- Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que: $\lim_{x \to -\infty} g(x) = +\infty$ et $\lim_{x \to +\infty} g(x) = +\infty$. a) Montrer qu'il existe un segment [a,b], avec a < 0 < b, tel que: $x \notin [a,b] \Rightarrow g(x) > g(0)$. 9) Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que:

 - b) Montrer qu'il existe $x_0 \in \mathbb{R}$ tel que : $g(x_0) = \min_{x \in \mathbb{R}} g(x)$.

DÉMONSTRATION

- a) On a : $g(x) \xrightarrow[x \to -\infty]{} +\infty$ donc pour tout A>0, il existe $\alpha>0$ tel que : g(x)>A dès que $x<-\alpha$.
- On a : $g(x) \xrightarrow[x \to +\infty]{} +\infty$ donc pour tout A > 0, il existe $\alpha > 0$ tel que : g(x) > A dès que $x > \alpha$.

En choisissant A = |q(0)| + 1, on constate qu'il existe a < 0 ($-\alpha$ associé à la première limite) et b > 0 (α associé à la seconde limite) tels que :

$$g(x) > g(0)$$
 dès que $x < a$ et $g(x) > g(0)$ dès que $x > b$.

Ainsi a < b et on a : g(x) > g(0) pour tout $x \in \mathbb{R} \setminus [a, b]$

b) On se donne un segment [a, b] comme au a).

D'après un théorème relatif à l'image continue d'un segment, il existe $x_0 \in$ [a,b] tel que $g(x) \geq g(x_0)$ pour tout $x \in [a,b]$. En particulier $g(0) \geq g(x_0)$.

D'après a), pour tout $x \in \mathbb{R} \setminus [a, b]$, on a : $g(x) \ge g(0) \ge g(x_0)$.

Par conséquent, on a : $g(x) \ge g(x_0)$ pour tout $x \in \mathbb{R}$.

Cela s'écrit : $g(x_0) = \min_{x \in \mathbb{R}} g(x)$.