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Abstract. This is a survey on motivations, foundations, and main results
around the so-called “moduli spaces of local Langlands parameters”, with spe-

cial emphasis on the description of the coarse moduli spaces, and their expected

role in a local Langlands correspondence “in families”.
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Motivations : categorical and “in families” LLC

Spectacular recent developments in the local Langlands program [FS21] [Zhu20]
[BZCHN20] [Hel20a] suggest that the parametrization of irreducible representa-
tions of p-adic groups by “Galois representation-theoretic” data, as initially envi-
sionned by Langlands and made increasingly more precise by many other authors,
is the tip of an iceberg that should relate much more general objects on both sides,
and in a more “categorical” way. On the parameters side, these more general ob-
jects are (some elaborated form of) coherent sheaves on the moduli space of local
Langlands parameters.

These moduli spaces are thus becoming central objects in the field, being the
venue where one side of the expected categorification of the local Langlands cor-
respondence (CLLC) is played. However, their first occurrence goes back to the
2016 preprint version of [Hel20b], where they are introduced in the particular case
of GLn. There, the motivation was to reformulate a conjecture stated in [EH14]
about the existence of a “local Langlands correspondence in families” (LLIF). This
conjecture was about assigning suitable “families” of representations of GLn(F ) to
n-dimensional representations of the Galois group ΓF = Gal(F/F ) over complete
local noetherian rings with residue field of characteristic ` different from p. One
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avatar of this conjecture involved comparing universal deformation rings of Galois
F`-representations with completion of the integral Bernstein center at certain F`-
points. Formulated in this way, it essentially remained in the well-established realm
of deformation theory of Galois representations. However, one remarkable insight
of Helm in [Hel20b] has been to algebraize the whole setting. First, he defined an
algebraic moduli space of n-dimensional Weil group representations over Z`, whose
formal neighborhoods of points recover the usual deformation rings in Galois rep-
resentation theory. Second, he reduced the conjecture in [EH14] to showing the
existence of an isomorphism between the ring of functions on this moduli space and
the endomorphism ring of the space of Z`-valued Whittaker functions on GLn(F )
(which is incidentally isomorphic to the integral Bernstein center, in this GLn-case).
This isomorphism was finally obtained in [HM18].

An a priori huge difference between CLLC and LLIF is that, while the first one
crucially uses the stacky nature of the fine moduli space, the second one only sees
the coarse moduli space through its ring of functions. In order to give a more precise
yet informal glimpse of the relation between CLLC and LLIF, let us introduce some
notation.

• F denotes a local non-archimedean field of residue characteristic p
• ΓF denotes “its” Galois group and WF ⊂ ΓF its Weil group.
• G denotes a reductive group over F , and Ĝ denotes its dual split reductive

group scheme over SpecZ. From the F -rational structure on G, we get
a pinning-preserving action of WF on Ĝ following Langlands’ classical
construction.

• Λ denotes a coefficient ring. It will mainly be one of Z`, Q`, F` or Z[ 1
p ],

or any integral extension of one of these rings. In any case, p will always
be invertible in Λ.

• RepΛ(G(F )) denotes the category of smooth ΛG(F )-modules.

Recall that Langlands parameters are 1-cocyclesWF −→ Ĝ up to Ĝ-conjugation
(more on parameters below). Accordingly, the moduli stack of Langlands parame-

ters for G will have the form Z1/Ĝ, with Z1 an affine Λ-scheme that parametrizes

1-cocycles, endowed with the natural action of Ĝ. One prediction of CLLC is the
existence of a certain fully faithful embedding

RepΛ(G(F )) −→ Qcoh(Z1/Ĝ)

of RepΛ(G(F )) into the (derived∞) category of quasi-coherent sheaves on the stack

Z1/Ĝ. Moreover, when G is quasi-split, such an embedding should only depend on
the choice of a Whittaker datum (U,ψ). More precisely, the embedding attached to
(U,ψ) should map the Whittaker representation W = W(U,ψ) ∈ Rep(G(F )) to the

structural sheaf of Z1/Ĝ. Being a full embedding, this would in particular imply
an isomorphism

End(OZ1/Ĝ) = Γ(Z1/Ĝ,O) = Γ(Z1,O)Ĝ
∼−→ End(W).

But the LHS here is nothing but the ring of global functions on the coarse moduli
space Z1 � Ĝ, and the above isomorphism is thus the main prediction of LLIF, at
least in Helm’s version.

So LLIF is a consequence of CLLC, and since the passage from fine to coarse
moduli space is highly destructive, LLIF is a priori only a remote approximation
of CLLC. However, it is interesting to note that a conjecture of Hellmann suggests
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how to get CLLC from LLIF plus a bit of representation theory, at least in the case
of G = GLn and coefficients Λ = Q`. Indeed, observe that LLIF provides a functor.

Namely, it provides a quasicoherent sheaf W̃ :=W⊗O(Z1)ĜO(Z1) on Z1/Ĝ with an

action of G(F ), and thus a functor V 7→ V ⊗LG(F ) W̃. This is certainly not the right

functor but the conjecture of Hellmann [Hel20a, §4] is that CLLC should have the

form V 7→ V ⊗LG(F ) Ṽ where Ṽ is a certain quotient of W̃ defined by Emerton and

Helm in their work on LLIF.

The aim of these notes is to explain the construction and main properties of
the moduli space Z1/Ĝ, with special emphasis on the coarse moduli space Z1 � Ĝ.
Our first task is to sort out what kind of Langlands parameters we want to use.

1. Langlands parameters. What parameters ?

Let LG := Ĝ o WF denote the Langlands dual of G. An L-homomorphism
WF −→ LG(Λ) is a group homomorphism that is a section of the second projection.

So it has the form Lϕ(w) = (ϕ(w), w) for a certain 1-cocycle WF −→ Ĝ(C). The
two items Lϕ and ϕ determine each other uniquely.

1.1. The complex story. The original classical local Langlands correspon-
dence predicts a finite-to-one map π 7→ ϕπ from irreducible objects of RepC(G(F ))

to a certain set of “Langlands parameters”. The latter are Ĝ(C)-conjugacy classes
of certain objects that appear in the literature in two different flavors :

(1) maps ρ : WF ×SL2(C)→ LG(C) whose restriction to the first factor is an
L-homomorphism with open kernel and whose restriction to the second
factor is algebraic, or

(2) pairs (r,N), where r : WF → LG(C) is an L-homomorphism with open

kernel and N ∈ Lie(ĜC) a nilpotent element, such that Adr(w) = |w|N .

Actually, we are missing one important requirement here, known in the liter-
ature as Frobenius semi-simplicity. This asks that for any w ∈ WF , the element
ρ(w, 1), resp r(w), be semisimple in LG(C). The reason why we omitted it is that
this condition does not fit well in families, and would prevent us to define a nice va-
riety parametrizing these objects (think of the set of semisimple elements in Ĝ(C),
which forms a constructible subset, but not a locally closed subvariety). Instead,
semi-simplicity will be recovered when we take the coarse moduli space (think of

the Chevalley-Steinberg isomorphism Ĝ � Ĝ = T̂ �W ).
Let us fix an open compact subgroup K ⊂ WF . It is easy to see that, for

i = 1, 2, objects of type (i) that are trivial on K are parametrized by an affine
complex variety Z1

(i). Moreover, there is a map ρ 7→ (r,N) from objects of type (1)

to objects of type (2), given by

r(w) = ρ

(
w,

(
|w|

1
2 0

0 |w|−
1
2

))
, N = dρ ( 0 1

0 0 ) .

This map induces a morphism of varieties Z1
(1) −→ Z1

(2).

By a well known application of the Jacobson-Morozov theorem, the above map
induces a bijection on Ĝ(C)-conjugacy classes of Frobenius-semi-simple objects,
making sure that the two corresponding notions of Langlands parameters coincide.
However, this map is not injective on general Ĝ(C)-conjugacy classes, and actually
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not even surjective (see [MIY22, Example 3.5]). Accordingly, the geometry of Z1
(1)

and Z1
(2) are very different.

To get an idea of what is going on, look at G = GL2 and K = IF . Then Z1
(1)

is the disjoint union GL2 t (C××PGL2) of two 4-dimensional smooth components
corresponding to ρ|SL2

being trivial or not. In contrast, Z1
(2) is connected with

two 4-dimensional irreducible components given by the closed locus where N = 0
(isomorphic to GL2) and the closure of the open locus where N 6= 0 (this open
locus is isomorphic to C× × PGL2). These two components intersect along the
3-dimensional closed subvariety of points of the form {(F, 0)} with F having two
eigenvalues of ratio q. So in this example, Z1

(1) appears as an open subvariety of

the normalization of Z1
(2). More generally, it is proven in [MIY22] that the map

Z1
(1) −→ Z1

(2) separates irreducible components and is “weakly birationnal”.

It is interesting to look at the map Z1
(1) � Ĝ −→ Z1

(2) � Ĝ induced on the

corresponding coarse moduli spaces. As a general principle, complex points of
Z1

(i) � Ĝ correspond to closed orbits of Z1
(i)(C) (see section 5), which are orbits of

“semistable” objects in Z1
(i)(C). An application of the Hilbert-Mumford criterion

shows that the semistable points of Z1
(1)(C) are precisely the Frobenius-semisimple

objects, while the semistable points of Z1
(2)(C) are the points of the form (r, 0)

with r Frobenius-semisimple. In other words, (Z1
(1) � Ĝ)(C) is precisely the set

of Langlands parameters, while (Z1
(2) � Ĝ)(C) is the set of so-called “infinitesimal

characters” (in Vogan’s terminology), and the map Z1
(1) � Ĝ −→ Z1

(2) � Ĝ takes a

Langlands parameter to its infinitesimal character.
The upshot of this discussion is that, in the case of coefficients Λ = C, we have

a priori two natural candidates for the moduli space Z1/Ĝ to be used in a putative
CLLC. Although Z1

(1) seems closer to the classical notion of Langlands parameter,

it is not a reasonable candidate for CLLC. Indeed, the desired functor would have
to send the trivial and Steinberg representations to certain indecomposable sheaves.
Being indecomposable, these sheaves should be supported on a single component.
By compatibility with classical LLC, the sheaf associated to Steinberg would be
on the component where ρ|SL2

is non trivial, and the one associated to the triv-
ial representation on the other component. But these sheaves have no non-trivial
extension, unlike these two representations, so this is incompatible with full faith-
fulness of the desired functor. Indeed, the moduli space that shows up in both
[Hel20a] and [BZCHN20] is Z1

(2)/Ĝ. Accordingly, the coarse moduli space that

is relevant for LLIF is Z1
(2) � Ĝ.

1.2. The `-adic story. Let us transport the above discussion from C to Q`,
either by repeating the definitions or by choosing an isomorphism of fields C ' Q`.
The original LLIF problem in [Hel20b] takes place over coefficients Λ that are finite
extensions of Z`, and similarly for the putative CLLC of [Zhu20] and [FS21]. This

means we need a moduli space Z1/Ĝ over Z`.
Note that the objects (r,N) of type (2) above make perfect sense over any Z`-

algebra R in place of C and are parametrized by an affine scheme over Z`, providing
an integral model of Z1

(2). However, this won’t be the desired moduli space in

general. Indeed, one requirement of LLIF is that the geometric special fiber Z1(F`)
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should parametrize continuous Galois representations (ie L-homomorphisms) ρ̄ :
ΓF −→ LG(F`). But there is no general recipe to go from a pair (r,N) to such a ρ̄.

However, over Q`, Grothendieck’s quasi-unipotence theorem provides us with
such a recipe. Let us recall how this works. We need to fix a trivialization of

Z`(1) := lim
←−

µ`n
∼−→ Z` and a lift of Frobenius Fr in WF . We then get a morphism

t` : IF −→ Z` and a retraction WF −→ IF , w 7→ iw. Then the map (r,N) 7→ ρ
defined by ρ(w) := r(w)exp(t`(iw)N) takes object of type (2) above to objects of
type

(3) L-homomorphisms Lϕ : WF → LG(Q`) that are `-adically continuous,

and induces a bijection on the corresponding Ĝ(Q`) conjugacy classes. Here `-

adically continuous means that we endow Ĝ(Q`) with the topology inherited from
the natural topology on Q`.

Similarly we can impose `-adic continuity for an L-homomorphism Lϕ : WF →
LG(R) if R is a finite extension of Z` or, more generally, a complete local algebra
with residue field contained in F`. In the case where R = F`, a continuous Lϕ
will uniquely extend to ΓF . Therefore, if we were able to extend the notion of “`-
adically continuous” to arbitray Z`-algebras R, and show that the corresponding
functor

R 7→ {L-homomorphisms Lϕ : WF → LG(R) that are `-adically continuous}

is representable by an affine Z`-scheme Z1, then certainly the F`-points of Z1 would
parametrize Galois representations (L-parameters) and their completed local rings
would be their usual framed deformation rings, as required for the LLIF program.

2. How to deal with continuity

Here are several possible definitions for an L-homomorphism Lϕ : WF −→
LG(R) to be “`-adically continuous”, when R is any Z`-algebra.

2.1. Helm’s original approach. Note that if R is `-adically separated, there
is a natural separated group topology on G(R) generated by kernels of reduction

maps Ĝ(R) −→ Ĝ(R/`mR). So, concretely in this case, Lϕ is said to be `-adically

continuous if for each m the composed map WF −→ Ĝ(R/`m) oWF is continu-

ous for the discrete topology on Ĝ(R/`m) and the natural one on WF . Following
[Hel20b] and [DHKM20], for an arbitray Z`-algebra, we may then declare Lϕ to
be `-adically continuous if it comes by pushforward R0 −→ R from an `-adically
continuous L-homomorphism over a separated Z`-algebra R0.

The obvious drawback of such a definition, is that it is not clear at all why the
functor R 7→ {`-adically continuous Lϕ} should be representable, or even define a
fppf sheaf. In the case at hand, it will quite miraculously turn out to be so, thanks
to the fairly simple struture of WF .

2.2. Condensed Mathematics. Another approach is taken in [FS21]. There,
R is considered as a condensed Z`-algebra S 7→ R(S) with, for any profinite set S,
the ring R(S) being the ring of maps S −→ R that factor over a finitely generated
Z`-submodule and are continuous for the `-adic topology on this submodule. In
turn, Ĝ(R) becomes a condensed group. On the other hand, the topological group
WF can also be considered as a condensed group, and the idea of [FS21] is to
consider L-homomorphisms of condensed groups. Actually, this is the notion that
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appears naturally from their cohomological setting regarding Hecke operators on
the Fargues-Fontaine curve.

This definition can also be expressed in the usual topological language. Endow
R with the finest topology which restricts to the natural `-adic topology on all
finitely generated Z`-submodules (in [Zhu20], this topology is called “ind-`-adic”).
This induces a Z`-linear topology on any free R-modules of finite rank. Then,
declare that Lϕ is continuous if, for any (equivalently, one faithful) algebraic rep-

resentation Ĝ −→ GL(V ), the induced action of the kernel of WF −→ Aut(Ĝ) on
V ⊗ R is continuous. This continuity means that any v ∈ V ⊗ R is contained in
a finitely generated Z`-module that is stable under an open subgroup of WF , with
the induced action being continuous.

It is not clear a priori that this notion recovers the former one. Namely, the
ind-`-adic topology of an `-adically separated algebra R is generally finer than the
`-adic topology. However, again due to the specific structure of WF , both notions
will give rise to the same moduli space. The main reason is the magic of Frobenius
and its interplay with inertia.

2.3. Discretization of tame inertia. Since ` 6= p, whatever definition of “`-
adically continuous” we take for Lϕ, the restriction of ϕ to the wild inertia subgroup
PF will factor over a finite quotient. So the only topological difficulties here come
from the tame inertia quotient IF /PF . This is a pro-cyclic group, so let us choose
a generator s. Let us also choose a lift of Frobenius Fr in WF /PF . These satisfy

the relation FrsFr−1 = sq. We then consider the subgroup 〈Fr, s〉 = sZ[ 1
q ] o FrZ

of WF /PF , we denote by W 0
F its inverse image in WF , and we endow it with the

topology that extends the profinite topology of PF and induces the discrete topology
on 〈Fr, s〉. Note that (in contrast to the subgroup WF of GF ), the subgroup W 0

F of
WF very much depends on the choices of Fr and s.

Let us now declare an L-homomorphism Lϕ : W 0
F −→ LG(R) to be continuous

if it is continuous for the discrete topology on LG(R) and the above topology on

W 0
F . This is equivalent to asking that the associated 1-cocycle ϕ : W 0

F −→ Ĝ(R)
is trivial on some open subgroup of PF .

2.4. A candidate moduli space. For a fixed normal open subgroup P ⊂ PF
that acts trivially on Ĝ, it is easy to see that the functor on Z[ 1

p ]-algebras

R 7→
{

1-cocycles ϕ : W 0
F /P −→ Ĝ(R)

}
is representable by a finitely generated Z[ 1

p ]-algebra RĜ,1P . We then put

Z1 = Z1(W 0
F /P, Ĝ) := Spec(RĜ,1P ).

Concretely, the discrete group W 0
F /P is finitely generated, say by n generators,

and Z1 is the closed subscheme of (Ĝ)n defined by the relations between these
generators and the cocycle condition.

Although Z1 a priori depends on the chosen discretization W 0
F of WF , there

are a few tests we can do to see whether it is a reasonable candidate for LLIF or
CLLC.

(1) When R = F` or R is any noetherian complete local algebra with residue
field F`, a continuous Lϕ : W 0

F → LG(R) can be uniquely continuously
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extended to the profinite completion of W 0
F , which is ΓF . So Z1 ful-

fills the requirement that its F`-points parametrize LG(F`)-valued Galois
representations, and their formal neighbourhoods coincide with the usual
framed deformation spaces of these representations.

(2) When R = Q`, we cannot argue in the same way, but we claim that
any continuous Lϕ : W 0

F → LG(Q̄`) extends uniquely continuously to

WF , so that Q`-points of Z1 parametrize objects of type (3) above, as
desired. Note that, using a continuous splitting WF ' PF o (WF /PF ) as
in [Iwa55], it suffices to check this when P = PF . For simplicity, let us
assume that G = GLn, so that Lϕ is given by a morphism ϕ : W 0

F /PF =

〈Fr, s〉 −→ GLn(Q`). Then the relation FrsFr−1 = sq shows that the
eigenvalues of ϕ(s) are roots of unity, hence the semisimple part ϕ(s)ss

has finite order prime to p. On the other hand, writing the unipotent part
as ϕ(s)u = exp(N), we see that ϕ extends to WF /PF by the formula on

IF /PF given by ϕ(si) = (ϕ(s)ss)
i exp(t`(i)N) for i ∈ Ẑ[ 1

q ].

For a more general Z`-algebra R, the following theorem implies that any con-
tinuous L-homomorphism W 0

F −→ LG(R) can actually be extended to a unique
`-adically continuous L-homomorphism WF −→ LG(R).

Theorem 2.1. Fix an open subgroup P ⊂ PF as above and let LϕĜ,1P be the

universal L-homomorphism W 0
F −→ LG(RĜ,1P ).

(1) The ring RĜ,1P is `-adically separated.

(2) The universal LϕĜ,1P extends uniquely to an `-adically continuous L-

homomorphism LϕĜ,1P ,` : WF −→ LG(RĜ,1P ⊗ Z`), which is universal
for `-adically continuous L-homomorphisms on WF that are trivial on P .

(3) The L-homomorphism LϕĜ,1P ,` is also ind-`-adically continuous (as in

2.2) and is universal for ind-`-adically continuous L-homomorphisms on
WF that are trivial on P .

One consequence of (2) is that the base change Z1(W 0
F /P, Ĝ)Z` does not depend

on our choice of discretization W 0
F . The upshot of (3) is that this base change is

the moduli space of condensed L-homomorphisms considered in [FS21, Chapter
VIII]. We will explain the proof of this theorem in the next sections.

2.5. Remark on derived structures. While the affine scheme Z1 defined
above is perfectly suitable for LLIF, it is not a priori clear whether it is sufficient for
CLLC. This is because the coherent side of CLLC, namely the (derived∞) category
of quasi-coherent modules on Z1 is quite sensitive to a possible non-trivial derived
structure on Z1. Such a non-trivial derived struture may arise if, for example, the
closed immersion Z1 ↪→ (Ĝ)n that one gets after choosing a set of n generators of
W 0
F /P turns out to be not regular. Technically, one should work in some “derived

category” of Z[ 1
p ]-algebras, namely the ∞-category of “animated” Z[ 1

p ]-algebras,

and consider the same functor R 7→
{

1-cocycles ϕ : W 0
F /P −→ Ĝ(R)

}
as before,

with a correct ∞-categorical notion of 1-cocycle. We refer to [Zhu20, §2.2] for
more details and a proof that such a functor is indeed representable by an affine
derived scheme Z̃1, whose classical underlying scheme is Z1.
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While this derived setting may be necessary when studying moduli spaces of
representations of global Galois groups, it follows from [Zhu20, Prop 2.2.13] and

the first statement of the following theorem that, in our case, we have Z̃1 = Z1.

Theorem 2.2. The affine scheme Z1(WF /P, Ĝ) is a reduced flat local complete

intersection of dimension dim Ĝ over Z[ 1
p ].

Both theorems above imply that any irreducible component of Z1(WF /P, Ĝ)
is faithfully flat over Z[ 1

p ]. The proof of these theorems is given in the next

two sections, together with a parametrization of the connected components of
Z1(WF /P, Ĝ)Z[ 1

p ] and a description of these components in terms of smaller groups.

3. A toy model over Z[ 1
p ] : tame parameters

In this section, we focus on the case where P = PF and the group G is tamely
ramified, so that the action of PF on Ĝ is trivial.

Actually, we will consider a slightly different setting. We denote by Λ a finite
flat integral extension of Z[ 1

p ] and let H be a group scheme over Λ. We then consider

the affine Λ-scheme
XH,1 := Hom(W 0

t , H)

that parametrizes morphisms from the tame quotient W 0
t := W 0

F /PF = 〈Fr, s〉 of
W 0
F to H. Explicitly it is the closed subscheme of H×H that represents the functor

on Λ-algebras

R 7→ Hom(W 0
t , H(R)) = {(F, σ) ∈ H(R)×H(R), FσF−1 = σq}.

The main case of interest for us is when H = Ĝ o W where W is a finite
quotient of W 0

t through which the action of WF on Ĝ factors. In this case, the

scheme Z1(W 0
t , Ĝ) which we are ultimately interested in, is a direct summand of

the scheme XH,1 above. However, it will be useful to consider a larger class of
group schemes H.

3.1. Generalized reductive group schemes. Recall that a group scheme
H over a base S is called reductive if it is smooth over S and all its geometric fibers
are reductive and connected. It will come handy to have a slight generalization
where some non-connectedness is allowed. To this aim, recall that for any smooth
group scheme over S, there is a unique open subgroup scheme H0 of H whose
geometric fibers are the neutral components of the geometric fibers of H. Further,
under the hypothesis that H0 is reductive, it is known [Con14, Prop. 3.1.3] that
the quotient sheaf π0(H) := H/H0 is representable by an étale group scheme over
S. We will say that H is generalized reductive if it satisfies the following properties.

• H is a smooth affine group scheme over S
• H0 is a reductive group scheme over S.
• π0(H) := H/H0 is a finite (étale) group scheme over S.

Moreover, we will say that such an H is split if H0 is a split reductive group scheme
and π0(H) is constant. The main properties we will need about these objects are
summarized in the following two lemmas.

Lemma 3.1. Suppose H is split over S and let (B, T,X) be a pinning of H0.

(1) The normalizers NH(T ), resp NH(T,B), of the torus T , resp of the Borel
pair (B, T ), are split generalized reductive with neutral component T .
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(2) If the center Z(H0) of H0 is smooth over S, the normalizer NH(B, T,X)
of the pinning is generalized reductive with neutral component Z(H0)0.

Note that for each one of the group schemes N in the above lemma, one checks
on geometric fibers that the natural morphism N −→ π0(H) is surjective (eg étale-
sheaf theoretically) and the kernel N ∩H0 pertains to the theory of reductive group
schemes, for which an efficient reference is [Con14].

Lemma 3.2. Suppose S = SpecR with R a normal subring of a number field.

(1) Any generalized reductive H over S splits over a finite integral extension.
(2) If H is generalized reductive over S and P ⊂ H(S) is a solvable finite sub-

group with order invertible on S, then the centralizer CH(P ) and the nor-
malizer NH(P ) of P are generalized reductive, with CH(P )0 = NH(P )0.

We refer to [DHKM20], Thm 1.13 for a proof of (1) and Thm A.12 for (2).

3.2. Flatness and complete intersection. In the sequel, we always assume
that the group scheme H over Λ is “generalized reductive”.

Proposition 3.3. XH,1 is syntomic (i.e. flat and local complete intersection)
over S of the same relative dimension as H over S := Spec Λ.

Proof. We have a cartesian diagram

XH,1
//

��

H ×S H

��
S // H

where the RHS map is H ×H −→ H, (F, σ) 7→ FσF−1σ−q. This shows that the
closed subscheme XH,1 of the smooth S-scheme H×SH is defined by the vanishing
of dimS H functions. So, in order to prove that the map XH,1 −→ S is syntomic
(and even a global complete intersection), it is enough to show that all its geometric
fibers have dimension equal to dimS(H ×S H)− dimS H = dimS H.

So let L be an algebraically closed field over Λ, and let us write X := XH,1 to
lighten the notations. Since XL is the fiber at 1 of the morphism HL×HL −→ HL,
(F, σ) 7→ FσF−1σ−q, each irreducible component of XL has dimension > dimHL =
dimS H. On the other hand, let σ ∈ H(L) be in the image of the second projection
π2 : X −→ H. Then the fiber π−1

2 (σ) ⊂ X is a torsor under the centralizer Hσ of σ
in HL, hence it has dimension dimHσ. It follows that the preimage π−1

2 (σ̃) of the
H0
L-conjugacy class σ̃ of σ in HL has dimension dimHσ + (dimHL − dimHσ) =

dimHL = dimS H. So, the desired equidimensionality follows from the following
claim : π2(X(L)) consists of finitely many conjugacy classes in H(L).

To prove the claim, let σ ∈ π2(X(L)) and consider its Jordan decomposition
σ = σssσu. We will show that σss has finite order bounded independently of σ (and
L). Since there are only finitely many conjugacy classes of semisimple elements of
bounded finite order, and finitely many conjugacy classes of unipotent elements in
the centralizer of such an element [FG12], this will prove the claim. So let e be
the order of π0(HL). Then (σss)

e ∈ H0
L belongs to a maximal torus T of HL. Since

(σss)
qe is conjugate to (σss)

e in H(L) and also belongs to T , there is n ∈ NH(L)(T )

such that n(σss)
en−1 = (σss)

qe. Denoting by ω the order of the Weyl group of H0
L,

we get (σss)
e = neω(σss)

en−eω = (σss)
qeωe, and it follows that (σss)

e(qeω−1) = 1. �
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Remark 3.4. It follows from the proof that any irreducible component of
(XH,1)L is the closure of the preimage of a H0-conjugacy class in π2(XH,1(L)).
In other words, any irreducible component is the closure of the image of the map

H0
L × (Hσ)0 −→ (XH,1)L, (h, k) 7→ (hFkh−1, hσh−1)

for some (F, σ) ∈ X(L).

Remark 3.5. The fact that H0 is reductive is crucial when using the finiteness
of the set of unipotent classes. Without this hypothesis, the moduli space may
fail to be l.c.i. and therefore may have non-trivial derived structure, see [Hel20a,
Example 2.3].

3.3. Unobstructed points and generic smoothness. Let L be an alge-
braically closed field over Λ and let x ∈ XH,1(L) be an L-point of XH,1. We
compute the tangent space Tx(XH,1)L and its dimension as an L-vector space. To
enlighten a bit the notation we will simply write X for XH,1 in this subsection.

Lemma 3.6. Let ϕ : W 0
t −→ H(L) denote the morphism associated to x, and

let W 0
t act on the Lie algebra LieH through ϕ composed with the adjoint action.

(1) TxXL ' Z1(W 0
t ,LieHL)

(2) dimL TxXL = dimHL + dimLH
0(W 0

t , (LieHL)∗ ⊗ ω)

where ω is the “cyclotomic character” that takes Fr to q and s to 1. In particular,
x is a smooth point of XL if and only if H0(W 0

t , (LieHL)∗ ⊗ ω) = 0.

Proof. (1) It is convenient here to see X as the closed subscheme of HW 0
t

defined by conditions ϕ(ww′)ϕ(w)−1ϕ(w′)−1 = 1. Then TxXL identifies to the
common kernel of the corresponding linear maps

∏
w Tϕ(w)HL −→ T1HL = LieHL.

Identifying ThHL to LieHL via right translation under h, this exhibits TxXL as the
common kernel of certain linear maps

∏
w LieHL −→ LieHL. In order to compute

these maps, recall that the tangent space TxXL can be seen as the fiber of the map
X(L[ε])

π∗−→ X(L) over x. So an element x̃ ∈ TxXL is given by some homomorphism
ϕ̃ : W 0

t −→ H(L[ε]) such that ϕ̃(w) ∈ Tϕ(w)HL for any w. Under right translations

as above, this corresponds to the element (h̃w := ϕ̃(w)ϕ(w)−1)w∈W in
∏
w LieHL.

The condition ϕ̃(ww′)ϕ̃(w)−1ϕ̃(w′)−1 = 1 then translates into the equality

h̃ww′ = ϕ̃(ww′)ϕ(ww′)−1 = ϕ̃(w)ϕ̃(w′)ϕ(w′)−1ϕ(w)−1 = hwϕ(w)hw′ ϕ̃(w)−1.

In additive notation, this means h̃ww′ = hw + Adϕ(w)(hw′), which is the cocycle
condition of statement (1).

(2) We have an exact sequence

0 −→ (LieHL)ϕ(W 0
t ) −→ LieHL

∂−→ Z1(W 0
t ,LieHL) −→ H1(W 0

t ,LieHL) −→ 0

where ∂h̃ = (w 7→ Adϕ(w)h̃− h̃). This shows that

dimL TxXL = dimHL + dimLH
1(W 0

t ,LieHL)− dimLH
0(W 0

t ,LieHL).

Now, the dévissage sZ[ 1
q ] ↪→ W 0

t � FrZ allows one to compute cohomology of W 0
t

in stages, via a spectral sequence. Since Z and Z[ 1
q ] have cohomological dimension

1 on finite dimensional L-vector spaces and satisfy vanishing of Euler-Poincaré
dimension, we see that W 0

t has cohomological dimension 2 and satisfies vanishing
of Euler-Poincaré dimension. This implies that

dimL TxXL = dimHL + dimLH
2(W 0

t ,LieHL).
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Now, to compute H2(W 0
t ,LieHL) = H1(〈Fr〉, H1(sZ[ 1

q ],LieHL)), we first note

that the canonical map H1(sZ,LieHL)) = (LieHL)σ −→ H1(sZ[ 1
q ],LieHL)) is

an isomorphism (here σ = ϕ(s) and the index σ denotes σ-coinvariants). In-

deed, since σss has finite order, all ϕ(sq
−n

) belong to the Zariski closure of 〈σ〉
in AutL(LieHL). Via this isomorphism, the action of Fr on H1(σZ[ 1

q ],LieHL))
corresponds to the natural action of F = ϕ(Fr) on (LieHL)σ multiplied by q−1. So
we get that H2(W 0

t ,LieHL) =
(
ω−1 ⊗ (LieHL)σ

)
F

and, taking duals, we see that

H2(W 0
t ,LieHL)∗ ' H0(W 0

t , (LieHL)∗ ⊗ ω). �

Now, we would like to show that XL is generically smooth, at least if charL
is 0 or is sufficiently large. In the next lemma we deal with the characteristic 0
case. We refer to [DHKM20, §5] for a discussion of when the result is still true in
positive characteristic.

Proposition 3.7. If CharL = 0, any irreducible component of XL contains a
smooth point. Consequently, XH,1 is generically smooth and, in particular, reduced.

Proof. From Remark 3.4, it suffices to show that, for any (F, σ) ∈ X(L),
there is c ∈ (Hσ)0(L) such that (Fc, σ) is a smooth point. By the last lemma, it
suffices to find c ∈ (Hσ)0(L) such that Fc has no fixed vector in ((LieHL)∗ ⊗ ω)σ,
i.e. such that q−1 is not an eigenvalue of Fc on (LieHL)∗,σ.

We first assume that σ is unipotent (and thus belongs to H0(L)). By the
Jacobson-Morozov theorem, we can find a cocharacter λ : Gm −→ H such that
log σ has weight 2 under Adλ acting on LieH. Moreover such a λ is unique up
to conjugacy by an element of the unipotent radical Ru(Hσ). So there is c1 ∈
Ru(Hσ)(L) such that Fc1 centralizes λ. Now put Fλ := λ(q

1
2 ) ∈ H(L). We

have FλσF
−1
λ = σq, hence F−1

λ Fc1 ∈ Hσ ∩ Hλ. The algebraic group Hσ ∩ Hλ

is known to be a Levi factor of Hσ. In particular, it is reductive, so we may
fix a pinning of its neutral component (Hσ ∩ Hλ)0 and find c2 ∈ (Hσ ∩ Hλ)0

such that F−1
λ Fc1c2 normalizes this pinning. Putting m := |π0(Hσ ∩ Hλ)|, this

implies that (F−1
λ Fc1c2)m belongs to the center Z(Hσ ∩ Hλ), and even to the

subgroup Z(Hσ ∩Hλ)F
−1
λ Fc1c2 fixed under conjugacy by F−1

λ Fc1c2. If m′ denotes

the order of π0(Z(Hσ ∩ Hλ)F
−1
λ Fc1c2), we see that (F−1

λ Fc1c2)mm
′

is an element

of the torus (Z(Hσ ∩ Hλ)F
−1
λ Fc1c2)0. Since a torus is a divisible group, there is

an element c3 ∈ (Z(Hσ ∩Hλ)F
−1
λ Fc1c2)0 such that (F−1

λ Fc1c2c3)mm
′

= 1. Putting

c := c1c2c3 ∈ (Hσ)0 and c′ := F−1
λ Fc ∈ Hσ, we see that Fc = Fλc

′ = c′Fλ, so the
eigenvalues of Fc on (LieHL)∗,σ are products of eigenvalues of c′ and of Fλ. The
eigenvalues of c′ are roots of unity. On the other hand, we have a decomposition
(LieHL)∗ = Lie(Z(H)L)∗ ⊕ (Lie(Hder,L)∗. The eigenvalues of Fλ on Lie(Z(H)L)∗

are again roots of unity, and we know that λ has non-negative weights on LieHσ.
Since the Killing form identifies (Lie(Hder,L)∗ and LieHder,σ, we see that q−1 is not
an eigenvalue of Fc on (LieHL)∗,σ.

We now reduce the general case to the unipotent case. So let σ = σssσu be the
Jordan decomposition of σ. Since F normalizes the reductive algebraic subgroup
(Hσss)

0, we may repeat the above argument to find an element h ∈ (Hσss)
0 such

that Fh normalizes a pinning of this group and has finite order. This means that the
Zariski closure H ′ of the subgroup generated by Hσss

and F has neutral component
(Hσss

)0. By the unipotent case, there is c ∈ (H ′σu
)0 = (Hσ)0 such that q−1 is not

an eigenvalue of Fc on LieH ′σu
= LieHσ, as desired. �
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3.4. Faithful flatness and `-adic continuity. The next statement implies
that all irreducible components of XH,1 are faithfully flat over Λ, and that its ring
of functions RH,1 is `-adically separated for all primes ` 6= p.

Lemma 3.8. Any irreducible component of XH,1 contains a Z`-point, for any
prime ` 6= p. In particular its ring of functions RH,1 is `-adically separated.

Proof. Let Y be an irreducible component of X = XH,1, and choose an

embedding Λ ↪→ Z`. Since XH,1 is flat over Λ, the base change YQ` is non-empty,

and is an irreducible component of XQ` . In the proof of the last proposition, we

showed that YQ` contains a point (F, σ) with F of the form F = Fλc
′ = c′Fλ

where Fλ = λ(q
1
2 ) for some cocharacter λ of HQ` , and c′ has finite order. Up

to conjugating this point under H0(Q`), we may assume that λ factors through a
maximal torus of HQ` that comes from a maximal torus of HZ` . Then λ itself has

to be defined over Z`. Since q is an `-adic unit, it follows that the closure 〈F 〉 in
H(Q`) of the group generated by F is compact. On the other hand σ itself is the

product σ = σssσu of a finite order element and a unipotent element, hence 〈σ〉 is

compact and, finally, 〈F, σ〉, which is a quotient of 〈F 〉 n 〈σ〉, is compact too. It
follows that 〈F, σ〉 fixes a vertex of the building of H0 over Q`. Such a vertex is
hyperspecial and thus conjugate under H0(Q`) to the “origin” vertex associated
to the integral model HZ` . But the fixator of the origin vertex is H(Z`)Z(H)(Q`)
and the maximal bounded subgroup therein is H(Z`). So, after conjugation under
H0(Q`), we get a point (F, σ) ∈ Y (Q`) such that 〈F, σ〉 ⊂ H(Z`). This means
(F, σ) ∈ Y (Z`), as desired.

For the remaining statement, we leave it as an exercise to show that for a
noetherian integral ring A, either ` is invertible in A, or A is `-adically separated.
In our case, the existence of a Z`-point shows that ` is not invertible. �

Now we wish to extend the universal morphism ϕH,1 : W 0
t −→ H(RH,1) to the

non-discretized tame Weil group Wt = WF /PF .

Proposition 3.9. Fix a prime ` 6= p. There is a unique `-adically continuous
extension `ϕH,1 : Wt −→ H(RH,1⊗Z`) of ϕH,1, and it is universal among `-adically
continuous morphisms Wt −→ H(R) when R runs over Λ⊗Z`-algebras. Moreover,
it is also continuous and universal for the ind-`-adic topology (see 2.2).

Proof. Put σ := ϕH,1(s) ∈ H(RH,1). In the course of the proof of Proposition
3.3, we showed the existence of a prime-to-p number M such that σM is fibrewise
unipotent, i.e. has unipotent image in H(L) for any algebraically closed field L over
RH,1. In particular, for all m ∈ N, the image of σM in H(RH,1/`

mRH,1) has finite
`-power order, hence ϕH,1,mod `m : W 0

t −→ H(RH,1/`
mRH,1) extends uniquely to

Wt and its restriction to IF /PF = sẐ
p

factors through Ẑp −→ Z/MZ× Z`. Going
to the limit, we get a morphism `ϕ̂H,1 : Wt −→ H((RH,1⊗Z`)∧) where ∧ denotes `-
adic completion. We need to show that this extension factors through H(RH,1⊗Z`),
which is a subgroup of H((RH,1 ⊗ Z`)∧) since RH,1 is `-adically separated. It is
enough to prove it after composing with a faithful representation ι : H ↪→ GLN of

H over Λ. But there, the extension of ι ◦ `ϕ̂H,1 is explicitely given on sẐ
p

by the
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formula

ισz = ισaισMz′ = ισa
(
1 + (ισM − 1)

)z′
= ισa

∑N−1
k=0

(
k
z′`

)
(ισM − 1)k

for z = a+Mz′ ∈ Ẑp with a ∈ {0, · · · ,M − 1} and z′` the image of z′ in Z`
since ισM is a unipotent matrix. Note that the generalized binomial coefficient(
k
z′`

)
lies in Z`, and the formula provides a matrix in GLN (RH,1 ⊗ Z`), as desired.

The verification of the universality of `ϕH,1 is quite formal and left to the reader.
Finally, to prove continuity of `ϕH,1 for the ind-`-adic topology, it is enough to
show that for any vector v ∈ (RH,1⊗Z`)N , the Z`-submodule generated by the set

{ι(`ϕH,1(sz))v, z ∈ M Ẑp} is finitely generated. But the above formula shows it is

contained in the Z`-submodule generated by {(1− ισMk)(v), k = 0, · · · , N−1}. �

3.5. Connected components and spaces of 1-cocycles. At the beginning
of this section, we noted that the scheme of tame cocycles Z1(W 0

t , Ĝ), which we are
ultimately interested in, is a summand of the scheme XH,1 = Hom(W 0

t , H) for the

group H = ĜoW , where W is a finite quotient of Wt through which the action of
Wt on Ĝ factors. Conversely, we will now see that XH,1 decomposes as a sum of
spaces of 1-cocycles, each of which is (at least conjecturally) connected.

To simplify the discussion, we will work over Z[ 1
p ] (but everything below holds

over a sufficiently large finitely generated subring there). In this setting, we know
that H0 is split and π0(H) is constant. By pushing forward homomorphisms, we
get a morphism

XH,1 = Hom(W 0
t , H)

π−→ Hom(W 0
t , π0(H))

from XH,1 to a finite discrete scheme, whence a decomposition

XH,1 =
⊔
ϕ̄XH,1,ϕ̄ with XH,1,ϕ̄ = π−1({ϕ̄}).

Conjecture 3.10. Each non empty summand XH,1,ϕ̄ is connected.

As we will see below, this conjecture holds true at least when the center of H0

is smooth over Z[ 1
p ].

Proposition 3.11. For each ϕ̄ : W 0
t −→ π0(H), there is an element ϕ ∈

XH,1,ϕ̄(Z[ 1
p ]) such that ϕ(W 0

t ) is finite and normalizes a Borel pair of H0. More-

over, if the center Z(H0) is smooth over Z[ 1
p ], then one can choose ϕ such that

ϕ(W 0
t ) normalizes a pinning of H0.

Proof. Let us fix a pinning ε = (B, T, (Xα)α∈∆) of H0, and consider the
normalizer T := NH(B, T ) of the underlying Borel pair in H. By Lemma 3.1, this
is a split generalized reductive group with neutral component T and π0(T ) = π0(H).
So we may apply our results so far to XT ,1 := Hom(W 0

t , T ) and to its summand
XT ,1,ϕ̄, which is a closed subscheme of XH,1,ϕ̄.

Let us show that XT ,1,ϕ̄(Z[ 1
p ]) 6= ∅. To this aim, we first note that the map

T (Z[ 1
p ]) −→ π0(H) is surjective. Indeed, this follows from [DHKM22, Lemma

2.1] and the fact that the morphism T −→ π0(H) is a T -torsor. So, the obstruction
to lift ϕ̄ to a morphism ϕ : W 0

t −→ T (Z[ 1
p ]) lies in H2

Adϕ̄
(W 0

t , T (Z[ 1
p ])). Here Adϕ̄

denotes the action of W 0
t obtained by composition of ϕ̄ with the conjugation action

of T on T = T 0, which factors through π0(T ) = π0(H). Now, as already noted
in the proof of Lemma 3.6, we have H2(W 0

t , T (Z[ 1
p ])) = [(T (Z[ 1

p ]))Adϕ̄(s)
]q−1Adϕ̄(Fr)

.
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But this group vanishes because Adϕ̄(Fr) is a finite order automorphism and T (Z[ 1
p ])

is p′-divisible. Hence XT ,1,ϕ̄(Z[ 1
p ]) 6= ∅.

At this point we have almost proven the first claim of the proposition, except
for the finiteness of the image. However, observe that for any ϕ ∈ XT ,1,ϕ̄(Z[ 1

p ]),

the element σ = ϕ(s) has finite prime to p order, since a prime to p power of it is
unipotent in T (Q) hence equal to 1. So, writing F := ϕ(Fr) as usual, it will suffice
to show the existence of an element c ∈ T (Z[ 1

p ])σ such that Fc has finite order,

in which case the pair (Fc, σ) defines a homomorphism as desired. To this aim,
observe that there is n such that Fn belongs to (TAdϕ̄)0(Z[ 1

p ]). But since the latter

abelian group is divisible, there is c ∈ (TAdϕ̄)0(Z[ 1
p ]) such that cn = Fn, hence

(Fc)n = 1, as desired.
For the second claim of the proposition, we proceed exactly as above, replac-

ing T by the normalizer Z of the fixed pinning. In this case H2
Adϕ̄

(W 0
t , Z(Z[ 1

p ]))

vanishes because Z0(Z[ 1
p ]) is divisible and π0(Z) is a p-group (by our smoothness

assumption), hence is p′-divisible. �

Corollary 3.12. Let ϕ̄ : W 0
t −→ π0(H), and fix an element ϕ as in the last

proposition. Denote by Adϕ the action of Wt on H0 that we get via conjugation
inside H. Then we get an isomorphism

Z1
Adϕ

(W 0
t , H

0)
∼−→ XH,1,ϕ̄, η 7→ η · ϕ,

This shows that XH,1,ϕ̄ is a space of 1-cocycles for a nice finite and Borel-pair-
preserving action of W 0

t on H0. In the smooth center case, this shows that XH,1,ϕ̄

is the space of tame Langlands parameters for “the” quasi-split group over F whose
Langlands dual is H0 oAdϕWF .

We end this subsection on the tame setting with the following result, to be
proved in section 5.4, and which implies that each XH,1,ϕ̄ is connected, at least if
the center of H0 is smooth.

Theorem 3.13. Suppose G is a tamely ramified reductive p-adic group. Then
the Z[ 1

p ]-scheme of tame Langlands parameters Z1(W 0
t , Ĝ) is connected.

Example 3.14. Suppose G = T is a torus that splits over a tamely ramified
extension. Then Z1(W 0

t , T̂ ) identifies to the kernel of

T̂ × T̂ −→ T̂ , (F, σ) 7→ F · Frσ · (s
q

F )−1 ·
(
σ · sσ · · · s

q−1

σ
)−1

,

hence it has the structure of a diagonalizable group scheme over Z[ 1
p ]. Such a scheme

is connected over Z[ 1
p ] if and only if the order of the torsion of its character group is

prime to p. If the action of s on T̂ is trivial (ie T is unramified), then Z1(W 0
t , T̂ ) '

T̂ × T̂Fr=(.)q , and its character group has torsion subgroup X∗(T̂ )/(q − Fr)X∗(T̂ )
which has prime to p order as desired. On the other hand, if Ls : t 7→ t(st)−1 is

an isogeny of T̂ , then the map Z1(W 0
t , T̂ )

ϕ 7→ ϕ(s)−→ T̂ is surjective and its kernel is
isomorphic to the kernel of the isogeny Lsq : t 7→ t(s

q

t)−1, which has prime to p

degree again. For the general case, consider the prime-to-p degree isogeny T̂ �
T̂s × (T̂ /T̂ s). It induces a morphism Z1(W 0

t , T̂ ) −→ Z1(W 0
t , T̂s) × Z1(W 0

t , T̂ /T̂
s)

whose kernel and cokernel are finite with prime-to-p order. So the general case
follows from the two special cases above.
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4. Reduction to the tame case and connected components

We now take over the study of Z1(W 0
F /P, Ĝ) for an open subgroup P of PF

that is distinguished in WF and acts trivially on Ĝ.
Again, we will study a slightly more general setting where we fix a generalized

reductive group scheme H over Λ and consider the affine scheme

XH,1P := Hom(W 0
F /P,H)

that represents the functor on R-algebras R 7→ Hom
(
W 0
F /P,H(R)

)
. Thanks to

Iwasawa theorem [Iwa55], there is a (non-canonical) semi-direct product decom-
position W 0

F /P ' PF /P oW 0
t . Hence we will first study the affine scheme

YH,1P := Hom(PF /P,H)

that represents the functor R 7→ Hom (PF /P,H(R)) , and then we will use the
restriction map XH,1P −→ YH,1P .

4.1. Homomorphisms from a finite group. In this paragraph, we look
more generally at the scheme Y := Hom(Γ, H) where H is a group scheme over a
noetherian affine base S = SpecR and Γ is a finite group. Conjugation induces an
action of the group scheme H on Y relatively over S, given by a morphism

α : H ×S Y −→ Y, (h, φ) 7→ Adh ◦ φ,

where Ad denotes conjugation. The “universal orbit morphism” associated to this
action is

H ×S Y −→ Y ×S Y, (h, φ) 7→ (Adh ◦ φ, φ).

This morphism controls the usual orbit morphisms and the centralizers and trans-
porters. Namely :

• for φ ∈ Hom(Γ, H(R′)), the corresponding orbit morphism HR′ −→ YR′

is the base change of the Y -morphism α along the corresponding R′-point
SpecR′ −→ Y ,

• for φ, φ′ ∈ Hom(Γ, H(R′)), the transporter from φ to φ′ is the S′ :=
Spec(R′)-scheme obtained by pullback of α along the corresponding map
S′ −→ Y ×S Y .

Lemma 4.1. Assume that H is smooth and Γ has invertible order on R. Then
Hom(Γ, H) is smooth, and all orbit morphisms and transporters are smooth.

Proof. We refer to [DHKM20, A.1] for details. Since all schemes are of
finite presentation over S, it suffices to verify the corresponding infinitesimal lifting
properties. So let R′ be an R-algebra with ideal I of square 0. To prove smoothness
of Y over S, we need to show that any φ0 : Γ −→ H(R′/I) can be lifted to a
φ : Γ −→ H(R′). But an explicit computation shows that the obstruction for doing
so lies in H2

Adφ0
(Γ,Lie(H)⊗R I), which vanishes since Γ has invertible order in R.

On the other hand, to prove smoothness of the universal orbit morphism, we need
to show that for any pair of homomorphisms φ, φ′ : Γ −→ H(R′) whose reductions
φ0, φ

′
0 : Γ −→ H(R′/I) are conjugate under some h0 ∈ H(R′/I), there is a lifting

h ∈ H(R′) of h0 which conjugates φ to φ′. Again, an explicit computation shows
that the obstruction lies in H1

Adφ0
(Γ,Lie(H)⊗R I), which vanishes. �
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Since orbit morphisms are smooth, they are in particular open. In the case
where R is an algebraically closed field, we can pick a set Φ ⊂ Y (R) of representa-
tives of H(R)-orbits. Then we get a decomposition Y =

∐
φ∈ΦH ·φ, with H ·φ the

image of the orbit morphism through φ. In particular, Φ has to be finite. Moreover,

the orbit morphism induces an isomorphism H/CH(φ)
∼−→ H · φ, where CH(φ) is

the centralizer.
As far as we know, there is no general result along these lines over a general

base ring R in the literature. However, here is a result sufficient for our purposes.

Theorem 4.2. Suppose that H is generalized reductive, that R is a normal
subring of a number field, and that Γ has order invertible in R.

(1) The categorical quotient Y �H0 = Spec (OY )H
0

is finite étale over R and
represents the quotient sheaf Y/H0 for the étale topology.

(2) For any φ ∈ Y (R′), the quotient sheaf H0
R′/CH0(φ) for the étale topology

is representable by an R′-scheme, and the orbit morphism H0
R′ −→ YR′

identifies it to an open and closed subscheme of YR′ .
(3) There is a finite normal extension R′/R and a finite set Φ ⊂ Y (R′) such

that the orbit maps induce an isomorphism
∐
φ∈ΦH

0
R′/CH0(φ)

∼−→ YR′ .

Proof. For (1), we refer to [DHKM20, Thm A.7] and content ourselves
with indicating two main ingredients. The key point is to prove that when R is a
strictly Henselian d.v.r., the canonical map from the constant sheaf associated to
Y (R)/H0(R) to the quotient sheaf Y/H0 is an isomorphism. In other words, given
any strictly Henselian local R-algebra R′, the map Y (R)/H0(R) −→ Y (R′)/H0(R′)
should be a bijection. If the map R −→ R′ is local, then we have a factorization

Y (R)/H0(R)
∼−→ Y (kR)/H0(kR) −→ Y (kR′)/H

0(kR′) ' Y (R′)/H0(R′) where
the isomorphisms come from smoothness of transporters and Artin approxima-
tion. This leaves us with the case of a field extension, which can be dealt with
the help of V. Lafforgue’s pseudocharacters. Otherwise we have a factorization
Y (R)/H0(R) −→ Y (K)/H0(K) −→ Y (kR′)/H

0(kR′) ' Y (R′)/H0(R′) with K an
algebraic closure of the fraction field of R, and we use Bruhat-Tits theory to get
bijectivity of the first map. This is the part of the argument where we use that R
is regular of dimension 1.

For (2), it suffices to prove it for the universal homomorphism φuniv corre-
sponding to the identity of Y . Its orbit morphism is α : H0 ×S Y −→ Y ×S Y .
Let CH0(φuniv) −→ Y be the universal centralizer over Y , i.e. the pullback of α

along the diagonal. Then α induces an isomorphism (H0 ×S Y )/CH0(φuniv)
∼−→

Y ×Y/H0 Y , where all quotients are sheaf-theoretic for the étale topology. By (1)
we know that the target is representable by an affine scheme, hence the source is
representable too. Moreover, the morphism Y ×Y/H0 Y −→ Y ×SY is a base change

of Y/H0 = Y/H0 ×Y/H0 Y/H0 −→ Y/H0 ×S Y/H0 which is an open and closed

immersion since Y/H0 is finite étale over S.
For (3), we refer to [DHKM20, Thm A.9] and content ourselves with explain-

ing the problem and the main tool to solve it. We may first use Lemma 3.2 to
replace R by a finite extension so that H splits over R. Using (1), we then may re-

place R by a finite étale extension that splits O(Y )H
0

. Then the problem is to find
R′ such that any point [φ] of (Y/H0)(R) lifts to some representative φ ∈ Y (R′).
By smoothness of Y −→ Y/H0, we certainly can find R′ faithfully étale over R
such that this property holds. So, up to replacing R by a finite extension, we can
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find R′ such that SpecR′ −→ SpecR is a Zariski covering, i.e. R′ =
∏r
i=1Ri with

each Ri a localization of R. So the problem is to pass from this Zariski covering
to some finite flat covering. In loc.cit., this is done via the strong approximation
theorem. �

Remark 4.3. If H is assumed to be reductive, it splits over a faithfully étale
R′ over R, and the split HR′ descends to SpecZ by classification. In this case, we
can use the theorem to prove that its conclusions still hold true over any ring R
that either is flat over Z or contains a field.

4.2. Restriction to PF . We now take our study of XH,1P = Hom(W 0
F /P,H)

up again, and we revert to the notations at the beginning of this section. Recall
our base ring Λ is a finite integral extension of Z[ 1

p ], so that Theorem 4.2 above

applies to YH,1P = Hom(PF /P,H). After maybe enlarging Λ, we may assume that
there is a finite set Φ ⊂ YH,1P (Λ) such that YH,1P decomposes as a sum of orbits

YH,1P =
∐
φ∈Φ YH,[φ] with H0/CH0(φ)

∼−→ H0 · φ =: YH,[φ].

Pulling back by the restriction morphism XH,1P −→ YH,1P , we then get a decom-
position

XH,1P =
∐
φ∈ΦXH,[φ] , with H0 ×CH0 (φ) XH,φ

∼−→ XH,[φ]

and where
XH,φ = Hom(W 0

F , H)φ := {ϕ ∈ XH,1P , ϕ|PF = φ}.
The contracted product above denotes the quotient of H0 ×XH,φ by the diagonal
action of CH0(φ). This quotient is defined first as a sheaf for the étale topology,
and the isomorphism above (quite formal in the sheaf setting) shows it is indeed
representable. Of course, XH,φ may be empty. We will say φ is admissible if
XH,φ 6= ∅.

For φ ∈ Φ, we denote by Hφ := NH(φ(PF )) the scheme-theoretic normalizer in
H of the image of φ in H(Λ). According to Lemma 3.2, this is again a generalized
reductive group scheme over Λ. Note that Hφ(Λ) contains φ(PF ), so we have a Λ-
scheme XHφ,φ = Hom(W 0

F /P,Hφ)φ as above. Moreover, since PF is distinguished

in WF , any ϕ : W 0
F /P −→ H(R) factors through Hφ(R), so the closed immersion

Hφ ↪→ H induces an isomorphism

XHφ,φ = Hom(W 0
F /P,Hφ)φ

∼−→ Hom(W 0
F /P,H)φ = XH,φ.

Let us now fix a splitting W 0
F /P = W 0

t n PF /P as in [Iwa55]. This provides us
with a restriction map

XHφ,φ = Hom(W 0
F /P,Hφ)φ −→ Hom(W 0

t , Hφ) = XHφ,1.

Lemma 4.4. The restriction map above is an open and closed embedding.

Proof. Consider the morphism XHφ,1 −→ YHφ,1P ×Λ YHφ,1P which takes

(F, σ) to (Fφ, σφ), where Fφ = AdF ◦ φ ◦ Ad−1
Fr and σφ = Adσ ◦ φ ◦ Ad−1

s . Then
XHφ,φ identifies to the pullback of this morphism along the diagonal embedding

Spec Λ
(φ, φ)−→ YHφ,1P ×Λ YHφ,1P , so it suffices to see that this diagonal embedding

is an open and closed immersion. But the map Spec Λ
φ−→ YHφ,1P induces an iso-

morphism Spec Λ
∼−→ YHφ,[φ] because (Hφ)0 = CH(φ)0. Since YHφ,[φ] is open and

closed in YHφ,1P , this shows that φ is an open and closed immersion, hence so is
(φ, φ). �
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4.3. Proof of Theorems 2.1 and 2.2. Both these theorems are a conse-
quence of the following one.

Theorem 4.5. The Λ-scheme XH,1P = Hom(W 0
F /P,H) is reduced, flat and

l.c.i of relative dimension dimH. For any prime ` 6= p, its ring of functions RH,1P
is `-adically separated and the universal homomorphism ϕH,1P : W 0

F /P −→ RH,1P
extends uniquely to a universal `-adically and ind-`-adically continuous homomor-
phism `ϕH,1P : WF /P −→ H(RH,1P ⊗ Z`).

Proof. For an admissible φ ∈ Φ, the Λ-scheme XH,φ is a summand of XHφ,1,
hence it is flat and l.c.i of relative dimension dimHφ by Proposition 3.3, and its
ring of functions RH,φ is `-adically separated by Lemma 3.8. The universal homo-
morphism ϕH,φ : W 0

F /PF −→ H(RH,φ) has the form ϕHφ,1 n φ with respect to the
splitting WF /P = Wt n (PF /P ) chosen for the restriction map XHφ,φ −→ XHφ,1.

Therefore, with the notation of Proposition 3.9, we see that `ϕH,φ := `ϕHφ,1 n φ is
a universal continuous extension for ϕH,φ.

Now, it follows from the isomorphism XH,[φ] ' H0 ×CH0 (φ) XH,φ that the Λ-
scheme XH,[φ] is flat and l.c.i of relative dimension dimH, and that its ring of

functions RH,[φ] = (OH0 ⊗Λ RH,φ)CH0 (φ) is `-adically separated. Moreover, the
universal homomorphism ϕH,[φ] is given by the formula

ϕH,[φ](w) : OH −→ OH0 ⊗Λ OH
Id⊗ϕH,φ(w)
−→ OH0 ⊗Λ RH,φ, ∀w ∈WF

where the first map is dual to (g, h) 7→ ghg−1. Base changing everything to Z`
and replacing ϕH,φ by `ϕH,φ provides us with the desired `ϕH,[φ]. It only remains
to use the the decomposition XH,1P =

⊔
φ∈ΦXH,[φ] to conclude the proof of the

theorem. �

4.4. Connected components over Z[ 1
p ] and spaces of tame 1-cocycles.

We keep the same notation Φ and XH,φ = Hom(W 0
F /P,H)φ from above and we

base change everything to Z[ 1
p ] for convenience. As in subsection 3.5, we can use

the morphism

XH,φ = Hom(W 0
F , H)φ = Hom(W 0

F , Hφ)φ −→ Hom(W 0
F , π0(Hφ))φ

to get a finer decomposition

XH,φ =
⊔
ϕ̄

XH,φ,ϕ̄

with ϕ̄ running in the finite set Hom(W 0
F , π0(Hφ))φ.

Proposition 4.6. For each pair (φ, ϕ̄) such that XH,φ,ϕ̄ 6= ∅, there is ϕ ∈
XH,φ,ϕ̄(Z[ 1

p ]) such that ϕ(W 0
F ) is finite and normalizes a Borel pair of (Hφ)0 =

CH(φ)0. If the center of (Hφ)0 is smooth over Z[ 1
p ], then one can even find ϕ such

that it preserves a pinning of (Hφ)0.

Proof. We know that, after choosing a splitting W 0
F /PF = W 0

t n (PF /P ), the
restriction map XH,φ,ϕ̄ −→ XHφ,1,ϕ̄ is an open and closed embedding. If we knew
that XHφ,1,ϕ̄ is connected (conjecture 3.10), we could conclude that this map is an
isomorphism and deduce this proposition from proposition 3.11.

Instead, let us follow the first steps of the proof of proposition 3.11 ; let us fix
a pinning ε = (B, T, (Xα)α∈∆) of (Hφ)0, and let us consider the normalizer T :=
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NHφ(B, T ) of the underlying Borel pair in (Hφ)0. Note that φ(PF ) is contained
and normal in T (Λ), so that T = Tφ. Moreover, we have π0(T ) = π0(Hφ). Hence
the restriction map XT ,φ,ϕ̄ −→ XT ,1,ϕ̄ is an open and closed embedding, and this
time we know (example 3.14) that XT ,1,ϕ̄ is connected. So it only remains to prove
that the scheme XT ,φ,ϕ̄ is not empty.

To this aim, pick an algebraically closed field L such that XH,φ,ϕ̄(L) 6= ∅, and
pick a ϕ0 ∈ XH,φ,ϕ̄(L). For any w ∈ W 0

F , there is a hw ∈ (Hφ)0(L) such that
Adhw ◦ Adϕ0(w) belongs to T (L). The hw’s are only defined up to multiplication
by T (L), and the obstruction to finding a family (hw)w such that w 7→ hwϕ0(w) is
a homomorphism lies in H2

Adϕ̄
(W 0

t , T (L)) (see [DHKM20, Prop. 3.7] for details).

As in the proof of Proposition 3.11, this H2 vanishes because T (L) is a divisible
group. �

For any (φ, ϕ̄) and ϕ as in the proposition, we get an isomorphism

Z1
Adϕ(W 0

t , (Hφ)0)
∼−→ XH,φ,ϕ̄, η 7→ η · ϕ.

Conjecture 3.10 would thus imply that each XH,φ,ϕ̄ is connected.

Corollary 4.7. If Z(H0) is smooth over Z[ 1
p ], then XH,φ,ϕ̄ is connected.

Proof. If Z(H0) is smooth over Z[ 1
p ], then [DHKM20, Lemma 3.11] shows

that Z((Hφ)0) is also smooth over Z[ 1
p ]. This implies that ϕ in the above proposition

can be chosen so that Adϕ preserves a pinning of (Hφ)0, and the connectedness of
XH,φ,ϕ̄ then follows from Theorem 3.13. �

In order to parametrize the connected components of XH,1P , one has to take
into account the possible disconnectedness of the centralizers CH0(φ). This group
scheme acts on the set πφ := Hom(W 0

F , π0(Hφ))φ by conjugation. Denote by
CH0(φ)ϕ̄ the stabilizer of an element ϕ̄, and by π̄φ a set of representatives of orbits
of π0(CH0(φ)) on Hom(W 0

F , π0(Hφ))φ. Then we get a decomposition

(4.1) XH,1P =
⊔
φ∈Φ

⊔
ϕ̄∈π̄φ

H0 ×CH0 (φ)ϕ̄ XH,φ,ϕ̄.

At least in the case where Z(H0) is smooth, this gives the decomposition of
XH,1P into connected components.

4.5. Expected mirror properties on the representation theory side.
Let G be a quasi-split reductive group over F with L-group LG = ĜoWF . Working
over Z[ 1

p ], we have obtained a decomposition

(4.2) Z1(W 0
F , Ĝ) := lim−→

P

Z1(W 0
F /P, Ĝ) =

∐
φ,ϕ

Ĝ×CĜ(φ)ϕ̄ Z1
Adϕ(W 0

t , CĜ(φ)0)

where

• φ runs over a set Φ ⊂ Z1(PF , Ĝ(Z[ 1
p ])) of representatives of Ĝ-orbits of

“wild inertia parameters”
• For φ given, ϕ runs over a finite set of cocycles WF −→ Ĝ(Z[ 1

p ]) that

extend φ and normalize a Borel pair of CĜ(φ)0.
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Recall we say that the pair (φ, ϕ) is “admissible” if the corresponding summand
is non-zero, in which case this summand is expected to be connected. In the case
where Ĝ has smooth center over Z[ 1

p ], e.g. when Gder is simply connected, then

these summands are known to be connected and one can choose ϕ that normalizes
a pinning of CĜ(φ)0. Let Gφ,ϕ be the quasi-split tamely ramified group whose dual

Ĝφ,ϕ is CĜ(φ)0 endowed with the action Adϕ. Then ϕ induces an embedding

ζφ,ϕ : LGφ,ϕ = CĜ(φ)0 oWF −→ LG = ĜoWF

compatible with projections on WF , i.e. a morphism of L-groups.
These facts suggest the following mirror properties on the abelian category

RepZ[ 1
p ](G(F )) of smooth Z[ 1

p ]G(F )-modules.

(1) There should exist a decomposition as a product of full subcategories

RepZ[ 1
p ]G(F ) =

∏
φ,ϕ

Repφ,ϕG(F )

characterized by the property that a π ∈ IrrCG(F ) belongs to Repφ,ϕG(F )
if and only if the Langlands parameter ϕπ satisfies (ϕπ)|PF ∼ φ and ϕπ ∼
ϕ. In other words, the idempotent eφ,ϕ of the Bernstein center ZC(G(F ))
cut out by these representations should belong to ZZ[ 1

p ](G(F )). Moreover,

each factor Repφ,ϕG(F ) should be a “stable block” of RepZ[ 1
p ](G(F ))

in the sense that the idempotent eφ,ϕ should be primitive in the ring
ZZ[ 1

p ](G(F )) ∩ ZstC (G(F )).

(2) When CĜ(φ) is connected, there should exist a faithful embedding

ζ∗φ,ϕ : Rep1(Gφ,ϕ(F )) ↪→ Repφ,ϕG(F )

that, after choosing Whittaker data on each side, induces the Langlands
transfer map associated to ζφ,ϕ on complex irreductible representations,
and takes the depth 0 factor of the Whittaker space of Gφ,ϕ(F ) to the
(φ, ϕ)-factor of the Whittaker space of G.
In the case where CĜ(φ)0 is disconnected, the source of the embedding
ζ∗φ,ϕ should be Rep1(Gφ,ϕ(F )′) where Gφ,ϕ(F )′ is a suitable extension of

a quotient of π0(CĜ(φ)ϕ̄) by Gφ,ϕ(F ).

Moreover, the formalism of the extended LLC suggests the following refinement.

(3) Let Sφ,ϕ denote the abelian group of characters of the finite abelian group

π0(Z(CĜ(φ)0)ϕ(WF )/Z(Ĝ)WF ). Then there should exist a further decom-
position

Repφ,ϕG(F ) =
∐

α∈Sφ,ϕ

Repαφ,ϕG(F )

characterized by the property that a π ∈ IrrCG(F ) belongs to Repαφ,ϕG(F )
if and only if the extended Langlands parameter (ϕπ, επ) satisfies that
(ϕπ)|PF ∼ φ, ϕπ ∼ ϕ and (επ)|Z(CĜ(φ)0)ϕ(WF ) is α-isotypic (through
the restriction along the map Sφ,ϕ −→ Sϕπ induced by the inclusion

Z(CĜ(φ)0)ϕ(WF ) ⊂ CĜ(ϕπ)). In other words, the idempotent eαφ,ϕ of the

Bernstein center ZC(G(F )) cut out by these representations should belong
to ZZ[ 1

p ](G(F )). Moreover, each factor Repαφ,ϕG(F ) should be a block of

RepZ[ 1
p ](G(F )).
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(4) When CĜ(φ) is connected, there should exist an equivalence of categories

Rep1(Gαφ,ϕ(F ))
∼−→ Repαφ,ϕG(F )

that induces the usual transfer of irreducible representations. Here, α ∈
Sφ,ϕ is seen as an element of the kernel of the map H1(F,Gφ,ϕ) −→
H1(F,G) deduced from the inclusion Z(CĜ(φ)0)ϕ(WF ) ⊃ Z(Ĝ)WF via
Kottwitz’ isomorphism, and Gαφ,ϕ is the associated pure inner form of
Gφ,ϕ.
In the case where CĜ(φ) is not connected, the group Gαφ,ϕ(F ) should be

replaced by a suitable extension of a quotient of π0(CĜ(φ)ϕ̄) by this group.

In items (2) and (4), Rep1 corresponds to the pair (1, 1) and, because of item
(1), should be the depth 0 category of Gαφ,ϕ(F ). In other words these predictions

are about a functorial process to reduce the representation theory of G(F ) to the
depth 0 representation theory of auxiliary tamely ramified groups.

Remark 4.8. Even when Ĝ does not have smooth center, we expect the decom-
position to exist, as well as the equivalences of categories, albeit maybe involving
some twists. Regarding connectedness, note that CĜ(φ) is always connected for
classical groups if p > 2.

Here is what is known so far. The predicted decomposition (1) and (3) are con-
structed in [Dat18] under the assumption that G is “very tame” (i.e. all maximal
tori of G are tamely ramified), in which case CĜ(φ) is connected and is actually a

Levi subgroup of Ĝ. The construction is much inspired by Kaletha’s construction
of supercuspidal packets for this kind of groups [Kal19]. In particular, it is com-
patible with his proposed Langlands correspondence. The main tools are therefore
Yu’s theory of generic characters [Yu01] and Fintzen’s exhaustion results on Yu’s
constructions [Fin21]. The fact that the depth 0 category is indecomposable is
proved in [DL22] for unramified groups. Regarding the existence of equivalences of
categories, the only known case is GLn and it follows from work of Chinello [Chi18]
in types theory. However, the compatibility of these equivalences with LLC is far
from clear.

Remark 4.9. These predictions are clearly compatible with the CLLC philos-
ophy, except for our coefficients Z[ 1

p ] and for our insistence on working with abelian

categories. More on this in subsection 4.7.

4.6. Further decomposition over Z`. We now fix a prime ` 6= p and work
over Z` for simplicity. Again, as long as we fix a depth P ⊂ PF , everything holds
over a sufficiently big extension of Z`. We denote by I`F the kernel of the map

IF
t`−→ Z`(1). This is the maximal pro-`′-subgroup of IF . It will play the role

played by PF so far.
We have seen that the universal 1-cocycle on Z1(W 0

F /P, Ĝ)Z` has a unique

`-adically continuous extension `ϕĜ,1P to WF . We claim that the restriction of
`ϕĜ,1P to I`F factors over a finite quotient of I`F , depending on P . This would be

clear if we had defined Z1 in terms of condensed parameters. In our setting, we
can reduce to the tame setting, evaluate at each geometric generic point, and use
the fact that the semisimple part of `ϕĜ,1(s) at such a point has finite order, as in
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the proof of Proposition 3.3. In any case, by restriction, we thus get a morphism

Z1(W 0
F , Ĝ)Z` −→ Z1(I`F , Ĝ)Z` ,

where the RHS denotes the colimit of spaces of cocycles for finite quotients of I`F .

Since such finite quotients have invertible order in Z`, we can apply the results of
subsection 4.1. So let Φ` ⊂ Z1(I`F , Ĝ(Z`)) be a set of representatives of Ĝ(Z`)-
conjugacy classes. For each φ` ∈ Φ`, denote by Z1(W 0

F , Ĝ)Z`,φ` the closed locus

where (`ϕĜ)|I`F = φ`. By pull back, we get a decomposition

Z1(W 0
F , Ĝ)Z` =

∐
φ`∈Φ`

Ĝ×CĜ(φ`) Z1(W 0
F , Ĝ)Z`,φ` .

Arguing as in the last subsections, we can refine this decomposition as follows. For
each φ`, there is a finite subset Σφ` ⊂ Z1(W 0

F , Ĝ(Z`))φ` such that each ϕ ∈ Σφ`
has finite image and normalizes a Borel pair of CĜ(φ)0, and we have

(4.3) Z1(W 0
F , Ĝ)Z` =

∐
φ`∈Φ`

∐
ϕ∈Σφ`

Ĝ×CĜ(φ`)ϕ Z1
Adϕ(W 0

t , CĜ(φ`)
0)1

with notation similar to the end of subsection 4.4. Here, observe that the action
Adϕ of WF on CĜ(φ)0 is “tamely `-ramified” in the sense that it is tamely ramified
and inertia acts through a `-group quotient. The index 1 means we are looking at
the closed locus associated to φ` = 1I`F . Again, in the case where the center Z(Ĝ) is

smooth over Z`, we can choose Σφ` such that each ϕ ∈ Σφ` normalizes a pinning of

CĜ(φ)0. So, informally, this decomposition shows how Z1(W 0
F , Ĝ)Z` is built out of

spaces of tamely `-ramified parameters for tamely `-ramified groups. The following
theorem, to be proved in the next section, shows that the last decomposition above
is the decomposition in connected components.

Theorem 4.10. Assume Ĝ is endowed with a Borel pair-preserving finite tamely
`-ramified action. Then Z1(W 0

t , Ĝ)Z`,1 is connected.

4.7. Mirror properties over Z` coefficients. The above pattern again sug-
gests a corresponding mirror pattern about the category RepZ`(G(F )) for a quasi-

split reductive group G over F , along the same items (1)–(4) as in subsection
4.5. We won’t repeat them explicitly but we mention an important difference in
(3) : we shouldn’t expect (and examples confirm this) that the factor category
RepαZ`,(φ`,ϕ)

(G(F )) be indecomposable. This has to do with the lack of “stability”

of certain idempotents of the Bernstein center.
When G is tamely `-ramified, the factor associated to φ` = 1 is usually called

the “unipotent `-factor” (and may not be indecomposable), and the pattern is about
showing how RepZ` G(F ) decomposes as a product of full subcategories, each of
which is equivalent to the unipotent `-factor of some auxiliary tamely `-ramified
group.

Here is what is known at the moment : the expected decomposition (1) of the
category RepZ`(G(F )) follows from Theorem IX.5.2 of [FS21], where Fargues and

Scholze construct a map from the ring of Ĝ-invariant functions on Z1(W 0
F , Ĝ)Z` to

the center of the category RepZ`(G(F )). Also, their Conjecture X.1.4 together with
the decomposition (4.3) certainly would imply the existence of functors as expected,
at least at the derived level, and their compatibility with Langlands functoriality
would be “built-in”.
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Before these developments, the expected decompositions (1) and (3) had been
constructed quite explicitly by Lanard [Lan18] [Lan21] in depth 0, compatibly
with all known correspondences (Debacker-Reeder, or Arthur for classical groups).
The expected equivalences of categories have also been constructed for G = GLn
(still in depth 0) in [Dat18], although their compatibility with LLC is not known.

5. Coarse moduli spaces and applications

In this section, we study the coarse moduli space Z1(W 0
F /P, Ĝ) � Ĝ, i.e. the

quotient in the category of affine schemes, also called GIT quotient. Concretely,
it is the spectrum of invariant functions, i.e. if Z1(W 0

F /P, Ĝ) = SpecRĜ,1P then

Z1(W 0
F /P, Ĝ) � Ĝ = Spec (RĜ,1P )Ĝ.

5.1. Geometric invariant theory. Let Λ be a coefficient ring as before, and
let X = SpecR be a Λ-scheme endowed with an action of a reductive group Λ-
scheme H. We put X �H := SpecRH . Here, the H-invariants are in the sense of
representations of group schemes : the action corresponds to a comodule structure
R

ρ−→ R⊗Λ O(H) and RH is the equalizer of Id⊗1 and ρ. Clearly X �H has the
expected universal property of a quotient in the category of affine Λ-schemes.

Here are some standard facts on these objects (recall H is reductive here).

(1) RH is a finitely generated Λ-algebra (due to Mumford if Λ is a field of
characteristic 0, to Haboush in positive characteristic, to Seshadri and
Thomason [Tho87] if Λ = Z[ 1

p ]).

(2) The formation of X � H commutes with flat base change, but not with
arbitrary base change in general. However, if L is a field over Λ, the
canonical map XL � HL −→ (X � H)L is a universal homeomorphism
[Alp14].

(3) Let Λ = L be an algebraically closed field and let π : X −→ X � H be
the canonical map. For any x ∈ (X � H)(L), the fiber π−1(x) ⊂ X(L)
contains a unique closed H(L)-orbit. This sets up a bijection between
closed orbits in X(L) and L-points of X �H.

(4) The Hilbert-Mumford criterion states that the orbit of a point x ∈ X(L)
is closed if, and only if, for any cocharacter λ : Gm −→ H such that the
morphism t 7→ λ(t) · x extends to A1, the value at t = 0 of this extension
(usually denoted by limt7→0 λ(t) · v) belongs to the orbit of x.

(5) Suppose X is reduced and Y is a H-stable closed subscheme of X such
that Y (L) contains all closed H(L)-orbits of X(L) for any algebraically
closed field over Λ. Then the natural map Y �H −→ X �H is a universal
homeomorphism and is an isomorphism after tensoring with Q. [This
follows from [Alp14] as explained in [DHKM20, Prop 4.17]].

Example 5.1 (Chevalley-Steinberg). Let X = H and let H act on itself by
conjugation. Suppose H is split and let T be a maximal torus with normalizer
N and Weyl group Ω. Then the Chevalley-Steinberg theorem says that the map
T ⊂ H induces an isomorphism

T �N = T � Ω
∼−→ H �H.

The fact that it is a bijection on L-points is easy to deduce from the Hilbert-
Mumford criterium (see below). However, showing it is true over any ring Λ requires
more work on the algebras of invariants and involves the combinatorics of root



24 JEAN-FRANÇOIS DAT

systems. Also, this is an example where taking invariants turns out to commute
with any base change.

Example 5.2 (Twisted Chevalley-Steinberg). Let X = H and H act on itself
by θ-conjugation (g, h) 7→ ghθ(g)−1 for some automorphism θ. Equivalently, we are
looking at ordinary conjugation of H on the coset H o θ. Suppose θ normalizes a
Borel pair (B, T ) of H (over an algebraically closed field, one can always reduce to
this case). In particular, θ stabilizes N and acts on Ω = N/T . Let Nθ ⊂ H be the
stabilizer of T o θ in H o θ. This is also the inverse image in N of the fixed points
subgroup Ωθ. The twisted Chevalley-Steinberg theorem says that the map T ⊂ H
induces an isomorphism

T o θ �Nθ = Tθ � Ωθ
∼−→ H o θ �H.

Here Tθ = T/(Id−θ)T is the θ-coinvariant quotient torus of T .

5.2. Parabolic subgroups. As in the previous sections, H will again denote
a “generalized reductive” group scheme and all actions will utimately come from
the conjugation action of H0 on H. Given a cocharacter λ : Gm −→ H0 defined
over Λ, there is a smooth closed subgroup scheme Pλ ⊂ H whose points are the

ones for which the orbit morphism Gm
Ad ◦ λ−→ H extends to A1. Moreover, there is

a projection morphism Pλ
πλ−→ Mλ := CH(λ) that takes x to limt 7→0 λ(t)xλ(t)−1.

Such a subroup scheme Pλ, resp. Mλ, is called a R-parabolic subgroup, resp a
R-Levi subgroup, of H.

Remark 5.3. The intersection Pλ ∩H0 is a parabolic subgroup scheme of H0

and Mλ ∩ H0 is a Levi component of Pλ ∩ H0. Moreover, it is known that any
parabolic subgroup or Levi subgroup of H0 is of this form. So the construction
above offers a notion of parabolic/Levi subgroups for disconnected reductive group
schemes, which is the one used e.g. by Richardson in [Ric88]. However, other no-

tions appear in the literature. For example, in the case of an L-group H = ĜoW ,
Borel in [Bor79] defines a parabolic subgroup of H to be the normalizer of a para-
bolic subgroup of H0 that projects onto π0(H) = W . In [DM94], Digne and Michel
define a parabolic subgroup of H to be the normalizer of a parabolic subgroup of
H0. Over an algebraically closed field, Borel-parabolic are DM-parabolic, which
are Richardson-parabolic (“R-parabolic” for short), but both converse implications
may fail.

Example 5.4. The normalizer of a Borel subgroup in H is a parabolic subgroup
in the R, B, or DM sense. Similarly, the normalizer of a Borel pair is a Levi subgroup
in each sense.

5.3. Semisimple homomorphisms. Suppose Γ is an abstract finitely gener-
ated group and H is a generalized reductive group scheme over a ring of coefficients
Λ. We are interested in the action of H0 by conjugation on X := Hom(Γ, H).

Theorem 5.5. Let L be an algebraically closed field over Λ and ϕ : Γ −→ H(L)
be a homomorphism. The following properties are equivalent :

(1) The orbit of ϕ under H0(L) is closed in X(L).
(2) For any R-parabolic subgroup P such that ϕ(Γ) ⊂ P (L), there is an R-Levi

component M of P such that ϕ(Γ) ⊂M(L).
(3) For any maximal torus S of the centralizer CH(ϕ), the image ϕ(Γ) is not

contained in a proper R-parabolic subgroup of CH(S).
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If these properties hold true, we will say that ϕ is semisimple. In this case, the con-
nected centralizer CH(ϕ)0 and the connected normalizer NH(ϕ(Γ))0 are reductive.

Proof. Property (2) means that ϕ(Γ) is H-completely reducible in the sense
of Serre. By [BMR05, Thm 3.1 and §6], this is equivalent to property (3), which

means that the Zariski closure ϕ(Γ) is a strongly reductive subgroup of H in the
sense of [Ric88]. Now, pick generators γ1, · · · , γn of Γ, so that X is a closed
subscheme of Hn. By [Ric88, Thm 16.7]. property (3) is equivalent to the H-
orbit O of the element (ϕ(γ1), · · ·ϕ(γn)) ∈ H(L)n for the diagonal action of H by
conjugation being closed in Hn. But the H-orbit of ϕ is the intersection O ∩ X,
which is thus closed in X. The last statement is Prop 3.12 of [BMR05]. �

Example 5.6. If Γ is finite and has order invertible in L, then any ϕ : Γ −→
H(L) is semisimple, since its H0-orbit is closed (and also open, as we saw).

Example 5.7. Let Γ = sZ and σ := ϕ(s). If σ is a semisimple element of H(L),
then ϕ is semisimple in the above sense. The converse is true if π0(H) has order
invertible in L, but may fail in general, e.g. if H = Z/`Z and L has characteristic
`. In general, if ϕ is semisimple, then any Borel subgroup of H0 normalized by σ
contains a maximal torus normalized by σ (note that, by a result of Steinberg, any
element of H(L) normalizes a Borel subgroup of H0).

Example 5.8. If H = GLn, then ϕ is semisimple as a homomorphism if and
only if the corresponding n-dimensional representation is semisimple in the usual
sense.

It is well known that the restriction of a semisimple representation to a normal
subgroup remains semisimple. The following result is a generalization.

Theorem 5.9. [BMR05, Thm 3.10] Suppose ∆ is a normal subgroup of Γ and
ϕ : Γ −→ H(L) is semisimple. Then ϕ|∆ is semisimple.

The following corollary will be useful in our context.

Corollary 5.10. Suppose Γ = ∆oΣ, and let ϕ : Γ −→ H(L) be a homomor-
phism such that ϕ(∆) is finite. Put Hϕ|∆ := NH(ϕ(∆)). Then the following are
equivalent :

(1) ϕ is semisimple

(2) ϕ|∆ is semisimple and (ϕ|Σ)
|Hϕ|∆ : Σ −→ Hϕ|∆(L) is semisimple.

Beware that, when ϕ is semisimple, ϕ|Σ need not be semisimple as a homomor-
phism Σ −→ H(L). For example, the restriction of the two-dimensional irreducible
F2-representation of S3 = Z/3Z o {±1} to {±1} is not semisimple.

Proof. To lighten the notations, we will simply writeH forH(L) and similarly
for all other closed algebraic subgroups of HL. Also, let us write simply φ := ϕ|∆.

Our hypothesis that ϕ(∆) is finite implies that (Hφ)0 = CH0(φ)0. Let us put{
Hom(Γ, H)φ := {θ ∈ Hom(Γ, H), θ|∆ = φ}
Hom(Γ, H)[φ] := {θ ∈ Hom(Γ, H), θ|∆ is H0-conjugate to φ}

Denoting by ρ : Hom(Γ, H) −→ Hom(∆, H) the restriction map and by H0 · φ the
H0-orbit of φ, we then have Hom(Γ, H)[φ] = ρ−1(H0 ·φ). In particular, we see that

φ semisimple ⇒ Hom(Γ, H)[φ] closed in Hom(Γ, H).
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On the other hand, we have Hom(Γ, H)φ = Hom(Γ, Hφ)φ, and the restriction map
Hom(Γ, Hφ)φ −→ Hom(Σ, Hφ) is an open and closed immersion (as in Lemma 4.4).

So we see that (ϕ|Σ)|Hφ is semisimple if and only if ϕ|Hφ is semisimple, or equiv-
alently, the orbit CH0(φ) · ϕ is closed in Hom(Γ, H)φ. Using that Hom(Γ, H)[φ] =

H0 ×CH0 (φ) Hom(Γ, H)φ, we infer that

(ϕ|Σ)|Hφ semisimple ⇔ H0 · ϕ closed in Hom(Γ, H)[φ].

At this point, we have proved (2)⇒(1). The other implication follows from the last
theorem. �

We now turn to our case of interest.

Proposition 5.11. Let Γ = W 0
t = 〈Fr, s〉 and let ϕ : W 0

t −→ H(L) be semisim-
ple. Put F = ϕ(Fr) and σ = ϕ(s) as before. Then the following holds :

(1) σ normalizes a Borel pair of H0, and F normalizes a Borel pair of CH(σ)0.
(2) σ has finite order bounded independently of L.

Proof. (1) Follows from the previous corollary applied to ∆ = sZ and Σ = FrZ,
and Example 5.7. For (2), observe that, since σ normalizes a Borel pair of H0, the
element σ|π0(H)| belongs to the torus of this Borel pair, i.e. is semisimple. But in
the proof of Proposition 3.3, we have already worked out a bound, depending only
on q and H, for the order of a semisimple element conjugate to its qth-power. �

Note that item (2) implies in particular that any semisimple ϕ : W 0
t −→ H(L)

extends uniquely continuously to Wt. More precisely and more generaly, we have :

Corollary 5.12. For an open subgroup P ⊂ PF distinguished in WF , there
is an open subgroup I ⊂ IF such that W 0

F /P surjects onto WF /I and, for any
algebraically closed field L, every semisimple homomorphism ϕ : W 0

F /P −→ H(L)
factors through WF /I. As a consequence, the morphism induced by restriction

Hom(WF /I,H) �H0 −→ Hom(W 0
F /P,H) �H0

is a universal homeomorphism and is an isomorphism after extending scalars to Q.

Proof. This follows from the process of reduction to the tame case and from
(5) in 5.1. �

Corollary 5.13. If L has characteristic 0, a ϕ : W 0
F −→ H(L) is semisimple

if and only if ϕ(I0
F ) is finite and ϕ(Fr) is semisimple.

It follows in particular that C-points of Z1(W 0
F , Ĝ) � Ĝ are the “infinitesimal

characters” of usual local Langlands parameters.

5.4. Application to connectedness over Z[ 1
p ]. Here, coefficients are Λ =

Z[ 1
p ] and we shall sketch a proof of Theorem 3.13 different from that in [DHKM20,

§4.6]. We first explain why Z1 := Z1(W 0
t , Ĝ) is connected, under the simplifying

assumption that the action of W 0
t on Ĝ is unramified (and preserves a Borel pair

(B̂, T̂ )). The first principle we use is that the map

Z1(W 0
t , Ĝ) −→ Z1(W 0

t , Ĝ) � Ĝ
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induces a bijection on π0, since Ĝ is connected. So, it suffices to prove that
Z1(W 0

t , Ĝ) � Ĝ is connected. To this aim, we introduce the closed subschemes

A and B of Z1(W 0
t , Ĝ) defined by :

A :=
(
T̂ × (NĜ(T̂ ) o Fr)

)
∩ Z1(W 0

t , Ĝ) ⊂ Ĝ× (Ĝo Fr)

B := {1} × (Ĝo Fr) ⊂ Z1(W 0
t , Ĝ).

Proposition 5.11 (1) implies that, for any algebraically closed field L over Λ, each

closed Ĝ(L)-orbit of Z1(W 0
t , Ĝ(L)) has a representative in A(L). Therefore, the

composed map A −→ Z1 � Ĝ is surjective, and it will suffice to prove that all

connected components of A are mapped into the same component of Z1 � Ĝ. To

this aim, observe that A is a closed subgroup NĜ(T̂ )-scheme of T̂×NĜ(T̂ ). Namely,

A is the kernel of the isogeny t 7→ nFr(t)n−1t−q over NĜ(T̂ ). In particular, A is

a finite flat diagonalizable group scheme over NĜ(T̂ ) of order prime to p. Since p

is the only invertible prime on any component of NĜ(T̂ ), we infer that π0(A)
∼−→

π0(NĜ(T̂ )) = Ω and that all components of A intersect A∩B = {1}×(NĜ(T̂ )oFr).

But B is connected, so it is mapped in a certain connected component C of Z1 � Ĝ.

It follows that all components of A are also mapped into C and, therefore, Z1 � Ĝ
is connected.

In the general case where the action of s on Ĝ is non-trivial (but still normalizes

(B̂, T̂ )), we can modify the definition of A and B as follows :

A := (T̂ s,0 o s)× (Ns o Fr) ∩ Z1(W 0
t , Ĝ),

B := {1 o s} × (Ĝs o Fr) ⊂ Z1(W 0
t , Ĝ).

Here T̂ s,0 denotes the maximal torus in the fixed point subgroup scheme T̂ s, and
Ns = {n ∈ NĜ(T̂ ), n.sq(n)−1 ∈ T̂ s,0}. It follows again from Proposition 5.11

(1) that A surjects onto Z1 � Ĝ (see Lemma 2.9 in [DHKM22] for details). In
this case, Lemma 2.8 of [DHKM22] shows that A is the preimage of the section
Ns −→ T s,0, n 7→ sq(n)n−1 by the endo-isogeny t 7→ nFr(t)n−1t−q of the Ns-torus
T s,0 × Ns. So, it is still a torsor over a finite flat group Ns-scheme of prime-to-p
order. Moreover, Lemma 2.7 of loc.cit. shows that π0(Ns) = Ωs and that p is the
only invertible prime on the components of Ns. Hence, as above, it follows that

π0(A)
∼−→ π0(Ns) = Ωs. Thus, in order to finish the argument along the same lines

as in the simplified setting above, it would be enough to know that

(1) the fixed point subgroup scheme Ĝs is connected

(2) an element of Ωs can be lifted to a point of A ∩B = NĜ(T̂ )s.

Property (1) holds true if Ĝ is simply connected thanks to a well known result of
Steinberg. Moreover, lemmas 4.27 and 4.28 of [DHKM20] explain how to reduce
to this case via some variant of Langlands’ “z-extensions” trick. Property (2) is
just not true in general, but is true if s stabilizes a pinning, by [DM94, Thm 1.15
iii)’] since then s is “quasi-central”.

5.5. Connectedness over Z`. Here, coefficients are Z` (and soon F`) and
we shall prove Theorem 4.10. So we keep the notation of the last subsection and
we assume further that the action of s on Ĝ has order a power of `. Since all
components of Z1(W 0

t , Ĝ)Z`,1 are faithfully flat over Z`, it suffices to prove that the
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special fiber Z1
F`,1

= Z1(W 0
t , Ĝ)F`,1 is connected or, equivalently, that the quotient

Z1
F`,1

� ĜF` is connected. As in the previous subsection, we have a surjective map

AF` −→ Z1
F`

� ĜF` , and it induces a surjective map AF`,1 −→ Z1
F`,1

� ĜF` where

the index 1 means the locus where σ has `-power order. But T̂ s,0 is a torus, so
T̂ s,0(F`) has no `-subgroup, hence AF`,1 ⊂ BF` . Moreover, since s has `-power

order, (ĜF`)
s is always connected regardless of its simple-connectedness [DM94,

Cor. 1.33]. Hence BF` ' Ĝ
s
F`

o Fr is connected, and so is Z1
F`,1

� ĜF` .

Actually, we can push this argument a bit further to get an explicit description
of Z1

F`,1
� ĜF` up to homeomorphism. Namely, since BF` is stable under ĜsF` , the

inclusion B ⊂ Z1 induces a morphism

BF` � ĜsF` = (ĜsF`
o Fr) � ĜsF` = Z1(〈Fr〉, ĜsF`) � ĜsF` −→ Z1(W 0

t , Ĝ)F`,1 � ĜF`

We already know that this morphism is surjective, and it is also injective since
an element of Ĝ(F`) that conjugates an element of B(F`) to another one has to

be in Ĝ(F`)s. Using the twisted Chevalley-Steinberg theorem, we get a bijective
morphism

(5.1) (T̂ sF`
)Fr � Ωs,Fr = (T̂ sF`

o Fr) � (Ns
F`

)Fr −→ Z1(W 0
t , Ĝ)F`,1 � ĜF`

By ..., this morphism is also finite, so it is a homeomorphism (see the proof of
[DHKM20, Prop 4.19 (2)] for an alternative argument).

5.6. Description of Z1(W 0
F , Ĝ)� Ĝ over F`, up to homeomorphism. For

a reductive group G over F , Equation (4.3) yields a decomposition

(Z1(W 0
F , Ĝ) � Ĝ)Z` =

∐
φ`∈Φ`

∐
ϕ∈Σφ`

Z1
Adϕ(W 0

t , CĜ(φ`)
0)1 � CĜ(φ`)ϕ.

This reduces us to describing Z1(W 0
t , Ĝ)F`,1 � ĜF` for a tamely `-ramified finite

action of Wt that preserves a Borel pair of Ĝ, which is exactly what we did right
above. As explained in [DHKM20, Cor. 4.21], a possibly nicer way to index the

components is to consider a set Ψ(F`) of representatives of Ĝ(F`)-conjugacy classes
of pairs (φ, β) consisting of

• a semisimple continuous 1-cocycle φ : IF −→ Ĝ(F`), and
• an element β ∈ TransĜoFr(φ,

Frφ)/CĜ(φ)0.

Here Fr denotes a lift of Frobenius in WF . Note that for any lift β̃ of β in
TransĜoFr(φ,

Frφ), there is a unique continuous 1-cocycle ϕβ̃ : WF −→ Ĝ(F`)
that extends φ and such that Lϕβ̃(Fr) = β̃.

For each pair (φ, β) in Ψ(F`), choose a Borel pair (B̂φ, T̂φ) in CĜ(φ)0 and a

lift β̃ that normalizes this Borel pair. Then we get a map T̂φ −→ Z1(W 0
F , Ĝ)F` ,

t 7→ ϕtβ̃ . Using (5.1) and decomposition (4.3), we get :

Theorem 5.14. The collection of all maps described above induces an homeo-
morphism ∐

(φ,β)∈Ψ(F`)

(T̂φ)β � (Ωφ)β
∼−→ Z1(W 0

F , Ĝ)F` � ĜF` .
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In this statement, (T̂φ)β denotes the β̃-coinvariants of T̂φ (which do not depend

on the choice of β̃), and Ωφ denotes the Weyl group of T̂φ in the (possibly non-
connected) full centralizer CĜ(φ).

Remark 5.15. In its current state, representation theory is still unable to
describe the Bernstein center of RepF`(G(F )). However, the Fargues-Scholze mor-

phism [FS21, Thm IX.5.2] together with the above topological description suggest
that the reduced Bernstein center of RepF`(G(F )) has quite a similar description

as the classical Bernstein center of of RepC(G(F ))

5.7. A finiteness problem. Suppose Γ is a finitely generated discrete group
and H is a “generalized” reductive group scheme over a base S (in the sense of 3.1),
containing a closed generalized reductive subgroup scheme H ′ over S. The closed
immersion Hom(Γ, H ′) ↪→ Hom(Γ, H) induces a morphism Hom(Γ, H ′) � H ′ −→
Hom(Γ, H)�H, that will rarely be a closed immersion. However, examples suggest
the following conjecture.

Conjecture 5.16. The pushforward map Hom(Γ, H ′)�H ′ −→ Hom(Γ, H)�H
is a finite morphism.

Let us give some examples :

(1) In the case where Γ = Z and both H and H ′ are connected, this follows
from the Chevalley-Steinberg theorem. Still for Γ = Z, but for more gen-
eral H and H ′, this follows from the twisted Chevalley-Steinberg theorem
and the argument of [DHKM22, Lemma 2.2].

(2) In the case where Γ is the free group on n elements, so that Hom(Γ, H) =
Hn, this is known when S is the spectrum of a field thanks to the work
of Vinberg [Vin96] in characteristic 0, and Martin [Mar03] in positive
characteristics.

(3) When S is the spectrum of a field, the general case follows from (2).
Indeed, pick a set of n generators of Γ, whence a closed embedding
Hom(Γ, H) ↪→ Hn and similarly for H ′. Denoting by I the ideal of
this closed immersion, it is known that H1(H, I) is a finitely generated
O(Hn)H -module [TvdK10, Thm. 1.5], hence the morphism Hom(Γ, H)�
H −→ Hn �H is finite, and similarly for H ′. Therefore, by (2) above, we
get the finiteness property stated in Conjecture 5.16.

Item (3) shows that the crucial case is the one of item (2). It is however not
clear how to generalize Vinberg’s argument to a henselian d.v.r for example.

Anyway, for S = Spec(Z[ 1
p ]) and Γ = W 0

F /P where P is an open subgroup

of PF that is distinguished in WF , we can apply the same idea as in (3) to the
homomorphism Z −→ Γ that takes 1 ∈ Z to a lift Fr of Frobenius in W 0

F /P .
Although this map is obviously far from surjective, we have the following result
which may be of independent interest.

Theorem 5.17. The evaluation map ϕ 7→ ϕ(Fr) induces a finite morphism

Hom(W 0
F /P,H) �H −→ H �H.

Arguing as in item (3) with the help of item (1), we deduce :

Corollary 5.18. Conjecture 5.16 holds for Γ = W 0
F /P and S = Spec(Z[ 1

p ]).
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Proof of Theorem 5.17. We sketch a proof and refer to [DHKM22, Sec-
tion 2] for more details. Using decomposition (4.2) we can reduce to showing that
the evaluation map ϕ 7→ Lϕ(Fr) induces a finite morphism

Z1(W 0
t , Ĝ) � Ĝ −→ (Ĝo Fr) � Ĝ,

for a reductive group scheme Ĝ with a finite action of W 0
t that preserves a Borel

pair. In this case, recall the notation of subsection 5.4, and in particular the closed
subscheme A = (T̂ s,0 o s)× (Ns o Fr) ∩ Z1(W 0

t , Ĝ). We then have a commutative
square

Z1(W 0
t , Ĝ) � Ĝ // Ĝo Fr � Ĝ

A � T̂ s,0

OO

// Ns o Fr � T̂ s,0

OO

in which the bottom map is finite since A is a torsor under a finite flat group scheme
over Ns, and the right vertical map is finite, as follows from item (1) above, for

example. It follows that the composed map A � T̂ s,0 −→ Ĝ o Fr � Ĝ is finite.

On the other hand, the left vertical map is surjective, and since Z1(W 0
t , Ĝ) � Ĝ is

reduced, it follows that O(Z1(W 0
t , Ĝ))Ĝ injects into O(A)T̂

s,0

. By noetherianity,

O(Z1(W 0
t , Ĝ))Ĝ is thus a finitely generated module over O(ĜoFr)Ĝ, as desired. �

5.8. The excursion algebra and the Fargues-Scholze comparison. Let
us start here with a generalized reductive group H over an affine base S. When
Γ is a finitely presented discrete group, choosing a presentation allows one to see
Hom(Γ, H) as a limit (equalizer) of smooth affine schemes. There is a more canon-
ical way to do this, by considering the category FFΓ of all pairs (F, γ) consisting of

a finitely generated free group F with a homomorphism F
γ−→ Γ. We then have a

presentation

colim(F,γ)∈FFΓ
O(Hom(F,H))

∼−→ O(Hom(Γ, H).

Choosing for each integer n a free group over n letters Fn, we can write this colimit
in a psychologically better way :

colim
(n,Fn

γ−→Γ)
O(Hn)

∼−→ O(Hom(Γ, H)).

This presentation is particularly relevant for endowing the scheme Hom(Γ, H) with
a derived structure. However, as we already mentioned, such a derived structure
would be trivial in our case of interest Γ = W 0

F /P . The main motivation for
introducing it in this case actually comes from the formalism of excursion operators
à la V. Lafforgue in the work of Fargues and Scholze [FS21, Ch. IX].

Observe that taking H-invariants on both sides yields a map

(5.2) colim
(n,Fn

γ−→Γ)
O(Hn)H −→ O(Hom(Γ, H))H .

The spectrum of the left hand side is sometimes called the space of pseudorepre-
sentations of H. When S contains a field of characteristic 0, the map (5.2) is an
isomorphism because taking invariants under H is an exact functor on H-modules,
and the above colimit of H-algebras is sifted, hence commutes with the forget-
ful functor to H-modules. In general, it induces a universal homeomorphism on
spectra, but need not be an isomorphism.
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Suppose now H = LG over S = Z[ 1
p ] is the Langlands dual of a reductive

group G over F and Γ = W 0
F /P . The variant of (5.2) where we impose the usual

compatibility with the projection LG −→W 0
F is called the Excursion algebra of G,

and we will denote it by Exc(W 0
F /P, Ĝ). Then the map (5.2) reads

(5.3) Exc(W 0
F /P, Ĝ) −→ O(Z1(W 0

F /P, Ĝ))Ĝ.

In this setting, one of the main results of [FS21] is the construction of a collection
of compatible maps (for varying P )

(5.4) Exc(W 0
F /P, Ĝ)Z` −→ ZZ`(G(F ))

satisfying a number of very nice properties. Here, the right hand side denotes the
Bernstein center, as before. This gives a clear motivation to determine when the
map (5.3) is an isomorphism. This question was addressed in a spectacular way in
Section VIII.5 of [FS21]. In particular, it is asserted :

Theorem 5.19 (Thm VIII.5.1 of [FS21]). (5.3) is an isomorphism if ` is a

very good prime for Ĝ.

5.9. An application of the Fargues-Scholze map to finiteness for smooth
representations. Here, G is a reductive group over F . In [DHKM22], the
Fargues-Scholze maps (5.4) are used to prove the following result of pure repre-
sentation theory.

Theorem 5.20. For any open compact subgroup H of G, the Hecke algebra
Z`[H\G/H] is a finitely generated module over its center, which is a finitely gen-
erated commutative Z`-algebra.

This result has several consequences such as the so-called “second adjointness”
between parabolic induction and restriction for smooth Z`-representations. These
consequences, and also the noetherian property of Hecke algebras, have been known
for some time under additional hypothesis, such as G being a classical group or p
being big enough, and obtained by pure representation theory (including types
theory), see [Dat09]. However, nothing was known about the center except for the
work of Helm [Hel16] for GLn. What makes the Fargues-Scholze maps a powerful
tool in this context is that they provide a rich supply of elements in the Bernstein
center. Indeed, although not much is known about these maps in general, the
“simple” fact that they are known for tori, compatible with parabolic induction,
and compatible with unramified twisting is sufficient to imply that the Bernstein
center is “sufficiently big”.

We refer to [DHKM22] for the proof of the above theorem, which is quite
short. We only stress here that a crucial step is to see that the natural map
of algebras Exc(W 0

F , Ĝ) −→ Exc(W 0
F , M̂) is finite, at least on the corresponding

reduced subalgebras. This would be again a natural consequence of item (2) in
subsection 5.7 when available (e.g. over F`). Over Z`, it is deduced from Theorem
5.17 in the same way as Corollary 5.18. In particular Theorem 5.19 above is not
needed here.
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