Ch. 3. Introduction à l'algèbre linéaire

(J-Y Ducloux)

Plan

- I. Systèmes linéaires
- II. L'espace vectoriel \mathbb{R}^n

I. Systèmes linéaires

 \leftarrow [idem avec \mathbb{C} au lieu de \mathbb{R}]

1. Introduction

Deux problèmes

(image réciproque d'un singleton par une application)

1. Comment passer d'une équation cartésienne d'un « sous-espace affine de \mathbb{R}^p » à une équation paramétrique qui décrit les points de ce sous-espace affine? Par exemple :

$$(E_{\text{cart}}) \begin{cases} -4x + 12y - 5z = 1 \\ x - 3y + 2z = -1 \text{ dans } \mathbb{R}^3 \text{ détermine } \mathscr{S}_{E_{\text{cart}}} := \{(x, y, z) \in \mathbb{R}^3 \mid E_{\text{cart}}\}. \\ 2x - 6y + z = 1 \end{cases}$$

$$(E_{\text{cart}}) \begin{cases} -4x + 12y - 5z = 1 \\ x - 3y + 2z = -1 \text{ dans } \mathbb{R}^3 \text{ détermine } \mathscr{S}_{E_{\text{cart}}} := \{(x, y, z) \in \mathbb{R}^3 \mid E_{\text{cart}}\}. \end{cases}$$

2. Comment passer d'une équation paramétrique d'un « sous-espace affine de \mathbb{R}^p » à une équation cartésienne de ce sous-espace affine ? Par exemple :

$$\mathscr{D} \colon \left\{ \begin{array}{l} x = s - t + 1 \\ y = -s + t + 2 \end{array} \right., \; s, t \in \mathbb{R} \quad \text{détermine} \quad \mathscr{D} := \left\{ (s - t + 1, -s + t + 2) \; ; \; s, t \in \mathbb{R} \right\} \; \subseteq \mathbb{R}^2.$$

Une motivation

De nombreuses équations issues de la physique se résolvent numériquement (par « discrétisation ») en se ramenant à des « systèmes linéaires », cf. :

http://math.nist.gov/MatrixMarket/ (cliquer sur « Search by application area »).

But

On désire « résoudre » des équations comme (E_{cart}) au sens où on écrira $\mathscr{S}_{E_{\text{cart}}}$ sous forme paramétrique, sous réserve d'avoir $\mathscr{S}_{E_{\text{cart}}} \neq 0$. On va utiliser une méthode qui permettra aussi de passer d'une forme paramétrique à une forme cartésienne. Plus précisément, on cherche :

- une forme paramétrique sans paramètre inutile (ce n'est pas le cas dans la définition de \mathscr{D} où tout s'exprime avec u := s t);
- une forme cartésienne sans égalité inutile (ce n'est pas le cas dans l'écriture de (E_{cart}) où ligne 3 = -ligne 1 2 ligne 2).
 - 2. Transformation d'un système linéaire

Définition

(a) Un système d'équations « linéaires » de n équations à p inconnues dans \mathbb{R} est du type :

(E)
$$\begin{cases} a_{11}x_1 + \dots + a_{1p}x_p &= b_1 \\ \dots & \text{d'inconnue } (x_1, \dots, x_p) \in \mathbb{R}^p \\ a_{n1}x_1 + \dots + a_{np}x_p &= b_n \end{cases}$$

où sont donnés $a_{11},...,a_{1p},a_{21},...,a_{2p},...,a_{n1},...,a_{np} \in \mathbb{R}$ et $b_1,...,b_n \in \mathbb{R}$.

Dans la suite du I on fixe un tel système (E) et note \mathscr{S}_E l'ensemble de ses solutions dans \mathbb{R}^p .

(b) Le système d'équations linéaires homogène associé à (E) est le système suivant :

(H)
$$\begin{cases} a_{11}x_1 + \dots + a_{1p}x_p &= 0\\ \dots & \text{d'inconnue } (x_1, \dots, x_p) \in \mathbb{R}^p. \\ a_{n1}x_1 + \dots + a_{np}x_p &= 0 \end{cases}$$

Remarques (importantes)

- 1. (H) admet toujours comme solution $(0, \ldots, 0)$.
- 2. On suppose que $\mathscr{S}_E \neq \emptyset$ et fixe une solution « particulière » (x_1^E, \ldots, x_n^E) de (E). Pour tout $(x_1, \ldots, x_p) \in \mathbb{R}^p$, on a tout de suite :

$$(x_1,\ldots,x_p)$$
 vérifie (E) si et seulement si $(x_1-x_1^E,\ldots,x_p-x_p^E)$ vérifie (H) .

En résumé : solutions de
$$(E)$$
 = solutions de (H) + une solution particulière de (E)

Notations

(a) On utilisera les « matrices » suivantes :

$$A = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ \dots & \dots \\ a_{n1} & \dots & a_{np} \end{pmatrix} matrice \ de \ (E), \ X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \underbrace{inconnue}_{\text{identifiée à }(x_1, \dots, x_p)}, \text{ et } B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} second \ membre \ de \ (E).$$

On écrira en abrégé (E): AX = B.

(b) La matrice augmentée de (E) est la matrice $(A|B) := \begin{pmatrix} a_{11} & \dots & a_{1p} & b_1 \\ & \dots & & \vdots \\ a_{n1} & \dots & a_{np} & b_1 \end{pmatrix}$, où la barre verticale n'a aucune signification mathématique.

On résoudra (E) en travaillant sur les lignes de (A|B) et sur les colonnes de A.

Exemples (cf. 1)
$$1. \ \ \underbrace{L'\text{\'equation}}_{\text{d'inconnue }(x,\,y,\,z) \in \mathbb{R}^3} \left\{ \begin{array}{c} -4x + 12y - 5z = 1 \\ x - 3y + 2z = -1 \\ 2x - 6y + z = 1 \end{array} \right. \text{ a pour matrice augment\'ee} \left(\begin{array}{c|c} -4 & 12 & -5 & 1 \\ 1 & -3 & 2 & -1 \\ 2 & -6 & 1 & 1 \end{array} \right).$$

2. On fixe
$$(x, y) \in \mathbb{R}^2$$
. On a : $(x, y) \in \mathcal{D} \iff \left(\exists (s, t) \in \mathbb{R}^2 \mid \begin{cases} x = s - t + 1 \\ y = -s + t + 2 \end{cases}\right)$.

L'équation $(E_{\text{param}}) \left\{ \begin{cases} s - t = x - 1 \\ -s + t = y - 2 \end{cases} \right\}$ a pour matrice augmentée $\left(\begin{cases} 1 & -1 \\ -1 & 1 \end{cases} \mid \begin{cases} x - 1 \\ y - 2 \end{cases} \right)$.

Définition

Dans ce qui suit on va noter $L_1, ..., L_n$ les lignes de (A|B) et $C_1, ..., C_p$ les colonnes de A. On désignera par L'_1 , ..., L'_n les nouvelles lignes après transformation.

- (a) Une opération élémentaire sur les lignes de (A|B) est une des transformations suivantes :
- (i) $L_i \overset{\text{(\'echange)}}{\longleftrightarrow} L_j$ avec $i \neq j$ « permutation de deux lignes » ;
- (ii) $L_i' = c L_i$ avec $c \neq 0$ « multiplication d'une ligne par un scalaire non-nul » ;
- (iii) $L_i' = L_i + cL_j$ avec $i \neq j$ et $c \in \mathbb{R}$ « ajout à une ligne d'un multiple d'une autre ligne ».
 - (b) Une permutation de deux colonnes de A est une transformation $C_i \overset{\text{(échange)}}{\longleftrightarrow} C_j$ avec $i \neq j$.

Remarque

Pour toute opération élémentaire f sur les lignes des matrices à n lignes et p (resp. p+1) colonnes et toute permutation g de deux colonnes de ces matrices, on a : $g \circ f = f \circ g$.

Lemme

Soit (A'|B') une matrice obtenue à partir de (A|B) après avoir effectué un nombre fini d'étapes de l'un des deux types suivants :

$$L_i \leftrightarrow L_j \text{ avec } i \neq j$$
;

$$L_i' = c_1 L_1 + \dots + c_i L_i + \dots + c_n L_n$$
 avec $1 \le i \le n, c_1, \dots, c_n \in \mathbb{R}$ et $\underline{c_i \ne 0}$.

Pour tout
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathbb{R}^p$$
, le système $(E): AX = B$ équivaut au système $(E'): A'X = B'$.

Exemple

On va écrire une suite de matrices augmentées associées à des systèmes linéaires équivalents. On peut commencer la résolution de (E_{cart}) ainsi, en entourant le « pivot » :

$$\begin{pmatrix} -4 & 12 & -5 & 1 \\ \vdots & \vdots & -3 & 2 & -1 \\ 2 & -6 & 1 & 1 \end{pmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \begin{pmatrix} \textcircled{1} & -3 & 2 & -1 \\ -4 & 12 & -5 & 1 \\ 2 & -6 & 1 & 1 \end{pmatrix} \xrightarrow{L'_2 = L_2 + 4L_1} \begin{pmatrix} 1 & -3 & 2 & -1 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & -3 & 3 \end{pmatrix}.$$

$$\text{(pour utiliser le pivot 1, ce qui n'est pas indispensable)}$$

$$\text{(pour amener des 0 dans } C_1$$

$$\text{(strictement sous la diagonale)}$$

$$\text{(strictement sous la diagonale)}$$

3. Méthode du pivot de Gauss

On va travailler sur les colonnes de A dans (A|B) en allant de la gauche vers la droite pour se ramener à un système triangulaire. À chaque étape on va chercher un scalaire non-nul (« pivot ») vers le bas à partir du terme diagonal, et éventuellement à droite ce qui nécessitera de faire un échange de colonnes (*). On amène ce pivot sur la diagonale puis des 0 sous ce pivot.

Proposition

a) On peut passer par une suite finie d'opérations élémentaires sur les lignes et d'échanges de deux colonnes, de la matrice A à une matrice de la forme

$$A' = \begin{pmatrix} d_1 & & & & \\ 0 & \ddots & & & & \\ \vdots & \ddots & \ddots & & & \\ 0 & \cdots & 0 & d_r & & & \\ 0 & \cdots & 0 & d_r & & & \\ \vdots & & \vdots & & \vdots & & \vdots \\ 0 & & 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{avec} \quad d_1 \neq 0, \dots, d_r \neq 0.$$

b) Le système
$$(E): AX = B$$
 d'inconnue $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ équivaut au système $(E'): A'X' = B'$

b) Le système
$$(E): AX = B$$
 d'inconnue $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ équivaut au système $(E'): A'X' = B'$ d'inconnue $X' := \begin{pmatrix} x_{j_1} \\ \vdots \\ x_{j_p} \end{pmatrix}$, où les transformations du (a) envoient $\begin{pmatrix} x_1 \dots x_p \\ A \mid B \end{pmatrix}$ sur $\begin{pmatrix} x_{j_1} \dots x_{j_p} \\ A' \mid B' \end{pmatrix}$.

[Noter que les lettres qui se trouvent au-dessus de A ou de A' représentent ici les noms des variables-coordonnées d'un

Noter que les lettres qui se trouvent au-dessus de A ou de A' représentent ici les noms des variables-coordonnées d'un vecteur de \mathbb{R}^n et non pas les valeurs particulières qu'elles prennent pour le vecteur X. De plus, ce sont les éventuels échanges de colonnes qui feront passer de $x_1,...,x_p$ à $x_{j_1},...,x_{j_p}.]$

c) On note
$$\mathscr{S}_E$$
 l'ensemble des solutions de (E) et $B' = \begin{pmatrix} b'_1 \\ \vdots \\ b'_n \end{pmatrix}$.
On a : $\mathscr{S}_E \neq \emptyset \iff \underbrace{b'_{r+1} = \cdots = b'_n = 0}_{n-r \text{ conditions}}$.

Dans ce cas, on obtient une équation paramétrique de \mathscr{S}_E à partir de (E') en écrivant Dans ce cas, on obtient une equation paramètres $\underbrace{t_1 := x_{j_{r+1}}, ..., t_{p-r} := x_{j_p}}_{p-r \text{ paramètres}}$.

$$p-r$$
 paramètres

Ainsi, quand r = n = p (« système de Cramer ») le système (E) a une unique solution.

Remarques

En pratique, on exploitera la proposition précédente en allégeant la présentation :

- lorsque B=0 on ne fera pas apparaître la dernière colonne (seconds membres nuls);
- on n'introduira les noms des variables au dessus des p premières colonnes qu'à partir du moment où un échange de colonnes aura été introduit (ce qui est rarement indispensable);
- on travaillera (par exemple) colonne par colonne en acceptant, au moment du travail sur la $j^{\text{ème}}$ colonne, de faire simultanément plusieurs transformations sur les lignes de la forme $L_i' = c_i L_i + c_j L_j$ avec $c_i \neq 0$ et i > j (car on est capable de décomposer effectivement ces

^(*) Les échanges de deux colonnes permettent de minimiser les erreurs d'arrondis sur ordinateur. Dans ce but, en travaillant sur la j^{e} colonne on choisirait comme pivot a_{i_0,j_0} avec $i_0,j_0 \geq j$ tels que $|a_{i_0,j_0}| = \max_{i',j' \geq j} |a_{i',j'}|$.

transformations en successions d'opérations élémentaires sur les lignes);

- on résoudra « de tête » le système triangulaire correspondant à la dernière étape de la méthode de Gauss, en partant de la dernière égalité et remontant vers la première.

Exemples (cf. 1)

1. Fin de la résolution de (E

1. Fin de la resolution de
$$(E_{\text{cart}})$$
:
$$\begin{pmatrix}
-4 & 12 & -5 & | & 1 \\
1 & -3 & 2 & | & -1 \\
2 & -6 & 1 & | & 1
\end{pmatrix}
\xrightarrow[\text{déià vu}]{}
\xrightarrow[\text{déià vu}]{}
\begin{pmatrix}
1 & -3 & 2 & | & -1 \\
0 & 0 & 0 & 3 & | & -3 \\
0 & 0 & -3 & | & 3
\end{pmatrix}
\xrightarrow[C_2 \leftrightarrow C_3]{}
\begin{pmatrix}
1 & 2 & -3 & | & -1 \\
0 & 3 & 0 & | & -3 \\
0 & -3 & 0 & | & 3
\end{pmatrix}
\xrightarrow[L'_3 = L_3 + L_2]{}
\begin{pmatrix}
1 & 2 & -3 & | & -1 \\
0 & 3 & 0 & | & -3 \\
0 & 0 & 0 & | & 0
\end{pmatrix}.$$

En renommant dans la conclusion la variable y en t, et calculant d'abord z puis ensuite x, on obtient l'équation paramétrique suivante de $\mathscr{S}_{E_{\mathrm{cart}}}$:

$$\mathscr{S}_{E_{\text{cart}}}: \begin{cases} x = \frac{1}{1}(-2(-1) + 3t - 1) = 3t + 1\\ y = t & , \qquad t \in \mathbb{R}.\\ z = \frac{1}{3}(-3) = -1 \end{cases}$$

2. Soit
$$(x,y) \in \mathbb{R}^2$$
. Existence de $(s,t) \in \mathbb{R}^2$ vérifiant (E_{param}) $\begin{cases} s-t=x-1 \\ -s+t=y-2 \end{cases}$?

Calcul par la méthode de Gauss :
$$\left(\begin{array}{c|c} \textcircled{1} & -1 & x-1 \\ -1 & 1 & y-2 \end{array} \right) \xrightarrow[L_2' = L_2 + L_1]{} \left(\begin{array}{c|c} \textcircled{1} & -1 \\ 0 & 0 & x+y-3 \end{array} \right).$$

$$\begin{array}{ll} \text{Calcul par la méthode de Gauss}: & \begin{pmatrix} \textcircled{1} & -1 & x-1 \\ -1 & 1 & y-2 \end{pmatrix} \xrightarrow{L_2' = L_2 + L_1} \begin{pmatrix} \textcircled{1} & -1 & y//2 \\ 0 & 0 & x+y-3 \end{pmatrix}. \\ \text{Ainsi} & \mathscr{D}: & \begin{cases} x = s-t+1 \\ y = -s+t+2 \end{cases}, \; s,t \in \mathbb{R} \quad \text{a pour équation cartésienne}: \; \mathscr{D}: x+y-3 = 0. \\ \end{cases}$$

(Inutile de calculer explicitement les valeurs des paramètres s et t en fonction de x et y.)

3. Le système
$$(E_C)$$
 $\begin{cases} 3x + 2y = 5 \\ 2x - y = 4 \end{cases}$ se résout ainsi : $\begin{pmatrix} 3 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \xrightarrow{L'_2 = 3L_2 - 2L_1} \begin{pmatrix} \boxed{3} & 2 \\ \boxed{0} & -7 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix}$.

C'est un système de Cramer d'unique solution donnée par :
$$\begin{cases} x = \frac{1}{3} \left(-2(-\frac{2}{7}) + 5 \right) = \frac{13}{5} \\ y = -\frac{2}{7} \end{cases}.$$

Remarques

1. Quand (E) a strictement plus d'inconnues que d'équations (c'est-à-dire p > n) et $\mathscr{S}_E \neq \emptyset$ (par exemple (E) est homogène), on a : $p-r > n-r \geq 0$, donc \mathscr{S}_E est infini.

Retenir: tout système linéaire homogène dont le nombre d'inconnues est strictement supérieur au nombre d'équations admet une infinité de solutions.

- 2. La matrice (A'|B') dépend des opérations sur les lignes et les colonnes qu'on a utilisées. Cependant, on verra dans la suite du cours que :
- -r ne dépend que de A, et sera appelé « le rang de A »;
- $-\mathscr{S}_E$ n'a pas d'équation paramétrique avec strictement moins que p-r paramètres ;
- une équation cartésienne obtenue par la méthode de Gauss à partir d'une équation paramétrique a un nombre d'égalités qui est minimal.

Définition (« méthode de Gauss sans échange de colonnes »)

(a) Une matrice échelonnée — suivant les lignes — est une matrice telle que le nombre de termes nuls au début de chaque ligne augmente lorsqu'on passe d'une ligne à la suivante, et ce nombre augmente même strictement lorsqu'on passe d'une ligne non nulle à la suivante.

(b) Une matrice échelonnée réduite est une matrice échelonnée dans laquelle les premiers termes non-nuls sur chaque ligne sont des 1 au-dessus desquels se trouvent des 0. Elle s'écrit :

Proposition

Il existe une <u>unique</u> matrice échelonnée réduite E_A qui se déduit de A par des opérations élémentaires sur les lignes. Elle s'obtient par exemple ainsi :

Remarques (lien entre les 2 méthodes de Gauss)

1. En appliquant à A les opérations élémentaires sur les lignes — mais pas sur les colonnes — qui ont permis de passer de A à une matrice A' en travaillant colonne par colonne et n'échangeant deux colonnes que lorsque c'est nécessaire, on obtient une matrice échelonnée.

Cette matrice échelonnée s'obtient aussi à partir de A' en permutant les colonnes de A' pour remettre les coordonnées $x_1, ..., x_p$ dans l'ordre.

2. Réciproquement, à partir d'une matrice échelonnée déduite de A par des opérations élémentaires sur les lignes, en déplaçant en premières positions les colonnes contenant les termes non-nuls au début de chaque ligne, on obtient une matrice de la forme A'.

4. Rappels de géométrie affine

Définition-Proposition

(a) On appelle droite affine de \mathbb{R}^p toute partie de \mathbb{R}^p de la forme

$$\mathscr{D} = \{A + sv ; s \in \mathbb{R}\}$$
 où $A, v \in \mathbb{R}^p \text{ et } v \neq 0.$

Dans ce cas on dit que :

- (A, v) est un « repère » de \mathscr{D} et pour tout $M \in \mathscr{D}$ l'unique $s \in \mathbb{R}$ tel que M = A + sv est la « coordonnée » de M dans (A, v);
- $-\overrightarrow{\mathscr{D}}:=\{\overrightarrow{MN}\;;\;M,N\in\mathscr{D}\}\;\;\text{est la}\;\;\text{« direction de }\mathscr{D}\;\text{», telle que }\;\overrightarrow{\mathscr{D}}=\{sv\;;\;s\in\mathbb{R}\}.$
 - (b) Soient $v, w \in \mathbb{R}^p$. On dit que v et w sont colinéaires si v = 0 ou w est multiple de v.
 - (c) On appelle plan affine de \mathbb{R}^p toute partie de \mathbb{R}^p de la forme

$$\mathscr{P} = \{A + sv + tw \; ; \; s,t \in \mathbb{R}\} \quad \text{ où } \quad A,v,w \in \mathbb{R}^p \text{ et, } v \text{ et } w \text{ sont non colinéaires.}$$

Dans ce cas on dit que:

- (A, v, w) est un « repère » de \mathscr{P} et pour tout $M \in \mathscr{P}$ l'unique couple $(s, t) \in \mathbb{R}^2$ tel que M = A + sv + tw est le couple des « coordonnées » de M dans (A, v, w);
- $\overrightarrow{\mathscr{P}}:=\{\overrightarrow{MN}\;;\;M,N\in\mathscr{P}\}\;\;\mathrm{est}\;\mathrm{la}\;$ « direction de \mathscr{P} », telle que $\overrightarrow{\mathscr{P}}=\{sv+tw\;;\;s,t\in\mathbb{R}\}.$

Exemples

(a) Les droites affines de \mathbb{R}^2 sont :

$$\mathscr{D}$$
: $ax + by = c$ avec $a, b, c \in \mathbb{R}$ et $(a, b) \neq (0, 0)$;

Pour une telle droite \mathscr{D} , on a : $\overrightarrow{\mathscr{D}}$: ax + by = 0.

De plus, deux telles droites \mathcal{D}_1 : $a_1x + b_1y = c_1$ et \mathcal{D}_2 : $a_2x + b_2y = c_2$ sont égales si et seulement si (a_1, b_1, c_1) et (a_2, b_2, c_2) sont colinéaires.

(b) Les droites affines de \mathbb{R}^3 sont :

$$\mathscr{D} \colon \begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases} \text{ avec } a, b, c, d, a', b', c', d' \in \mathbb{R} \text{ et, } (a, b, c) \text{ et } (a', b', c') \text{ non colinéaires.} \end{cases}$$
Pour une telle droite \mathscr{D} , on a : $\overrightarrow{\mathscr{D}} \colon \begin{cases} ax + by + cz = 0 \\ a'x + b'y + c'z = 0 \end{cases}$

(c) Les plans affines de \mathbb{R}^3 sont :

$$\mathscr{P}$$
: $ax + by + cz = d$ avec $a, b, c, d \in \mathbb{R}$ et $(a, b, c) \neq (0, 0, 0)$;

Pour un tel plan \mathscr{P} , on a : $\overrightarrow{\mathscr{P}}$: ax + by + cz = 0.

De plus, deux tels plans \mathscr{P}_1 : $a_1x + b_1y + c_1z = d_1$ et \mathscr{P}_2 : $a_2x + b_2y + c_2z = d_2$ sont égaux si et seulement si (a_1, b_1, c_1, d_1) et (a_2, b_2, c_2, d_2) sont colinéaires.

Proposition

(a) Soient $A, B \in \mathbb{R}^p$ distincts.

Il existe une unique droite affine de \mathbb{R}^p , notée (AB), qui contient A et B.

Elle admet pour repère (A, \overrightarrow{AB}) .

(affine)

- (b) Soient $A, B, C \in \mathbb{R}^p$. Les points A, B, C appartiennent à une même droite de \mathbb{R}^p , ce qui se traduit en disant que « A, B, C sont alignés », si et seulement si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
 - (c) Soient $A, B, C \in \mathbb{R}^p$ non alignés.

Il existe un unique plan affine de \mathbb{R}^p , notée (ABC), qui contient A, B et C.

Il admet pour repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$.

II. L'ESPACE VECTORIEL \mathbb{R}^n

 \leftarrow [idem avec \mathbb{C} au lieu de \mathbb{R}]

Dans toute cette partie on se donne $n \in \mathbb{N}$.

1. Sous-espaces vectoriels de \mathbb{R}^n

Notations

(a) On note \mathbb{R}^n l'ensemble des n-uplets $(x_1,...,x_n)$ de réels $x_1,...,x_n.$

Par convention : $\mathbb{R}^0 := \{0\} \subseteq \mathbb{R}$, en « identifiant » la suite vide () et 0.

On appelle « vecteur » tout élément de \mathbb{R}^n et « scalaire » tout élément de \mathbb{R} .

(b) Somme de deux vecteurs : $(x_1,...,x_n) + (y_1,...,y_n) := (x_1 + y_1,...,x_n + y_n)$.

Vecteur nul: $0_{\mathbb{R}^n} := (0, ..., 0)$; opposé d'un vecteur: $-(x_1, ..., x_n) := (-x_1, ..., -x_n)$.

Différence de deux vecteurs : $(x_1,...,x_n) - (y_1,...,y_n) := (x_1 - y_1,...,x_n - y_n).$

(c) Multiplication d'un scalaire par un vecteur : $\alpha(x_1,...,x_n) := (\alpha x_1,...,\alpha x_n)$.

Remarque

Pour tous $u, v, w \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}$, on a :

- (i) (u+v)+w=u+(v+w) et v+w=w+v;
- (ii) $v + 0_{\mathbb{R}^n} = v$ et $v + (-v) = 0_{\mathbb{R}^n}$
- (iii) $\alpha(v+w) = (\alpha v) + (\alpha w)$ et $(\alpha + \beta) v = (\alpha v) + (\beta v)$;
- (iv) 1v = v et $\alpha(\beta v) = (\alpha \beta) v$.

Dans la suite on notera plus simplement, par abus, 0 au lieu de $0_{\mathbb{R}^n}$.

Définition-Proposition

Soient $p \in \mathbb{N}$ et $v_1, \ldots, v_p, v, w \in \mathbb{R}^n$.

(a) Une combinaison linéaire de v_1, \ldots, v_p est un vecteur v de \mathbb{R}^n de la forme $v = \underbrace{\alpha_1 \, v_1 + \dots + \alpha_p \, v_p}_{\text{avec}} \quad \text{avec} \quad \alpha_1, \dots, \alpha_p \in \mathbb{R}.$

(b) On dit que v et w sont colinéaire s'il existe $\alpha \in \mathbb{R}$ tel que $v = \alpha w$ ou $w = \alpha v$. Cela équivaut à : v = 0 ou il existe $\alpha \in \mathbb{R}$ tel que $w = \alpha v$.

« w est multiple de v »

Exemple

Dans \mathbb{R}^3 , on choisit $v_1 = (0, 1, -1), v_2 = (1, 0, -1), v_3 = (1, -1, 0), \text{ et } u = (5, -2, -3).$ Le vecteur v est combinaison linéaire de v_1 , v_2 , v_3 car : $v = v_1 + 2v_2 + 3v_3$.

Notation

Soient $p \in \mathbb{N}$ et $v_1, \ldots, v_p \in \mathbb{R}^n$.

On note $Vect(v_1,...,v_p)$ l'ensemble des combinaisons linéaires des vecteurs $v_1,...,v_p$:

$$Vect(v_1, ..., v_p) = \{\alpha_1 v_1 + \cdots + \alpha_p v_p ; \alpha_1, \ldots, \alpha_p \in \mathbb{R} \}.$$

Définition

On dit qu'une partie E de \mathbb{R}^n est un sous-espace vectoriel de \mathbb{R}^n si :

- (ii) pour tous $\alpha, \beta \in \mathbb{R}$ et $v, w \in E$, on a $\alpha v + \beta w \in E$.

Remarques

- 1. Il est immédiat que : $\{0_{\mathbb{R}^n}\}$ et \mathbb{R}^n sont des sous-espaces vectoriels de \mathbb{R}^n .
- 2. Soient E un sous-espace vectoriel de \mathbb{R}^n , $p \in \mathbb{N}$ et $v_1, \dots, v_p \in E$.

Par récurrence sur p, on constate que toute combinaison linéaire de v_1, \ldots, v_p appartient à E.

Exemples

- 1. On considère $E = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$
- (i) On a: 0+0+0=0 donc $0 \in E$.
- (ii) Soient $\alpha, \beta \in \mathbb{R}$ et $v = (x', y', z'), w = (x'', y'', z'') \in E$.

On a: $\alpha v + \beta w = (x, y, z)$ avec $x := \alpha x' + \beta x'', y := \alpha y' + \beta y'', z := \alpha z' + \beta z''.$

Or:
$$x + y + z = \alpha(\underbrace{x' + y' + z'}_{0 \text{ car } v \in E}) + \beta(\underbrace{x'' + y'' + z''}_{0 \text{ car } w \in E})$$
. D'où: $\alpha v + \beta w \in E$.

En conclusion : E est un sous-espace vectoriel de \mathbb{R}^3 .

2. Plus généralement, l'ensemble E des solutions d'un système d'équations linéaires homogène (H): AX = 0 d'inconnue $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^p$ est un sous-espace vectoriel de $\mathbb{R}^{p(*)}$ (exercice).

Définition-Proposition

Soient $p \in \mathbb{N}$ et $v_1,...,v_p \in \mathbb{R}^n$. On a : Vect $(v_1,...,v_p)$ est l'unique sous-espace vectoriel de \mathbb{R}^n qui contient $v_1,...,v_p$ et qui est inclus dans tout sous-espace vectoriel E de \mathbb{R}^n contenant $v_1, ..., v_p$ (plus petit – pour l'inclusion – sous-espace vectoriel de \mathbb{R}^n contenant $v_1, ..., v_p$).

On appelle $Vect(v_1,...,v_p)$ le sous-espace vectoriel V de \mathbb{R}^n engendré par $v_1,...,v_p$ (**).

- (*) On dira que E est un sous-espace vectoriel de \mathbb{R}^p donné par « équation cartésienne ».
- (**) On dira que V est un sous-espace vectoriel de \mathbb{R}^n donné par « équation paramétrique ».

Définition

On appelle:

- droite vectorielle de \mathbb{R}^n une partie de \mathbb{R}^n de la forme Vect(v) avec $v \in \mathbb{R}^n \setminus \{0\}$;
- plan vectoriel de \mathbb{R}^n une partie de \mathbb{R}^n de la forme Vect(v, w) avec $v, w \in \mathbb{R}^n$ non-colinéaires. Dans chacun de ces deux cas on reconnait un sous-espace vectoriel de \mathbb{R}^n .

Exemple

Soient $v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 0 \\ \lambda \end{pmatrix} \in \mathbb{R}^3$ (identifiés à des triplets) avec $\lambda \in \mathbb{R}$ fixé. Il est « clair » que v_1 et v_2 sont non-colinéaires (car $v_2 \neq 0$ et – au vu des 1^{res} coordonnées – une égalité $v_1 = \alpha v_2$ impliquerait 1 = 0).

(a)
$$A$$
- t - $on : v_3 \in Vect(v_1, v_2)$?

On étudie par la méthode de Gauss l'existence de
$$\alpha_1, \alpha_2 \in \mathbb{R}$$
 tels que $\underbrace{\alpha_1 v_1 + \alpha_2 v_2}_{\text{inconnues } \alpha_1, \alpha_2} :$

$$\begin{pmatrix} 1 & 0 & | & 1 \\ -1 & 1 & | & 0 \\ 0 & -1 & | & \lambda \end{pmatrix} \xrightarrow{L'_2 = L_2 + L_1} \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \\ 0 & -1 & | & \lambda \end{pmatrix} \xrightarrow{L'_3 = L_3 + L_2} \begin{pmatrix} \boxed{1} & 0 & | & 1 \\ 0 & \boxed{1} & 1 & | & 1 \\ 0 & 0 & | & \lambda + 1 \end{pmatrix}.$$

Donc: $v_3 \in \text{Vect}(v_1, v_2) \iff \lambda = -1$

(b) On suppose que $\lambda \neq -1$. A-t-on: Vect $(v_1, v_2, v_3) = \mathbb{R}^3$?

Soit $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$. On étudie par la méthode de Gauss l'existence de $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tels que $\underbrace{\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = v}$:

$$\begin{pmatrix} 1 & 0 & 1 & | & x \\ -1 & 1 & 0 & | & y \\ 0 & -1 & \lambda & | & z \end{pmatrix} \xrightarrow{\cdots} \quad \text{(\'etapes ci-dessus)} \quad \xrightarrow{\cdots} \quad \begin{pmatrix} \boxed{1} & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & \lambda + 1 \end{pmatrix} \begin{vmatrix} /// \\ /// \end{pmatrix}.$$

Donc: $v \in \text{Vect}(v_1, v_2, v_3)$.

On peut en conclure – l'inclusion \subseteq étant claire – que : $\operatorname{Vect}(v_1, v_2, v_3) = \mathbb{R}^3$.

Proposition

Soient F et G deux sous-espaces vectoriels de \mathbb{R}^n .

On a : $F \cap G$ est un sous-espace vectoriel de \mathbb{R}^n .

Remarque

On prend ici F = (Ox) et G = (Oy) dans \mathbb{R}^2 . Donc F = Vect((1,0)) et G = Vect((0,1))sont des sous-espaces vectoriels de \mathbb{R}^2 .

On a $F \cap G = \{(0,0)\}$, où $\{(0,0)\}$ est un sous-espace vectoriel bien connu de \mathbb{R}^2 .

Par contre $F \cup G$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 car : $1 \underbrace{(1,0)}_{\in F} + 1 \underbrace{(0,1)}_{\in G} = \underbrace{(1,1)}_{\notin F \cup G}$. Exemple

Idée : des équations cartésiennes de F et G fournissent une équation cartésienne de $F \cap G$.

On considère $\Pi_1: x+y+z=0$ et $\Pi_2: x+2y=0$ dans \mathbb{R}^3 . Comme ensembles de solutions de systèmes d'équations homogènes, Π_1 et Π_2 sont des sous-espaces vectoriels de \mathbb{R}^3 (on verra dans le prochain exemple que ce sont des plans vectoriels).

On cherche à préciser la nature du sous-espace vectoriel $\Pi_1 \cap \Pi_2$ de \mathbb{R}^3 .

On regroupe les équations cartésiennes de Π_1 et de Π_2 : $\Pi_1 \cap \Pi_2$: $\begin{cases} x+y+z=0 \\ x+2y=0 \end{cases}$. On va exhiber une équation paramétrique de $\Pi_1 \cap \Pi_2$ en résolvant par la méthode de Gauss :

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \xrightarrow{L_2' = L_2 - L_1} \begin{pmatrix} \boxed{1} & 1 \\ 0 & 1 & -1 \end{pmatrix}. \text{ On effectue ensuite de tête la } \ll \text{ remontée triangulaire } \gg.$$

Ainsi: $\Pi_1 \cap \Pi_2$: $\begin{cases} x = -2t \\ y = t \\ z = t \end{cases}$, $t \in \mathbb{R}$ puis $\Pi_1 \cap \Pi_2 = \text{Vect}\left(\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}\right)$ est une droite vectorielle.

Définition-Proposition

Soient F et G deux sous-espaces vectoriels de \mathbb{R}^n .

- (a) On note : $F + G := \{v + w : v \in F \text{ et } w \in G\}.$
- On a : F + G est un sous-espace vectoriel de \mathbb{R}^n , appelé somme de F et de G.
- (b) On suppose que $F = \text{Vect}(v_1, ..., v_p)$ et $G = \text{Vect}(w_1, ..., w_q)$ avec $v_1, ..., v_p, w_1, ..., w_q \in \mathbb{R}^n$. On a: $F + G = Vect(v_1, ..., v_p, w_1, ..., w_q)$.

Exemple

 $Id\acute{e}e$: des équations paramétriques de F et G donnent une équation paramétrique de F+G.

On reprend $\Pi_1: x+y+z=0$ et $\Pi_2: x+2y=0$ dans \mathbb{R}^3 . On cherche à préciser $\Pi_1+\Pi_2$.

• Méthode de Gauss pour aboutir à
$$\Pi_1 = \operatorname{Vect}(v_1, ..., v_p)$$
 et $\Pi_2 = \operatorname{Vect}(w_1, ..., w_q)$:

 $x \quad y \quad z$
 $(\square \quad 1 \quad 1)$ donne $\Pi_1 : \begin{cases} x = -s - t & x \quad y \quad z \\ y = \quad s \quad s, t \in \mathbb{R}, \text{ et } (\square \quad 2 \quad 0) \text{ donne } \Pi_2 : \begin{cases} x = -2u \\ y = \quad u \quad u, v \in \mathbb{R}. \end{cases}$

En particulier $\Pi_1 = \operatorname{Vect}\left(\left(\begin{matrix} -1 \\ 1 \\ 0 \end{matrix}\right), \left(\begin{matrix} -1 \\ 0 \\ 1 \end{matrix}\right)\right)$ et $\Pi_2 = \operatorname{Vect}\left(\left(\begin{matrix} -2 \\ 1 \\ 0 \end{matrix}\right), \left(\begin{matrix} 0 \\ 0 \\ 1 \end{matrix}\right)\right)$ sont des plans vectoriels.

On a ensuite : $\Pi_1 + \Pi_2 : \begin{cases} x = -s - t - 2u \\ y = \quad s + u \\ z = \quad t + v \end{cases}$

On va voir que : $\Pi_1 + \Pi_2 = \mathbb{R}^3$.

• Soit $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$. On étudie l'existence de $s,t,u,v \in \mathbb{R}$ permettant de s'assurer que vvérifie l'équation paramétrique précédente de $\Pi_1+\Pi_2,$ par la méthode de Gauss :

$$\begin{pmatrix} -1 & -1 & -2 & 0 & | & x \\ 1 & 0 & 1 & 0 & | & y \\ 0 & 1 & 0 & 1 & | & z \end{pmatrix} \xrightarrow{L_2' = L_2 + L_1} \begin{pmatrix} -1 & -1 & -2 & 0 & | & x \\ 0 & -1 & -1 & 0 & | & x + y \\ 0 & 1 & 0 & 1 & | & z \end{pmatrix} \xrightarrow{L_3' = L_3 + L_2} \begin{pmatrix} -1 & -1 & -2 & 0 & | & /// \\ 0 & -1 & -1 & 0 & | & /// \\ 0 & 0 & -1 & 1 & | & /// \end{pmatrix}.$$

Donc: $v \in \Pi_1 + \Pi_2$.

En conclusion : $\Pi_1 + \Pi_2 = \mathbb{R}^3$.

2. Familles libres. Familles génératrices. Bases

Dans toute cette partie, on se donne un sous-espace vectoriel E de \mathbb{R}^n .

Définition $(p \in \mathbb{N})$

(a) Une famille formée de p vecteurs de E est un élément (v_1, \ldots, v_p) de E^p . Dans la suite de cette définition, on se donne $v_1, \ldots, v_p \in E$.

ou « les vecteurs v_1,\ldots,v_p sont linéairement indépendants »

(b) On dit que la famille (v_1, \ldots, v_p) est libre si pour tous $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$, on a : $\alpha_1 v_1 + \dots + \alpha_p v_p = 0 \implies \alpha_1 = \dots = \alpha_p = 0.$

On exprimera qu'une famille de vecteurs de E n'est pas libre en disant qu'elle est liée, ce qui signifie donc qu'il existe $\alpha_1, ..., \alpha_p \in \mathbb{R}$ tels que $\alpha_1 v_1 + \cdots + \alpha_p v_p = 0$ et $(\alpha_1, ..., \alpha_p) \neq (0, ..., 0)$.

(c) On dit que $\overbrace{la \ famille \ (v_1,\ldots,v_p)}$ est génératrice de E si pour tout $v\in E$, il existe $\alpha_1, \dots, \alpha_p \in \mathbb{R}$ tels que : $v = \alpha_1 v_1 + \dots + \alpha_p v_p$.

Ainsi, la famille (v_1, \ldots, v_p) est génératrice de E si et seulement si $\operatorname{Vect}(v_1, \ldots, v_p) = E$.

Exemple 1

Dans \mathbb{R}^3 , on choisit E: x + y + z = 0, $v_1 = (0, 1, -1)$, $v_2 = (1, 0, -1)$, $v_3 = (1, -1, 0)$.

Donc E est un sous-espace vectoriel de \mathbb{R}^3 (premier exemple concret qui a été proposé pour illustrer la notion de de sous-espace vectoriel) et $v_1, v_2, v_3 \in E$.

1. Pour tous $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, on a : $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = 0 \iff \alpha_1 = -\alpha_2 = \alpha_3$. $(\alpha_2+\alpha_3,\alpha_1-\alpha_3,-\alpha_1-\alpha_2)$

En particulier, la famille (v_1, v_2, v_3) n'est pas libre car :

$$1v_1 + (-1)v_2 + 1v_3 = 0$$
 bien que $(1, -1, 1) \neq (0, 0, 0)$.

2. Soit $v = (x, y, z) \in E$. Pour tous $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, sachant que x + y + z = 0 on a :

$$(\star)$$
 $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \iff \alpha_2 = x - \alpha_3 \text{ et } \alpha_1 = y + \alpha_3.$

Le choix de $(\alpha_1, \alpha_2, \alpha_3) = (y, x, 0)$ montre que l'équation (\star) d'inconnue $(\alpha_1, \alpha_2, \alpha_3)$ a au moins une solution. Ainsi, la famille (v_1, v_2, v_3) est génératrice de E.

Exemple 2

Soient
$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ dans \mathbb{R}^3 .

On étudie (\star) : $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = 0$ et $(\star\star)$: $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = \begin{pmatrix} x \\ y \end{pmatrix}$ à $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^3$ fixé avec comme inconnue $(\alpha_1, \alpha_2, \alpha_3)$, et obtient par la méthode de Gauss que :

$$- \text{ la famille } (u_1, u_2, u_3) \text{ est libre, cf. } \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix} \xrightarrow{L'_3 = L_3 - L_1} \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & -1 & 0 \end{pmatrix} \xrightarrow{C_2 \leftrightarrow C_3} \begin{pmatrix} \alpha_1 & \alpha_3 & \alpha_2 \\ \hline 1 & 2 & 1 \\ 0 & 1 & 2 \\ \hline 0 & 0 & -1 \end{pmatrix};$$

- la famille
$$(u_1, u_2, u_3)$$
 est génératrice de \mathbb{R}^3 , cf.
$$\begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \\ \end{pmatrix} \xrightarrow{x} \cdots \xrightarrow{x} \begin{pmatrix} \alpha_1 & \alpha_3 & \alpha_2 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \\ \end{pmatrix} \xrightarrow{///} \mathbb{R}$$

Remarques (exercices)

- 1. Dans le cas de 0, 1, ou 2 vecteurs, on constate que :
- la famille vide () est libre (vu la convention $\sum_{1 \le k \le p} \alpha_k v_k = 0$ quand p = 0);
- une famille (v_1) avec $v_1 \in E$ est libre si et seulement si $v_1 \neq 0$;
- deux vecteur de E sont linéairement indépendants si et seulement si ils sont non colinéaires.
- 2. Une famille (v_1, \ldots, v_p) de vecteurs de E est liée si et seulement si il existe un vecteur parmi v_1, \ldots, v_p qui est combinaison linéaire des autres.

En particulier, toute famille de vecteurs de E dans laquelle se trouve le vecteur nul ou deux vecteurs égaux, est liée.

3. On dira qu'une famille de vecteurs de E est « extraite » d'une famille (v_1, \ldots, v_p) de vecteurs de E si elle est de la forme $(v_{i_1},...,v_{i_k})$ avec $1 \leq i_1 < ... < i_k \leq p$.

Tout famille extraite d'une famille libre de vecteurs de E, est libre.

Tout famille de vecteurs de E dont une famille extraite est génératrice de E, est elle-même génératrice de E.

Proposition

Une famille (v_1, \ldots, v_p) de vecteurs de E est libre et génératrice de E, si et seulement si, pour tout $v \in E$ il existe $(\alpha_1, \dots, \alpha_p) \in \mathbb{R}^p$ unique tel que $v = \alpha_1 v_1 + \dots + \alpha_p v_p$.

Définition

Soit $\mathscr{B} = (v_1, \dots, v_d)$ une famille de vecteurs de E.

On dit que \mathscr{B} est une base de E si \mathscr{B} est libre et génératrice de E.

Dans ce cas, pour $v \in E$ les uniques scalaires $\alpha_1, ..., \alpha_d \in \mathbb{R}$ tels que $v = \alpha_1 v_1 + \cdots + \alpha_n v_d$ s'appellent les coordonnées de v suivant \mathscr{B} . On le notera : v $\begin{vmatrix} \alpha_1 \\ \vdots \\ \alpha_{\mathcal{A}} \end{vmatrix}$

Exemples

- 1. Le sous-espace vectoriel \mathbb{R}^n de \mathbb{R}^n a la base suivante, appelée base canonique de \mathbb{R}^n : $\mathscr{B} := (e_1, \ldots, e_n)$ avec $e_1 := (1, 0, ..., 0), e_2 := (0, 1, 0, ..., 0), \ldots, e_n := (0, ..., 0, 1)$. Plus précisément, les coordonnées de $v = (x_1, ..., x_n) \in \mathbb{R}^n$ dans cette base sont $x_1, ..., x_n$.
- 2. Soit (H): AX = 0 avec $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathbb{R}^p$ un système d'équations linéaires homogène.

On sait que l'ensemble \mathscr{S}_H de ses solutions est un sous-espace vectoriel de \mathbb{R}^p .

La méthode de Gauss fournit des vecteurs $w_1, ..., w_{p-r}$ de \mathbb{R}^p tels que :

$$-\mathscr{S}_{H} = \left\{ t_{1}w_{1} + \dots + t_{p-r}w_{p-r} \; ; \; t_{1}, \dots, t_{p-r} \in \mathbb{R} \right\};$$

$$-\operatorname{si} \ t_{1}w_{1} + \dots + t_{p-r}w_{p-r} = 0, \text{ alors } \left\{ \begin{array}{c} \operatorname{coordonn\acute{e}} \ j_{r+1} \colon \ t_{1} + 0 + \dots + 0 = 0 \\ \vdots \\ \operatorname{coordonn\acute{e}} \ j_{p} \ \colon 0 + \dots + 0 + t_{p-r} = 0 \end{array} \right., \text{ alors } t_{1} = \dots = t_{p-r} = 0.$$

Ainsi $(w_1, ..., w_{p-r})$ est une base de \mathcal{S}_H .

Théorème (admis)

On a : E possède une base $(e_1, ..., e_d)$. Dans ce cas les autres bases de E ont aussi d vecteurs.

Définition

- (a) On appelle dimension de E le nombre constant, noté dim E, des vecteurs de ses bases.
- (b) Soient $v_1, ..., v_p \in \mathbb{R}^n$. On appelle rang de la famille $(v_1, ..., v_p)$ le nombre dim $\text{Vect}(v_1, ..., v_p)$. On notera : $\text{rg}(v_1, ..., v_p) := \text{dim } \text{Vect}(v_1, ..., v_p)$.

Exemples

- 1. Au vu de la base canonique de \mathbb{R}^n , on a : dim $\mathbb{R}^n = n$.
- 2. On reprend certaines définitions de la sous-partie 1 :
- $-E = \{0\}$ si et seulement si dim E = 0;
- -E est une droite vectorielle si et seulement si dim E=1;
- -E est un plan vectoriel si et seulement si dim E=2.

Proposition (admise)

On note d la dimension de E.

- (a) Toute famille libre de E a au plus d vecteurs; quand elle a d vecteurs, c'est une base de E.
- (b) Toute famille génératrice de E a au moins d vecteurs; quand elle a d vecteurs, c'est une base de E.

Corollaire 1

Soit F un sous-espace vectoriel de \mathbb{R}^n tel que $F\subseteq E$.

D'après la proposition (a), on a : $\dim F \leq \dim E$; quand $\dim F = \dim E$, on a F = E.

Définition

- (a) On appelle sous-espace vectoriel de E un sous-espace vectoriel de \mathbb{R}^n inclus dans E.
- (b) On dit qu'un sous-espace vectoriel F de E est un hyperplan de E si : dim F = dim E-1.

Corollaire 2

Soient $v_1, ..., v_p \in E$. On pose: $r = \operatorname{rg}(v_1, ..., v_p)$.

- (a) La famille $(v_1, ..., v_p)$ est libre si et seulement si r = p.
- (b) La famille $(v_1, ..., v_p)$ est génératrice de E si et seulement si $r = \dim E$.

Remarques

1. On reprend l'exemple du début de la sous-partie 2 : $u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.

On a vu à l'aide d'un premier calcul que (u_1, u_2, u_3) est libre. On remarque que la base canonique de \mathbb{R}^3 est formée de 3 vecteurs. On peut donc utiliser le (a) de la proposition précédente pour en conclure, sans autre calcul, que (u_1, u_2, u_3) est génératrice de \mathbb{R}^3 .

- 2. D'après le corollaire 1, les sous-espaces vectoriels de \mathbb{R}^3 ont une dimension, égale à 0 ou 1 ou 2 ou 3, le cas de la dimension 3 n'étant atteint que par \mathbb{R}^3 lui-même. Les sous-espaces vectoriels de \mathbb{R}^3 sont donc $\{0\}$, les droites vectorielles de \mathbb{R}^3 , les plans vectoriels de \mathbb{R}^3 , et \mathbb{R}^3 .
- 3. Soit $(a_1, ..., a_n) \in \mathbb{R}^n \setminus \{0\}$. La partie $F: a_1x_1 + \cdots + a_nx_n = 0$ de \mathbb{R}^n est un hyperplan vectoriel de \mathbb{R}^n car on constate que la méthode de Gauss fournit une base $(w_1, ..., w_{n-1})$ de F.

Proposition

Soient
$$v_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, v_p = \begin{pmatrix} a_{1p} \\ \vdots \\ a_{np} \end{pmatrix} \in \mathbb{R}^n$$
.

(a) On transforme $A' := \begin{pmatrix} x_1 & \dots & x_p \\ a_{11} & \dots & a_{1p} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{np} \end{pmatrix}$ en $A' = \begin{pmatrix} x_{j_1} & \dots & x_{j_r} & x_{j_{r+1}} \dots & x_{j_p} \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & \dots \\ \vdots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \dots \\ \vdots & \dots &$

par la méthode de Gauss, avec $d_1 \neq 0, ..., d_r \neq 0$.

On a : $(v_{j_1},...,v_{j_r})$ est une base de $\text{Vect}(v_1,...,v_p)$.

(b) En particulier : $\operatorname{rg}(v_1,...,v_p) = r$ « calcul du rang par la méthode de Gauss ». (Le nombre r est donc indépendant de la manière dont on applique la méthode de Gauss.)

Remarque 1 (importante au niveau de la rédaction au cours des partiels et examens)

La proposition (a) n'est pas classique, contrairement à la proposition (b).

Dans chaque exercice on la déduira des calculs simultanés de $\operatorname{rg}(v_1,...,v_r)$ et $\operatorname{rg}(v_{j_1},...,v_{j_r})$:

- on a $\operatorname{rg}(v_1,...,v_r)=r$ par calcul du rang par la méthode de Gauss;
- on a aussi $\operatorname{rg}(v_{j_1},...,v_{j_r})=r$ en reprenant le calcul précédent et rayant à chaque étape les colonnes qui ne sont pas sous les symboles $x_{j_1},...,x_{j_r}$;
- ainsi $(v_{j_1},...,v_{j_r})$ engendre un sous-espace vectoriel de dimension r dans l'espace vectoriel $\text{Vect}(v_1,...,v_r)$ de dimension r, et il en résulte que $(v_{j_1},...,v_{j_r})$ est une base de $\text{Vect}(v_1,...,v_p)$.

Remarque 2

On revient sur l'exemple des 3 vecteurs $u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \in \mathbb{R}^3$.

La rédaction la plus rapide pour démontrer que (u_1, u_2, u_3) est une base de \mathbb{R}^3 consiste à prouver par la méthode de Gauss que $\operatorname{rg}(u_1, u_2, u_3) = 3$.