THÉORIE DES NOMBRES. — Sur le Théorème des Nombres Premiers. Note de **Hédi Daboussi**, présentée par Jean-Pierre Kahane.

Remise le 19 décembre 1983.

Nous donnons une nouvelle démonstration du théorème des nombres premiers n'utilisant pas l'inégalité de Selberg.

NUMBER THEORY. — On the Prime Number Theorem.

We give a new elementary proof of the prime number theorem which does not use Selberg's inequality.

A H. Delange et P. Erdos à l'occasion de leur 70^e anniversaire.

I. 1. Soit $y \ge 2$ et v_y , u_y deux fonctions complètement multiplicatives définies par :

$$v_{y}(p) = \begin{cases} 1 & \text{si } p \leq y \\ 0 & \text{si } p > y \end{cases} \qquad u_{y}(p) = \begin{cases} 1 & \text{si } p > y \\ 0 & \text{si } p \leq y \end{cases}$$

la lettre p désignant des nombres premiers.

A désigne la fonction de Von Mangoldt, 1 la fonction constante égale à 1, μ la fonction de Möbius; ainsi, par exemple $\log n = (\Lambda * 1)$ (n), où le signe * désigne la convolution de Dirichlet. On notera $V_y(t) = \sum_{n \le t} v_y(n) \mu(n)$, $V_y^*(t) = \sum_{n \le t} v_y(n)$ et $M(t) = \sum_{n \le t} \mu(n)$. Nous montrerons que $\lim_{n \to \infty} |M(x)/x| = 0$.

I. 2. Aperçu de la méthode. — Nous démontrerons que pour tout $y \ge 2$:

(1)
$$\overline{\lim_{x \to \infty}} \left| \mathbf{M}(x)/x \right| \leq \left\{ \prod_{p \leq y} (1 - (1/p)) \right\} \int_{1}^{\infty} \left(\left| \mathbf{V}_{y}(t) \right| / t^{2} \right) dt.$$

Soit $\alpha = \overline{\lim} |M(x)|/x$; évidemment $\alpha \le 1$.

Nous établirons qu'il existe $\delta > 1$ tel que pour tout β , $\alpha < \beta < 2$, on a :

(2)
$$\int_{1}^{y} (\left| \mathbf{V}_{y}(t) \right| / t^{2}) dt \leq \beta / \delta \log y + O(1),$$

et que l'on a :

(3)
$$\int_{y}^{\infty} (\left| \mathbf{V}_{y}(t) \right| / t^{2}) dt \leq \beta(\mathbf{C} - 1) \log y + o(\log y),$$

où $C = \lim_{y \to \infty} (\log y)^{-1} \prod_{p \le y} (1 - (1/p))^{-1}$ (Il est connu que $C = e^{\gamma}$, où γ est la constante d'Euler, nous n'en ferons pas usage).

- (3) entraı̂nera que $\alpha \le \beta(1-C^{-1}(1-(1/\delta)))$, le facteur de β étant <1, il en résulte, en faisant tendre β vers α , que $\alpha = 0$).
- II.1. Les séries $\sum v_y(n)/n$ et $\sum (v_y(n)/n) \mu(n)$ sont absolument convergentes avec pour sommes $\prod_{n \le y} (1 (1/p))^{-1}$ et $\prod_{n \le y} (1 (1/p))$.

On en déduit (en partant de $u_y = v_y \mu + 1$) que :

$$\lim_{x \to \infty} (1/x) \sum_{n \le x} u_y(n) \quad \text{existe et est égale à } \prod_{p \le y} (1 - (1/p)).$$

D'après les définitions de v_v et u_v , il est clair que $\mu(n) = (\mu u_v * \mu v_v)(n)$ pour tout entier

C. R., 1984, 1er Semestre (T. 298)

Série I -18

n. Ainsi:

$$\mathbf{M}(x) = \sum_{n \leq x} \mu(n) u_{y}(n) V_{y}(x/n).$$

Notons $d_1 = 1 < d_2 \ldots < d_q$ la suite finie des entiers sans facteur carré ayant tous leurs diviseurs premiers $\leq y$, et remarquons que, si n vérifie $x/d_{j+1} < n \leq x/d_j$, alors $V_{\nu}(x/n) = V_{\nu}(d_i)$. On obtient ainsi:

$$M(x) = \sum_{j=1}^{q-1} V_{y}(d_{j}) \sum_{x/d_{j+1} < n \leq x/d_{j}} u_{y}(n) \mu(n) + V_{y}(d_{q}) \sum_{n \leq x/d_{q}} u_{y}(n) \mu(n),$$

$$\overline{\lim_{x\to\infty}} \left| M(x)/x \right| \leq \sum_{j=1}^{q-1} \left| V_{y}(d_{j}) \right| \lim_{x\to\infty} (1/x) \sum_{\substack{x/d_{j+1} < n \leq x/d_{j} \\ i}} u_{y}(n) + \left| V_{y}(d_{q}) \right| \lim_{x\to\infty} (1/x) \sum_{n \leq x/d_{q}} u_{y}(n).$$

II. 2. On sait qu'il existe M>0 tel que, pour tous nombres a et b positifs :

$$\left| \int_{a}^{b} \left(\mathbf{M}(t)/t^{2} \right) dt \right| \leq \mathbf{M}.$$

Prenons $\alpha < \beta < 2$ et x_{β} tel que pour $x \ge x_{\beta}$, $|M(x)| \le \beta x$.

Soit $\delta = \min(2, 1 + (\alpha^2/4 M))$.

Puisque $v_{\nu}(n) = 1$ si $n \le y$ et donc $V_{\nu}(t) = M(t)$ si $t \le y$, l'inégalité (2) s'écrit :

(2)'
$$\int_{1}^{y} (\left| \mathbf{M}(t) \right| / t^{2}) dt \leq \beta / \delta \log y + O(1).$$

Une telle inégalité intervient dans la méthode de Selberg ([1], [3]). L'inégalité (2)' s'établit par la méthode utilisée en [2] pour prouver le lemme 5.8.

III. QUELQUES LEMMES.

III. 1. Lemme 1. – Soit h une fonction définie sur $[y, +\infty[$, positive, décroissante et possédant une dérivée continue. On a :

Pour tout
$$t \ge y$$
:
$$\sum_{p \le y} (\log p/p) h(pt) = \int_t^{yt} (h(v)/v) dv + O(h(y)).$$

Pour tout
$$t \ge 1$$
:
$$\sum_{y/t$$

Ce lemme s'obtient par intégration par parties grâce à la relation : $\sum_{p \le t} \log p / p = \log t + O(1).$

$$\sum_{p \le t} \log p / p = \log t + O(1)$$

III. 2. LEMME 2. - Posons, pour s>0:

$$k(s) = \int_0^\infty e^{-sx} e^{f(x)} dx, \quad où \quad f(x) = \int_0^x ((1 - e^{-u})/u) du.$$

Alors la fonction k est positive, décroissante et indéfiniment dérivable. De plus :

(4)
$$sk(s) - \int_{s}^{s+1} k(u) du = 1 \quad pour \ tout \ s > 0.$$

Il est immédiat que $\int_{0}^{s+1} k(u) du = \int_{0}^{\infty} e^{f(x)} e^{-sx} f'(x) dx$. En intégrant par parties

on obtient (4)

III. 3. Lemme 3. — Soit k la fonction définie au lemme 2, on a :

(5)
$$\int_{1}^{2} k(u) (2-u) du = C - 1.$$

Nous établirons ce lemme par une méthode purement arithmétique, une méthode analogue nous fournira (3). De la relation $\log = \Lambda * 1$, nous déduisons $v_y \log = v_y \Lambda * v_y$ et donc:

$$\sum_{n \le t} v_{y}(n) \log n = \sum_{n \le t} v_{y}(n) \Lambda(n) V_{y}^{*}(t/n);$$

ou encore,
$$V_y^*(t) \log t = \sum_{n \le t} v_y(n) \Lambda(n) V_y^*(t/n) + \sum_{n \le t} v_y(n) \log(t/n)$$
.

Par définition de
$$\Lambda$$
 et v_y , on a:

$$V_y^*(t) \log t = \sum_{\substack{p \le t \\ p \le y}} \log p \, V_y^*(t/p) + \sum_{\substack{p \le y \\ p^r \le t, r \ge 2}} \log p \, V_y^*(t/p^r) + \sum_{n \le t} v_y(n) \log(t/n).$$

Posons pour t>y: $h(t)=(1/\log y)k(\log t/\log y)$. Alors:

(6)
$$\int_{y}^{\infty} (V_{y}^{*}(t)/t^{2}) \log t \cdot h(t) dt = \int_{y}^{\infty} \sum_{\substack{p \leq t \\ p \leq y}} \log p V_{y}^{*}(t/p) (h(t)/t^{2}) dt + E_{1} + E_{2},$$

οù

$$E_{1} = \int_{y}^{\infty} \sum_{\substack{p \leq y \\ p^{r} \leq t, r \geq 2}} \log p \, V_{y}^{*}(t/p^{r}) \, (h(t)/t^{2}) \, dt, \qquad E_{2} = \int_{y}^{\infty} \sum_{n \leq t} v_{y}(n) \, \log(t/n) \, (h(t)/t^{2}) \, dt.$$

La décroissance de h entraı̂ne que :

$$E_1 \leq h(y) \cdot (\sum_{r \geq 2} \log p/p^r) \cdot \int_1^{\infty} (V_y^*(u)/u^2) du, \qquad E_2 \leq h(y) \cdot (\sum_n v_y(n)/n) \cdot \int_1^{\infty} (\log t/t^2) dt.$$

Par ailleurs $\sum v_y(n)/n = \int_1^\infty (V_y^*(u)/u^2) du = O(\log y)$, ce qui implique que $E_1 = O(1)$ et $E_2 = O(1)$. L'intégrale à droite de (6) s'écrit :

$$\int_{y}^{\infty} \sum_{\substack{p \leq t \\ p \leq y}} \log p \, V_{y}^{*}(t/p) \, (h(t)/t^{2}) \, dt = \sum_{\substack{p \leq y \\ p \leq y}} \log p/p \int_{y/p}^{y} (V_{y}^{*}(t)/t^{2}) \, h(pt) \, dt + \sum_{\substack{p \leq y \\ p \leq y}} \log p/p \int_{y}^{\infty} (V_{y}^{*}(t)/t^{2}) \, h(pt) \, dt + \int_{y}^{\infty} V_{y}^{*}(t)/t^{2} \sum_{\substack{p \leq y \\ p \leq y}} (\log p/p) \, h(pt) \, dt + \int_{y}^{\infty} V_{y}^{*}(t)/t^{2} \sum_{\substack{p \leq y \\ p \leq y}} (\log p/p) \, h(pt) \, dt,$$

ce qui, grâce au lemme 1, donne :

$$\int_{y}^{\infty} V_{y}^{*}(t)/t^{2} \left\{ \log t \cdot h(t) - \int_{t}^{yt} (h(v)/v) \, dv \right\} dt = \int_{1}^{y} V_{y}^{*}(t)/t^{2} \left(\int_{y}^{yt} (h(v)/v) \, dv \right) dt + O(1).$$

Il découle du lemme 2 et de la définition de h que

$$\log t \cdot h(t) - \int_{t}^{yt} (h(v)/v) dv = 1 \quad \text{pour tout } t \ge 1.$$

En utilisant également le fait que $V_y^*(t) = [t] = t + O(1)$ pour tout $t \le y$, on obtient par

un calcul simple que:

$$\int_{y}^{\infty} (V_{y}^{*}(t)/t^{2}) dt = \left(\int_{1}^{2} k(u) (2-u) du \right) \log y + O(1).$$

Par ailleurs:

$$\int_{y}^{\infty} (V_{y}^{*}(t)/t^{2}) dt = \sum_{n} v_{y}(n)/n - \sum_{n \leq y} v_{y}(n)/n = (C + o(1)) \log y - \log y + O(1).$$

Ces deux formes de l'intégrale fournissent l'égalité (5).

IV. Preuve de l'inégalité (3). — De la relation : $-\mu \log = \mu * \Lambda$, nous déduisons que $-v_y \mu \log = v_y \mu * v_y \Lambda$.

En raisonnant comme au paragraphe précédent, nous avons successivement :

$$\left| \mathbf{V}_{y}(t) \right| \log t \leq \sum_{n \leq t} v_{y}(n) \Lambda(n) \left| \mathbf{V}_{y}(t/n) \right| + \sum_{n \leq t} v_{y}(n) \log(t/n),$$

et, avec la fonction h définie plus haut,

$$\int_{y}^{\infty} \left| V_{y}(t) \right| / t^{2} \left\{ \log t \cdot h(t) - \int_{t}^{yt} (h(v)/v) \, dv \right\} dt$$

$$\leq \int_{1}^{y} \left| V_{y}(t) \right| / t^{2} \left(\int_{t}^{yt} (h(v)/v) \, dv \right) dt + O(1),$$

et finalement :

$$\int_{y}^{\infty} \left(\left| \mathbf{V}_{y}(t) \right| / t^{2} \right) dt \leq \int_{1}^{y} \left| \mathbf{M}(t) \right| / t^{2} \left(\int_{y}^{yt} \left(h(v) / v \right) dv \right) dt + O(1).$$

En majorant |M(t)| par βt pour $t \ge x_{\beta}$ et en effectuant l'intégration à droite, on a :

$$\int_{y}^{\infty} (|V_{y}(t)|/t^{2}) dt \leq \beta \left(\int_{1}^{2} k(u) (2-u) du \right) \log y + O(1),$$

et donc l'inégalité (3) grâce au lemme 3.

RÉFÉRENCES BIBLIOGRAPHIQUES

[1] P. Erdős, On a new method in elementary number theory which leads to an elementary proof of the prime Number Theorem, *Proc. Nat. Acad. Sc. U.S.A.*, 35, 1949, p. 374-384.
[2] N. LEVINSON, A motivated account of an elementary proof of the prime number theorem, *Amer. Math.*

[2] N. Levinson, A motivated account of an elementary proof of the prime number theorem, Amer. Math. Monthly, 76, 1969, p. 225-245.
[3] A. Selberg, An elementary proof of the prime number theorem, Ann. of Math., (2), 50, 1949, p. 305-313.

H. D.: Université Paris-Sud, Département de Mathématiques, bât. 425, 91405 Orsav.