Continuous representation theory of p-adic Lie groups

J. Teitelbaum and J.-F. Dat

7-12 July, 2008
Contents of the lectures

1. (Dat) Basics on p-adic Lie groups. Completed group rings (Iwasawa algebras). Banach representations theory.

2. (Teitelbaum) Basics on locally analytic representation theory. Statement of the Frechet-Stein property of distribution algebras.

4. (Dat) Banach-Hecke algebras. p-adic Satake isomorphism. Conjectural De Rham correspondence and “Cristalline functoriality”.
Basics on \(p \)-adic Lie groups.

Definition: a \(p \)-adic Lie group \(G \) is a group object in the category of locally \(\mathbb{Q}_p \)-analytic manifolds.

Locally \(\mathbb{Q}_p \)-analytic manifolds are defined in the same way as differentiable \(\mathbb{R} \)-manifolds. Smooth vector-valued functions on \(\mathbb{R}^n \) are replaced by **locally analytic** vector-valued functions on \(\mathbb{Z}_p^n \), i.e. functions that are locally given by convergent power series.

Straightforward properties:

- \(G \) is a totally disconnected locally compact topological group. In particular, the unit element has a basis of neighborhoods consisting of open compact subgroups.
- \(G \) has a Lie algebra \(\mathfrak{g} \) over \(\mathbb{Q}_p \).

Rk: one may replace \(\mathbb{Q}_p \) by a finite extension \(L \).
Nice open pro-p-subgroups

Let G be a d-dimensional p-adic Lie group. Start with a local chart $\psi : \mathbb{Z}_p^d \hookrightarrow G$ with image an open neighborhood of $\psi(0) = e_G$.

By definition there are:

- a power series $f(x, y) = \sum_{\alpha, \beta \in \mathbb{N}_d} a_{\alpha, \beta} x^\alpha y^\beta$ with $a_{\alpha, \beta} \in \mathbb{Q}_p^d$,
- an open neighborhood $p^h \mathbb{Z}_p^d$ of 0 in \mathbb{Z}_p^d, such that
- f converges to an analytic function $p^h \mathbb{Z}_p^d \times p^h \mathbb{Z}_p^d \rightarrow \mathbb{Z}_p^d$ and $\psi(f(x, y)) = \psi(x)\psi(y)^{-1}$.

Note that $a_{0,0} = 0$ and that the linear part of f is $x - y$.

For higher degree terms, convergence of $f(p^h, p^h)$ tells us that $(\alpha, \beta) \mapsto |a_{\alpha, \beta} p^{h(|\alpha|+|\beta|)}|$ cvges to 0. Since replacing ψ by $\psi \circ p^{h'}$ multiplies $a_{\alpha, \beta}$ by $p^{h'(|\alpha|+|\beta|-1)}$, we thus may arrange for

- $a_{\alpha, \beta}$ to lie in $p\mathbb{Z}_p^d$ for all α, β with $|\alpha| + |\beta| > 1$, and
- f to converge on the whole $\mathbb{Z}_p^d \times \mathbb{Z}_p^d$. (i.e. $h = 0$).
Nice open pro-p-subgroups (cont’d)

In this case, the image $H = \psi(\mathbb{Z}_p^d)$ of our chart is an open compact subgroup of G. More generally for any n, the subset $H_n := \psi(p^n\mathbb{Z}_p^d)$ is an open subgroup of H, and the collection of all H_n’s is a basis of neighborhoods of e_G.

Note that H_n is normal in H and ψ induces a group isomorphism $(p^n\mathbb{Z}_p/p^{n+1}\mathbb{Z}_p)^d \sim H_n/H_{n+1}$. In particular H is pro-p.

The profinite group H is an example of a uniform pro-p-group. The same group, equipped with the decreasing filtration $(H_n)_{n \in \mathbb{N}}$, is an example of a p-valued group, in the sense of Lazard.

Definition: a topologically finitely generated pro-p-group G with lower p-series $(P_i(G))_{i \in \mathbb{N}}$ (inductively defined by $P_{i+1}(G) := P_i(G)^p[P_i(G),G]$) is called uniform if $[G,G] \subset G^p$ and the index $|P_i(G)/P_{i+1}(G)|$ is independent of i.
A \(p \)-valuation on a group \(G \) is a map \(\omega : G \rightarrow [1/(p - 1), +\infty] \) such that \(\omega^{-1}(+\infty) = \{e_G\} \) and

1. \(\omega(gh^{-1}) \geq \min(\omega(g), \omega(h)) \)
2. \(\omega(ghg^{-1}h^{-1}) \geq \omega(g) + \omega(h) \)
3. \(\omega(g^p) = \omega(g) + 1 \)

It defines a non-increasing \(\mathbb{R} \)-filtration

\[
x \mapsto G_x := \{g \in G, \omega(g) \geq x\}
\]

whose graduate \(\text{gr}_{\omega}(G) \) is a graded torsion-free \(\mathbb{F}_p[\pi] \) Lie algebra, with bracket induced by commutators and \(\pi \)-action induced by the \(p^{th} \) power map in \(G \).

On a uniform group \(G \), the integrally valued function

\[
g \mapsto \omega(g) := \sup\{i \in \mathbb{N}, g \in P_i(G)\}
\]

is a \(p \)-valuation. For our home-made open s/g \(H \), the Lie algebra \(\text{gr}_{\omega}(H) \) is commutative (all brackets vanish).
Coordinates on \(p \)-valued groups

Let \((G, \omega)\) be a complete \(p \)-valued group. Assume that \(\text{gr}^{\omega}(G) \) has finite rank over \(\mathbb{F}_p[\pi] \) and let \((g_i)_{i=1,\ldots,d}\) be representatives in \(G \) of a basis of \(\text{gr}^{\omega}(G) \) over \(\mathbb{F}_p[\pi] \) (in the graded sense).

Theorem (Lazard) : The map

\[
\Psi : \mathbb{Z}_p^d \rightarrow G \\
(x_1, \cdots, x_d) \mapsto g_1^{x_1} \cdot g_2^{x_2} \cdots g_d^{x_d}
\]

is a global analytic chart for \(G \).

Moreover we have

\[
\omega(g_1^{x_1} \cdots g_d^{x_d}) = \inf_{i=1,\ldots,d} (1 + \text{val}_p(x_i))
\]

An abstract group is called \(p \)-valuable if it admits a \(p \)-valuation for which it is complete with graduate of finite rank over \(\mathbb{F}_p[\pi] \).
Characterization of compact p-adic Lie groups

Theorem (Lazard)

A t.d. locally compact group admits a locally \mathbb{Q}_p-analytic structure if and only if it admits a p-valuable open pro-p-subgroup. Moreover this analytic structure is unique.

Consequences:

- Products of analytic groups are analytic.
- Any abstract group morphism between analytic groups is analytic.
- Closed subgroups of analytic groups are analytic.

Indeed all these statements can be checked most easily on p-valuable groups.
Let G be a profinite group. The Iwasawa algebra of G is the completed group ring

$$\mathbb{Z}_p[[G]] := \lim_{\leftarrow H} \mathbb{Z}_p[G/H]$$

where H runs over open subgroups of G. It is a compact \mathbb{Z}_p-algebra.

Example: When $G = \mathbb{Z}_p$, this algebra is isomorphic to $\mathbb{Z}_p[[T]]$ and was studied in detail by Iwasawa.

Elementary properties:

- The canonical map $\mathbb{Z}_p[G] \rightarrow \mathbb{Z}_p[[G]]$ is injective and has dense image. Its restriction to G is a homeo onto its image.
- If G is pro-p then $\mathbb{Z}_p[[G]]$ is local with radical $R := (p) + I$ (I augm. ideal).
- The R-adic tgy is finer than the inverse limit tgy with equality if G has finite type.
The following result is a major tool in the study of Iwasawa algebras and more general distributions algebras for p-adic Lie groups. Let (G, ω) be a p-valued complete group of finite rank and define for $x \in \mathbb{R}_+$:

$$\mathbb{Z}_p[G]_x := \text{submod. gen by elements } p^h(1 - g_1) \cdots (1 - g_k)$$

with $h + \omega(g_1) + \cdots \omega(g_k) \geq x$

This is a non-increasing \mathbb{R}_+-filtration of $\mathbb{Z}_p[G]$, in the sense that $\mathbb{Z}_p[G]_0 = \mathbb{Z}_p[G]$ and $\mathbb{Z}_p[G]_x \mathbb{Z}_p[G]_y \subset \mathbb{Z}_p[G]_{x+y}$ for all x, y.

The induced filtration on \mathbb{Z}_p is the natural one, so that $\text{gr}^\omega(\mathbb{Z}_p[G])$ is a $\mathbb{F}_p[\pi] = \text{gr}^\omega(\mathbb{Z}_p)$-algebra.

Remark: One checks that the map

$$f \in \mathbb{Z}_p[G] \mapsto ||f||_{1/p} := p^{-\inf\{x,f \in \mathbb{Z}[G]_x\}}$$

is a multiplicative norm on $\mathbb{Z}_p[G]$.
Theorem (Lazard)

1. The completion of $\mathbb{Z}_p[G]$ for the above filtration (or for the norm $||.||_\omega$) identifies with $\mathbb{Z}_p[[G]]$.
2. There is a canonical isomorphism of graded $\mathbb{F}_p[\pi]$-algebras

$$U(\text{gr}_\omega(G)) \xrightarrow{\sim} \text{gr}_\omega(\mathbb{Z}_p[G])$$

Here U denotes the enveloping algebra.

In the case of our nice open cpct sgp H defined above, the graded Lie algebra $\text{gr}_\bullet(H)$ is commutative, so we get

$$\text{Sym}_{\mathbb{F}_p[\pi]}(\text{gr}_\bullet H) \sim \mathbb{F}_p[\pi][T_1, \cdots, T_d] \xrightarrow{\sim} \text{gr}_\bullet(\mathbb{Z}_p[[H]]).$$

This result is fundamental in the study of Iwasawa algebras since it allows one to use techniques from filtered ring theory.
Filtered rings techniques (1/2)

Let R be a ring and let $F_* R$ be a decreasing exhaustive and separated \mathbb{Z}-filtration of R. Assume that R is complete for the filtration F_* in the sense that $R = \varprojlim_n R/F_n R$. The first useful properties are:

- If $\text{gr}_* R$ is a (left or right) noetherian ring, so is R.
- If $\text{gr}_* R$ has no zero divisor, then R has the same property.

Applied to the Iwasawa algebra of a compact p-adic Lie group, this gives

- $\mathbb{Z}_p[[G]]$ is left and right noetherian.
- If G is p-valuable, $\mathbb{Z}_p[[G]]$ has no zero divisors.

Assume further on that R is noetherian. The filtration F_* is then an example of a **Zariskian filtration**. For such filtrations, many homological properties can be lifted from the associate graded ring. The following will be used in Teitelbaum’s second lecture:

- If $R \longrightarrow S$ is a morphism of Zariskian filtered rings such that $\text{gr}_* S$ is flat over $\text{gr}_* R$, then S is flat over R.
Filtered rings techniques (2/2)

If M is a module on a ring R, one defines the \textit{grade} of M by

$$j_R(M) = \inf\{k \in \mathbb{N}, \text{Ext}^k_R(M, R) \neq 0\}.$$

The Auslander condition on M is:

$$\forall k \in \mathbb{N}, \forall N \subset \text{Ext}^k_R(M, R), j_R(N) \geq k.$$

The ring R is called \textit{Auslander regular} if it is noetherian, has finite global dimension and any f.g. R-module M satisfies the Auslander condition. When R is commutative, Auslander regular = regular and, in this case $j_R(M)$ is the codimension of the support of M.

Let R be Zariskian filtered. Then

- If $\text{gr}_\cdot R$ is Auslander regular, so is R, and $\text{gld}(R) \leq \text{gld}(\text{gr}_\cdot (R))$.
- For any module M on R and any “good” filtration on M we have $j_R(M) = j_{\text{gr}_\cdot (R)}(\text{gr}_\cdot (M))$.

Application: If G is p-valuable, $\mathbb{Z}_p[[G]]$ is Auslander regular of global dimension $\text{rank}(G) + 1$ (Venjakob, Brumer).
Application to the structure of modules

Motivated by classical Iwasawa theory \((G = \mathbb{Z}_p)\), there have been attempts to understand the structure of *finitely generated torsion modules* on an Iwasawa algebra, up to *pseudo-isomorphism*.

Roughly speaking, a pseudo-isomorphism is a morphism which becomes invertible in the quotient category of \(Mod_{fg} (\mathbb{Z}_p[[G]])\) by the subcategory of objects \(M\) of grade \(j_{\mathbb{Z}_p[[G]]}(M) > 1\) (*pseudo-null modules* as defined by Venjakob).

The main result in this direction is

Theorem (Coates, Schneider and Sujatha)

Let \(G\) be \(p\)-valuable and let \(M\) be a f.g. torsion left module over \(\mathbb{Z}_p[[G]]\). Then there are non-zero left ideals \(L_1, \ldots, L_m\) and an injection

\[
\varphi : \bigoplus_i \mathbb{Z}_p[[G]]/L_i \longrightarrow M/M_0
\]

with \(M_0\) and \(\text{coker}\varphi\) *pseudo-null*.
Topological modules over Iwasawa algebras

So far we have only considered abstract module theory over Iwasawa algebras. We now turn to topological module theory.

Definition: A *topological* $\mathbb{Z}_p[[G]]$-*module* is a linearly topologized \mathbb{Z}_p-module M endowed with a continuous action map $\mathbb{Z}_p[[G]] \times M \longrightarrow M$. Morphisms between such objects are G-equivariant continuous \mathbb{Z}_p-linear maps.

Nothing interesting can be said without imposing restriction on the topology. We will be interested here in the following subcategories.

- The subctgy $\text{Mod}_{co}(\mathbb{Z}_p[[G]])$ of compact topological modules.
- The subctgy $\text{Mod}_{ad}(\mathbb{Z}_p[[G]])$ of adic modules, i.e. such that $M \xrightarrow{\sim} \lim_{\leftarrow n} M/p^n$.
The subcategory \(\text{Mod}_{co}(\mathbb{Z}_p[[G]]) \)

Let \(M \) be a locally compact linearly topologized \(\mathbb{Z}_p \)-module, and let us endow \(\text{End}_{\mathbb{Z}_p}^{\text{cont}}(M) \) with the linear topology of compact convergence. The following data on \(M \) are equivalent:

- A continuous action map \(\mathbb{Z}_p[[G]] \times M \rightarrow M \).
- A continuous map of \(\mathbb{Z}_p \)-algebras \(\mathbb{Z}_p[[G]] \rightarrow \text{End}_{\mathbb{Z}_p}^{\text{cont}}(M)_{cc} \).
- A continuous map of groups \(G \rightarrow \text{End}_{\mathbb{Z}_p}^{\text{cont}}(M)_{cc} \).
- A continuous action map \(G \times M \rightarrow M \).

The category \(\text{Mod}_{co}(\mathbb{Z}_p[[G]]) \) is abelian, and kernels and cokernels commute with the functor “forget the tgy”. We denote by

\[
\text{Mod}^{tf}_{co}(\mathbb{Z}_p[[G]])
\]

the subcategory of \(p \)-torsion free objects in \(\text{Mod}_{co}(\mathbb{Z}_p[[G]]) \). It is not abelian anymore but it is quasi-abelian. This means in particular that kernels and cokernels exist. Here the cokernel of a morphism is the usual cokernel divided by the closure of the torsion submodule.
The subcategory $\text{Mod}_{ad}(\mathbb{Z}_p[[G]])$

Let M be a locally adic linearly topologized \mathbb{Z}_p-module, and let us endow $\text{End}_{\mathbb{Z}_p}^{\text{cont}}(M)$ with the linear topology of pointwise convergence. The following data on M are equivalent:

- A continuous action map $\mathbb{Z}_p[[G]] \times M \rightarrow M$.
- A continuous map of \mathbb{Z}_p-algebras $\mathbb{Z}_p[[G]] \rightarrow \text{End}_{\mathbb{Z}_p}^{\text{cont}}(M)_{pc}$.
- A continuous map of groups $G \rightarrow \text{End}_{\mathbb{Z}_p}^{\text{cont}}(M)^{\times}$.
- A continuous action map $G \times M \rightarrow M$.

In particular the action of G is continuous if and only if it is separately continuous.

The category $\text{Mod}_{ad}(\mathbb{Z}_p[[G]])$ is only quasi-abelian, and cokernels don’t commute with the functor “forget the tgy”. We denote by

$$\text{Mod}^{tf}_{ad}(\mathbb{Z}_p[[G]])$$

the subcategory of torsion free objects in $\text{Mod}_{ad}(\mathbb{Z}_p[[G]])$. Again it is quasi-abelian.
Duality between adic and compact torsion free modules

For a topological torsion-free \(\mathbb{Z}_p \)-module \(M \), let’s put

\[M^d := \text{Hom}_{\mathbb{Z}_p}^{\text{cont}}(M, \mathbb{Z}_p). \]

If \(M \) is compact, we endow \(M^d \) with the \(p \)-adic tplgy. It coincides with the compact convergence tpylgy, hence is complete and \(M^d \) is an adic \(\mathbb{Z}_p \)-module.

If \(M \) is adic, we endow \(M^d \) with the tpylgy of pointwise convergence. We then get a compact \(\mathbb{Z}_p \)-module.

Lemma (Shikhof)

These two constructions induce quasi-inverse anti-equivalences of categories between \(\text{Mod}_{\text{co}}^{tf}(\mathbb{Z}_p) \) and \(\text{Mod}_{\text{ad}}^{tf}(\mathbb{Z}_p) \).

Concretely any object in \(\text{Mod}_{\text{co}}^{tf}(\mathbb{Z}_p) \) is isomorphic to \(\mathbb{Z}_p^X \) for some set \(X \) and any object in \(\text{Mod}_{\text{ad}}^{tf}(\mathbb{Z}_p) \) is isomorphic to the \(p \)-adic completion \(\mathbb{Z}_p^{\langle X \rangle} \) of \(\mathbb{Z}_p(X) \). Duality carries \(\mathbb{Z}_p^X \) to \(\mathbb{Z}_p^{\langle X \rangle} \).
Equivariant duality

Let M, N be two compact \mathbb{Z}_p-modules. Transposition gives a \mathbb{Z}_p-linear isomorphism $\text{Hom}_{\mathbb{Z}_p}^\text{cont}(M, N) \xrightarrow{\sim} \text{Hom}_{\mathbb{Z}_p}^\text{cont}(N^d, M^d)$.

Lemma (ST)

The above isomorphism is a homeomorphism if one endows the LHS with the topology of compact convergence and the RHS with the topology of pointwise convergence. Hence we have

$$\text{Hom}_{\mathbb{Z}_p}^\text{cont}(M, N)_{cc} \xrightarrow{\sim} \text{Hom}_{\mathbb{Z}_p}^\text{cont}(N^d, M^d)_{pc}.$$

Corollary (ST)

The functor $M \mapsto M^d$ induce quasi-inverse anti-equivalences of categories between $\text{Mod}_{\text{co}}^{tf}(\mathbb{Z}_p[[G]])$ and $\text{Mod}_{\text{ad}}^{tf}(\mathbb{Z}_p[[G]])$.
Finitely generated modules

A general result on compact rings says:

Theorem

The forgetful functor from the ctgry of f.g. topological $\mathbb{Z}_p[[G]]$-modules to the ctgry of f.g. abstract $\mathbb{Z}_p[[G]]$-modules is an equivalence of ctgries.

In particular any f.g. module over $\mathbb{Z}_p[[G]]$ carries a canonical (compact) topology making the action continuous. If $\mathbb{Z}_p[[G]]$ moreover is noetherian, e.g. if G is a p-adic Lie group, then any (left or right) ideal in $\mathbb{Z}_p[[G]]$ is closed.

Remark: duality exchanges $\mathbb{Z}_p[[G]]$ and the space $C(G, \mathbb{Z}_p)$ of continuous function with the sup-norm topology. So $\mathbb{Z}_p[[G]]$ is the algebra of \mathbb{Z}_p-valued distributions on G.
Variant

Let K be a finite extension of \mathbb{Q}_p and let \mathcal{O} be its ring of integers. Then we can form the topological \mathcal{O}-algebra $\mathcal{O}[[G]]$. All the foregoing results on the properties of the topological ring $\mathbb{Z}_p[[G]]$ and its topological modules apply to $\mathcal{O}[[G]]$.
Banach representations

Let K be a complete non-Archimedean field. Recall that a Banach space over K is a vector space endowed with an ultrametric norm and complete w.r.t. this norm. Such spaces, with continuous K-linear maps as morphisms, form a K-linear category $\text{Ban}(K)$, which is quasi-abelian.

A Banach representation of a topological group G is a Banach space with a continuous action map $G \times V \rightarrow V$. They form a category $\text{Ban}_G(K)$.

When K is spherically complete (e.g. discretely valued), Banach spaces are brelled, hence satisfy the so-called Banach-Steinhaus theorem. Therefore, if G is locally compact the following data are equivalent:

- A continuous action map $G \times V \rightarrow V$
- A separately continuous map $G \times V \rightarrow V$
- A continuous multiplicative map $G \rightarrow \mathcal{L}(V, V)_s$.

However, the foregoing definition does not lead to a reasonable theory, even for p-adic Lie groups:

- There may exist non-trivial G-equivariant continuous maps between two non-isomorphic topologically irreducible Banach representations.
- For $G = \mathbb{Z}_p$, there are (many) infinite dimensional topologically irreducible Banach representations.

One reason for such phenomena is the lack of a K-valued Haar measure on a p-adic Lie group G, i.e. a left G-invariant continuous linear form on the space $C(G, K)$ of continuous maps on G.

In order to get a reasonable theory, Schneider and Teitelbaum relate Banach space representations to Iwasawa topological modules using the duality theory we have presented.

We assume from now on that K is a finite extension of \mathbb{Q}_p and will describe a convenient duality for Banach space representations.
Banach spaces over K and torsion-free adic \mathcal{O}-modules

Let \mathcal{O} be the ring of integers of K and let M be a torsion-free adic topological \mathcal{O}-module. Then the K-vector space $M_K := M \otimes K$ is complete for the norm $m \mapsto \sup\{|\lambda|, \lambda \in K, \lambda.m \in M\}$. This construction is functorial and we have

Lemma

The functor

$$\text{Mod}^{tf}_{ad}(\mathcal{O})_\mathbb{Q} \longrightarrow \text{Ban}(K)$$

thus obtained is an equivalence of categories.

Proof.

Let $\text{Ban}(K)^{\leq 1}$ denote the ctgry of all Banach spaces V over K such that with $\|V\| \subset |K|$, and with morphisms all norm decreasing K-linear maps. This is a \mathcal{O}-linear category and the obvious functor $\text{Ban}(K)^{\leq 1}_\mathbb{Q} \longrightarrow \text{Ban}(K)$ is an equivalence.

The functor $M \mapsto M_K$ factors through $\text{Ban}(K)^{\leq 1}$ and the functor $V \mapsto V^\circ$ (unit ball) is a quasi-inverse.
G-equivariant duality

Let G be a profinite group. We have the following equivariant version of the last lemma:

Lemma

The functor $M \mapsto M_K$ induces an equivalence of categories

$$\text{Mod}^{tf}_{ad}(O[[G]])_\mathbb{Q} \xrightarrow{\sim} \text{Ban}_G(K)$$

The point is that, by compacity of G one can change the norm to an equivalent G-equivariant one.

Composing with duality between adic/compact $O[[G]]$-modules:

Theorem (ST)

The functor $M \mapsto M_K^d$ induces an antiequivalence of categories

$$\text{Mod}^{tf}_{co}(O[[G]])_\mathbb{Q} \xrightarrow{\sim} \text{Ban}_G(K).$$

This result enables Schneider and Teitelbaum to propose a convenient notion of *admissibility*.
Admissibility for Banach representations

Let G be a profinite group.

First definition: A Banach representation of G is called admissible if it is of the form M^d_K for some finitely generated torsion-free $\mathcal{O}[[G]]$-module M.

In other words, letting $D^c(G, K) = K[[G]] := \mathcal{O}[[G]] \otimes K$ be the algebra of distributions on G, a Banach representation V is admissible if its dual V' is a finitely generated $K[[G]]$-module.

Moreover since $\text{Mod}_{fg}^{tf}(\mathcal{O}[[G]])_\mathbb{Q} \simeq \text{Mod}_{fg}(K[[G]])$, we have an anti-equivalence of categories

$$\text{Mod}_{fg}(K[[G]]) \xrightarrow{\sim} \text{Ban}_{G}^{adm}(K).$$

In particular, if $K[[G]]$ is noetherian (e.g. if G is analytic) then $\text{Ban}_{G}^{adm}(K)$ is an abelian category. Moreover kernels and cokernels commute with all forgetful functors. Thus the theory of admissible Banach representations becomes purely algebraic.
The case of p-adic Lie groups

We give here a more intrinsic formulation of the admissibility condition under the assumption that G is analytic. Let $k = \mathcal{O}/\varpi_K \mathcal{O}$ be the residue field of K.

Proposition (ST, Breuil)

A Banach representation V of G is admissible if and only if for any (resp. for one) open p-valuable subgroup H of G and any (resp. one) H-invariant bounded open \mathcal{O}-submodule $N \subset V$, the k-vector space $(N \otimes \mathcal{O} k)^H$ is finite dimensional.

Proof : Let V, N as above and put $M := N^d \in \text{Mod}^{tf}_{co}(\mathcal{O}[[H]])$, so that $V = M^d_K$. By topological Nakayama lemma for compact modules, M is f.g. over $\mathcal{O}[[H]]$ iff $\dim_k(M/R_H M) < \infty$. where R_H is the radical of $\mathcal{O}[[H]]$. Therefore the claim follows from the bijectivity of the following injection

\[
(N \otimes \mathcal{O} k)^H \rightarrow (\text{Hom}^{cont}_\mathcal{O}(M, \mathcal{O}) \otimes \mathcal{O} k)^H
\]

\[
\rightarrow \text{Hom}^{cont}_\mathcal{O}(M, k)^H = \text{Hom}_\mathcal{O}(M/R_H M, k)
\]
Good properties of admissible Banach representations

As a consequence of the previous equivalence of categories, we get a bijection

\[
\begin{array}{c}
\text{Isom. classes of} \\
\text{topologically irreducible}
\end{array}
\quad \sim \quad
\begin{array}{c}
\text{Isom. classes} \\
\text{of simple} \\
K[[G]] - \text{modules}
\end{array}
\]

Moreover any non-zero \(G\)-equivariant between two admissible topologically irreducible Banach representations is an isomorphism, thus correcting a previously mentioned pathology.

For the group \(G = \mathbb{Z}_p\), since \(K[[G]] \simeq K \otimes \mathcal{O}[[T]]\), we see that all topologically irreducible admissible Banach representations are finite dimensional, which is in accordance with the analogy with compact commutative Lie groups.
Remarks on non-compact p-adic Lie groups

A Banach representation of an arbitrary p-adic Lie group is called *admissible* if it is admissible w.r.t any, or equivalently one, compact open subgroup G_0.

Note that the dual V' of a Banach representation is a module over the distribution algebra $D_c(G, K) = \mathcal{C}(G, K)'$ and we have $D_c(G, K) = \bigoplus_{g \in G/G_0} g.K[[G_0]]$ as a $K[[G_0]]$ module.

Definition: A Banach representation V of G is called unitary if the topology of V can be defined by a G-equivariant norm.

Equivalently V is unitary if it contains a bounded open G-equivariant lattice N.
Sources of Banach representations

1. **Spaces of continuous functions**: If X is a compact set with a continuous action of G, then $C(X, K)$ with the sup norm is a Banach representation of G. If X/G is finite then $C(X, K)$ is admissible. Example (or variant): principal series for reductive groups (see later).

2. **Completion of representations**: Start with a smooth or locally algebraic or locally analytic K-representation V of G, and assume given a G-invariant \mathcal{O}-submodule N which generates V over K. Define a G-invariant seminorm on V by $||v|| = \sup\{|\lambda|, \lambda \in K, \lambda x \in N\}$ and complete. We get (possibly zero) a unitary Banach representation $\hat{V}(N)$.

3. **(φ, Γ)-modules**: In their lectures, Berger and Colmez explain how to construct a Banach representation of $GL_2(\mathbb{Q}_p)$ from a (φ, Γ)-module.

4. **Completed cohomology**: In his lectures, Emerton presumably will study some kind of completion of the (étale) cohomology of the modular curve with infinite p-level structure.
Principal series of reductive groups

Let \(G \) be the group of rational points of some reductive group over \(\mathbb{Q}_p \) and let \(P \) be a parabolic subgroup and \(\chi \) be a continuous character of \(P \). We can form

\[
\text{Ind}^G_P(\chi) := \{ f \in C(G, K), \forall p \in P, f(gp) = \chi(p)^{-1}f(g) \}.
\]

Since \(G/P \) is compact, it is an admissible Banach representation of \(G \). More precisely, choose a compact open subgroup \(G_0 \) of \(G \) such that \(G = G_0P \). E.g. if \(G = \text{GL}_n(\mathbb{Q}_p) \) and \(P \) is the Borel subgroup of upper triangular matrices, take \(G_0 = \text{GL}_n(\mathbb{Z}_p) \).

Then we have

\[
\text{Ind}^G_P(\chi)'_{\mid G_0} = K[[G_0]] \otimes_{K[[P \cap G_0]]} \chi K.
\]

It is strongly believed that these “parabolically induced” Banach representation always have finite length.
An irreducibility conjecture

To simplify, consider the case of a split reductive group over \mathbb{Q}_p and assume that $P = B$ is a Borel subgroup. Let T be a maximal torus in B and assume also that $\rho := \frac{1}{2} \sum_{\alpha \in \Phi(T, \text{Lie}(B))} \alpha \in X^*(T)$ (this is true when G is simply connected).

Conjecture (Schneider, ICM06)

The principal series $\text{Ind}_B^G(\chi)$ is topologically irreducible unless there is a positive coroot $\alpha^\vee \in X^*(T)$ such that $(\chi \rho) \circ \alpha^\vee = (\cdot)^m$ for some positive integer m.

Here is what is known on this conjecture:

Theorem (ST)

The conjecture is true for GL_2.

Theorem (many people)

The principal series $\text{Ind}_B^G(\chi)$ is topologically irreducible unless there is a positive coroot $\alpha^\vee \in X^*(T)$ such that $d(\chi \rho \circ \alpha^\vee) = m$ for some positive integer m.
Completion of locally algebraic representations:

Let V be a smooth or locally algebraic K-representation of G, let N be a G-invariant lattice in V (not containing any K-line).

By definition the completion $\hat{V}(N)$ is admissible if and only if $N \otimes_{\mathcal{O}} k$ is admissible, as a smooth k-representation of G.

Note that $\hat{V}(N)$ indeed depends on the lattice N. More precisely, let $N' \subset N$ be another G-invariant generating \mathcal{O}-submodule, then the canonical G-equivariant continuous map $\hat{V}(N') \longrightarrow \hat{V}(N)$ is an isomorphism if and only if N' and N are commensurable which means that there is $\lambda \in K$ such that $N \subset \lambda N'$.

Question

How to parametrize classes of commensurability of lattices?

Note that there is a distinguished comm. class. Namely that of finitely $\mathcal{O}[G]$-generated lattices.
A nice example

Let $G := \text{GL}_2(\mathbb{Q}_p)$ and $V = V_k := \text{St} \otimes \text{Sym}^{k-2}(K^2) \otimes |\det|^{\frac{k-1}{2}}$, where St is the smooth Steinberg representation of G and $k > 2$.

Breuil has noticed that the completion $B(k)$ of V_k along a finitely generated lattice is not admissible.

Theorem (Breuil, Colmez)

There is a family of commensurability classes of lattices in V_k, parametrized by an element $\mathcal{L} \in K$, such that the corresponding completions $B(k, \mathcal{L})$ satisfy the following:

- They are admissible and topologically irreducible.
- They are pairwise non-isomorphic
- The “canonical” map $B(k) \longrightarrow B(k, \mathcal{L})$ is a quotient map.

Relevance of this construction: the $B(k, \mathcal{L})$ are the “p-adic langlands correspondent” of the semi-stable non-crystalline 2-dimensional K-representations of $\text{Gal}(\mathbb{Q}_p/\mathbb{Q}_p)$, see Colmez lectures.