Interrogation écrite n° 1 (corrigé)

1) Soit f la fonction définie sur \mathbb{R} par

$$f(x) = \begin{cases} x + \sin(e^{-\frac{1}{x-2}}) + 2 & \text{si } x > 2\\ (x+a)^2 & \text{si } x \le 2; \end{cases}$$

Déterminer la(les) valeur(s) du réel a pour que f soit continue $sur \mathbb{R}$.

Pour tout $x \in]2, +\infty[$ on a $f(x) = x + \sin(e^{-\frac{1}{x-2}}) + 2$. Alors sur cet intervalle f est continue.

Pour tout $x \in]-\infty, 2[$ on a $f(x)=(x+a)^2$ avec $a \in \mathbb{R}$. Sur cet intervalle f est un polynomiale et donc elle est continue. Il en résulte que f est continue sur $]-\infty,2[$ et sur $]2,+\infty[$.

Étudions la continuité de f en 2. Sachant que $-\frac{1}{x-2} \to -\infty$ lorsque $x \to 2^+$ et que $e^x \longrightarrow 0$, d'une part on obtient:

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x + \sin(e^{-\frac{1}{x-2}}) + 2) = 2 + 0 + 2 = 4.$$

D'autre part $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} (x+a)^2 = (2+a)^2 = f(2)$. Or, la fonction f est continue en 2 si et seulement si $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^-} f(x) = f(2)$. C'est-à-dire si et seulement si $4 = (2+a)^2$.

Pour tout $a \in \mathbb{R}$, $(2+a)^2 = 4 \Leftrightarrow a^2 + 4a + 4 = 4 \Leftrightarrow a^2 + 4a = 0 \Leftrightarrow a(a+4) = 0$. Donc on a deux solutions réelles distinctes : $a_1 = 0$ et $a_2 = -4$.

2) Donner l'ensemble de définition des fonctions suivantes et dire si elles admettent des asymptotes verticales, horizontales ou obliques.

a)
$$f(x) = \frac{-x^2 - 1 + 2x}{x^3 - 4x - x^2 + 4}$$
.

On a
$$f(x) = \frac{-(x^2-2x+1)}{x(x^2-4)-(x^2-4)} = \frac{-(x-1)^2}{(x^2-4)(x-1)} = \frac{-(x-1)^2}{(x-2)(x+2)(x-1)}$$
.
L'expression du dénominateur s'annule pour $x=2$ ou $x=-2$ ou $x=1$.

Donc l'ensemble de définition de f est $\mathbb{R}\setminus\{-2,1,2\}$

Maintenant il faut utiliser le résultat de l'étude d'une limite pour conclure la présence ou non d'une asymptote. On a :

d'une asymptote. On a :
$$\lim_{x \to (-2)^{-}} f(x) = \lim_{x \to (-2)^{-}} \frac{-(x-1)^{2}}{(x-2)(x+2)(x-1)} = \lim_{x \to (-2)^{-}} \frac{-(x-1)}{(x-2)(x+2)} = \frac{3}{-4 \times 0^{-}} = +\infty.$$

$$\lim_{x \to (-2)^{+}} f(x) = \lim_{x \to (-2)^{+}} \frac{-(x-1)}{(x-2)(x+2)} = \frac{3}{-4 \times 0^{+}} = -\infty.$$

On en déduit que la courbe représentative de la fonction f admet pour les bonrnes $(-2)^+$ et $(-2)^-$ une asymptote verticale d'équation x = -2.

On a
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{-(x-1)}{(x-2)(x+2)} = \frac{-1}{0^{-} \times 4} = +\infty.$$

et $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \frac{-(x-1)}{(x-2)(x+2)} = \frac{-1}{0^{+} \times 4} = -\infty.$

et
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{-(x-1)}{(x-2)(x+2)} = \frac{-1}{0^+ \times 4} = -\infty.$$

On en déduit que la courbe représentative de la fonction f admet pour les bornes 2^+ et 2^- une asymptote verticale d'équation x = 2

On a
$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = \lim_{x \to 1} \frac{-(x-1)}{(x-2)(x+2)} = 0.$$

On en déduit que la courbe représentative de
$$f$$
 n'a pas d'asymptote pour les bornes 1^- et 1^+ On a $\lim_{x\to\pm\infty}f(x)=\lim_{x\to\pm\infty}\frac{-x^2-1+2x}{x^3-4x-x^2+4}=\lim_{x\to\pm\infty}\frac{-x^2(1+\frac{1}{x^2}-\frac{2}{x})}{x^3(1-\frac{4}{x^2}-\frac{1}{x}+\frac{4}{x^3})}=\lim_{x\to\pm\infty}\frac{-1}{x}=0.$

Cela signifie que f n'a pas d'asymptote oblique (non-horizontale) et que le graphe de f admet pour les bornes $\pm \infty$ une asymptote horizontale d'équation y=0

b)
$$g(x) = (1 - e^{-x})(1 + x)$$
.

L'ensemble de définition de g est \mathbb{R} .

Donc g n'a pas d'asymptote verticale

Sachant que $e^{-x} \xrightarrow[x \to -\infty]{} +\infty$ et que $e^{-x} \xrightarrow[x \to +\infty]{} 0$ on a :

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} (1 - e^{-x}) \times \lim_{x \to -\infty} (1 + x) = -\infty$$

et
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (1 - e^{-x}) \times \lim_{x \to +\infty} (1 + x) = +\infty.$$

Donc g n'admet pas d'asymptote horizontale au voisinage de $+\infty$ et de $-\infty$

Mais peut-être elle admet une asymptote oblique. Pour la vérifier cherchons les limites de $\frac{g(x)}{x}$ lorsque $x \to \pm \infty$. En $-\infty$ on a :

$$\lim_{x\to -\infty}\frac{g(x)}{x}=\lim_{x\to -\infty}\frac{(1-\mathrm{e}^{-x})(1+x)}{x}=\lim_{x\to -\infty}(1-\mathrm{e}^{-x})\times\lim_{x\to -\infty}\frac{1+x}{x}=-\infty.$$

Cela signifie que g n'a pas d'asymptote oblique au voisinage de $-\infty$. En $+\infty$ on a :

$$\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} (1 - e^{-x}) \times \lim_{x \to +\infty} \frac{1 + x}{x} = 1 \times 1 = 1.$$

On pose a = 1. On a:

$$\lim_{x \to +\infty} (g(x) - ax) = \lim_{x \to +\infty} ((1 - e^{-x})(1 + x) - x) = \lim_{x \to +\infty} (1 - e^{-x} - xe^{-x})$$
$$= 1 - \lim_{x \to +\infty} \frac{1 + x}{e^x} = 1 - 0 = 1 = b.$$

C'est-à-dire : le graphe de g a pour la borne $+\infty$ une asymptote oblique d'équation y=x+1