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Meéthode des orbites et formules du caractére
pour les représentations tempérées d’un groupe
algébrique réel réductif non connexe
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Résumé. Let G be a non-connected reductive real Lie group. In this paper,
I parametrize the set of irreductible tempered characters of G. Afterwards,
I describe these characters by means of some “Kirillov’s formulas”, using the
descent method near each elliptic element in G.

If G is linear and connected, the parameters that I use are “final basic”
parameters in the sense of Knapp and Zuckerman (cf. [KZ 82 p. 453]).
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Introduction et notations générales

Dans cet article, je vais décrire par la méthode des orbites le dual tempéré
d’un groupe de Lie réel réductif, en m’appuyant sur les quatre travaux suivants:

— la description du dual tempéré d’un groupe de Lie réel réductif connexe par
J. Adams, D. Barbasch et D. Vogan dans [ABV 92, ch. 11];

— la paramétrisation par M. Duflo des classes d’équivalence des représentations
d’un groupe de Lie réel réductif qui sont tempérées irréductibles avec un caractére
infinitésimal régulier, obtenue via la « théorie de Mackey » dans [Duf 82al, I11|;

— la formule du caractére « a la Kirillov » de A. Bouaziz dans |[Bou 87], qui
exprime le caractére de ces représentations & l'aide des transformées de Fourier
d’orbites coadjointes semi-simples réguliéres;

— les formules de W. Rossmann dans [Ros 82| (ot « principal » se traduit par
« régulier », et « regular » par « semi-simple régulier ») qui relient les transformées
de Fourier des orbites réguliéres a celles des orbites semi-simples réguliéres.

Un théoréme de M. Duflo dans [Duf 82bl p. 189] rameéne la classification
des duaux unitaires des groupes linéaires algébriques réels a la classification des
duaux unitaires des groupes réductifs « presque algébriques a noyau fini ». Ce sont
donc ces groupes réductifs qui m’intéressent.

Hypothése. On se donne un groupe de Lie réel a base dénombrable G d’algébre
de Lie notée g, un groupe linéaire algébrique G défini sur R, et un morphisme de
groupes de Lie de G dans G(R) de noyau fini central dont 'image est ouverte pour
la topologie usuelle. Ainsi, tout élément de G (respectivement g ) a une « décom-
position de Jordan réelle » en composantes elliptique, positivement hyperbolique et
unipotente (respectivement composantes infinitésimalement elliptique, hyperbolique
et nilpotente) décrite dans [DV 93, haut p. 36 et lem. 31 p. 38]. On suppose que g
est réductive avec un centre formé d’éléments semi-simples.

M. Duflo a paramétré dans [Duf 82a, lem. 8 p. 173] une partie du dual
unitaire G de G (précisée ci-dessus), en termes d’orbites coadjointes semi-simples
réguliéres, en se ramenant par induction aux séries discrétes de certains sous-
groupes de G. Quand G est connexe, cette partie de G avait été décrite par
Harish-Chandra (cf. [Har 76, th. 1 p. 198]). Je paramétre ici dans le théoréme
(b) p.JL69] en termes d’orbites coadjointes réguliéres « généralisées », la partie
plus grosse de G , ¢égale au dual tempéré de GG, obtenue en remplacant au début de
I'induction les représentations des séries discrétes par les représentations limites
de séries discrétes. Quand G est connexe, mon énoncé reproduit une partie du
théoréme 11.14 de [ABV 92 p. 131] (voir aussi [Kna 86l th. 14.76 p. 598|) avec
I’apport suivant : I'égalité de deux représentations se traduit exactement par la
conjugaison sous G de couples de « bons parameétres » qui leur sont associés.

L’expression « bons parameétres » renvoie aux contraintes imposées a ces
paramétres. En voici le principe heuristique (cf. [Duf 82al, th. 1 p. 193] et [Duf 82bl,
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th. 19 p. 211]). Une représentation unitaire irréductible 7' de G sera paramétrée
dans les cas favorables par lorbite sous G d’un couple (X, 7). Le terme A doit
étre une sorte de forme linéaire dont la composante semi-simple [ correspond
au caractére % par lequel le centralisateur (Uge)® de G dans Ugc agit sur
I'espace des vecteurs C*° de l'espace de T (cf. (a)). Dans cet article, ce
premier paramétre est relié & une limite de série discréte dont 7' va en gros étre
une induite. Pour cette raison, il s’écrira sous la forme A = (A, F1), ou F+ est
une chambre de Weyl pour des racines imaginaires (cf. [Zuc 77, th. 5.7 p. 305]). Sa
« composante semi-simple » est la forme lin¢aire [ := A, en un sens compatible avec
les définitions concernant le cas des orbites coadjointes (cf. (a)). On note G(\)
le stabilisateur de X dans G. Le terme 7 doit étre une représentation projective
de G(N\)/G()N)o, remontée en une représentation unitaire d’un revétement de degré
2 de G(X), telle que d;7 = ilid et le caractére central de 7 prolonge celui
de T (cf. (b)). Dans cet article, ce second paramétre est une représentation
unitaire (peut-étre non irréductible) d’un analogue adéquat pour X du revétement
« de Duflo » du stabilisateur G(f) dans G d’un élément f de g*. En fait, mes
constructions utiliseront un couple de paramétres (X, a**), 7, ) au lieu de (X, 7), o
a*T est une certaine chambre de Weyl pour des racines restreintes, et 7, est une
représentation unitaire irréductible d’'un revétement de NG(;)(u*JF). Ce nouveau
couple de parametres satisfait encore les conditions décrites ci-dessus. Le couple
(A, 7) se réveélera étre « plus canonique » quand le caractére de T' aura été calculé,
mais il n’aura quun role secondaire. Les G-orbites de (X, a*t) et ((X,a*"),7.)
s'identifient respectivement a celles de A et ()\ 7). Dans I'énoncé des résultats
ci-dessous, je ferai intervenir 'ensemble X2¢ des couples (X, 7). Il sera défini plus
précisément dans la partie [I1 l en relation avec la notion de « caractére final » (cf.
(©).

Le résultat principal de cet article est le théoréme [10.9 p.[I73] qui décrit
le caractére des représentations tempérées T de G en terme de transformées de
Fourier des mesures canoniques sur certaines orbites coadjointes régulieres reliées
a un paramétre \ attaché a T'. Ces formules du caractére montrent la nécessité
d’adapter le point de vue « orbites nilpotentes » de la méthode des orbites en
oubliant I’aspect « orbite coadjointe » de G- \. Par exemple les orbites coadjointes
associées aux deux limites de la série discréte de SL(2,R), qui sont I'un ou l'autre
des deux demi-cones nilpotents ouverts, n’ont pas de point fixe sous 'action de la
« rotation » Ad*(9 ') (cf. remarque(3.3{(3)); elles doivent étre remplacées par les
ensembles des demi-droites incluses dans l'intérieur de leurs enveloppes convexes
respectives, au produit par i prés. On verra aussi dans la remarque que ce
nouveau point de vue permet de comprendre pourquoi certaines orbites nilpotentes
« admissibles » au sens de M. Duflo ne correspondent a aucune représentation.

Mes deux théorémes se résument comme suit (voir I'index des notations).

Résultats. Il existe une bijection « canonique » G-(X,7) — TfT de G\ X[
sur le dual tempéré de G. Elle est déterminée par des formules du type :

ko(X) tr T8 (eexp X) = > cg5 tr(e )BG 13 (X)

h¢ eG(e)\Gmg,eq( €)
tel que )\[ le (e)’rej
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ot (X, 7)€ X5 e décrit I'ensemble des éléments elliptiques de G,

X est un élément d’un certain voisinage V. de 0 dans g(e) tel que eexp X est
seni- simple régulier dans G (auquel cas X est semi-simple régulier dans g(e)),

¢ est un élément du revétement double G(X)3AN(rz+) (en posant X=(\Fh)

qui se projette sur ¢ = g~leg pour un g € G tel que N = g)\,
et, ke(X) et ¢z 5 sont certains nombres complexes non nuls.

Les idées qui m’ont permis d’obtenir ces résultats sont les suivantes. Les
constructions de M. Duflo reprises étape par étape vont fournir une bijection d’un
ensemble d’orbites sur le dual tempéré de GG, grace au lemme (b) p.. Pour
passer du cas connexe au cas non connexe, j’aurai besoin d’une généralisation d’un
résultat de D. Vogan utilisé par M. Duflo pour une construction homologique.
Celle-ci se trouve a la page 555 du livre [KV_95] de A. Knapp et D. Vogan. Au vu
du cas connexe (cf. [Ros 80, p. 64]), il est ensuite naturel de chercher a récupérer
les caractéres des représentations tempérées irréductibles par passage a la limite
a partir de ceux associés aux orbites semi-simples régulieres. Dans le cas non
connexe, le calcul du caractére des représentations se décomposera avant tout en
deux étapes dont la premiére est peu commode.

FEtape 1. On induit une représentation limite de la série discréte d'un sous-groupe
de G a la composante neutre de la composante de Levi M’ (en général hors de
la classe d’Harish-Chandra) d'un certain « sous-groupe parabolique » M'U de
G. L’analogue de cette représentation induite dans le cas connexe était seulement
une représentation limite de la série discréte de la composante de Levi M dun
sous-groupe parabolique cuspidal M AN de G. La méthode ici comme dans le
cas connexe, est d’appliquer le foncteur de translation de Zuckerman (adapté au
cas du groupe non connexe M’) pour se ramener aux représentations de M’ dont
on connait le caractére. Une difficulté est qu'on passe de M) a M’ avec une
étape homologique. Sur le conseil d’A. Bouaziz, je me suis inspiré des points (i)
et (ii) de la page 550 de son article [Bou 84| pour calculer I'action d’un groupe
M'(\)™/% dans un espace poids de 'homologie d’un Mgj-module translaté au sens
de G. Zuckerman.

Etape 2. On induit ensuite de M'U & G. Le terrain aura été préparé dans la
partie[[] par des rappels et compléments concernant des résultats de W. Rossmann
pour le calcul des limites de transformées de Fourier des mesures canoniques sur
des orbites semi-simples réguliéres. En particulier, dans la section 3] j'aurai mis
en évidence ce que donne le passage de G & G(e) au niveau des paramétres . Le
reste de cette étape consiste & utiliser les méthodes et résultats d’A. Bouaziz.

Les définitions et notations qui suivent vont me permettre, d’abord de
préciser mes conventions générales, et ensuite d’introduire les conventions relatives
aux groupes réductifs que j'utiliserai le plus fréquemment.

Conventions 1.  (a) On note |A]| le cardinal d’un ensemble A et a la classe
d’un élément a de A modulo une relation d’équivalence ~ sur A, f|g : B — C
la restriction d’une application f: B — C a une partie B’ de B, F I’adhérence
d’un sous-ensemble F' d’un espace topologique F (dans les sectionset , € la
complexifiée d’'une application R-linéaire I, w et W les conjugués d’un vecteur
w et d’'un sous-espace vectoriel W dans le complexifié Vi d’un espace vectoriel
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réel V' (dans les sections , , et , uy et ux/y les endomorphismes

induits sur Y et X/Y par un endomorphisme u d’un espace vectoriel X laissant
invariant un sous-espace vectoriel Y de X.

(b) Soient A un groupe de Lie réel & base dénombrable et a son algébre
de Lie. On note 1 I’élément neutre de A, Ay la composante neutre de A, expy
(ou exp) l'application exponentielle de a dans A, Ad" et ad® les représentations
coadjointes de A et de a, inta le sous-groupe du groupe linéaire de a engendré
par les éléments exp(ad X) quand X décrit a, Z(A) et D(A) le centre et le groupe
dérivé de A, Z(a) et D(a) le centre et I'algebre dérivée de a, Z(Uac) le centre de
I’algébre enveloppante Uac de ac, A le dual unitaire de A. A toute sous-algébre
de Lie b de a, on associe les sous-groupes de Lie

Ca(b) ={z € A| (Adz)|, =id} et Nu(b)={r € A|Adz.b C b}
de A, dont les algeébres de Lie sont

Ca(b) ={X €a|(adX)|, =0} et Ny(b)={X €aladX.bCb}.

(c) Soit M une variété C*° séparée a base dénombrable de dimension m.
Une densité C* sur M est une mesure de Radon complexe p sur M qui se lit dans
toute carte de M centrée en un point x sous la forme adx;---dx,,, ou a est une
fonction C'*° sur un voisinage ouvert de 0 dans R™. Elle « s’identifie » a la famille
formée des applications p(z) avec x € M qui envoient un élément de A™ T, M \{0}
d’image wy par la carte précédente, sur a(0) |(dzy A -+ A dz,,)(wo)|. Une fonction
généralisée sur M est une forme linéaire continue sur l'espace des densités C> a
support compact sur M, muni de la topologie de Schwartz.

(d) Soient A un groupe de Lie réel & base dénombrable et d4 une mesure
de Haar a gauche sur A. Une représentation continue 7" de A dans un espace de
Hilbert complexe est dite tragable si les opérateurs T'(pda) avec ¢ € CF(A)
sont tragables; dans ce cas tr7T : ¢ods — trT(¢das) est une fonction généralisée
sur A. Pour toute représentation unitaire continue 7 d’un sous-groupe fermé B
de A muni d’'une mesure de Haar a gauche dg, on note Indg 7 la représentation
unitaire de A « induite » & partir de 7 comme dans [B.._ 72, p. 99].

(e) Soit V' un espace vectoriel réel de dimension finie. La transformée de
Fourier d’une distribution tempérée p sur V* est la fonction généralisée i sur V

définie par 'égalité  pi(v) = / et'@dyu(l)  de fonctions généralisées en v € V.
V*

Conventions 2.  (a) On note Carg l'ensemble des sous-algébres de Cartan
de g. Soit h € Carg. On fixe un systéme de racines positives R (gc, bc) , arbi-
trairement (sauf indication contraire), dans 'ensemble R(gc,hc) des racines de
he dans gc.

On note W(G,H) le groupe fini Ng(h)/Ca(h), t et a les composantes
infinitésimalement elliptique et hyperbolique de b, hw)=it@ a, To = expt et
A =expa, pgp la demi-somme des éléments de R (gc, he), et H, la racine duale
d’une « dans le systéme de racines R(gc, bhc).

Une racine «a € R(gc, he) est dite complexe (respectivement réelle, imagi-

naire, ou compacte) quand sa conjuguée @: X € he — a(X) vérifie @ ¢ {a, —a}
(respectivement @ =, @ = —a, ou (CH, @ g¢ ® gc”) Ng ~ su(2)).

(b) On fixe une forme bilinéaire G-invariante non dégénérée ( , ) sur g
dont la complexifiée (encore notée ( , )) se restreint en un produit scalaire sur
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chaque hr), h € Carg. On note 1>’ la relation de ( , )-orthogonalité. Soient
r € G et X € g semi-simples. On note G(z) (resp. G(X)) et g(x) (resp. g(X))
les commutants de z (resp. X) dans G et g. Le G(x)-module g(z)* (resp. le
G(X)-module g(X)*) est canoniquement isomorphe par restriction a I’ensemble
g*(x) (resp. g*(X)) des éléments de g* fixes sous Ad* = (resp. annulés par ad* X),
c’est-a-dire nuls sur g(z)*"’ (resp. g(X)* ).

(c) Soit f € g*. On note G(f) le stabilisateur de f dans G et g(f) l'algébre
de Lie de G(f). Dans la mesure du possible, je désignerai par u, v, A = u+v,
et & les « composantes infinitésimalement elliptique, hyperbolique, semi-simple
et nilpotente de f » (notions issues de g a l'aide de (, )). On identifie g(\)* a

Pensemble des éléments de g* nuls sur g(A\)* .

(d) Soit m le commutant dans g d’un élément semi-simple X de g. Etant
données des mesures de Haar dg et dy, sur g et m, on pose pour tout f € m*:

Mom|(f) = 31 [(Bs [H’X]z)k(w)‘ x (digx1(0)(w)) " (cf. (b) et Conventions (c)),
avec k = $dim[g, X], By = f([-,"]), w € A*[g, X1\ {0}, et dig,x] = dg/dm-

Les autres notations utilisées dans les énoncés sont accessibles au moyen de
I'index des notations qui se trouve a la fin de cet article.

I. Les paramétres « forme linéaire »

La méthode des orbites, proposée initialement par A. Kirillov dans le cas
des groupes de Lie nilpotents simplement connexes, consiste a paramétrer les
représentations unitaires irréductibles d’un groupe de Lie a I’aide des orbites de sa
représentation coadjointe. Quand la représentation est tracable, son caractére au
voisinage de I’élément neutre doit étre relié a la transformée de Fourier (& supposer
qu’elle existe) de la mesure canonique sur l'orbite associée.

Une légeére modification de ce point de vue va étre nécessaire ici. A chaque
représentation tempérée irréductible de G sera associée une orbite €2 de G dans un
certain ensemble g%, autre que g*, et a cette orbite Q sera attachée une somme
finie de mesures canoniques sur des orbites coadjointes. En vue d’un prochain
article, j’introduis aussi ci-dessous des parties g5 et g%,. de gk, .

Je vais exploiter dans cette partie certains résultats de W. Rossmann.

1. Les paramétres Y= ﬁv’;‘,eg,g

On construit dans cette section un ensemble g%, muni d’'une action de G
dans lequel I'ensemble des A\ € g* semi-simples réguliéres s’injectera de maniére
G -équivariante.

Définition 1.1.  On note g, 'ensemble des f € g* régulieres (c’est-a-dire
I'ensemble des f € g* pour lesquelles la dimension de g(f) est égale au rang
de g), g, Uensemble des f € g* semi-simples et g7 . = g5, N g,

On note aussi g?,; (respectivement: g¥ ;. ) I'ensemble des A € g¥, telles que
g(A) a une sous-algebre de Cartan b pour laquelle les racines de (g(\)c, be) sont
imaginaires (respectivement : imaginaires non compactes).
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Soient A€ g%, et h € Carg(A). On note C(g(A),h) Pensemble des chambres
(ouvertes) dans b} pour les racines imaginaires de (g(A)c,be) et C(g(A), h)reg
I'ensemble des FTe C(g()N), h) telles que les racines imaginaires de (g(\)c, be) qui
sont simples relativement a F* sont non compactes.

Onpose oy = {(F7)iAegt, heCarg(h) et Foe Cla(N), by
et Grgc = {(A,f+) € Gy | VZ € Kerexpy, el ran)l?) = 1}

indépendamment du choix d’un systéme de racines positives R*(gc, hc) associé a
I'élément b de Carg()) attaché a F.
On pose aussi

iond = {()\, FT);  egh, heCarg(N) fondamentale et Fre C(g(N), h)reg}

et Gigonac = {)\Eg:s | VZ € Kerexpy, e ran)(?) = 1}
indépendamment du choix d’une h € Car g(\) fondamentale et d’un systéme de
racines positives R*(gc, bc), Oira = 05N Gisfondc €6 Gisineg = ssime ) Besfond.c -

On note ensuite g%, g%.., §hnac, 97¢ et G les images réciproques de
Grsr> Oteines Basfond. o Festc €6 Bhomneq PAT la premiére projection de g, dans gk, .

Remarque 1.2. (1) En appliquant [Ros 82, th. p. 217] a g(\) pour trois sous-
algébres de Cartan (une égale a b, une sans racine imaginaire, une fondamentale)
et tenant compte de [Ros 82| lem. A (a)=>(c) p. 220 et suppl. C p. 218|, on constate
que les images des applications canoniques de g“:eg et ﬁjﬁand dans g* sont formées
des A€ g, tels que g(\) a une sous-algebre de Cartan sans racine imaginaire.

(2) D’aprés [Kna 96l th. 6.74 p. 341 et th. 6.88 p. 344|, chaque algebre
de Lie semi-simple complexe a, & isomorphisme prés, une unique forme réelle gq
qui posséde une sous-algébre de Cartan hy pour laquelle le systéme de racines
R(goc, boc) a une base constituée de racines imaginaires non compactes. Compte
tenu de (1) ci-dessus (ou de [Kna 96, pb. 18 p. 369 et p. 557|), I'image de I’appli-
cation canonique de g% dans g* est formée des A€ g%, tels que chacun des idéaux
simples de g(A) est isomorphe a 'une des algébres de Lie suivantes:
su(p,p) avec p > 1 et su(p,p— 1) avec p > 2, so(p,p — 1) avec p > 3, sp(2n,R)
(notée sp(n,R) dans [Kna 96]) avec n > 3, so(p,p) avec p pair > 4 et so(p,p—2)
avec p pair > 6, EIl, EV, EVII, FI, G.

(3) La somme de deux racines imaginaires non compactes n’est jamais une
racine non compacte d’aprés [Kna 96, (6.99) p. 352|. Ainsi, g%, est formé des
A€ g* semi-simples telles que les idéaux simples de 'algeébre de Lie réductive g(\)
sont isomorphes a sl(2,R). .

A partir de certains parameétres enrichis (X, a*"), je vais construire canoni-
quement deux systémes de racines positives pour (gc,hc), qui auront les mémes
racines non complexes. Le systéme de racines positives R (gc, hc) est attaché a
une certaine forme linéaire réguliére A, . Il permettra, par des passages a la limite
(section et par une translation (section [13]), de construire dans la partie [[IL]
des représentations en se ramenant au cas d’un caractére infinitésimal régulier.
Le systéme de racines positives R;:a* . a pour sous-ensemble de racines complexes

a conjuguée négative, une partie invariante sous 'action du groupe G(\) défini
ci-dessous. Il interviendra dans la définition [5.5] (¢) et dans le lemme [0.3] (b). On
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verra dans le lemme une autre paramétrisation des classes de représentations
dans laquelle le paramétre (A, a*") sera remplacé par A, et le role de (R;\ra* i At)

sera tenu par un certain couple (R/f\r, Acan) déduit de X.

Définition 1.3.  Soient A€ g%, h € Carg(\) et FTe C(g(N),h). On note
et v (resp. t et a) les composantes infinitésimalement elliptique et hyperbolique
de A (resp. h). On pose A = (A, F1).

(a) On note G(\) le normalisateur de F* dans G(A) et g(\) son algebre
de Lie. On associe & A la demi-somme pr+ € it* des o € R(g(N)c,bc) imagi-
naires tels que FT(H,) C RT\{0}. (Ainsi bh est une sous-algebre de Cartan de
a(A\)(ipr+) sans racine imaginaire, et donc G - (\,ipz+) détermine G - \.)

On fixe pour la suite de cette définition une chambre a** de (g(\)(ipz+), a).

(b) On introduit le systéme de racines positives suivant :
R*(g(\)(ipr+)c, be) = { a € R(g(A)(ipr+)c, be) | @ (Ha) S RT\{0} }.

On fixe € > 0 assez petit pour que, en posant vy = V+€ pg\)(ip,4)h € @ 0N
ait: a-vy # vy pour tout automorphisme a du systéme de racines R(gc, hc) tel
que a-v # v. On choisit méme e de fagcon que la propriété précédente reste valable
quand on remplace € par te, t€]0,1]. On a donc: g(vy) = g(¥)(Pg(n)(ipys)h) -

On utilisera les systémes de racines positives suivants :
ip(Ha)=0

R*(g(v4)c, be) = {a € R(g(vy)c,be) | in(Hy) > 0 ou {et }

p]:+(HO<)>0

et R¥(gc, be) = {a € R(ge, be) | v+ (Ha) >0} U RF(g(v4)c, be)-
On pose iy = p1 — 2ipgu, ) €t et AL = pp+ vy
(donc R¥(g(v4)c, be) = { e € R(g(vi)c, be) | ipy (Ho) > 0}).

Dans certains cas on notera ;5 g+ s Hg 3 grt €6 Vg5 gt o POUr Ay, iy et vy

(c) On introduit ’ensemble
V(Ha)=0 A(Ha)=0
T = € €
R;\ = {a € R(gc, be) | v(Hy) >0 ou {i;(Ha)>0 ou {p;+(Ha)>0 }7

la demi-somme p,, des éléments de R;\r N R(g(v)c, be), et le systéme de racines
positives Ry .. = R U R (g(N)(ipr+)c, be) de R(ge, be)-

On pose fiean = b — 2pean € T et Aean = ean+ V
(donc en utilisant [KV 95, cor. 4.69 p. 271], on constate que g(Acn) = g(N)(ipF+)
et Ry N R(g(v)e,be) = {a € R(g(v)c, he) | iftean(Ha) > 0}).

Voici maintenant le lemme clef qui permettra de se ramener de g}, & g

ss reg”
Lemme 1.4. On se place dans les conditions de la définition précédente.
Soit t€]0,1]. On pose vy = v +te Pa(N(ipyrs)hs Ht = [ — 2Py, ) €t At = e 14

On a: g()\> = bi )\t e g:STeg et NG(S\)(a*+) = G(At) ‘

Donc G(Ay) = G(\) quand a** = a* (par ezemple quand X € g5 ).
Démonstration du lemme. Ona G(X) C Ng(h), donc g()) =b.

Par construction de €, on a g(v;) = g(V)(Pg\)Gp,4)0) = 8(v+). En outre,
ona iu(Ha) =ip(Ha)+2tpgw,yp(Ha) >0 pour tout o € R (g(vy)c, he). Donc
At €97 Un argument de continuité en ¢ permet d’en déduire que:

ssreg *
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ipt(Ha)>0
L'inclusion Ng5(a*") € G(N) est immeédiate. Soit g € G(\y).
Ona g-h=g-g(\) =h et (Adg)|, est un automorphisme du systeéme de racines
R(gc, be) tel que g-vy = v, done g-(vy—v) = (1, —v) puis g-vy = v,. Comme g
laisse stable R(g(vy)c, be) VRT(gc, be), ona: g- pgwi)p = Pgve)y PUS g-pn = p.
Ensuite, comme g laisse stable ’ensemble des racines imaginaires de R(g(\)c, he)N
R™(gc,bc), ona: g-Ft = F". Enfin, comme g laisse stable 'ensemble des «,
avec « € R(g(\)(ipz+)c, be) N R (g, be), ona: g-a*t =a*t. o

R+(g(C7 h(C) = {Oé € R(g(c7 h(C) Vt(Ha) <~ 0 ou {eI;t(Ha):O }

Le lemme qui suit expliquera pourquoi, dans certaines formules que j’écrirai
plus tard dans un autre article, et dans lesquelles apparaissent en facteur les valeurs
absolues de Pfaffiens }Hg,cgm(a)|, seuls interviennent les éléments de g7,;.

Pour rendre ces Pfaffiens plus accessibles au calcul, je précise d’abord une
formule de [DV 88| p. 301]. La forme bilinéaire ( , ) des conventions [2| (b) déter-
mine une mesure de Haar dy sur tout sous-espace vectoriel V' de g sur lequel
elle a une restriction non dégénérée, par la condition dy(0)(vy A -+ Awv,) =
\det((vi,vj))1§i7j§n|% pour toute base (v1,...,v,) de V. Soit h € Carg. On fixe
Ao = po + 1 € b* réguliére dans g*. On lui associe le systéme de racines positives

i _ vo(Ha)=0
i (ge.he) = { a € Rlge.be) | i) > 0ou {20770
On prend pour dy et dy les mesures de Haar sur g et h déduites de ¢ , ). Pour

tout A € b* et tout wy € A*[g, b]\{0} élément de Porientation 0(Byy)g/y (cf.
(b) et f.1] (a) de (8/b, Br,), on a

(*) & (Baligs) (o) x (dga(0)(wo)) =i [ o)
a€RY (gc,he)

avec k= 1dim[g, b, dgy = dg/dy et ng = |{a € R§(gc,be) | @ ¢ R (gc, be)},

en notant encore (, ) la forme bilinéaire sur h& duale de la restriction & he de ¢, ).

Lemme 1.5.  Soit fe€ g* de composantes infinitésimalement elliptique, hyper-
bolique, semi-simple et nilpotente u, v, A = p+v et £&. On firte h € Carg telle
que A € b*. On note a la composante hyperbolique de b.

*
Teg ”

(b) Ona Xegl, et heCarg(N) est fondamentale,
si et seulement si !Hg,cg(m(a)’()\) #0.

(@) On a f€gj, sietseulement si € g(A)

Démonstration du lemme. (a) Il est clair que l'égalité dimg(f) = rk g
équivaut a dim g(\)(&) =1k g(\).

(b) Pour tous X € h et X' € h* les sous-espaces vectoriels supplémentaires
g9,0(X)] = [g, X] et [g(X),b] C g(X) de [g,b] étant & la fois orthogonaux pour
By et pour (,), on a: |Hg,h|()‘/) = ’Hg,g(x)|()\’) x ‘Hg(x),h‘()\’). En choisissant
X € b tel que g(X) = Cy(y(a), on trouve d’aprés (*) que:

1
Mooyl = T [N a2,
a€R(gc,he)

Cela donne le résultat. ¢ R(Ca( (W)c-be)
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2. Les mesures (. 3

On va maintenant attacher a chaque orbite Qe G\g}., une mesure de
Radon f5 sur g* de facon que [, ; coincide avec la mesure canonique sur G-\

quand A € g% ., b=g()) et A= (], h(ﬂ{;)'

Définition 2.1.  Soient A€ gi,, h € Carg(\) et Fre C(g(N),h).
(a) On note A" = a*+ ", o t et a sont les composantes infinitésima-
lement elliptique et hyperbolique de b et F* s’écrit F+= a* +it*" avec t*T C t*.
(b) On note Supp,. (G- (A, F*)) laréunion dans gj,, des G-(w+{A}), ou
w décrit I'ensemble des orbites nilpotentes réguliéres de G(A) dans g(\)* incluses
dans I'adhérence de G(X) - A (cf. le lemme (a) et la remarque (1)).

La proposition suivante est donnée dans le but de faciliter 'utilisation de
la formule du caractére [10.2] Elle permettra aussi, dans certains cas, de passer
directement des caractéres des représentations aux parameétres associés (cf.[9.7)).

Proposition 2.2.  (a) L'ensemble G\gj,,q est en bijection avec G\gy,, par
Uapplication Rg qui envoie G- X sur Suppg.(G - A).

(b) Soient X € g%, h € Carg(\) et Fre C(g(N),h).
La partie Suppg.(G-(\, F*)) de gy, est la réunion des Ra(G-(\, F'™)) avee
b’ € Carg()\) fondamentale et F'* € C(g(N), 0 )rey vérifiant G(N)-pr+ NF'T # 0.

Démonstration de la proposition.  (a) Soit tout d’abord (X, F*) € gj,nq-
D’aprés |[Ros 82, th. p. 217 et suppl. A(b) p. 218| appliqué & Go()), il existe
une unique orbite nilpotente réguliere wy de Go(\) dans Go(X) - . L'ensemble
w = G(N)-wo est donc une orbite nilpotente régulicre de G(\) dans G(X) - A
Toute orbite nilpotente régulicre w’ de G(A) dans G(X) - A" coupe u-Go(N) - FF
pour un certain v € G(X), donc vérifie W' D u-wy puis W' = w.

Cela permet de définir R¢ .

On abandonne maintenant les notations du début de cette démonstration.

Soit f € gj,, de composantes semi-simple et nilpotente A et §.

On fixe h € Carg(\) fondamentale. D’aprés le lemme (a) et [Ros 82|
lem. A p. 220], on peut passer par une suite finie de transformations de Cayley
inverses (cf. [Ros 82l p. 218|) de b a une sous-algebre de Cartan de g(\) sans racine
imaginaire. D’aprés [Ros 82 suppl. A(a) et B et C p. 218, et th. p. 221], il existe
Fte C(g(N), b)reg unique a I'action de Ngyn)(h) prés pour lequel wy := Go(A)-€
est 'orbite nilpotente réguliere de Go(A) dans Go(A)-F . Ainsi, G-f est 'image
de G-(\, F*) par Rg.

Soit G-(N, F'") un antécédent de G- f par Rg. Ona F'* € C(g(N), 5 )reg
pour une certaine h’ € Carg()\') fondamentale. On note wj l'orbite nilpotente
réguliere de Go()\') dans Go()\’)-ﬁ]’,+. Vu le début de cette démonstration, il
existe ¢ € G tel que g€ € wj et gh = XN. Les sous-algébres de Cartan b et
g'h de g()\) étant fondamentales, il existe z € G()\)g tel que g7'h’ = zbh. Par
conséquent, wy qui est égal & g~ w] est aussi Uorbite nilpotente réguliere de Go(\)
dans Go(A)-z~1gLF ™. Dou: z7lg7t- (N, F'") € Ngyon(h)- (A, FF). 1l sensuit
que G-(\, F1) est I'unique antécédent de G- f par Rg.
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(b) Avec un argument du début de la démonstration du (a), on constate
que Suppg.(G - (A, FF)) est le saturé sous G de Supp,.(Go - (A, F1)). On est
donc ramené a prouver le (b) pour Gy avec A = 0. On se place dans ce cas.
On fixe une sous-algébre de Cartan fondamentale ' de g qui contient la forme
linéaire infinitésimalement elliptique —ipz+. On pose lp = —ipr+ dans ‘7:h+' On
va reprendre rapidement les idées de [Ros 82, proof of suppl. ¢ p. 228|.

D’apres [Var 77, th. 23 p. 50| et [Ros 82, (L1)< (L2) < (L3) p. 216], on a:

> Balp) = lim > fo(p) pour tout ¢ € C(g*),
t—0t
Q€ Go\ Suppyx (Go-(0,F 1)) QeLt
ol on utilise (2.5 (c) et pose Ly = lim Gy -I' dans Go\g;,, quand ¢ > 0.
l’e}‘h*mg:cg
U'—tlo
Par [Ros 82} lignes 2 & 9 p. 217|, application canonique de Go(lo)\g(lo)7.,
dans Go\g;,, se restreint en une bijection de lim Go(lp) - 1" sur L,
"eF*lo]lsNs(l0)feq
1" —tly

pour tout ¢ > 0, ou la limite est prise dans Go(lo)\g(lo)7., et F*[lo] est I'élément
de C(g(lp),h) contenant F.

Les racines de (g(lo)c, hc) sont non imaginaires et celles de (g(lo)c, bi:) sont
non réelles. D’aprés [Ros 82, suppl. € p. 218], on en déduit que:

lim GO lo A = lim GO lo 7
'eF T llolyNa(lo)7eq () . U V'eF * [lo]yrNa(lo)feq (o)
1" —tlo F'TeW(Go(lo),b")\E 1 sty

o £:={F*eCgh) |l e F} et F'M[lo] est Uélement de C(g(lo), )
contenant F'T. En outre, la réunion précédente est une réunion d’ensembles deux
a deux disjoints au vu de |[Ros 82, suppl. B p. 218|.

Les mesures de Radon fq avec Q € Go\gy,, (cf. (c)) sont linéairement
indépendantes. A I’aide de [Ros 82, th. p. 217], on trouve que Suppy- (Go - (0, F 7))
est réunion disjointe des Rg, (G - (0, F')) ot Frte W(Go(lp), 5)\C(g,b')req €t
pr+ € F't. Cela conduit au résultat. O

Définition 2.3.  (a) On note D, la fonction sur g dont la valeur en X € g
est le coefficient de 7" dans det(7id —ad X), ou r est le rang de g. Elle est
polynomiale et invariante sous Ad G'.

(b) On note g.,,, I'ensemble des X € g semi-simples tels que g(X) est
commutative. Donc g.,,., est I'ouvert dense de complémentaire négligeable de g
formé des points ott Dy ne s’annule pas (cf. [Var 77, (2) et lem. 1 p. 9]).

(c) Soit 2 € G\g*. On note fBq la mesure positive image sur g* de la

mesure de Liouville de la variété symplectique €2 (cf. [B.. 72, 2.6 p. 20]). C’est une
mesure de Radon sur g* (cf. [Ran 72, th. 2 p. 509]).

(d) Soit Qo € Gy \ @}, On pose fz = > Bay, -
Q0 € Go\ Supp,+ (Q)

(e) Soit Q€ G\giy- Onpose fSg= > g (cf ﬁn (a)).

Qo € Gy \ﬁ

Remarque 2.4. (1) Soit Q € G \ @}, D’aprés le début de la démonstration de

la proposition [2.2| (b), 'ensemble Supp,.(2) est la réunion des orbites 2 € G \g7,,
telles que [B5(€2) # 0.
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I1 découle aussi de la définition ci-dessus que (g = > ma, Bag
Qo € Go \Suppg* (ﬁ)

oll mgq, est le nombre (non nul) de Qo € Go\Q vérifiant Qy C Supp,- (o) -
En particulier:  fg = fp_ @, quand Qe G \Gjond-

(2) L’exemple de G égal au produit semi-direct de Z/27Z par SL(2,R)? ou
I’élément non trivial de Z/27Z opére sur SL(2,R)? par permutation des coordon-
nées, et de  de la forme G- (0, F1) pour une chambre F* associée a h € Car g ni

fondamentale ni déployée, montre que les coefficients mgq, du (1) ci-dessus peuvent
prendre des valeurs différentes de 1.

(3) D’apres (1) et (a), Papplication € — B est injective sur G \@%,,q-
Quand G = SL(3,R), les deux éléments Q de G \ %, de la forme G-(0, F ")

(dont I'un est dans G \g},,4) correspondent a une méme mesure [z, égale a la
mesure de Liouville de I'unique orbite nilpotente réguliére de G' dans g*. .

Voici un résultat bien connu. Comme le (b) ne me sera pas utile, je me
contente d’en donner une démonstration abrégée, suggérée par J.-Y. Charbonnel.

Proposition 2.5.  (a) La fonction |Dg|_1/2 est localement intégrable sur g.
(b) Les mesures de Radon Bo sur g* avec QeG\ g* sont tempérées.

(c) Soit Qe G\ g*. La fonction généralisée B\Q est (la classe modulo [’égalité
presque partout d’) une fonction localement intégrable sur g et analytique sur g., ., -

Démonstration de la proposition. (a) Cette premiére assertion est démon-
trée dans [Var 77, prop. 15 p. 66].

(b) On considére un groupe linéaire algébrique réel H. On note h son
algébre de Lie. On se donne une orbite coadjointe €2 de H dont la mesure de
Liouville 8q est une mesure de Radon sur h*. On reprend les arguments de [Cha 96),
3.2 p. 220]. Soient Wy un ouvert de P(h* x R) correspondant a la non-nullité d’une
coordonnée homogene, et U un ouvert relativement compact dans W, pour la
topologie usuelle. On construit une certaine fonction réguliére ¢ : U — R* \{0}.
Soit s € C. D’aprés [Cha 96, p. 217|, 'application qui & ¢ € C°(h* NU) associe
intégrale (holomorphe en s) [, ., ¢(1)* ¢(1) dBa(l) est continue pour la topologie
de S(h*). Il en résulte que la mesure S sur h* est tempérée.

(c) Voir [Var 77, prop. 13 p. 65, th. 17 p. 66, th. 28 p. 95, et bas p. 105]. O

La proposition suivante sera intéressante quand on voudra se ramener, par
passage a la limite ou par translation, a des formes linéaires semi-simples réguliéres.

Proposition 2.6.  Soient A € g%, h € Carg(\) et Fre C(g(N),h). On pose
A= (A, FT). On note a la composante hyperbolique de by, et se donne une chambre
" de (9(N)(ipF+), a).

(a) Les mesures positives PBg avec QEG\@W sont des mesures de Radon
tempérées. Soit ¢ € S(g*). On a

lim (W@ o)l Bex(p)) = {IW(G,b) Al Baxlp) st A€ Gy
NEF N8 0 sinon.
N =X
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En particulier  Bg5(p) = lim+ Baa (@) quand X € Treg (cf. .
t—0
(b) Pour tout X € g,,.,.,, on a en tenant compte de[2.5 (c)

NEFR N aley 0 Stnon.
A=A B
En particulier [ 5(X) = lim Baa(X) quand X € gi, (cf. .
t—0

Plus précisément, étant donnés j € Carg, y € int(gc) pour lequel jc = yhe,
un systéme de racines positives R*(gc,ic) de R(gc,ic), une composante conneze
[ de jN g, et une composante conneze h** de ]__+ N gy, a laquelle \ est
adhérent, il existe une famille (cw) de nombres complexes telle que, pour

tout X €', on ait
Z Co V) = H a(X) x Bayn(X) quand XN € bt

EW(9C7JC)

weW (gesic) a€RY (gc)jc)
et > N
Z c eiwyA(X) _ H a(X) x BGO-;\(X) st A€ greg
v a€R* (gcsic)
weW (gesic) 0 sinon.
Démonstration de la proposition.  (a) Soit ¢ € C°(g*) positive. D’aprés

[Ros 82, (L1)« (L2) < (L3) p. 216, lignes 9 & 12 p. 217, et th. p. 217|, on a
lim  Bgyn(p) = {5%.;(@) si A€ Gl

NeFR NGy 0 sinon.
A’—)A
On fixe une norme ||-|| sur g*. D’aprés [Var 77, (i) p. 40|, il existe N € N tel que

la famille formée des / (L+[11])™NdBa, (1) avec Q€ Go\gy,,, est bornée. On

S8 rey
g*

en déduit que B 5 est une mesure de Radon tempérée quand = gN’;eg, et que le
passage a la limite ci-dessus reste valable en remplagant la condition « ¢ € C°(g*)
positive » par « ¢ € S(g*) »

On obtient ensuite, pour tout ¢ € S(g*) :
. > Boyarlp) si Aeg
lim Z Baoan () = {a’:eG/Go o "

NEFR Nty

W HEG/Go 0 sinon.
On transforme d’abord la somme de gauche pour A" € F g,
_ _wenon ,
Z Baoax = 1G)Go/Gol Bax = [Cah)/Caq b)) Bew -
ZEEG/GQ

Par ailleurs, les chambres de (g())(ipz+),a) sont conjuguées sous Naa)ip,,)o(@)
et a fortiori sous Go(N), ce qui prouve que G(X) = Go(X) N¢ ;\)(a*+).
Quand \€ g?;eg, on a donc d’autre part a I'aide du lemme '

W (G.b)(A
Z Bagar = [6NGo/Go| Bs = H—+| Baa-

|Ca(h)/Caq (b)
z€G/Go
Cela fournit (a).

(b) L’avant derniére égalité de cet énoncé est extraite de [Var 77, th. 4
p. 108|. Elle montre que fg,.» converge simplement sur g,,,, vers une fonction
Go-invariante continue quand X — X avec N € h**. Soit ¢ € C®(g.,,.,). D’aprés
la démonstration de (a), on a
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lim Bon (X) 1h(X) dg(X) = {%O.xw dg) si A€ gy,
)\),\/eh*):L Jss reg O Sinon.
N

Compte tenu des majorations |c,, ¥ )| <'|¢,| de [Var 77, th. 7 p. 111],
on voit que les fonctions Gy-invariantes |Dg|1/ %y BGO.,\/ SUr g,,., avec N € h*
sont uniformément bornées. La proposition (a) permet donc d’appliquer le
théoréme de convergence dominée de Lebesgue dans le passage a la limite ci-dessus.
D’ou la derniére égalité de I’énoncé.

Le passage de G a G se fait comme dans la démonstration du (a). i

3. Points fixés par un élément elliptique

On se donne un élément elliptique e de G.

L’algebre de Lie g(e) est réductive car g(e)c a pour forme réelle ¢(e), ou
¢ est algeébre de Lie d’un sous-groupe compact maximal de G(C) qui contient la
projection dans G(R) de I’élément e de G. De plus toute sous-algébre de Cartan
h. de g(e) coupe g...,.,, ce qui signifie que le commutant b de b, dans g est une
sous-algeébre de Cartan de g (cf. [Bou 87, lem. 1.4.1 p. 6]). Par conséquent G(e)
vérifie 'hypothése de I'introduction portant sur G (cf. [DV 93| bas p. 38]).

lgéﬁnition 3.1.  Onnote g, (e) (respectivement ﬁ’i(e),ﬁvg’jmﬁe), ﬁj@oy(e) et
O5es(€)) I'ensemble des éléments de g, (respectivement g%, g%,., Gjona €t Gre,) qui
sont fixes sous l'action de e.

Parmi les résultats du lemme qui suit, seul le point (a) est important. Le
point (b) sera utilisé dans la remarque et le point (c) dans un article ultérieur.

Lemme 3.2.  Soient A € g, h € Carg(\) de composantes infinitésimalement
elliptique et hyperbolique t et a, et Fte C(g(N),h) tels que e five X = (A, FT).
On suppose qu’il existe une chambre a** de (g(\)(ipz+),a) stable par e.
(@) On a X € g(e)i,, hle) € Carg(e)(N), et Uélément pr+ de he) ) est
réqulier pour les racines imaginaires de (g(e)(N)c, b(e)c).
N On note par définition F*[e] Uélément de C(g(e)(A),h(e)) contenant pr+ et
ANe] = (N, Fe]). (On dira que « Ne] existe » quand e stabilise une chambre a**.)
(b) Il existe ey € eexpt(e) tel que: si F'7e C(g(N),h) et pr € .7:+[eo]

alors F'Y=F*. Quand X\ € g5 on peut méme choisir eq tel que )\[eo] € g(eg)

(c) On suppose que A\ € g5. Le cardinal de l'ensemble des X e gi(e)
vérifiant /\[ | =Xe] est égal a |W(*(’é€25c(fgcc)fh?:)5|)|, ot W(g(N)c,bc)(Ad"e) désigne
le commutant de (Ad*e®)y. dans W(g(N)c, be).

Démonstration du lemme. (a) D’apreés le lemme[1.4 on a: Ay € g(e)?,,,,
puis h(e) =g(e)(Ay) € Carg(e)(N). Soit o € R(g(e)(N)c, h(e)c) imaginaire. Il
existe a € R(g(N)c,be) tel que o = ape)..- On a: (v, ) = (vy,a) =0 et
(pr+,a) = (pr+,a’). Donc {(pr+,a’) # 0, car R*(g(u+)(c, Hc) est un systéme de
racines positives.

(b) Soit B la base de R(Cy(a)(N)c, he) associée & F. Pour chaque a€ B,
on note mg le cardinal de 'orbite & de « sous l'action dans B du sous-groupe
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(e) de G engendré par e, et on choisit t; € R tel que ((Ad ec)md)gg = eltaid.
On prend ey = eexp(Xy), ot Xy est 'unique élément de he N D(Cy(a) (A)¢) tel
que «(Xp) = —its/ms pour tout a€ B. Il est clair que X[eg] existe.

Chaque o (). avec a € B est un poids de h(e)c dans g(eg)c dont I'espace propre
contient (1 +eg+---+eg™ 1) - g&. Soit F'" € C(g()),h) tel que prr € Ftleo],
(donc egF'" = f’+) Pour tout a € B on a: (pr+,qpe)) = (pre a) > 0 et
(10 = {7t s done la xacine g, de R(Ciep (a(e)) Ve, e)e) et
positive relativement a F*[eg] et ensuite (pf,+, a) >0.Dou F'*=F*.

On suppose maintenant que A € g5. Toute racine de (g(eo)(N)c, h(e)c) est
restriction d'une racine de (g(\)c, he). Les racines o = ajpe). avec & € (e)\B
décrivent donc lorsque & varie (de fagon injective car dim g(eg)® = 1) I'ensemble
des racines simples relativement a F*[eg] dans R(g(eg)(N)c, h(e)c). Ces racines o/
sont non compactes car a([-,~]) est positive sur le sous-espace vectoriel g(eg)%

de la somme directe orthogonale g @ eqgd & -+ @ eg™ g2,

(c) L’application 7, : W(g(N)c, be) - pr+ Nh(e)g — C(g(e)(N), b(e)) quia
une forme linéaire associe la chambre qui la contient, commute & ’action du groupe
W(g(e)(Mc,b(e)c). Les groupes W (g(A)c, be)(Ad"e) et W(g(e)(A)e, ble)c)
opérent simplement transitivement respectivement sur les ensembles de départ et

[W (g(M)c,he)(Ad* e)]
d’arrivée de 7. Les fibres de 7. ont donc un cardinal égal a W)@ h@n) -

L'ensemble des \ = (X F'T) € gie) tels que /\[ ] = Xe], dont les éléments

vérifient N = X et g()\) = Cg(g(e)(:\q[e})) = b, est en bijection avec 7, ({F*[e]})
par 'application (N, F'") + 7 *(F'"). Cela permet de calculer son cardinal. 0O

*

Remarque 3.3. (1) Il peut arriver quun A € gi(e ) vérifie ] ¢ g/(;)/l.
(Cependant la condition A € @,.(¢) implique Ae] € g( )ine-) Par exemple :
G = Sp(4,R), A= (0,FT") tel que h:=g(\) est égale a sa composante infinitési-
malement elliptique et le systéme de racines positives de (gc, hc) associé a FT
s’écrit { oy, a9, 1 + az, 201 + ap } avec pour seule racine compacte a; + ay. En
prenant e = exp E o E € h est déterminé par «;(E) = —as(E) = i, Palgébre
de Lie g(e) est ici isomorphe & u(2) et donc C(g(e), h(e))reg = 0.

(2) On peut aussi trouver des . € g(e )Teg qui ne sont pas de la forme Ae]

pour un )\Egreg( e). Par exemple: G = SU(2), e= ({7!) et Xe = (0,i50(2)%).

(3) Pour~certains X € @hona(e) il n'existe pas de f € g, (e) tel que
G- f=Rg(G-\). Cest le cas, avec G = SL(2,R) et e= ({7'), des éléments
de g%,,q(e) dela forme (0, F") tels que F*Ciso(2)" .

II. Les paramétres « représentation projective »
Les paramétres de cette partie sont calqués sur ceux introduits par M. Duflo,

qui étaient adaptés au cas des orbites coadjointes semi-simples réguliéres de G'.

4. Rappels sur les groupes spécial-métalinéaire et métaplectique

Ma référence concernant le groupe métaplectique et les fonctions orientation
de M. Duflo et M. Vergne qui lui sont attachées, est leur article [DV 93]. Je choisis
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comme eux d’éviter I'utilisation du caractére de la représentation métaplectique
en suivant le point de vue de [Ver 94, conjecture p. 291] (au signe de la forme
symplectique sur les orbites coadjointes prés).

Définition 4.1.  On considére un R-espace vectoriel V' de dimension finie.

(a) Onnote DL(V) — SL(V) «le » revétement double de SL(V'), unique
a isomorphisme de revétements prés, qui est connexe quand dim V' > 2. (Le (b) ci-
dessous fournira une description canonique d’un tel revétement, comme ensemble
de couples formés d'un élément de SL(V') et d’une orientation d'un certain sous-
espace vectoriel de V)

(b) Soit @ € DL(V') au-dessus d'un a € SL(V) elliptique.
Quand dimV > 2, on note

0(@)a—ayv = (—1) ™72 sg(sin(Z) .. sin(%)) x RT\{0} (wy A~ Awy),
ou « sg » représente la fonction signe sur R\{0}, indépendamment du choix d’un
A € sl(V) infinitésimalement elliptique tel que a = expp)A, et d’'une base
(V1,. .., Ugp, W1, ..., wy) de A -V dans laquelle la matrice de la restriction de A

est de la forme ( o *gl)

(**) ‘.(aop_gp)

avec ai,...,q, € 2nZ\{0} et fBi,...,0, € R\27Z.

Quand dimV <1, o(a)qey vaut R* \{0} ou R~ \ {0} suivant que a est
trivial ou non.

(c) Soit A € sl(V) infinitésimalement elliptique. On note

(’)(A)A.V = Sg(ﬁl ce ﬁq) X R+ \{0} (w1 VANCEIVAN ’LUQq),
indépendamment du choix d’'une base (wy,...,wy,) de A -V dans laquelle la
matrice de la restriction de A est de la forme

. - m)

Définition 4.2.  On considére un R-espace vectoriel V' de dimension finie muni
d’une forme bilinéaire B alternée non dégénérée. On désigne encore par B le
prolongement bilinéaire complexe de cette forme bilinéaire a V.

(a) On note Mp(V) l'image réciproque de Sp(V') dans DL(V).

(b) On note o(B)y Vorientation de V sur laquelle Bz 4™V est positive.
On appelle « base symplectique » de (V, B) toute base (Py, ..., P,,Q1,...,Q,) de
V telle que B(P;, P;) = B(Q;,Q;) =0 et B(P;,Q;) = d;; (symbole de Kronecker)
pour 1 <4, 5 <n.

avec [1,...,0, € R\{0}.

(c) On appelle « lagrangien » de (V¢, B) tout sous-espace vectoriel de V¢
égal a son orthogonal pour B. On appelle « lagrangien positif » de (V¢, B) tout
lagrangien de (Vi, B) sur lequel la forme sesquilinéaire hermitienne (v, w) —
i B(v,w) est positive.
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Soit £ un lagrangien de (V¢, B). On note Mp(V), le normalisateur de £
dans Mp(V). A chaque #€ Mp(V), au-dessus d'un élément 2 de Sp(V), on as-
socie le nombre n,(z) de valeurs propres comptées avec multiplicité dans |1, 00|
de la restriction de 2 & L, et le nombre q.(x) de composantes strictement né-
gatives dans la matrice de la forme sesquilinéaire hermitienne (v, w) +— i B(v, W)
sur (1 — %) - £ relativement & une base orthogonale.

(d) Soit L un lagrangien de (Vi, B). Pour tout & € Mp(V), de compo-
sante elliptique Z. (au sens de [DV 93, lem. 31 p. 38]) au-dessus d’'un élément x
de Sp(V) de composante elliptique z., on pose

5 o Ze —ze)- i
pr() = (—1)1e(ze) W I (Vree®),

)(1—we)-V
1<k<n

ou rie ..,rmel% sont les valeurs propres comptées avec multiplicité de la
restriction de x€a L, avec 1,...,r, € RT\{0} et 0y,...,0, € ]-2m,0].

(e) Soit z € Mp(V) de composante elliptique Z. au-dessus d'un élément

semi-simple x de Sp(V) de Composante elliptique z.. On pose
5@ = Gty 11 @
1<k<n

indépendamment (compte tenu de la démonstration du (c) de la proposition ci-
dessous) du choix d'un FE € sp(V) infinitésimalement elliptique tel que z, =
expgpv) 5 et d'une base symplectique (P, ..., Py, Q1,...,Qy) de (V,B) pour
laquelle la matrice de F relativement a (P, @1, ..., P,,@,) est de la forme

((_%19&>'-~<_%q95))

(f) Soit & € Mp(V) de composante elliptique Z. au-dessus d'un élément
semi-simple x de Sp(V') de composante elliptique Z.. On pose

. O(@e) (1-5e)-v :—1L dim(1—ze)
§(@) = Gy Y (et (1 2),

1&

avec Oq,...,0, € |—2m,0].

‘—1/2.
(1-z)-V

On va maintenant voir, comme le sous-entend M. Vergne dans [Ver 94,
prop. p. 289] (avec la représentation de Weil contragrédiente de celle utilisée dans
[DHV 84|, déduite de celle de [DHV 84| en remplacant au choix B par —B ou
le caractére central du groupe de Heisenberg par son conjugué), que les fonctions
que je viens d’introduire dans les points (d), (e), (f) sont les fonctions p. et § de
[Duf 82a] et la fonction ® de [DHV 84].

Proposition 4.3. On considere un R-espace vectoriel V' de dimension finie
munt d’une forme bilinéaire B alternée non dégénérée.

(a) Le revétement Mp(V') — Sp(V') est connexe quand V # {0}.

(b) Soit L un lagrangien de (Vi, B). La fonction pe est un morphisme de
groupes de Lie de Mp(V), dans C\{0} tel que dipy = & tr(-)z. Pour tout
T € Mp(V), au-dessus d’un élément semi-simple x de Sp(V'), on a

(b(j) _ (_1)”L(I)+QL(€E) pg([fﬁ) (det (1 _ xc)(l,xc).g)il'

(c) Soit 2 € Mp(V) au-dessus d'un x € Sp(V) de composante ellip-

tique .. Il existe un lagrangien positif de (V¢, B) stable par x€. Pour tout la-

grangien L de (Vg, B) stable par x©, on a
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pe(@) lpe(@)™ = 6@) ] =%
2€Sp(ze)
ot Sp(z.) est le spectre de z. et, pour chaque z € Sp(x.), (p.,q.) est la signature
de la forme sesquilinéaire hermitienne (v, w)+—1B(v,W) sur le sous-espace propre
de (x5) associé a z.

Démonstration de la proposition.  (a) On suppose que V' est non nul. Soit
(Pr,.... Py, Q1,...,Q,) une base symplectique de (V,B). On note Ts, le tore
maximal de Sp(V) formé des endomorphismes de V' dont les matrices dans la
base (P, @1, ..., P,,Q,) sont diagonales par blocs avec des blocs dans SO(2), et
t son algebre de Lie. Le tore Ty, 1= expy,)t est un tore maximal de DL(V).

On choisit un élément A de Kerexpy, tel que o(expppnyA4)gy = R™\{0}
(il en existe). Le chemin ¢ € [0,1] — expy,, (tA) joint dans Mp(V) les deux
points du noyau du morphisme de groupes canonique de Mp(V') dans Sp(V').

(b) Soit & € Mp(V), au-dessus d'un élément semi-simple = de Sp(V') de
composante elliptique z..

On note p, le morphisme de groupes de Lie de Mp(V'), dans C\{0} défini
dans [Duf 84, p. 107]. D’aprés [Duf 84, (10) p. 108|, on a

Pe(@)] = |det(@®)e]"* = lpc(@)] et dipe = § tr(-©)c.

Ces égalités permettent de prouver, compte tenu de [DV_ 93| fin du lemme 30
p. 37|, que les applications p; et p; commutent aux prises de composantes
elliptique, positivement hyperbolique et unipotente sur les groupes Mp(V), et
GL(C), et ont mémes restrictions aux parties de Mp(V), formées de ses éléments
positivement hypfrboliques ou de ses éléments unipotents.

On note @ la fonction (indépendante de L£) de l'ensemble des éléments
semi-simples de Mp(V) dans C\{0} définie dans [DHV 84| p. 102|. Elle s’écrit

Ef)(j) — (_1)nc(x)+qg(x) 5L<1ﬁ) (det (1 _ xc)(l,xc)_g)il'
En outre, 'application v — B(v,.) de (1—2%)-V¢ /(1—2%)-£ dans ((1-2%)-L£)*
est une bijection linéaire qui commute a ’action de 1—x. Il s’ensuit que

[@(3)] = [ det (1 —2),_, ., |72 = |2()].

Pour montrer que ® = & (respectivement p, = p, ), vu [Duf 84, (9) p. 108]
il reste a prouver que ®/|®| et ®/|P| (respectivement p, et p,) coincident en
un des deux points de Mp(V') situés au-dessus de = (respectivement de x.).

(1-2).

On note V* (respectivement V) le sous-espace propre de x (respective-
ment 2*) associé & une valeur propre z € R\ {0} (respectivement z € C\{0}),
et 17 la relation de B-orthogonalité. On considére maintenant une valeur propre
z € C\{0} de € telle que Imz > 0 et |z| > 1. On va lui associer une certaine
base symplectique B, de ((VZ+VE +VE+VE )NV, B).

Si z€R et |z] > 1:quand |z| =1, on fixe une base symplectique B, =
(PY,...,P%, QY,...,Q%) de V*; quand |z| > 1, on fixe une base (P,...,P%)
de V*, et en déduit une unique base symplectique B, = (Py,..., P%,QY, ..., Q%)
de V2@ V=" telle que Q,...,Q% € V=" car V7 et V= ' sont en dualité avec
VEEVE et VEPVE

Si Imz > 0 et |z] > 1: on fixe une base (Pi+iP,, ..., Py,_1+1Ps,)
de VZ telle que Py,..., P, € V; on en déduit une unique base symplectique
(P4 iPy, ..., Poyy +iPop, Q1 —iQs, ..., Qon_1 — 1Q,) de VZ @ VZ ' muni de
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B/2 telle que Q1 —iQs, ..., Qan1—iQom € V& ' et Q1,..., Qs € V, car V§ et
V&' sont en dualité avec VZ1PVZ et VE 1PVZ ' puis on obtient la base
symplectique B, := (Pi,..., Py, Q1,...,Q2,) de (VESVE @ VESVE )NV,
car VELPVE, VE T LBVE et VELPVE

Si Imz >0 et |z| =1: on fixe une base (P/+iQ}, ..., P,+iQ,, P'=iQf,
o P —iQ7) de VE telle que P, Q4 ..., P, Q, P/,Q7,...,P/,Q; € V, dans
laquelle la forme sesquilinéaire hermitienne non dégénérée (v, w) — iB/2(v,W) a

pour matrice (15’ _OI ) ; elle fournit la base symplectique B, := (P[,..., B, P{,...,
P

PQY,...,Q,, Q1 ...,Q) de (Vi@ VE)NV,car VEIPVE et VEIPVE.

On constate que le sous-espace vectoriel L (respectivement LF ) de V¢
engendré par les différents vecteurs Pp,...,P%, ou, Pi,..., P, ou, P|+iQ,

L P +iQ, PY+i1QY, . .., P/ +iQy (respectivement PP +iQY, ..., P%+iQ%, ou,

Pi+iQ1, . .., Pop+iQ2n, ou, P{+iQ), ..., P +iQ,, P’ +iQY, ..., P/+iQ; ) lorsque
z varie, est un lagrangien positif de (Vg, B) stable par 2 (respectivement z.°).

On note E (respectivement H ) I’élément de sp(V') stabilisant les espaces
vectoriels (VG 4+ VE +VE+VZE )NV avec z = rel?, r > 1, =21 < 0 < 0,
et dont la restriction & un tel espace a dans la base B, une matrice diagonale par
blocs dont les blocs sont les matrices

(%8) (vesp. (mr 9 )) relativement & (P2, QY),

06 Inr
_9 1 . N
ou, < 0 0 _09) (resp. ( nr o ) ) relativement & (Pog_1, Pog, Qox—1, —Qax),
—Inr

ou, (99) (resp. (§9)) relativement a (P}, @) et (97) (vesp. (§§)) relativement
A (PG,

Les éléments &g g = expy,) B expyp)H et g = expy,nnE de Mp(V)
sont respectivement au-dessus de z et z.. D’aprés [Duf 84 (15) p. 109], on a:

Pct . ~ Ltr(EC)
(Tpm) = Pc;e(eXpMp(V)E) = e’ “e.

ﬁc;‘
D’ou les égalités suivantes, qui permettent d’obtenir le résultat :
&/) A n .4+ (z) 1 tr(EC) 4 det (1-2%) . ¢ 4 -1 d
—_ — _1 ,Cj 2 Lze (—z)Ly — e e —m ——
|CI)‘ (xE,H> ( ) € ’det (1_$C)(171C>A£j’ ’(I)’ (xE7H)
- . o det (1—exp EC) | ). )
et elin)= (—1)el) L (ip) i eI (i)

|det (1—exp E(C)(liexp EC)-£| B

||

(c) L’existence d'un lagrangien positif de (V¢, B) stable par 2* est démon-
trée dans [B.. 72, cor. p. 82]. On suppose V non nul et note Z. la composante
elliptique de @. Par définition §(2) est égal & po(ptiQ)+-+C(Pution)(Ze), avec les
notations de[d.2] (e). L'égalité [Duf 84, (15) p. 109] prouve que ce nombre complexe
est indépendant du choix de (Py,..., P, Q1,...,Qy)-

On se donne un lagrangien £ de (Vg, B) stable par € et un supplémen-
taire S de £N L dans £ qui est stable par L. On note W le sous-espace
symplectique de (V, B) égal & l'orthogonal de S +S dans V. On fixe une base
(PY,...,P%, PR ..., PR dulagrangien £NL de (Wg, B), formée de vecteurs

de V, telle que Pp,...,P% sont des vecteurs propres de z. associés a des va-
leurs propres réelles et PR+iPy, ..., PX | +iPxX  sont des vecteurs propres de
C

xe  associés a des valeurs propres non réelles. Elle se compléte en une base sym-
plectique (PP, ..., P% P&, ..., Py, QY ...,Q%,2Q%,...,2Q5,) de (W,B) telle

n0>
que QY,...,Q% et QF+iQ%,....Q5, +iQ%, sont des vecteurs propres de x.°.
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En effet, on peut construire (QF, ..., Q3,) par récurrence sur m= 1 dim(z—1)-W,

en associant au vecteur P := Py 1+1P]R de (22—1)-(LNL) un vecteur propre

Q=0Q% | —iQ% de zL avec Q% Q% € (22 —1)-W tel que B(P,Q) = 1
et B(Q,Q) = 0 (cette derniére égalité se réalise en remplagant Q par Q —
1B(Q,Q) P). On fixe aussi une base (PHQY,. . P’+1Q iQ, ..., P/HQy) de
S formée de vecteurs propres de x.L avec P!, Q.. P’ P1” Q1. P,Qy €

V, dans laquelle la forme sesquilinéaire hermltlenne non dégénérée xC-invariante

(v,w) — iB/2 (v, w) a pour matrice (Ig _OIP> :

La base de L constituée des vecteurs propres Plo7 .. P,?o, PF—HP&Q,P{R—iPSQ,
L PR PR PR —iPX et PHiQY, .. P’+1Q’ —i .. ,Pé’—iQ;’ de z°
fournit une expression pour p,(Z.). On calcule d(z ) a 1 alde de la base symplec-
tique (Plo,.. Pgo,Pfr,.. P;;n,P{,...,PIQ,P{’,...,Pq”, 0. 20, 5,08
ey ,...,Q”) e (V,B),
ou sz 1+1Q2k 1= (P 2% — 1+?RP§;) + 1(Q2k 1+1Q]§k)
et Py —iQy, = —i(Py_y+iPy) — (Q3_, +iQ%) pour 1 <k <m.
On en déduit facilement le résultat. |

5. Les paramétres T € XI4(X)

Dans les deux sections qui suivent, on se donne X = (A, FF) € ghy- On

pose h = g(A ) On note a la composante hyperbolique de § et fixe une chambre
a** de (g(A\)(ipF+),a). On note aussi p et v les composantes infinitésimalement
elliptique et hyperbolique de \.

Afin de fournir une paramétrisation canonique d’un sous-ensemble de G
qui permette de donner une description de la formule de Plancherel, M. Duflo a
introduit les objets du (a) de la définition ci-dessous. Quand X\ € g7, , ces objets
seront compatibles avec les miens, car on pourra prendre ¢ € [0, 1] en posant A\g=A\

dans le lemme , et on aura XZ4(X) = X"(\) dans la définition [5.5( (c).

Définition 5.1.  (a) Soit f € g*. On note

By la forme bilinéaire alternée non dégénérée (X,Y) — f([X,Y]) sur g/g(f),
G(f)9/3) le sous-groupe de Lie de G(f) x DL(g/g( ) formé des couples (z,a)
tels que (Ad x)g/g(f) est I'image de @ dans SL(g/g(f)) (cf. .3 (a)

{1,} et G(f )g/g les images réciproques de {1} et G(f)o par le morphisme de
groupes de Lie surjectif canonique de G(f)%9) dans G(f),

XZ7(f) Densemble fini des classes d’isomorphisme de représentations unitaires
irréductibles 7 de G(f)¥9) telles que 7(1) = —id et T(exp X) = X id pour
X eg(f) (dans ce cas 7 est de dimension finie).

(b) On note G(X)¥8M G #+) I'image réciproque de G(A) dans G(Aggn)®/8Peen)
On posera aussi G()\)g/h— G()\+)g/b (cf. GN)o=G(Ay)o et g(Ay) =h).

Lorsque a*t =a*, ona g(\)(ipr+) =h et G(A) = G(\;), et on notera
dans ce cas G(A\)?" pour désigner G(A)9ANGxE) of G(A, )9/,

Dans la suite, on identifiera les fonctions complexes sur G(A;) aux fonc-
tions complexes sur le revétement G(A;)¥" qui sont constantes sur les fibres.
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Lemme 5.2.  On fize un réel t € |0,1]. On utilise les systémes de racines

positives de la définition[1.3 (b) et la notation N, du lemme[1.4]

On pose Ly, =bc®d >, g2 et, m'=g(vy) en anticipant sur la partie |[[11.
acR* (gc;he)

(a) Ona G(\)Y" = G(A)¥Y et Ly, /b est un lagrangien de (gc/bc, By,)
stable par G(N\). La fonction complexe 5§{b sur G(A\y )Y et le morphisme de

groupes de Lie p%h de G(\;)¥" dans C\{0} qu’on en déduit (cf. (e) et
(b)) sont indépendants de t, et donc respectivement égauzx (5§/h et py ",
+ +

On a dlp’f\ﬁh = Pa,p -

(b) Soit ¢ € G(\)*Y au-dessus d’un élément elliptique e de G(\y). On a
piﬁ’(é) = (5?\/:]((%) x det (Ade®) S g X H (=)™ g
o’ €R} (gc,he) O(eN\R (mfhe)
ot Rj(gc,be) est Uensemble des o € RY(gc,bc) compactes, RE(mE,be) est
l’enseméle des classes des B € R (m{, he) complexes modylo Z’idgntiﬁcation de 3
avec —f3, et, pour chaque orbite O d'un élément {3,—B} de R{(mp,he) sous
Paction du sous-groupe {(e) de G engendré par e, on note me le cardinal de O et
ue unique valeur propre de (Ade®)™o associée a un vecteur propre qui s’écrive
Xpg—X_g pour au moins un Xg € gg etun X_g € g(Eﬁ vérifiant [Xp, X_p] = Hp.

Démonstration du lemme.  (a) La premiére égalité provient du lemme [1.4]
Il est immeédiat que Ly,/bc est un lagrangien de (gc/be, By,) stable par G(\).

On note ¢, la forme sesquilinéaire hermitienne (v,w) — iB,,(v,w) sur
(g/h)c. On va se servir des notations de I’énoncé du (b). L’espace vectoriel Ly, /bc
est somme directe des projections des espaces vectoriels suivants qui sont deux a
deux orthogonales pour ¢; avec une signature de forme hermitienne restreinte
précisée entre parenthése: les g& avec o/ € R} (gc, be) (signature (0,1)), les g&"
avec o € R¥(gc, bc) imaginaire non compacte (signature (1,0)), les gt @ gz’
avec {8,—fB} € RE(mp, be) (signature (1,1)), et les g avec v€ R*(gc, he) hors
de RT(mg,be) (signature (0,0)).

Soit e un élément elliptique de G(A;). Par ce qui précede, la forme ses-
quilinéaire hermitienne ¢; est non dégénérée sur (L5, Nmg)/he et nulle sur son
orthogonal. De plus, (L), N mg)/be est somme directe orthogonale pour ¢; de
I'image et du noyau de 1 — Ade®. Donc la restriction de ¢; & chacun d’entre eux
est non dégénérée. Un argument de continuité prouve ensuite que les signatures de
ces restrictions, et a fortiori qc,, (e), sont indépendants de t. De méme, 'orienta-

tion o(B),)(1-Ade)-(g/5) st indépendante de t. Cela peut étre précisé comme dans

la preuve de On utilise ensuite la définition [4.2 (d) et la proposition 4.3 (c).

La formule pour d; ,oi/+ " se déduit de la proposition (b).

(b) Il s’agit d’appliquer la proposition (c) en tenant compte de la
démonstration du (a). On utilise la notation ¢; de cette démonstration.

Soit @ lorbite sous (¢) d'un {8,—3} € RE(m), he). On fixe (X5, X_5) €
g x gc” tel que [X3, X 5] = Hpg. La condition « X5 —X_3 est vecteur propre
de (Ade®)™o » est satisfaite (pour une unique valeur propre de (Ade®)™mo)
quand e™° = [, et se réalise (& nouveau avec unicité de la valeur propre) en
remplacant Xz et X_g par certains de leurs multiples quand e™° 8 = —f. Sous

cette condition, les vecteurs propres S CF(Ad )R (X5 — X 5 de AdeS,

0<k<mo—1
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ou ¢ décrit 'ensemble des racines mis™® de ue, ont des projections dans Ly, /b
deux a deux orthogonales pour ¢; avec des « carrés » strictement négatifs. Cela
conduit a la formule annoncée. O

Remarque 5.3.  Soit f € Supp,-(G(A)o - \).

On note ¢ la composante nilpotente de f. Il existe une unique sous-algebre
de Borel b de g(A)c sur laquelle £ est nulle. En effet, d’aprés le lemme [1.5] (a) et
[Kos 59, cor. 5.3 p. 997 et cor. 5.6 p. 1001], I’élément de D(g(A)) auquel £ s’identifie
a 'aide de la forme bilinéaire ( , ) appartient & une unique sous-algébre formée
d’éléments nilpotents maximale de g(A)c, dont l'orthogonal pour ( , ) convient.
L’unicité de b montre que b =b.

On note n, la somme des espaces propres pour 'action de Z(g(A))c dans
gc, dont le poids a € Z(g(A\))& (toujours restriction d’un poids de b ) vérifie :
(v,a) >0 ou ((r,a) =0 et i(u,a) >0). On pose L; = b @ ny. On constate
que Ly est une sous-algebre de Borel de gc en décomposant £y en sous-espaces
propres relativement a une sous-algébre de Cartan de g¢ incluse dans b.

Les inclusions [b,6] € b C Keré et [Lpmy] C ny C (g(W)e)Y
fournissent les égalités f([b,b]) = 0 et f([Ls,Lf]) = 0. Donc g(f)c C b
et L¢/g(f)c est un lagrangien de (gc/g(f)c, Bf), clairement stable par G(f).
D’aprés |4.3[ (b) le morphisme de groupes de Lie pg/g(f de G(f)9/2() dans C\{0}

qu’on en déduit vérifie dlpg/g(f s tr(ad- )Lf/g(f)c' .

J’adapte maintenant les parameétres de Duflo a la situation qui m’intéresse.

Lemme 5.4.  (a) L'espace vectoriel L5,.. =hbc® > 92 (cf (c))

+
aGRAa*+

g/h

fournit le lagrangien L5 ..+ /bc de (gc/bc, Ba,). On note Piaes L€ caractére com-

pleve de G(A.)¥" qui lui est associé (cf. (b)). La restmctzon de p¥" ((5?\/:’)_1

Aaxt
a Cg,(h) est indépendante de a*™*

(b) La restriction de By, au sous-espace vectoriel g(\)(ipr+)/bh de g/b
est non dégénérée. L’orthogonal de g(\)(ipr+)/b dans g/bh muni de By, est la
projection dans g/b de la trace sur g de la somme des g% lorsque o décrit
R(gc, be) privé de R(g(N)(ipz+)c, be). On Uidentifiera a g/g(\)(ipF+).

Soit e € G(\y) elliptique. Les orientations O(B)\+)(1_Ade)(g/g(>\)(ipf+)) et
O(Bhcan) (1-Ade)(a/s(N 01 )) 50T Egales.

(c) L’espace vectoriel L5 = g(\)(ipr+)c® Y g2 (cf. (c)) fournit le

aGR;
lagrangien L5/g(\)(ipF+)c de gc¢/g(N)(ipr+)c, a la fois pour B, et pour By, .

On note pi/g( Y007+) 1 caractére compleze de G(N)INW=) qui est associé a

(gc/g(N)(ipF+)c, Ba,.,) (cf. (b)). Il prolonge le caractére complexe de l'image
réciproque de G(\;) dans G(XN)¥8NG=+) qui est associé a (gc/g(N)(ipr+)c, By, ) -
Démonstration du lemme. (a) Soit e € Cg,(h) elliptique. L'indépendance

de (pi/ : +(5?\/+ ")) (e) par rapport & a** s'obtient en reprenant la démonstration

du lemme [5.2] (b).
(b) Au début, on utilise le fait que ge/bc est somme directe B, ,-orthogonale
des projections des sous-espaces vectoriels g @ gc® de gc avec o € R (gc, be).-
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On pose V = g/g(\)(ipF+) et V(e) = g(e)/g(e)(N)(ipr+). L'espace vecto-
riel V' est somme directe des sous-espaces vectoriels V(e) et (1—Ade)(V'), qui sont
orthogonaux simultanément pour B)_,, et pour By, . Pour chaque a € R*(gc, he),
on fixe X, € g¢ et X_, € gc“ tels que [X,, X_,] = H,. On constate que les orien-
tations o(By, )v et o(By,,,)v sont toutes deux dirigées par le produit extérieur
des vecteurs suivants: les X, A X_, avec a € R;\L réelle, les i(X, A X_,) avec
a € R;\r imaginaire, et les Xo A X_o A Xo A X_, oft & décrit les classes des
B € R(gc, he)\R(g(N)(ipz+)c, be) complexes modulo I'action du groupe engendré
par la conjugaison et le passage a 'opposé. On prouve de méme que les orien-
tations o(By, )v(e) et 0(Bi...)v(e) sont égales, en utilisant le systéme de racines

R(g(e)(c, f)(e)(c) et le couple ()\, p;+). Donc O(B)\+)(1—Ade)(v) = O(Bkcan)(l—Ade)(V)‘

(c) Soient e € G(A,) elliptique et € € G(X)#N0r+) qu-dessus de e. On
note Qe et @y les formes sesquilinéaires hermitiennes (v, w) — iB,,,, (v, W) et
(v,w) = 1By, (v,@) sur gc/g(A)(ipr+)c. L'espace vectoriel £ := L5/g(\)(ipr+)c
est somme directe des sous-espaces vectoriels L(e) := (L5 Ng(e)c)/g(e)(N)(ipr+)c
et (1 — Ade)(L), qui sont orthogonaux simultanément pour ¢., et pour ¢, .
On s’inspire du début de la démonstration du lemme (b). Le nombre de
composantes strictement négatives dans la matrice de 'une ou 'autre des formes
sesquilinéaires .., et ¢, sur L, relativement & une base orthogonale, est égal a:
la moiti¢ du nombre de racines compactes dans R(gc, he)\R(g(A)(ip#+)c, be) plus
le quart du nombre de racines complexes dans R(g(v)c, be) \ R(g(N)(ipz+)c, be)-
On a une propriété analogue pour L(e). D’aprés (b) et la définition (d), les
fonctions p associées a By, et B, prennent donc les mémes valeurs en €. O

Définition 5.5.  (a) Soit a € R(ge,hc) réelle. On note n, = £ > B(H,) ou
B

la somme porte sur les 3 € R(gc, be) tels que B+ B € RTa. A deux vecteurs
Xo€92Ng et X, €gc*Ng tels que [X,,X_,] = H,, on associe I’élément
elliptique 7, = exp(m(Xoa — X_o)) de Cg,(h). (On sait que n, € N et que
I'ensemble {v,,7,'} est indépendant du choix de (X,, X _,), cf. [DV_88| p. 327].)

(b) On note Xg’"*(X, a*") T'ensemble fini des classes d’isomorphisme des
représentations unitaires irréductibles 7, de G(A,)®" telles que 7,(¢) = —id et
7, (exp X) = A% id pour X € b (une telle 7, est de dimension finie),
et X7 (X a*+) Densemble des 7. € XZ"7 (X, a**) tels que pour toute racine
a € R(g(N)c, be) réelle, (5§ibT+)(fya) n’admette pas la valeur propre (—1)"«.
(Quand G est connexe, la démonstration de (b) montrera que cette condition
peut étre remplacée par (55/:]74)(%) # (1) id.)

~ ~/ ~
On note aussi X" l’ensemble des (X, a"*", ) avec A = (XN, F'") € gk,

*

b = g(xl), a’ est la composante hyperbolique de §’, a*" est une chambre de

@\ (ipr), @), et 7 € XEar (X o).

(c) On note X¢g(A) (resp. X&7(\)) 'ensemble des classes d’isomorphisme

des représentations unitaires (resp. unitaires irréductibles) 7 de G(\)#8N(rr+)
telles que 7(1)=—id et 7(expX) =e*Xid pour X € b,

et X[(\) lensemble (indépendant du choix de a**) formé des classes d’isomor-
phisme des représentations unitaires 7 de G/(A\)#8N0r7+) telles que
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pg/g( Y(ipr+) pg/h N
s T = el (S )
1o g/0( )(lp;+)| G(Ay) Ip g/b

)\ )\C‘*+

pour w7, € X (,0™) (done X2(3) € X))
On pose aussi: XG4 = {(X, OR N e @y €t 7' € XI"d()\)}

6. Condition d’intégrabilité

On conserve les notations de la section précédente.
Le lemme suivant est une adaptation de [Duf 82al, remarque 2 p. 154]. Il ne
sera pas utilisé dans la suite de cet article.

Lemme 6.1. Les propriétés suivantes sont équivalentes :
(i) Xg" (\a ) #0;
(ii) 4l existe un caractére unitaire X;\G (unique) de G(X)g/ " tel que:
XS\G(L) = —1 et le;\G = i\|p;
(iii) Xe gNjeg’G.

Démonstration du lemme. (i)<(ii) L’implication « (i) = (ii) » est claire.

On suppose (i) vérifie. La restriction a G(X)? /% de la représentation unitaire

(Ay)8/b
I d ()\+)E/h

et multiple de X;\ . Le théoréme 8.5.2 de |[Dix 64, p. 153| montre donc I'existence
d’un élément de X" (X, a* ).

x¢ de G()\;)¥" est non nulle (car induite a partir d'un espace non nul)

(ii) < (iii) D’aprés le lemme (a), en multipliant XA par pg/b la

condition (ii) équivaut a l'existence d'un caractére complexe du groupe de Lie
G(Ay)o de différentielle iX4-pgj. Cette derniére propriété s’écrit: A € gh, . O

Remarque 6.2.  Soit f € Supp,-(G(A)o - X). En particulier, on a f € Breg-

Le groupe de Lie réel G(f)o est commutatif (cf. [B.. 72, th. p. 17]). Le
stabilisateur de la composante nilpotente de f dans le groupe adjoint de G(\)g est
linéaire algébrique unipotent d’apres [Spr 66|, th. 5.9 (b) p. 138]. Le tore maximal
de G(f)o est donc égal a celui de Z(G(A)g). Compte tenu de la remarque [5.3] les
arguments de la démonstration du lemme précédent permettent d’en déduire que:

XE(f)#0 < VZ € Ker eXD7(G(M)o) eiA+rgn)(2) — 1.

Donc la condition « X (X a**) # 0 » implique la condition « XZ™(f) # 0 ».

La réciproque est fausse, comme le montre le cas on G = PSL(2,R), A =0
et h = s0(2), donc Xﬁ"“H()\ {0}) = 0, XZ"(f) # 0, et aussi XA (—f) # 0.
Cela traduit le fait que PSL(2,R) n’a pas de représentation limite de sa série
discréte hors de sa série discréte. Pour généraliser la méthode des orbites proposée
par M. Duflo, il était naturel d’imaginer que les orbites coadjointes réguliéres de
G susceptibles d’étre l'orbite G-l associée a une représentation TZGT a caractere

infinitésimal nul seraient G- f et G-( (cf. . ), en remplacant (X, a*t) et
A par [). Cette généralisation aurait créé des difficultés, car G-f # G-(—f) et le
dual unitaire de G n’a qu'un seul élément & caractére infinitésimal nul. .
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III. Construction de représentations

Cette partie suit de prés article [Duf 82a] de M. Duflo, pages 160 a 180.

On se donne X = (A, F*) € g%, On pose b = g()). On note p et v (resp.
t et a) les composantes infinitésimalement elliptique et hyperbolique de A (resp.
de h). On fixe aussi une chambre a** de (g(A)(ipr+),a) et 7, € X2 (X, a* ).
D'ou R™(gc,bc) et A\ = pyp+ vy (cf. (b)). On pose = (u, FrNit*).

7. Le cas ou G est connexe

Dans toute cette section, on suppose G connexe.

L’inclusion AdG C intge assure que G(A;) est égal a Cg(h), et que
5%5’ est un caractére unitaire de G/(Ay)®% (cf. et aussi [Duf 84, haut p. 118]).
En effet pour toute composante connexe a*§ de Pensemble des ¢léments de a* qui
ne s’annulent sur aucun H, avec a € R(gc, hc) non imaginaire, l'espace vectoriel

LT = hed > e > gte > g

a€RT (gc;be) aeR™ (gc.be) a€R(gc;be)
« imaginaire non compacte «a compacte a* 6‘- (Ho) CRT\{0}

fournit le lagrangien positif £*/hc de (gc/be, By, ) stable par G(A4).

On note M l'intersection des noyaux des caractéres réels positifs de Cg(a)
et m son algebre de Lie (donc € m¥ par (a) et X7 (f) = XTmabt (77 {0})),
RT(me, tc) = R(me, tc)NR(gc, he) (notation de[L.3|(b) relative a m et (12, {0})),
Pt = M0} Uélément p — 2ipme de t* (donc M (1) = Cp(t) et 521/,{“1 est un
caractére unitaire de M (j1)™*),
Ny = Z g% et bM:t@@nM,

a€RT (me,tc)

q=|{a € R (mc, tc) | a compacte}|,
EM:J(@( Z g%)ﬂg et KMOZGXPEM.

a€RT (mg,tc)
o compacte

Définition 7.1.  (a) On note Té”“ la classe de représentation « limite de la

série discrete de M, » appartenant a My, dont 'espace des vecteurs Ky, -finis

est isomorphe & I'image du caractére unitaire de T de différentielle ip—pm¢ par

q
le foncteur « d’induction cohomologique » R}, = (“R?IEI;;”O (e @ A" npr)

décrit dans [KV 95| (11.73) p. 677]. (Elle est notée my,p,, dans [KV 95| bas p. 734],
en tenant compte de [KV 95| proposition 11.180 p. 733].)
(b) On note T;7, = Indé@(m).MO((S,Tﬁma ® Té‘/fo) pour tout o € X7 (i),
ol on a pu définir une représentation 5,Tfma ® T[iwo de Cpr(m)M, par I'égalité
(o @ T) (o) = (1L0)(@) @ THO(y) pour @ € Caslm) et y € My
(dans laquelle (5&/;0)(37) = o(x,1)), car le groupe Z(M) opére dans « l'espace »
de T;LWO par le caractére unitaire (5&/;0)&(]\%) d’apres [KV 95, (11.184c) p. 734].

Remarque 7.2. On fixe un sous-groupe compact maximal K de G dont
I'involution de Cartan normalise . Donc Ky, := K N M est un sous-groupe
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compact maximal de M contenant Cpr(m)Kyy,. Tout 7 € (Cpr(m)My)~ est re-
lié & certaines représentations m; € (Cp(m))” et mo € (My)  par les égalités
m(zy) = m(x) ® m(y) pour z € Cpy(m) et y € My (cf. [Dix 64, prop. 13.1.8
p. 251]). Soit o € X7 (). D’apres [KV 95, (11.187) p. 735 et dem. de prop. 11.192
(a) p. 737] et [p.2] (b) pour passer de My a Cpr(m)My, et [KV_95, prop. 11.57 p. 672
et fin (5.8) p. 332| pour passer du « sous-groupe parabolique » Cy;(m)My de M a
M, le (mc, Kyr)-module associé a T, est isomorphe a R?\/I((plnfﬁm)*la), ou RY,
est le foncteur d’induction cohomologique relatif a b, . .

Lemme 7.3. (a) Ona G(A;) =Cpy(m)exph et M) = Cp(m)expt.

Il existe donc un unique Ty € X7 (1) tel que 5EﬁmTM = (5?\1"7;) ‘M(ﬂ)'

(Cette notation ne tient pas compte du fait que 7oy dépend de a**.)

(b) La classe de représentation Ind%A_N(T%M(@ elvokos @ 1) construite
a partir du choix d’un sous-groupe N de G qui est radical unipotent d’un sous-
groupe parabolique de G de composante déployée A, appartient a G et est indé-
pendante de N.

Démonstration du lemme. (a) On a G(Ay) = Cg(h) C Co(a) = MA et
M () = Cp(8). Vu [Var 77, th. 17 p. 199], on en déduit que M (1) = Cps(m) exp t,
puis G(A;) = Cp(m)exph.

(b) Soit N le radical unipotent d’un sous-groupe parabolique de G de
composante déployée A. D’aprés [Var 77, th. 18 p. 289], il existe une composante
connexe a*§ de lensemble des éléments de a* qui ne s’annulent sur aucun H,

avec « € R(gc,bhe) non imaginaire, telle que
N =expn avec n=( Z gt )N g.
a€R(ge.be) et a* g (Ha) CRT\{0}
Soient 1y € a*y et Ao € (t* + 1) N g}, On utilise la proposition (a) avec
Ao & li/f)lace de A\ (auquel cas « (M’,U) » devient « (Cp(m)MyA,N) ») et

m= (Ol @T;") @8 Comme la classe de Ind§; 4 y (T2 @e @ 1y)

est déterminée par son caractére (cf. [Cow 88|, p. 64]), elle ne dépend pas de N.
On choisit z =1 et A = (A“" R, RY) dans [ABV 92, ligne 7 du bas
p. 121], o A“" ® p(R*(gc,bc)) = ,0%:] 7. (cf. [ABV 92| lignes 9 et 10 du bas
p. 129]) et les systémes de racines positives Rj et R sont inclus dans R (gc, be).
D’aprés le lemme (b), la représentation A de [ABV 92| p. 123] est A= 5?\/:’7'+.
Vu la proposition (a), on a w(A) = Ind§, 4 v(TM ® efv°lo8 @ 1y) dans

T

[ABV 92 (11.2)(e) p. 122]. Les idées de la démonstration du lemme 5 de [DV 88|
p. 335] permettent de montrer que A est « final » au sens de [ABV 92, def. 11.13
p. 130]. On applique enfin [ABV 92] th. 11.14 (a) p. 131]. |

Remarque 7.4.  On se place dans le cas ot G = SL(3,R) et A est 'élément de
Oisimec 1mage de (1172) par I'isomorphisme de G-modules qui envoie A € g sur
tr(A.) € g* Le groupe M A qui est ici égal & G(A), est I'image de GL(2,R) par
le plongement de groupes de Lie qui envoie = € GL(2,R) sur <I(dem)_1 €.

Mais I'induite Ind§, , N(Tﬁ]‘ﬂ . el"°k8 @ 1) n'est pas donnée par « nondegenerate

data » au sens de [KZ 82, p. 473|, car le groupe de Weyl d’une sous-algébre de
Cartan fondamentale de gl(2,R) se représente dans GL(2,R). .
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Définition 7.5.  On note Tfa* IndMAN(T%MQ@ elvokos @ 1), indépen-
damment du choix de N comme dans le lemme ci-dessus.
Ainsi lorsque M est connexe, XY/ (i) a pour seul élément xff , et les classes

des représentations TM XM et TM 0} X! sont toutes deux égales a T~

8. Les représentations Ty
*+T+

On va appliquer la construction du cas connexe & M} := G(vy)o. Un pas-
sage par ’homologie va permettre (grace a un résultat de D. Vogan) de normaliser
des opérateurs d’entrelacement de facon a prolonger TSJ\W ° en une représentation
d’un certain groupe M’.

On note M'=G(A1)G(v4)o et m' = g(vy) son algebre de Lie
(done X € monanrr par 8.2 (a), m'(A\)(ipr+) = b et Xim(A) = X[ (X, a%)),
RT(mg, be) = R(mg, he)NRY(ge, be) (notation de 3/ (b) relative a m’ et (A, a*)),
A = Axgo1 V€lément py +v de h* ou py représente encore fi 5 gt
(donc By, , est restriction de By, , M'(N) = G(\y) et pm/h = p‘;jh/)

Ny = Z g¢ et by =bc ®nyp,
a€R*(m he)
= [{o € R*(m{, bc) | o compacte}| + 1 [{a € RT(mf, be) | a complexe}|,
M, Vintersection des noyaux des caractéres réels positifs de Cyy(a),

,;Mu = T;VIUJE (cf. (b)) et T;W‘l): Ti\i‘l) L Ol M, () =exptet M{(X) = exph,
OXR
u=( Z g¢)Ng et U = expu (donc int M".UCU et M'NU = {1}).

a€R(gc,be) et vy (Ha)>0

Proposition 8.1.  On note H « l’espace » de T;Wé et H™ [’ensemble de ses
vecteurs C°.

(a) Le sous-espace propre de Hy(npy, H®)* de poids —(X + puwy) sous
Uaction de b issue de laction de he dans N\nypy @c H®, est de dimension 1.
On le note (Hy(nar, H*)")—(ixtp,,) -

(b) 1l existe une unique représentation unitaire continue S de M’'(X)™/"
dans H satisfaisant les conditions (i) et (ii) suivantes :
(i) S(#) T,%(y) S(@)~" = T °(xya™")  pour & € M'(\)™/" au-
dessus de x € M'(\) et y € M;
(ii) Uaction de M'(A\)™/" dans (Hy(npm, H®)*)_ (iAo iSSue de
Vaction de M'(\)™Y dans \nyp @c H® déduite de S, est (p];/b )~tid.

Démonstration de la proposition. (a) On suppose G connexe et utilise les
notations de la section [7]

On fixe un sous-groupe compact maximal K de G dont I'involution de Car-
tan normalise . Donc Ky := KNM, bet K M,, = = KNM,, sont des sous-groupes
compacts maximaux de M ) et M, . D apres la remarque . le (mc, K Mu+)

. MV .
module associé & T, ™" est isomorphe & R V+((p,"ffm) xy'), ou R?\/IV+ est le
foncteur d’induction cohomologique relatif a by, .
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Compte tenu de la définition |4.2{(d), et du lemme [5.2] (b) avec ses notations,
pour tout e € Cy(m)7, on a

(P, 0% )(e) . (3 )71 (e)
m/t m/’t - det(Ade >“M'/“M X m)t _1 m/t’ = U1 U
(pﬂiméﬂ-&-,m)(e) . ((pﬂt,/m> 5N+,m>(e)
ot {B1,—B1},...,{Bs,—0Bp} sont les éléments de R (mf, he) et ug, ..., u, sont les

rapports des homothéties (Ad e‘c)gal, .., (Ad e(c)ggb )
C C

On applique [KV 95, th. 11.225 p. 759 et cor. 8.28 p. 566| au groupe M|
et a la sous-algeébre parabolique by de mi. Le (mg, K M(/))—module H/ associé
< M o . . . T U N Y N '
a Ty est donc irréductible et isomorphe a R']J%((p;\ / ) 1x§4 ), ol R?M(,) est le
foncteur d’induction cohomologique relatif a by, . On obtient

dim Hoth,To (Hq/ (nM/v Hf)a p;/bX§4 ) =1

en prenant X = R?\%(Z) avec Z = (p';\l/h)_lxg/[' dans [KV 95| prop. 8.11 p. 555],
et en tenant compte du lemme de Schur (cf. [Wal 88 lem. 3.3.2 p. 80]). Comme le
morphisme canonique de (hc, Tp)-modules de Hy(nyp, H') dans Hy(npe, H)
est bijectif d’apres [Duf 82al, lem. 4 p. 165|, cela donne le résultat.

(b) D’aprés (a), on a intzx - T;\wé = TSJ\V[6 pour tout z € M'(X). On

reprend ensuite la démonstration de [Duf 82al lem. 6 p. 169|, quasiment mot a

mot. (L’unicité de S provient bien sir de (b) et du lemme de Schur.) O
Lemme 8.2. On conserve les notations de la proposition précédente.

(a) Il existe un unique Typ € X}\ZT,(X) tel que 6;1;/",77\4/ = (5?\/+h7'+. On note

v & ST;\V[‘3 la représentation de M’ définie (clairement sans ambiguité) par
(o ® ST;WO)(xy) =7 (2) ® S(2) T;\wo(y)
pour & € M'(A\)™ qu-dessus de € M'(\) et y € M.

(b) Lorsque G est conneze, on a: T;\Cfaw,ﬂ: ndS, (T ® STSJ\V[‘S) ® 1y).
Démonstration du lemme. (a) D’aprés le lemme [5.2 (b), on a I'égalité
'/ a/b
PXiwr (st 1 Pri so/oy—1 o b o/t :
\p‘j\‘//h ( M,m/) = W((SM) ; ol Pyt et py, sont des morphismes de
+,m/ +

groupes de Lie. Cela permet de définir 75/ .

(b) On suppose G connexe et utilise les notations de la section
On a donc M’ = Cyp(m)M], M'(N) = Cp(m)exph et 51/?“/ est un caractére
unitaire de M’(X\)™/",

On choisit une composante connexe a*j de I'ensemble des éléments de a*
qui ne s’annulent sur aucun H, avec a € R(gc, hc) non imaginaire, dont I'adhé-
rence contient v, . On pose

n=( Z g¢ ) Ng, N=expn et N, =NnNDM.
a€R(gehe) et ag (Ha) CRT\{0}
Le groupe N (resp. N, ) est radical unipotent d’un sous-groupe parabolique de
G (resp. M{) de composante déployée A. De plus, le produit de G se restreint en
un difféomorphisme de N, x U sur N.

M} T
On note V et W « les espaces » de 1y et T[fwo. L’espace de T;\ ¢ se réalise



DucLoux 165

sous la forme H := IndM0 AN, W ® e @ 1y, ). On identifie V ®c H a un
ensemble de fonctions sur M| a valeurs dans V ®c W. L’application ® — @ |y

de Despace de IndCM ]]\\/[4% AN, (5T/ T ® T" ® e'voloe @ ly, ) dans V ®&cH

muni de 1 ® TS\ est un 1som0rphlsme unitaire de M{-modules. L’action d’un
z € Cy(m) sur V@c H qui sen déduit s'écrit 710/(2) ® So(2), ot & € M/(\)™/
est au-dessus de = et Sp(Z)-p = 5m/h (2) x p(z~tex) pour ¢ € H. On considere
un sous-groupe fermé I' de Cj/(m ) On pose Mp =TM,, et My = TI'Mj. On
fixe une composante irréductible 7y (dans X7 i ()\)) de la restriction de 7y a

ML(X)™/" . On obtient comme ci-dessus un isomorphisme unitaire de M}-modules
avec transport de action de I', en remplagant Cy(m) par I', 73y par mapp et V
par 'espace Vr de 7ppp. On determlne un élément 7y de X W( ) par 'égalité
5;4 wTM,T = (5m/h M,F)‘FT
+m 0
On va voir que Sy = S. L’égalité annoncée deviendra une conséquence du
théoréme d’induction par étages et du fait que Indfl1 (mopim,) =~ (Ind% T)op
quand p : G; — G5 est un morphisme de groupes de Lie réels surjectif, H;
est I'image réciproque par p d’un sous-groupe fermé H,; de G,, et 7 est une
représentation unitaire continue de Hs.
On reprend les arguments et notations de la démonstration de (a).
Les groupes Kjpy == KN M| et Kpy:= K N Mr sont des sous-groupes com-
pacts maximaux de M| et Mr. On constate que le (mg, Ky )-module associé

a la représentation Indy_ﬁ/[o(éﬂfmTMI ® Téwo) du groupe Mr est isomorphe a

R4, ((pﬂtm) Tur), ot R, est le foncteur d’'induction cohomologique relatif &
by Ensulte a I'aide du théoréme d’induction par étages on voit que le (mg, Kz )-

module associé a IndJFV%O AN, (521’/ " T ® Ty @e*le @ 1y, ) est isomorphe a
Rq (( m/ " lrypr), ot Rq wy, st le foncteur d’induction cohomologique relatif a
by Enﬁn, on trouve que

dim Homy, 1, (Vr ®c Hy(nyp, HY), p?//hTM@p) =1,
ot chaque y € I' projection d’un § € M’(X)™/% opére sur Vr ®c Hy (nye, HY) par
le produit tensoriel de 7y/r(9) et de I'endomorphisme déduit de Sp(7).

On se donne 2 € M’(A\)™/% au-dessus d’'un z € Cy;(m). On choisit pour I
le sous-groupe fermé de Cj;(m) engendré par x. Donc dim Vr =1 et le calcul qui
précede prouve que 'action de @ sur (Hy(nar, H®)*) iasp,,,) issue de Sy(2) est

bien I'homothétie de rapport pg /b( )L o

Définition 8.3.  On garde les notations de la proposition 8.1] et du lemme 8.2]
On note T:\Cfa* =Ind$, (1 ® ST~ ) ® 1y).

Pour simphﬁer la notation T~G g j'enléverai a*t quand a** = a* (com-
patible a, et 74 quand X" +(/\ a**) est un singleton, et je remplacerai A par

A quand A= ()\,h(R)) (conventions appliquées pour T[iwo Tl%, T Mot o T~M ).

Proposition 8.4. (a) Pour chaque | € gi semi-simple, on note X% le ca-
ractére x; de Z(Ugc) canoniquement associé a 'orbite de | sous laction de int g¢
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(cf. [KV 95, (4.114) p. 297]). Le centralisateur (Ugc)® de G dans Ugc opére dans
l’espace des vecteurs C'™° de T;\G | par restriction du caractére x59¢ de Z(Ugc).

(b) Le morphisme de groupes z + (z,1) de Z(G) dans G(\y)%"Y est injectif.
Le caractére central de TZ\Ga*+T+ est « restriction » de celui de T4 .

Démonstration de la proposition. (a) Le corollaire 5.25 (b) de |[KV 95|
p. 344] permet de calculer le caractére infinitésimal de 7 ® S T/{W 0 (égal a
celui de T/{W 0 ). Pour passer ensuite a GG, la démonstration de [KV 95| prop. 11.43
p. 665] s’adapte immeédiatement.

(b) Soit z € Z(G). L’égalite S(z,1) = id permet d’obtenir le résultat. O

9. L’injection G- (X, 7) — TS de G\ X dans G

Le théoréme va généraliser 'essentiel de celui écrit par M. Duflo dans
[Duf 824l lem. 8 p. 173|. Ma démonstration est similaire a la sienne, mis a part un
résultat inattendu : le lemme (b). Je rappelle qu'une classe d’équivalence de
représentation unitaire irréductible tragable d'un groupe de Lie réel est déterminée
par son caractére (cf. [Cow 88, p. 64]).

Soit 7 la représentation induite a partir de 7, de la définition (c).

Lemme 9.1.  Les paramétres X et 7 déterminent T/\C’VaHT+

Démonstration du lemme.  Ce résultat découlera du théoréme en y
enlevant dans un premier temps toute référence a T;\GT (pour la cohérence du

raisonnement). O

Aoty

7 quand X, I"d(A) est un singleton, et je remplacerai P\ par A quand A= (A, f)(R*)).

Définition 9.2.  (a) On note T~G T¢ ., . Dans la notation T , jenléverai

(b) Soit a un automorphisme du groupe de Lie G. Il induit des iso-
morphismes canoniques encore notés a, d’espaces vectoriels de g/g(\)(ipF+) sur
9/9(aX)(ip.F+), d’algebres de Lie de sl(g/g(\)(ipr+)) sur sl(g/g(a))(ip.r+)) par
conjugaison, de groupes de Lie de DL(g/g(\)(ipz+)) sur DL(g/g(aX)(ip.r+)) par
intégration, et enfin de groupes de Lie de G(N)¥/8M0r+) sur G(aX)8/8@N(eors)

Lemme 9.3.  Soit 75 € (Go(A\y)¥") ™ qui intervient dans T4 |Go (s )a/h-

(a) Ona: 1€ X (N aF) et Go(Ay) = Cay(h).
a/b
(b) On pose: 79 = |p3/‘§,*i| 10 (cf. (a)). Laction du groupe Go(\) sur
la classe de représentation Ty est triviale.
Démonstration du lemme.  (a) La définition [5.5] (b) assure que 7, est final.

Légalite Go(Ay) = Cg,(h) découle du lemme
(b) On prouve que tr7y(zyz~t) = tr7y(y) pour z € Go(A) et v € Go(Ay).

Soit G le sous-groupe de Gy formé des éléments qui fixent p et ipr+.
On note g; son algébre de Lie. Comme les formes linéaires p et ipr+ sont infi-
nitésimalement elliptiques, g; est réductive, h € Carg;, et G; est connexe. Le
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systéme de racines R(gic, bc) n’a pas de racine imaginaire. On note W (g, (v), a)
le groupe de Weyl du systéme de racines formé des racines restreintes de (g, (v), a).
D’aprés [Kna 86, th. 5.17 p. 125, (5.5) p. 126 et lemma 5.16 p. 124] appliqué & G4
d’une part, et [Kna 86l prop. 4.12 p. 81] d’autre part, application canonique de
GO(X)/GO()\+) dans W(gi1(v),a) est bijective. On se donne 5 € R(g:1(v)c,be),
X € gi(v)Ple et Y € gy(v) Pl tels que [X,Y] est la racine duale de 3|, dans a.
On pose g = exp(5(X —Y)). Donc g € Go(\) se projette dans W(g;(v),a) sur la
réflexion s,y au vu de la démonstration de [Kna. 86l prop. 5.15 (c) p. 123]. On se
contente maintenant de montrer 1’égalité tr 7o(gyg~') = tr 7o(y) pour v € Go(A,).

Un calcul dans SL(2,C) montre que pour toute o € R(gc, hc) réelle, on a
Ad~y, = exp(irad H,) et Ad+2 = id dans GL(g) € GL(gc). Donc v2 € Z(Gy).
D’apreés [Kna 86, lemma 12.30 (c) p. 469] et (a), tout élément v de Go(A;) s’écrit
Y =h2%y - Yo, avec h € exph, z € Z(Gy) et aq,...,ax € R(gc,be) réelles.

g/

b
Compte tenu de la proposition (b), la différentielle en 1 de ‘pg)“*Jr est la demi-
p:\,a*+

somme des o € R(g(v)c, be) tels que: ipu(Hy) > 0 ou, iu(Hy) =0 et pr+(Hy) > 0.
Donc Gy(A) laisse invariants les caractéres unitaires par lesquels expbh et Z(Go)
agissent dans l'espace de 7. Dans la suite de cette démonstration, on prendra pour

cette raison v de la forme v =7, -+ Va, avec aq,...,a; € R(gc, he) réelles.

Pour toute o € R(gc,be) réelle, Vo907, (resp. 7ag 'y;t) est égal & g

(resp. g71) si B(H,) est pair et & g7 (resp. g) sinon. Par conséquent, on a:
- 1 si B(Ha, +---+ H,,) est pair

1 1y — Qay (&2
997 = 2 sinon.

On se place tout d’abord dans le cas ou 3 est réelle et gyg—ty™' # 1. On
rend les choix de g et de g compatibles en imposant X = Xg et ¥V = X_ g
(cf. 5.5 (a)). On note ¢ le rapport de 'homothétie 7(73). On a v = g* puis
8175 =57 et slgrg )5t = v3(gvg ). Done tr7g(y) = 0 = tr7o(gyg ™)
quand ¢ # 1. On va raisonner autrement quand ¢ = 1. L’élément vz + 76_1
de l'algébre du groupe Gy(Ay) est central. Donc 7y(vyg) est égal a 'homothétie
(7o(7s) +70(7v5 ")) (Fo(v3) " +1id) ™! lorsque ¢ # —1. En particulier, comme 7 est
final, on a 7o(gvg ") 70(7)"" = To(ys) avec (5&{?7‘0)(75) = (=1)™*1id quand
¢ = 1. On note F' le sous-groupe de G engendré par les 7, avec o € R(gc, he)
réelle. D’aprés [DV 88| (42) p. 335], a corriger, il existe un caractére unitaire de
F qui envoie v, sur (—1)"*! pour toute o € R(gc,hc) réelle. Par ailleurs, la

9/b _ ~
restriction de ‘pQ;ZHI (53/:’) Y a Go(A4) est invariante sous G(A) d’aprés (a).
pi,u*+

Ainsi, il existe un caractére unitaire G(\)-invariant x de F', tel que quand ¢ =1
on ait: 7o(vs) = x(75)id puis To(ys) = x(9vg™") x(7)tid = id.

On suppose pour finir que § n’est pas réelle et que gvg 'yt # 1. On note
Rps le systéme de racines (RB®GRAB) N R(g1(v)c, he) sans racine imaginaire et avec
des racines non réelles. En examinant le diagramme de Satake de la sous-algébre de
Lie semi-simple de g;(v) de complexifiée (CHg®CH7)® Z}% g¢, on constate qu’il

aEnrp

existe un morphisme d’algébres de Lie injectif 7 : gy — g1(v), avec go = sl(2,C) |
ou go = su(1,2), qui envoie pour tout (z,y) € R? et selon la valeur de gg, la
iyx O

i ziy 0 = i — H).
)> ou la matrice (0 (z)/_%y) sur = (Hp+ Hp) + iy (Hp — Hg)

. iy 0
matrice (ley (atiy
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On choisit X et Y dans (gg @ gg) Ng et (géﬁ D g(EB) N g égaux, selon gg, a:

X =n(34) et v =n(93), on, X =n(§81) et v =n(882).

Un calcul dans I'un des groupes simplements connexes SU(2) ou {1} x SU(2)
montre ensuite que g? appartient a exp(hND(gy(v))). La définition de g, assure
que W(g1(v)c, be) fixe di7p. Donc 7 est trivial sur exp(h N D(gy(v))). Ainsi, on
obtient: 75(gyg 'y 1) = 70(¢%) = id. |

Dans la proposition qui suit, j’énonce les résultats de la théorie du petit
groupe de Mackey qui me seront utiles dans la démonstration du prochain théo-
réme. Je ne rappellerai pas les notions de « groupe de type I » et « intégrale
hilbertienne » (voir [Dix 69]). On se donne pour cette proposition un groupe loca-
lement compact a base dénombrable A, et un sous-groupe fermé distingué B de
A qui est de type I. Le groupe A agit canoniquement sur B.

Voici quelques précisions concernant le vocabulaire. On appellera cocycle
mesurable unitaire de A une application mesurable ¢ de A x A dans ’ensemble
des nombres complexes de module 1 qui vérifie ¢(1,1) =1 et c(zy, z) c(z,y) =
c(x,yz)c(y,z) pour z,y,z € A. Dans ce cas, étant donné un espace de Hilbert
complexe séparable V', on appellera c-représentation projective de A dans V
une application 7™ de A dans le groupe unitaire de V', pour laquelle chacune des
fonctions € A — (7(x) - v,w) € C avec v,w € V est mesurable, et telle que
(1) =id et w(ry) = c¢(x,y) x7(x)7(y) pour x,y € A.

Proposition 9.4. (Mackey) (a) Soit # € B. On note A, le stabilisateur de
7w dans A et pr la projection canonique de A, sur A,/B. Le groupe A, est
fermé dans A. Il existe un cocycle mesurable unitaire ¢ de A,/B et une classe
d’isomorphisme T de co(pr x pr)-représentation projective de A, qui prolonge m
dans le méme_espace de Hilbert. Par ailleurs, il existe une mesure o-finie non
nulle m sur B, unique a équivalence pres, telle que lorbite de m sous A dans B
a un complémentaire m-négligeable et a-m est équivalente a m pour tout a € A.

(b) On conserve les notations du (a). L’application 7~ Ind}j (770 pr ®7)
de lensemble des classes d’isomorphisme des c~!-représentations projectives irré-
ductibles de A, /B, dans l’ensemble des classes d’isomorphisme des représentations
unitaires de A, est injective. Son image est formée des éléments de A dont la res-
triction a B est multiple de [z pdm(p).

(c) Quand l’espace mesurable quotient A\§ est dénombrablement séparé
(c¢’est-a-dire qu’on peut trouver une suite (E,)nen de parties mesurables de E =
A\E telle que pour x # vy dans E, il existe m € N vérifiant x € E,, et y ¢ E,, ),
tout élément de A s’obtient comme au (b) pour une unique orbite de A dans B.

Démonstration de la proposition. (a) L’hypotheése « metrically smooth of
type I » de Mackey va se traduire par « de type I » d’aprés [Dix 64, prop. 4.6.1
p. 95 et th. 9.1 p. 168]. Le groupe A, est fermé dans A et m existe d’aprés [Mac 58,
th. 7.5 p. 295]. L’existence de ¢ et de 7 est donnée par [Mac 58, th. 8.2 p. 298|.

(b) Ce résultat est cité dans [Mac 58, th. 8.1 p. 297 et 8.3 p. 300]. II se
réfere & la classe de représentation de B associée & m, construite & la fin de sa
section 7 p. 296, qui renvoie aux lignes 4 a 6 p. 273.

(c) Reésulte de [Mac 58 th. 9.1 p. 302] et de la fin de sa section 7 p. 296. O
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Les représentations classifiées un peu plus loin sont les représentations
unitaires irréductibles « tempérées » de G. Cette notion mérite une définition.

Définition 9.5. (a) Soit my € é\o. On dit que 7y est tempérée si elle est
équivalente a une sous-représentation d’une représentation Ind%(~ ®@n® ly),

ou P est un sous-groupe parabolique de Gy de décomposition de Langlands
P = MAN, & est une représentation de la série discréte de M, et 7 est un
caractére unitaire de A. On peut montrer comme dans [Kna 86, th. 8.53 p. 260
et th. 12.23 p. 456] que cela équivaut a la condition suivante : |DGO|1/ > trm est
bornée sur (Go)., e, -

(b) Soit 7w € q. D’aprésMﬁn (b) et (c), il existe n € Net my,...,m, € Gy

tels que mig, = @ . Ondit que 7 est tempérée si my,...,m, sont tempérées.
1<k<n
Théoréme 9.6. (a) Ona: a- Tf = TY pour tout automorphisme a du
T a-\,a-T

groupe de Lie G'.
(b) L’ensemble G\ XH* (resp. G\ X5'™7) s’injecte dans G par Uapplica-
~7 ~1
tion qui envoie Uorbite de (X, 7') (resp. (\,a” ", 7)) sur T;\Cf . (resp. T;\G, et )
T ol

Son image est formée des classes de représentation dans G qui sont tempérées.
N/ ~ . . . . . . N ~
(D’apres le lemme les X € @, qui interviennent ici appartiennent G @, o ).

Démonstration du théoréme. On va utiliser les notations du début de la
partie [[IT] et des sections[7] et

a) Au vu d’une propriété de l'induction citée dans la démonstration du
lemme (b), on est ramené & prouver que a - TMO T“ Mo quand G est connexe.

Cette egahte provient des formules pour les caracteres de a- TMO et Ta Mo obtenues
(sans le th. [0.6) dans la derniére partie de la démonstration du theoreme [10.2]

(b) On suppose dans un premier temps que G est connexe. Tout d’abord, les
représentations limites de la série discréte de G sont tempérées d’aprés [Wal 88|, th.
6.8.1 p. 202, prop. p. 142, prop. p. 139] (voir aussi [Kna 86l corollary 12.27 p. 461]
pour une étude de la propriété du caractére donnée dans la définition [9.5] (a)). On

en déduit que la classe de représentation T~G oo+, de la définition 7.5 est tempérce

en adaptant la preuve de I'implication (3)=-(1) de [BW 80, proposition IV 3.7],
et appliquant I'implication (1)=-(3) de cette méme proposition.

On se donne une représentation unitaire irréductible tempérée de G dans un espace
de Hilbert V. Soit K un sous-groupe compact maximal de G. D’apreés le théoréme
11.14 (b) de [ABV 92| p. 131] avec z = 1, il existe un « caractére limite final Ay »
tel que le (g¢, K)-module sous-jacent a V est isomorphe a celui de la représentation
m(Ay) qui est définie dans [ABV 92, p. 122] modulo [KV 95, 5) p. 742|. J'utilise
le dictionnaire proposé dans la démonstration du lemme|7.3| (b). L’égalité (11.196)
de [KV 95 p. 740] fait apparaitre la représentation m(Ay) comme quotient d’'une

représentation Ind% (TM et ,® n ® 15) induite & partir d’'un sous-groupe

M.AN
parabolique MAN de G, pour un (/\ ca* T\) € X%ml’+ et un caractére 7 de A

réel. On a donc MAN = G d’aprés [BW 80, lemma IV 4.9] et [KV 95, (11.197)
p. 741], et le groupe G agit dans V' par une représentation de classe T;\Cf e
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~I
On se place dans le cas ou (A, d *t . T") vérifie TS =TE . On introduit
+ +
Nt T P Xarhry

les triplets (A", R, Rit) et (N", Rz, R') attachés a 7, et 7/ comme dans
la démonstration de [7.3| (b), et pose b’ = g(XI). Les différentielles des caractéres
centraux de A" et A“" sont égales a i\|y et & iX |y . D’aprés [ABV 92] th. 11.14
(c) p- 131 et def. 11.6 p. 124, il existe g € G tel que, en notant ¢ 'application
qui envoie x € G()\;) sur le déterminant de la restriction de Adz® a la somme
~/ ~
des g& avec a € R et ga ¢ Ry, on ait: A\ = g\ et A" = g. (A" @ m)
Gréce au lemme (a) et & un calcul fait dans la démonstration de (b), on
p{l/‘l/* g/b*

obtient: ;/“T/Jr Th=g- (lz;/++| 74 ). Comme les chambres de (g(\)(ipr+),a) sont
inr4)0(@), il existe u € G(X) tel que (XI, a* 1) = gu-(\, a* ™).
A fortiori, on a 7, = gu -7 d’aprés le lemme (b).

conjuguées sous Ngy)

On ne suppose plus G connexe. Il s’agit d’adapter la démonstration de
M. Duflo dans [Duf 82al p. 176 a p. 179|. On remarque que les sous-groupes fermés
distingués B; = Go(A,)¥Y et By = Gy, respectivement de A; = G(\;)*" et
Ay = G, sont de type I d’aprés [Dix 69, prop. 2.1 p. 425]. En particulier, les
espaces mesurables E\l et Z?\g sont standards d’aprés [Dix 64, prop. 4.6.1 p. 95
et th. 9.1 p. 168]. Leurs quotients sous les actions a gauche des groupes finis
respectivement égaux a A;/B; et As/Bs sont donc dénombrablement séparés.

On va introduire plus bas un certain 7, € (Go(A4)¥")”. On notera G()\+)g/h
le stabilisateur de 75 dans G(A\;)% G(\y)x 'image de G()\+)%h dans G(A\y)
et M'(N)™ I'image réciproque de G(X, )y, dans M’(A)™/. On désignera par la
méme notation pr les projections canoniques de G()ur)%b, G(A4)nGo et M’ (X)’%// "
sur G(Ay)r/Go(Ay). Daprés la proposition [9.4] (a) et (c), il existe une sous-
représentation irréductible 75 de 7| Go(Ay)e/bs UL cocycle mesurable unitaire ¢ de
G(A+)r/Go(A+), une classe d’ 1somorphlsme To de co(pr x pr)-représentation pro-
jective de G ()\+)g/ " qui prolonge 75 dans son espace, et une classe d’isomorphisme
7 de ¢ !-représentation projective irréductible de G(Ay)r/Go(Ay), tels que:

T+—Ind o )B/h(nopr®ro)

On construit maintenant trois isomorphismes de représentations unitaires.

( )g/h(n pr ®TO)

Le premier, relatif au groupe M’ ()\)m/ b va de I'espace de IndG(/\

E; ,/h(nOpr ®(7’0)M/) ou (7o) est la co(prxpr)-

représentation projective de M’()\)m/h telle que 5 (TO)M/ = 59/*)7_0 sur G(Ay ) -
Il s’écrit o+ pyp avec (5;1”/)* gpM/_((Si/:]) (Cf la démonstration de( ).

muni de 7y sur celui de Ind

Le second, relatif a M’ va de I'espace de (Ind 5 ,/b(n o pr®(7o)mr)) ® ST~ 0

muni par transport de TM sur celui de IndG(/\+ M,((n opr®(7o) ) ® ST~ ) ol
1’

™
la représentation de G ()\+)TOM a laquelle il est falt allusion est construite comme

T/{” " dans (a). Il envoie un élément de la forme ¢ ® v sur 1’élément v vérifiant
STy

Vloy) = o(8) © T W)~ S(@)!
pour &€ M'(A\)™" au-dessus de = € G(\;) et y € M.
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On note (Mg, (70)m) le « couple (M’ 7ar) » obtenu a partir de (Go, A, a* ™, 7p)
au lieu de (G, A\, a**, 7, ). Il existe une unique co (pr x pr)-représentation projective
Ty de G (A4 )rGo qui prolonge T~ v de facon que son action sur un élément ¢

de espace de IndMé o (((10)mr ® ST;WO) ® 1) verifie
0

(To(zg)-6)(h) = |det(Ad@)u| " x ((Fo)ar () ® S(2)) - Slg~ 2 )
pour I € M’()\):g/b au-dessus de © € G(Ay), et g,h € Gy.
Le troisieme isomorphisme, relatif & G(Ay),,Go, est fourni par I'application de

N , G\ )r G ~ - M
restriction & Gy, de l'espace de Ind(G((;rj)foj\(}(,)).U(((n o pr@(mo)m) ® ST °) ® 1y)

+

sur celui de 7 o pr@T, (identifié & un espace de fonctions sur Gy ).

En récapitulant, on trouve que: B
TG Indg(/\Jr)TOGO (o preTy).

Aaxtry

Il reste a appliquer la théorie de Mackey. D’apres I'étude du cas connexe
faite ci-dessus, on a T~G 0* i € Go et le stabilisateur de T~G 0* dans G est égal a

G(A+)rnGo. La prop081t10n (b) fournit la bijection & +— IndG()ur)TOG0 (Gopr &Tp)
1

+

de l'ensemble des classes d’isomorphisme des ¢ -représentations projectives irré-
ductibles de G(A4)r,/Go(A1) sur 'ensemble des éléments de G dont la restriction
4 Gy est égale a la somme hilbertienne des g - T avec g € G/G(Ay)rGo.

2ot 7
Ainsi, au vu du cas connexe, on a: la classe de representatlon T;\Gu* + . est tempérée
5 s T+

irréductible, toute 7 € G tempérée est atteinte d’aprés la proposition (c), et

. Yo+ final, + G _ G
par un calcul facile tout (A,a”™", 7)) € X7 tel que TZ\’,a/**,r;_ T;\7a*+,f+ est

conjugué a (X, a*t,7,) sous G. A fortiori pour un tel triplet (Xl7a’*+, 7)) on a
(X/, )€ G- (N 1), on 7 se déduit de 7\ comme dans la définition (c). i

Remarque 9.7. On suppose dans cette remarque que h\ € g5 et pose T =1T7,.
On va retrouver explicitement 'orbite de (A, 7) sous G a partir de tr T;\GT.

Dans un premier temps, je vais récupérer G - X. Le théoréme fournit
I’'égalité (trT;\GT)1 = dim 7 x 56‘5\‘1/1 ou V; est un voisinage ouvert de 0 dans
g, qui coupe donc chaque Composante connexe de g..,,. D’aprés la proposition
(c) et la fin de la remarque [2 , on en déduit que TG détermine By ;5 -

Les mesures de Radon temperees BQ sur g* avec {2 € G\gmg sont hnealrement

indépendantes, car chaque fq est non nulle concentrée sur 2. Compte tenu de la
proposition (a), la classe de représentation T f détermine l'orbite G- \.

)

Je vais maintenant reconstruire tr7r a partir de T;\GT et de A. On sait

déja que T(expX) = e ¥ id pour X € h. Soit é € G(\;)¥" au-dessus d’un
e € G(\;) elliptique. On lui associe un ¢, € eexpt(e) comme dans le lemme
(b). Le théoréme (10.2] exprime (tr T;\GT)BO comme combinaison linéaire des

—_—

classes de fonction localement intégrable BG(GO).;\/ avec X/ € G(eo)\g(eo) qui
) Veo

sont linéairement indépendantes. Le coefficient de (tr T;\G )6 suivant BG (c)-3eol |y

fournit trr(é). .
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IV. Caractéres des représentations

A nouveau, on considére un élément A= (X, F+) de @5, ot pose h = a().
On note p et v (resp. t et a) les composantes infinitésimalement elliptique et
hyperbolique de A (resp. b). Soit a** une chambre de (g(A\)(ipz+), a). J'utiliserai
les autres notations de la partie [[IL] (dont M, m, 73y pour la section [7] et, M’,
m', U, 7 pour la section sans rappeler ce qu’elles représentent.

On se donne dans cette partie un élément elliptique e de G (a ne pas
confondre avec la base e des logarithmes népériens).

10. Formule de restrictions des caractéres

La formule que je vais maintenant écrire généralise celle d’A. Bouaziz dans
[Bou 87, th. 5.5.3 p. 52| (voir aussi [DHV 84} th. (7) p. 106]), tout en s’y ramenant,
et celle de W. Rossmann [Ros 80, p. 64| relative au cas e = 1.

Définition 10.1.  (a) On note D¢ la fonction sur G dont la restriction a
chaque composante connexe G de G envoie z € G sur le coefficient de 7" dans
det(Tid +id — Adx), ou r7 est le rang commun aux algébres de Lie réductives
g(xzt) quand zT décrit I'ensemble des éléments semi-simples de G (cf. [Bou 87,
lem. 1.4.1 p. 6]). Elle est analytique et invariante sous int G.

(b) On note G,,,, l'ensemble des x € G semi-simples tels que g(x) est
commutative. Donc G,,,, est I'ouvert dense de complémentaire négligeable de G
formé des points ot D¢ ne s’annule pas (cf. [Bou 87, 1.3 p. 5]).

(c) Onnote d, = 3 dim(1—Ade)(g/j) et D, = det(1—Ad 6)(17Ade)(g/j) >0,
indépendamment du choix de j.€Car g(e) auquel on associe j:= Cq4(j.) € Carg.

(d) On note
V. = {X €g(e) | |Imz| < e pour toute valeur propre z de ady X }

1/2
ad X/2 _ —ad X/2 det(1 — Ad X .
et ko(X) = [det (e ‘ ) M= Adeoxp X))o )
ad X ale) det(l — Ad e)g/g(e)
pour X € V., ot &, =inf{# € ]0,27] | e est valeur propre de Adge } < 2.

(e) A toute fonction généralisée int G-invariante © sur G, on associe (cf.
[IDHV 84] (6) p. 98]) la fonction généralisée Ad G(e)-invariante ©, sur )., déter-
minée par I'égalité O.(X) = ko(X) x Olcexpn, (eexp X) de fonctions généralisées
en X €.

Légalite G = U intG - (egexpV,,) de [Bou 87, lem. 8.1.1 p. 72] (cf.

eg€G
eo elliptique

[IDV 93| lem. 40 p. 41|) montre que dans la situation du (d), les ©,, avec eg € G
elliptique déterminent ©.

D’aprés [Bou 87, 3.1 haut p. 21|, toute représentation unitaire topologique-
ment irréductible © de G est tragable, avec pour caractére une fonction trm
localement intégrable sur G invariante sous int G dont la restriction a G,,,., est
analytique.

s reg
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Théoréme 10.2.  Etant donnés 7 € X24(X) et 7, € Xgm”(i, a*") associés
comme dans (c), on a

(1), = D* Y |a’e*+}|1< >, A iterur(e >)5G<e

/\ GG(@)\Q( )7eq S\IG G'S\mgj;'eg(e)
tel que 5\,[6} existe
et S\I[e] = 5\;

-1 B —~\ ~
(trT/\GaHH) — {2 Z o, 1( Z iatrn(e;))BG(e)_;; y

= N, eG X yng(e)*
A€ GeNa(O) g 1€ Ngle)

tel que 5\,[6} =X,

~1
ou on donne un sens. a la somme portant sur A en choisissant g € G tel que
X = g\ puis fiant ¢ € GN)MN0re) qy-dessus de ¢ = g eg
(resp. : on donne un sens a la somme portant sur X, en choisissant g € G tel que

N = g\y puis posant X = gx et fizant a € G(AL)¥" au-dessus de € = g~'eg),
iv est le signe tel que o(€') (- Ade)(@/sNGor1)) = T O(Brcan) 1-Ade)(a/aN) (0+)
(resp. : :I:eTr est le signe tel que O(e+>(1—Ade)(g/b) = :|:7+ O(Bx,)(1-ade)(g/b) s

dﬁ,(/\)(ipf” est le coefficient der relatif a g(A\)(ipr+) et dy 5= de — dg,(/\)(ipﬁ),

b, = g(e)(xl[e]) et a, est la composante infinitésimalement hyperbolique de b,
(N, FT) = X/[e] et {a.**} est U'ensemble des chambres de (g (e)(N)(ipz~+), ar) -
Les sommations portant sur G(e )\g( €) ey Jont intervenir un nombre fini de termes
sommés non nuls. Les autres sommations portent sur des ensembles finis. La
condition « X,[e] eziste » peut étre oubliée, car elle est réalisée quand trr(e') # 0.

En particulier, pour presque tout X €V, on a

. . 1/2 ‘ ~
det (eﬂ/;—exdml x tr T7\Cfa*+,r+ (expX) = dim7y x B55(X).
Remarque 10.3.  Voici deux exemples et une précision importante.

(1) Premier exemple: G = GL(2,R) et e = (973'), X = (0, F%) avec
Ft Ciso(2)*®Z(g)" et 7= x§. Donc Me] existe dans g(e)*
sur G- AN gk, (e) fait ici intervenir deux nombres complexes non nuls et opposés.

(2) Deuxiéme exemple: G est produit semi-direct de Z/27Z par SL(2,R)?
o I'élément non trivial de Z/2Z opeére sur S L(2,R)? par permutation des coor-
données et e = ((97), (Y7)), X = (0,F") avec F' C (is0(2)*)? non stable

sous Z/27 et T = XS\' Donc Ae] existe dans g(e)®, . Les deux éléments X de

reg

reg* La somme portant

G-XnN g%, (e) sont conjugués sous G(e), et vérifient : A[e] existe et )\[e] = \e].
Les nombres complexes sommés correspondants sont non nuls, et bien siir égaux.

(3) Il peut arriver que des mesures BG ¢).&/, Ton linéairement indépendantes
interviennent avec des coefficients non nuls dans la formule du caractére. En effet,
placons nous dans le cas suivant : G est le produit semi-direct canonique du
groupe symétrique &, par SL(3,R)*, A = 0, b est produit de 2 copies d’une
sous-algeébre de Cartan déployée de sl(3,R) avec 2 copies d’une sous-algébre de
Cartan fondamentale de s[(3,R), a** est stable par permutation des 2 premiéres
composantes. On note e = (12) et g = (13)(24) dans S&4. Donc G~Xﬂ§’;€g(e) =
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G(e)- AU Gle)-gA, Ae] et (gA)[e] existent dans g(€);,,, G(e)-Ale] # G(e)-(gN)[e]

reg? _
et Beaerig = Bote)@hg (-4 (3)). En outre, il existe 7. € X (X, @) pour

lequel les coefficients de B¢ ). 5 sous formes de sommes

v et de Bae) iy,

e

~/
portant sur A sont égaux et non nuls. "

Remarque 10.4. On suppose que G est connexe et utilise les notations de
la section [7] Différents auteurs ont utilisé dans certaines situations des formules
du caractére équivalentes a celle du théoréme précédent, mais relatives a d’autres
paramétrisations. Pour relier ces formules, je fixe un systéme de racines positives
R{(gc,bc) de R(ge,bc) qui contient les conjuguées de ses racines non imagi-
naires. On note pgpo €t pmeo les demi-sommes de racines positives associées a

Ra_(g(c, [)@) et a Ra_(g(c, f)(c) N R(m@, f(c).

(a) L’application de C'(g()),h) dans 'ensemble des chambres de (mc, t¢)
dans it* dont I'adhérence contient iy, qui & un élément 7'+ de C(g()\), h) associe
la chambre de (mc, tc) contenant ij, \ 7+ 0y, est bijective. On note C* I'image
de F* par cette application. On pose

sgo(From) = [ se(C™(Ha)) I1 sg(—C"(Ha)).

aeR;(gC7hC) OCER(T(gc,K]((:)
« compacte « imaginaire non compacte

(b) Onnote T = Cjs(t) = Cpr(m) exp t. L’application de X ¥/ (1) dans l'en-
semble des caractéres unitaires de T de différentielle ip— pnio quia o € Xi7 (1)
associe le caractére unitaire n de T tel que n(zexpX) = o(z,1) elir=rmio)l(X)
pour x € Cp(m) et X € t, est bijective.

(c) Soit ¢ € X7 (xt). On note n son image par Papplication du (b). La
fonction @%Cﬂ de [Var 77, th. 23 p. 260] relative au groupe M s’écrit :

@%Cﬂ: sgo(FT, 1) x trTé‘f,.
En particulier, quand M, est semi-simple et « acceptable », la fonction ©;, ¢+ de
[Har 65, p. 305] relative au groupe My s’écrit:

O+ = 8go(F T, 1) x tr T[JLWO.

Par ailleurs, quand G est linéaire, tr T[ﬁ‘f{, est not¢ OM (iu, Cto(e1) ‘Z(M))
dans [KZ 82 p. 397| en identifiant t et t*.

(d) On se place dans le cas ou G est la composante neutre du groupe des
points réels d'un groupe linéaire algébrique complexe défini sur R semi-simple et
simplement connexe. On dispose ainsi d’'un caractére complexe £, de expbhc de
différentielle pyp0. On fixe un caractére unitaire 7 de 7' comme au (b). Lorsque
v est (g, a)-réguliere, la fonction §(T'A,&,n,v) de [Her 83, p. 244| s’écrit :

O(TAEn,v) = [ClaN.0) 7 < > sg(F )« ulf
. , FrECEN e -
ot A = (A, FT), N est associé¢ & (\,a*) comme dans (b), et 7 € X&"(X\)
est déterminé par 1'égalité ((5?\,1 ")

zany 200 "

La démonstration du théoréme va se faire en trois étapes. Les deux premiéres
étapes suivent l'article de Bouaziz: on passe de G a G(A )Gy, puis de G(\;)Gy
a M’. Dans la derniére étape, une variante du foncteur de translation de Zuckerman
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va me permettre de relier les caractéres des représentations de M’ qui m’intéressent
aux caractéres étudiés par Bouaziz.

Début de la démonstration du théoréme.  Soient g’; € G(AL)%Y et ¢ e

G(N)#8NGrr+) au-dessus d'un méme élément elliptique ¢ de G(\y). Les valeurs

propres autres que —1 et 1 de la restriction de Ad e’ Ca v > gc
a€R+(9()\)(iPF+)c7bc)
sont non réelles deux a deux conjuguées de module 1. Comme L5 .+ /be (cf.

(a)) est somme directe des sous-espaces Ad e“invariants L5/g(\)(ipr+)c (cf.
(c)) et o, on a  qr; u*+/hc((Ade)g/b) = 4L/ Gors) ((Ad€)g/a0Gi,1)
relativement a B, , puis d’apres [5.4f et [4.2] .

j:A pi/’h@) =+ Pl g(A)(lp;+)< )X i—1/2dim(l—Ade’)(g(A)(ipf+)/h)

ou les signes +5- et 5 sont définis comme dans le théoreme.
+

Soient Xg € G-Xﬂﬁ;;eg( ), go € G vérifiant /\ = go, et 60 € G(X)3hNlers)
au-dessus de e, :d 95 tego. far la définition (c) et ce qui preced/e,\ on obtient
5 1 0N trr(e) = Z +— i trr (e, ,)
0 k)

£ +.z
FEG/GO)
tel que 7 le) z € G(Ay)

indépendamment du choix de ¢, , € G(A4)?" au-dessus de €, =z 'ej .

Ensuite, pour tout /\ € g( )Teg on obtient I’égalité de sommes finies
—d, ) —~
E o1 e AtrT(eO) = E :I:ezl dtrri ().
X€ G-AN g, (e) N, €G-Arng(e)*
~ ~ </
tel que )\z)[e] = )\/e tel que Ale] =
Les deux expressions du caractére proposées dans le théoréme sont donc égales.

Soit A (resp. A_) un terme associé¢ a un X; comme dans le théoréme. On a:
~ ~ ~ ~ ~ ~1 ~ o~
(€G- ANG0) | GNid =X et A€ G0 Xy =G0 X
(resp. { ghe €G- Xy 19(e)* | (9V)le] = X et gAs € G(e)- X, } = Gle)(R) - X, ).

Le théoréme équivaut donc a chacune des formules (F') et (F,) suivantes:

oy & -1 (—do [EORNOIRY N 3
(trT;\ ) = D.? Z =R B tr(e’) /BG(e)&'[EJ V.

e [{a.* "}

N eGe\ G- ANy (€)
tel que /\[e]Eg( )

reg

. Fp) ., -1 |G (K leD-Ay | )(Xel)- N, |
(tI'T/\ Cl*+7'+)€ = 1 -De 2 ' Z :t ’{ /*+}| <€+) /BG )\[e] Y

e
G(e\GAtng(e)”
tel que X [e] Eg(e)

reg

Cela permet en particulier de préciser les résultats énoncés dans I'introduction.

D’apreés la déﬁnition (e),ona Ew = > Bwo pour w € G(e )\9( )reg
wo€G(e)o\w

Ainsi le théoréme équivaut a I’énoncé qu’on obtient en y remplacant G(e) par
G(e)o, et donc aus& a celui qu’on obtient en remplagant G(e) par G(e)y dans (F).
Soient A et X comme dans (F}). Le groupe G(e)o(A /[ ]) opére transitivement sur
{a’* "} par I’action de certains éléments de W (g(e)c, ble) (notations du théoréme).
Comme ), appartient a h,"Ng(e) ., , le stabilisateur d'un élément de {a;, 1 est

égal a G(e)o()\/[e])()\ﬂr) d’aprés le lemme . Donc ‘G e 0()\ el) - N | = ‘{a’e*Jr}‘.
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Par conséquent, les formules & démontrer équivalent a la formule suivante :

_1 0(e,) , -\ 3
G _ i—de 2 +/(1—-Ade’)(g/h) / -
(tr 75y, ). = 1% De > OB ooy THE) Ba@ohial,

N, € G(e)o\ G-ArNgle)*

—

tel que (gA)[e] €9(e)7ey

o g€ G vérifie N, =g\, et g’: € G(AL)¥" est au-dessus de ¢ = g leg.

On remarque pour la suite (section que dans le raisonnement précédent, on
peut remplacer G(e), par n’'importe quel sous-groupe L de G(e) qui contient
G(e)o et dont le groupe adjoint est inclus dans int g(e)c.

Les orbites sur lesquelles on somme étant semi-simples réguliéres, on va
pouvoir reproduire la plupart des arguments de [Bou 87].

€] _ e} G(A\4+)Go . . ) .
On a Ti\,u* b = Indéin,) o T;\’a* tn, par« induction par étages », puis
G _ E G(A4+)Go
(tI‘ Tj\,a* +ry )e o Adz - (tI‘ Tj\,a* oy )x*lem ’

z€G/G(A4+)Go tel que z—lex € G(A4+) Go
Comme l'ensemble G - A N g(e)* est réunion des ensembles disjoints
Ad*z- (G(A\4)Go- A N g(z~tex)*) on & € G/G(Ay)Gy vérifie z7tex € G(A4)Go,
on peut supposer que G = G(Ay) Gy. o

M’ 5 PG
11. Passage de TXTM, a TS\,a*+,T+

. ~ 2 ~ /
Dans cette section, on va se ramener a montrer le théoréme pour TXMT en
sTag!
reprenant mot a mot la preuve de Bouaziz concernant le cas semi-simple régulier.
Les résultats énoncés dans la proposition suivante sont démontrés dans

[Bou 87, lem. 7.1.3 p. 65 et lem. 4.2.1 p. 38|.

Proposition 11.1. (Bouaziz) (a) Soit m une représentation unitaire topolo-
giquement irréductible de M'. On lui associe 11 = Ind%:go(ﬂ ® 1y). La repré-
sentation unitaire 11 de M'Gq est somme hilbertienne d’un nombre fini de sous-
représentations topologiquement irréductibles (cf. |[Dix 64, prop. 5.4.13 (i) p. 110]
ou [Wal 88, prop. p. 25]).

On suppose que e € M'Gy. Pour tout j. € Carg(e) et tout X € j. tel que
eexpX € (M'Gp)ssreg, 0N @

|De(eexp X)|Y? (trI) (e exp X)
= > [Darr(ge exp Xg~1) V2 (tr ) (geexp Xg ™)

(M'NGo) g € M'NGo \ {90€Go | 90 eexpjego_lgM’}

ot la somme de droite porte sur un ensemble fini.

(b) Soient v' € g* une forme linéaire hyperbolique, ' une sous-algébre de
Cartan fondamentale de g(v'), et M| un sous-groupe de Go(V') qui contient le
groupe Cg,(h)G(V')o. Pour tous X € h'* Ng* jeCarg et X €)N Gy, ON a

ssreg?
12 3 x
De(X)['? Bagn(X) = >, Dy (@ X[V Bagg (2 X)
M{ z € M{\{z0€Go |zoj Ca(v')}
ot la somme de droite porte sur un ensemble fina.
Suite de la démonstration du théoréme. On suppose réalisée ici I’égalité
G = G(A\;) Gy, a laquelle on s’est ramené.

. . . < . !/
On admet (provisoirement) que le théoréme est vrai pour T 51\\47 .
sTM/!
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Pour obtenir la formule du caractére pour tr TSG* o il suffit de la vérifier
sur 'ouvert inclus dans g(e)., .., de complémentaire négligeable (cf. [Bou 87, avant
lem. 1.4.1 p. 6]) et sur lequel les deux membres de ’égalité sont des fonctions
analytiques, formé des X € tels que eexp X € G,,,.,-

On fixe j. € Carg(e) et X €j. NV, telsque eexpX € G,,,.,. On a:

ke(X) = [ det(1 — Ade)g/g)| ™"/ x [Dy(e) (X)|71/2 x| Dg (e exp X)|'/2.

En paraphrasant les calculs de Bouaziz, on fixe des représentants g1, ..., gn
des doubles classes dans M’ N Go\{go € Go | goegy' € M'} / G(e)y. On pose
e1=gieg; ', ..., en=gneg, . La réunion disjointe des ensembles

M' N G(ej)o\{mo € Glej)o | Togjje S m'(e;)} ont 1< j<n
est en bijection avec I’ensemble
M'NGo\ {90 € Go | goeexpjegy’ € M'}
par 'application qui envoie (j,4) sur xg;. On écrit (tr Tfa*+’7+)e(X) a laide

de la proposition [11.1| (a) en prenant 7 = T/{V[T/ et en tenant compte de cette
sSTa!

bijection. On utilise ensuite ’expression de (tr 13

’

) proposée au début de la
Tm! 7 €5

démonstration du théoréme, avec L = M’'NG(e;)o. Cela fournit trois sommations.
On intervertit les deux derniéres et tombe sur:

2. 2 2.

1<j<n g).\_i,_ S M’ﬂG(Ej)Q \ M/-)\+ﬂ m’(ej)* T € MIQG(ej)O \ {IOEG(CJ')O ‘ o gjje gm/}

*

tel que (g3)[ej] € a(e;) 1oy

La derniére somme se calcule en appliquant la proposition m (b) apres

avoir remplacé G par G(e;), V' par vy, b par (gh)(e;), M; par M' N G(e;)o,

X par g\ avec t € ]0,1] (cf. , j par gjje, et X par g; X, puis en passant

a la limite t — 07 (cf. (b)). En outre, la réunion disjointe des ensembles

M NG(ej)o\ M - Ainm'(e;)* ou 1 < j <n esten bijection avec I'ensemble

G(e)o\ G - A\yNg(e)* par Papplication qui envoie (j,1) sur gj_ll. Cela permet de
regrouper les deux premiéres sommations en une seule.

Soient gﬁ: € G\ et gn; e M'(A\)™/"  au-dessus d'un élément
elliptique ¢’ de G(\,). Les valeurs propres autres que —1 et 1 de la restriction de
Ade’© a ue sont non réelles deux a deux conjuguées de module 1. Comme Ly, /be
(cf. [5.2) est somme directe des sous-espaces Ad e’ C.invariants b m/be et uc, on a
Q[:)\t//\hc((Ad e)gsp) = QbM//hc((AdeAl)m’/h) relativement a B, , puis d’aprés (4.2 (d):
O3 ey P () = 0, TS AL (G) x /2000,

A Daide de I’égalité écrite dans la démonstration du lemme (a), on en dé-

duit la formule du caractére pour tr T:\G . (en 'admettant pour tr 7M" )
,Cl* sT4 A

STy

12. Translation au sens de G. Zuckerman

Dans cette section, il s’agit de créer un outil pour la seule étape délicate: le
calcul du caractére de la représentation définie aprés un passage dans I’homologie.

Je commence par rappeler quelques résultats classiques.

Lemme 12.1.  Soient © une représentation linéaire continue de Go dans un
espace de Hilbert complexe V et Ky un sous-groupe compact maximal de Go. Dans
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ces conditions, on notera Vi, la réunion des sous-espaces vectoriels de dimension
finie de V stables par K.

Pour chaque N € N, les propriétés (i) et (ii) suivantes sont équivalentes :

(i) il existe une suite finie Vo =V 2D V3 DO --- D Vy = {0} de sous-
Go-modules fermés de V tels que les quotients V;_1/V; avec 1 < j < N sont
topologiquement irréductibles sous Gy et possedent un caractére infinitésimal;

(ii) les multiplicités des éléments de I/(\o dans Vi, sont finies, ce qui im-
plique que g opére sur Vi, par dérivation de l'action de Go (cf. [Var 74, th. 14
p. 313]), et il existe une suite finie (Viy)o = Vi, 2 (V)1 2+ 2 (Vk,)n = {0}
de sous-(gc, Ko)-modules de Vi, tels que les quotients (Vi,)j—1/(Vk,); avec
1 <j < N sont des (gc, Ko)-modules irréductibles.

Quand ces propriétés sont vérifices, m est tracable, et les « composantes
Z(Ugc) -primaires » VX de V associées aux caractéres x de lalgébre unifére
Z(Ugc), définies comme les adhérences dans V' des sous-espaces vectoriels

(Veoy:={wveV>®|VueZ(Ugc) (u—x(u)"v=0} pour « n grand »,
sont en somme directe de somme dense dans V'; de plus I’ensemble P des poids de
Z(Ugc) dans V=, formé des caractéres x de Z(Ugc) tels que VX # {0}, est fini.
Démonstration du lemme. On constate d’abord que pour tout sous-Gy-
module fermé W de V, l'injection canonique de Vi,/Wyk, dans (V/W)g, est
surjective. En effet, en notant pry,w la projection canonique de V' sur V/W, pour
tout sous- Kp-module F' de dimension finie de V/W le sous-espace vectoriel dense
pryw (Vg N pr;/lW(F )) de F est égal & F. Par ailleurs, on dispose pour chaque

—

d € Ky d’un isomorphisme de Kjy-modules canonique de Vs/Ws sur (Vi,/Wk,)s
(en notant Ej la composante isotypique de type ¢ d'un Ky-module E'). Donc pour
chaque ¢ € l/(\o, les Ky-modules Vs/Ws et (V/W)s sont isomorphes.

Quand (i) est vérifié, les espaces vectoriels (V;_1/V;)s avec 1 < j < N
et 6 € I/(\o sont de dimension finie d’aprés [Var 77, prop. 16 p. 314 et th. 19
p. 316], puis les espaces vectoriels Vs avec 6 € I/(\o sont de dimension finie; la suite
Vo)ko = Vig 2 Vi)ko 2 -+ 2 (V) i, = {0} satisfait la condition de (ii) d’aprés
[Var 77, fin de th. 14 p. 313|.

Quand (ii) est vérifié, la suite (Vk,)o=V 2 (V)1 2 -+ 2 (Vk,)n = {0}
satisfait la condition de (i), & nouveau d’aprés [Var 77, th. 14 p. 313].

On suppose dorénavant que les propriétés (i) et (ii) sont vérifiées. Le résultat
« 7 est tragable » est dit & Harish-Chandra (cf. [Wal 88, 8.1.2 p. 292|).

D’aprés (ii) et [KV 95, cor. 7.207 p. 530], on peut appliquer [KV 95 prop.
7.20 p. 446| a la fois & V'™ et a ses composantes Z(Ugc)-primaires (ici a priori au
sens de [KV 95]). Par conséquent, le membre droite de 1'égalité qui définit (V/°°)X
stationne en n et V> est somme directe d'un nombre fini de ses composantes
Z(Ugc)-primaires. On fixe n € N qui convienne relativement aux définitions de
tous les (V)X x € P.

Soit Q) C P. Les caractéres de Z(Ugc) étant linéairement indépendants, on a

Y (v = {u €V |VueZ(Use) [(u—x()" v= o}.

XEQ XEQ
On se donne une mesure de Haar dg, sur Gy et une suite (¢g)reny d’éléments
positifs de C2°(Gy) d’intégrale 1 pour dg,, dont les supports « rentrent dans tout

voisinage de 1 dans Gy ». Ona (), VX)>®°= >~ (V)X car pour tout u € Z(Ugc)
XEQ XEQ
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les endomorphismes continus 7 (¢rde, * [] (v — x(u))") de V avec k € N sont
X€Q
nuls sur Y (V)X puis sur Y VX, et d’autre part convergent simplement sur
XEQ XEQ
(> Vx)*® quand k — +oo vers Popérateur associé¢ a [] (u — x(u))™.
X€Q XEQ
Pour chaque xo € P, on a donc (VX0 n > VX)OO = {0}, ce qui montre
x€P\{xo}
que les espaces vectoriels VX avec x € P sont en somme directe. O

Définition 12.2.  On appelle « Gy-module de longueur finie admissible » (ou
« Gp-module de Harish-Chandra ») tout espace de Hilbert complexe V' muni d’une
représentation linéaire continue 7 de (G en son sein qui vérifie les propriétés
équivalentes du lemme précédent.

L’objet de la proposition suivante est d’adapter le foncteur de translation
de Zuckerman (cf. [Zuc 77|) au cas d’une représentation d’un groupe non connexe.

Proposition 12.3. On fixe un groupe de Lie réel G dont la composante neutre
est égale a Gy et un élément a de G qui opére par automorphisme intérieur sur
Go comme un certain élément a de G. On suppose pour simplifier que le groupe
G est engendré par aG .

Soit ™ une représentation linéaire continue de G dans un espace de Hilbert
complexe V' dont la restriction a Gy est un Gy-module de longueur finie admissible.

(a) On définit une fonction généralisée (trm)ac, sur aGy, invariante sous
int Gy, localement intégrable sur aGq et analytique sur aGo N G.,,.,, en posant
(tr maco (pda) = trm(pdg)  pour tout v € C*(aGy),
ou p € CX(aGy) est définie par p(azy) = p(axy) pour xo € Gy et, dg et dg
sont des mesures de Haar sur G et G dont les restrictions a Go coincident.

Elle s’écrit : (tr m)ac, = > (tr T3 )aco »
XEP tel que a x=x

ou P est l’ensemble des poids de Z(Ugc) dans V™ et my, désigne pour chaque
X € P tel que ax = x la représentation de G dans VX issue de .

(b) On suppose qu’il existe un caractére x de Z(Ugc) tel que V= VX.

Soit © € aGy N G,,.,. Donc j, := g(x) est commutative (cf. (b)) et
j = Cq4(jx) est une sous-algébre de Cartan de g (cf. [Bou 87, lem. 1.4.1 p. 6]). On
note j(z); la composante conneze de 0 dans {Y €j(x) | xexpY € G.,,.,}.

Il existe des éléments p; de S(j(x)%) associés aur € j(x)E vérifiant x=xV9e
(notation de (a)), tels que pour tout Y € j(x); on ait

|De(zexpY)[Y? (tr7)ag, (zexpY) = Z p(Y) )
I€j(a)E tel que x=xV9C
De plus, quand x est « régulier » (c’est-a-dire associé a une orbite semi-
simple réguliére de int gc dans gf ) chaque p; est un scalaire.

(c) On suppose que ™ a un caractére infinitésimal réqulier x. On choisit
A € gi semi-simple régulicre telle que x = x{%. On note C' l'unique chambre de
R(gc, gc(A)) dans ge(A)*ND(ge)* telle que A € C+Z(gc)*, et C son adhérence.
Soit mp une représentation linéaire de G dans un espace de Hilbert complexe
de dimension finie F, dont la restriction a Gq est irréductible, et telle que le plus
bas poids de gc(A) dans F relativement & C, noté A, vérifie A+Ap € C+Z(ge)*.
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La restriction a Go de la représentation m @ mp de G donne un Gg-module
de longueur finie admissible et G opére dans sa composante Z(Ugc)-primaire

x{oc 5 1 ; 616
(V ®&c F)™2r au moyen d’une représentation mz,. ayant encore cette propriété.
Soit ©x € aGy N G,,,.,- On lut associe une sous-algébre de Cartan j de g et

des nombres complexes p; comme au (b). Pour tout Y € j(x)1, on a

[Da(zexp Y| (40 T zue)acy(TexpY) = 3 z, p el HED)
lej()y tel que x=xV9C

ot lp €j¢ est défini a partir de | comme Ap a partir de A et x, est le scalaire
par lequel U'élément x:=a(a 'x) de G (qui fize lp ) agit sur 'espace propre (de
dimension 1) de poids lgp pour Uaction de j(x)c dans F.
Démonstration de la proposition.  On utilisera ’action canonique par opé-
rateurs différentiels invariants & gauche de ’algébre enveloppante d’un groupe de
Lie réel sur 'espace vectoriel des fonctions généralisées sur ce groupe de Lie.

(a) La représentation 7 est tracable d’aprés le lemme [12.1] La fonction
généralisée (trm)qc,, égale & 0, * (0g—1 * tr 7|4, ), est invariante sous int Gy.
Soient ug € Z(Ugc) et ¢ € C(aGp). On pose u = [] (uo — x(uo)). La
- XeEP
démonstration de [KV 95 cor. 7.207 p. 530] fournit l'existence d’une suite finie

Wo=V 2OW; 2.+ 2 Wy = {0} de sous-G-modules fermés de V tels que les
quotients Wy_1 /W) avec 1 < k < N’ sont topologiquement irréductibles sous G.

Soit k€ {1,...,N'}. On note m la représentation de G dans Wy_;/Wj.
Tout sous-quotient d’'un Gy-module de longueur finie admissible est un Gy-module
de longueur finie admissible. Donc Wj,_; /W), a un sous-Gy-modules fermé topo-
logiquement irréductible E qui posséde un caractére infinitésimal. L’action de u
sur ) a" E* est nulle. Donc m(pdg *u) = 0.

nez

Ainsi:  9,(tr7) (pdg) = trm(edg * u) + -+ + tran (edg *u) = 0 (cf.

[Wal 88 lem. 8.1.3 p. 29§]). De plus, on a au = u. Il en résulte que:
Ou((tr T)acy) = 0g * ((0g=1 * tT T |aiy) * (Og * Uk Jg—1)) = 0.

D’aprés [Bou 87, th. 2.1.1 p. 10] et [KV 95, th. 4.95 p. 286 et th. 7.30 (a) p. 450],
(trm)aq, est localement intégrable sur aGy et analytique sur aGo N G,, ., -

Soient x € P tel que ax # x et (& nouveau) ¢ € C(aGo). On note m
le cardinal de l'orbite x de y sous I’action du sous-groupe (a) de G engendré par

a, et my la représentation de G dans W := ) a" VX. La restriction de my(¢dg)
nel -
a la somme directe VX @ aVX @ --- @ a™ VX se décompose en blocs avec des

blocs diagonaux nuls. J’exploite cette propriété en utilisant une suggestion de
G. Skandalis pour me ramener au cas de la dimension finie.

La sous-algebre de £(W) formée des endomorphismes qui stabilisent simul-
tanément VX aVX ... a™ VX est fermée. D’apreés [B 67, remarque p. 55 et prop.
7 p. 47], les sous-espaces primaires W# de la restriction de my(¢pdg)™ a W associés
aux z € C\{0}, qui sont de dimension finie, sont tous sommes de leurs intersec-
tions avec VX et --- et ™ 'VX. En outre, chaque W* avec z € C\{0} est égal
a la somme des sous-espaces primaires de la restriction de my(¢dg) & W associés
aux racines m'® de z. La formule de Lidskij (« la trace est la somme des valeurs
propres ») donne ensuite Végalite trmy(pdg) = > tr (my(pdg) \Wz) =0.

2€C\{0}

D’ou, en utilisant cette fois-ci [B_67] relativement a £(V) (cf. dem. de[12.1):



DucLoux 181

(tr 7T)GGO = Z (tI‘ 7TX>aG0 = Z (tI‘ 7TX>aG0'

XE(@)\P XEP tel que a x=x

(b) Je vais préciser ici les calculs de [Bou 87, p. 33 et p. 34|.

On pose O(Y) = |Dg(zexpY)|"? (tr T)aGo(zexpY) pour tout Y € j(x);.
On note W le groupe W(gc,jc) et pr la projection canonique de Sjc sur Sj(x)c
obtenue comme dans les conventions 2 (b). La démonstration du (a) montre que
(tr m)ag, est vecteur propre de Z(Ugc) associé & x. On fixe un élément Iy de j&
tel que y = XUQC D’aprés [Bou 87, ligne 4 de 2.5 p. 20|, on a:

q(lo) 6 = Opu()f pour tout g € (Sjc)"”

On répéte dans ce qui suit les arguments de [Kna 86l p. 369 a p. 371].

Soit X € jc. On note qo, ..., qw-1 les éléments de (Sjc)" pour lesquels
on a |’égalité suivante de polynémes en I'indéterminée T':

[[@—wX)= 7"+ qu i, TVI7! 4 - + g dans (Sjc)[T].

weW
A partir de 14, d’une part en remplacant 7" par X, et d’autre part en prenant la
valeur de chaque membre en [y puis remplacant 7" par X, on obtient dans S'jc :

XWl 4 XlWl_IQ|W|—1 + 4+ q=0

et XMW+ XIWqu 1 (lo) + -+ + qollo) = H (X —lo(wX)).

weW
On utilise ’équation aux dérivées partielles vérifiée ci-dessus par 6 avec ¢ succes-
sivement égal & qw|—1, ..., qo. Elle donne I’égalité suivante, qu’il reste a exploiter:
[T (Oprxy — lo(wX)) -6 = 0.
weW
On fait décrire & X une base de j(x)c. D’aprés [Var 77, prop. 3 p. 58], il
existe une unique famille (p;)igj(z)z d’¢léments de S(j(z)z) & support fini telle que
oY) = Z pl(Y) ‘) pour tout Y € j(x);.
lej(@)g

On va obtenir des renseignements plus précis en substituant cette expression de 6
dans I’égalité qui précédait (et prolongeant analytiquement a j(x)).

Soit [ € j(z)¢ tel que p; # 0. On note d le degré de p; dans S(j(z)¢) et pl[d}
la composante homogéne de p; de degré d. Soit X € jc. Pour tout w € W, on a
(Oprx) — lo(wX)) - pret = (UX) = lo(wX)) pr e + (Fpr(x)P1) €

Le polynome nul e™'x [T (Opex) —lo(wX)) pre' admet ] (I—w™tp)(X) x pl[d}
weW weW
comme composante homogeéne de degre d. Vu que 'anneau S'ji. est intégre, cela

montre que [ € W1y, puis x = x/.

On suppose maintenant p; non scalaire. On choisit X € j¢ tel que, pour
tout w € W hors de W(I) on ait (wl)(X) # (X), et p[ ]( r(X)) # 0. On note
(pr(X)* ) la base de (Cpr(X))* duale de (pr(X)). La restriction du polynéme nul

T @ = 1X) (T Gy~ X)) )

weW(l weW et wgW (l)
& Cpr(X) est somme d’un polynéme de la forme ¢ x (Opr(x))" Ol (pr(X)*)? avec
¢ € C\{0} et de mondmes de degrés strictement plus petits. D’ou |[W(I)| > 1.
(c) Je m’inspire de [Zuc 77, p. 301].
D’aprés [KV 95, cor. 7.207 p. 530|, # ® mp et les représentations de Gy
sur les composantes Z(Ugc)-primaires de V ®¢ F' donnent des Gy-modules de
longueur finie admissibles.
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Par hypothése, on a ay = x. Il existe donc o € (Ada)® intge tel que
o(A)=A.Ona: o(gc(A)) = gc(A) et o(C) = C, puis 0(Ar) = Ap. On en déduit

U
que a Xf\]fi =0 Xf{ﬁp = ng‘f\F. Le groupe G laisse donc stable (V ®¢ F)XA-?S\F.

On note P’ I'ensemble des poids de Z(Ugc) dans (V ®¢ F)>, P(F,j(x)c)
I'ensemble des poids de j(x)c dans F' et F'7 I'espace propre de j(x)c associé a un

élément v de P(F,j(x)c). Pour tout Y € j(x);, on a grace au (a):

(trm)ag,(xexpY) x trrp(zexpY) = Z (tr(m @ )y )ag, (xexpY)
x'€P’ tel que ax'=x’
et trop(zexpY) = Z tr(7p(z)] ) €.

YEP(Fj(z)c)
On applique le (b) & 7, et aux (7 ® 7p)y avec X' € P’ tel que ax’ =y, parmi
lesquels se trouve mz,.. En identifiant les facteurs polynomiaux écrits devant les
fonctions €' avec [ € j(z)%, on trouve que pour tout Y € j(x); on a

|DG($eXpY)’1/2 (67 T 2uc)aco (T expY) = Z tr(7r(2) ) D el ),
(ly)eA
ouonaposé A={(l,7) €jlx)s x P(F,j(z)c) | x = x7% et x{% =&}

A+ARp

Pour finir, on vérifie que A = {(I,7) € j(z)g x it | x = xV9 et v = I}, et
dim FV =1 pour (/,v) € A. L’inclusion D est claire. On considére un (I,7) € A.
On modifie le choix de A en prenant A = [. On va montrer que v = Ap, et
calculer dim F. On fixe un w € W(gc,jc) tel que [ +~v=w(A+ Ap).
Ona y—Ap=w(A+Ar)—(A+Ar) et w(A+Ap)—(A+AFr) <0 pour l'ordre
associé & C, car A+ Ap € C + Z(gc)*. D’autre part, il existe un poids ¢ de j¢
dans F' tel que v = (Jj(,).- L'inclusion j(x)z C j¢ identifie v & lisobarycentre
de la partie finie {Ad"z" - (},ez de 'ensemble des poids de jc dans F. Donc
v — Apr > 0 pour ordre associé a C'. Par conséquent 7 = Ap. Comme 7 est un
poids extrémal de jc dans F' qui est isobarycentre d’un ensemble fini de poids de
jc dans F il est égal en particulier a (. Ainsi le sous-espace propre de F' de poids
~ sous 'action de j(x)c est de dimension 1. i

13. Passage de T)]\‘:{;T a ™

A, Tagr

Pour simplifier les notations, on pose dans cette section : M' = G(v,),
P=pPwy, 0 =T, et Ay = A w. Onadonc A\, = (u—2ip) +v € m’, . Onva

voir qu’en gros, le caractére tr TMU se déduit d’un caractére de la forme tr T/{”
par translation au sens de Zuckerman.

La proposition suivante va s’obtenir en prouvant une variante des résultats
de Bouaziz dans [Bou 84, (i) et (ii) p. 550] (cf. aussi [KV 95 p. 547 et p. 548]). Elle

a pour origine le lemme 3.1 p. 406 de [KZ 82|, qui fournit 1’égalité des restrictions
a M des caractéres considérés au (b) ci-dessous.

Proposition 13.1.  On fize a € M’(X)m'/h au-dessus d’un élément elliptique a
de M'(X). On note M' le produit semi-direct de 7 par M tel que a =1 € Z
agisse sur M} par inta.

(a) 1l existe une représentation linéaire continue g de M' dans un espace
de Hilbert complexe de dimension finie F, unique a isomorphisme prés, dont la
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restriction o M| est irréductible avec pour plus bas poids —2p pour laction de hc
et relativement a l'ordre déduit de R*(mg, he), telle que a agisse trivialement sur
[’espace propre de poids —2p.

(b) On prolonge les représentations unitaires TXM(’ et Tj\\fé de M{ « d’es-
paces » notés H et V, en des représentations linéaires continues w5 et m, de M’
par les conditions ms(a) = S5(a) et 7y (a) = Sy.(a), o S5 et Sy sont les
représentations de M'(N)™/ (qui est égal o M'(\,)™/Y ) attachées & X et A, dans
la proposition[8.1] (b).

Les représentations de M' dans H et (V Q¢ F)¥3  sont tragables et ont
meéme caractere.

Démonstration de la proposition. (a) Il existe — et on se donne — une
représentation linéaire irréductible de mg dans un espace de Hilbert complexe
F' de dimension finie, de plus bas poids —2p pour l'action de h¢ relativement a
l'ordre déduit de R*(mg, hc). Elle s’intégre en une représentation « du » revéte-
ment universel de M| avec un caractére central trivial, puis en une représentation
de M{ notée mpo. Comme a normalise h et fixe —2p, il existe un unique opéra-
teur d’entrelacement ® de (F,inta - mpg) sur (F,mpo) qui agit trivialement sur
le sous-espace propre de F' de poids —2p sous 'action de h¢, commun aux deux
représentations et de dimension 1. On construit 7 en prolongeant mro et choi-
sissant mp(a) égal & ®.

(b) On remarque d’abord que M’ stabilise Hg := (V ®¢ F)XiUAm/C. D’apreés
le lemme et la proposition [12.3] (¢), les représentations de M’ dans H et H,
sont tracables.

On fixe un sous-groupe compact maximal Ky de M} stable par inta et
dont I'involution de Cartan normalise . Par exemple exp(cp Nm'), ot ¢y est
'algébre de Lie d’un sous-groupe compact maximal du produit semi-direct de {1, c}
(¢ : conjugaison de M/(C)) par M'(C) qui contient a la fois ¢ et le sous-groupe
engendré par le produit de la projection dans M'(R) de a avec expyy(c)(ihm)). On
note H/, ’H(J; et VI les (mf, K my)-modules stables par a associés & H, Ho et V.
D’aprés [Kna 86, prop. 10.5 p. 336] avec sa démonstration (cf. [Kna 86, cor. 8.8
p. 211]), les représentations de M’ dans ‘H et Hy ont méme caractére s’il existe un
isomorphisme de (mf, Ky )-modules de H/ sur H] compatible a laction de a.

On a vu au cours de la démonstration de (a) que H' et V/ sont
irréductibles, isomorphes a R?\I% (Cir—p) et R‘]’\;(,)((CMT_,,) ol ’R‘]’\;(,) est le foncteur
d’induction cohomologique relatif a by, et Cp est pour chaque A € ibh* le
(bc, Tp)-module Csur lequel b agit par A. D’aprés [KV 95, th. 7.237 p. 544] et en
utilisant la notation ! de [KV 95| (7.141) p. 493] on a

R (102, (Cinp)) = U1 (R, (Cin,—p)).-
Ainsi, les (mg, Kjyy)-modules H et 7—[{; sont isomorphes.

Compte tenu de la caractérisation de Sx(a) dansR.1](b), du lemme de Schur
de [Wal 88, lem. 3.3.2 p. 80] et de l'identification H,(np, H®)* = Hy(npp, HY)*
de [Duf 824, lem. 4 p. 165], pour obtenir la compatibilité a 'action de a d'un
isomorphisme de (mg, Ky )-modules fixé de H/ sur ’Hf , il suffit de montrer que
a agit a partir de 7y (a) ® wp(a) dans (Hy(nyy, Hi)*)_arip) par P5 ") tid,
c’est-a-dire par p) /h( )~tid.
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L’idée de Bouaziz consiste en gros a vérifier la compatibilité a I'action de a
de I'isomorphisme qu’on obtiendrait au niveau de I’homologie en prenant q égal au
conjugué de by et X égal & V7 dans [KV 95| th. 7.242 p. 546|. Malheureusement,
I’hypothése « i\, est au moins autant singulier que i A » n’est pas satisfaite. Au
lieu de passer de V7 a ’H{; , on va passer de ’Hg a V/ en utilisant une propriété de
la composée de deux foncteurs de translation de Zuckerman.

D’apres [KV 95, th. 7.220 p. 536] le morphisme de (mg, Kayy)-modules com-

patible a ’action de a de ('Hf ®c F *)Xl e dans V/ obtenu par restriction a partir
de lapplication canonique de V/®¢ F ®c F* dans V/, est non nul donc surjec-
tif. Les composantes Z(Ubc)-primaires associées a XIU;’& , dans la suite exacte de
Hc-modules d’homologie issue de cette surgectlon fournissent un morphlsme de be-
modules de  Hy (ny, (H) ®c F*)X 1U>\n;C)X1>w+p dans Hy (nyy, V%% compatible
a Paction de a, qui est surjectif d’apres [KV 95| lem. 8.9 p. 553].

Soit v§ un vecteur non nul de F* de poids 2p pour l'action de hc. On
a ny vy = {0} et a-vy = v; daprés (a). Il reste & prouver que chacun des
deux morphismes de hc-modules compatibles a I’action de a déduits des injections
canoniques de (H®¢ F*) A o H! @cCug dans H] ®@F *, définis respectivement

Umc

sur Hy(ny, (M) ®c F*)Xw )wa et Hq/(nM/,Hg) ixE ®c Cuf, et tous deux a
valeurs dans Hy (ny, Hi @c 117”‘)X1U;)f~c+p7 est bijectif.

En effet, dans ce cas et avec la notation C, introduite plus haut dans cette
démonstration, la droite formée des morphismes de hc-modules de Hy(nyy, %20
dans Gy, 4, s’injectera de maniére compatible a l'action de a dans celle formée
des morphismes de hc-modules de Hy (nM/,Hg ) dans Ciyyp.

Le premier des deux morphismes précédents est bijectif d’aprées [KV 95,
(7.243) p. 547, cf. prop. 7.166 p. 506]. Pour le second, on pose W = F*/ Cuvj.

La suite exacte de byy-modules 0— HJ @c Cog — HY @c F* —H) @c W =0
fournit le morceau suivant de la suite exacte de hc-modules d’homologie :
Hq/+1(ﬁM/, H(J)c Qc W) — Hq/(l’lM/, Héc) Rc C?}S

— Hy(ny, Hy @c F*) — Hy(nyp, HY @c W),
On termine la démonstration en montrant que H,(nyy, HO ®c W)X XNy — {0}

Par le theoreme de Lie, il existe — et on fixe — une suite {0} = WD C
WO C...C WW™ =W de sous-byy-modules de W avec dim W@ /WU-D =1
pour 0 < j < N. D’aprés [KV_ 95| prop. 3.12 p. 188|, pour tout (b, 7p)-module
E et tout n € N, le hc-module H,(ny, E) est isomorphe a P,(E), ou P, est
le n'®me foncteur dérivé du foncteur exact a droite de la catégorie des (byy, Tp)-
modules dans celle des (hc, 7p)-modules noté P;’C’, 1, dans [KV.95, (2.8) p. 104].
D’apres [KV 95| prop. D. 57 (b) p. 887, cf. (2.123) p. 162], il existe — et on fixe
— une filtration {0} = C=V C C’(O) C .- C CW) =, dun complexe de
chaines C, en (hc,Tp)- modules nul en degré strictement négatif, dont chaque b¢-
modules d’homologie H,(C,) est isomorphe a Hn(nM/,H{; ®c W) pour n € N,
et dont la suite spectrale (E"),>o fournit des h¢-modules E;q isomorphes a
Hp+q(nM/,7-[£) ®c (W®/WE) pour 0 < p < N et p+q > 0. Daprés [KV 95,
prop. 7.56 p. 460], les composantes Z(Ubc)-primaires de chacun de ces hc-modules

E; sont associées a des caractéres de la forme XU']§+ L., avec w € W(mg, be),

oil on a noté v le poids de he dans W® /W ®=D - Ainsi, au vu de [KV 95, prop.
7.166 p. 506], on a (E;,q)XiU*hfﬂcﬂ = {0}. Par ailleurs, pour n € N et ¢ € Z,
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le hc-module EZ° - est un sous-quotient de E}l_%q isomorphe au quotient de

ern(C.)(Hn(C.(” 9)) par Pri,(C) (H,(C{"=a=1))), ot on a utilisé la méme notation
DTy, (c.) Pour les applications canoniques a valeurs dans H,,(C,). D’ott pour chaque
n € N les relations suivantes entre he-modules:

H(nagr, 1l @c W & pry, ) (Ha(C2) 6t

_ U[)
= =Py, o) (Ho(CV)ixse = {0}
Cela achéve la démonstration.

Remarque 13.2.  On conserve les notations de la démonstration précédente.
En particulier, Ky est stable par inta. On fixe un opérateur d’entrelacement @
de (H,inta - T/{W‘l)) sur (H,T;W)) et un isomorphisme ¥ de (mg, Ky )-modules
de H/ sur H{;. On note ®/ la restriction de ® a H/ et mo(a)/ lopérateur par
lequel a agit sur H}. D’aprés le lemme de Schur, il existe z € C\{0} tel que
®/ = 2 Ulomy(a)’ o ¥. La démonstration de la proposition (b) montre que
la représentation S de la proposition (b) vérifie S(a) = = -1 ®. Par ailleurs,
Ky est inclus dans un sous-groupe compact maximal de M " qui contient a, et
les sous-groupes compacts maximaux de M’ sont conjugués sous M (cf. [Hoc 65|
th. 3.1 p. 180 et lignes avant le th. 3.7 p. 186]). Il est facile d’en déduire que z
est indépendant du choix de K. On aurait donc pu définir S en se ramenant
au cas semi-simple régulier traité par M. Duflo (pour les valeurs sur les éléments
elliptiques) et en s’arrangeant pour que S(expX) = e *X) T;V[ 6(exp X) quand
X € b. Il resterait a prouver a partir de cette nouvelle définition que S est une
représentation (unitaire) de M’(X)™/". .

Fin de la démonstration du théoréme. Il reste a prouver le théoréme pour
la représentation T~M La situation de référence est celle de [Zuc 77, lem. 5.4

p. 304], dans laquelle M " est remplacé par M, et e est remplacé par un élément
semi-simple régulier de M.

On suppose que e € M’. On note VGM/, déwl et Déwl les objets analogues a
V., d. et D, attachés a M’. On choisit @ € M'(\)™/" au-dessus dun a € M’(\)
elliptique tel que e € a M. On lui associe M’, 75 et ), comme dans la derniére
proposition. On va utiliser les notations de la proposition [12.3] (a) relatives au
groupe M’. On introduit I'élément o, de X7 (),) tel que:

o () = det(Adu®),,,, o(@) pour a € M)/
Il vérifie:  tr T~M ‘ = o(a) x (tr 75) e
€ Mo

et tr TM/

Mo M/_trar( a) x (trﬂkr)aM’
Pour terminer la demonstratlon, on remarque que compte tenu de la proposition

13.1} la proposition [12.3| va ensuite permettre de relier (tr T% ) (tr ™ )6

rsOr

2z . N !
On vérifie la formule du caractére pour trT: 51\\40 (sous la forme proposée dans

le début de la démonstration du théoréme) sur 'ouvert inclus dans m'(e),,,., de
complémentaire négligeable et sur lequel les deux membres de 'égalité sont des
fonctions analytiques, formé des X € VM tels que eexp X € M’

ssreg *

Soit X € VM tel que z :=eexpX € M/ . On pose j, :=m'(z). Donc
e =m(e)(X) € Carm( ) (vu les dimensions) et j := Cy(j,) € Carm’. On note
I’ la composante Connexe de X dans j(z) Nm/(e),,,.,. Pour poursuivre le calcul,

on considére un Y € j(x); (cf.|12.3 - ) pour G = M') tel que X+Y € ' nYM.
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D’apres [Bou 87, th. 5.5.3 p. 52| et grace a[4.3| (b), la formule du caractére
est acquise pour tr T/{W . Par conséquent, on a:
tro,(a) x |Dar(wexpY)['? (trmy,)arr (zexpY)
= |det (1 —Ade), )" [Dw e)(X+Y)]1/2 (e T, ) (X +Y)

ol 1/2
o m’/m’(e)l Z
X € M'(e)o\M§-Arnm/ (e)*

O(€) (1 ad ey - 2
OB 1o t1.6,(¢) |0 X+ Barriepe, (X +Y)

ou g€ M| vérifie N =g\, et e € .M’(X)‘“//h est au-dessus de ¢ = g7 leg.

m’ /m/
i~ (DM')-3 |det (1- Ade)

On se donne g € M/, comme ci-dessus. On note pr l'application canonique
de M’ dans M'(C). On associe & g un élément y? de M/'(C)(pr(e))o vérifiant
i(@)c =47 (gh)(e)c. On fixe un systéme de racines positives R*(m’(e)c,j(z)c) de
R(m’(e)c,j(x)c). D’aprés la proposition (b), il existe des nombres complexes
¢ indépendants de Y et indexés par les w € W(m'(e)c,j(z)c) tels qu’on ait

[I oX4Y) < Do (X1Y) 3 g dwronxan)

acRt(m'(e)c,i(z)c) weW (m/(e)c,i(x)c)
o [ o) B = S e dwm
acR*(w (e)c,i(z)c) weW (w/(e)c,i(z)c)
quand ()] €M), et D R =0 i (g))]e] ¢ m (o)),
weW (w’(e)c,j(z)c)
En outre, la fonction |Dyye)'/? x ( I1 04)_1 sur T' est & valeurs

a€RT(m/(e)c,i(z)c)
dans I’ensemble des racines quatriémes de I'unité, donc constante. On déduit des
égalités (x) et (xx) une formule pour tro,(a)x (trmy, )any(zexpY) qui fait
intervenir cette constante.

D’apres la proposition (a), la représentation m,, de M’ admet pour ca-
ractere infinitésimal x;y" Un'c On apphque la proposmon (c)a M avec m =),
A=i) et Ap =—2p (7TF ci-dessous). On dispose d’'une représentation (7, )zuc
de M’ et, vu ce qui précede, d'une formule pour tr o,.(@) x (tr(mx,) zue)argy (T expY).
Par la proposition [13.1] (b), on a aussi tr(my, ) zuc = trmy par choix de mp.

On choisit maintenant Y = 0, et récapitule. On constate que (tr T;i‘f; )e(X )

se déduit de l’eXpression de (tr TAMT,;T)B(X ) obtenue ci-dessus, en remplagant le
coefficient g, e'*v'92X) par (det(Ada®),,, )" x z,, 4 ¥ 9MX) pour chaque
w e W'(e)e,j(@)e), ot Ly = —2wyigp.

Soit w € W(m/(e)c,j(z)c). On va calculer le terme x,_ qui lui est associé.
On se donne un représentant w de w dans M'(C)(pr(e))o. On note M’ le produit
semi-direct de Z par M/(C), tel que 1 € Z agisse sur M/'(C), par intpr(a), et
pr l'application canonique de M’ dans M’c. Il existe une unique représentation
h_olomorphe mpc de M’ dans F telle que 7p = mpcopr. On fixe un vecteur non
nul vy de F de poids —2p pour Paction de he dans F. On s’intéresse au vecteur
non nul wy9¢g-vy de F qui a pour poids [ sous I'action de j(x)c. On pose encore
¢’ = g 'eg. En se plagant dans le produit semi-direct de Z par M'(C) au moyen
de intpr(a) et utilisant la définition de z (cf. (c)), on obtient :
pr(z) wy’ pr(g) = pr(z) wy? pr(g) pr(a)”" pr(a)

= pr(exp X) @y’ pr(g) pr(e'a™") pr(a)
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puis z - (wy?g-vg) = exp X - (wy?g - ((€'a™') - vp)).

187

La propriété €'a='e€ M{()\) =exph permet d’en déduire que:

z,, = det(Ada®), , (det(Ade®)

Cela permet de conclure.
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