group and P a parabolic subgroup of G with Levi de-
composition P = MN. Let ρ be an irreducible representation of M and π be an irreducible subquotient

of iGM,P(ρ). Then the semisimple parameters ιM,G◦(LLM(ρ))ss and (LLG(π))ss are conjugate in Ĝ(C).

Proof. We can decompose M = M0×M1 and ρ = ρ′⊗π′ with ρ′ =
⊗r

i=1 ρi an irreducible representation
of M0 =

∏r
i=1 GLni(E) a product of general linear groups and π′ an irreducible representation of the

classical group M1.
Fix an integer k and a supercuspidal irreducible representation τ of GLk(E). By multiplicativity

of the Plancherel measure, Proposition 7.5, we can write an equality of rational functions in q−s:

(7.1) µ(τs ⊗ π) = µ(τs ⊗ π′)
r∏
i=1

µ(τs ⊗ ρi)µ(τs ⊗ (ρci )
∨

),

where all Plancherel measures considered are normalized with respect to the additive character ψ or
with respect to ψE.

Let φ′ = R◦LLG(π′), φi = LLGLni (E)(ρi), and φτ = LLGLk(E)(τ). Applying Proposition 7.6 to the

right hand side of Equation 7.1, and using multiplicativity of gamma factors and that LLGLni (E)((ρ
c
i )
∨) '

(φci )
∗, we obtain

µ(τs ⊗ π) = γ(2s,R′ ◦ φτ , ψ)γ(−2s,R′ ◦ φ∗τ , ψ)(7.2)

γ(s, φτ ⊗ (φ′∗ ⊕
⊕r

i=1(φ∗i ⊕ (φci ))), ψE)γ(−s, φ∗τ ⊗ (φ′ ⊕
⊕r

i=1(φi ⊕ (φci )
∗)), ψE),

where R′ is as in Proposition 7.6.
On the other hand, applying Proposition 7.6 to µ(τs ⊗ π) directly, we also have

(7.3) µ(τs ⊗ π) = γ(s, φτ ⊗ φ∗, ψE)γ(−s, φ∗τ ⊗ φ, ψE)γ(2s,R ◦ φτ , ψ)γ(−2s,R ◦ φ∗τ , ψ).

Moreover, R = R′ as G has the same type as G′ (odd special orthogonal, even orthogonal, symplectic,
odd unitary, or even unitary). Therefore, from equations Equations 7.2 and 7.3, we obtain

γ(s, φτ ⊗ φ∗, ψE)γ(−s, φ∗τ ⊗ φ, ψE)

= γ(s, φτ ⊗ (φ′∗ ⊕
⊕r

i=1(φ∗i ⊕ (φci ))), ψE)γ(−s, φ∗τ ⊗ (φ′ ⊕
⊕r

i=1(φi ⊕ (φci )
∗)), ψE).

Letting τ vary, so that φτ varies over all irreducible semisimple parameters, and applying Proposition
7.7, we see that, up to semisimplification the Langlands parameter φ is equal to the sum φ′⊕

⊕r
i=1(φi⊕

(φci )
∗). In other words, R(LLG(π)) is (up to semisimplification) GLm(C)-conjugate to R(ιM,G ◦

LLG(ρ)). By [GGP12, Section 8] (see Section 7.2), LLG(π) is thus (up to semisimplification) Ĝ(C)-
conjugate to the correct parameter. �

Remark 7.10. For tempered irreducible representations with tempered supercuspidal support, using
Gan and Savin’s tempered converse theorem (Theorem 7.8) in place of the semisimple converse theorem
in the above argument one can deduce that the full (tempered) SL2-parameters are isomorphic.

7.7. Compatibility with automorphisms of the coefficient field.

Proposition 7.11. Let G be a classical p-adic group, π be an irreducible representation of G, and σ :

C→ C be an automorphism of fields fixing
√
q. Then LLG(πσ)ss is conjugate to (LLG(π)σ)ss in Ĝ(C).

Proof. We extend σ to an automorphism of C(q−s) via its natural action on the coefficients and via
the trivial action on q−s.
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If dx is a C-valued self-dual Haar measure on F with respect to ψ, then σ ◦ dx is a self-dual Haar
measure with respect to σ ◦ψ. It follows that if du dū is the Haar measure constructed in [GI14, B.2]
on a pair of opposite unipotent radicals U×U normalized with respect to ψ, then σ ◦ du σ ◦ dū is the
Haar measure normalized with respect to σ ◦ ψ. Thus it follows from Proposition B.7, that

(7.4) µσ◦ψ((τσ)s ⊗ πσ) = σ(µψ(τs ⊗ π)),

where we also use σ to denote the extension of σ to an automorphism of C(q−s).
For K ∈ {E,F}, the uniqueness of local epsilon factors and their explicit definition as Tate’s

constants in the GL1(K) setting implies that, for any representation ϕ : WK → GLn(C), we have

(7.5) σ(γ(s, ϕ, ψK)) = γ(s, ϕσ, σ ◦ ψK).

Write φ = R ◦ LLG(π), φ′ = R ◦ LLG(πσ), and φτ = LLGLk(F)(τ). Now LLGLk(E) is equivariant
for σ, which follows from its characterization in terms of local factors and the Galois action on them
– see [BH00, Theorem 3.2] for this action on the GLk(E)-side. Hence writing φστ = (φτ )σ, we have

φστ = LLGLk(E)(τ
σ).

Thus, by Proposition 7.6 and Equation 7.6, we have

γ(s, φστ ⊗ φ′∗, ψσE)γ(−s, (φστ )∗ ⊗ φ′, ψσE)γ(2s,R ◦ φστ , ψσ)γ(−2s,R ◦ (φστ )∗, ψσ) =

σ(γ(s, φτ ⊗ φ∗, ψE)γ(−s, φ∗τ ⊗ φ, ψE)γ(2s,R ◦ φτ , ψ)γ(−2s,R ◦ φ∗τ , ψ)).

We have (φ∗)σ = (φσ)∗ and (φ∗τ )σ = (φστ )∗. Whence, applying Equation 7.5, we find

γ(s, φστ ⊗ φ′∗, ψσE)γ(−s, (φστ )∗ ⊗ φ′, ψσE) = γ(s, φστ ⊗ (φ∗)σ, ψσE)γ(−s, (φ∗τ )σ ⊗ φσ, ψσE).

Hence by Proposition 7.7, we deduce that, up to semisimplification, φ′ and φσ are conjugate in GLm(C).

By [GGP12, Section 8] (see Section 7.2), (LLG(πσ))ss is thus Ĝ(C)-conjugate to (LLG(π)σ)ss. �

7.8. Compatibility with group isomorphisms.

Proposition 7.12. Let G be a classical p-adic group, π be an irreducible representation of G, and α :
G→ G′ be an isomorphism of reductive groups. Let απ be the irreducible representation of G′ obtained
by pre-composing with α−1. Then the induced isomorphism Lα : LG′(C) → LG(C) (which is well-

defined up to Ĝ-conjugacy) takes the Ĝ′(C) conjugacy class of LLG′(
απ)ss to the Ĝ(C)-conjugacy

class of LLG(π)ss.

Proof. Write φ = R ◦ LLG(π), and φ′ = R ◦ Lα ◦ LLG′(
απ). If we show that

φ, φ′ : WF × SL2(C)→ GLm(C)

are isomorphic in GLm(C), then by the properties of R (see Section 7.2), the Ĝ(C)-conjugacy class
of LLG(π) is equivalent to that of Lα ◦ LLG′(

απ), as desired. Let φτ = LLGLk(F)(τ). We now use an
argument similar to that of Proposition 7.11 to show that φ is equivalent to φ′ after semisimplification.

By Appendix C.1, we have

(7.6) µG
ψ (τs ⊗ π) = µG′

ψ (τs ⊗ απ),

where we have identified C[M/M◦] ' C[M′/(M′)◦] ' C[q±s], where M = GLk(E) × G and M′ is
GLk(E)×G′.

The gamma factor associated to R′ ◦ LLG′(απ) is an invariant of the isomorphism class of R′ ◦
LLG′(απ), so we can and do choose our representation R′ = R ◦ Lα. Now, by Proposition 7.6 and
Equation 7.6, we have

γ(s, φτ ⊗ φ∗′, ψσE)γ(−s, φ∗τ ⊗ φ′, ψE)γ(2s,R ◦ φτ , ψ)γ(−2s,R ◦ φ∗τ , ψ) =

γ(s, φτ ⊗ φ∗, ψE)γ(−s, φ∗τ ⊗ φ, ψE)γ(2s,R ◦ φτ , ψ)γ(−2s,R ◦ φ∗τ , ψ).

We have φ∗′ = φ′
∗
, whence

γ(s, φτ ⊗ φ′∗, ψσE)γ(−s, φ∗τ ⊗ φ′, ψE) = γ(s, φτ ⊗ φ∗, ψE)γ(−s, φ∗τ ⊗ φ, ψE).
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Hence by Proposition 7.7, we deduce that, after semisimplification, φ′ and φ are conjugate in GLm(C).
�

Remark 7.13. It is already known that LLGLk(F) is compatible with isomorphisms (even without
semisimplification) by [Hai14, Proposition 5.2.5]. For classical p-adic groups, Proposition 7.12 estab-
lishes Conjecture 6.16 – the weakened form of [Hai14, Conjecture 5.2.4] where the parameters are
considered only up to semisimplification.

7.9. Compatibility with integrality. Choose an isomorphism Q` ' C to obtain an `-adic cor-
respondence for classical groups. The Langlands parameters of supercuspidal representations are
discrete by [Art13, Section 6], [Mok15] [KMSW21, Theorem 1.6.1]. Moreover, as the centre of G is
compact all central characters are integral, hence all supercuspidal representations by [Vig96, II 4.12],
and all Frobenius semisimple discrete parameters are integral by Proposition 6.22. Therefore, by
compatibility with parabolic induction (Proposition 7.9), Proposition 6.22 and [DHKM24, Corollary
1.6], we obtain:

Proposition 7.14. Let G be a classical p-adic group. An irreducible representation of G is integral
if and only if its associated `-adic Langlands parameter is integral.

7.10. The extended packet conjecture. We prove Conjecture 6.14 for quasi-split classical groups:

Proposition 7.15. Let G be a quasi-split classical p-adic group and (U, ψ) be a Whittaker datum
for G. In each extended L-packet of G there exists a unique ψ-generic representation.

Proof. By Proposition 6.15, assuming Conjecture 6.7 for G, it suffices to check Conjectures 6.8 and
6.11. In fact, we do not need properties (3), (4) of Conjecture 6.7, as they were not used in the proof
of the proposition, and so Conjecture 6.7 follows from the main theorems of the works cited in Section
7.3.

The existence statement of Conjecture 6.8 – the tempered packet conjecture – is established for
symplectic groups and split odd special orthogonal groups in [Art13, Proposition 8.3.2], and for quasi-
split unitary groups in [Mok15, Corollary 9.2.4]. For the uniqueness statement of Conjecture 6.8 see
[Ato17] (see also the introduction of ibid. for a history of previous proofs of the same result).

By Proposition 6.10, Conjecture 6.11 is equivalent to the Gross–Prasad–Rallis Conjecture 6.9. Gan
and Ichino in [GI16, Proposition B.1] prove Conjecture 6.9 using other properties of the expected local
Langlands correspondence which they remark are known for classical groups [GI16, B.2]. �

7.11. The semisimple local Langlands correspondence for classical groups. It follows that
the semisimplifications of the local Langlands correspondences for classical groups of Arthur et al. are
“semisimple correspondences” in the sense of the last section:

Corollary 7.16. The semisimple local Langlands correspondence for a classical p-adic group exists
and satisfies the basic desiderata of Definition 6.18.

Proof. By Proposition 6.20, and Propositions 7.9, 7.11, 7.12, 7.15, and their counterparts for general
linear groups, it remains to check the following basic properties:

(1) Finite fibres, surjectivity in the quasi-split case, and the Langlands classification (which is
built into the construction starting from the tempered case) follow from the main theorems.

(2) compatibility with unramified twisting and the central character condition both follow as the
centre of a classical group is compact (so these conditions are empty for G), and for Levi
subgroups these follow from compatibility with the correspondence for general linear groups.

�

8. Local Langlands in families

8.1. The universal unramified character. For the remainder we suppose F/Qp. Let M be a Levi
subgroup of G. We first define the universal unramified character over R

νuniv,M,R : WF → (ZM̂)IF,◦(R[M/M◦]).
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The Kottwitz isomorphism (cf. [Hai14, Section 3.3]), defines an isomorphism

Hom(M/M◦,−) ' ((ZM̂)IF,◦)Fr

of diagonalisable Z-group schemes. Take the R[M/M◦] point of ((ZM̂)IF ,◦)Fr corresponding to the
universal character χuniv,M,R : M→ R[M/M◦]×. The surjection of tori:

(ZM̂)IF,◦ → ((ZM̂)IF,◦)Fr

is split, since its kernel is (1 − Fr)(ZM̂)IF,◦, which is a connected torus. So (choosing a splitting) we

obtain an R[M/M◦] point of (ZM̂)IF,◦. This gives us an unramified Langlands parameter νuniv,M,R for
ZM̂ over R[M/M◦] (taking Fr to the R[M/M◦]-point we constructed). Note that (as a parameter) it
depends on the choice of splitting, but by construction its ZM̂-conjugacy class is independent of this
choice.

For any field K of characteristic zero, and any K-point x of Spec(R[M/M◦]), the parameter νx =
(νuniv,M,R)x corresponds to χx = (χuniv,M,R)x under local Langlands for (unramified) characters of M
by [Hai14, Section 3.3].

8.2. Interpolating a semisimple correspondence in families; the banal case. We need the
following definitions from [DHKM20]:

(1) A prime ` is called GL -banal if the fibre Z1(W0
F, Ĝ)F` is reduced.

(2) The integer NĜ from [DHKM20, Section 4].

(3) Let N GL denote the product of all primes dividing NĜ and all non- GL -banal primes.

Definition 8.1. Suppose C = (CM) is a semisimple correspondence for G over Q. Let R be a subring
of Q. The stable centre ZSt

R (G) subring of ZG,R consisting of all elements which act uniformly on all

extended L-packets for C over Q.

Theorem 8.2. Suppose C = (CM) is a semisimple correspondence for G over Q.

(1) There exists a unique quasi-finite morphism

C IFG : (R GL ,Q(
√
q))

Ĝ → ZG,Q(
√
q)

compatible with C .

(2) Let NG denote the product of the non-G-banal primes, then the image of (R GL ,Z[
√
q−1,1/NG])

Ĝ

under C IFG is contained in ZG,Z[
√
q−1,1/NG].

(3) The image of C IFG on (R GL ,Z[
√
q−1,1/NG])

Ĝ is contained in the subrings ZSt
G,Z[
√
q−1,1/NG]

,

and Zad
G,Z[
√
q−1,1/NG]

.

(4) Suppose further G is F-quasi-split. Let MG = lcm(NG,N GL ). Then, the composition with

the natural map Zad
G,Z[
√
q−1,1/MG]

→ EZ[
√
q−1,1/MG](G),

(R GL ,Z[
√
q−1,1/MG])

Ĝ C IFG−−−−→ Zad
G,Z[
√
q−1,1/MG] → EZ[

√
q−1,1/MG](G)

is an isomorphism, and these maps induce isomorphisms

(R GL ,Z[
√
q−1,1/MG])

Ĝ ' ZSt
G,Z[
√
q−1,1/MG] ' EZ[

√
q−1,1/MG](G).

Proof. Let [M, ρ]G ∈ BQ(G) be a Q-inertial class, indexing a Z[1/NG]-block. Choose a representa-

tive (M, ρ) ∈ [M, ρ]G with finite order central character. Hence ρ is defined over a number field K

and OK-integral by Proposition 4.8. We pick a semisimple parameter φ in the M̂(Q)-conjugacy class
CM(M, ρ).

We first consider the statements over Z` for appropriate `. For any embedding Q ↪→ Q`, by
Proposition 6.22 and (C 4), the `-adic parameter φ⊗Q` is integral. Thus, after maybe conjugating by

some m ∈ M̂(Q`), the parameter φ` = (φ⊗Q`)m takes values in ML (Z`) and is `-adically continuous.
By the universal property of Re

ML ,Z` (Theorem 6.6 (2)), this integral parameter corresponds to some
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map of Z`-algebras Re
ML ,Z`

→ Z`, for e sufficiently large. Similarly, the “universal” unramified twist

φ` · νuniv,Z` : WF → ML (Z`[M/M◦]) corresponds to a map of Z`-algebras

ΨM
[M,ρ],` : Re

ML ,Z`
→ Z`[M/M◦],

and its pushforward along ιM,G : ML ↪→ GL corresponds to the composition

ΨG
[M,ρ],` : Re

GL ,Z`
−→ Re

ML ,Z`
→ Z`[M/M◦].

For any character χ : M/M◦ −→ Q`, the composition Re
ML ,Z`

→ Z`[M/M◦]
χ−→ Q` corresponds to

the parameter φ` · zχ, which, by property (C 3), belongs to CM(M, ρ.χ). In particular, if χ belongs to

the stabilizer H(M,ρ) of ρ under unramified twisting, then this parameter is M̂(Q`)-conjugate to φ`.
This implies that

ΨM
[M,ρ],`

(
(Re

ML ,Z`
)M̂
)
⊂ Z`[M/M◦]H(M,ρ) .

On the other hand, Property (C 6) says that ιM,G(φ` · zχ) belongs to CG(M, ρ · χ). Since (M, ρ · χ) is
G-conjugate to (M, ρ · χw) for any w ∈W(M,ρ), this implies that

ΨG
[M,ρ],`

(
(Re

GL ,Z`
)Ĝ
)
⊂
(
Z`[M/M◦]H(M,ρ)

)W(M,ρ)
.

We claim that the restricted and corestricted map

(8.1) ΨG
[M,ρ],` : (Re

GL ,Z`
)Ĝ −→

(
Z`[M/M◦]H(M,ρ)

)W(M,ρ)

is finite. Indeed, we already know from [DHKM24, Cor. 2.4] that the map (Re
GL ,Z`

)Ĝ → (Re
ML ,Z`

)M̂

is finite. Moreover, denoting by AM the maximal split central torus of M, the composition Z`[AM] −→
Re

AL M,Z`
−→ (Re

ML ,Z`
) ML −→ Z`[M/M◦] is the natural map twisted by the central character ωρ of ρ,

so it is finite.
Observe that we haven’t used any hypothesis on the prime ` so far. But now, our assumption

that ` is banal implies, by Theorem 4.22 and Proposition 3.4, that the RHS of (8.1) is a factor of

ZG,Z` . Therefore, taking the product of all maps ΨG
[M,ρ],` composed with the projection (R GL ,Z`)

Ĝ →
(Re

GL ,Z`
)Ĝ yields a morphism of Z`-algebras

(8.2) Ψ` : (R GL ,Z`)
Ĝ → ZG,Z`

that is compatible with the given semisimple correspondence CG,Q` by design. Note that this com-
patibility makes this map unique since the target is reduced and `-torsion free. For the same reason,
the image of Ψ is contained in Zst

G,Z`
by definition of this ring, and is contained in Zad

G,Z`
by Property

(C 8).
Suppose now that G is F-quasi-split, and fix a depth n. Since ` is banal, we know from Theorem

5.21 that the natural map ZG,Z`,n → EG,Z`,n is surjective. Composing with (8.2), we thus get a finite
morphism

Φ`,n : (R GL ,Z`)
Ĝ → EG,Z`,n.

Let en be the sum of all primitive idempotents ε in (R GL ,Q`)
Ĝ such that Φ`,n(ε) 6= 0. So en cuts out

finitely many connected components of the space of conjugacy classes of semisimple Q`-parameters,

and the “supercuspidal supports and genericity” condition (C 5) tells us that Φ`,n : en(R GL ,Q`)
Ĝ →

EG,Q`,n induces a bijection on Q`-points. Since Φ`,n is finite and both source and target are products of

normal integral Q`-algebras, we deduce that Φ`,n induces an isomorphism en(R GL ,Q`)
Ĝ ∼−→ EG,Q`,n.

Let us now assume further that ` does not divide MG. In this case, it follows from Proposition 6.2

and Theorem 6.7 of [DHKM20] that all idempotents of (R GL ,Q`)
Ĝ – in particular en – lie in the integral

subring (R GL ,Z`)
Ĝ and, moreover, that en(R GL ,Z`)

Ĝ is a product of normal integral flat Z`-algebras.
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As above, by finiteness, it follows that Φ`,n induces an isomorphism en(R GL ,Z`)
Ĝ ∼−→ EG,Z`,n, since

EG,Z`,n is reduced and flat over Z`. Going to the limit over n, we get an isomorphism

Φ` : (R GL ,Z`)
Ĝ ∼−→ EG,Z` .

We now descend the statements to Z`[
√
q]. For banal `, Galois-invariance (C 7) and Corollary 3.6

imply that Ψ`((R GL ,Z`[
√
q])

Ĝ) ⊂ ZG,Z`[
√
q]. Assuming invariance under automorphisms of G, we even

get that Ψ`((R GL ,Z`[
√
q])

Ĝ) ⊂ Zad
G,Z`[

√
q] hence, by Theorem 5.17, that Φ`(R GL ,Z`[

√
q])

Ĝ) ⊂ EG,Z`[
√
q].

By descent, Φ` thus induces an isomorphism

Φ` : (R GL ,Z`[
√
q])

Ĝ ∼−→ EG,Z`[
√
q].

We now consider the statements over Q and Q(
√
q). Taking up the notation [M, ρ] and φ from

the beginning of this proof, we would like to mimic the construction of Ψ` over Z` and Q`, but we
can’t use the universal property of Re

GL ,Z`
on the nose. Instead, let IeF be the open subgroup of IF

introduced in Corollary 4.6 of [DHKM20], and let Z1(WF/I
e
F, Ĝ) = Spec(Se

GL ) be the corresponding

affine scheme of 1-cocycles over Z[1/p]. By Proposition 4.7 of loc.cit., we have a closed embedding

Z1(WF/I
e
F, Ĝ) ↪→ Z1(W0

F/P
e
F, Ĝ) that induces an isomorphism on the categorical quotients over Q,

that is, an isomorphism of Q-algebras (Re
GL ,Q)Ĝ ∼−→ (Se

GL ,Q)Ĝ. Now we can repeat the argument

that we had over Z`. By universality, the parameter ιM,G ◦ (φ · νuniv,Q) corresponds to a morphism

ΨG
[M,ρ],Q : Se

GL ,Q −→ Q[M/M◦] such that ΨG
[M,ρ],Q((Se

GL ,Q)Ĝ) ⊂ (Q[M/M◦]H(M,ρ))W(M,ρ) . Taking the

limit of these maps provides the desired morphism

ΨQ : (R GL ,Q)Ĝ = (S GL ,Q)Ĝ −→ ZG,Q.

As above, this map descends to Q(
√
q) and, composing with the action of the Bernstein center on the

Gelfand-Graev representations, we get the isomorphism

ΦQ : (R GL ,Q)Ĝ ∼−→ E GL ,Q

that also descends to Q(
√
q). The theorem now follows from Lemma A.3. �

Remark 8.3. Rather than working locally in the proof of Theorem 8.2, and piecing together using
Lemma A.3, we could have followed the last strategy (defining ΨQ) working directly over Z[1/MG]

using Proposition 6.2 of [DHKM20] and choosing a Z[1/MG]-integral representative of the semisimple

parameter of ρ using an analogue of [DHKM24, Corollary 2.10] for Z1(WF/I
e
F, Ĝ). We have preferred

the strategy in the proof as the first part requires no hypothesis on `, and along the way we re-
cover Theorem 8.2 (1) and (2) over Z[

√
q−1, 1/NG] without needing to invert any additional primes

dividing MG/NG.

8.3. Local Langlands in families for general linear groups. Given the theory of moduli of
Langlands parameters over Z[1/p] of [DHKM20], the mild argument used in the proof of Theorem 8.2
to extend from local to global integral coefficients (namely, Lemma A.3) also applies to the GLn(F)
theorem of the second and fourth authors [HM18], and we obtain:

Corollary 8.4. There are natural isomorphisms

(RGLn,Z[
√
q−1])

GLn ZGLn(F),Z[
√
q−1] EGLn(F),Z[

√
q−1],

where the second is the canonical map, and the first interpolates the semisimple local Langlands
correspondence of [HT01, Hen00, Sch13].
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Appendix A. A few abstract lemmas

We need the following simple lemmas. The first is a variant of a standard lemma from commutative
algebra:

Lemma A.1. Let R be a commutative ring, and H be a locally profinite group such that there exists
a compact open subgroup of H of pro-order invertible in R. Let Q be a finitely generated projective
smooth R[H]-module, R′ a commutative R-algebra, and M a smooth R[H]-module. Then the natural
map

HomR[H](Q,M)⊗ R′
∼−→ HomR′[H](Q⊗ R′,M ⊗ R′)

f ⊗ r′ 7→ r′(f ⊗ 1) defines an isomorphism.

Proof. Using the Hom-tensor adjunction, it suffices to prove that the natural map

HomR[H](Q,M)⊗R R′ −→ HomR[H](Q,M ⊗R R′)

is an isomorphism. Writing the R-module R′ as the cokernel of a map of free R-modules, it suffices
to see that M 7→ HomR[H](Q,M) commutes with cokernels and all coproducts. Commutation with
cokernels follows from projectivity, and commutation with coproducts follows from finite generation,
which together with projectivity implies compactness. In more details, finite generation implies that
Q is a direct factor of some (indH

U(R))n for some compact open subgroup U of H of pro-order invertible

in R. So, compactness of Q follows from that of indH
U(R), which itself follows from the fact that the

functor of U-invariants is exact and commutes with all coproducts. �

Lemma A.2. Let A be an R-algebra with centre Z(A) and R′ a flat commutative R-algebra, such
that either

(1) A is a flat R-module and R is Noetherian; or
(2) A is finitely generated over Z(A).

Then Z(A)⊗R R′ = Z(A⊗R R′), the centre of A⊗R R′.

Proof. The centre of A is the kernel of the R-linear map f : A →
∏
a∈A A that is the direct product

over A of the commutators b 7→ [b, a]. Since R′ is flat over R we get

0→ Z(A)⊗R R′ → A⊗RR′
f⊗1−−−→

(∏
a∈A

A

)
⊗R R′.

By [Goo72, Theorem 1], if R is Noetherian and A is flat, we find that the natural map

φ : (
∏

A)⊗R R′ →
∏

(A⊗R R′)

is an injection3. Now the result follows as the kernel of φ ◦ (f ⊗ 1) : A ⊗R R′ →
∏

(A ⊗R R′) is
precisely Z(A⊗R R′).

If A is finitely generated over Z(A), then choosing a generating set G we can describe the centre
of A as the kernel of the map f ′ : A →

⊕
a∈G A, and as direct sums commute with tensor products,

we can conclude in a similar fashion. �

To deduce morphisms with global integral coefficients from knowing they define locally integral
morphisms we have the following lemma:

Lemma A.3. Let K be a number field with ring of integers O, N be an integer, and R,Z be torsion-
free O[1/N]-algebras, and suppose that we have a morphism

φ : R⊗K→ Z⊗K

such that for all prime ideals l prime to N, and all associated embeddings K ↪→ Q`, the morphism φ` :
R⊗Q` → Z⊗Q` satisfies φ`(R⊗ Z`) 6 Z⊗ Z`.

(1) Then φ(R) 6 Z, hence φ defines a morphism φ : R→ Z of O[1/N]-algebras.

3This is also true if R′ is Mittag-Leffler over R by [Sta18, Tag 059M].

https://stacks.math.columbia.edu/tag/059M
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(2) Suppose further φ : R ⊗ K
∼−→ Z ⊗ K is an isomorphism and that it defines isomorphisms

locally φ`(R⊗ Z`) ' Z⊗ Z`. Then φ defines an isomorphism φ : R
∼−→ Z of O[1/N]-algebras.

Proof. Consider Z 6 φ(R) + Z. As φ(R) 6 Z⊗K, it implies that the quotient (φ(R) + Z)/Z is prime
to N torsion. However, Z` is flat over O[1/N] and φ`(R ⊗ Z`) ⊆ Z ⊗ Z`, hence the l-torsion is zero.
Hence the quotient is trivial, and φ(R) 6 Z. The second part follows by applying the same argument
to φ−1. �

Appendix B. Intertwining operators

In this appendix we develop the theory of intertwining operators in a general and purely algebraic
way, using the ideas of [Wal03] and [Dat05], which probably trace their origin to unpublished lecture
notes of Bernstein. The point of doing this is to eventually deduce, in Appendix C, more general and
precise versions of well-known properties of the Harish–Chandra j-function and Plancherel measure.

We fix a maximal split torus A0 of G and a minimal parabolic P0 of G containing A0. A parabolic
subgroup containing A0 is called semistandard, and if, moreover, it contains P0, it is called standard.
A semistandard (resp. standard) parabolic subgroup has a unique Levi subgroup containing A0 which
we call semistandard (resp. standard). Given a semistandard (resp. standard) parabolic subgroup, we
always choose Levi decompositions with semistandard (resp. standard) Levi factors.

Let R be a Noetherian Z[
√
q−1]-algebra, let P = MUP and Q = MUQ be Levi decompositions of

two semistandard parabolic subgroups of G with the same Levi subgroup M, and fix µ, µ′ two choices
of Z[ 1

p ]-valued Haar measures on UP and UQ. Let AM be the split component of the center of M. Let

σ be a smooth R[M]-module. Let iGP and rG
P be the normalized parabolic induction and restriction

functors. Let 6 denote the Bruhat ordering on the set WM\WG/WM, which is defined by

w 6 w′ if and only if QwP ⊂ Qw′P.

We define the following subfunctors of iGP :

F̃<wQP (σ) =

{
f ∈ iGP (σ) : Supp(f) ∩

( ⋃
w′<w

Qw′P

)
= ∅

}
=
{
f ∈ iGP (σ) : Supp(f) ∩QwP ⊂ QwP

}
=
{
f ∈ iGP (σ) : Supp(f) ∩QwP is compact mod P

}
,

and similarly define the subfunctor F̃6w
QP ⊂ F̃<wQP by replacing < with 6. Note that if w1 6 w2 then

F̃6w2

QP ⊂ F̃6w1

QP . Any refinement of ≤ to a total ordering gives a filtration of iGP by subfunctors.

The step of the filtration F̃<1
QP(σ) consists of functions f such that Supp(f) ∩QP is compact mod

P, and for such f we can define the map

q : F̃<1
QP(σ)→ σ

f 7→
∫

UQ/(UQ∩UP)

f(u)du =

∫
UQ∩UP

f(u)du.

where P is the opposite parabolic to P with respect to M, and the equality follows from UQ =
(UQ ∩UP)(UQ ∩UP).

Let F<wQP be the image of F̃<wQP in the quotient map iGP (σ)→ rG
Q ◦ iGP (σ), and similarly for 6. Then

our map q factors through F<wQP and defines an isomorphism

F<1
QP/F

61
QP(σ)

'−→ σ.

Given w in WM\WG/WM denote by ẇ a choice of lift of a representative of w to an element of G.
For every w and ẇ one can also construct isomorphisms

F<wQP /F
6w
QP

'−→ iMM∩w(P) ◦ w ◦ r
M
w−1(Q)∩M(σ).
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Consider the following ideals of the ring R[AM]:

Iσ = ker(R[AM]
σ−→ EndR(σ))

IQP
σ = ker

(
R[AM]→ EndR((rG

Q ◦ iGP/F<1
QP)(σ))

)
IQ,w
σ = ker

(
R[AM]→ EndR(ẇ(rM

w−1(Q)∩M(σ)))
)

, for w ∈WM\WG/WM

Jσ =
∏
w<1

IQ,w
σ .

Lemma B.1. We have inclusions
Jσ ⊂ IQP

σ ⊂
⋂
w<1

IQ,w
σ .

Proof. The quotient (rG
Q ◦ iGP/F<1

QP)(σ) has a filtration with subquotients isomorphic to

iMM∩wP ◦ ẇ ◦ rM
M∩w−1Q(σ)

for w < 1, and the action of R[AM] on iMM∩wP ◦ẇ◦rM
M∩w−1Q(σ) is via its action on ẇ(rM

M∩w−1Q(σ)). �

Definition B.2. An element b ∈ R is (σ,P,Q)-singular if it is in the intersection (Iσ + Jσ) ∩ R and
it is not a zero divisor.

Lemma B.3. Suppose b is (σ,P,Q)-singular.

(1) If σ′ is a subquotient of σ, then b is (σ′,P,Q)-singular.
(2) If f : R → R′ is a homomorphism of rings such that f(b) is not a zero divisor, then f(b) is

(σ ⊗R,f R′,P,Q)-singular.

Proof. Let s be an element of R[AM]. If s kills σ, it must also kill σ′, so Iσ ⊂ Iσ′ . Since s acts
on an R[w(M) ∩M] module via the morphism AM → Aw(M)∩M, if s kills the R[w(M) ∩M]-module

ẇ(rM
M∩w−1Q(σ)) for some w < 1, then it must also kill ẇ(rM

M∩w−1Q(σ′)) because s commutes with any

morphism of R[w(M)∩M]-modules. This proves that Jσ ⊂ Jσ′ . Thus (Jσ + Iσ)∩R ⊂ (Jσ′ + Iσ′)∩R.
Using a similar argument, the second claim follows from the fact that Iσ ⊗R R′ ⊂ Iσ⊗RR′ and

Jσ ⊗R R′ ⊂ Jσ⊗RR′ after identifying R[AM] ⊗R R′ ' R′[AM]. For the latter inclusion, we invoke the
fact that ẇ ◦ rM

M∩w−1Q commutes with extension of scalars. �

Let us relate this to the terminology that an R[M]-module σ “is (P,Q)-regular,” which appears in
[Dat05, Lemma 2.10], and which is defined to mean Iσ +

⋂
w<1 I

Q,w
σ = R[AM] or, equivalently, that

Iσ + IQP
σ = R[AM].

Lemma B.4. (1) An R[M]-module σ is (P,Q)-regular if and only if 1 is (σ,P,Q)-singular.
(2) If b is (σ,P,Q)-singular, then σ ⊗R R[1/b] is (P,Q)-regular.
(3) Suppose b ∈ R is not a zero divisor and σ has bounded b-power torsion. If σ ⊗R R[1/b] is

(P,Q)-regular, then br is (σ,P,Q)-singular for some positive integer r.

Proof. If 1 is (σ,P,Q)-singular we have

R[AM] = Iσ + Jσ ⊂ Iσ + IQP
σ ⊂ Iσ +

⋂
w<1

IQ,w
σ ,

so all these ideals are R[AM ], and σ is (P,Q)-regular. Conversely, suppose σ is (P,Q)-regular, i.e.,
Iσ +

⋂
w<1 I

Q,w
σ = R[AM]. If we write 1 = i+ l with i ∈ IσR

and l ∈
⋂
w<1 I

Q,w
σR

, then

1 = 1|WG|−1 = (i+ l)|WG|−1 ∈ IσR
+
∏
w<1

IQ,w
σR

= IσR
+ JσR

,

so 1 is (σ,P,Q)-singular.
For (2), suppose b is a non-zero divisor in (Iσ +Jσ)∩R. Then if R′ = R[1/b] and σR′ = σ⊗R R′, we

have Iσ ⊗R′ ⊂ IσR′ and Jσ ⊗R′ ⊂ JσR′ by arguing as in the proof of Lemma B.3. Hence IσR′ + JσR′

contains a unit and is therefore equal to R′[AM].
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For (3), suppose conversely that IσR′ + JσR′ = R′[AM]. To show that some power of b is (σ,P,Q)-

singular, let us first restrict to the case that σ is b-torsion free. Then each of the modules ẇ(rM
M∩w−1Q(σ))

is also b-torsion free, and it follows that IσR′ = Iσ ⊗R′ and JσR′ = Jσ ⊗R′. Hence there is an r such
that br is in Iσ + Jσ.

In general, the torsion submodule σtor is bs-torsion for some fixed integer s. If σtf denotes the
b-torsion free quotient of σ, we have σR′ = σtf ⊗R R′, so the previous paragraph implies there exists
an r such that br is in Iσtf + Jσtf . It follows that bs+r is in Iσ + Jσ. �

Suppose b is an element of R that is (σ,P,Q)-singular and choose any decomposition

b = jσ + iσ

into elements jσ ∈ Jσ and iσ ∈ Iσ. Since jσ is in IQP
σ , it defines a morphism

jσ : rG
Q ◦ iGP (σ)→ F<1

QP(σ).

We compose it with the map q above to get an M -equivariant morphism rG
Q ◦ iGP (σ) → σ. Passing

through the isomorphism of Frobenius reciprocity, i.e., HomR[M](r
G
Q◦iGP (σ), σ) ' HomR[G](i

G
P (σ), iGQ(σ)),

we obtain a morphism iGP (σ)→ iGQ(σ). Finally, we extend scalars to R[1/b] and divide this morphism

by b to obtain JQ|P(σ), the intertwining operator. More compactly, we can write this

JQ|P(σ) : iGP (σ)[1/b]→ iGQ(σ)[1/b]

f 7→ JQ|P(σ)(f),

where

JQ|P(σ)(f)(g) :=
1

b

∫
UQ∩UP

jσ(gf)(u) du,

where gf denotes the image of gf under the map iGP (σ) → rG
Q ◦ iGP (σ). While jσ(gf) is an element

of F<1
QP and thus not, strictly speaking, a function on G, we can lift it to F̃<1

QP ⊂ iGP (σ) and take the

integral
∫
jσ(gf)(u)du, which factors through parabolic restriction.

If f is in F̃<1
QP(σ), then jσf = bf − iσf = bf , so the expression simplifies to

JQ|P(σ)(f)(1) =

∫
UQ∩UP

f(u)du.

Lemma B.5 ([Dat05] Lemma 7.12). The intertwining operator JQ|P(σ) is the unique element of

HomR[1/b][G](i
G
P (σ)[1/b], iGQ(σ)[1/b]) having the form JQ|P(σ)(f)(1) =

∫
UQ∩UP

f(u)du on f in F̃<1
QP(σ).

In particular, JQ|P(σ) does not depend on our choice of decomposition of b into jσ + iσ.

Remark B.6. In fact, JQ|P(σ) only depends on b in that we require the extension of scalars to R[1/b]
to define it. Given any b′ dividing b in R such that b′ is also (σ,P,Q)-singular, the same operator
JQ|P(σ) descends to R[1/b′].

B.1. Properties of intertwining operators.

Proposition B.7. Suppose b is (σ,P,Q)-singular, and let f : R→ R′ be a homomorphism of Z[
√
q−1]-

algebras such that f(b) is not a zero divisor and let σR′ denote σ⊗R R′. Suppose there is a morphism
of R[M]-modules q : σ → σ′ and b′ is (σ′,P,Q)-singular. Then the following diagrams commute,
respectively,

iGP (σ)[1/b] iGQ(σ)[1/b]

iGP (σR′)[1/f(b)] iGQ(σR′)[1/f(b)]

JQ|P(σ)

id⊗1 id⊗1

JQ|P(σR′ )

iGP (σ)[1/(bb′)] iGQ(σ)[1/(bb′)]

iGP (σ′)[1/(bb′)] iGQ(σ′)[1/(bb′)]

JQ|P(σ)

JQ|P(σ′)
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Proof. By Lemma B.5, each of the horizontal arrows on the top row has, and is uniquely characterized

by, the property that for any h ∈ F̃<1
QP(σ), JQ|P(σ)(h)(1) is given by

∫
UQ∩UP

h(u)du. The same goes

for the horizontal arrows on the bottom row with the inputs replaced with (σR′ ,R
′[1/f(b)]) and

(σ′,R[1/(bb′)]), respectively. But the integral
∫

UQ∩UP
h(u)du is a finite sum and commutes with

extension of scalars along f : R→ R′, which proves the commutativity of the first diagram. Similarly,

q

(∫
UQ∩UP

h(u)du

)
=

∫
UQ∩UP

(q ◦ h)(u)du,

which completes the proof. �

In practice, given a homomorphism f : R→ R′ and a (σ,P,Q)-singular element b of R, it may be
hard to tell whether f(b) is not a zero divisor. The following lemma guarantees at least one such b
under nice circumstances, given the existence of a (σ ⊗R R′,P,Q)-singular element of R′.

Lemma B.8. Suppose f : R → R′ is a homomorphism of noetherian integral domain Z[
√
q−1]-

algebras with kernel P. Suppose σ is an admissible and finitely generated R[M]-module that is
R-torsion free, and suppose there exists b′ ∈ R′ that is (σ ⊗R R′,P,Q)-singular.

(1) There is a nonzero s in R′ such that sb′ is contained in the image of f (and any such sb′ is
necessarily (σ ⊗R R′,P,Q)-singular).

(2) The identity element (and hence any nonzero element) in the localization RP is (σ ⊗R
RP ,P,Q)-singular.

(3) The set of (σ,P,Q)-singular elements of R is not contained in P.

Proof. For any R-algebra R̃ we define σR̃ = σ ⊗R R̃ and

SR̃ := im
(

R̃[AM]→ EndR̃(σR̃)
)

Tw
R̃

:= im
(

R̃[AM]→ EndR̃(w(rM
w−1(Q)∩M(σR̃))

)
,

for w ∈WM\WG/WM.
Note that SR is a finitely generated R-module because of our assumption that σ is admissible and

R[M]-finite. Since parabolic restriction preserves admissibility [DHKM24, Cor 1.5], TwR is also finitely
generated as an R-module.

It follows from the definitions that the natural map SR ⊗R R̃ → SR̃ is surjective, and likewise

for TwR . When R̃ is a flat R-algebra, this map is an isomorphism [Dat05, proof of Lemma 7.2]) and

restricts to an isomorphism of ideals Iσ ⊗R R̃ ' IσR̃
, and likewise for Jσ.

Now, following the second step of the proof of Lemma 7.2 in [Dat05], the kernels of the canonical
morphisms

SR ⊗R,f Frac(R′)→ SFrac(R′), TwR ⊗R,f Frac(R′)→ TwFrac(R′)

are nilpotent ideals.
The homomorphism f extends to a homomorphism RP → R′, and the image of f is isomorphic to

RP/PRP . We will identify RP/PRP with a subring of R′.
Consider the ideal IσRP

⊂ RP [AM]. Its reduction mod PRP must contain a power of IσFracR′ , and

likewise for the reduction mod PRP of JσRP
. By assumption, b′ is in IσR′+JσR′ ⊂ IσFrac(R′) +JσFrac(R′) .

It follows that there is a nonzero element s in R′ such that

sb′ ∈
(
IσRP

⊗ (RP/PRP)
)

+
(
JσRP

⊗ (RP/PRP)
)
⊂ (RP/PRP)[AM].

This means sb′ is in both R′ and (RP/PRP)[AM], and therefore lies in (RP/PRP), which is the image
of f . Since the (σ ⊗R R′,P,Q)-singular elements form an ideal, this proves (1).

Now choose a lift b̃ of sb′ to RP . Note that b̃ is a unit because it does not lie in PRP because sb′

is nonzero. Since b̃ lifts an element of
(
IσRP

+ JσRP

)
⊗ (RP/PRP), we have

b̃ ∈ IσRP
+ JσRP

+ PRP [AM] = RP [AM],
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where the last equality comes from the fact that b̃ is a unit in RP [AM]. Now using the finiteness
established at the beginning of the proof along with Nakayama’s lemma, we conclude that

IσRP
+ JσRP

= RP [AM].

This proves (2).
Since 1 ∈ RP lies in IσRP

+ JσRP
, it follows that there is an element b ∈ R, which is not in P, such

that b is in Iσ + Jσ. This proves (3). �

The next property we will need is the compatibility of the notion of (σ,P,Q)-singularity with respect
to changing Q. Given semistandard parabolics P and Q, we define d(P,Q) = |Σred(P) ∩ Σred(Q)|,
where Σred(P) denotes the set of reduced roots of AM in P.

Lemma B.9. Let M be a standard Levi, and let O,P,Q be three parabolics with Levi component M
such that

d(O,Q) = d(O,P) + d(P,Q), and d(O,P) = 1.

If b ∈ R is (σ,O,Q)-singular, then it is also (σ,O,P)-singular and (σ,P,Q)-singular and

JQ|O(σ[1/b]) = JQ|P(σ[1/b]) ◦ JP|O(σ[1/b]).

Proof. The singularity claims follow from the calculations in [Dat05, Prop 7.8(i)], which give JPQ
σ =

JOQ
σ and JOP

σ = JOQ
σ . The statement on intertwining operators exactly follows the proof of [Dat05,

Prop 7.8(i)]. �

Lemma B.10 (Compatibility with induction). Let P, Q be two parabolics with Levi component M.

(1) Suppose P and Q are contained in a parabolic subgroup O with Levi N. If b is (σ,P,Q)-
singular, then it is (σ,P ∩N,Q ∩N)-singular and

JG
Q|P(σ) = iGO(JN

Q∩N|P∩N).

(2) Let N be a Levi subgroup of G containing M such that P∩N = Q∩N and such that PN and
QN are parabolic subgroups with Levi component N. If b is (iNP∩N(σ),PN,QN)-singular, then
it is also (σ,P,Q)-singular and

JQ|P(σ) = JQN|PN(iNP∩N(σ)).

Proof. The singularity statements follow from the calculations in the proof of [Dat05, Prop 7.8(ii)
and (iii)], and the proofs of statements on intertwining operators closely resemble the arguments in
[Dat05, Prop 7.8(ii) and (iii)]. �

B.2. Intertwining operators for the universal unramified twist. Now we specialize to the
situation where R = k[M/M◦] for k an algebraically closed field and we choose a square root of q in
k. Let σ0 be a finite length k[M]-module and let σ be the R[M]-module σ0χuniv,M,k. In this setting,
we can find elements of R that are (σ,P,Q)-singular by following the method of [Wal03, Thm IV.1.1].

For w ∈WM\WG/WM, let Ew be the set of characters ν : AM → R× that have the form

ν(a) = ν0(a)w−1aw,

where a denotes the image of a under AM → M→ M/M◦, and where ν0 occurs as the pullback under
AM → Aw(M)∩M of central characters of irreducible subquotients of the module ẇ(rM

M∩w−1Q(σ0)) (this

module has finite length because parabolic restriction preserves finite length). For any ν ∈ Ew, let
d(ν, w) designate an integer such that ∏

ν∈Ew

(a− ν(a))d(ν,w)

annihilates ẇ(rM
M∩w−1Q(σ)); we remark that such an integer exists because it exists after extending

scalars to Frac(R) = k(M/M◦).

Lemma B.11. Let µ be an element of E1 and let ν be an element of Ew for w 6= 1. Then µ 6= ν.
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Proof. This is proven in Equation (6) in [Wal03] in the course of proving Thm IV.1.1 of [Wal03]. The
same argument works for our more general k. �

Given µ ∈ E1, we will need to consider the set Eµ of all such ν’s distinct from µ, i.e. the set

Eµ :=

⊔
w 6=1

Ew

 t (E1 − {µ}) .

Note that while the Ew, w 6= 1 may not be disjoint from one another, we define Eµ to be their disjoint
union.

Lemma B.12. For every pair of distinct characters µ, ν : AM → k[M/M◦]×, fix elements aµ,ν ∈ AM

such that µ(aµ,ν) 6= ν(aµ,ν). The element

b(σ0,P,Q) =
∏
µ∈E1

∏
ν∈Eµ

(µ(aµ,ν)− ν(aµ,ν))
d(µ,w)+d(ν,w)−1

is (σ,P,Q)-singular.

Proof. Each factor (µ(aµ,ν)− ν(aµ,ν))
d(µ,w)+d(ν,w)−1

is the resultant of the two polynomials (X −
µ(aµ,ν))d(µ,1) and (X − ν(aµ,ν))d(ν,w) in the polynomial ring R[X]. Thus there are polynomials F (X)
and G(X) such that

(X − µ(aµ,ν))d(µ,1)F (X) + (X − ν(aµ,ν))d(ν,w)G(X) = (µ(aµ,ν)− ν(aµ,ν))
d(µ,w)+d(ν,w)−1

.

Now set X = aµ,ν to get an equality in R[AM]. Since we have∏
µ∈E1

(aµ,ν − µ(aµ,ν))d(µ,1)F (aµ,ν) ∈ Iσ∏
ν∈Ew

(aµ,ν − ν(aµ,ν)d(ν,w)G(aµ,ν) ∈ IQ,w
σ .

it follows that the product b(σ0,P,Q) is an element of Iσ+Jσ. Since each factor (µ(aµ,ν)− ν(aµ,ν))
d(µ,w)+d(ν,w)−1

is contained in R ⊂ R[AM], we have shown that b(σ0,P,Q) is in (Iσ + Jσ) ∩ R, and thus is (σ,P,Q)-
singular. �

Appendix C. Harish–Chandra j-functions and Plancherel measure

In this appendix we will use the theory of intertwining operators to deduce more general versions
of properties of j-functions and Plancherel measures appearing in the literature. We now take Q = P
the opposite parabolic, and we still take R to be k[M/M◦]. Given b1 ∈ R that is (σ,P,P)-singular and
b2 that is (σ,P,P)-singular, the product b = b1b2 is both (σ,P,P)- and (σ,P,P)-singular. We set

b = bGP (σ0) = b(σ0,P,P)b(σ0,P,P),

with the notation from Lemma B.12 and we define jG
P (σ0) ∈ EndR[1/b](i

G
P (σ)[1/b]) to be the compo-

sition of intertwining operators

iGP (σ)[1/b]
JP|P(σ)
−−−−−→ iG

P
(σ)[1/b]

JP|P(σ)
−−−−−→ iGP (σ)[1/b].

Lemma C.1. Let σ0 be a finite length k[M]-module such that K → EndG(iGP (σK)) is an isomorphism
(e.g. σ0 irreducible). Then the endomorphism jG

P (σ0) in EndR[1/b][G](i
G
P (σ)[1/b]) is a nonzero scalar

in R[1/b].

Proof. After extending scalars from R[1/b] to an algebraic closure K = Frac(R) of Frac(R) we obtain,
by compatibililty of JP|P and JP|P with extension of scalars, intertwining operators

JP|P(σK) ∈ HomK[G](i
G
P (σ)K, i

G
P

(σ)K)

JP|P(σK) ∈ HomK[G](i
G
P

(σ)K, i
G
P (σ)K) .
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Since both iGP (σK) and iG
P

(σK) are irreducible by the generic irreducibility theorem, and both inter-

twining operators JP|P(σK) and JP|P(σK) are nonzero, the intertwiners are invertible. Thus their

composition is multiplication by a nonzero scalar in K. On the other hand, the natural map

EndR[1/b][G]

(
iGP (σ) [1/b]

)
→ EndK[G](i

G
P (σ)K) ' K

is injective by torsion-freeness, so jG
P (σ0) is also nonzero.

It remains to prove that jG
P (σ0) lies not just in K but in the ring R[1/b]. But we have inclusions

R ↪→ R [1/b] ↪→ EndR[1/b][G]

(
iGP (σ) [1/b]

)
↪→ EndK[G](i

G
P (σ)K) ' K.

Since σ0 is admissible, EndR[G](i
G
P (σ)) is finitely generated as an R-module and hence EndR[1/b][G](i

G
P (σ) [1/b])

is finitely generated as an R[1/b]-module and jG
P (σ0) is an integral element, i.e. satisfies a monic poly-

nomial with coefficients in R[1/b]. But R = k[M/M◦] is a Noetherian normal integral domain, and so
is R[1/b], and thus R[1/b] is integrally closed in its fraction field K. We conclude that jG

P (σ0) is in
R[1/b]. �

When σ0 is irreducible we can extend scalars from R[1/b] to an algebraic closure K = Frac(R)
of Frac(R) and argue as in [Wal03, IV.3(1)-(3)] to establish the following properties for the element
jG
P (σ0) of K:

• jG
P (σ0) does not depend on P,

• For w ∈ WG, let wσ0 be the representation of wM obtained by composing the action of σ0

with the action of w. The image of jG
wP(wσ0) in the composite

k[wM/(wM)◦][1/wb]→ k[M/M◦][1/b]→ K

is equal to jG
P (σ0).

• jG
P (σ∨0 ) = jG

P (σ0).

Thus while the ring R[1/b] depends on b, which depends on P and the choice of σ0 within its orbit
under WG, the element jG

P (σ0) of Frac(R) is independent of b and P (c.f. Remark B.6).

Corollary C.2. If σ0 is a finite length k[M]-module with a composition series

0 = σr ⊂ σr−1 ⊂ · · · ⊂ σ0

with irreducible subquotients σi/σi+1 = τi, then for each i,

(1) b is (τiχuniv,M,k,P,P)- and (τiχuniv,M,k,P,P)-singular,
(2) jG

P (σ0) stabilizes the submodule iGP (σiχuniv,M,k) [1/b] of iGP (σ) [1/b]
(3) jG

P (σ0)|iGP (σiχuniv,M,k)[1/b] = jG
P (σi),

(4) the endomorphism induced by jG
P (σ0) on iGP (τiχuniv,M,k) [1/b] is the scalar jG

P (τi) ∈ R[1/b].
(5) jG

P (σ0) is nonzero and independent of the choice of P and b.

Proof. (1) follows immediately from Lemma B.3 and (2) through (4) follow from the functoriality
properties in Proposition B.7. Item (5) follows from the fact that the same is true for each jG

P (τi). �

Therefore, the invariance properties of jG
P (σ0) for irreducible σ0 remain true for finite length σ0.

We will henceforth drop the subscript P and denote jG
P (σ0) simply by jG(σ0).

C.1. Compatibility with isomorphisms. Suppose φ : G → G′ is an isomorphism of connected
reductive F-groups. Given a Noetherian Z[

√
q−1]-algebra R and a smooth R[G]-module π, let π′

denote the R[G′]-module with G′-action given by π ◦ φ−1. If M ⊂ G is a standard Levi subgroup,
M′ := φ(M) is a standard Levi of G′.

Precomposition of functions with φ−1 gives an isomorphism of induced modules

λ : iGP (σ)
∼→ iG

′

P′ (σ
′).
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The isomorphism AM ' AM′ allows us to extend φ to an isomorphism R[AM] → R[AM′ ], which
identifies Iσ and Jσ with Iσ′ and Jσ′ in R[AM′ ], so if b is (σ,P,Q)-singular it is also (σ′,P′,Q′)-
singular. It follows from Lemma B.5 that the following diagram commutes:

iGP (σ)[1/b] iGQ(σ)[1/b]

iG
′

P′ (σ
′)[1/b] iG

′

Q′(σ
′)[1/b]

JQ|P(σ)

λ λ

JQ′|P′ (σ
′)

.

If k is a field containing
√
q−1, and R = k[M/M◦] the isomorphism M ' M′ induces an isomorphism

φ̃ of R with R′ = k[M′/(M′)◦]. Note that φ̃ and λ induce an isomorphism

EndR[1/b][G](i
G
P (σ)[1/b])⊗φ̃ R′ ' EndR′[1/b′][G′](i

G′

P′ (σ
′)[1/b′]).

Lemma C.3. Let σ0 be a finite length k[M]-module and choose b ∈ k[M/M◦] that is (σ,P,P)-singular

for some parabolic P. Then b′ := φ̃(b) ∈ R′ is (σ′,P′,P′)-singular and jG(σ0) corresponds to jG
′
(σ′0)

under the identification of EndR[1/b][G](i
G
P (σ)[1/b])⊗φ̃ R′ with EndR′[1/b′][G′](i

G′

P′ (σ
′)[1/b′]).

Note that if σ0 is irreducible, the statement is simply φ̃(jG(σ0)) = jG′(σ′0), where we have also

used φ̃ to denote the extension of φ̃ to R[1/b] ' R′[1/b′].

Proof. The map φ̃ induces isomorphism R[AM]→ R′[AM′ ], which identifies Iσ and Jσ with Iσ′ and Jσ′

in R′[AM′ ], and this proves that φ̃(b) is singular. To simplify notation, we can then identify R = R′

and think of χuniv,M,k and χuniv,M′,k as both valued in the ring R, via the isomorphism φ : M ' M′.
The lemma then follows from the diagram in the previous paragraph. �

If we had chosen a different maximal split torus A′0 we would have an isomorphism G→ G taking
parabolics that are semistandard for A0 to those semistandard for A′0. Thus we have shown that the
requirement that P be semistandard can be relaxed up to the equivalence described in Lemma C.3.

A similar functoriality argument shows that the j function is compatible with isomorphisms of σ0.
More precisely, any isomorphism σ

∼→ σ′ of R[M]-modules induces an isomorphism λ : iGP (σ)
∼→ iGP (σ′),

and Proposition B.7 implies that, given a (σ,P,Q)-singular element b, the following diagram commutes:

iGP (σ)[1/b] iGQ(σ)[1/b]

iGP (σ′)[1/b] iGQ(σ′)[1/b]

JQ|P(σ)

λ λ

JQ|P(σ′)

.

It follows that, given an isomorphism λ0 : σ0
∼→ σ′0 of finite length k[M]-modules, jG(σ0) is mapped

to jG(σ′0) under the induced isomorphism

EndR[1/b][G](i
G
P (σ)[1/b])

∼→ EndR[1/b][G](i
G
P (σ′)[1/b]).

Moreover, the endomorphisms jG(σ0) and jG(σ′0) induce equivalent scalar endomorphisms in R[1/b]
after being restricted to irreducible subquotients of σ0 and σ′0 that correspond under λ0.

In particular, jG(σ0) is an invariant of the isomorphism class of σ0 when σ0 is irreducible, or more
generally when iGP (σK) has only scalar endomorphisms.

C.2. Factorization. Let Σred(P) = Σred(AM,P) be the subset of reduced roots of AM that are
positive relative to P. We can fix an ordering Σred(P) = {α1, . . . , αr} such that there are sequences
of semistandard parabolic subgroups (P0, . . . ,Pr) and (Q0, . . . ,Qr) satisfying:

• P0 = P and Pr = P, and each Pi has Levi component M,
• Σred(Pi) ∩ Σred(Pi−1) = αi,
• Qi has Levi Mαi , where Mαi is the Levi subgroup containing M and the root subgroup attached

to αi.
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In this case, we also have Pi ∩Mαi = Pi−1 ∩Mαi , and d(P,P) =
∑
i d(Pi,Pi+1), and d(Pi,Pi+1) = 1.

Let σ0 be a finite length k[M]-module and let b = bGP (σ) ∈ k[M/M◦] be as above. Then b is both
(σ,Pi ∩Mαi ,Pi−1 ∩Mαi) and (σ,Pi−1 ∩Mαi ,Pi ∩Mαi)-singular by Lemmas B.9 and B.10(1), so we
have elements

jMαi (σ0) ∈ EndMαi
(i

Mαi

Pi∩Mαi
(σ)[1/b]).

Proposition C.4. We have the following factorization property in the ring EndR[1/b][G](i
G
P (σ)[1/b]):

jG(σ0) =

r∏
i=1

iGQαi
(jMαi (σ0)).

Proof. This is a combination of the factorization property for intertwining operators over rank one
subgroups in Lemma B.9 with the inductivity property of intertwining operators in Lemma B.10(1).

�

Remark C.5. (1) When σ0 is irreducible (or more generally when iGP (σK) has only scalar endo-
morphisms), all the terms in Proposition C.4 are simply elements of R[1/b], so the result can
be stated more succinctly as

jG(σ0) =
∏

α∈Σred(P)

jMα(σ0).

(2) Since we have already established the left side of Proposition C.4 is independent of P, Propo-
sition C.4 implies the product on the right side is independent of the ordering of the factors.

(3) Each term jMαi on the right side of Proposition C.4 is actually defined over the subring

k[(M ∩M◦αi)/M
◦)][1/bi],

where bi is some (σ,Pi ∩Mαi ,Pi ∩Mαi)-singular element. If we let b′ =
∏
i bi, we have

k[(M ∩M◦αi)/M
◦)][1/b′] ⊂ R[1/b′],

and it follows from the proposition that jG(σ0) is defined over R[1/b′]. Note that (M∩M◦αi)/M
◦

is a free abelian group of rank one.

C.3. Multiplicativity. In this section, we prove the multiplicativity property of j-functions in our
more general framework. Let M ⊂ N ⊂ G be Levi subgroups, and let P be the standard parabolic with
Levi M, let R = k[M/M◦], let R′ = k[N/N◦] and let f : R → R′ denote the homomorphism induced
by the inclusion M ⊂ N. If σ0 is a finite length k[M]-module, iNP∩N(σ0) is a finite length k[N]-module.
Observe that

iNP∩N(σ0)χuniv,N,k ' iNP∩N(σ0χuniv,M,k)⊗R,f R′ ' iP∩N(σ)⊗R R′.

Since iNP∩N(σ) is an admissible and finitely-generated R[M]-module, and we know there exists b′ ∈
k[N/N◦] that is (iP∩N(σ) ⊗R R′,PN,PN)-singular (by Lemma B.12), we can apply Lemma B.8 to
produce an element b1 ∈ R that is (iNP∩N(σ),PN,PN)-singular and such that f(b1) 6= 0. Similarly,

there exists b2 ∈ R that is (iNP∩N(σ),PN,PN)-singular with f(b2) 6= 0. Then set b = b1b2, which is
both kinds of singular, and observe f(b) 6= 0 since R′ is a domain.

Let Q denote the parabolic with Levi M containing P ∩ N and the unipotent radical of PN. Now
Lemma B.10(2) tells us b is also (σ,P,Q) and (σ,Q,P)-singular.

Lemma C.6. Let f also denote the canonical map of localizations R[1/b] → R′[1/f(b)]. Under the
isomorphism

EndR′[1/f(b)][G](i
G
PN(iNP∩N(σ0)χuniv,N,k)[1/f(b)]) ' EndR[1/b][G](i

G
PNi

N
P∩N(σ)[1/b])⊗R[1/b],f R′[1/f(b)],

the following two elements are identified:

jG(iNP∩N(σ0)) = jG(σ0)⊗R[1/b],f 1

Proof. This follows from the first commutative diagram of Proposition B.7. �
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Corollary C.7. Let Σred(AM,P) be the set of roots of AM in Lie(P). Then we have

jG(iNP∩N(σ0)) =
∏
β

iGQβ (jMβ (σ0))⊗R[1/b],f 1,

where β runs over Σred(AM,P)\Σred(AM,P ∩N).

Proof. We can replace G with PQ and work within PQ. First apply Proposition C.4 to jG(σ0) and
notice that

Σred(AM,P)\Σred(AM,P ∩N) = Σred(AM,P) ∩ Σred(AM,Q).

Then specialize each term in the product and apply Lemma C.6. �

When jG(σ0) is scalar (or when iGP (σK) has scalar endomorphisms), we have a more compact
statement:

Corollary C.8. Let σ0 be an irreducible k[M]-module and let π be any irreducible subquotient of
iNP∩N(σ0). Then

jG(π) =
∏
β

f(jMβ (σ0)),

where β runs over Σred(AM,P)\Σred(AM,P ∩N).

Remark C.9. This property in the special case of “irreducible subrepresentation” instead of “subquo-
tient” appears in [GI14, Prop B.3, B.4] for classical groups. While trying to extend it to subquotients,
we found a need for inputs such as Lemma B.8 and Corollary C.2 to fill in some of the details of their
claim

µ(τ ⊗ π) = µ(τ ⊗ IG
P′(τ

′ ⊗ π′)) =

(
µ(τ ⊗ ν ⊗ π′)
µ(ν ⊗ π′)

)∣∣∣∣
ν=τ ′

([GI14, p.636]).
In choosing the approach we have taken here, i.e., following [Dat05], we gain the result for irreducible

subquotients in the process (Corollary C.8). In the next subsection and in the proof of Proposition 7.5
we translate the notation in Corollary C.8 to classical groups.

C.4. Plancherel measures for classical groups. Let G be a classical group, fix a nontrivial ad-
ditive character ψ of F, and fix a parabolic P = MU. Let σ0 be a finite length k[M]-module such
that K → EndK[G](i

G
P (σ0χuniv,M,k ⊗K)) is an isomorphism, where again K = Frac(k[M/M◦]), so that

jG(σ0) defines a nonzero scalar in K. For example, this is the case when σ0 is irreducible. Recall that
our construction of intertwining operators JP|Q(σ) required fixing a choice of Haar measures µ and

µ′ on UP and UQ in the beginning. The j-function jG(σ0) ∈ K depends on this choice up to a scalar

multiple in K. There is a particular choice of Haar measures µ and µ′ on U and U relative to ψ that
is well-suited for applications to local Langlands. We will not describe this choice in detail but simply
refer to [GI14, B.2], and make the same choices here.

The Plancherel measure of σ0 is defined to be

µG
ψ (σ0) := µG(σ0) := jG(σ0)−1 ∈ K.

By Section C.1, it depends only on the isomorphism class of σ0, and is compatible with isomorphisms
of groups G ' G′ after identifying K = Frac(k[M/M◦]) with Frac(k[M′/(M′)◦]), where M′ is the
image of M in G′. By Lemma B.5 and Proposition B.7, we conclude that if α : k → k′ is any
homomorphism fixing

√
q, then µG

α◦ψ(ασ0) = α(µG
ψ (σ0)), where we have also used α to denote the

induced homomorphism K → Frac(k′[M/M◦]).
The choice of (P,M) is equivalent to a splitting of E-vector spaces V = W1 ⊕ · · · ⊕WR ⊕ V′ ⊕

W′1⊕ · · ·⊕W′r, with Wi,W
′
i totally isotropic and pairwise orthogonal and V′ orthogonal to Wi⊕W′i.

This gives an identification M = GL(W1) × · · · × GL(Wr) × G′, where G′ is a classical group of the
same type as G.

Henceforth we suppose σ0 is irreducible and decompose it as

σ0 = τ1 ⊗ · · · ⊗ τr ⊗ π.
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Recall the following notational convention from Subsection 7.4: the map (gW1
, . . . , gWr

, gV′) 7→
(valE(det(gW1

)), . . . , valE(det(gWr
))) induces an isomorphism M/M◦

∼−→ Z × · · · × Z, and thus an
isomorphism C[M/M◦] ' C[(q−s1)±1, . . . , (q−sr )±1] where we regard q−si as indeterminates.

The universal unramified character |det |s : GL(W) −→ C[(q−s)±1] is given by gW 7→ (q−s)valE(det(gW))

and we denote τs = τ |det |s. Upon identifying C(M/M◦) with C((q−s1)±1, . . . , (q−sr )±1), we write
(τ1)s1 ⊗ · · · ⊗ (τr)sr ⊗ π for the universal unramified twist of τ1 ⊗ · · · ⊗ τr ⊗ π.

We will denote by µG
ψ ((τ1)s1 ⊗ · · · ⊗ (τr)sr ⊗ π) the rational function in C((q−s1)±1, . . . , (q−sr )±1)

corresponding to µG
ψ (τ1 ⊗ · · · ⊗ τr ⊗ π) ∈ C(M/M◦). Often the subscript ψ or the superscript G are

dropped. In the following, for a positive integer m, we sometimes write GLm for GLm(E).
We begin by illustrating the factorization property of Proposition C.4 in the special case of classical

groups.

Corollary C.10. We have the factorization

µG(σ0) =

 ∏
16i<j6r

µGLki+kj ((τi)si ⊗ ((τj)sj )µ
GLki+kj ((τi)si ⊗ ((τj)

c
sj )
∨)

 · ∏
16i6r

µ((τi)si ⊗ π).

Proof. Without loss of generality (Subsection C.1) we can write P as the upper parabolic

GLk1 (E) ∗ ∗ ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗ ∗ ∗
GLkr (E) ∗ ∗ ∗ ∗

G′ ∗ ∗ ∗
GLkr (E) ∗ ∗

. . . ∗
GLk1 (E)

 .

Recall that in the classical group G, the elements in the GLki(E) factors in the bottom right of M
are the images of their counterparts in the top left under t((·)c)−1).

In Remark C.5(1), α runs over the roots of AM positive relative to the parabolic P . The groups
Mα in Remark C.5(1) come in three shapes:



GLk1 (E) ∗

. . .
GLkr (E) ∗

G′

∗ GLkr (E)

. . .
∗ GLk1 (E)

, or



GLk1 (E) ∗

∗
. . .

GLkr (E)

G′

GLkr (E) ∗

∗
. . .

GLk1 (E)

, or



GLk1 (E)

. . . ∗
GLkl (E)

∗ G′ ∗
GLkl (E)

∗
. . .

GLk1 (E)

 .

The first kind of Mα has GLki+kj (E) as a direct factor for some i and j, and the terms jMα(σ0) in
Remark C.5(1) are intertwining operators on the induced representations of the form

iMα

Pα
(σ0χuniv,M) =

(
i
GLki+kj (E)

P′′

(
(τi)si ⊗ ((τj)

c
sj )
∨
))
⊗ (τ1)s1 ⊗ · · · î · · · ĵ · · · ⊗ (τr)sr ⊗ π,

where Pα is the upper parabolic in Mα with Levi M, and P′′ is the upper parabolic of GLki+ki(E) with

Levi GLki(E) × GLkj (E), and (̂·) indicates factors that are removed from the product. The second
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kind of Mα gives rise to an intertwining operator on the induced module

iMα

Pα
(σ0χuniv,M) =

(
i
GLki+kj (E)

P′′

(
(τi)si ⊗ (τj)sj

))
⊗ (τ1)s1 ⊗ · · · î · · · ĵ · · · ⊗ (τr)sr ⊗ π.

The intertwining operators jMα(σ0) in these two cases give the factors

µGLki+kj (E)
(

(τi)si ⊗ ((τj)
c
sj )
∨
)

, and µGLki+kj (E) ((τi)si ⊗ (τj)sj
)
,

respectively, in the statement of the corollary.
For the third kind of Mα, the factors jMα(σ0) in Remark C.5(1) are intertwining operators on the

induced representations

iMα

Pα
(σ0) =

(
iG
′′

P′′ ((τi)si ⊗ π)
)
⊗ (τ1)s1 ⊗ · · · î · · · ⊗ (τr)sr ,

where G′′ is the classical group appearing as a direct factor of Mα and P′′ is the upper parabolic of
GLki(E) × G′ in G′′. Again, the factors outside the induction do not contribute, and the inverse of

the factor µMα(σ0) is simply µG′′((τi)si ⊗ π). �

Finally, we turn to proving the multiplicativity property of Proposition 7.5. Recall our convention
from Subsection 7.4 that for τ , τ ′ irreducible representations of GLk(E) and GLk′(E), respectively,

µ(τs ⊗ τ ′t) denotes the image of the Plancherel measure µ
GLk+k′

ψE
(τ ⊗ τ ′) in C(q−s, q−t). By the

factorization property, it lands in C(q−sqt), and the specializations

µ(τs ⊗ τ ′) := µ(τs, τt)|q−t=1 , and µ(τs, τ
′
−s) := µ(τs ⊗ τ ′t)|q−t=qs

are defined.

Proof of Proposition 7.5. To prove statement (1) of Proposition 7.5 we apply Corollary C.7 with
M = GLn1(E) × · · · × GLnr (E) ×M1 and N = GLk × G, and let f : k[M/M◦] → k[N/N◦] be the
homomorphism induced from M ⊂ N. As above, we also use f to denote the extension of f to a map
on localizations

f : k[M/M◦][1/b]→ k[N/N◦][1/f(b)],

where b is a singular element for iGP (ρ) such that f(b) 6= 0 (note that Lemma B.8 is used here).
More precisely, by computations similar to those in the proof of Corollary C.10, we deduce from
Corollary C.7 that

jG(τ ⊗ π) = f

((
r∏
i=1

jGLk+ni (τ ⊗ ρi)jGLk+ni (τ ⊗ (ρi
c)∨)

)
j(τ ⊗ ρ′)

)
.

After making the identifications

k[(GLk ×GLni)/(GLk ×GLni)
◦] ' k[(q−s)±1, (q−ti)±1]

k[(GLk ×G)/(GLk ×G)◦] ' k[(GLk ×G′)/(GLk ×G′)◦] ' k[GLk/GL◦k] ' k[(q−s)±1],

we find that the map f specializes q−ti 7→ 1. Now, inverting the factors to µ instead of j and adding
the variables q−s and q−ti to the notation, our expression becomes

µ(τs ⊗ π) =

(
s∏
i=1

µGLk+ni (τs ⊗ ρ′i)µGLk+ni (τ ⊗ (τ ′i
c
)∨)

)
µGLk×G′(τs ⊗ π′),

as claimed.
For statement (2) one applies Corollary C.8 to the pair

(M, σ0) = (GLk1(E)× · · · ×GLkl(E)×G′ , τ ′1 ⊗ · · · ⊗ τ ′l ⊗ π)

and, if P is the upper parabolic of G with Levi M, we have

(N, iNP∩N(σ0)) = (GLm(E)×G′ , i
GLm(E)
P′ (τ ′1 ⊗ · · · ⊗ τ ′l )⊗ π)
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where m = k1 + · · · + kl. In the notation of Corollary C.8 and its surrounding discussion, β runs
over the roots of AM in both Lie(P) and Lie(Q), where P and Q are parabolic subgroups of G of the
following form, respectively:



GLk1 (E) ∗ ∗ ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗ ∗ ∗
GLkl (E) ∗ ∗ ∗ ∗

G′ ∗ ∗ ∗
GLkl (E) ∗ ∗

. . . ∗
GLk1 (E)

 ,



GLk1 (E) ∗ ∗ ∗ ∗

∗
. . . ∗ ∗ ∗ ∗

∗ ∗ GLkl (E) ∗ ∗ ∗ ∗
G′ ∗ ∗ ∗

GLkl (E)

∗
. . .

∗ ∗ GLk1 (E)

 .

(recall that, in the classical group G, the elements in the GLki(E) factors in the bottom right are the
images of their counterparts in the top left under t((·)c)−1). The Levi subgroups Mβ in Corollary C.8
come in two shapes:



GLk1 (E) ∗

. . .
GLkl (E) ∗

G′

∗ GLkl (E)

. . .
∗ GLk1 (E)

 , or



GLk1 (E)

. . . ∗
GLkl (E)

∗ G′ ∗
GLkl (E)

∗
. . .

GLk1 (E)

 .

The first kind of Mβ has GLki+kj (E) as a direct factor for some i and j, and the terms jMβ (σ0) in
Corollary C.8 are intertwining operators on the induced representations

i
Mβ

Pβ
(σ0χuniv,M) =

(
i
GLki+kj (E)

P′′

(
(τ ′i)si ⊗ (((τ ′j)sj )

c)∨
))
⊗ (τ ′1)s1 ⊗ · · · î · · · ĵ · · · ⊗ (τ ′l )sl ⊗ π,

where Pβ is the upper parabolic in Mβ with Levi M, and P′′ is the upper parabolic of GLki+ki(E) with

Levi GLki(E) × GLkj (E), and (̂·) indicates factors that are removed from the product. Since the in-

tertwining operators act as the identity on the factors outside the induction, we have jMβ (σ0) =

jGLki+kj (E) (τ ′i ⊗ ((τ ′j)
c)∨
)
. Finally, if we identify C[M/M◦] ∼= C[q±s1 , . . . , q±sl ] and C[N/N◦] ∼=

C[q±s], the map f : C[M/M◦] → C[N/N◦] induced by the inclusion M ⊂ N sends both q−si and
q−sj to q−s, and since j = µ−1 we obtain the first collection of factors of the product in statement
(2).

For the second kind of Mβ , the factors jMβ (σ0) are intertwining operators on the induced repre-
sentations

i
Mβ

Pβ
(σ0) =

(
iG
′′

P′′ ((τ ′i)si ⊗ π)
)
⊗ (τ ′1)s1 ⊗ · · · î · · · ⊗ (τ ′l )sl ,

where G′′ is the classical group appearing as a direct factor of Mβ and P′′ is the upper parabolic of
GLki(E) × G′ in G′′. Again, the factors outside the induction do not contribute, the factor jMβ (σ0)

is simply jG′′(τ ′i ⊗ π), and the map f takes this factor to µ((τ ′j)s ⊗ π), as desired.
For statement (3) one applies Corollary C.8 to the pair

(M, σ0) = (GLk1(E)× · · · ×GLkr (E)×GLk′1(E)× · · · ×GLk′l(E), τ1 ⊗ · · · ⊗ τr ⊗ τ ′1 ⊗ · · · ⊗ τ ′l ),

and

(N, iNP∩N(σ0)) = (GLm(E)×GLn(E) , iGLm
P′ (τ1 ⊗ · · · ⊗ τr)⊗ iGLn(E)

P′′ (τ ′1 ⊗ · · · ⊗ τ ′l )),
where P is the upper parabolic of GLm+n(E) containing N and P∩N = P′×P′′. Identify C[M/M◦] '
C[q±si , q±tj ]16i6r

16j6l
and C[N/N◦] ' C[q±s, q±t]. The map f induced by M ⊂ N sends q−si to q−s

and q−tj to q−t. Since jMβ (σ0) is insensitive to the Weyl action, each Mβ in the statement of
Corollary C.8 can be taken to be the Levi subgroup obtained by replacing the GLki(E) × GLk′j (E)

factor in M with GLki+k′j (E), so the desired statement follows from the relation µ = j−1. �
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