14) Les sous-ensembles suivants de \mathbb{R} sont-ils des voisinages de 0?

a)
$$A = [0, +\infty[;$$
 b) $B =]-\frac{1}{100}, \frac{1}{1000}[\cup]1000, +\infty[;$ c) $C = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\};$

d)
$$D = \{x \in \mathbb{R} \mid x^2 - 9 > 0\};$$
 e) $E = \{x \in \mathbb{R} \mid x^4 - 5x^2 + 4 > 0\}.$

DÉMONSTRATION

Par définition, une partie V de \mathbb{R} est un voisinage de 0 si elle contient un intervalle]a,b[avec a<0< b.

a) On suppose, par l'absurde, que A est un voisinage de 0.

Il existe donc $a, b \in \mathbb{R}$ tels que a < 0 < b et $]a, b[\subseteq A]$.

En particulier, comme $a < \frac{a}{2} < 0 < b$, on a : $\frac{a}{2} \in A$ contradiction.

Ainsi : A n'est pas un voisinage de 0.