Plan

I. Fonctions réelles d'une variable réelle

II. Bijection, réciproque

III. Limites, asymptotes

IV. Continuité, dérivabilité

I. FONCTIONS RÉELLES D'UNE VARIABLE RÉELLE

1. <u>Généralités</u>

Définition $\underbrace{ \text{ce qui se note } \land A \subseteq E \text{ } }_{\text{ce qui partie de } E}.$

- (a) On appelle fonction de E dans F une loi f qui à tout élément x de E fait correspondre au plus un élément y de F, appelé quand il existe « image de x par f » et noté f(x). Dans ce cas, on dit que : E est l'ensemble de départ de f, F est l'ensemble d'arrivée de f, et l'ensemble D_f des éléments de E qui ont une image par f est l'ensemble de définition de f.
- (b) On appelle application de E dans F une loi f qui à tout élément x de E associe un unique élément y de F, noté f(x). Il s'agit donc d'une fonction f de E dans F telle que $D_f = E$.

On écrira en abrégé « $f \colon E \to F$ » pour exprimer que f est une application de E dans F, et « $f \colon E \to F$ » pour exprimer que f est l'application de E dans F qui envoie x sur y_x . $x \mapsto y_x$

(c) Soit
$$f: E \to F$$
. La restriction de f à A est l'application $f|_A: A \to F$. $x \mapsto f(x)$

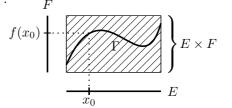
Exemple

Soit E un ensemble. L'application $\mathrm{id}_E:E\to E$ s'appelle l'application identité de E. $x \mapsto x$

Définition

Soit $f: E \to F$. On note $E \times F$ l'ensemble formé des couples (x, y) avec $x \in E$ et $y \in F$. a) Le graphe de f est la partie Γ suivante de $E \times F$:

$$\Gamma:=\{(x,f(x))\,;\,x\in E\}$$
 donc
$$\Gamma=\{(x,y)\in E\times F\mid y=f(x)\}.$$



b) Lorsque $E \subseteq \mathbb{R}$ et $F = \mathbb{R}$, le graphe de f s'appelle aussi la courbe représentative de f.

Remarque

Pour les mathématiciens, une fonction (resp. une application) d'un ensemble E dans un ensemble F est un triplet (E, F, Γ) où Γ est une partie de $E \times F$ dont l'intersection avec chaque ensemble $\{x_0\} \times F$, $x_0 \in E$, contient au plus un élément (resp. exactement un élément).

Définition

- (a) On appelle fonction réelle de la variable réelle (resp. fonction complexe de la variable réelle) une fonction de \mathbb{R} dans \mathbb{R} (resp. dans \mathbb{C}).
- (b) Un intervalle de \mathbb{R} est un ensemble de l'une des formes : \emptyset ; [a,b[,]a,b[,]a,b[] avec $a, b \in \mathbb{R}$ et a < b; [a, b] avec $a, b \in \mathbb{R}$ et $a \leq b$; $[a, +\infty[$, $[a, +\infty[$ avec $a \in \mathbb{R};]-\infty, b[$, $]-\infty, b]$ avec $b \in \mathbb{R}$; $]-\infty, +\infty[$.

Parmi eux, les intervalles ouverts sont \emptyset ,]a,b[$(a,b \in \mathbb{R} \text{ et } a < b),]a,+\infty[$ $(a \in \mathbb{R}),]-\infty,b[$ $(b \in \mathbb{R}),]-\infty,+\infty[$; les segments sont [a,b] $(a,b \in \mathbb{R} \text{ et } a \leq b).$

(c) Les bornes inférieure (« inf I ») et supérieure (« sup I ») d'un intervalle non vide I sont les coefficients $\alpha, \beta \in \mathbb{R} \cup \{-\infty, +\infty\}$ tels que I est d'une des formes $]\alpha, \beta[,]\alpha, \beta[, [\alpha, \beta[, \alpha, \beta[, \alpha$

Exemple

Soit A une partie de \mathbb{R} .

L'application $\mathbb{1}_A \colon \mathbb{R} \to \mathbb{R}$ s'appelle la fonction caractéristique de A. $x \mapsto \begin{cases} \text{ou} & 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$

Son ensemble de définition est \mathbb{R} .

Remarque

On montrera plus tard qu'une partie I de $\mathbb R$ est un intervalle si et seulement si :

$$\forall x, y \in I \quad \forall t \in \mathbb{R} \quad (x \le t \le y \implies t \in I).$$

2. Certaines propriétés des fonctions

Définition

Soit
$$f: D \longrightarrow \mathbb{R}$$
.

- (a) On dit que f est croissante (resp. décroissante) si : $f(x) \le f(y)$ (resp. $f(x) \ge f(y)$) pour tous $x, y \in D$ tels que $x \le y$
- (b) On dit que f est strictement croissante (resp. strictement décroissante) si : f(x) < f(y) (resp. f(x) > f(y)) pour tous $x, y \in D$ tels que x < y
- (c) On dit que f est monotone (resp. $strictement\ monotone$) si elle est croissante ou décroissante (resp. $strictement\ croissante$).

Définition

Soient $f: D_{\text{partie de }\mathbb{R}} \longrightarrow \mathbb{R}$ et $T \in \mathbb{R} \setminus \{0\}$.

- (a) On dit que f est paire si : pour tout $x \in D$, on a $-x \in D$ et f(-x) = f(x).
- (b) On dit que f est *impaire* si : pour tout $x \in D$, on a $-x \in D$ et f(-x) = -f(x).
- (c) On dit que f est périodique de période T si : pour tout $x \in D$, on a $x + T \in D$ et $x T \in D$ et x

Remarque

Une variante de la définition (c) consiste à remplacer la condition « $x+T \in D$ et $x-T \in D$ » par « $x+T \in D$ » (cela permet par exemple de s'intéresser aux « suites périodiques »).

3. Fonctions rationnelles et trigonométriques

Définition

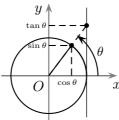
- (a) On dit qu'une application f de \mathbb{R} dans \mathbb{R} (resp. dans \mathbb{C}) est polynomiale s'l existe $n \in \mathbb{N}$ et $a_0, ..., a_n \in \mathbb{R}$ (resp. \mathbb{C}) tels que : $f(x) = a_n x^n + ... + a_1 x + a_0$ pour $x \in \mathbb{R}$.
- (b) On dit qu'une fonction f de \mathbb{R} dans \mathbb{R} (resp. dans \mathbb{C}) est rationnelle s'il existe $p,q\in\mathbb{N}$, $a_0,...,a_p\in\mathbb{R}$ (resp. \mathbb{C}), et $b_0,...,b_q\in\mathbb{R}$ (resp. \mathbb{C}) non tous nuls, tels que : $f(x)=\frac{a_px^p+...+a_1x+a_0}{b_qx^q+...+b_1x+b_0} \text{ pour tout } x\in\mathbb{R} \text{ vérifiant } b_qx^q+...+b_1x+b_0\neq 0.$

Notation

Soient $a, x, y \in \mathbb{R}$. On écrit $y \equiv x[a]$, ce qui se lit y est congru à x modulo a, s'il existe $k \in \mathbb{Z}$ tel que : y = x + ka.

Définition-Proposition

(a) Les applications $\cos : \mathbb{R} \to \mathbb{R}$ et $\sin : \mathbb{R} \to \mathbb{R}$ sont les uniques applications continûment dérivables de \mathbb{R} dans \mathbb{R} telles que $(\cos \theta, \sin \theta)$ parcourt le cercle trigonométrique dans le sens direct en partant de (1,0) lorsque $\theta \in \mathbb{R}$, sur une longueur $\beta - \alpha$ quand θ va de α à β $(\beta > \alpha)$:



- (b) Il existe un plus petit réel $\theta > 0$ tel que $\sin \theta = 0$. On le note π .
- (c) L'application cos est paire et 2π périodique.

L'application sin est impaire et 2π périodique.

De plus : $\cos^2 x + \sin^2 x = 1$ pour tout $x \in \mathbb{R}$.

- (d) On a : $\cos'(x) = -\sin x$ et $\sin'(x) = \cos x$ pour $x \in \mathbb{R}$; en particulier : $\frac{\sin x}{x} \underset{x \to 0}{\longrightarrow} 1$.
- (e) Pour tous $x, y \in \mathbb{R}$, on a : $\begin{vmatrix} \cos y = \cos x \iff (y \equiv x [2\pi] \text{ ou } y \equiv -x [2\pi]); \\ \sin y = \sin x \iff (y \equiv x [2\pi] \text{ ou } y \equiv \pi x [2\pi]). \end{vmatrix}$

Proposition

(a) Pour tous $\alpha, \beta \in \mathbb{R}$, on a : $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ En particulier, quand $\alpha \in \mathbb{R}$: $\cos(2\alpha) = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$.

(b) Pour tous $\alpha, \beta \in \mathbb{R}$, on a : $|\sin(\alpha + \beta)| = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

En particulier, quand $\alpha \in \mathbb{R}$: $\sin(2\alpha) = 2\sin\alpha\cos\alpha$.

Définition-Proposition

- (a) La fonction tan := $\frac{\sin}{\cos}$ est définie sur $\mathbb{R}\setminus(\frac{\pi}{2}+\pi\mathbb{Z})$, où $\frac{\pi}{2}+\pi\mathbb{Z}:=\{\frac{\pi}{2}+k\pi\;;\;k\in\mathbb{Z}\}.$ L'application $\tan: \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z}) \to \mathbb{R}$ est impaire et π -périodique.
- (b) L'application $\tan : \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z}) \to \mathbb{R}$ est dérivable et : $\tan'(x) = 1 + \tan^2 x = \frac{1}{\cos^2 x}$ pour tout $x \in \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z})$. De plus : $\tan x \xrightarrow[x \to -\frac{\pi}{2}^+]{-\infty}$ et $\tan x \xrightarrow[x \to \frac{\pi}{2}^-]{-\infty}$.

- (c) Pour tous $x, y \in \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z})$, on a : $\tan y = \tan x \iff y \equiv x [\pi]$.
- 4. Fonctions logarithme et exponentielle

Définition-Proposition

- (a) L'application ln: $]0, +\infty[\to \mathbb{R}$ est définie par : $\ln x = \int_1^x \frac{\mathrm{d}t}{t}$ pour x > 0.

(b) L'application ln est dérivable et $\ln' x = \frac{1}{x}$ pour tout x > 0. Elle est strictement croissante, avec : $\ln x \xrightarrow[x \to 0^+]{} -\infty$ et $\ln x \xrightarrow[x \to +\infty]{} +\infty$.

(c) On a: $\ln(xy) = \ln x + \ln y$ et $\ln\left(\frac{x}{y}\right) = \ln x - \ln y$ pour tous x, y > 0.

Définition-Proposition

(a) L'application exp: $\mathbb{R} \to \mathbb{R}$ envoie $x \in \mathbb{R}$ sur l'unique $y \in [0, +\infty[$ tel que $x = \ln y$. Pour tous $x, y \in \mathbb{R}$, on a donc : $y = \exp x \iff (y > 0 \text{ et } x = \ln y)$.

3

(b) L'application exp est dérivable et $\exp' x = \exp x$ pour tout $x \in \mathbb{R}$. Elle est strictement croissante, avec : $\exp x \xrightarrow[x \to -\infty]{} 0$ et $\exp x \xrightarrow[x \to +\infty]{} +\infty$.

Définition-Proposition

- (a) Soit $a \in \mathbb{R}$. On note : $x^a = \exp(a \ln(x))$ pour x > 0 (généralise le cas « $a \in \mathbb{N} \setminus \{0\}$ »). Ainsi : $\ln(x^a) = a \ln(x)$ pour tout x > 0
 - (b) On pose : $e = \exp(1)$. On a donc : $e^x = \exp(x)$ pour tout $x \in \mathbb{R}$.
 - (c) Soit $a \in \mathbb{R}$. Pour tout x > 0, on a : $\frac{\mathrm{d}}{\mathrm{d}x}(x^a) = a\,x^{a-1}$ (mais $\frac{\mathrm{d}}{\mathrm{d}a}(x^a) = (\ln x)x^a$). L'application $]0, +\infty[\to \mathbb{R}$ est : constante égale à 1 lorsque a=0, strictement croissante

de 0 à $+\infty$ quand a > 0, et, strictement décroissante de $+\infty$ à 0 quand a < 0.

(d) On a: $(x^a)^b = x^{ab}$, $x^{a+b} = x^a x^b$ et $x^{a-b} = \frac{x^a}{x^b}$ pour tous $a, b \in \mathbb{R}$ et x > 0.

Remarques

- 1. Soit a > 0. On prolonge l'application $x > 0 \mapsto x^a$ par continuité en 0 en posant $0^a = 0$.
- 2. Soient $a \in \mathbb{R} \setminus \{0\}$ et x, y > 0. On a : $x^a = y \iff x = y^{\frac{1}{a}}$.
- 3. Soient $n \in \mathbb{N} \setminus \{0\}$ et $x, y \in \mathbb{R}$. Si n est pair, on a : $x^n = y \iff (y \ge 0 \text{ et } x \in \{\pm y^{\frac{1}{n}}\})$. Si n est impair, on a : $x^n = y \iff ((y \ge 0 \text{ et } x = y^{\frac{1}{n}}) \text{ ou } (y < 0 \text{ et } x = -|y|^{\frac{1}{n}}))$.

Proposition (« croissances comparées »)

Soient a > 0 et k > 0. On a :

- (i) $x^a |\ln x|^k \xrightarrow[x \to 0^+]{} 0$ et $\frac{(\ln x)^k}{x^a} \xrightarrow[x \to +\infty]{} 0$; (ii) $|x|^a e^x \xrightarrow[x \to -\infty]{} 0$ et $\frac{e^x}{x^a} \xrightarrow[x \to +\infty]{} +\infty$.

II. BIJECTION, RÉCIPROQUE (autre cours, à connaître)

1. Antécédent, image d'une application

Définition

Soient $f: E \to F$ une application et $b \in F$.

Un antécédent de b par f est un point x de E tel que f(x) = b.

Définition

Soient $f: E \to F$ une application et $A \subseteq E$.

(a) L'image de A par f est la partie f(A) suivante de F:

$$\underbrace{f(A)}_{\text{(image d'une partie) (image d'un point)}}; \ x \in A\} = \{y \in F \mid \exists x \in A \quad y = f(x)\}.$$

(b) L'image de f, notée Im f, est la partie f(E) de F.

2. Injection, surjection, bijection

Définition

Soit $f: E \to F$ une application.

- (a) On dit que f est injective (ou que « f est une injection ») si : pour tout $y \in F$, l'équation y = f(x) a au plus une solution $x \in E$.
- (b) On dit que f est surjective (ou que « f est une surjection ») si : pour tout $y \in F$, l'équation y = f(x) a au moins une solution $x \in E$.
- (c) On dit que f est bijective (ou que « f est une bijection ») si : pour tout $y \in F$, l'équation y = f(x) a une seule solution $x \in E$.

4

Remarque

Soit $f: E \to F$ une application (penser à :

- (a) L'application f est injective si et seulement si tout point y de F a au plus un antécédent par f (sur le dessin on interdit que deux flèches arrivent sur le point y).
- (b) L'application f est surjective si et seulement si tout point y de F a au moins un antécédent par f (sur le dessin au moins une flèche arrive sur le point y).
- (c) L'application f est bijective si et seulement si tout point y de F a exactement un antécédent par f (sur le dessin exactement une flèche arrive sur le point y).

Proposition

Soit $f: E \to F$ une application

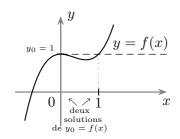
- (a) L'application f est injective si et seulement si on a : si $x', x'' \in E$ vérifient f(x') = f(x''), alors x' = x''.
- (b) L'application f est surjective si et seulement si f(E) = F.
- (c) L'application f est bijective si et seulement si f est injective et surjective.

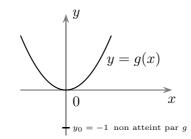
Remarque

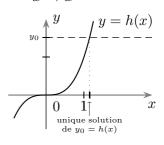
Quand E et F sont des intervalles de \mathbb{R} , et f est continue, un tableau de variations permet de répondre aux questions « f est-elle injective? » et « f est-elle surjective? ».

Par exemple, on considère $f \colon \mathbb{R} \to$

$$\mathbb{R} \to \mathbb{R}$$
, $g \colon \mathbb{R} \to \mathbb{R}$, $h \colon \mathbb{R} \to \mathbb{R}$. $x \mapsto x^2(x-1)+1$ $x \mapsto x^2$ $x \mapsto x^3$







f non injective (et surjective)

q non surjective (et non injective)

h bijective

3. Composition, réciproque

Définition

Soient $f: E \to F$ et $g: F \to G$ des applications.

On appelle composée de f et g l'application $g \circ f \colon E \longrightarrow G$.(*)

Exemple

Pour toute application $f: E \to F$, on a : $f \circ id_E = f = id_F \circ f$.

Proposition

Soient $f: E \to F$, $g: F \to G$, et $h: G \to H$ des applications.

On a : $(h \circ g) \circ f = h \circ (g \circ f)$.

(*) Plus généralement, étant donnés une fonction f d'un ensemble E dans un ensemble F — d'ensemble de définition D_f — et une fonction g de cet ensemble G dans un ensemble H — d'ensemble de définition D_g on note $g \circ f : x \mapsto g(f(x))$ la fonction de E dans G d'ensemble de définition $D_{g \circ f} := \{x \in D_f \mid f(x) \in D_g\}.$

Définition-Proposition

Une application $f: E \to F$ est bijective si et seulement si :

il existe une application $g: F \to E$ telle que $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$.

Dans ce cas, g est unique, appelée réciproque de f et notée $\underbrace{f^{-1}}_f$, et on a : (i) $\forall x \in E \quad \forall y \in F \quad \left(y = f(x) \iff x = f^{-1}(y)\right)$; ne pas confondre avec $\frac{1}{f}$

- (ii) f^{-1} est bijective et $(f^{-1})^{-1} = f$.

Remarque

Lorsque f est une bijection d'une partie E de \mathbb{R} sur une partie F de \mathbb{R} , d'après (i) le graphe de f^{-1} est le symétrique de celui de f par rapport à la 1^{re} bissectrice (d'équation y = x).

Soit $y \in \mathbb{R}^+$. Pour tout $x \in \mathbb{R}^+$, on a : $y = x^4 \iff x = y^{\frac{1}{4}}$. L'application $f \colon \mathbb{R}^+ \to \mathbb{R}^+$ a donc pour réciproque $f^{-1} \colon \mathbb{R}^+ \to \mathbb{R}^+$.

Proposition

Soient $f: E \to F$ et $g: F \to G$ des bijections.

L'application $g \circ f$ est bijective, et on a : $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

4. Exemples

Définition-Proposition (« fonctions trigonométriques réciproques »)

(a) Les applications arcsin: $[-1,1] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, arccos: $[-1,1] \rightarrow [0,\pi]$, arctan: $\mathbb{R} \rightarrow \left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ sont les réciproques (continues) des bijections continues strictement monotones suivantes : $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1] \text{ qui croît}, \quad \left[0, \pi\right] \to \left[-1, 1\right] \text{ qui décroît}, \quad \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\to \quad \mathbb{R} \quad \text{ qui croît}.$

Par conséquent, pour tous $x, y \in \mathbb{R}$ on a :

$$(x \in [-1, 1] \text{ et } y = \arcsin x) \iff (y \in [-\frac{\pi}{2}, \frac{\pi}{2}] \text{ et } x = \sin y);$$
$$(x \in [-1, 1] \text{ et } y = \arccos x) \iff (y \in [0, \pi] \text{ et } x = \cos y);$$
$$y = \arctan x \iff (y \in]-\frac{\pi}{2}, \frac{\pi}{2}[\text{ et } x = \tan y).$$

(b) On a :
$$| \arcsin'(x) = \frac{1}{\sqrt{1-x^2}} \text{ quand } x \in]-1, 1[; \\ \arccos'(x) = -\frac{1}{\sqrt{1-x^2}} \text{ quand } x \in]-1, 1[; \\ \arctan'(x) = \frac{1}{1+x^2} \text{ quand } x \in \mathbb{R}.$$

On en déduit que : $\arcsin x + \arccos x = \frac{\pi}{2}$ quand $x \in [-1, 1]$.

Remarques

1. Pour tout $x \in [-1, 1]$, on a : $\sin(\arcsin x) = \sin_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}(\arcsin x) = x$.

Cependant : $\arcsin(\sin \pi) \neq \pi$ (attention!).

- 2. Soit $x \in [-1, 1]$. On a : $\arcsin(-x) = -\arcsin x$ (éléments de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ de même sinus). On a aussi : $\arccos(-x) = \pi - \arccos x$ (éléments de $[0, \pi]$ de même cosinus).
- 3. Soit $x \in \mathbb{R}$. On a : $\arctan(-x) = -\arctan x$ (éléments de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ de même tangente).

III. LIMITES, ASYMPTOTES

1. <u>Limites</u>

Définition (hors programme)

Soient $f: D_{\text{partie de } \mathbb{R}} \longrightarrow \mathbb{R} \text{ et } u, l \in \mathbb{R}.$

- (a) Quand il existe a < u < b vérifiant $]a,b[\subseteq D,$ on écrit $f(x) \xrightarrow[x \to u]{} l$ si pour tout $\epsilon > 0,$ il existe $\alpha > 0$ tel que : $\forall x \in D \quad (|x - u| < \alpha \implies |f(x) - l| < \epsilon)$. Dans ce cas : l = f(u).
- (b) Quand il existe a < u < b vérifiant $]a, u[\cup]u, b[\subseteq D,$ on écrit $f(x) \underset{x \to u}{\longrightarrow} l$ si pour tout $\epsilon > 0$, il existe $\alpha > 0$ tel que : $\forall x \in D \quad (0 < |x - u| < \alpha \implies |f(x) - l| < \epsilon)$.
- (c) Quand il existe b > u vérifiant $]u, b[\subseteq D, \text{ on écrit } f(x) \underset{x \to u^+}{\longrightarrow} l \text{ si pour tout } \epsilon > 0, \text{ il}$ existe $\alpha > 0$ tel que : $\forall x \in D \quad (0 < x - u < \alpha \implies |f(x) - l| < \epsilon)$.
- (d) Quand il existe a < u vérifiant $]a,u[\subseteq D,$ on écrit $f(x) \underset{x \to u^-}{\longrightarrow} l$ si pour tout $\epsilon > 0$, il existe $\alpha > 0$ tel que : $\forall x \in D \quad (-\alpha < x - u < 0 \implies |f(x) - l| < \epsilon)$.
- (e) Quand il existe $b \in \mathbb{R}$ vérifiant $]-\infty, b[\subseteq D, \text{ on écrit } f(x) \underset{x \to -\infty}{\longrightarrow} l \text{ si pour tout } \epsilon > 0,$ il existe $\alpha > 0$ tel que : $\forall x \in D \quad (x < -\alpha \implies |f(x) - l| < \epsilon).$
- (f) Quand il existe $a \in \mathbb{R}$ vérifiant $]a, +\infty[\subseteq D, \text{ on écrit } f(x) \underset{x \to +\infty}{\longrightarrow} l \text{ si pour tout } \epsilon > 0,$ il existe $\alpha > 0$ tel que : $\forall x \in D \quad (x > \alpha \implies |f(x) - l| < \epsilon).$

Définition (hors programme)

 $\text{Soient} \ \ f \colon \!\!\! \underset{\text{partie de } \mathbb{R}}{D} \longrightarrow \mathbb{R} \ \ \text{et} \ \ u \in \mathbb{R} \cup \{-\infty, +\infty\}.$

- (i) On reprend chacune des 6 définitions précédentes de $f(x) \xrightarrow[x \to u]{} l$ pour obtenir la définition de $f(x) \xrightarrow[x \to u^{-}]{} -\infty$ en remplaçant la condition « $|f(x) - l| < \epsilon$ » par « $f(x) < -\epsilon$ ».
- (ii) On reprend chacune des 6 définitions précédentes de $f(x) \xrightarrow[x \to u^{\dots}]{} l$ pour obtenir la définition de $f(x) \xrightarrow[x \to u^{-}]{} + \infty$ en remplaçant la condition « $|f(x) - l| < \epsilon$ » par « $f(x) > \epsilon$ ».

Proposition

Soient $g: E \longrightarrow \mathbb{R}$ et $f: D \longrightarrow \mathbb{R}$ telle que $f(D) \subseteq E$. On considère une notion de limite \mathcal{F} vers $u \in \mathbb{R} \cup \{-\infty, +\infty\}$ (si $u \in \mathbb{R} : x \to u$ ou $x \longrightarrow u$ $x \to u$ ou $x \to u$ ou xou $x \to u^+$ ou $x \to u^-$; si $u = -\infty : x \to -\infty$; si $u = +\infty : x \to +\infty$) et $k, l \in \mathbb{R} \cup \{-\infty, +\infty\}$. Si $f(x) \xrightarrow{\mathcal{F}} k$ et $g(y) \xrightarrow{y \to k} l$, alors $g(f(x)) \xrightarrow{\mathcal{F}} l$.

Si $k \in \mathbb{R}$ et $f(x) \xrightarrow{\mathcal{F}} k$ avec $f(x) \not= k$ pour $x \in D$ et $g(y) \xrightarrow[y \neq k \\ y \neq k]{} l$, alors $g(f(x)) \xrightarrow{\mathcal{F}} l$.

Proposition

Soient $f,g: D \longrightarrow \mathbb{R}$ et \mathcal{F} une notion de limite vers $u \in \mathbb{R} \cup \{-\infty, +\infty\}$.

On suppose que : $f(x) \xrightarrow{\mathcal{F}} k$ et $g(x) \xrightarrow{\mathcal{F}} l$ avec $k, l \in \mathbb{R} \cup \{-\infty, +\infty\}$.

On a:
$$f(x) + g(x) \xrightarrow{\mathcal{F}} k + l$$
, $f(x)g(x) \xrightarrow{\mathcal{F}} k l$, et, si $l \neq 0$, $\underbrace{\frac{f(x)}{g(x)}}_{\text{défini pour « } x \text{ proche de } u \text{ }}_{\text{défini pour }}$

en interprétant ces formules correctement (*) et à condition :

en interpretant ces formules corrected.

– d'écarter les formes indéterminées sous forme de sommes $\underbrace{(+\infty) + (-\infty)}_{\text{**} \infty - \infty}$

produits
$$\underbrace{0 \left(+\infty \right) \text{ et } \left(+\infty \right) 0 \text{ et } \left(-\infty \right) \text{ et } \left(-\infty \right) 0}_{\text{« }0 \text{ ox »}}$$
, et quotients $\underbrace{0}_{0}$, $\underbrace{\frac{+\infty}{+\infty} \text{ et } \frac{-\infty}{-\infty} \text{ et } \frac{+\infty}{-\infty} \text{ et } \frac{-\infty}{-\infty} \text{ et } \frac{-\infty}{+\infty}}_{\text{« }\infty \text{ »}}$; $\underbrace{\frac{\infty}{+\infty}}_{\text{» }0 \text{ ox »}}$ - de n'étudier la limite en u de $\underbrace{\frac{f}{g}}_{g}$ dans le cas $l=0$ que lorsque $\underbrace{\left\{ \text{ou } \frac{g(x) > 0 \text{ pour « } x \text{ proche de } u \text{ »} \right\}}_{g(x) < 0 \text{ pour « } x \text{ proche de } u \text{ »}}$.

^(*) Soient $k, l \in \mathbb{R}$ et $\epsilon \in \{+, -\}$. On lira dans la conclusion : $\epsilon \infty + l = k + \epsilon \infty = \epsilon \infty$, $\epsilon \infty + \epsilon \infty = \epsilon \infty$; $(\epsilon \infty) l = k(\epsilon \infty) = \epsilon \infty \text{ si } k, l > 0, \ (\epsilon \infty) l = k(\epsilon \infty) = -\epsilon \infty \text{ si } k, l < 0, \ (\epsilon \infty) (\epsilon \infty) = +\infty \text{ et } (\epsilon \infty) (-\epsilon \infty) = -\infty;$ $\frac{k}{\epsilon \infty} = 0, \ \frac{\epsilon \infty}{l} = \epsilon \infty \text{ si } l > 0, \ \frac{\epsilon \infty}{l} = -\epsilon \infty \text{ si } l < 0, \text{ on remplacera } \frac{\epsilon \infty}{l} \text{ par } \epsilon \infty \text{ (resp. } -\epsilon \infty) \text{ si } l = 0 \text{ avec}$ $g(x) > 0 \text{ (resp. } g(x) < 0) \text{ pour } \ll x \text{ proche de } u \text{ », on remplacera } \frac{k}{l} \text{ par } \epsilon \infty \text{ (resp. } -\epsilon \infty) \text{ si } k \neq 0 \text{ a pour}$ signe ϵ et l=0 avec g(x)>0 (resp. g(x)<0) pour « x proche de u ».

Proposition

Soient $f, g, h: D \longrightarrow \mathbb{R}$ et \mathcal{F} une notion de limite vers $u \in \mathbb{R} \cup \{-\infty, +\infty\}$.

(a) Si
$$\begin{cases} f(x) \leq h(x) \text{ pour } x \in D \\ f(x) \xrightarrow{\mathcal{F}} k \in \mathbb{R} \text{ et } h(x) \xrightarrow{\mathcal{F}} l \in \mathbb{R} \end{cases}$$
 alors $k \leq l$ « prolongement des inégalités larges ».

(b) Si
$$\begin{cases} f(x) \leq g(x) \leq h(x) \text{ pour } x \in D \\ l \in \mathbb{R}, f(x) \xrightarrow{\mathcal{F}} l \text{ et } h(x) \xrightarrow{\mathcal{F}} l \end{cases}$$
 alors $g(x) \xrightarrow{\mathcal{F}} l$ « théorème des gendarmes ».

(b) Si
$$\begin{cases} f(x) \leq g(x) \leq h(x) \text{ pour } x \in D \\ l \in \mathbb{R}, f(x) \xrightarrow{\mathcal{F}} l \text{ et } h(x) \xrightarrow{\mathcal{F}} l \end{cases}$$
 alors $g(x) \xrightarrow{\mathcal{F}} l$ « théorème des gendarmes ».
(c) Si $\begin{cases} f(x) \leq g(x) \text{ (resp. } g(x) \leq h(x)) \text{ pour } x \in D \\ f(x) \xrightarrow{\mathcal{F}} +\infty \text{ (resp. } h(x) \xrightarrow{\mathcal{F}} -\infty) \end{cases}$ alors $g(x) \xrightarrow{\mathcal{F}} +\infty \text{ (resp. } g(x) \xrightarrow{\mathcal{F}} -\infty)$.

Remarque (« règle de (De) l'Hôpital »)

Soient $f,g: |a,b| \to \mathbb{R}$ avec $a,b \in \mathbb{R} \cup \{-\infty,+\infty\}$ et a < b.

On suppose que
$$| \text{ (i) } \lim_{\substack{x \to a^+ \\ (\text{resp. } x \to b^-) \text{ (resp. } x \to b^-) \text{ (resp$$

2. Asymptotes

Définition

Soient $f: I \to \mathbb{R}$ une application continue, u une borne de I, et $a, b \in \mathbb{R}$.

(a) On suppose que $u \in \mathbb{R}$, avec $u = \inf I$ (resp. $u = \sup I$).

On dit que f a pour une asymptote verticale en u la droite D: x = u si :

$$\underbrace{|f(x)| \xrightarrow[x \to u^+]{} + \infty}_{\text{équivaut ici à}: \ f(x) \xrightarrow[x \to u^+]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^+]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} + \infty}_{\text{equivaut ici à}: \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{ou} \ f(x) \xrightarrow[x \to u^-]{} - \infty \ \text{o$$

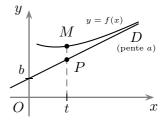
(b) On suppose que $u = -\infty$ (resp. $u = +\infty$).

On dit que
$$f$$
 a pour asymptote la droite $D: y = ax + b$ en $-\infty$ (resp. en $+\infty$) si:
$$\boxed{f(x) - (ax + b) \underset{x \to -\infty}{\longrightarrow} 0} \text{ (resp. } \boxed{f(x) - (ax + b) \underset{x \to +\infty}{\longrightarrow} 0} \text{)}.$$
 Dans ce cas:
$$\boxed{\frac{f(x)}{x} \underset{x \to -\infty}{\longrightarrow} a} \text{ et } f(x) - ax \underset{x \to -\infty}{\longrightarrow} b \text{ (resp. } \boxed{\frac{f(x)}{x} \underset{x \to +\infty}{\longrightarrow} a} \text{ et } f(x) - ax \underset{x \to +\infty}{\longrightarrow} b \text{)}.$$

Remarque

Dans le cas où (b) est réalisé, on peut chercher la position du graphe par rapport à D. On se place au point M du graphe de f d'abscisse t et note P le point de D d'abscisse t :

L'ordonnée du vecteur \overrightarrow{PM} est f(t) - (at + b). Son signe détermine la position du graphe de f par rapport à D.



IV. Continuité et dérivabilité

1. Continuité

Définition-Proposition

On considère une application $f : I \longrightarrow \mathbb{R}$.

- (a) Soit $x_0 \in I$. On dit que f est continue en x_0 si : x_0 n'est pas une borne de I et $\lim_{x \to x_0} f(x) = f(x_0)$, ou $x_0 = \inf I$ et $\lim_{x \to x_0^+} f(x) = f(x_0)$, ou $x_0 = \sup I$ et $\lim_{x \to x_0^-} f(x) = f(x_0)$. Cela équivaut à : $\forall \varepsilon > 0 \ \exists \alpha > 0 \ \forall x \in I \ (|x - x_0| < \alpha \Longrightarrow |f(x) - f(x_0)| < \epsilon).$
 - (b) On dit que f est continue si elle est continue en tout point de I.

Proposition

Soient $g: J \longrightarrow \mathbb{R}$, $f: I \longrightarrow \mathbb{R}$ telle que $f(I) \subseteq J$, et $x_0 \in I$. Si f est continue en x_0 et g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

Exemples

1. Soit $a \in \mathbb{R}$. L'application $]0, +\infty[\to \mathbb{R}$ est continue (cf. la proposition). $x \mapsto x^a := \mathrm{e}^{a \ln x}$ De plus, par compositions de limites, on a par exemple : $\lim_{x \to 0^+} x^a = \begin{cases} \mathrm{ou} & 0 & \mathrm{si} \ a > 0 \\ \mathrm{ou} & 1 & \mathrm{si} \ a = 0 \\ \mathrm{ou} & +\infty & \mathrm{si} \ a < 0 \end{cases}$

2. En prenant $a=\frac{1}{2}$, on en déduit la continuité de l'application $x\in\mathbb{R}\mapsto |x|=\sqrt{x^2}$. La continuité de $x \mapsto |x|$ découle aussi facilement de la définition.

Proposition

Soient $f,g: I \longrightarrow \mathbb{R}$ et $x_0 \in I$ tels que f et g sont continues en x_0 .

On a: f+g et fg sont continues en x_0 . De plus, quand $g(x_0) \neq 0$, l'application $\frac{f}{g}$ est définie en x pour $x \in I$ avec « $|x - x_0|$ assez petit » et continue en x_0 .

Définition

Soient I un intervalle infini, $x_0 \in I$ et $f: I \setminus \{x_0\} \to \mathbb{R}$.

On appelle prolongement par continuité de f en x_0 toute application $\tilde{f}: I \to \mathbb{R}$ continue en x_0 telle que : f(x) = f(x) pour tout $x \in I \setminus \{x_0\}$.

2. <u>Dérivabilité</u>

Définition-Proposition

Soient $f: I \longrightarrow \mathbb{R}, x_0 \in I \text{ et } l \in \mathbb{R}.$

(a) On suppose que x_0 n'est pas une borne de x_0

On dit que f est dérivable en x_0 et $\underbrace{f'(x_0)}_{ou} = l$ si : $\underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{x \to x_0} \xrightarrow{x \to x_0} l$.

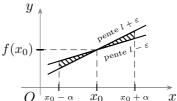
Cela équivaut à l'existence d'une application ε : $\underbrace{J}_{\text{intervalle ouvert contenant 0}}_{\text{intervalle ouvert contenant 0}} \to \mathbb{R}$ telle que : $x_0 + h \in I$ et $f(x_0 + h) = f(x_0) + hl + h\varepsilon(h)$ pour tout $h \in J$, avec $\varepsilon(h) \xrightarrow{h \to 0} 0$.

- (b) On dit que f a une dérivée à droite (resp. à gauche) en x_0 et $f'_d(x_0) = l$ (resp. $f'_g(x_0) = l$) si : $\frac{f(x) f(x_0)}{x x_0} \underset{x \to x_0^+}{\longrightarrow} l \text{ (resp. } \frac{f(x) f(x_0)}{x x_0} \underset{x \to x_0^-}{\longrightarrow} l \text{)}.$
- (c) On dit que f est dérivable si elle est dérivable en tout point de I qui n'est pas borne de I et elle a une dérivée d'un coté, encore notée f'(b), en tout point b de I qui est borne de I. Dans ce cas, la dérivée de f est l'application $f': I \to \mathbb{R}$ qui envoie x sur f'(x).

Remarques (notation ci-dessus)

1. En passant à la limite dans $f(x) = f(x_0) + (x - x_0) \frac{f(x) - f(x_0)}{x - x_0}$ $(x \neq x_0)$, on obtient : si f est dérivable en x_0 alors f est continue en x_0 .

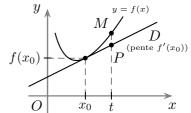
2. Dans le cas où x_0 n'est pas borne de I, l'application f a une dérivée en x_0 avec $f'(x_0) = l$ si et seulement si : pour tout $\varepsilon > 0$, il existe $\alpha > 0$ tel que le graphe de $f|_{]x_0-\alpha,x_0+\alpha[}$ est inclus dans la partie hachurée ci-contre.



D: $y = f(x_0) + f'(x_0)(x - x_0)$ s'appelle la tangente en x_0 au graphe de f. Dans ce cas

On se place au point M du graphe de f d'abscisse tet note P le point de D d'abscisse t:

L'ordonnée de \overrightarrow{PM} est $f(t) - (f(x_0) + f'(x_0)(t - x_0))$. Son signe détermine la position de M par rapport à D.



3. La définition de $f'(x_0)$ se généralise au cas d'une application $f: I \longrightarrow \mathbb{C}$ e remplaçant simplement \mathbb{R} par \mathbb{C} . Ainsi, en posant $f(x) = g(x) + \mathrm{i}\,h(x)$ quand $x \in I$, on a :

f est dérivable en x_0 si et seulement si g et h le sont; dans ce cas : $f'(x_0) = g'(x_0) + i h'(x_0)$.

Proposition

(a) Soient
$$f, g: I \longrightarrow \mathbb{R}$$
 et $x_0 \in I$. On suppose que f et g sont dérivables en x_0 . On a: $\underbrace{(f+g)'(x_0)}_{\text{existe}} = f'(x_0) + g'(x_0), \quad \underbrace{(fg)'(x_0)}_{\text{existe}} = f'(x_0) g(x_0) + f(x_0) g'(x_0),$ et $\underbrace{\left(\frac{f}{g}\right)'(x_0)}_{\text{existe}} = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$ quand $g(x_0) \neq 0$.

(b) Soient
$$f: I \longrightarrow \mathbb{R}$$
 et $g: J \longrightarrow \mathbb{R}$ tels que $f(I) \subseteq J$, et $x_0 \in I$.
On suppose que : f est dérivable en x_0 et g est dérivable en $f(x_0)$.
On a : $g \circ f$ est dérivable en x_0 et g est dérivable en g est dérivable en g .

Proposition

Soient $f: I \longrightarrow \mathbb{R}$ dérivable. (a) L'application f est constante si et seulement si f' = 0.

(b) L'application f est croissante (resp. décroissante) si et seulement si $f'(x) \ge 0$ (resp. $f'(x) \le 0$) pour tout $x \in I$.

(c) Si f'(x) > 0 (resp. f'(x) < 0) pour tout $x \in I$, alors l'application f est strictement croissante (resp. strictement décroissante).

Définition

Soient $f: D \longrightarrow \mathbb{R}$ et $x_0 \in D$.

(a) On dit que f a un maximum (resp. un minimum) en x_0 si :

$$f(x) \le f(x_0)$$
 (resp. $f(x) \ge f(x_0)$) pour tout $x \in D$.

(b) On dit que f a un maximum local (resp. minimum local) en x_0 s'il existe $\alpha > 0$ tel que : $f(x) \leq f(x_0)$ (resp. $f(x) \geq f(x_0)$) pour tout $x \in [x_0 - \alpha, x_0 + \alpha] \cap D$.

(c) On dit que f a un extremum (resp. extremum local) en x_0 si f a un maximum ou un minimum (resp. un maximum local ou un minimum local) en x_0 .

Proposition

Soient $f \colon I \longrightarrow \mathbb{R}$ dérivable et $x_0 \in I$. On suppose que I est ouvert et que f a un extremum local en x_0 .

Alors: $f'(x_0) = 0$.

Remarque

L'application $f \colon \mathbb{R}^+ \to \mathbb{R}$ est dérivable et a un minimum en 0.

$$x \mapsto x$$

Mais $f'(0) \neq 0$. Explication: l'intervalle \mathbb{R}^+ n'est pas ouvert.

Exemple

On considère $f \colon \mathbb{R} \longrightarrow \mathbb{R}$. Variations : $x \longmapsto x^4 - 2x^2$

x	$-\infty$	-1	0	1	$+\infty$
f(x)	+∞ `	y −1 /	× 0 ×	y −1 /	$\nearrow +\infty$

Donc f a un maximum local en 0 et un minimum en 1.

3. Convexité

Définition-Proposition

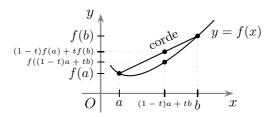
Soit
$$f: I \longrightarrow \mathbb{R}$$
.

(a) On dit que f est convexe si :

$$f((1-t)a+tb) \le (1-t)f(a)+tf(b)$$

pour tous $a,b \in I$ et $t \in [0,1]$.

(Les cordes sont au-dessus du graphe de f.)



(b) On suppose que l'application f est dérivable.

L'application f est convexe si et seulement si f' est croissante.

(c) On suppose que l'application f est deux fois dérivable.

L'application f est convexe si et seulement si $f'' \ge 0$.

(d) On dit que f est concave si -f est convexe.

Remarque (penser à « l'inflexion de la courbe du chomage »)

Soient
$$f: I \longrightarrow_{\text{intervalle ouvert non vide}} \mathbb{R}$$
 dérivable, $x_0 \in I$ et $\alpha > 0$ tel que $]x_0 - \alpha, x_0 + \alpha[\subseteq I]$.

Il y a quatre cas possibles lorsque les applications $f'|_{[x_0-\alpha,x_0[}$ et $f'|_{[x_0,x_0+\alpha[}$ sont monotones :

monotones dan	s le même sens	monotones en sens contraire		
f' croissante	f' décroissante	f' décroît puis croît	f' croît puis décroît	
concavité vers le haut	concavité vers le bas	points d'inflexion ^(*)		

4. Plan d'étude du graphe d'une fonction de $\mathbb R$ dans $\mathbb R$

Soit
$$f: D_{\text{partie de } \mathbb{R}} \longrightarrow \mathbb{R}$$
.

1. Ensemble d'étude

les plus grands possibles

On écrit D comme réunion de u,v ou u,v ou u,v ou u,v, $-\infty \le u < v \le +\infty$. On restreint l'étude à l'aide de la périodicité de u,v, ou, de la parité/imparité de u,v.

2. Tableau de variations

On calcule f', là où cela est possible, et étudie les variations de f.

3. Études des asymptotes

On détermine les asymptotes verticales et les asymptotes horizontales/obliques.

On peut préciser la position de la courbe par rapport à une asymptote horizontale/oblique.

4. Tracé

On trace la courbe, en utilisant éventuellement un tableau de valeurs.

Si f est deux fois dérivable sur un intervalle ouvert I inclus dans D et f'' s'annule en changeant de signe en $x_0 \in I$, alors le graphe de f a un point d'inflexion au point d'abscisse x_0 .

(*) On dit que f a un point d'inflexion en x_0 s'il existe $\alpha > 0$ tel que les graphes des applications $f|_{]x_0-\alpha,x_0[}$ et $f|_{]x_0,x_0+\alpha[}$ sont de part et d'autre de la tangente (l'un au-dessus et l'autre au-dessous).