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Résumé. Let G be a non-connected reductive real Lie group. In this paper,
I parametrize the set of irreductible tempered characters of G. Afterwards,
I describe these characters by means of some “Kirillov’s formulas”, using the
descent method near each elliptic element in G.

If G is linear and connected, the parameters that I use are “final basic”
parameters in the sense of Knapp and Zuckerman (cf. [KZ 82, p. 453]).

Table des matières

Introduction et notations générales . . . . . . . . . . . . . . . . . . . . . . . 138

I. Les paramètres « forme linéaire » . . . . . . . . . . . . . . . . . . . . . . 142
1. Les paramètres λ̃ ∈ g̃∗reg,G . . . . . . . . . . . . . . . . . . . . . . . . 142
2. Les mesures βG·λ̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3. Points fixés par un élément elliptique . . . . . . . . . . . . . . . . . . 150

II. Les paramètres « représentation projective » . . . . . . . . . . . . . . . . 151
4. Rappels sur les groupes spécial-métalinéaire et métaplectique . . . . 151
5. Les paramètres τ ∈ XInd

G (λ̃) . . . . . . . . . . . . . . . . . . . . . . 156
6. Condition d’intégrabilité . . . . . . . . . . . . . . . . . . . . . . . . . 160

III. Construction de représentations . . . . . . . . . . . . . . . . . . . . . . 161
7. Le cas où G est connexe . . . . . . . . . . . . . . . . . . . . . . . . 161
8. Les représentations TG

λ̃,a∗+,τ+
. . . . . . . . . . . . . . . . . . . . . . . 163

9. L’injection G · (λ̃, τ) 7→ TG
λ̃,τ

de G \XInd
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Introduction et notations générales

Dans cet article, je vais décrire par la méthode des orbites le dual tempéré
d’un groupe de Lie réel réductif, en m’appuyant sur les quatre travaux suivants :

– la description du dual tempéré d’un groupe de Lie réel réductif connexe par
J. Adams, D. Barbasch et D. Vogan dans [ABV 92, ch. 11];

– la paramétrisation par M. Duflo des classes d’équivalence des représentations
d’un groupe de Lie réel réductif qui sont tempérées irréductibles avec un caractère
infinitésimal régulier, obtenue via la « théorie de Mackey » dans [Duf 82a, III];

– la formule du caractère « à la Kirillov » de A. Bouaziz dans [Bou 87], qui
exprime le caractère de ces représentations à l’aide des transformées de Fourier
d’orbites coadjointes semi-simples régulières;

– les formules de W. Rossmann dans [Ros 82] (où « principal » se traduit par
« régulier », et « regular » par « semi-simple régulier ») qui relient les transformées
de Fourier des orbites régulières à celles des orbites semi-simples régulières.

Un théorème de M. Duflo dans [Duf 82b, p. 189] ramène la classification
des duaux unitaires des groupes linéaires algébriques réels à la classification des
duaux unitaires des groupes réductifs « presque algébriques à noyau fini ». Ce sont
donc ces groupes réductifs qui m’intéressent.

Hypothèse. On se donne un groupe de Lie réel à base dénombrable G d’algèbre
de Lie notée g, un groupe linéaire algébrique G défini sur R, et un morphisme de
groupes de Lie de G dans G(R) de noyau fini central dont l’image est ouverte pour
la topologie usuelle. Ainsi, tout élément de G (respectivement g) a une « décom-
position de Jordan réelle » en composantes elliptique, positivement hyperbolique et
unipotente (respectivement composantes infinitésimalement elliptique, hyperbolique
et nilpotente) décrite dans [DV 93, haut p. 36 et lem. 31 p. 38]. On suppose que g
est réductive avec un centre formé d’éléments semi-simples.

M. Duflo a paramétré dans [Duf 82a, lem. 8 p. 173] une partie du dual
unitaire Ĝ de G (précisée ci-dessus), en termes d’orbites coadjointes semi-simples
régulières, en se ramenant par induction aux séries discrètes de certains sous-
groupes de G . Quand G est connexe, cette partie de Ĝ avait été décrite par
Harish-Chandra (cf. [Har 76, th. 1 p. 198]). Je paramètre ici dans le théorème
9.6 (b) p. 169, en termes d’orbites coadjointes régulières « généralisées », la partie
plus grosse de Ĝ , égale au dual tempéré de G , obtenue en remplaçant au début de
l’induction les représentations des séries discrètes par les représentations limites
de séries discrètes. Quand G est connexe, mon énoncé reproduit une partie du
théorème 11.14 de [ABV 92, p. 131] (voir aussi [Kna 86, th. 14.76 p. 598]) avec
l’apport suivant : l’égalité de deux représentations se traduit exactement par la
conjugaison sous G de couples de « bons paramètres » qui leur sont associés.

L’expression « bons paramètres » renvoie aux contraintes imposées à ces
paramètres. En voici le principe heuristique (cf. [Duf 82a, th. 1 p. 193] et [Duf 82b,
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th. 19 p. 211]). Une représentation unitaire irréductible T de G sera paramétrée
dans les cas favorables par l’orbite sous G d’un couple (λ̃, τ) . Le terme λ̃ doit
être une sorte de forme linéaire dont la composante semi-simple l correspond
au caractère χUgC

i l par lequel le centralisateur (UgC)
G de G dans UgC agit sur

l’espace des vecteurs C∞ de l’espace de T (cf. 8.4 (a)). Dans cet article, ce
premier paramètre est relié à une limite de série discrète dont T va en gros être
une induite. Pour cette raison, il s’écrira sous la forme λ̃ = (λ,F+) , où F+ est
une chambre de Weyl pour des racines imaginaires (cf. [Zuc 77, th. 5.7 p. 305]). Sa
« composante semi-simple » est la forme linéaire l := λ , en un sens compatible avec
les définitions concernant le cas des orbites coadjointes (cf. 2.2 (a)). On note G(λ̃)
le stabilisateur de λ̃ dans G . Le terme τ doit être une représentation projective
de G(λ̃)/G(λ̃)0 , remontée en une représentation unitaire d’un revêtement de degré
2 de G(λ̃) , telle que d1τ = i l id et le caractère central de τ prolonge celui
de T (cf. 8.4 (b)). Dans cet article, ce second paramètre est une représentation
unitaire (peut-être non irréductible) d’un analogue adéquat pour λ̃ du revêtement
« de Duflo » du stabilisateur G(f) dans G d’un élément f de g∗. En fait, mes
constructions utiliseront un couple de paramètres ((λ̃, a∗+), τ+) au lieu de (λ̃, τ) , où
a∗+ est une certaine chambre de Weyl pour des racines restreintes, et τ+ est une
représentation unitaire irréductible d’un revêtement de NG(λ̃)(a

∗+) . Ce nouveau
couple de paramètres satisfait encore les conditions décrites ci-dessus. Le couple
(λ̃, τ) se révèlera être « plus canonique » quand le caractère de T aura été calculé,
mais il n’aura qu’un rôle secondaire. Les G-orbites de (λ̃, a∗+) et ((λ̃, a∗+), τ+)

s’identifient respectivement à celles de λ̃ et (λ̃, τ) . Dans l’énoncé des résultats
ci-dessous, je ferai intervenir l’ensemble XInd

G des couples (λ̃, τ) . Il sera défini plus
précisément dans la partie II., en relation avec la notion de « caractère final » (cf.
5.5 (c)).

Le résultat principal de cet article est le théorème 10.2 p. 173 qui décrit
le caractère des représentations tempérées T de G en terme de transformées de
Fourier des mesures canoniques sur certaines orbites coadjointes régulières reliées
à un paramètre λ̃ attaché à T . Ces formules du caractère montrent la nécessité
d’adapter le point de vue « orbites nilpotentes » de la méthode des orbites en
oubliant l’aspect « orbite coadjointe » de G · λ̃ . Par exemple les orbites coadjointes
associées aux deux limites de la série discrète de SL(2,R) , qui sont l’un ou l’autre
des deux demi-cônes nilpotents ouverts, n’ont pas de point fixe sous l’action de la
« rotation » Ad∗( 0 −1

1 0

)
(cf. remarque 3.3 (3)); elles doivent être remplacées par les

ensembles des demi-droites incluses dans l’intérieur de leurs enveloppes convexes
respectives, au produit par i près. On verra aussi dans la remarque 6.2 que ce
nouveau point de vue permet de comprendre pourquoi certaines orbites nilpotentes
« admissibles » au sens de M. Duflo ne correspondent à aucune représentation.

Mes deux théorèmes se résument comme suit (voir l’index des notations).

Résultats. Il existe une bijection « canonique » G·(λ̃, τ) 7→ TG
λ̃,τ

de G \XInd
G

sur le dual tempéré de G. Elle est déterminée par des formules du type :

ke(X) trTG
λ̃,τ

(e expX) =
∑

.

λ̃
′ ∈G(e)\G·λ̃∩ g̃∗reg(e)

tel que λ̃
′
[e]∈ g̃(e)∗reg

cê′,λ̃ tr τ(ê′) β̂
G(e)·λ̃′

[e]
(X)
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où (λ̃, τ) ∈ XInd
G , e décrit l’ensemble des éléments elliptiques de G,

X est un élément d’un certain voisinage Ve de 0 dans g(e) tel que e expX est
semi-simple régulier dans G (auquel cas X est semi-simple régulier dans g(e)),
ê′ est un élément du revêtement double G(λ̃)g/g(λ)(iρF+ ) (en posant λ̃ = (λ,F+))
qui se projette sur e′ = g−1eg pour un g ∈ G tel que λ̃

′
= gλ̃,

et, ke(X) et cê′,λ̃ sont certains nombres complexes non nuls.

Les idées qui m’ont permis d’obtenir ces résultats sont les suivantes. Les
constructions de M. Duflo reprises étape par étape vont fournir une bijection d’un
ensemble d’orbites sur le dual tempéré de G , grâce au lemme 9.3 (b) p. 166. Pour
passer du cas connexe au cas non connexe, j’aurai besoin d’une généralisation d’un
résultat de D. Vogan utilisé par M. Duflo pour une construction homologique.
Celle-ci se trouve à la page 555 du livre [KV 95] de A. Knapp et D. Vogan. Au vu
du cas connexe (cf. [Ros 80, p. 64]), il est ensuite naturel de chercher à récupérer
les caractères des représentations tempérées irréductibles par passage à la limite
à partir de ceux associés aux orbites semi-simples régulières. Dans le cas non
connexe, le calcul du caractère des représentations se décomposera avant tout en
deux étapes dont la première est peu commode.

Étape 1. On induit une représentation limite de la série discrète d’un sous-groupe
de G à la composante neutre de la composante de Levi M ′ (en général hors de
la classe d’Harish-Chandra) d’un certain « sous-groupe parabolique » M ′U de
G . L’analogue de cette représentation induite dans le cas connexe était seulement
une représentation limite de la série discrète de la composante de Levi M d’un
sous-groupe parabolique cuspidal MAN de G . La méthode ici comme dans le
cas connexe, est d’appliquer le foncteur de translation de Zuckerman (adapté au
cas du groupe non connexe M ′ ) pour se ramener aux représentations de M ′ dont
on connaît le caractère. Une difficulté est qu’on passe de M ′

0 à M ′ avec une
étape homologique. Sur le conseil d’A. Bouaziz, je me suis inspiré des points (i)
et (ii) de la page 550 de son article [Bou 84] pour calculer l’action d’un groupe
M ′(λ̃)m

′/h dans un espace poids de l’homologie d’un M ′
0 -module translaté au sens

de G. Zuckerman.
Étape 2. On induit ensuite de M ′U à G . Le terrain aura été préparé dans la

partie I. par des rappels et compléments concernant des résultats de W. Rossmann
pour le calcul des limites de transformées de Fourier des mesures canoniques sur
des orbites semi-simples régulières. En particulier, dans la section 3., j’aurai mis
en évidence ce que donne le passage de G à G(e) au niveau des paramètres λ̃ . Le
reste de cette étape consiste à utiliser les méthodes et résultats d’A. Bouaziz.

Les définitions et notations qui suivent vont me permettre, d’abord de
préciser mes conventions générales, et ensuite d’introduire les conventions relatives
aux groupes réductifs que j’utiliserai le plus fréquemment.

Conventions 1. (a) On note |A| le cardinal d’un ensemble A et ȧ la classe
d’un élément a de A modulo une relation d’équivalence ∼ sur A , f B′ : B′ → C
la restriction d’une application f : B → C à une partie B′ de B , F l’adhérence
d’un sous-ensemble F d’un espace topologique E (dans les sections 2. et 12.), lC la
complexifiée d’une application R-linéaire l , w et W les conjugués d’un vecteur
w et d’un sous-espace vectoriel W dans le complexifié VC d’un espace vectoriel
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réel V (dans les sections 1., 3., 4., 5., 8. et 9.), uY et uX/Y les endomorphismes
induits sur Y et X/Y par un endomorphisme u d’un espace vectoriel X laissant
invariant un sous-espace vectoriel Y de X .

(b) Soient A un groupe de Lie réel à base dénombrable et a son algèbre
de Lie. On note 1 l’élément neutre de A , A0 la composante neutre de A , expA

(ou exp) l’application exponentielle de a dans A , Ad∗ et ad∗ les représentations
coadjointes de A et de a , int a le sous-groupe du groupe linéaire de a engendré
par les éléments exp(adX) quand X décrit a , Z(A) et D(A) le centre et le groupe
dérivé de A , Z(a) et D(a) le centre et l’algèbre dérivée de a , Z(UaC) le centre de
l’algèbre enveloppante UaC de aC , Â le dual unitaire de A . À toute sous-algèbre
de Lie b de a , on associe les sous-groupes de Lie

CA(b) = {x ∈ A | (Adx) b = id} et NA(b) = {x ∈ A | Adx.b ⊆ b}
de A , dont les algèbres de Lie sont

Ca(b) = {X ∈ a | (adX) b = 0} et Na(b) = {X ∈ a | adX.b ⊆ b} .
(c) Soit M une variété C∞ séparée à base dénombrable de dimension m .

Une densité C∞ sur M est une mesure de Radon complexe ρ sur M qui se lit dans
toute carte de M centrée en un point x sous la forme a dx1· · · dxm , où a est une
fonction C∞ sur un voisinage ouvert de 0 dans Rm. Elle « s’identifie » à la famille
formée des applications ρ(x) avec x ∈M qui envoient un élément de

∧m TxM \{0}
d’image ω0 par la carte précédente, sur a(0) |(dx1 ∧ · · · ∧ dxm)(ω0)| . Une fonction
généralisée sur M est une forme linéaire continue sur l’espace des densités C∞ à
support compact sur M , muni de la topologie de Schwartz.

(d) Soient A un groupe de Lie réel à base dénombrable et dA une mesure
de Haar à gauche sur A . Une représentation continue T de A dans un espace de
Hilbert complexe est dite traçable si les opérateurs T (φ dA) avec φ ∈ C∞

c (A)
sont traçables; dans ce cas trT : φ dA 7→ trT (φ dA) est une fonction généralisée
sur A . Pour toute représentation unitaire continue π d’un sous-groupe fermé B
de A muni d’une mesure de Haar à gauche dB , on note IndA

B π la représentation
unitaire de A « induite » à partir de π comme dans [B.. 72, p. 99].

(e) Soit V un espace vectoriel réel de dimension finie. La transformée de
Fourier d’une distribution tempérée µ sur V ∗ est la fonction généralisée µ̂ sur V

définie par l’égalité µ̂(v) =

∫
V ∗

ei l(v)dµ(l) de fonctions généralisées en v ∈ V .

Conventions 2. (a) On note Car g l’ensemble des sous-algèbres de Cartan
de g . Soit h ∈ Car g . On fixe un système de racines positives R+(gC, hC) , arbi-
trairement (sauf indication contraire), dans l’ensemble R(gC, hC) des racines de
hC dans gC .

On note W (G, h) le groupe fini NG(h)/CG(h) , t et a les composantes
infinitésimalement elliptique et hyperbolique de h , h(R) = i t ⊕ a , T0 = exp t et
A = exp a , ρg,h la demi-somme des éléments de R+(gC, hC) , et Hα la racine duale
d’une α dans le système de racines R(gC, hC) .

Une racine α ∈ R(gC, hC) est dite complexe (respectivement réelle, imagi-
naire, ou compacte) quand sa conjuguée α : X ∈ hC 7→ α(X) vérifie α /∈ {α,−α}
(respectivement α = α , α = −α , ou (CHα ⊕ gαC ⊕ g−α

C ) ∩ g ≃ su(2)).
(b) On fixe une forme bilinéaire G-invariante non dégénérée ⟨ , ⟩ sur g

dont la complexifiée (encore notée ⟨ , ⟩) se restreint en un produit scalaire sur



142 Ducloux

chaque h(R) , h ∈ Car g . On note ⊥⟨ , ⟩ la relation de ⟨ , ⟩-orthogonalité. Soient
x ∈ G et X ∈ g semi-simples. On note G(x) (resp. G(X)) et g(x) (resp. g(X))
les commutants de x (resp. X ) dans G et g . Le G(x)-module g(x)∗ (resp. le
G(X)-module g(X)∗ ) est canoniquement isomorphe par restriction à l’ensemble
g∗(x) (resp. g∗(X)) des éléments de g∗ fixes sous Ad∗ x (resp. annulés par ad∗X ),
c’est-à-dire nuls sur g(x)⊥

⟨ , ⟩ (resp. g(X)⊥
⟨ , ⟩).

(c) Soit f ∈ g∗. On note G(f) le stabilisateur de f dans G et g(f) l’algèbre
de Lie de G(f) . Dans la mesure du possible, je désignerai par µ , ν , λ = µ+ν ,
et ξ les « composantes infinitésimalement elliptique, hyperbolique, semi-simple
et nilpotente de f » (notions issues de g à l’aide de ⟨ , ⟩). On identifie g(λ)∗ à
l’ensemble des éléments de g∗ nuls sur g(λ)⊥

⟨ , ⟩.
(d) Soit m le commutant dans g d’un élément semi-simple X de g . Étant

données des mesures de Haar dg et dm sur g et m , on pose pour tout f ∈ m∗ :∣∣Πg,m

∣∣(f) = 1
k!

∣∣(Bf [g,X]2

)k
(ω)
∣∣ × (d[g,X](0)(ω)

)−1 (cf. (b) et conventions 1 (c)),

avec k = 1
2
dim[g, X] , Bf = f([·, ·]) , ω ∈

∧2k[g, X] \{0} , et d[g,X] = dg/dm .

Les autres notations utilisées dans les énoncés sont accessibles au moyen de
l’index des notations qui se trouve à la fin de cet article.

I. Les paramètres « forme linéaire »

La méthode des orbites, proposée initialement par A. Kirillov dans le cas
des groupes de Lie nilpotents simplement connexes, consiste à paramétrer les
représentations unitaires irréductibles d’un groupe de Lie à l’aide des orbites de sa
représentation coadjointe. Quand la représentation est traçable, son caractère au
voisinage de l’élément neutre doit être relié à la transformée de Fourier (à supposer
qu’elle existe) de la mesure canonique sur l’orbite associée.

Une légère modification de ce point de vue va être nécessaire ici. À chaque
représentation tempérée irréductible de G sera associée une orbite Ω̃ de G dans un
certain ensemble g̃∗reg autre que g∗, et à cette orbite Ω̃ sera attachée une somme
finie de mesures canoniques sur des orbites coadjointes. En vue d’un prochain
article, j’introduis aussi ci-dessous des parties g̃∗I et g̃∗Inc de g̃∗reg .

Je vais exploiter dans cette partie certains résultats de W. Rossmann.

1. Les paramètres λ̃ ∈ g̃∗
reg,G

On construit dans cette section un ensemble g̃∗reg muni d’une action de G
dans lequel l’ensemble des λ ∈ g∗ semi-simples régulières s’injectera de manière
G-équivariante.

Définition 1.1. On note g∗reg l’ensemble des f ∈ g∗ régulières (c’est-à-dire
l’ensemble des f ∈ g∗ pour lesquelles la dimension de g(f) est égale au rang
de g), g∗ss l’ensemble des f ∈ g∗ semi-simples et g∗ss reg = g∗ss ∩ g∗reg .

On note aussi g∗ssI (respectivement : g∗ssInc ) l’ensemble des λ∈ g∗ss telles que
g(λ) a une sous-algèbre de Cartan h pour laquelle les racines de (g(λ)C, hC) sont
imaginaires (respectivement : imaginaires non compactes).
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Soient λ∈ g∗ss et h ∈ Car g(λ) . On note C(g(λ), h) l’ensemble des chambres
(ouvertes) dans h ∗

(R) pour les racines imaginaires de (g(λ)C, hC) et C(g(λ), h)reg
l’ensemble des F+∈ C(g(λ), h) telles que les racines imaginaires de (g(λ)C, hC) qui
sont simples relativement à F+ sont non compactes.

On pose g̃∗reg =
{
(λ,F+) ;λ∈g∗ss, h∈Car g(λ) et F+∈ C(g(λ), h)reg

}
et g̃∗reg,G =

{
(λ,F+) ∈ g̃∗reg | ∀Z ∈ Ker expT0

e(iλ+ρg,h)(Z) = 1
}

indépendamment du choix d’un système de racines positives R+(gC, hC) associé à
l’élément h de Car g(λ) attaché à F+.

On pose aussi
g̃∗fond =

{
(λ,F+) ;λ∈g∗ss, h∈Car g(λ) fondamentale et F+∈ C(g(λ), h)reg

}
et g∗ssfond,G =

{
λ∈g∗ss | ∀Z ∈ Ker expT0

e(iλ+ρg,h)(Z) = 1
}

indépendamment du choix d’une h ∈ Car g(λ) fondamentale et d’un système de
racines positives R+(gC, hC) , g∗ssI,G = g∗ssI ∩ g∗ssfond,G et g∗ssInc,G = g∗ssInc ∩ g∗ssfond,G .

On note ensuite g̃∗I , g̃∗Inc , g̃∗fond,G , g̃∗I,G et g̃∗Inc,G les images réciproques de
g∗ssI , g∗ssInc , g∗ssfond,G , g∗ssI,G et g∗ssInc,G par la première projection de g̃∗fond dans g∗ss .

Remarque 1.2. (1) En appliquant [Ros 82, th. p. 217] à g(λ) pour trois sous-
algèbres de Cartan (une égale à h , une sans racine imaginaire, une fondamentale)
et tenant compte de [Ros 82, lem. a (a)⇒(c) p. 220 et suppl. c p. 218], on constate
que les images des applications canoniques de g̃∗reg et g̃∗fond dans g∗ sont formées
des λ∈ g∗ss tels que g(λ) a une sous-algèbre de Cartan sans racine imaginaire.

(2) D’après [Kna 96, th. 6.74 p. 341 et th. 6.88 p. 344], chaque algèbre
de Lie semi-simple complexe a, à isomorphisme près, une unique forme réelle g0
qui possède une sous-algèbre de Cartan h0 pour laquelle le système de racines
R(g0C, h0C) a une base constituée de racines imaginaires non compactes. Compte
tenu de (1) ci-dessus (ou de [Kna 96, pb. 18 p. 369 et p. 557]), l’image de l’appli-
cation canonique de g̃∗I dans g∗ est formée des λ∈ g∗ss tels que chacun des idéaux
simples de g(λ) est isomorphe à l’une des algèbres de Lie suivantes :
su(p, p) avec p ≥ 1 et su(p, p− 1) avec p ≥ 2 , so(p, p− 1) avec p ≥ 3 , sp(2n,R)
(notée sp(n,R) dans [Kna 96]) avec n ≥ 3 , so(p, p) avec p pair ≥ 4 et so(p, p−2)
avec p pair ≥ 6 , E II , E V , E VIII , F I , G .

(3) La somme de deux racines imaginaires non compactes n’est jamais une
racine non compacte d’après [Kna 96, (6.99) p. 352]. Ainsi, g∗ssInc est formé des
λ∈ g∗ semi-simples telles que les idéaux simples de l’algèbre de Lie réductive g(λ)
sont isomorphes à sl(2,R) .

À partir de certains paramètres enrichis (λ̃, a∗+) , je vais construire canoni-
quement deux systèmes de racines positives pour (gC, hC) , qui auront les mêmes
racines non complexes. Le système de racines positives R+(gC, hC) est attaché à
une certaine forme linéaire régulière λ+ . Il permettra, par des passages à la limite
(section 11.) et par une translation (section 13.), de construire dans la partie III.
des représentations en se ramenant au cas d’un caractère infinitésimal régulier.
Le système de racines positives R+

λ̃,a∗+
a pour sous-ensemble de racines complexes

à conjuguée négative, une partie invariante sous l’action du groupe G(λ̃) défini
ci-dessous. Il interviendra dans la définition 5.5 (c) et dans le lemme 9.3 (b). On
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verra dans le lemme 9.1 une autre paramétrisation des classes de représentations
dans laquelle le paramètre (λ̃, a∗+) sera remplacé par λ̃ , et le rôle de (R+

λ̃,a∗+
, λ+)

sera tenu par un certain couple (R+

λ̃
, λcan) déduit de λ̃ .

Définition 1.3. Soient λ∈ g∗ss , h ∈ Car g(λ) et F+∈ C(g(λ), h) . On note µ
et ν (resp. t et a) les composantes infinitésimalement elliptique et hyperbolique
de λ (resp. h). On pose λ̃ = (λ,F+) .

(a) On note G(λ̃) le normalisateur de F+ dans G(λ) et g(λ̃) son algèbre
de Lie. On associe à λ̃ la demi-somme ρF+ ∈ it∗ des α ∈ R(g(λ)C, hC) imagi-
naires tels que F+(Hα) ⊆ R+ \{0} . (Ainsi h est une sous-algèbre de Cartan de
g(λ)(iρF+) sans racine imaginaire, et donc G · (λ, iρF+) détermine G · λ̃ .)

On fixe pour la suite de cette définition une chambre a∗+ de (g(λ)(iρF+), a) .
(b) On introduit le système de racines positives suivant :
R+(g(λ)(iρF+)C, hC) = {α∈R(g(λ)(iρF+)C, hC) | a∗+(Hα) ⊆ R+\{0} } .
On fixe ϵ > 0 assez petit pour que, en posant ν+ = ν+ϵ ρg(λ)(iρF+ ),h ∈ a∗ on

ait : a · ν+ ̸= ν+ pour tout automorphisme a du système de racines R(gC, hC) tel
que a ·ν ̸= ν . On choisit même ϵ de façon que la propriété précédente reste valable
quand on remplace ϵ par tϵ , t∈ ]0, 1] . On a donc : g(ν+) = g(ν)(ρg(λ)(iρF+ ),h) .

On utilisera les systèmes de racines positives suivants :

R+(g(ν+)C, hC) =

{
α ∈ R(g(ν+)C, hC)

∣∣∣ iµ(Hα) > 0 ou
{ iµ(Hα)=0

et
ρF+(Hα)>0

}
et R+(gC, hC) = {α ∈ R(gC, hC) | ν+(Hα)>0} ∪ R+(g(ν+)C, hC) .

On pose µ+ = µ− 2iρg(ν+),h ∈ t∗ et λ+ = µ++ ν+
(donc R+(g(ν+)C, hC) = {α ∈ R(g(ν+)C, hC) | iµ+(Hα) > 0}).

Dans certains cas on notera λg,λ̃,a∗+,ϵ , µg,λ̃,a∗+ et νg,λ̃,a∗+,ϵ pour λ+, µ+ et ν+.
(c) On introduit l’ensemble

R+

λ̃
=

{
α ∈ R(gC, hC)

∣∣∣ ν(Hα)>0 ou
{

ν(Hα)=0
et
iµ(Hα)>0

ou
{ λ(Hα)=0

et
ρF+(Hα)>0

}
,

la demi-somme ρcan des éléments de R+

λ̃
∩ R(g(ν)C, hC) , et le système de racines

positives R+

λ̃,a∗+
= R+

λ̃
∪ R+(g(λ)(iρF+)C, hC) de R(gC, hC) .

On pose µcan = µ− 2iρcan ∈ t∗ et λcan = µcan+ ν
(donc en utilisant [KV 95, cor. 4.69 p. 271], on constate que g(λcan) = g(λ)(iρF+)
et R+

λ̃
∩ R(g(ν)C, hC) = {α ∈ R(g(ν)C, hC) | iµcan(Hα) > 0}).

Voici maintenant le lemme clef qui permettra de se ramener de g̃∗reg à g∗ss reg.

Lemme 1.4. On se place dans les conditions de la définition précédente.
Soit t∈ ]0, 1]. On pose νt = ν + tϵ ρg(λ)(iρF+ ),h , µt = µ− 2itρg(ν+),h et λt = µt+νt .

On a : g(λ̃) = h, λt ∈ g∗ss reg et NG(λ̃)(a
∗+) = G(λt).

Donc G(λ+) = G(λ̃) quand a∗+ = a∗ (par exemple quand λ̃ ∈ g̃∗I ).

Démonstration du lemme. On a G(λ̃) ⊆ NG(h) , donc g(λ̃) = h .
Par construction de ϵ , on a g(νt) = g(ν)(ρg(λ)(iρF+ ),h) = g(ν+) . En outre,

on a iµt(Hα) = iµ(Hα)+2tρg(ν+),h(Hα) > 0 pour tout α ∈ R+(g(ν+)C, hC) . Donc
λt ∈ g∗ss reg . Un argument de continuité en t permet d’en déduire que :



Ducloux 145

R+(gC, hC) =

{
α ∈ R(gC, hC)

∣∣∣ νt(Hα) > 0 ou
{

νt(Hα)=0
et
iµt(Hα)>0

}
.

L’inclusion NG(λ̃)(a
∗+) ⊆ G(λt) est immédiate. Soit g ∈ G(λt) .

On a g ·h = g ·g(λt) = h et (Ad g) h est un automorphisme du système de racines
R(gC, hC) tel que g ·νt = νt , donc g ·(νt−ν) = (νt−ν) puis g ·ν+ = ν+ . Comme g
laisse stable R(g(ν+)C, hC)∩R+(gC, hC) , on a : g ·ρg(ν+),h = ρg(ν+),h puis g ·µ = µ .
Ensuite, comme g laisse stable l’ensemble des racines imaginaires de R(g(λ)C, hC)∩
R+(gC, hC) , on a : g · F+ = F+ . Enfin, comme g laisse stable l’ensemble des α a

avec α ∈ R(g(λ)(iρF+)C, hC) ∩R+(gC, hC) , on a : g · a∗+ = a∗+ .

Le lemme qui suit expliquera pourquoi, dans certaines formules que j’écrirai
plus tard dans un autre article, et dans lesquelles apparaissent en facteur les valeurs
absolues de Pfaffiens

∣∣Πg,Cg(µ)(a)

∣∣ , seuls interviennent les éléments de g∗ssI .
Pour rendre ces Pfaffiens plus accessibles au calcul, je précise d’abord une

formule de [DV 88, p. 301]. La forme bilinéaire ⟨ , ⟩ des conventions 2 (b) déter-
mine une mesure de Haar dV sur tout sous-espace vectoriel V de g sur lequel
elle a une restriction non dégénérée, par la condition dV (0)(v1 ∧ · · · ∧ vn) =

|det(⟨vi, vj⟩)1≤i,j≤n
| 12 pour toute base (v1, . . . , vn) de V . Soit h ∈ Car g . On fixe

λ0 = µ0 + ν0 ∈ h∗ régulière dans g∗. On lui associe le système de racines positives

R+
0 (gC, hC) =

{
α ∈ R(gC, hC)

∣∣∣ ν0(Hα) > 0 ou
{

ν0(Hα)=0
et
iµ0(Hα)>0

}
.

On prend pour dg et dh les mesures de Haar sur g et h déduites de ⟨ , ⟩ . Pour
tout λ ∈ h∗ et tout ω0 ∈

∧2k[g, h]\{0} élément de l’orientation O(Bλ0)g/h (cf. 4.2
(b) et 5.1 (a)) de (g/h, Bλ0) , on a

(∗) 1
k!

(
Bλ [g,h]2

)k
(ω0) ×

(
d[g,h](0)(ω0)

)−1
= in0

∏
α∈R+

0 (gC,hC)

⟨λ, α⟩

avec k = 1
2
dim[g, h] , d[g,h] = dg/dh et n0 =

∣∣{α ∈ R+
0 (gC, hC) | α /∈ R+

0 (gC, hC)}
∣∣ ,

en notant encore ⟨ , ⟩ la forme bilinéaire sur h ∗
C duale de la restriction à hC de ⟨ , ⟩ .

Lemme 1.5. Soit f ∈ g∗ de composantes infinitésimalement elliptique, hyper-
bolique, semi-simple et nilpotente µ, ν , λ = µ+ν et ξ . On fixe h ∈ Car g telle
que λ ∈ h∗. On note a la composante hyperbolique de h.

(a) On a f ∈ g∗reg si et seulement si ξ∈ g(λ)∗reg .

(b) On a λ ∈ g∗ssI et h ∈ Car g(λ) est fondamentale,
si et seulement si

∣∣Πg,Cg(µ)(a)

∣∣(λ) ̸= 0.

Démonstration du lemme. (a) Il est clair que l’égalité dim g(f) = rk g
équivaut à dim g(λ)(ξ) = rk g(λ) .

(b) Pour tous X ∈ h et λ′ ∈ h∗, les sous-espaces vectoriels supplémentaires
[g, g(X)] = [g, X] et [g(X), h] ⊆ g(X) de [g, h] étant à la fois orthogonaux pour
Bλ′ et pour ⟨ , ⟩ , on a :

∣∣Πg,h

∣∣(λ′) =
∣∣Πg,g(X)

∣∣(λ′) ×
∣∣Πg(X),h

∣∣(λ′) . En choisissant
X ∈ h tel que g(X) = Cg(µ)(a) , on trouve d’après (∗) que :∣∣Πg,Cg(µ)(a)

∣∣(λ) =
∏

α∈R(gC,hC)
α/∈R(Cg(µ)(a)C,hC)

|⟨λ, α⟩|
1
2 .

Cela donne le résultat.
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2. Les mesures βG·λ̃

On va maintenant attacher à chaque orbite Ω̃ ∈ G\g̃∗reg une mesure de
Radon βΩ̃ sur g∗ de façon que βG·λ̃ coïncide avec la mesure canonique sur G ·λ
quand λ ∈ g∗ss reg , h = g(λ) et λ̃ = (λ, h ∗

(R)) .

Définition 2.1. Soient λ∈ g∗ss , h ∈ Car g(λ) et F+∈ C(g(λ), h) .
(a) On note F+

h = a∗ + t∗+, où t et a sont les composantes infinitésima-
lement elliptique et hyperbolique de h et F+ s’écrit F+= a∗ + it∗+ avec t∗+ ⊆ t∗.

(b) On note Suppg∗(G · (λ,F+)) la réunion dans g∗reg des G · (ω+{λ}) , où
ω décrit l’ensemble des orbites nilpotentes régulières de G(λ) dans g(λ)∗ incluses
dans l’adhérence de G(λ) · F+

h (cf. le lemme 1.5 (a) et la remarque 2.4 (1)).

La proposition suivante est donnée dans le but de faciliter l’utilisation de
la formule du caractère 10.2. Elle permettra aussi, dans certains cas, de passer
directement des caractères des représentations aux paramètres associés (cf. 9.7).

Proposition 2.2. (a) L’ensemble G \g̃∗fond est en bijection avec G \g∗reg par
l’application RG qui envoie G · λ̃ sur Suppg∗(G · λ̃).

(b) Soient λ ∈ g∗ss , h ∈ Car g(λ) et F+∈ C(g(λ), h).
La partie Suppg∗(G · (λ,F+)) de g∗reg est la réunion des RG(G · (λ,F ′+)) avec
h′ ∈ Car g(λ) fondamentale et F ′+∈ C(g(λ), h′)reg vérifiant G(λ)·ρF+ ∩F ′+ ̸= ∅.

Démonstration de la proposition. (a) Soit tout d’abord (λ,F+) ∈ g̃∗fond .
D’après [Ros 82, th. p. 217 et suppl. a(b) p. 218] appliqué à G0(λ) , il existe
une unique orbite nilpotente régulière ω0 de G0(λ) dans G0(λ) · F+

h . L’ensemble
ω := G(λ)·ω0 est donc une orbite nilpotente régulière de G(λ) dans G(λ) · F+

h .
Toute orbite nilpotente régulière ω′ de G(λ) dans G(λ) · F+

h coupe u ·G0(λ) · F+
h

pour un certain u ∈ G(λ) , donc vérifie ω′ ⊇ u · ω0 puis ω′ = ω .
Cela permet de définir RG .

On abandonne maintenant les notations du début de cette démonstration.
Soit f ∈ g∗reg de composantes semi-simple et nilpotente λ et ξ .
On fixe h ∈ Car g(λ) fondamentale. D’après le lemme 1.5 (a) et [Ros 82,

lem. a p. 220], on peut passer par une suite finie de transformations de Cayley
inverses (cf. [Ros 82, p. 218]) de h à une sous-algèbre de Cartan de g(λ) sans racine
imaginaire. D’après [Ros 82, suppl. a(a) et b et c p. 218, et th. p. 221], il existe
F+∈ C(g(λ), h)reg unique à l’action de NG0(λ)(h) près pour lequel ω0 := G0(λ)·ξ
est l’orbite nilpotente régulière de G0(λ) dans G0(λ)·F+

h . Ainsi, G·f est l’image
de G·(λ,F+) par RG .

Soit G·(λ′,F ′+) un antécédent de G·f par RG . On a F ′+∈ C(g(λ′), h′)reg
pour une certaine h′ ∈ Car g(λ′) fondamentale. On note ω′

0 l’orbite nilpotente
régulière de G0(λ

′) dans G0(λ′)·F ′
h′
+ . Vu le début de cette démonstration, il

existe g ∈ G tel que gξ ∈ ω′
0 et gλ = λ′ . Les sous-algèbres de Cartan h et

g−1h′ de g(λ) étant fondamentales, il existe x ∈ G(λ)0 tel que g−1h′ = xh . Par
conséquent, ω0 qui est égal à g−1ω′

0 est aussi l’orbite nilpotente régulière de G0(λ)

dans G0(λ)·x−1g−1F ′+. D’où : x−1g−1 ·(λ′,F ′+) ∈ NG0(λ)(h)·(λ,F+) . Il s’ensuit
que G·(λ,F+) est l’unique antécédent de G·f par RG .
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(b) Avec un argument du début de la démonstration du (a), on constate
que Suppg∗(G · (λ,F+)) est le saturé sous G de Suppg∗(G0 · (λ,F+)) . On est
donc ramené à prouver le (b) pour G0 avec λ = 0 . On se place dans ce cas.
On fixe une sous-algèbre de Cartan fondamentale h′ de g qui contient la forme
linéaire infinitésimalement elliptique −i ρF+ . On pose l0 = −i ρF+ dans F+

h . On
va reprendre rapidement les idées de [Ros 82, proof of suppl. c p. 228].

D’après [Var 77, th. 23 p. 50] et [Ros 82, (L1)⇔(L2)⇔(L3) p. 216], on a :∑
Ω∈G0\Suppg∗ (G0·(0,F+))

βΩ(φ) = lim
t→0+

∑
Ω′∈Lt

βΩ′(φ) pour tout φ ∈ C∞
c (g∗) ,

où on utilise 2.3 (c) et pose Lt = lim
l′∈F+

h ∩ g∗reg
l′→tl0

G0 · l′ dans G0\g∗reg quand t > 0 .

Par [Ros 82, lignes 2 à 9 p. 217], l’application canonique de G0(l0)\g(l0)∗reg
dans G0\g∗reg se restreint en une bijection de lim

l′′∈F+[l0]h∩ g(l0)∗reg
l′′→tl0

G0(l0) · l′′ sur Lt

pour tout t > 0 , où la limite est prise dans G0(l0)\g(l0)∗reg et F+[l0] est l’élément
de C(g(l0), h) contenant F+.

Les racines de (g(l0)C, hC) sont non imaginaires et celles de (g(l0)C, h
′
C) sont

non réelles. D’après [Ros 82, suppl. c p. 218], on en déduit que :
lim

l′′∈F+[l0]h∩ g(l0)∗reg
l′′→tl0

G0(l0) · l′′ =
⋃

˙F ′+ ∈W (G0(l0),h′)\E

lim
l′′∈F ′+[l0]h′∩ g(l0)∗reg

l′′→tl0

G0(l0) · l′′

où E :=
{
F ′+ ∈ C(g, h′) | l0 ∈ F ′

h′
+
}

et F ′+[l0] est l’élément de C(g(l0), h
′)

contenant F ′+. En outre, la réunion précédente est une réunion d’ensembles deux
à deux disjoints au vu de [Ros 82, suppl. b p. 218].

Les mesures de Radon βΩ avec Ω ∈ G0\g∗reg (cf. 2.3 (c)) sont linéairement
indépendantes. À l’aide de [Ros 82, th. p. 217], on trouve que Suppg∗(G0 · (0,F+))

est réunion disjointe des RG0(G0 · (0,F ′+)) où ˙F ′+∈ W (G0(l0), h
′)\C(g, h′)reg et

ρF+ ∈ F ′+ . Cela conduit au résultat.

Définition 2.3. (a) On note Dg la fonction sur g dont la valeur en X ∈ g
est le coefficient de T r dans det(T id− adX) , où r est le rang de g . Elle est
polynomiale et invariante sous AdG .

(b) On note gss reg l’ensemble des X ∈ g semi-simples tels que g(X) est
commutative. Donc gss reg est l’ouvert dense de complémentaire négligeable de g
formé des points où Dg ne s’annule pas (cf. [Var 77, (2) et lem. 1 p. 9]).

(c) Soit Ω ∈ G \g∗. On note βΩ la mesure positive image sur g∗ de la
mesure de Liouville de la variété symplectique Ω (cf. [B.. 72, 2.6 p. 20]). C’est une
mesure de Radon sur g∗ (cf. [Ran 72, th. 2 p. 509]).

(d) Soit Ω̃0 ∈ G0 \g̃∗reg . On pose βΩ̃0
=

∑
Ω0 ∈G0\Suppg∗ (Ω̃0)

βΩ0 .

(e) Soit Ω̃ ∈ G \g̃∗reg . On pose βΩ̃ =
∑

Ω̃0 ∈G0\Ω̃
βΩ̃0

(cf. fin 2.6 (a)).

Remarque 2.4. (1) Soit Ω̃ ∈ G \g̃∗reg . D’après le début de la démonstration de
la proposition 2.2 (b), l’ensemble Suppg∗(Ω̃) est la réunion des orbites Ω ∈ G \g∗reg
telles que βΩ̃(Ω) ̸= 0 .
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Il découle aussi de la définition ci-dessus que βΩ̃ =
∑

Ω0 ∈G0 \Suppg∗ (Ω̃)

mΩ0 βΩ0

où mΩ0 est le nombre (non nul) de Ω̃0 ∈ G0\Ω̃ vérifiant Ω0 ⊆ Suppg∗(Ω̃0) .
En particulier : βΩ̃ = βRG(Ω̃) quand Ω̃ ∈ G \g̃∗fond .

(2) L’exemple de G égal au produit semi-direct de Z/2Z par SL(2,R)2 où
l’élément non trivial de Z/2Z opère sur SL(2,R)2 par permutation des coordon-
nées, et de Ω̃ de la forme G ·(0,F+) pour une chambre F+ associée à h ∈ Car g ni
fondamentale ni déployée, montre que les coefficients mΩ0 du (1) ci-dessus peuvent
prendre des valeurs différentes de 1 .

(3) D’après (1) et 2.2 (a), l’application Ω̃ 7→ βΩ̃ est injective sur G \g̃∗fond .
Quand G = SL(3,R) , les deux éléments Ω̃ de G \g̃∗reg de la forme G·(0,F+)

(dont l’un est dans G \g̃∗fond ) correspondent à une même mesure βΩ̃ , égale à la
mesure de Liouville de l’unique orbite nilpotente régulière de G dans g∗ .

Voici un résultat bien connu. Comme le (b) ne me sera pas utile, je me
contente d’en donner une démonstration abrégée, suggérée par J.-Y. Charbonnel.

Proposition 2.5. (a) La fonction |Dg|−1/2 est localement intégrable sur g.
(b) Les mesures de Radon βΩ sur g∗ avec Ω∈G \ g∗ sont tempérées.

(c) Soit Ω∈G \ g∗. La fonction généralisée β̂Ω est (la classe modulo l’égalité
presque partout d’) une fonction localement intégrable sur g et analytique sur gss reg .

Démonstration de la proposition. (a) Cette première assertion est démon-
trée dans [Var 77, prop. 15 p. 66].

(b) On considère un groupe linéaire algébrique réel H . On note h son
algèbre de Lie. On se donne une orbite coadjointe Ω de H dont la mesure de
Liouville βΩ est une mesure de Radon sur h∗ . On reprend les arguments de [Cha 96,
3.2 p. 220]. Soient W0 un ouvert de P(h∗×R) correspondant à la non-nullité d’une
coordonnée homogène, et U un ouvert relativement compact dans W0 pour la
topologie usuelle. On construit une certaine fonction régulière q : U → R+ \{0} .
Soit s ∈ C . D’après [Cha 96, p. 217], l’application qui à ϕ ∈ C∞

c (h∗ ∩ U) associe
l’intégrale (holomorphe en s)

∫
Ω∩U q(l)

s ϕ(l) dβΩ(l) est continue pour la topologie
de S(h∗) . Il en résulte que la mesure βΩ sur h∗ est tempérée.

(c) Voir [Var 77, prop. 13 p. 65, th. 17 p. 66, th. 28 p. 95, et bas p. 105].

La proposition suivante sera intéressante quand on voudra se ramener, par
passage à la limite ou par translation, à des formes linéaires semi-simples régulières.

Proposition 2.6. Soient λ ∈ g∗ss , h ∈ Car g(λ) et F+∈ C(g(λ), h). On pose
λ̃ = (λ,F+). On note a la composante hyperbolique de h, et se donne une chambre
a∗+ de (g(λ)(iρF+), a).

(a) Les mesures positives βΩ̃ avec Ω̃∈G \g̃∗reg sont des mesures de Radon
tempérées. Soit φ ∈ S(g∗). On a

lim
λ′∈F+

h ∩ g∗reg
λ′→λ

(
|W (G,h) (λ′)| βG·λ′(φ)

)
=

{
|W (G,h) (λ+)| βG·λ̃(φ) si λ̃ ∈ g̃∗reg

0 sinon.
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En particulier βG·λ̃(φ) = lim
t→0+

βG·λt(φ) quand λ̃ ∈ g̃∗reg (cf. 1.4).

(b) Pour tout X ∈ gss reg , on a en tenant compte de 2.5 (c)

lim
λ′∈F+

h ∩ g∗reg
λ′→λ

(
|W (G,h) (λ′)| β̂G·λ′(X)

)
=

{
|W (G,h) (λ+)| β̂G·λ̃(X) si λ̃ ∈ g̃∗reg

0 sinon.

En particulier βG·λ̃(X) = lim
t→0+

βG·λt(X) quand λ̃ ∈ g̃∗reg (cf. 1.4).

Plus précisément, étant donnés j ∈ Car g, y ∈ int(gC) pour lequel jC = yhC ,
un système de racines positives R+(gC, jC) de R(gC, jC), une composante connexe
Γ de j ∩ gss reg et une composante connexe h∗+ de F+

h ∩ g∗reg à laquelle λ est
adhérent, il existe une famille

(
cw
)
w∈W (gC,jC)

de nombres complexes telle que, pour
tout X∈Γ, on ait∑

w∈W (gC,jC)

cw eiwyλ′ (X) =
∏

α∈R+(gC,jC)

α(X) × β̂G0·λ′(X) quand λ′ ∈ h∗+

et ∑
w∈W (gC,jC)

cw eiwyλ (X) =

{ ∏
α∈R+(gC,jC)

α(X) × β̂G0·λ̃(X) si λ̃ ∈ g̃∗reg

0 sinon.

Démonstration de la proposition. (a) Soit φ ∈ C∞
c (g∗) positive. D’après

[Ros 82, (L1)⇔(L2)⇔(L3) p. 216, lignes 9 à 12 p. 217, et th. p. 217], on a

lim
λ′∈F+

h ∩ g∗reg
λ′→λ

βG0·λ′(φ) =

{
βG0·λ̃(φ) si λ̃ ∈ g̃∗reg

0 sinon.

On fixe une norme ∥·∥ sur g∗. D’après [Var 77, (i) p. 40], il existe N ∈ N tel que

la famille formée des
∫
g∗
(1 + ∥l∥)−NdβΩ0(l) avec Ω0∈G0\g∗ss reg est bornée. On

en déduit que βG0·λ̃ est une mesure de Radon tempérée quand λ̃ ∈ g̃∗reg , et que le
passage à la limite ci-dessus reste valable en remplaçant la condition « φ ∈ C∞

c (g∗)
positive » par « φ ∈ S(g∗) ».

On obtient ensuite, pour tout φ ∈ S(g∗) :

lim
λ′∈F+

h ∩ g∗reg
λ′→λ

∑
ẋ∈G/G0

βG0·xλ′(φ) =

{ ∑
ẋ∈G/G0

βG0·xλ̃(φ) si λ̃ ∈ g̃∗reg

0 sinon.

On transforme d’abord la somme de gauche pour λ′ ∈ F+
h ∩ g∗reg :∑

ẋ∈G/G0

βG0·xλ′ = |G(λ′)G0/G0| βG·λ′ = |W (G,h)(λ′)|
|CG(h)/CG0

(h)| βG·λ′ .

Par ailleurs, les chambres de (g(λ)(iρF+), a) sont conjuguées sous NG(λ)(iρF+ )0(a)

et a fortiori sous G0(λ̃) , ce qui prouve que G(λ̃) = G0(λ̃) NG(λ̃)(a
∗+) .

Quand λ̃ ∈ g̃∗reg , on a donc d’autre part à l’aide du lemme 1.4 :∑
ẋ∈G/G0

βG0·xλ̃ = |G(λ̃)G0/G0| βG·λ̃ = |W (G,h)(λ+)|
|CG(h)/CG0

(h)| βG·λ̃ .

Cela fournit (a).

(b) L’avant dernière égalité de cet énoncé est extraite de [Var 77, th. 4
p. 108]. Elle montre que β̂G0·λ′ converge simplement sur gss reg vers une fonction
G0 -invariante continue quand λ′ → λ avec λ′ ∈ h∗+. Soit ψ ∈ C∞

c (gss reg) . D’après
la démonstration de (a), on a
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lim
λ′∈h∗+
λ′→λ

∫
gss reg

β̂G0·λ′(X) ψ(X) dg(X) =

{
β̂G0·λ̃(ψ dg) si λ̃ ∈ g̃∗reg

0 sinon.

Compte tenu des majorations
∣∣cw eiwyλ′ (X)

∣∣ ≤ |cw| de [Var 77, th. 7 p. 111],
on voit que les fonctions G0 -invariantes |Dg|1/2× β̂G0·λ′ sur gss reg avec λ′ ∈ h∗+

sont uniformément bornées. La proposition 2.5 (a) permet donc d’appliquer le
théorème de convergence dominée de Lebesgue dans le passage à la limite ci-dessus.
D’où la dernière égalité de l’énoncé.

Le passage de G0 à G se fait comme dans la démonstration du (a).

3. Points fixés par un élément elliptique

On se donne un élément elliptique e de G .
L’algèbre de Lie g(e) est réductive car g(e)C a pour forme réelle c(e) , où

c est l’algèbre de Lie d’un sous-groupe compact maximal de G(C) qui contient la
projection dans G(R) de l’élément e de G . De plus toute sous-algèbre de Cartan
he de g(e) coupe gss reg , ce qui signifie que le commutant h de he dans g est une
sous-algèbre de Cartan de g (cf. [Bou 87, lem. 1.4.1 p. 6]). Par conséquent G(e)
vérifie l’hypothèse de l’introduction portant sur G (cf. [DV 93, bas p. 38]).

Définition 3.1. On note g∗reg(e) (respectivement g̃∗I(e) , g̃∗Inc(e) , g̃∗fond(e) et
g̃∗reg(e)) l’ensemble des éléments de g∗reg (respectivement g̃∗I , g̃∗Inc , g̃∗fond et g̃∗reg ) qui
sont fixes sous l’action de e .

Parmi les résultats du lemme qui suit, seul le point (a) est important. Le
point (b) sera utilisé dans la remarque 9.7 et le point (c) dans un article ultérieur.

Lemme 3.2. Soient λ ∈ g∗ss , h ∈ Car g(λ) de composantes infinitésimalement
elliptique et hyperbolique t et a, et F+∈ C(g(λ), h) tels que e fixe λ̃ := (λ,F+).
On suppose qu’il existe une chambre a∗+ de (g(λ)(iρF+), a) stable par e.

(a) On a λ ∈ g(e)∗ss , h(e) ∈ Car g(e)(λ), et l’élément ρF+ de h(e) ∗
(R) est

régulier pour les racines imaginaires de (g(e)(λ)C, h(e)C).
On note par définition F+[e] l’élément de C(g(e)(λ), h(e)) contenant ρF+ et

λ̃[e] = (λ,F+[e]). (On dira que « λ̃[e] existe » quand e stabilise une chambre a∗+.)
(b) Il existe e0∈ e exp t(e) tel que : si F ′+∈ C(g(λ), h) et ρF ′+ ∈ F+[e0],

alors F ′+=F+. Quand λ̃ ∈ g̃∗I on peut même choisir e0 tel que λ̃[e0]∈ g̃(e0)
∗
I .

(c) On suppose que λ̃ ∈ g̃∗I . Le cardinal de l’ensemble des λ̃
′
∈ g̃∗I(e)

vérifiant λ̃
′
[e] = λ̃[e] est égal à |W (g(λ)C,hC)(Ad∗ e)|

|W (g(e)(λ)C,h(e)C)|
, où W (g(λ)C, hC)(Ad

∗ e) désigne
le commutant de (Ad∗ eC)h∗C dans W (g(λ)C, hC).

Démonstration du lemme. (a) D’après le lemme 1.4, on a : λ+ ∈ g(e)∗ss reg ,
puis h(e) = g(e)(λ+) ∈ Car g(e)(λ) . Soit α′ ∈ R(g(e)(λ)C, h(e)C) imaginaire. Il
existe α ∈ R(g(λ)C, hC) tel que α′ = α h(e)C . On a : ⟨ν+, α⟩ = ⟨ν+, α′⟩ = 0 et
⟨ρF+ , α⟩ = ⟨ρF+ , α′⟩ . Donc ⟨ρF+ , α′⟩ ̸= 0 , car R+(g(ν+)C, hC) est un système de
racines positives.

(b) Soit B la base de R(Cg(a)(λ)C, hC) associée à F+. Pour chaque α∈B ,
on note mα̇ le cardinal de l’orbite α̇ de α sous l’action dans B du sous-groupe
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⟨e⟩ de G engendré par e , et on choisit tα̇ ∈ R tel que ((Ad eC)mα̇)gαC = ei tα̇ id .
On prend e0 = e exp(X0) , où X0 est l’unique élément de hC ∩ D(Cg(a) (λ)C) tel
que α(X0) = −itα̇/mα̇ pour tout α∈B . Il est clair que λ̃[e0] existe.
Chaque α h(e)C avec α ∈ B est un poids de h(e)C dans g(e0)C dont l’espace propre
contient (1 + e0 + · · ·+ e0

mα̇−1) · gαC . Soit F ′+∈ C(g(λ), h) tel que ρF ′+ ∈ F+[e0] ,
(donc e0F ′+ = F ′+). Pour tout α ∈ B , on a : ⟨ρF+ , α h(e)C⟩ = ⟨ρF+ , α⟩ > 0 et
⟨ρF ′+ , α⟩ = ⟨ρF ′+ , α h(e)C⟩ , donc la racine α h(e)C de R(Cg(e0)(a(e))(λ)C, h(e)C) est
positive relativement à F+[e0] et ensuite ⟨ρF ′+ , α⟩ > 0 . D’où F ′+= F+.

On suppose maintenant que λ̃ ∈ g̃∗I . Toute racine de (g(e0)(λ)C, h(e)C) est
restriction d’une racine de (g(λ)C, hC) . Les racines α′ = α h(e)C avec α̇ ∈ ⟨e⟩\B
décrivent donc lorsque α̇ varie (de façon injective car dim g(e0)

α′

C = 1) l’ensemble
des racines simples relativement à F+[e0] dans R(g(e0)(λ)C, h(e)C) . Ces racines α′

sont non compactes car α([ · , · ]) est positive sur le sous-espace vectoriel g(e0)
α′

C
de la somme directe orthogonale gαC ⊕ e0g

α
C ⊕ · · · ⊕ e0

mα̇−1gαC .
(c) L’application πe : W (g(λ)C, hC) · ρF+ ∩ h(e)∗C → C(g(e)(λ), h(e)) qui à

une forme linéaire associe la chambre qui la contient, commute à l’action du groupe
W (g(e)(λ)C, h(e)C) . Les groupes W (g(λ)C, hC)(Ad

∗ e) et W (g(e)(λ)C, h(e)C)
opèrent simplement transitivement respectivement sur les ensembles de départ et
d’arrivée de πe . Les fibres de πe ont donc un cardinal égal à |W (g(λ)C,hC)(Ad∗ e)|

|W (g(λ)(e)C,h(e)C)|
.

L’ensemble des λ̃
′
= (λ′,F ′+) ∈ g̃∗I(e) tels que λ̃

′
[e] = λ̃[e] , dont les éléments

vérifient λ′ = λ et g(λ̃
′
) = Cg(g(e)(λ̃

′
[e])) = h , est en bijection avec π−1

e ({F+[e]})
par l’application (λ′,F ′+) 7→ π−1

1 (F ′+) . Cela permet de calculer son cardinal.

Remarque 3.3. (1) Il peut arriver qu’un λ̃ ∈ g̃∗I(e) vérifie λ̃[e] /∈ g̃(e)∗I .
(Cependant la condition λ̃ ∈ g̃∗Inc(e) implique λ̃[e] ∈ g̃(e)∗Inc .) Par exemple :
G = Sp(4,R) , λ̃ = (0,F+) tel que h := g(λ̃) est égale à sa composante infinitési-
malement elliptique et le système de racines positives de (gC, hC) associé à F+

s’écrit {α1, α2, α1 + α2, 2α1 + α2 } avec pour seule racine compacte α1 + α2 . En
prenant e = expE où E ∈ h est déterminé par α1(E) = −α2(E) = iπ , l’algèbre
de Lie g(e) est ici isomorphe à u(2) et donc C(g(e), h(e))reg = ∅ .

(2) On peut aussi trouver des λ̃e ∈ g̃(e)∗reg qui ne sont pas de la forme λ̃[e]
pour un λ̃ ∈ g̃∗reg(e) . Par exemple : G = SU(2) , e =

(
0 −1
1 0

)
et λ̃e = (0, i so(2)∗) .

(3) Pour certains λ̃ ∈ g̃∗fond(e) il n’existe pas de f ∈ g∗reg(e) tel que
G · f = RG(G · λ̃) . C’est le cas, avec G = SL(2,R) et e =

(
0 −1
1 0

)
, des éléments

de g̃∗fond(e) de la forme (0,F+) tels que F+⊆ i so(2)∗.

II. Les paramètres « représentation projective »

Les paramètres de cette partie sont calqués sur ceux introduits par M. Duflo,
qui étaient adaptés au cas des orbites coadjointes semi-simples régulières de G .

4. Rappels sur les groupes spécial-métalinéaire et métaplectique

Ma référence concernant le groupe métaplectique et les fonctions orientation
de M. Duflo et M. Vergne qui lui sont attachées, est leur article [DV 93]. Je choisis
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comme eux d’éviter l’utilisation du caractère de la représentation métaplectique
en suivant le point de vue de [Ver 94, conjecture p. 291] (au signe de la forme
symplectique sur les orbites coadjointes près).

Définition 4.1. On considère un R-espace vectoriel V de dimension finie.

(a) On note DL(V ) → SL(V ) « le » revêtement double de SL(V ) , unique
à isomorphisme de revêtements près, qui est connexe quand dimV ≥ 2 . (Le (b) ci-
dessous fournira une description canonique d’un tel revêtement, comme ensemble
de couples formés d’un élément de SL(V ) et d’une orientation d’un certain sous-
espace vectoriel de V .)

(b) Soit â ∈ DL(V ) au-dessus d’un a ∈ SL(V ) elliptique.
Quand dimV ≥ 2 , on note
O(â)(1−a)·V = (−1)

α1+···+αp
2π sg(sin(β1

2
) . . . sin(βq

2
)) × R+ \{0} (w1∧ · · · ∧w2q) ,

où « sg » représente la fonction signe sur R \{0} , indépendamment du choix d’un
A ∈ sl(V ) infinitésimalement elliptique tel que â = expDL(V )A , et d’une base
(v1, . . . , v2p, w1, . . . , w2q) de A · V dans laquelle la matrice de la restriction de A
est de la forme

(∗∗)


(

0 −α1
α1 0

)
. . .(

0 −αp
αp 0

)
(

0 −β1
β1 0

)
. . .(

0 −βq
βq 0

)


avec α1, . . . , αp ∈ 2πZ \{0} et β1, . . . , βq ∈ R \2πZ .

Quand dimV ≤ 1 , O(â){0} vaut R+ \{0} ou R− \{0} suivant que â est
trivial ou non.

(c) Soit A ∈ sl(V ) infinitésimalement elliptique. On note
O(A)A·V = sg(β1 . . . βq) × R+ \{0} (w1 ∧ · · · ∧ w2q) ,

indépendamment du choix d’une base (w1, . . . , w2q) de A · V dans laquelle la
matrice de la restriction de A est de la forme((

0 −β1
β1 0

)
. . .(

0 −βq
βq 0

)
)

avec β1, . . . , βq ∈ R \{0} .

Définition 4.2. On considère un R-espace vectoriel V de dimension finie muni
d’une forme bilinéaire B alternée non dégénérée. On désigne encore par B le
prolongement bilinéaire complexe de cette forme bilinéaire à VC .

(a) On note Mp(V ) l’image réciproque de Sp(V ) dans DL(V ) .

(b) On note O(B)V l’orientation de V sur laquelle B
1
2
dimV est positive.

On appelle « base symplectique » de (V,B) toute base (P1, . . . , Pn, Q1, . . . , Qn) de
V telle que B(Pi, Pj) = B(Qi, Qj) = 0 et B(Pi, Qj) = δi,j (symbole de Kronecker)
pour 1 ≤ i, j ≤ n .

(c) On appelle « lagrangien » de (VC, B) tout sous-espace vectoriel de VC
égal à son orthogonal pour B . On appelle « lagrangien positif » de (VC, B) tout
lagrangien de (VC, B) sur lequel la forme sesquilinéaire hermitienne (v, w) 7→
iB(v, w) est positive.
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Soit L un lagrangien de (VC, B) . On note Mp(V )L le normalisateur de L
dans Mp(V ) . À chaque x̂∈Mp(V )L au-dessus d’un élément x de Sp(V ) , on as-
socie le nombre nL(x) de valeurs propres comptées avec multiplicité dans ]1,+∞[
de la restriction de xC à L , et le nombre qL(x) de composantes strictement né-
gatives dans la matrice de la forme sesquilinéaire hermitienne (v, w) 7→ iB(v, w)
sur (1− xC) · L relativement à une base orthogonale.

(d) Soit L un lagrangien de (VC, B) . Pour tout x̂ ∈ Mp(V )L de compo-
sante elliptique x̂e (au sens de [DV 93, lem. 31 p. 38]) au-dessus d’un élément x
de Sp(V ) de composante elliptique xe , on pose

ρL(x̂) = (−1)qL(xe) O(x̂e)(1−xe)·V
O(B)(1−xe)·V

∏
1≤k≤n

(
√
rk e

i θk/2) ,

où r1e
i θ1 , . . . , rne

i θn sont les valeurs propres comptées avec multiplicité de la
restriction de xC à L , avec r1, . . . , rn ∈ R+ \{0} et θ1, . . . , θn ∈ ]−2π, 0] .

(e) Soit x̂ ∈ Mp(V ) de composante elliptique x̂e au-dessus d’un élément
semi-simple x de Sp(V ) de composante elliptique xe . On pose

δ(x̂) =
O(x̂e)(1−xe)·V
O(B)(1−xe)·V

∏
1≤k≤n

ei θk/2 ,

indépendamment (compte tenu de la démonstration du (c) de la proposition ci-
dessous) du choix d’un E ∈ sp(V ) infinitésimalement elliptique tel que xe =
expSp(V )E , et d’une base symplectique (P1, . . . , Pn, Q1, . . . , Qn) de (V,B) pour
laquelle la matrice de E relativement à (P1, Q1, . . . , Pn, Qn) est de la forme((

0 θ1
−θ1 0

)
. . .(

0 θq
−θq 0

)
)

avec θ1, . . . , θn ∈ ]−2π, 0] .
(f) Soit x̂ ∈ Mp(V ) de composante elliptique x̂e au-dessus d’un élément

semi-simple x de Sp(V ) de composante elliptique xe . On pose

Φ(x̂) =
O(x̂e)(1−xe)·V
O(B)(1−xe)·V

i−
1
2
dim(1−xe)·V | det (1− x)

(1−x)·V |
−1/2 .

On va maintenant voir, comme le sous-entend M. Vergne dans [Ver 94,
prop. p. 289] (avec la représentation de Weil contragrédiente de celle utilisée dans
[DHV 84], déduite de celle de [DHV 84] en remplaçant au choix B par −B ou
le caractère central du groupe de Heisenberg par son conjugué), que les fonctions
que je viens d’introduire dans les points (d), (e), (f) sont les fonctions ρL et δ de
[Duf 82a] et la fonction Φ de [DHV 84].

Proposition 4.3. On considère un R-espace vectoriel V de dimension finie
muni d’une forme bilinéaire B alternée non dégénérée.

(a) Le revêtement Mp(V ) → Sp(V ) est connexe quand V ̸= {0}.
(b) Soit L un lagrangien de (VC, B). La fonction ρL est un morphisme de

groupes de Lie de Mp(V )L dans C \{0} tel que d1ρL = 1
2
tr( · C)L . Pour tout

x̂ ∈Mp(V )L au-dessus d’un élément semi-simple x de Sp(V ), on a
Φ(x̂) = (−1)nL(x)+ qL(x) ρL(x̂) (det (1− xC)

(1−xC)·L
)−1 .

(c) Soit x̂ ∈ Mp(V ) au-dessus d’un x ∈ Sp(V ) de composante ellip-
tique xe . Il existe un lagrangien positif de (VC, B) stable par xC . Pour tout la-
grangien L de (VC, B) stable par xC , on a
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ρL(x̂) |ρL(x̂)|−1 = δ(x̂)
∏

z∈Sp(xe)

zqz ,

où Sp(xe) est le spectre de xe et, pour chaque z ∈ Sp(xe), (pz, qz) est la signature
de la forme sesquilinéaire hermitienne (v, w) 7→ iB(v, w) sur le sous-espace propre
de (xe

C)L associé à z .

Démonstration de la proposition. (a) On suppose que V est non nul. Soit
(P1, . . . , Pn, Q1, . . . , Qn) une base symplectique de (V,B) . On note TSp le tore
maximal de Sp(V ) formé des endomorphismes de V dont les matrices dans la
base (P1, Q1, . . . , Pn, Qn) sont diagonales par blocs avec des blocs dans SO(2) , et
t son algèbre de Lie. Le tore TMp := expMp(V )t est un tore maximal de DL(V ) .

On choisit un élément A de Ker expTSp
tel que O(expDL(V )A){0} = R−\{0}

(il en existe). Le chemin t ∈ [0, 1] 7→ expTMp
(tA) joint dans Mp(V ) les deux

points du noyau du morphisme de groupes canonique de Mp(V ) dans Sp(V ) .
(b) Soit x̂ ∈ Mp(V )L au-dessus d’un élément semi-simple x de Sp(V ) de

composante elliptique xe .
On note ρ̃L le morphisme de groupes de Lie de Mp(V )L dans C\{0} défini

dans [Duf 84, p. 107]. D’après [Duf 84, (10) p. 108], on a
|ρ̃L(x̂)| =

∣∣det(xC)L∣∣1/2 = |ρL(x̂)| et d1ρ̃L = 1
2
tr( · C)L .

Ces égalités permettent de prouver, compte tenu de [DV 93, fin du lemme 30
p. 37], que les applications ρ̃L et ρL commutent aux prises de composantes
elliptique, positivement hyperbolique et unipotente sur les groupes Mp(V )L et
GL(C) , et ont mêmes restrictions aux parties de Mp(V )L formées de ses éléments
positivement hyperboliques ou de ses éléments unipotents.

On note Φ̃ la fonction (indépendante de L) de l’ensemble des éléments
semi-simples de Mp(V ) dans C\{0} définie dans [DHV 84, p. 102]. Elle s’écrit

Φ̃(x̂) = (−1)nL(x)+ qL(x) ρ̃L(x̂) (det (1− xC)
(1−xC)·L

)−1 .

En outre, l’application v̇ 7→ B(v, .) de (1−xC)·VC / (1−xC)·L dans ((1−xC)·L)∗
est une bijection linéaire qui commute à l’action de 1−x . Il s’ensuit que

|Φ̃(x̂)| = | det (1− x)
(1−x)·V |

−1/2 = |Φ(x̂)| .

Pour montrer que Φ̃ = Φ (respectivement ρ̃L = ρL ), vu [Duf 84, (9) p. 108]
il reste à prouver que Φ̃/|Φ̃| et Φ/|Φ| (respectivement ρ̃L et ρL ) coïncident en
un des deux points de Mp(V ) situés au-dessus de x (respectivement de xe ).

On note V z (respectivement V z
C ) le sous-espace propre de x (respective-

ment xC ) associé à une valeur propre z ∈ R\{0} (respectivement z ∈ C\{0}),
et ⊥B la relation de B -orthogonalité. On considère maintenant une valeur propre
z ∈ C\{0} de xC telle que Im z ≥ 0 et |z| ≥ 1 . On va lui associer une certaine
base symplectique Bz de ((V z

C + V z−1

C + V z̄
C + V z̄−1

C ) ∩ V,B) .
Si z ∈ R et |z| ≥ 1 : quand |z| = 1 , on fixe une base symplectique Bz =

(P 0
1 , . . . , P

0
n0 , Q0

1, . . . , Q
0
n0) de V z ; quand |z| > 1 , on fixe une base (P 0

1 , . . . , P
0
n0)

de V z , et en déduit une unique base symplectique Bz = (P 0
1 , . . . , P

0
n0 , Q0

1, . . . , Q
0
n0)

de V z ⊕ V z−1 telle que Q0
1, . . . , Q

0
n0 ∈ V z−1, car V z et V z−1 sont en dualité avec

V z ⊥B V z et V z−1
⊥B V z−1 .

Si Im z > 0 et |z| > 1 : on fixe une base (P1+iP2, . . . , P2n−1+iP2n)
de V z

C telle que P1, . . . , P2n ∈ V ; on en déduit une unique base symplectique
(P1 + iP2, . . . , P2n−1 + iP2n, Q1 − iQ2, . . . , Q2n−1 − iQ2n) de V z

C ⊕ V z−1

C muni de
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B/2 telle que Q1− iQ2, . . . , Q2n−1− iQ2n ∈ V z−1

C et Q1, . . . , Q2n ∈ V , car V z
C et

V z−1

C sont en dualité avec V z
C ⊥B V z

C et V z−1

C ⊥B V z−1

C ; puis on obtient la base
symplectique Bz := (P1, . . . , P2n, Q1, . . . , Q2n) de (V z

C ⊕ V z−1

C ⊕ V z̄
C ⊕ V z̄−1

C ) ∩ V ,
car V z

C ⊥B V z̄
C , V z−1

C ⊥B V z̄−1

C et V z
C ⊥B V z̄−1

C .
Si Im z > 0 et |z| = 1 : on fixe une base (P ′

1+iQ′
1, . . . , P

′
p+iQ′

p, P
′′
1 −iQ′′

1,
. . . , P ′′

q − iQ′′
q) de V z

C telle que P ′
1, Q

′
1, . . . , P

′
p, Q

′
p, P

′′
1 , Q

′′
1, . . . , P

′′
q , Q

′′
q ∈ V , dans

laquelle la forme sesquilinéaire hermitienne non dégénérée (v, w) 7→ iB/2 (v, w) a
pour matrice

(
Ip 0
0 −Ip

)
; elle fournit la base symplectique Bz := (P ′

1, . . . , P
′
p, P

′′
1 , . . . ,

P ′′
q , Q

′
1, . . . , Q

′
p, Q

′′
1, . . . , Q

′′
q) de (V z

C ⊕ V z̄
C ) ∩ V , car V z

C ⊥B V z
C et V z̄

C ⊥B V z̄
C .

On constate que le sous-espace vectoriel L+
x (respectivement L+

x,e ) de VC
engendré par les différents vecteurs P 0

1 , . . . , P
0
n0 , ou, P1, . . . , P2n , ou, P ′

1+ iQ′
1,

. . . , P ′
p+iQ′

p, P
′′
1 +iQ′′

1, . . . , P
′′
q +iQ′′

q (respectivement P 0
1 +iQ0

1, . . . , P
0
n0+iQ0

n0 , ou,
P1+iQ1, . . . , P2n+iQ2n , ou, P ′

1+iQ′
1, . . . , P

′
p+iQ′

p, P
′′
1 +iQ′′

1, . . . , P
′′
q +iQ′′

q ) lorsque
z varie, est un lagrangien positif de (VC, B) stable par xC (respectivement xeC ).

On note E (respectivement H ) l’élément de sp(V ) stabilisant les espaces
vectoriels (V z

C + V z−1

C + V z̄
C + V z̄−1

C ) ∩ V avec z = rei θ , r ≥ 1 , −2π < θ ≤ 0 ,
et dont la restriction à un tel espace a dans la base Bz une matrice diagonale par
blocs dont les blocs sont les matrices(

0 θ
−θ 0

)
(resp.

(
ln r 0
0 − ln r

)
) relativement à (P 0

k , Q
0
k) ,

ou,
(

0 θ
−θ 0

0 −θ
θ 0

)
(resp.

(
ln r

ln r
− ln r

− ln r

)
) relativement à (P2k−1, P2k, Q2k−1,−Q2k) ,

ou,
(

0 θ
−θ 0

)
(resp.

(
0 0
0 0

)
) relativement à (P ′

k, Q
′
k) et

(
0 −θ
θ 0

)
(resp.

(
0 0
0 0

)
) relativement

à (P ′′
l , Q

′′
l ) .

Les éléments x̂E,H = expMp(V )E expMp(V )H et x̂E = expMp(V )E de Mp(V )
sont respectivement au-dessus de x et xe . D’après [Duf 84, (15) p. 109], on a :

ρ̃L+
x

|ρ̃L+
x
|
(x̂E,H) = ρ̃L+

x,e
(expMp(V )E) = e

1
2
tr(EC)L+

x,e .

D’où les égalités suivantes, qui permettent d’obtenir le résultat :
Φ̃

|Φ̃|
(x̂E,H) = (−1)

nL+
x
(x)

e
1
2
tr(EC)L+

x,e

(
det (1−xC)

(1−xC)·L+
x

|det (1−xC)
(1−xC)·L+

x
|

)−1

= · · · = Φ

|Φ|
(x̂E,H)

et ρ̃L(x̂E)= (−1)qL(xe)
Φ

|Φ|
(x̂E)

det (1−expEC)
(1−expEC)·L

|det (1−expEC)
(1−expEC)·L|

= · · · = ρL(x̂E).

(c) L’existence d’un lagrangien positif de (VC, B) stable par xC est démon-
trée dans [B.. 72, cor. p. 82]. On suppose V non nul et note x̂e la composante
elliptique de x̂ . Par définition δ(x̂) est égal à ρC(P1+iQ1)+···+C(Pn+iQn)(x̂e) , avec les
notations de 4.2 (e). L’égalité [Duf 84, (15) p. 109] prouve que ce nombre complexe
est indépendant du choix de (P1, . . . , Pn, Q1, . . . , Qn) .

On se donne un lagrangien L de (VC, B) stable par xC et un supplémen-
taire S de L ∩ L dans L qui est stable par xe

C . On note W le sous-espace
symplectique de (V,B) égal à l’orthogonal de S + S dans V . On fixe une base
(P 0

1 , . . . , P
0
n0 , PR

1 , . . . , P
R
2m) du lagrangien L ∩ L de (WC, B) , formée de vecteurs

de V , telle que P 0
1 , . . . , P

0
n0 sont des vecteurs propres de xe associés à des va-

leurs propres réelles et PR
1 +iPR

2 , . . . , P
R
2m−1+iPR

2m sont des vecteurs propres de
xe

C associés à des valeurs propres non réelles. Elle se complète en une base sym-
plectique (P 0

1 , . . . , P
0
n0 , PR

1 , . . . , P
R
2m, Q

0
1, . . . , Q

0
n0 , 2QR

1 , . . . , 2Q
R
2m) de (W,B) telle

que Q0
1, . . . , Q

0
n0 et QR

1 +iQR
2 , . . . , Q

R
2m−1+iQR

2m sont des vecteurs propres de xeC .
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En effet, on peut construire (QR
1 , . . . , Q

R
2m) par récurrence sur m= 1

2
dim(x2e−1)·W,

en associant au vecteur P := PR
2m−1+iPR

2m de (x2e−1)· (L∩L) un vecteur propre
Q = QR

2m−1− iQR
2m de xe

C avec QR
2m−1, Q

R
2m ∈ (x2e − 1) ·W tel que B(P,Q) = 1

et B(Q,Q) = 0 (cette dernière égalité se réalise en remplaçant Q par Q −
1
2
B(Q,Q)P ). On fixe aussi une base (P ′

1+iQ
′
1,. . . , P

′
p+iQ

′
p, P

′′
1−iQ′′

1, . . . , P
′′
q−iQ′′

q) de
S formée de vecteurs propres de xeC avec P ′

1, Q
′
1, . . . , P

′
p, Q

′
p, P

′′
1 , Q

′′
1, . . . , P

′′
q , Q

′′
q ∈

V , dans laquelle la forme sesquilinéaire hermitienne non dégénérée xeC -invariante
(v, w) 7→ iB/2 (v, w) a pour matrice

(
Ip 0
0 −Ip

)
.

La base de L constituée des vecteurs propres P 0
1 , . . . , P

0
n0 , PR

1+iPR
2 ,P

R
1−iPR

2 ,
. . . , PR

2m−1+iPR
2m, P

R
2m−1−iPR

2m et P ′
1+iQ′

1, . . . , P
′
p+iQ′

p, P
′′
1−iQ′′

1, . . . , P
′′
q−iQ′′

q de xeC
fournit une expression pour ρL(x̂e) . On calcule δ(x̂) à l’aide de la base symplec-
tique (P 0

1 , . . . , P
0
n0 , P

+
1 , . . . , P

+
2m, P

′
1, . . . , P

′
p, P

′′
1 , . . . , P

′′
q , Q

0
1, . . . , Q

0
n0 , Q

+
1 , . . . , Q

+
2m,

Q′
1, . . . , Q

′
p, Q

′′
1, . . . , Q

′′
q) de (V,B) ,

où P+
2k−1+iQ+

2k−1 := (PR
2k−1+iPR

2k) + i(QR
2k−1+iQR

2k)
et P+

2k−iQ+
2k := −i(PR

2k−1+iPR
2k)− (QR

2k−1+iQR
2k) pour 1 ≤ k ≤ m .

On en déduit facilement le résultat.

5. Les paramètres τ ∈ XInd
G (λ̃)

Dans les deux sections qui suivent, on se donne λ̃ = (λ,F+) ∈ g̃∗reg . On
pose h = g(λ̃) . On note a la composante hyperbolique de h et fixe une chambre
a∗+ de (g(λ)(iρF+), a) . On note aussi µ et ν les composantes infinitésimalement
elliptique et hyperbolique de λ .

Afin de fournir une paramétrisation canonique d’un sous-ensemble de Ĝ
qui permette de donner une description de la formule de Plancherel, M. Duflo a
introduit les objets du (a) de la définition ci-dessous. Quand λ ∈ g∗ss reg , ces objets
seront compatibles avec les miens, car on pourra prendre t∈ [0, 1] en posant λ0=λ
dans le lemme 5.2, et on aura XInd

G (λ̃) = X irr
G (λ) dans la définition 5.5 (c).

Définition 5.1. (a) Soit f ∈ g∗. On note
Bf la forme bilinéaire alternée non dégénérée (Ẋ, Ẏ ) 7→ f([X, Y ]) sur g/g(f) ,
G(f)g/g(f) le sous-groupe de Lie de G(f)×DL(g/g(f)) formé des couples (x, â)
tels que (Ad x)g/g(f) est l’image de â dans SL(g/g(f)) (cf. 4.3 (a)),
{1, ι} et G(f)g/g(f)0 les images réciproques de {1} et G(f)0 par le morphisme de
groupes de Lie surjectif canonique de G(f)g/g(f) dans G(f) ,
X irr

G (f) l’ensemble fini des classes d’isomorphisme de représentations unitaires
irréductibles τ de G(f)g/g(f) telles que τ(ι) = − id et τ(expX) = ei f(X) id pour
X∈g(f) (dans ce cas τ est de dimension finie).

(b) On note G(λ̃)g/g(λ)(iρF+ ) l’image réciproque de G(λ̃) dans G(λcan)
g/g(λcan).

On posera aussi G(λ̃)g/h0 = G(λ+)
g/h
0 (cf. G(λ̃)0 = G(λ+)0 et g(λ+) = h).

Lorsque a∗+ = a∗ , on a g(λ)(iρF+) = h et G(λ̃) = G(λ+) , et on notera
dans ce cas G(λ̃)g/h pour désigner G(λ̃)g/g(λ)(iρF+ ) et G(λ+)

g/h.

Dans la suite, on identifiera les fonctions complexes sur G(λ+) aux fonc-
tions complexes sur le revêtement G(λ+)

g/h qui sont constantes sur les fibres.
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Lemme 5.2. On fixe un réel t ∈ ]0, 1]. On utilise les systèmes de racines
positives de la définition 1.3 (b) et la notation λt du lemme 1.4.
On pose Lλt = hC⊕

∑
α∈R+(gC,hC)

gαC et, m′ = g(ν+) en anticipant sur la partie III.

(a) On a G(λt)
g/h = G(λ+)

g/h et Lλt/hC est un lagrangien de (gC/hC, Bλt)

stable par G(λt). La fonction complexe δ
g/h
λt

sur G(λ+)
g/h et le morphisme de

groupes de Lie ρ
g/h
λt

de G(λ+)
g/h dans C\{0} qu’on en déduit (cf. 4.2 (e) et 4.3

(b)) sont indépendants de t, et donc respectivement égaux à δ
g/h
λ+

et ρ
g/h
λ+

.
On a d1ρ

g/h
λ+

= ρg,h .

(b) Soit ê ∈ G(λ+)
g/h au-dessus d’un élément elliptique e de G(λ+). On a

ρ
g/h
λ+

(ê) = δ
g/h
λ+

(ê) × det
(
Ad eC

) ∑
α′∈R+

K(gC,hC)

gα
′

C
×

∏
O∈⟨e⟩\R̃+

C (m′
C,hC)

(−1)mO−1 uO

où R+
K(gC, hC) est l’ensemble des α′ ∈ R+(gC, hC) compactes, R̃+

C (m
′
C, hC) est

l’ensemble des classes des β ∈R+(m′
C, hC) complexes modulo l’identification de β

avec −β , et, pour chaque orbite O d’un élément {β,−β} de R̃+
C (m

′
C, hC) sous

l’action du sous-groupe ⟨e⟩ de G engendré par e, on note mO le cardinal de O et
uO l’unique valeur propre de (Ad eC)mO associée à un vecteur propre qui s’écrive
Xβ−X−β pour au moins un Xβ ∈ gβC et un X−β ∈ g−β

C vérifiant [Xβ, X−β] = Hβ .
Démonstration du lemme. (a) La première égalité provient du lemme 1.4.
Il est immédiat que Lλt/hC est un lagrangien de (gC/hC, Bλt) stable par G(λt) .

On note φt la forme sesquilinéaire hermitienne (v, w) 7→ iBλt(v, w) sur
(g/h)C . On va se servir des notations de l’énoncé du (b). L’espace vectoriel Lλt/hC
est somme directe des projections des espaces vectoriels suivants qui sont deux à
deux orthogonales pour φt avec une signature de forme hermitienne restreinte
précisée entre parenthèse : les gα

′

C avec α′∈R+
K(gC, hC) (signature (0, 1)), les gα

′′

C

avec α′′ ∈ R+(gC, hC) imaginaire non compacte (signature (1, 0)), les gβC ⊕ g−β
C

avec {β,−β} ∈ R̃+
C (m

′
C, hC) (signature (1, 1)), et les gγC avec γ∈R+(gC, hC) hors

de R+(m′
C, hC) (signature (0, 0)).

Soit e un élément elliptique de G(λ+) . Par ce qui précède, la forme ses-
quilinéaire hermitienne φt est non dégénérée sur (Lλt ∩ m′

C)/hC et nulle sur son
orthogonal. De plus, (Lλt ∩ m′

C)/hC est somme directe orthogonale pour φt de
l’image et du noyau de 1−Ad eC . Donc la restriction de φt à chacun d’entre eux
est non dégénérée. Un argument de continuité prouve ensuite que les signatures de
ces restrictions, et a fortiori qLλt

(e) , sont indépendants de t . De même, l’orienta-
tion O(Bλt)(1−Ad e)·(g/h) est indépendante de t . Cela peut être précisé comme dans
la preuve de 5.4. On utilise ensuite la définition 4.2 (d) et la proposition 4.3 (c).

La formule pour d1ρ
g/h
λ+

se déduit de la proposition 4.3 (b).
(b) Il s’agit d’appliquer la proposition 4.3 (c) en tenant compte de la

démonstration du (a). On utilise la notation φt de cette démonstration.
Soit O l’orbite sous ⟨e⟩ d’un {β,−β} ∈ R̃+

C (m
′
C, hC) . On fixe (Xβ, X−β)∈

gβC × g−β
C tel que [Xβ, X−β] = Hβ . La condition « Xβ −X−β est vecteur propre

de (Ad eC)mO » est satisfaite (pour une unique valeur propre de (Ad eC)mO )
quand emO β = β , et se réalise (à nouveau avec unicité de la valeur propre) en
remplaçant Xβ et X−β par certains de leurs multiples quand emO β = −β . Sous
cette condition, les vecteurs propres

∑
0≤k≤mO−1

ζ−k(Ad eC)k (Xβ−X−β) de Ad eC,
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où ζ décrit l’ensemble des racines mièmes
O de uO , ont des projections dans Lλt/hC

deux à deux orthogonales pour φt avec des « carrés » strictement négatifs. Cela
conduit à la formule annoncée.

Remarque 5.3. Soit f ∈ Suppg(λ)∗(G(λ)0 · λ̃) .
On note ξ la composante nilpotente de f . Il existe une unique sous-algèbre

de Borel b de g(λ)C sur laquelle ξ est nulle. En effet, d’après le lemme 1.5 (a) et
[Kos 59, cor. 5.3 p. 997 et cor. 5.6 p. 1001], l’élément de D(g(λ)) auquel ξ s’identifie
à l’aide de la forme bilinéaire ⟨ , ⟩ appartient à une unique sous-algèbre formée
d’éléments nilpotents maximale de g(λ)C , dont l’orthogonal pour ⟨ , ⟩ convient.
L’unicité de b montre que b = b .

On note nλ la somme des espaces propres pour l’action de Z(g(λ))C dans
gC , dont le poids α ∈ Z(g(λ))∗C (toujours restriction d’un poids de hC ) vérifie :
⟨ν, α⟩ > 0 ou (⟨ν, α⟩ = 0 et i⟨µ, α⟩ > 0) . On pose Lf = b ⊕ nλ . On constate
que Lf est une sous-algèbre de Borel de gC en décomposant Lf en sous-espaces
propres relativement à une sous-algèbre de Cartan de gC incluse dans b .

Les inclusions [b, b] ⊆ b ⊆ Ker ξ et [Lf , nλ] ⊆ nλ ⊆ (g(λ)C)
⊥⟨ , ⟩

fournissent les égalités f([b, b]) = 0 et f([Lf ,Lf ]) = 0 . Donc g(f)C ⊆ b
et Lf/g(f)C est un lagrangien de (gC/g(f)C, Bf ) , clairement stable par G(f) .
D’après 4.3 (b) le morphisme de groupes de Lie ρg/g(f)f de G(f)g/g(f) dans C \{0}
qu’on en déduit vérifie d1ρ

g/g(f)
f = 1

2
tr(ad · C)Lf/g(f)C .

J’adapte maintenant les paramètres de Duflo à la situation qui m’intéresse.

Lemme 5.4. (a) L’espace vectoriel Lλ̃,a∗+ = hC ⊕
∑

α∈R+

λ̃,a∗+

gαC (cf. 1.3 (c))

fournit le lagrangien Lλ̃,a∗+/hC de (gC/hC, Bλ+). On note ρg/h
λ̃,a∗+

le caractère com-

plexe de G(λ+)
g/h qui lui est associé (cf. 4.3 (b)). La restriction de ρ

g/h

λ̃,a∗+
(δ

g/h
λ+

)−1

à CG0(h) est indépendante de a∗+.
(b) La restriction de Bλ+ au sous-espace vectoriel g(λ)(iρF+)/h de g/h

est non dégénérée. L’orthogonal de g(λ)(iρF+)/h dans g/h muni de Bλ+ est la
projection dans g/h de la trace sur g de la somme des gαC lorsque α décrit
R(gC, hC) privé de R(g(λ)(iρF+)C, hC). On l’identifiera à g/g(λ)(iρF+).

Soit e ∈ G(λ+) elliptique. Les orientations O(Bλ+)(1−Ad e)(g/g(λ)(iρF+ )) et
O(Bλcan)(1−Ad e)(g/g(λ)(iρF+ )) sont égales.

(c) L’espace vectoriel Lλ̃ = g(λ)(iρF+)C ⊕
∑

α∈R+

λ̃

gαC (cf. 1.3 (c)) fournit le

lagrangien Lλ̃/g(λ)(iρF+)C de gC/g(λ)(iρF+)C , à la fois pour Bλcan et pour Bλ+ .
On note ρ

g/g(λ)(iρF+ )

λ̃
le caractère complexe de G(λ̃)g/g(λ)(iρF+ ) qui est associé à

(gC/g(λ)(iρF+)C, Bλcan) (cf. 4.3 (b)). Il prolonge le caractère complexe de l’image
réciproque de G(λ+) dans G(λ̃)g/g(λ)(iρF+ ) qui est associé à (gC/g(λ)(iρF+)C, Bλ+).
Démonstration du lemme. (a) Soit e ∈ CG0(h) elliptique. L’indépendance
de
(
ρ
g/h

λ̃,a∗+
(δ

g/h
λ+

)−1
)
(e) par rapport à a∗+ s’obtient en reprenant la démonstration

du lemme 5.2 (b).
(b) Au début, on utilise le fait que gC/hC est somme directe Bλ+-orthogonale

des projections des sous-espaces vectoriels gαC ⊕ g−α
C de gC avec α ∈ R+(gC, hC) .



Ducloux 159

On pose V = g/g(λ)(iρF+) et V (e) = g(e)/g(e)(λ)(iρF+) . L’espace vecto-
riel V est somme directe des sous-espaces vectoriels V (e) et (1−Ad e)(V ) , qui sont
orthogonaux simultanément pour Bλcan et pour Bλ+ . Pour chaque α ∈ R+(gC, hC) ,
on fixe Xα ∈ gαC et X−α ∈ g−α

C tels que [Xα, X−α] = Hα . On constate que les orien-
tations O(Bλ+)V et O(Bλcan)V sont toutes deux dirigées par le produit extérieur
des vecteurs suivants : les Xα ∧ X−α avec α ∈ R+

λ̃
réelle, les i(Xα ∧ X−α) avec

α ∈ R+

λ̃
imaginaire, et les Xα ∧ X−α ∧ Xα ∧ X−α où α̇ décrit les classes des

β ∈ R(gC, hC)\R(g(λ)(iρF+)C, hC) complexes modulo l’action du groupe engendré
par la conjugaison et le passage à l’opposé. On prouve de même que les orien-
tations O(Bλ+)V (e) et O(Bλcan)V (e) sont égales, en utilisant le système de racines
R(g(e)C, h(e)C) et le couple (λ, ρF+) . Donc O(Bλ+)(1−Ad e)(V ) = O(Bλcan)(1−Ad e)(V ) .

(c) Soient e ∈ G(λ+) elliptique et ê ∈ G(λ̃)g/g(λ)(iρF+ ) au-dessus de e . On
note φcan et φ+ les formes sesquilinéaires hermitiennes (v, w) 7→ iBλcan(v, w) et
(v, w) 7→ iBλ+(v, w) sur gC/g(λ)(iρF+)C . L’espace vectoriel L := Lλ̃/g(λ)(iρF+)C
est somme directe des sous-espaces vectoriels L(e) := (Lλ̃ ∩ g(e)C)/g(e)(λ)(iρF+)C
et (1 − Ad e)(L) , qui sont orthogonaux simultanément pour φcan et pour φ+ .
On s’inspire du début de la démonstration du lemme 5.2 (b). Le nombre de
composantes strictement négatives dans la matrice de l’une ou l’autre des formes
sesquilinéaires φcan et φ+ sur L , relativement à une base orthogonale, est égal à :
la moitié du nombre de racines compactes dans R(gC, hC)\R(g(λ)(iρF+)C, hC) plus
le quart du nombre de racines complexes dans R(g(ν)C, hC)\R(g(λ)(iρF+)C, hC) .
On a une propriété analogue pour L(e) . D’après (b) et la définition 4.2 (d), les
fonctions ρ associées à Bλcan et Bλ+ prennent donc les mêmes valeurs en ê .

Définition 5.5. (a) Soit α ∈ R(gC, hC) réelle. On note nα = 1
2

∑
β

β(Hα) où

la somme porte sur les β ∈ R(gC, hC) tels que β + β ∈ R+α . À deux vecteurs
Xα ∈ gαC ∩ g et X−α ∈ g−α

C ∩ g tels que [Xα, X−α] = Hα , on associe l’élément
elliptique γα = exp(π(Xα − X−α)) de CG0(h) . (On sait que nα ∈ N et que
l’ensemble {γα, γ−1

α } est indépendant du choix de (Xα, X−α) , cf. [DV 88, p. 327].)

(b) On note X irr,+
G (λ̃, a∗+) l’ensemble fini des classes d’isomorphisme des

représentations unitaires irréductibles τ+ de G(λ+)g/h telles que τ+(ι) = − id et
τ+(expX) = eiλ(X) id pour X ∈ h (une telle τ+ est de dimension finie),
et Xfinal,+

G (λ̃, a∗+) l’ensemble des τ+ ∈ X irr,+
G (λ̃, a∗+) tels que pour toute racine

α ∈ R(g(λ)C, hC) réelle, (δ
g/h
λ+
τ+)(γα) n’admette pas la valeur propre (−1)nα .

(Quand G est connexe, la démonstration de 9.3 (b) montrera que cette condition
peut être remplacée par (δ

g/h
λ+
τ+)(γα) ̸= (−1)nα id .)

On note aussi Xfinal,+
G l’ensemble des (λ̃

′
, a′∗

+
, τ ′+) avec λ̃

′
= (λ′,F ′+) ∈ g̃∗reg ,

h′ = g(λ̃
′
) , a′ est la composante hyperbolique de h′ , a′∗

+ est une chambre de
(g(λ′)(iρF ′+), a′) , et τ ′+ ∈ Xfinal,+

G (λ̃
′
, a′∗

+
) .

(c) On note XG(λ̃) (resp. X irr
G (λ̃)) l’ensemble des classes d’isomorphisme

des représentations unitaires (resp. unitaires irréductibles) τ de G(λ̃)g/g(λ)(iρF+ )

telles que τ(ι)=− id et τ(expX) = eiλ(X) id pour X ∈ h ,
et XInd

G (λ̃) l’ensemble (indépendant du choix de a∗+) formé des classes d’isomor-
phisme des représentations unitaires τ de G(λ̃)g/g(λ)(iρF+ ) telles que
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ρ
g/g(λ)(iρF+ )

λ̃

|ρg/g(λ)(iρF+ )

λ̃
|
τ = Ind

G(λ̃)
G(λ+)

( ρg/h
λ̃,a∗+

|ρg/h
λ̃,a∗+

|
τ+

)
pour un τ+ ∈ Xfinal,+

G (λ̃, a∗+) (donc XInd
G (λ̃) ⊆ XG(λ̃)).

On pose aussi : XInd
G =

{
(λ̃

′
, τ ′) ; λ̃

′
∈ g̃∗reg et τ ′ ∈ XInd

G (λ̃
′
)
}

.

6. Condition d’intégrabilité

On conserve les notations de la section précédente.
Le lemme suivant est une adaptation de [Duf 82a, remarque 2 p. 154]. Il ne

sera pas utilisé dans la suite de cet article.

Lemme 6.1. Les propriétés suivantes sont équivalentes :
(i) X irr,+

G (λ̃, a∗+) ̸= ∅ ;

(ii) il existe un caractère unitaire χG
λ̃

(unique) de G(λ̃)
g/h
0 tel que :

χG
λ̃
(ι) = −1 et d1χ

G
λ̃

= iλ h ;
(iii) λ̃ ∈ g̃∗reg,G .

Démonstration du lemme. (i)⇔(ii) L’implication « (i)⇒ (ii) » est claire.
On suppose (ii) vérifié. La restriction à G(λ̃)

g/h
0 de la représentation unitaire

Ind
G(λ+)g/h

G(λ+)
g/h
0

χG
λ̃

de G(λ+)
g/h est non nulle (car induite à partir d’un espace non nul)

et multiple de χG
λ̃

. Le théorème 8.5.2 de [Dix 64, p. 153] montre donc l’existence
d’un élément de X irr,+

G (λ̃, a∗+) .

(ii)⇔ (iii) D’après le lemme 5.2 (a), en multipliant χG
λ̃

par ρ
g/h
λ+

la
condition (ii) équivaut à l’existence d’un caractère complexe du groupe de Lie
G(λ+)0 de différentielle iλ+ρg,h . Cette dernière propriété s’écrit : λ̃ ∈ g̃∗reg,G .

Remarque 6.2. Soit f ∈ Suppg(λ)∗(G(λ)0 · λ̃) . En particulier, on a f ∈ g∗reg .
Le groupe de Lie réel G(f)0 est commutatif (cf. [B.. 72, th. p. 17]). Le

stabilisateur de la composante nilpotente de f dans le groupe adjoint de G(λ)0 est
linéaire algébrique unipotent d’après [Spr 66, th. 5.9 (b) p. 138]. Le tore maximal
de G(f)0 est donc égal à celui de Z(G(λ)0) . Compte tenu de la remarque 5.3, les
arguments de la démonstration du lemme précédent permettent d’en déduire que :

X irr
G (f) ̸= ∅ ⇐⇒ ∀Z ∈ Ker expZ(G(λ)0) e(iλ+ρg,h)(Z) = 1 .

Donc la condition « Xfinal,+
G (λ̃, a∗+) ̸= ∅ » implique la condition « X irr

G (f) ̸= ∅ ».
La réciproque est fausse, comme le montre le cas où G = PSL(2,R) , λ = 0

et h = so(2) , donc Xfinal,+
G (λ̃, {0}) = ∅ , X irr

G (f) ̸= ∅ , et aussi X irr
G (−f) ̸= ∅ .

Cela traduit le fait que PSL(2,R) n’a pas de représentation limite de sa série
discrète hors de sa série discrète. Pour généraliser la méthode des orbites proposée
par M. Duflo, il était naturel d’imaginer que les orbites coadjointes régulières de
G susceptibles d’être l’orbite G · l associée à une représentation TG

l,τ à caractère
infinitésimal nul seraient G ·f et G ·(−f) (cf. 8.4 (a), en remplaçant (λ̃, a∗+) et
λ par l). Cette généralisation aurait créé des difficultés, car G·f ̸= G·(−f) et le
dual unitaire de G n’a qu’un seul élément à caractère infinitésimal nul.
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III. Construction de représentations

Cette partie suit de près l’article [Duf 82a] de M. Duflo, pages 160 à 180.

On se donne λ̃ = (λ,F+) ∈ g̃∗reg . On pose h = g(λ̃) . On note µ et ν (resp.
t et a) les composantes infinitésimalement elliptique et hyperbolique de λ (resp.
de h). On fixe aussi une chambre a∗+ de (g(λ)(iρF+), a) et τ+ ∈ Xfinal,+

G (λ̃, a∗+) .
D’où R+(gC, hC) et λ+ = µ++ ν+ (cf. 1.3 (b)). On pose µ̃ = (µ,F+∩ it∗) .

7. Le cas où G est connexe

Dans toute cette section, on suppose G connexe.
L’inclusion AdG ⊆ int gC assure que G(λ+) est égal à CG(h) , et que

δ
g/h
λ+

est un caractère unitaire de G(λ+)
g/h (cf. 4.3, et aussi [Duf 84, haut p. 118]).

En effet pour toute composante connexe a∗+0 de l’ensemble des éléments de a∗ qui
ne s’annulent sur aucun Hα avec α ∈ R(gC, hC) non imaginaire, l’espace vectoriel

L+ := hC ⊕
∑

α∈R+(gC,hC)
α imaginaire non compacte

gαC ⊕
∑

α∈R+(gC,hC)
α compacte

g−α
C ⊕

∑
α∈R(gC,hC)

a∗+0 (Hα)⊆R+\{0}

gαC

fournit le lagrangien positif L+/hC de (gC/hC, Bλ+) stable par G(λ+) .
On note M l’intersection des noyaux des caractères réels positifs de CG(a)

et m son algèbre de Lie (donc µ̃ ∈ m̃∗
I,M par 7.3 (a) et X irr

M (µ̃) = Xfinal,+
M (µ̃, {0})),

R+(mC, tC) = R(mC, tC)∩R+(gC, hC) (notation de 1.3 (b) relative à m et (µ̃, {0})),
µ+,m = µm,µ̃,{0} l’élément µ − 2iρm,t de t∗ (donc M(µ̃) = CM(t) et δm/t

µ+,m est un
caractère unitaire de M(µ̃)m/t ),
nM =

∑
α∈R+(mC,tC)

gαC et bM = tC ⊕ nM ,

q = |{α ∈ R+(mC, tC) | α compacte}| ,
kM = t⊕

( ∑
α∈R+(mC,tC)
α compacte

gαC
)
∩ g et KM0 = exp kM .

Définition 7.1. (a) On note TM0
µ̃ la classe de représentation « limite de la

série discrète de M0 » appartenant à M̂0 , dont l’espace des vecteurs KM0 -finis
est isomorphe à l’image du caractère unitaire de T0 de différentielle iµ−ρm,t par
le foncteur « d’induction cohomologique » Rq

M0
:=
(
uRmC,KM0

bM ,T0

)q
( • ⊗

∧
max nM)

décrit dans [KV 95, (11.73) p. 677]. (Elle est notée πiµ,bM dans [KV 95, bas p. 734],
en tenant compte de [KV 95, proposition 11.180 p. 733].)

(b) On note TM
µ̃,σ = IndM

CM (m).M0
(δ

m/t
µ+,mσ ⊗ TM0

µ̃ ) pour tout σ ∈ X irr
M (µ̃) ,

où on a pu définir une représentation δ
m/t
µ+,mσ ⊗ TM0

µ̃ de CM(m)M0 par l’égalité(
δ
m/t
µ+,mσ ⊗ TM0

µ̃

)
(xy) = (δ

m/t
µ+,mσ)(x)⊗ TM0

µ̃ (y) pour x ∈ CM(m) et y ∈M0

(dans laquelle (δ
m/t
µ+,mσ)(x) = σ(x, 1)), car le groupe Z(M0) opère dans « l’espace »

de TM0
µ̃ par le caractère unitaire (δ

m/t
µ+,mσ) Z(M0)

d’après [KV 95, (11.184c) p. 734].

Remarque 7.2. On fixe un sous-groupe compact maximal K de G dont
l’involution de Cartan normalise h . Donc KM := K ∩ M est un sous-groupe
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compact maximal de M contenant CM(m)KM0 . Tout π ∈ (CM(m)M0)̂ est re-
lié à certaines représentations π1 ∈ (CM(m))̂ et π2 ∈ (M0)̂ par les égalités
π(xy) = π1(x) ⊗ π2(y) pour x ∈ CM(m) et y ∈ M0 (cf. [Dix 64, prop. 13.1.8
p. 251]). Soit σ ∈ X irr

M (µ̃) . D’après [KV 95, (11.187) p. 735 et dem. de prop. 11.192
(a) p. 737] et 5.2 (b) pour passer de M0 à CM(m)M0 , et [KV 95, prop. 11.57 p. 672
et fin (5.8) p. 332] pour passer du « sous-groupe parabolique » CM(m)M0 de M à
M , le (mC, KM)-module associé à TM

µ̃,σ est isomorphe à Rq
M((ρ

m/t
µ+,m)

−1σ) , où Rq
M

est le foncteur d’induction cohomologique relatif à bM .

Lemme 7.3. (a) On a G(λ+) = CM(m) exp h et M(µ̃) = CM(m) exp t.
Il existe donc un unique τM ∈ X irr

M (µ̃) tel que δ
m/t
µ+,mτM = (δ

g/h
λ+
τ+) M(µ̃)

.
(Cette notation ne tient pas compte du fait que τM dépend de a∗+.)

(b) La classe de représentation IndG
M.A.N(T

M
µ̃,τM

⊗ ei ν◦Log ⊗ 1lN) construite
à partir du choix d’un sous-groupe N de G qui est radical unipotent d’un sous-
groupe parabolique de G de composante déployée A, appartient à Ĝ et est indé-
pendante de N.

Démonstration du lemme. (a) On a G(λ+) = CG(h) ⊆ CG(a) = MA et
M(µ̃) = CM(t) . Vu [Var 77, th. 17 p. 199], on en déduit que M(µ̃) = CM(m) exp t ,
puis G(λ+) = CM(m) exp h .

(b) Soit N le radical unipotent d’un sous-groupe parabolique de G de
composante déployée A . D’après [Var 77, th. 18 p. 289], il existe une composante
connexe a∗+0 de l’ensemble des éléments de a∗ qui ne s’annulent sur aucun Hα

avec α ∈ R(gC, hC) non imaginaire, telle que
N = exp n avec n =

( ∑
α∈R(gC,hC) et a∗+0 (Hα)⊆R+\{0}

gαC
)
∩ g .

Soient ν0 ∈ a∗+0 et λ0 ∈ (t∗ + ν0) ∩ g∗reg . On utilise la proposition 11.1 (a) avec
λ0 à la place de λ (auquel cas « (M ′, U) » devient « (CM(m)M0A,N) ») et
π = (δ

m/t
µ+,mτM ⊗TM0

µ̃ )⊗ ei ν◦Log . Comme la classe de IndG
M.A.N(T

M
µ̃,τM

⊗ ei ν◦Log⊗1lN)
est déterminée par son caractère (cf. [Cow 88, p. 64]), elle ne dépend pas de N .

On choisit z = 1 et Λ = (Λcan, R+
iR, R

+
R ) dans [ABV 92, ligne 7 du bas

p. 121], où Λcan ⊗ ρ(R+(gC, hC)) = ρ
g/h
λ+
τ+ (cf. [ABV 92, lignes 9 et 10 du bas

p. 129]) et les systèmes de racines positives R+
iR et R+

R sont inclus dans R+(gC, hC) .
D’après le lemme 5.2 (b), la représentation Λ̃ de [ABV 92, p. 123] est Λ̃ = δ

g/h
λ+
τ+ .

Vu la proposition 11.1 (a), on a π(Λ) = IndG
M.A.N(T

M
µ̃,τM

⊗ ei ν◦Log ⊗ 1lN) dans
[ABV 92, (11.2)(e) p. 122]. Les idées de la démonstration du lemme 5 de [DV 88,
p. 335] permettent de montrer que Λ est « final » au sens de [ABV 92, def. 11.13
p. 130]. On applique enfin [ABV 92, th. 11.14 (a) p. 131].

Remarque 7.4. On se place dans le cas où G = SL(3,R) et λ est l’élément de
g∗ssInc,G image de

(
1
1
−2

)
par l’isomorphisme de G-modules qui envoie A ∈ g sur

tr(A .) ∈ g∗. Le groupe MA qui est ici égal à G(λ) , est l’image de GL(2,R) par
le plongement de groupes de Lie qui envoie x ∈ GL(2,R) sur

(
x
(detx)−1

)
∈ G .

Mais l’induite IndG
M.A.N(T

M
µ̃,τM

⊗ei ν◦Log⊗1lN) n’est pas donnée par « nondegenerate
data » au sens de [KZ 82, p. 473], car le groupe de Weyl d’une sous-algèbre de
Cartan fondamentale de gl(2,R) se représente dans GL(2,R) .
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Définition 7.5. On note TG
λ̃,a∗+,τ+

= IndG
M.A.N(T

M
µ̃,τM

⊗ ei ν◦Log ⊗ 1lN) , indépen-
damment du choix de N comme dans le lemme ci-dessus.

Ainsi lorsque M est connexe, X irr
M (µ̃) a pour seul élément χM

µ̃ , et les classes
des représentations TM

µ̃,χM
µ̃

et TM
µ̃,{0},χM

µ̃
sont toutes deux égales à TM0

µ̃ .

8. Les représentations TG
λ̃,a∗+,τ+

On va appliquer la construction du cas connexe à M ′
0 := G(ν+)0 . Un pas-

sage par l’homologie va permettre (grâce à un résultat de D. Vogan) de normaliser
des opérateurs d’entrelacement de façon à prolonger TM ′

0

λ̃
en une représentation

d’un certain groupe M ′ .
On note M ′ = G(λ+)G(ν+)0 et m′ = g(ν+) son algèbre de Lie

(donc λ̃ ∈ m̃′∗
fond,M ′ par 8.2 (a), m′(λ)(iρF+) = h et X irr

M ′(λ̃) = Xfinal,+
M ′ (λ̃, a∗)),

R+(m′
C, hC) = R(m′

C, hC)∩R+(gC, hC) (notation de 1.3 (b) relative à m′ et (λ̃, a∗)),
λ+,m′ = λm′,λ̃,a∗,1 l’élément µ+ + ν de h∗ où µ+ représente encore µg,λ̃,a∗+

(donc Bλ+,m′ est restriction de Bλ+ , M ′(λ̃) = G(λ+) et ρ
m′/h

λ̃
= ρ

m′/h
λ+,m′ ),

nM ′ =
∑

α∈R+(m′
C,hC)

gαC et bM ′ = hC ⊕ nM ′ ,

q′ = |{α ∈ R+(m′
C, hC) | α compacte}| + 1

2
|{α ∈ R+(m′

C, hC) | α complexe}| ,
Mν+ l’intersection des noyaux des caractères réels positifs de CM ′

0
(a) ,

T
Mν+

µ̃ = T
Mν+

µ̃,χM
µ̃

(cf. 7.1 (b)) et TM ′
0

λ̃
= T

M ′
0

λ̃,a∗,χM′
λ̃

où Mν+(µ̃) = exp t et M ′
0(λ̃) = exp h ,

u =
( ∑
α∈R(gC,hC) et ν+(Hα)>0

gαC
)
∩g et U = exp u (donc intM ′.U⊆U et M ′∩U = {1}).

Proposition 8.1. On note H « l’espace » de T
M ′

0

λ̃
et H∞ l’ensemble de ses

vecteurs C∞.
(a) Le sous-espace propre de Hq′(nM ′ ,H∞)∗ de poids −(iλ + ρm′,h) sous

l’action de hC issue de l’action de hC dans
∧
nM ′ ⊗C H∞, est de dimension 1.

On le note (Hq′( nM ′ ,H∞)∗)−(iλ+ρm′,h)
.

(b) Il existe une unique représentation unitaire continue S de M ′(λ̃)m
′/h

dans H satisfaisant les conditions (i) et (ii) suivantes :
(i) S(x̂)T

M ′
0

λ̃
(y)S(x̂)−1 = T

M ′
0

λ̃
(xyx−1) pour x̂ ∈ M ′(λ̃)m

′/h au-
dessus de x ∈M ′(λ̃) et y ∈M ′

0 ;
(ii) l’action de M ′(λ̃)m

′/h dans (Hq′( nM ′ ,H∞)∗)−(iλ+ρm′,h)
issue de

l’action de M ′(λ̃)m
′/h dans

∧
nM ′ ⊗C H∞ déduite de S , est (ρ

m′/h
λ+,m′ )

−1 id.

Démonstration de la proposition. (a) On suppose G connexe et utilise les
notations de la section 7.

On fixe un sous-groupe compact maximal K de G dont l’involution de Car-
tan normalise h . Donc KM ′

0
:= K∩M ′

0 et KMν+
:= K∩Mν+ sont des sous-groupes

compacts maximaux de M ′
0 et Mν+ . D’après la remarque 7.2, le (mC, KMν+

)-

module associé à T
Mν+

µ̃ est isomorphe à Rq
Mν+

((ρ
m/t
µ+,m)

−1χM
µ̃ ) , où Rq

Mν+
est le

foncteur d’induction cohomologique relatif à bM .
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Compte tenu de la définition 4.2 (d), et du lemme 5.2 (b) avec ses notations,
pour tout e ∈ CM(m)T0 on a

(ρ
m′/h
λ+,m′δ

m′/h
λ+,m′ )(e)

(ρ
m/t
µ+,mδ

m/t
µ+,m)(e)

= det(Ad eC)nM′/nM ×
((ρ

m′/h
λ+,m′ )

−1δ
m′/h
λ+,m′ )(e)

((ρ
m/t
µ+,m)−1δ

m/t
µ+,m)(e)

= u1 · · · ub

où {β1,−β1}, . . . , {βb,−βb} sont les éléments de R̃+
C (m

′
C, hC) et u1, . . . , ub sont les

rapports des homothéties (Ad eC)
g
β1
C
, . . . , (Ad eC)

g
βb
C

.
On applique [KV 95, th. 11.225 p. 759 et cor. 8.28 p. 566] au groupe M ′

0

et à la sous-algèbre parabolique bM ′ de m′
C . Le (m′

C, KM ′
0
)-module Hf associé

à T
M ′

0

λ̃
est donc irréductible et isomorphe à Rq′

M ′
0
((ρ

m′/h

λ̃
)−1χM ′

λ̃
) , où Rq′

M ′
0

est le
foncteur d’induction cohomologique relatif à bM ′ . On obtient

dim HomhC,T0

(
Hq′(nM ′ ,Hf ), ρ

m′/h

λ̃
χM ′

λ̃

)
= 1

en prenant X = Rq′

M ′
0
(Z) avec Z = (ρ

m′/h

λ̃
)−1χM ′

λ̃
dans [KV 95, prop. 8.11 p. 555],

et en tenant compte du lemme de Schur (cf. [Wal 88, lem. 3.3.2 p. 80]). Comme le
morphisme canonique de (hC, T0)-modules de Hq′( nM ′ ,Hf ) dans Hq′( nM ′ ,H∞)
est bijectif d’après [Duf 82a, lem. 4 p. 165], cela donne le résultat.

(b) D’après 9.6 (a), on a intx · TM ′
0

λ̃
= T

M ′
0

λ̃
pour tout x ∈ M ′(λ̃) . On

reprend ensuite la démonstration de [Duf 82a, lem. 6 p. 169], quasiment mot à
mot. (L’unicité de S provient bien sûr de 7.3 (b) et du lemme de Schur.)

Lemme 8.2. On conserve les notations de la proposition précédente.

(a) Il existe un unique τM ′ ∈ X irr
M ′(λ̃) tel que δ

m′/h
λ+,m′τM ′ = δ

g/h
λ+
τ+ . On note

τM ′ ⊗ ST
M ′

0

λ̃
la représentation de M ′ définie (clairement sans ambiguïté) par(

τM ′ ⊗ ST
M ′

0

λ̃

)
(xy) = τM ′(x̂)⊗ S(x̂)T

M ′
0

λ̃
(y)

pour x̂ ∈M ′(λ̃)m
′/h au-dessus de x ∈M ′(λ̃) et y ∈M ′

0 .

(b) Lorsque G est connexe, on a : TG
λ̃,a∗+,τ+

= IndG
M ′.U((τM ′ ⊗ S T

M ′
0

λ̃
)⊗ 1lU).

Démonstration du lemme. (a) D’après le lemme 5.2 (b), on a l’égalité
ρ
m′/h
λ+,m′

|ρm
′/h

λ+,m′ |
(δ

m′/h
λ+,m′ )

−1 =
ρ
g/h
λ+

|ρg/hλ+
|
(δ

g/h
λ+

)−1 , où ρ
m′/h
λ+,m′ et ρ

g/h
λ+

sont des morphismes de

groupes de Lie. Cela permet de définir τM ′ .
(b) On suppose G connexe et utilise les notations de la section 7.

On a donc M ′ = CM(m)M ′
0 , M ′(λ̃) = CM(m) exp h et δm

′/h
λ+,m′ est un caractère

unitaire de M ′(λ̃)m
′/h.

On choisit une composante connexe a∗+0 de l’ensemble des éléments de a∗

qui ne s’annulent sur aucun Hα avec α ∈ R(gC, hC) non imaginaire, dont l’adhé-
rence contient ν+ . On pose

n =
( ∑
α∈R(gC,hC) et a∗+0 (Hα)⊆R+\{0}

gαC
)
∩ g , N = exp n et Nν+ = N ∩M ′

0 .

Le groupe N (resp. Nν+ ) est radical unipotent d’un sous-groupe parabolique de
G (resp. M ′

0 ) de composante déployée A . De plus, le produit de G se restreint en
un difféomorphisme de Nν+ × U sur N .

On note V et W « les espaces » de τM ′ et TM0
µ̃ . L’espace de T

M ′
0

λ̃
se réalise
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sous la forme H := Ind
M ′

0
M0.A.Nν+

(W ⊗ ei ν◦Log ⊗ 1lNν+
) . On identifie V ⊗C H à un

ensemble de fonctions sur M ′
0 à valeurs dans V ⊗C W. L’application Φ 7→ Φ M ′

0

de l’espace de Ind
CM (m)M ′

0

CM (m).M0.A.Nν+
(δ

m′/h
λ+,m′τM ′ ⊗ TM0

µ̃ ⊗ ei ν◦Log ⊗ 1lNν+
) dans V ⊗C H

muni de 1 ⊗ T
M ′

0

λ̃
est un isomorphisme unitaire de M ′

0 -modules. L’action d’un
x ∈ CM(m) sur V ⊗C H qui s’en déduit s’écrit τM ′(x̂) ⊗ S0(x̂) , où x̂ ∈ M ′(λ̃)m

′/h

est au-dessus de x et S0(x̂) ·φ = δ
m′/h
λ+,m′(x̂) ×φ(x−1

• x) pour φ ∈ H . On considère
un sous-groupe fermé Γ de CM(m) . On pose MΓ = ΓMν+ et M ′

Γ = ΓM ′
0 . On

fixe une composante irréductible τM ′,Γ (dans X irr
M ′

Γ
(λ̃)) de la restriction de τM ′ à

M ′
Γ(λ̃)

m′/h . On obtient comme ci-dessus un isomorphisme unitaire de M ′
0 -modules

avec transport de l’action de Γ , en remplaçant CM(m) par Γ , τM ′ par τM ′,Γ et V
par l’espace VΓ de τM ′,Γ . On détermine un élément τM,Γ de X irr

MΓ
(µ̃) par l’égalité

δ
m/t
µ+,mτM,Γ = (δ

m′/h
λ+,m′τM ′,Γ)

ΓT0

.
On va voir que S0 = S . L’égalité annoncée deviendra une conséquence du

théorème d’induction par étages et du fait que IndG1
H1
(π ◦ p H1

) ≃ (IndG2
H2
π) ◦ p

quand p : G1 → G2 est un morphisme de groupes de Lie réels surjectif, H1

est l’image réciproque par p d’un sous-groupe fermé H2 de G2 , et π est une
représentation unitaire continue de H2 .

On reprend les arguments et notations de la démonstration de 8.1 (a).
Les groupes KM ′

Γ
:= K ∩M ′

Γ et KMΓ
:= K ∩MΓ sont des sous-groupes com-

pacts maximaux de M ′
Γ et MΓ . On constate que le (mC, KMΓ

)-module associé
à la représentation IndMΓ

Γ.M0
(δ

m/t
µ+,mτM,Γ ⊗ TM0

µ̃ ) du groupe MΓ est isomorphe à
Rq

MΓ
((ρ

m/t
µ+,m)

−1τM,Γ) , où Rq
MΓ

est le foncteur d’induction cohomologique relatif à
bM . Ensuite, à l’aide du théorème d’induction par étages on voit que le (m′

C, KM ′
Γ
)-

module associé à Ind
M ′

Γ
Γ.M0.A.Nν+

(δ
m′/h
λ+,m′τM ′ ⊗ TM0

µ̃ ⊗ ei ν◦Log ⊗ 1lNν+
) est isomorphe à

Rq′

M ′
Γ
((ρ

m′/h

λ̃
)−1τM ′,Γ) , où Rq′

M ′
Γ

est le foncteur d’induction cohomologique relatif à
bM ′ . Enfin, on trouve que

dim HomhC,ΓT0

(
VΓ ⊗C Hq′(nM ′ ,Hf ), ρ

m′/h

λ̃
τM ′,Γ

)
= 1 ,

où chaque y ∈ Γ projection d’un ŷ ∈M ′(λ̃)m
′/h opère sur VΓ⊗CHq′(nM ′ ,Hf ) par

le produit tensoriel de τM ′,Γ(ŷ) et de l’endomorphisme déduit de S0(ŷ) .
On se donne x̂ ∈M ′(λ̃)m

′/h au-dessus d’un x ∈ CM(m) . On choisit pour Γ
le sous-groupe fermé de CM(m) engendré par x . Donc dimVΓ = 1 et le calcul qui
précède prouve que l’action de x̂ sur (Hq′( nM ′ ,H∞)∗)−(iλ+ρm′,h)

issue de S0(x̂) est
bien l’homothétie de rapport ρm

′/h

λ̃
(x̂)−1.

Définition 8.3. On garde les notations de la proposition 8.1 et du lemme 8.2.
On note TG

λ̃,a∗+,τ+
= IndG

M ′. U((τM ′ ⊗ S T
M ′

0

λ̃
)⊗ 1lU) .

Pour simplifier la notation TG
λ̃,a∗+,τ+

, j’enlèverai a∗+ quand a∗+ = a∗ (com-

patible à 9.2) et τ+ quand X irr,+
G (λ̃, a∗+) est un singleton, et je remplacerai λ̃ par

λ quand λ̃ = (λ, h ∗
(R)) (conventions appliquées pour TM0

µ̃ , TM
µ̃,σ , T

Mν+

µ̃ et T
M ′

0

λ̃
).

Proposition 8.4. (a) Pour chaque l ∈ g∗C semi-simple, on note χUgC
l le ca-

ractère χl de Z(UgC) canoniquement associé à l’orbite de l sous l’action de int gC
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(cf. [KV 95, (4.114) p. 297]). Le centralisateur (UgC)
G de G dans UgC opère dans

l’espace des vecteurs C∞ de TG
λ̃,a∗+,τ+

par restriction du caractère χUgC
iλ de Z(UgC).

(b) Le morphisme de groupes z 7→ (z, 1) de Z(G) dans G(λ+)g/h est injectif.
Le caractère central de TG

λ̃,a∗+,τ+
est « restriction » de celui de τ+ .

Démonstration de la proposition. (a) Le corollaire 5.25 (b) de [KV 95,
p. 344] permet de calculer le caractère infinitésimal de τM ′ ⊗ S T

M ′
0

λ̃
(égal à

celui de TM ′
0

λ̃
). Pour passer ensuite à G , la démonstration de [KV 95, prop. 11.43

p. 665] s’adapte immédiatement.
(b) Soit z ∈ Z(G) . L’égalité S(z, 1) = id permet d’obtenir le résultat.

9. L’injection G · (λ̃, τ ) 7→ TG
λ̃,τ

de G \XInd
G dans Ĝ

Le théorème 9.6 va généraliser l’essentiel de celui écrit par M. Duflo dans
[Duf 82a, lem. 8 p. 173]. Ma démonstration est similaire à la sienne, mis à part un
résultat inattendu : le lemme 9.3 (b). Je rappelle qu’une classe d’équivalence de
représentation unitaire irréductible traçable d’un groupe de Lie réel est déterminée
par son caractère (cf. [Cow 88, p. 64]).

Soit τ la représentation induite à partir de τ+ de la définition 5.5 (c).

Lemme 9.1. Les paramètres λ̃ et τ déterminent TG
λ̃,a∗+,τ+

.

Démonstration du lemme. Ce résultat découlera du théorème 10.2, en y
enlevant dans un premier temps toute référence à TG

λ̃,τ
(pour la cohérence du

raisonnement).

Définition 9.2. (a) On note TG
λ̃,τ

= TG
λ̃,a∗+,τ+

. Dans la notation TG
λ̃,τ

, j’enlèverai

τ quand XInd
G (λ̃) est un singleton, et je remplacerai λ̃ par λ quand λ̃ = (λ, h ∗

(R)) .

(b) Soit a un automorphisme du groupe de Lie G . Il induit des iso-
morphismes canoniques encore notés a , d’espaces vectoriels de g/g(λ)(iρF+) sur
g/g(aλ)(iρaF+) , d’algèbres de Lie de sl(g/g(λ)(iρF+)) sur sl(g/g(aλ)(iρaF+)) par
conjugaison, de groupes de Lie de DL(g/g(λ)(iρF+)) sur DL(g/g(aλ)(iρaF+)) par
intégration, et enfin de groupes de Lie de G(λ̃)g/g(λ)(iρF+ ) sur G(aλ̃)g/g(aλ)(iρaF+ ) .

Lemme 9.3. Soit τ0 ∈ (G0(λ+)
g/h)̂ qui intervient dans τ+ G0(λ+)g/h.

(a) On a : τ0 ∈ Xfinal,+
G0

(λ̃, a∗+) et G0(λ+) = CG0(h).

(b) On pose : τ̇0 =
ρ
g/h

λ̃,a∗+

|ρg/h
λ̃,a∗+

|
τ0 (cf. 5.5 (a)). L’action du groupe G0(λ̃) sur

la classe de représentation τ̇0 est triviale.
Démonstration du lemme. (a) La définition 5.5 (b) assure que τ0 est final.
L’égalité G0(λ+) = CG0(h) découle du lemme 1.4.

(b) On prouve que tr τ̇0(xγx
−1) = tr τ̇0(γ) pour x ∈ G0(λ̃) et γ ∈ G0(λ+) .

Soit G1 le sous-groupe de G0 formé des éléments qui fixent µ et iρF+ .
On note g1 son algèbre de Lie. Comme les formes linéaires µ et iρF+ sont infi-
nitésimalement elliptiques, g1 est réductive, h ∈ Car g1 , et G1 est connexe. Le
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système de racines R(g1C, hC) n’a pas de racine imaginaire. On note W (g1(ν), a)
le groupe de Weyl du système de racines formé des racines restreintes de (g1(ν), a) .
D’après [Kna 86, th. 5.17 p. 125, (5.5) p. 126 et lemma 5.16 p. 124] appliqué à G1

d’une part, et [Kna 86, prop. 4.12 p. 81] d’autre part, l’application canonique de
G0(λ̃)/G0(λ+) dans W (g1(ν), a) est bijective. On se donne β ∈ R(g1(ν)C, hC) ,
X ∈ g1(ν)

β a et Y ∈ g1(ν)
−β a tels que [X, Y ] est la racine duale de β a dans a .

On pose g = exp(π
2
(X−Y )) . Donc g ∈ G0(λ̃) se projette dans W (g1(ν), a) sur la

réflexion s(β a) au vu de la démonstration de [Kna 86, prop. 5.15 (c) p. 123]. On se
contente maintenant de montrer l’égalité tr τ̇0(gγg

−1) = tr τ̇0(γ) pour γ ∈ G0(λ+) .
Un calcul dans SL(2,C) montre que pour toute α ∈ R(gC, hC) réelle, on a

Ad γα = exp(iπ adHα) et Ad γ2α = id dans GL(g) ⊆ GL(gC) . Donc γ2α ∈ Z(G0) .
D’après [Kna 86, lemma 12.30 (c) p. 469] et (a), tout élément γ de G0(λ+) s’écrit
γ = h z γα1 . . . γαk

avec h ∈ exp h , z ∈ Z(G0) et α1, . . . , αk ∈ R(gC, hC) réelles.

Compte tenu de la proposition 4.3 (b), la différentielle en 1 de
ρ
g/h

λ̃,a∗+

|ρg/h
λ̃,a∗+

|
est la demi-

somme des α ∈ R(g(ν)C, hC) tels que: iµ(Hα) > 0 ou, iµ(Hα) = 0 et ρF+(Hα) > 0 .
Donc G0(λ̃) laisse invariants les caractères unitaires par lesquels exp h et Z(G0)
agissent dans l’espace de τ̇0 . Dans la suite de cette démonstration, on prendra pour
cette raison γ de la forme γ = γα1 · · · γαk

avec α1, . . . , αk ∈ R(gC, hC) réelles.
Pour toute α ∈ R(gC, hC) réelle, γαgγ

−1
α (resp. γαg

−1γ−1
α ) est égal à g

(resp. g−1 ) si β(Hα) est pair et à g−1 (resp. g ) sinon. Par conséquent, on a :

g(γg−1γ−1) =

{
1 si β(Hα1 + · · ·+Hαk

) est pair
g2 sinon.

On se place tout d’abord dans le cas où β est réelle et gγg−1γ−1 ̸= 1 . On
rend les choix de g et de γβ compatibles en imposant X = Xβ et Y = X−β

(cf. 5.5 (a)). On note ζ le rapport de l’homothétie τ̇0(γ
2
β) . On a γβ = g2 puis

γβγγ
−1
β = γ2βγ et γβ(gγg

−1)γ−1
β = γ2β(gγg

−1) . Donc tr τ̇0(γ) = 0 = tr τ̇0(gγg
−1)

quand ζ ̸= 1 . On va raisonner autrement quand ζ = 1 . L’élément γβ + γ−1
β

de l’algèbre du groupe G0(λ+) est central. Donc τ̇0(γβ) est égal à l’homothétie
(τ̇0(γβ) + τ̇0(γ

−1
β ))(τ̇0(γ

2
β)

−1 + id)−1 lorsque ζ ̸= −1 . En particulier, comme τ0 est
final, on a τ̇0(gγg

−1)τ̇0(γ)
−1 = τ̇0(γβ) avec (δ

g/h
λ+
τ0)(γβ) = (−1)nβ+1 id quand

ζ = 1 . On note F le sous-groupe de G engendré par les γα avec α ∈ R(gC, hC)
réelle. D’après [DV 88, (42) p. 335], à corriger, il existe un caractère unitaire de
F qui envoie γα sur (−1)nα+1 pour toute α ∈ R(gC, hC) réelle. Par ailleurs, la

restriction de
ρ
g/h

λ̃,a∗+

|ρg/h
λ̃,a∗+

|

(
δ
g/h
λ+

)−1 à G0(λ+) est invariante sous G(λ̃) d’après 5.4 (a).

Ainsi, il existe un caractère unitaire G(λ̃)-invariant χ de F , tel que quand ζ = 1
on ait : τ̇0(γβ) = χ(γβ) id puis τ̇0(γβ) = χ(gγg−1)χ(γ)−1 id = id .

On suppose pour finir que β n’est pas réelle et que gγg−1γ−1 ̸= 1 . On note
Rβ le système de racines (Rβ⊕Rβ)∩R(g1(ν)C, hC) sans racine imaginaire et avec
des racines non réelles. En examinant le diagramme de Satake de la sous-algèbre de
Lie semi-simple de g1(ν) de complexifiée (CHβ⊕CHβ)⊕

∑
α∈Rβ

gαC , on constate qu’il

existe un morphisme d’algèbres de Lie injectif η : g0 → g1(ν) , avec g0 = sl(2,C) R
ou g0 = su(1, 2) , qui envoie pour tout (x, y) ∈ R2 et selon la valeur de g0 , la

matrice
(

x+iy 0
0 −(x+iy)

)
ou la matrice

(
iy x 0
x iy 0
0 0 −2iy

)
sur x (Hβ+Hβ) + iy (Hβ−Hβ) .
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On choisit X et Y dans (gβC ⊕ gβC) ∩ g et (g−β
C ⊕ g−β

C ) ∩ g égaux, selon g0 , à :
X = η

(
( 0 1
0 0 )
)

et Y = η
(
( 0 0
1 0 )
)
, ou, X = η

(( 0 0 1
0 0 1
1 −1 0

))
et Y = η

(( 0 0 1
0 0 −1
1 1 0

))
.

Un calcul dans l’un des groupes simplements connexes SU(2) ou {1} × SU(2)
montre ensuite que g2 appartient à exp(h∩D(g1(ν))) . La définition de g1 assure
que W (g1(ν)C, hC) fixe d1τ̇0 . Donc τ̇0 est trivial sur exp(h ∩D(g1(ν))) . Ainsi, on
obtient : τ̇0(gγg−1γ−1) = τ̇0(g

2) = id .

Dans la proposition qui suit, j’énonce les résultats de la théorie du petit
groupe de Mackey qui me seront utiles dans la démonstration du prochain théo-
rème. Je ne rappellerai pas les notions de « groupe de type I » et « intégrale
hilbertienne » (voir [Dix 69]). On se donne pour cette proposition un groupe loca-
lement compact à base dénombrable A , et un sous-groupe fermé distingué B de
A qui est de type I . Le groupe A agit canoniquement sur B̂ .

Voici quelques précisions concernant le vocabulaire. On appellera cocycle
mesurable unitaire de A une application mesurable c de A × A dans l’ensemble
des nombres complexes de module 1 qui vérifie c(1, 1) = 1 et c(xy, z) c(x, y) =
c(x, yz) c(y, z) pour x, y, z ∈ A . Dans ce cas, étant donné un espace de Hilbert
complexe séparable V , on appellera c-représentation projective de A dans V
une application π̃ de A dans le groupe unitaire de V , pour laquelle chacune des
fonctions x ∈ A 7→ ⟨π̃(x) · v, w⟩ ∈ C avec v, w ∈ V est mesurable, et telle que
π̃(1) = id et π̃(xy) = c(x, y) × π̃(x) π̃(y) pour x, y ∈ A .

Proposition 9.4. (Mackey) (a) Soit π ∈ B̂ . On note Aπ le stabilisateur de
π dans A et pr la projection canonique de Aπ sur Aπ/B . Le groupe Aπ est
fermé dans A. Il existe un cocycle mesurable unitaire c de Aπ/B et une classe
d’isomorphisme π̃ de c ◦ (pr × pr)-représentation projective de Aπ qui prolonge π
dans le même espace de Hilbert. Par ailleurs, il existe une mesure σ -finie non
nulle m sur B̂ , unique à équivalence près, telle que l’orbite de π sous A dans B̂
a un complémentaire m-négligeable et a ·m est équivalente à m pour tout a ∈ A.

(b) On conserve les notations du (a). L’application η̃ 7→ IndA
Aπ
(η̃ ◦ pr⊗π̃)

de l’ensemble des classes d’isomorphisme des c−1 -représentations projectives irré-
ductibles de Aπ/B , dans l’ensemble des classes d’isomorphisme des représentations
unitaires de A, est injective. Son image est formée des éléments de Â dont la res-
triction à B est multiple de

∫
B̂
ρ dm(ρ).

(c) Quand l’espace mesurable quotient A\B̂ est dénombrablement séparé
(c’est-à-dire qu’on peut trouver une suite (En)n∈N de parties mesurables de E =

A\B̂ telle que pour x ̸= y dans E , il existe m ∈ N vérifiant x ∈ Em et y /∈ Em ),
tout élément de Â s’obtient comme au (b) pour une unique orbite de A dans B̂ .

Démonstration de la proposition. (a) L’hypothèse « metrically smooth of
type I » de Mackey va se traduire par « de type I » d’après [Dix 64, prop. 4.6.1
p. 95 et th. 9.1 p. 168]. Le groupe Aπ est fermé dans A et m existe d’après [Mac 58,
th. 7.5 p. 295]. L’existence de c et de π̃ est donnée par [Mac 58, th. 8.2 p. 298].

(b) Ce résultat est cité dans [Mac 58, th. 8.1 p. 297 et 8.3 p. 300]. Il se
réfère à la classe de représentation de B associée à m , construite à la fin de sa
section 7 p. 296, qui renvoie aux lignes 4 à 6 p. 273.

(c) Résulte de [Mac 58, th. 9.1 p. 302] et de la fin de sa section 7 p. 296.
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Les représentations classifiées un peu plus loin sont les représentations
unitaires irréductibles « tempérées » de G . Cette notion mérite une définition.

Définition 9.5. (a) Soit π0 ∈ Ĝ0 . On dit que π0 est tempérée si elle est
équivalente à une sous-représentation d’une représentation IndG0

P̃
(σ̃ ⊗ η̃ ⊗ 1lÑ) ,

où P̃ est un sous-groupe parabolique de G0 de décomposition de Langlands
P̃ = M̃ÃÑ , σ̃ est une représentation de la série discrète de M̃ , et η̃ est un
caractère unitaire de Ã . On peut montrer comme dans [Kna 86, th. 8.53 p. 260
et th. 12.23 p. 456] que cela équivaut à la condition suivante : |DG0|

1/2 tr π0 est
bornée sur (G0)ss reg .

(b) Soit π ∈ Ĝ . D’après 9.4 fin (b) et (c), il existe n ∈ N et π1, . . . , πn ∈ Ĝ0

tels que π G0 = ⊕
1≤k≤n

πk . On dit que π est tempérée si π1, . . . , πn sont tempérées.

Théorème 9.6. (a) On a : a · TG
λ̃,τ

= TG
a·λ̃,a·τ pour tout automorphisme a du

groupe de Lie G.
(b) L’ensemble G \XInd

G (resp. G \Xfinal,+
G ) s’injecte dans Ĝ par l’applica-

tion qui envoie l’orbite de (λ̃
′
, τ ′) (resp. (λ̃

′
, a′∗

+
, τ ′+)) sur TG

λ̃
′
,τ ′

(resp. TG

λ̃
′
,a′∗+,τ ′+

).

Son image est formée des classes de représentation dans Ĝ qui sont tempérées.
(D’après le lemme 6.1, les λ̃

′
∈ g̃∗reg qui interviennent ici appartiennent à g̃∗reg,G ).

Démonstration du théorème. On va utiliser les notations du début de la
partie III. et des sections 7. et 8.

(a) Au vu d’une propriété de l’induction citée dans la démonstration du
lemme 8.2 (b), on est ramené à prouver que a ·TM0

µ̃ = T a·M0
a·µ̃ quand G est connexe.

Cette égalité provient des formules pour les caractères de a·TM0
µ̃ et T a·M0

a·µ̃ obtenues
(sans le th. 9.6) dans la dernière partie de la démonstration du théorème 10.2.

(b) On suppose dans un premier temps que G est connexe. Tout d’abord, les
représentations limites de la série discrète de G sont tempérées d’après [Wal 88, th.
6.8.1 p. 202, prop. p. 142, prop. p. 139] (voir aussi [Kna 86, corollary 12.27 p. 461]
pour une étude de la propriété du caractère donnée dans la définition 9.5 (a)). On
en déduit que la classe de représentation TG

λ̃,a∗+,τ+
de la définition 7.5 est tempérée

en adaptant la preuve de l’implication (3)⇒ (1) de [BW 80, proposition IV 3.7],
et appliquant l’implication (1)⇒(3) de cette même proposition.
On se donne une représentation unitaire irréductible tempérée de G dans un espace
de Hilbert V . Soit K un sous-groupe compact maximal de G . D’après le théorème
11.14 (b) de [ABV 92, p. 131] avec z = 1 , il existe un « caractère limite final ΛV »
tel que le (gC, K)-module sous-jacent à V est isomorphe à celui de la représentation
π(ΛV ) qui est définie dans [ABV 92, p. 122] modulo [KV 95, 5) p. 742]. J’utilise
le dictionnaire proposé dans la démonstration du lemme 7.3 (b). L’égalité (11.196)
de [KV 95, p. 740] fait apparaître la représentation π(ΛV ) comme quotient d’une
représentation IndG

M̃.Ã.Ñ
(T M̃

λ̃
′
,a′∗+,τ ′+

⊗ η̃ ⊗ 1lÑ) induite à partir d’un sous-groupe

parabolique M̃ÃÑ de G , pour un (λ̃
′
, a′∗

+
, τ ′+) ∈ Xfinal,+

M̃
et un caractère η̃ de Ã

réel. On a donc M̃ÃÑ = G d’après [BW 80, lemma IV 4.9] et [KV 95, (11.197)
p. 741], et le groupe G agit dans V par une représentation de classe TG

λ̃
′
,a′∗+,τ ′+

.
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On se place dans le cas où (λ̃
′
, a′∗

+
, τ ′+) vérifie TG

λ̃
′
,a′∗+,τ ′+

= TG
λ̃,a∗+,τ+

. On introduit

les triplets (Λcan, R+
iR, R

+
R ) et (Λ′can, R′+

iR, R
′+
R) attachés à τ+ et τ ′+ comme dans

la démonstration de 7.3 (b), et pose h′ = g(λ̃
′
) . Les différentielles des caractères

centraux de Λcan et Λ′can sont égales à iλ h et à iλ′ h′ . D’après [ABV 92, th. 11.14
(c) p. 131 et def. 11.6 p. 124], il existe g ∈ G tel que, en notant ζ l’application
qui envoie x ∈ G(λ+) sur le déterminant de la restriction de Ad xC à la somme
des gαC avec α ∈ R+

R et gα /∈ R′+
R , on ait : λ̃

′
= gλ̃ et Λ′can = g ·

(
Λcan ⊗ ζ

|ζ|

)
.

Grâce au lemme 5.4 (a) et à un calcul fait dans la démonstration de 7.3 (b), on

obtient:
ρ
g/h′

λ̃,a′∗+

|ρg/h
′

λ̃,a′∗+
|
τ ′+ = g ·

( ρ
g/h

λ̃,a∗+

|ρg/h
λ̃,a∗+

|
τ+
)
. Comme les chambres de (g(λ)(iρF+), a) sont

conjuguées sous NG(λ)(iρF+ )0(a) , il existe u ∈ G(λ̃) tel que (λ̃
′
, a′∗

+
) = gu·(λ̃, a∗+) .

A fortiori, on a τ ′+ = gu · τ+ d’après le lemme 9.3 (b).

On ne suppose plus G connexe. Il s’agit d’adapter la démonstration de
M. Duflo dans [Duf 82a, p. 176 à p. 179]. On remarque que les sous-groupes fermés
distingués B1 = G0(λ+)

g/h et B2 = G0 , respectivement de A1 = G(λ+)
g/h et

A2 = G , sont de type I d’après [Dix 69, prop. 2.1 p. 425]. En particulier, les
espaces mesurables B̂1 et B̂2 sont standards d’après [Dix 64, prop. 4.6.1 p. 95
et th. 9.1 p. 168]. Leurs quotients sous les actions à gauche des groupes finis
respectivement égaux à A1/B1 et A2/B2 sont donc dénombrablement séparés.

On va introduire plus bas un certain τ0 ∈ (G0(λ+)
g/h)̂ . On notera G(λ+)

g/h
τ0

le stabilisateur de τ0 dans G(λ+)
g/h, G(λ+)τ0 l’image de G(λ+)

g/h
τ0 dans G(λ+)

et M ′(λ̃)
m′/h
τ0 l’image réciproque de G(λ+)τ0 dans M ′(λ̃)m

′/h. On désignera par la
même notation pr les projections canoniques de G(λ+)

g/h
τ0 , G(λ+)τ0G0 et M ′(λ̃)

m′/h
τ0

sur G(λ+)τ0/G0(λ+) . D’après la proposition 9.4 (a) et (c), il existe une sous-
représentation irréductible τ0 de τ+ G0(λ+)g/h, un cocycle mesurable unitaire c de
G(λ+)τ0/G0(λ+) , une classe d’isomorphisme τ̃0 de c ◦ (pr × pr)-représentation pro-
jective de G(λ+)

g/h
τ0 qui prolonge τ0 dans son espace, et une classe d’isomorphisme

η̃ de c−1 -représentation projective irréductible de G(λ+)τ0/G0(λ+) , tels que :
τ+ = Ind

G(λ+)g/h

G(λ+)
g/h
τ0

(η̃ ◦ pr⊗τ̃0) .

On construit maintenant trois isomorphismes de représentations unitaires.
Le premier, relatif au groupe M ′(λ̃)m

′/h, va de l’espace de Ind
G(λ+)g/h

G(λ+)
g/h
τ0

(η̃ ◦ pr⊗τ̃0)

muni de τM ′ sur celui de Ind
M ′(λ̃)m

′/h

M ′(λ̃)
m′/h
τ0

(η̃ ◦ pr⊗(τ̃0)M ′) , où (τ̃0)M ′ est la c ◦ (pr × pr)-

représentation projective de M ′(λ̃)
m′/h
τ0 telle que δ

m′/h
λ+,m′ (τ̃0)M ′ = δ

g/h
λ+
τ̃0 sur G(λ+)τ0 .

Il s’écrit φ 7→φM ′ avec (δ
m′/h
λ+,m′ )

−1φM ′ =(δ
g/h
λ+

)−1φ (cf. la démonstration de 8.2 (a)).

Le second, relatif à M ′, va de l’espace de
(
Ind

M ′(λ̃)m
′/h

M ′(λ̃)
m′/h
τ0

(η̃ ◦ pr⊗(τ̃0)M ′)
)
⊗ ST

M ′
0

λ̃

muni par transport de TM ′

λ̃,τM′
sur celui de IndM ′

G(λ+)τ0M
′
0

(
(η̃ ◦pr⊗(τ̃0)M ′)⊗ST

M ′
0

λ̃

)
où

la représentation de G(λ+)τ0M ′
0 à laquelle il est fait allusion est construite comme

TM ′

λ̃,τM′
dans 8.2 (a). Il envoie un élément de la forme φ⊗v sur l’élément ψ vérifiant

ψ(xy) = φ(x̂)⊗ T
M ′

0

λ̃
(y)−1S(x̂)−1 · v

pour x̂∈M ′(λ̃)m
′/h au-dessus de x ∈ G(λ+) et y ∈M ′

0 .
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On note (M ′
G0
, (τ0)M ′) le « couple (M ′, τM ′) » obtenu à partir de (G0, λ̃, a

∗+, τ0)

au lieu de (G, λ̃, a∗+, τ+) . Il existe une unique c ◦ (pr × pr)-représentation projective
T̃0 de G(λ+)τ0G0 qui prolonge TG0

λ̃,a∗+,τ0
de façon que son action sur un élément ϕ

de l’espace de IndG0

M ′
G0

.U(((τ0)M ′ ⊗ ST
M ′

0

λ̃
)⊗ 1lU) vérifie

(T̃0(xg)·ϕ)(h) = |det(Ad x)u|1/2 × ((τ̃0)M ′(x̂)⊗ S(x̂)) · ϕ(g−1x−1hx)

pour x̂ ∈M ′(λ̃)
m′/h
τ0 au-dessus de x ∈ G(λ+)τ0 et g, h ∈ G0 .

Le troisième isomorphisme, relatif à G(λ+)τ0G0 , est fourni par l’application de
restriction à G0 , de l’espace de Ind

G(λ+)τ0G0

(G(λ+)τ0M
′
0).U

(
((η̃ ◦ pr⊗(τ̃0)M ′) ⊗ ST

M ′
0

λ̃
) ⊗ 1lU

)
sur celui de η̃ ◦ pr⊗T̃0 (identifié à un espace de fonctions sur G0 ).
En récapitulant, on trouve que :

TG
λ̃,a∗+,τ+

= IndG
G(λ+)τ0G0

(η̃ ◦ pr⊗T̃0) .

Il reste à appliquer la théorie de Mackey. D’après l’étude du cas connexe
faite ci-dessus, on a TG0

λ̃,a∗+,τ0
∈ Ĝ0 et le stabilisateur de TG0

λ̃,a∗+,τ0
dans G est égal à

G(λ+)τ0G0 . La proposition 9.4 (b) fournit la bijection σ̃ 7→ IndG
G(λ+)τ0G0

(σ̃◦pr⊗T̃0)
de l’ensemble des classes d’isomorphisme des c−1 -représentations projectives irré-
ductibles de G(λ+)τ0/G0(λ+) sur l’ensemble des éléments de Ĝ dont la restriction
à G0 est égale à la somme hilbertienne des g · TG0

λ̃,a∗+,τ0
avec ġ ∈ G/G(λ+)τ0G0 .

Ainsi, au vu du cas connexe, on a: la classe de représentation TG
λ̃,a∗+,τ+

est tempérée

irréductible, toute π ∈ Ĝ tempérée est atteinte d’après la proposition 9.4 (c), et
par un calcul facile tout (λ̃

′
, a′∗

+
, τ ′+) ∈ Xfinal,+

G tel que TG

λ̃
′
,a′∗+,τ ′+

= TG
λ̃,a∗+,τ+

est

conjugué à (λ̃, a∗+, τ+) sous G . A fortiori pour un tel triplet (λ̃
′
, a′∗

+
, τ ′+) on a

(λ̃
′
, τ ′) ∈ G · (λ̃, τ) , où τ ′ se déduit de τ ′+ comme dans la définition 5.5 (c).

Remarque 9.7. On suppose dans cette remarque que λ̃ ∈ g̃∗I et pose τ = τ+ .
On va retrouver explicitement l’orbite de (λ̃, τ) sous G à partir de trTG

λ̃,τ
.

Dans un premier temps, je vais récupérer G · λ̃ . Le théorème 10.2 fournit
l’égalité

(
trTG

λ̃,τ

)
1
= dim τ × β̂G·λ̃ V1

où V1 est un voisinage ouvert de 0 dans
g , qui coupe donc chaque composante connexe de gss reg . D’après la proposition
2.5 (c) et la fin de la remarque 2.4 (1), on en déduit que TG

λ̃,τ
détermine βRG(G·λ̃) .

Les mesures de Radon tempérées βΩ sur g∗ avec Ω ∈ G\g∗reg sont linéairement
indépendantes, car chaque βΩ est non nulle concentrée sur Ω . Compte tenu de la
proposition 2.2 (a), la classe de représentation TG

λ̃,τ
détermine l’orbite G·λ̃ .

Je vais maintenant reconstruire tr τ à partir de TG
λ̃,τ

et de λ̃ . On sait
déjà que τ(expX) = eiλ(X) id pour X ∈ h . Soit ê ∈ G(λ+)

g/h au-dessus d’un
e ∈ G(λ+) elliptique. On lui associe un e0 ∈ e exp t(e) comme dans le lemme
3.2 (b). Le théorème 10.2 exprime

(
trTG

λ̃,τ

)
e0

comme combinaison linéaire des

classes de fonction localement intégrable β̂
G(e0)·λ̃

′
e0 Ve0

avec
.

λ̃
′
e0
∈ G(e0)\g̃(e0)∗I qui

sont linéairement indépendantes. Le coefficient de
(
trTG

λ̃,τ

)
e0

suivant β̂G(e0)·λ̃[e0] Ve0

fournit tr τ(ê) .
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IV. Caractères des représentations

À nouveau, on considère un élément λ̃=(λ,F+) de g̃∗reg et pose h = g(λ̃) .
On note µ et ν (resp. t et a) les composantes infinitésimalement elliptique et
hyperbolique de λ (resp. h). Soit a∗+ une chambre de (g(λ)(iρF+), a) . J’utiliserai
les autres notations de la partie III. (dont M , m , τM pour la section 7., et, M ′ ,
m′ , U , τM ′ pour la section 8.) sans rappeler ce qu’elles représentent.

On se donne dans cette partie un élément elliptique e de G (à ne pas
confondre avec la base e des logarithmes népériens).

10. Formule de restrictions des caractères

La formule que je vais maintenant écrire généralise celle d’A. Bouaziz dans
[Bou 87, th. 5.5.3 p. 52] (voir aussi [DHV 84, th. (7) p. 106]), tout en s’y ramenant,
et celle de W. Rossmann [Ros 80, p. 64] relative au cas e = 1 .

Définition 10.1. (a) On note DG la fonction sur G dont la restriction à
chaque composante connexe G+ de G envoie x ∈ G+ sur le coefficient de T r+ dans
det(T id+ id−Ad x) , où r+ est le rang commun aux algèbres de Lie réductives
g(x+) quand x+ décrit l’ensemble des éléments semi-simples de G+ (cf. [Bou 87,
lem. 1.4.1 p. 6]). Elle est analytique et invariante sous intG .

(b) On note Gss reg l’ensemble des x ∈ G semi-simples tels que g(x) est
commutative. Donc Gss reg est l’ouvert dense de complémentaire négligeable de G
formé des points où DG ne s’annule pas (cf. [Bou 87, 1.3 p. 5]).

(c) On note de =
1
2
dim(1−Ad e)(g/j) et De = det(1−Ad e)

(1−Ad e)(g/j)
> 0 ,

indépendamment du choix de je∈Car g(e) auquel on associe j := Cg(je) ∈ Car g .
(d) On note
Ve = {X ∈ g(e) | |Im z| < εe pour toute valeur propre z de adgX }

et ke(X) =

(
det

(
eadX/2 − e− adX/2

adX

)
g(e)

det(1− Ad(e expX))g/g(e)
det(1− Ad e)g/g(e)

)1/2
> 0

pour X ∈ Ve , où εe = inf{ θ ∈ ]0, 2π] | ei θ est valeur propre de AdG e } ≤ 2π .
(e) À toute fonction généralisée intG-invariante Θ sur G , on associe (cf.

[DHV 84, (6) p. 98]) la fonction généralisée AdG(e)-invariante Θe sur Ve , déter-
minée par l’égalité Θe(X) = ke(X) × Θ e expVe (e expX) de fonctions généralisées
en X ∈ Ve .

L’égalité G =
⋃
e0∈G

e0 elliptique

intG · (e0 expVe0) de [Bou 87, lem. 8.1.1 p. 72] (cf.

[DV 93, lem. 40 p. 41]) montre que dans la situation du (d), les Θe0 avec e0 ∈G
elliptique déterminent Θ .

D’après [Bou 87, 3.1 haut p. 21], toute représentation unitaire topologique-
ment irréductible π de G est traçable, avec pour caractère une fonction tr π
localement intégrable sur G invariante sous intG dont la restriction à Gss reg est
analytique.
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Théorème 10.2. Étant donnés τ ∈ XInd
G (λ̃) et τ+ ∈ Xfinal,+

G (λ̃, a∗+) associés
comme dans 5.5 (c), on a(
trTG

λ̃,τ

)
e
= D

− 1
2

e

∑
.

λ̃
′
e ∈G(e)\g̃(e)∗reg

|{a′e∗+}|−1

( ∑
λ̃
′∈G·λ̃∩ g̃∗reg(e)

tel que λ̃
′
[e] existe

et λ̃
′
[e] = λ̃

′
e

±ê′ i−de′,λ̃ tr τ(ê′)

)
β̂
G(e)·λ̃′

e Ve

=
(
trTG

λ̃,a∗+,τ+

)
e
= i−deD

− 1
2

e

∑
.

λ̃
′
e ∈G(e)\g̃(e)∗reg

|{a′e∗+}|−1

( ∑
λ′
+∈G·λ+∩ g(e)∗

tel que λ̃
′
[e] = λ̃

′
e

±
ê′+
tr τ+(ê′+)

)
β̂
G(e)·λ̃′

e Ve

où on donne un sens à la somme portant sur λ̃
′

en choisissant g ∈ G tel que
λ̃
′
= gλ̃ puis fixant ê′ ∈ G(λ̃)g/g(λ)(iρF+ ) au-dessus de e′ = g−1eg

(resp. : on donne un sens à la somme portant sur λ′+ en choisissant g ∈ G tel que
λ′+ = gλ+ puis posant λ̃

′
= gλ̃ et fixant ê′+ ∈ G(λ+)

g/h au-dessus de e′ = g−1eg),
±ê′ est le signe tel que O(ê′)(1−Ad e′)(g/g(λ)(iρF+ )) = ±ê′ O(Bλcan)(1−Ad e′)(g/g(λ)(iρF+ ))

(resp. : ±
ê′+

est le signe tel que O(ê′+)(1−Ad e′)(g/h) = ±
ê′+

O(Bλ+)(1−Ad e′)(g/h) ),

d
g(λ)(iρF+ )

e′ est le coefficient de′ relatif à g(λ)(iρF+) et de′,λ̃ = de′ − d
g(λ)(iρF+ )

e′ ,

h′e = g(e)(λ̃
′
[e]) et a′e est la composante infinitésimalement hyperbolique de h′e ,

(λ′,F ′
e
+) = λ̃

′
[e] et {a′e

∗+} est l’ensemble des chambres de (g(e)(λ′)(iρF ′
e
+), a′e).

Les sommations portant sur G(e)\g̃(e)∗reg font intervenir un nombre fini de termes
sommés non nuls. Les autres sommations portent sur des ensembles finis. La
condition « λ̃

′
[e] existe » peut être oubliée, car elle est réalisée quand tr τ(ê′) ̸= 0.

En particulier, pour presque tout X ∈ V1 on a

det
(

eadX/2−e− adX/2

adX

)1/2
g

× trTG
λ̃,a∗+,τ+

(expX) = dim τ+ × β̂G·λ̃(X).

Remarque 10.3. Voici deux exemples et une précision importante.
(1) Premier exemple : G = GL(2,R) et e =

(
0 −1
1 0

)
, λ̃ = (0,F+) avec

F+ ⊆ i so(2)∗⊕Z(g)∗ et τ = χG
λ̃

. Donc λ̃[e] existe dans g̃(e)∗reg . La somme portant
sur G · λ̃∩ g̃∗reg(e) fait ici intervenir deux nombres complexes non nuls et opposés.

(2) Deuxième exemple : G est produit semi-direct de Z/2Z par SL(2,R)2
où l’élément non trivial de Z/2Z opère sur SL(2,R)2 par permutation des coor-
données et e = (

(
0 −1
1 0

)
,
(
0 −1
1 0

)
) , λ̃ = (0,F+) avec F+ ⊆ (i so(2)∗)2 non stable

sous Z/2Z et τ = χG
λ̃

. Donc λ̃[e] existe dans g̃(e)∗reg . Les deux éléments λ̃
′

de

G · λ̃ ∩ g̃∗reg(e) sont conjugués sous G(e) , et vérifient : λ̃
′
[e] existe et λ̃

′
[e] = λ̃[e] .

Les nombres complexes sommés correspondants sont non nuls, et bien sûr égaux.
(3) Il peut arriver que des mesures β̂

G(e)·λ̃′
e

non linéairement indépendantes
interviennent avec des coefficients non nuls dans la formule du caractère. En effet,
plaçons nous dans le cas suivant : G est le produit semi-direct canonique du
groupe symétrique S4 par SL(3,R)4 , λ = 0 , h est produit de 2 copies d’une
sous-algèbre de Cartan déployée de sl(3,R) avec 2 copies d’une sous-algèbre de
Cartan fondamentale de sl(3,R) , a∗+ est stable par permutation des 2 premières
composantes. On note e = (1 2) et g = (1 3)(2 4) dans S4 . Donc G · λ̃∩ g̃∗reg(e) =
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G(e) · λ̃ ∪ G(e) ·gλ̃ , λ̃[e] et (gλ̃)[e] existent dans g̃(e)∗reg , G(e) · λ̃[e] ̸= G(e) ·(gλ̃)[e]
et β̂G(e)·λ̃[e] = β̂G(e)·(gλ̃)[e] (cf. 2.4 (3)). En outre, il existe τ+ ∈ Xfinal,+

G (λ̃, a∗+) pour
lequel les coefficients de β̂G(e)·λ̃[e] Ve

et de β̂G(e)·(gλ̃)[e] Ve
sous formes de sommes

portant sur λ̃
′
sont égaux et non nuls.

Remarque 10.4. On suppose que G est connexe et utilise les notations de
la section 7. Différents auteurs ont utilisé dans certaines situations des formules
du caractère équivalentes à celle du théorème précédent, mais relatives à d’autres
paramétrisations. Pour relier ces formules, je fixe un système de racines positives
R+

0 (gC, hC) de R(gC, hC) qui contient les conjuguées de ses racines non imagi-
naires. On note ρg,h,0 et ρm,t,0 les demi-sommes de racines positives associées à
R+

0 (gC, hC) et à R+
0 (gC, hC) ∩R(mC, tC) .

(a) L’application de C(g(λ), h) dans l’ensemble des chambres de (mC, tC)
dans i t∗ dont l’adhérence contient iµ , qui à un élément F ′+ de C(g(λ), h) associe
la chambre de (mC, tC) contenant iµm,(λ,F ′+),{0} , est bijective. On note C+ l’image
de F+ par cette application. On pose

sg0(F+, µ) =
∏

α∈R+
0 (gC,hC)

α compacte

sg(C+(Hα)) ×
∏

α∈R+
0 (gC,hC)

α imaginaire non compacte

sg(−C+(Hα)) .

(b) On note T = CM(t) = CM(m) exp t . L’application de X irr
M (µ̃) dans l’en-

semble des caractères unitaires de T de différentielle iµ−ρm,t,0 qui à σ ∈ X irr
M (µ̃)

associe le caractère unitaire η de T tel que η(x expX) = σ(x, 1) e(iµ−ρm,t,0)(X)

pour x ∈ CM(m) et X ∈ t , est bijective.

(c) Soit σ ∈ X irr
M (µ̃) . On note η son image par l’application du (b). La

fonction Θ
(C+)
η de [Var 77, th. 23 p. 260] relative au groupe M s’écrit :

Θ
(C+)
η = sg0(F+, µ) × trTM

µ̃,σ .
En particulier, quand M0 est semi-simple et « acceptable », la fonction Θiµ,C+ de
[Har 65, p. 305] relative au groupe M0 s’écrit :

Θiµ,C+ = sg0(F+, µ) × trTM0
µ̃ .

Par ailleurs, quand G est linéaire, trTM
µ̃,σ est noté ΘM

(
iµ, C+, σ(•, 1) Z(M)

)
dans [KZ 82, p. 397] en identifiant t et t∗.

(d) On se place dans le cas où G est la composante neutre du groupe des
points réels d’un groupe linéaire algébrique complexe défini sur R semi-simple et
simplement connexe. On dispose ainsi d’un caractère complexe ξρ de exp hC de
différentielle ρg,h,0 . On fixe un caractère unitaire η de T comme au (b). Lorsque
ν est (g, a)-régulière, la fonction θ(TA, ξρ η, ν) de [Her 83, p. 244] s’écrit :

θ(TA, ξρ η, ν) = |C(g(λ), h)|−1
×

∑
F ′+∈C(g(λ),h)reg

sg0(F ′+, µ) × trTG

λ̃
′
,τ ′

où λ̃
′
= (λ,F ′+) , λ′+ est associé à (λ̃

′
, a∗) comme dans 1.3 (b), et τ ′ ∈ X irr

G (λ̃
′
)

est déterminé par l’égalité (δ
g/h

λ′
+
τ ′)

Z(M)
= η Z(M) .

La démonstration du théorème va se faire en trois étapes. Les deux premières
étapes suivent l’article de Bouaziz : on passe de G à G(λ+)G0 , puis de G(λ+)G0

à M ′. Dans la dernière étape, une variante du foncteur de translation de Zuckerman
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va me permettre de relier les caractères des représentations de M ′ qui m’intéressent
aux caractères étudiés par Bouaziz.

Début de la démonstration du théorème. Soient ê′+ ∈ G(λ+)
g/h et ê′ ∈

G(λ̃)g/g(λ)(iρF+ ) au-dessus d’un même élément elliptique e′ de G(λ+) . Les valeurs
propres autres que −1 et 1 de la restriction de Ad e′C à vC :=

∑
α∈R+(g(λ)(iρF+ )C,hC)

gαC

sont non réelles deux à deux conjuguées de module 1 . Comme Lλ̃,a∗+/hC (cf.
5.4 (a)) est somme directe des sous-espaces Ad e′C-invariants Lλ̃/g(λ)(iρF+)C (cf.
5.4 (c)) et vC , on a qL

λ̃,a∗+/hC((Ad e
′)g/h) = qLλ̃/g(λ)(iρF+ )C((Ad e

′)g/g(λ)(iρF+ ))

relativement à Bλ+ , puis d’après 5.4 et 4.2 (d) :
±

ê′+
ρ
g/h

λ̃,a∗+
(ê′+) = ±ê′ ρ

g/g(λ)(iρF+ )

λ̃
(ê′) × i−1/2 dim(1−Ad e′)(g(λ)(iρF+ )/h)

où les signes ±
ê′+

et ±ê′ sont définis comme dans le théorème.

Soient λ̃
′
0 ∈ G·λ̃∩g̃∗reg(e) , g0 ∈ G vérifiant λ̃

′
0 = g0λ̃ , et ê′0 ∈ G(λ̃)g/g(λ)(iρF+ )

au-dessus de e′0 = g−1
0 eg0 . Par la définition 5.5 (c) et ce qui précède, on obtient

±
ê′0

i
−de′0,λ̃ tr τ(ê′0) =

∑
ẋ∈G(λ̃)/G(λ+)

tel que x−1e′0 x∈G(λ+)

±
ê′+,x

i−de tr τ+(ê′+,x)

indépendamment du choix de ê′+,x ∈ G(λ+)
g/h au-dessus de e′x = x−1e′0 x .

Ensuite, pour tout λ̃
′
e ∈ g̃(e)∗reg on obtient l’égalité de sommes finies∑

λ̃
′
0∈G·λ̃∩ g̃∗reg(e)

tel que λ̃
′
0[e] = λ̃

′
e

±
ê′0
i
−de′0,λ̃ tr τ(ê′0) =

∑
λ′
+∈G·λ+∩ g(e)∗

tel que λ̃
′
[e] = λ̃

′
e

±
ê′+

i−de tr τ+(ê′+) .

Les deux expressions du caractère proposées dans le théorème sont donc égales.

Soit λ̃
′
(resp. λ′+ ) un terme associé à un λ̃

′
e comme dans le théorème. On a :

{ gλ̃ ∈ G · λ̃ ∩ g̃∗reg(e) | (gλ̃)[e] = λ̃
′
e et gλ̃ ∈ G(e) · λ̃

′
} = G(e)(λ̃

′
e) · λ̃

′

(resp. { gλ+ ∈ G · λ+ ∩ g(e)∗ | (gλ̃)[e] = λ̃
′
e et gλ+ ∈ G(e) · λ′+ } = G(e)(λ̃

′
e) · λ′+ ).

Le théorème équivaut donc à chacune des formules (F ) et (F+) suivantes :(
trTG

λ̃,τ

)
e

(F )

= D
− 1

2
e

∑
.

λ̃
′ ∈G(e)\G·λ̃∩ g̃∗reg(e)

tel que λ̃
′
[e]∈ g̃(e)∗reg

±ê′ i
−de′,λ̃

|G(e)(λ̃
′
[e])·λ̃′|

|{a′e∗+}| tr τ(ê′) β̂
G(e)·λ̃′

[e] Ve
;

(
trTG

λ̃,a∗+,τ+

)
e

(F+)

= i−deD
− 1

2
e

∑
.

λ′
+ ∈G(e)\G·λ+∩ g(e)∗

tel que λ̃
′
[e]∈ g̃(e)∗reg

±
ê′+

|G(e)(λ̃
′
[e])·λ′

+|
|{a′e∗+}| tr τ+(ê′+) β̂G(e)·λ̃′

[e] Ve
.

Cela permet en particulier de préciser les résultats énoncés dans l’introduction.

D’après la définition 2.3 (e), on a β̂ω =
∑

ω0∈G(e)0\ω
β̂ω0 pour ω ∈ G(e)\g̃(e)∗reg .

Ainsi le théorème équivaut à l’énoncé qu’on obtient en y remplaçant G(e) par
G(e)0 , et donc aussi à celui qu’on obtient en remplaçant G(e) par G(e)0 dans (F+) .
Soient λ′+ et λ̃

′
comme dans (F+) . Le groupe G(e)0(λ̃

′
[e]) opère transitivement sur

{a′e
∗+} par l’action de certains éléments de W (g(e)C, h

′
eC) (notations du théorème).

Comme λ′+ appartient à h′e
∗∩g(e)∗ss reg , le stabilisateur d’un élément de {a′e

∗+} est

égal à G(e)0(λ̃
′
[e])(λ′+) d’après le lemme 1.4. Donc

∣∣∣G(e)0(λ̃′[e]) · λ′+∣∣∣ = ∣∣∣{a′e∗+}∣∣∣ .
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Par conséquent, les formules à démontrer équivalent à la formule suivante :(
trTG

λ̃,a∗+,τ+

)
e
= i−de D

− 1
2

e

∑
.

λ′
+∈G(e)0\G·λ+∩ g(e)∗

tel que (gλ̃)[e]∈ g̃(e)∗reg

O(ê′+)(1−Ad e′)(g/h)
O(Bλ+

)(1−Ad e′)(g/h)
tr τ+(ê′+) β̂G(e)0·(gλ̃)[e] Ve

où g ∈ G vérifie λ′+= gλ+ et ê′+ ∈ G(λ+)
g/h est au-dessus de e′ = g−1eg .

On remarque pour la suite (section 11.) que dans le raisonnement précédent, on
peut remplacer G(e)0 par n’importe quel sous-groupe L de G(e) qui contient
G(e)0 et dont le groupe adjoint est inclus dans int g(e)C .

Les orbites sur lesquelles on somme étant semi-simples régulières, on va
pouvoir reproduire la plupart des arguments de [Bou 87].

On a TG
λ̃,a∗+,τ+

= IndG
G(λ+)G0

T
G(λ+)G0

λ̃,a∗+,τ+
par « induction par étages », puis(

trTG
λ̃,a∗+,τ+

)
e
=

∑
ẋ∈G/G(λ+)G0 tel que x−1ex∈G(λ+)G0

Ad x ·
(
trT

G(λ+)G0

λ̃,a∗+,τ+

)
x−1ex

.

Comme l’ensemble G · λ+ ∩ g(e)∗ est réunion des ensembles disjoints
Ad∗ x ·

(
G(λ+)G0 ·λ+∩ g(x−1ex)∗

)
où ẋ ∈ G/G(λ+)G0 vérifie x−1ex ∈ G(λ+)G0 ,

on peut supposer que G = G(λ+)G0 . . . .

11. Passage de TM ′

λ̃,τM′
à TG

λ̃,a∗+,τ+

Dans cette section, on va se ramener à montrer le théorème pour TM ′

λ̃,τM′
en

reprenant mot à mot la preuve de Bouaziz concernant le cas semi-simple régulier.
Les résultats énoncés dans la proposition suivante sont démontrés dans

[Bou 87, lem. 7.1.3 p. 65 et lem. 4.2.1 p. 38].

Proposition 11.1. (Bouaziz) (a) Soit π une représentation unitaire topolo-
giquement irréductible de M ′ . On lui associe Π = IndM ′G0

M ′U ( π ⊗ 1lU ). La repré-
sentation unitaire Π de M ′G0 est somme hilbertienne d’un nombre fini de sous-
représentations topologiquement irréductibles (cf. [Dix 64, prop. 5.4.13 (i) p. 110]
ou [Wal 88, prop. p. 25]).

On suppose que e ∈ M ′G0 . Pour tout je ∈ Car g(e) et tout X ∈ je tel que
e expX ∈ (M ′G0)ss reg , on a

|DG(e expX)|1/2 (trΠ)(e expX)

=
∑

(M ′∩G0) g ∈ M ′∩G0 \ {g0∈G0 | g0 e exp je g
−1
0 ⊆M ′}

|DM ′(ge expXg−1)|1/2 (tr π)(ge expXg−1)

où la somme de droite porte sur un ensemble fini.
(b) Soient ν ′ ∈ g∗ une forme linéaire hyperbolique, h′ une sous-algèbre de

Cartan fondamentale de g(ν ′), et M ′
1 un sous-groupe de G0(ν

′) qui contient le
groupe CG0(h

′)G(ν ′)0 . Pour tous λ′ ∈ h′∗ ∩ g∗ss reg , j ∈ Car g et X ∈ j ∩ gss reg , on a

|Dg(X)|1/2 β̂G0·λ′(X) =
∑

M ′
1 x ∈ M ′

1 \ {x0∈G0 |x0j⊆ g(ν′)}

|Dg(ν′)(xX)|1/2 β̂M ′
1·λ′(xX)

où la somme de droite porte sur un ensemble fini.
Suite de la démonstration du théorème. On suppose réalisée ici l’égalité
G = G(λ+)G0 , à laquelle on s’est ramené.
On admet (provisoirement) que le théorème est vrai pour TM ′

λ̃,τM′
.
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Pour obtenir la formule du caractère pour trTG
λ̃,a∗+,τ+

, il suffit de la vérifier
sur l’ouvert inclus dans g(e)ss reg de complémentaire négligeable (cf. [Bou 87, avant
lem. 1.4.1 p. 6]) et sur lequel les deux membres de l’égalité sont des fonctions
analytiques, formé des X ∈ Ve tels que e expX ∈ Gss reg .

On fixe je ∈ Car g(e) et X ∈ je ∩ Ve tels que e expX ∈ Gss reg . On a :
ke(X) = | det(1− Ad e)g/g(e)|−1/2 × |Dg(e)(X)|−1/2 × |DG(e expX)|1/2 .

En paraphrasant les calculs de Bouaziz, on fixe des représentants g1, . . . , gn
des doubles classes dans M ′ ∩ G0 \ {g0 ∈ G0 | g0eg−1

0 ∈ M ′} /G(e)0 . On pose
e1=g1eg

−1
1 , . . . , en=gneg

−1
n . La réunion disjointe des ensembles

M ′ ∩G(ej)0 \ {x0 ∈ G(ej)0 | x0gj je ⊆ m′(ej)} où 1 ≤ j ≤ n

est en bijection avec l’ensemble
M ′ ∩G0 \ {g0 ∈ G0 | g0 e exp je g−1

0 ⊆M ′}
par l’application qui envoie (j, ẋ) sur ˙xgj . On écrit

(
trTG

λ̃,a∗+,τ+

)
e
(X) à l’aide

de la proposition 11.1 (a) en prenant π = TM ′

λ̃,τM′
et en tenant compte de cette

bijection. On utilise ensuite l’expression de
(
trTM ′

λ̃,τM′

)
ej

proposée au début de la
démonstration du théorème, avec L =M ′∩G(ej)0 . Cela fournit trois sommations.
On intervertit les deux dernières et tombe sur :∑

1≤j≤n

∑
˙gλ+ ∈ M ′∩G(ej)0 \M ′·λ+∩m′(ej)∗

tel que (gλ̃)[ej ]∈ g̃(ej)
∗
reg

∑
ẋ ∈ M ′∩G(ej)0 \ {x0∈G(ej)0 |x0 gj je ⊆m′}

· · · .

La dernière somme se calcule en appliquant la proposition 11.1 (b) après
avoir remplacé G par G(ej) , ν ′ par ν+ , h′ par (gh)(ej) , M ′

1 par M ′ ∩ G(ej)0 ,
λ′ par gλt avec t ∈ ]0, 1] (cf. 1.4), j par gjje , et X par gjX , puis en passant
à la limite t → 0+ (cf. 2.6 (b)). En outre, la réunion disjointe des ensembles
M ′ ∩ G(ej)0 \M ′ · λ+∩ m′(ej)

∗ où 1 ≤ j ≤ n est en bijection avec l’ensemble
G(e)0 \G · λ+∩ g(e)∗ par l’application qui envoie (j, l̇) sur ˙g−1

j l . Cela permet de
regrouper les deux premières sommations en une seule.

Soient ê′+ ∈ G(λ+)
g/h et ê′m′ ∈ M ′(λ̃)m

′/h au-dessus d’un élément
elliptique e′ de G(λ+) . Les valeurs propres autres que −1 et 1 de la restriction de
Ad e′C à uC sont non réelles deux à deux conjuguées de module 1 . Comme Lλt/hC
(cf. 5.2) est somme directe des sous-espaces Ad e′C -invariants bM ′/hC et uC , on a
qLλt

/hC((Ad e
′)g/h) = q bM′/hC((Ad e

′)m′/h) relativement à Bλ+ , puis d’après 4.2 (d) :
O(ê′+)(1−Ad e′)(g/h)
O(Bλ+

)(1−Ad e′)(g/h)
ρ
g/h
λ+

(ê′+) =
O(ê′

m′ )(1−Ad e′)(m′/h)
O(Bλ+,m′ )(1−Ad e′)(m′/h)

ρ
m′/h
λ+,m′ (ê

′
m′) × i−1/2 dim(1−Ad e′)(g/m′) .

À l’aide de l’égalité écrite dans la démonstration du lemme 8.2 (a), on en dé-
duit la formule du caractère pour trTG

λ̃,a∗+,τ+
(en l’admettant pour trTM ′

λ̃,τM′
). . . .

12. Translation au sens de G. Zuckerman

Dans cette section, il s’agit de créer un outil pour la seule étape délicate : le
calcul du caractère de la représentation définie après un passage dans l’homologie.

Je commence par rappeler quelques résultats classiques.

Lemme 12.1. Soient π une représentation linéaire continue de G0 dans un
espace de Hilbert complexe V et K0 un sous-groupe compact maximal de G0 . Dans
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ces conditions, on notera VK0 la réunion des sous-espaces vectoriels de dimension
finie de V stables par K0 .

Pour chaque N ∈ N, les propriétés (i) et (ii) suivantes sont équivalentes :
(i) il existe une suite finie V0 = V ⊇ V1 ⊇ · · · ⊇ VN = {0} de sous-

G0 -modules fermés de V tels que les quotients Vj−1/Vj avec 1 ≤ j ≤ N sont
topologiquement irréductibles sous G0 et possèdent un caractère infinitésimal;

(ii) les multiplicités des éléments de K̂0 dans VK0 sont finies, ce qui im-
plique que g opère sur VK0 par dérivation de l’action de G0 (cf. [Var 77, th. 14
p. 313]), et il existe une suite finie (VK0)0 = VK0 ⊇ (VK0)1 ⊇ · · · ⊇ (VK0)N = {0}
de sous-(gC, K0)-modules de VK0 tels que les quotients (VK0)j−1 / (VK0)j avec
1 ≤ j ≤ N sont des (gC, K0)-modules irréductibles.

Quand ces propriétés sont vérifiées, π est traçable, et les « composantes
Z(UgC)-primaires » V χ de V associées aux caractères χ de l’algèbre unifère
Z(UgC), définies comme les adhérences dans V des sous-espaces vectoriels

(V ∞)χ := { v ∈ V ∞ | ∀u ∈ Z(UgC) (u− χ(u))n · v = 0 } pour « n grand »,
sont en somme directe de somme dense dans V ; de plus l’ensemble P des poids de
Z(UgC) dans V ∞, formé des caractères χ de Z(UgC) tels que V χ ̸= {0}, est fini.
Démonstration du lemme. On constate d’abord que pour tout sous-G0 -
module fermé W de V , l’injection canonique de VK0/WK0 dans (V/W )K0 est
surjective. En effet, en notant prV/W la projection canonique de V sur V/W, pour
tout sous-K0 -module F de dimension finie de V/W le sous-espace vectoriel dense
prV/W (VK0 ∩ pr−1

V/W (F )) de F est égal à F . Par ailleurs, on dispose pour chaque
δ ∈ K̂0 d’un isomorphisme de K0 -modules canonique de Vδ/Wδ sur (VK0/WK0)δ
(en notant Eδ la composante isotypique de type δ d’un K0 -module E ). Donc pour
chaque δ ∈ K̂0 , les K0 -modules Vδ/Wδ et (V/W )δ sont isomorphes.

Quand (i) est vérifié, les espaces vectoriels (Vj−1/Vj)δ avec 1 ≤ j ≤ N

et δ ∈ K̂0 sont de dimension finie d’après [Var 77, prop. 16 p. 314 et th. 19
p. 316], puis les espaces vectoriels Vδ avec δ ∈ K̂0 sont de dimension finie; la suite
(V0)K0 = VK0 ⊇ (V1)K0 ⊇ · · · ⊇ (VN)K0 = {0} satisfait la condition de (ii) d’après
[Var 77, fin de th. 14 p. 313].

Quand (ii) est vérifié, la suite (VK0)0 = V ⊇ (VK0)1 ⊇ · · · ⊇ (VK0)N = {0}
satisfait la condition de (i), à nouveau d’après [Var 77, th. 14 p. 313].

On suppose dorénavant que les propriétés (i) et (ii) sont vérifiées. Le résultat
« π est traçable » est dû à Harish-Chandra (cf. [Wal 88, 8.1.2 p. 292]).

D’après (ii) et [KV 95, cor. 7.207 p. 530], on peut appliquer [KV 95, prop.
7.20 p. 446] à la fois à V ∞ et à ses composantes Z(UgC)-primaires (ici a priori au
sens de [KV 95]). Par conséquent, le membre droite de l’égalité qui définit (V ∞)χ

stationne en n et V ∞ est somme directe d’un nombre fini de ses composantes
Z(UgC)-primaires. On fixe n ∈ N qui convienne relativement aux définitions de
tous les (V ∞)χ , χ ∈ P .

Soit Q⊆P. Les caractères de Z(UgC) étant linéairement indépendants, on a∑
χ∈Q

(V ∞)χ =
{
v ∈ V ∞ | ∀u ∈ Z(UgC)

∏
χ∈Q

(u− χ(u))n · v = 0
}

.

On se donne une mesure de Haar dG0 sur G0 et une suite (φk)k∈N d’éléments
positifs de C∞

c (G0) d’intégrale 1 pour dG0 , dont les supports « rentrent dans tout
voisinage de 1 dans G0 ». On a (

∑
χ∈Q

V χ)∞=
∑
χ∈Q

(V ∞)χ car pour tout u ∈ Z(UgC)
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les endomorphismes continus π
(
φkdG0 ∗

∏
χ∈Q

(u− χ(u))n
)

de V avec k ∈ N sont

nuls sur
∑
χ∈Q

(V ∞)χ puis sur
∑
χ∈Q

V χ , et d’autre part convergent simplement sur

(
∑
χ∈Q

V χ)∞ quand k → +∞ vers l’opérateur associé à
∏
χ∈Q

(u− χ(u))n .

Pour chaque χ0 ∈ P, on a donc
(
V χ0 ∩

∑
χ∈P\{χ0}

V χ
)∞

= {0} , ce qui montre

que les espaces vectoriels V χ avec χ ∈ P sont en somme directe.

Définition 12.2. On appelle « G0 -module de longueur finie admissible » (ou
« G0 -module de Harish-Chandra ») tout espace de Hilbert complexe V muni d’une
représentation linéaire continue π de G0 en son sein qui vérifie les propriétés
équivalentes du lemme précédent.

L’objet de la proposition suivante est d’adapter le foncteur de translation
de Zuckerman (cf. [Zuc 77]) au cas d’une représentation d’un groupe non connexe.

Proposition 12.3. On fixe un groupe de Lie réel G dont la composante neutre
est égale à G0 et un élément a de G qui opère par automorphisme intérieur sur
G0 comme un certain élément a de G. On suppose pour simplifier que le groupe
G est engendré par aG0 .

Soit π une représentation linéaire continue de G dans un espace de Hilbert
complexe V dont la restriction à G0 est un G0 -module de longueur finie admissible.

(a) On définit une fonction généralisée (tr π)aG0 sur aG0 , invariante sous
intG0 , localement intégrable sur aG0 et analytique sur aG0 ∩Gss reg , en posant

(tr π)aG0(φ dG) = tr π(φ dG) pour tout φ ∈ C∞
c (aG0),

où φ ∈ C∞
c (aG0) est définie par φ(ax0) = φ(ax0) pour x0 ∈ G0 et, dG et dG

sont des mesures de Haar sur G et G dont les restrictions à G0 coïncident.
Elle s’écrit : (tr π)aG0 =

∑
χ∈P tel que aχ=χ

(tr πχ̇)aG0 ,

où P est l’ensemble des poids de Z(UgC) dans V ∞ et πχ̇ désigne pour chaque
χ ∈ P tel que aχ = χ la représentation de G dans V χ issue de π .

(b) On suppose qu’il existe un caractère χ de Z(UgC) tel que V = V χ .
Soit x ∈ aG0 ∩ Gss reg . Donc jx := g(x) est commutative (cf. 10.1 (b)) et

j := Cg(jx) est une sous-algèbre de Cartan de g (cf. [Bou 87, lem. 1.4.1 p. 6]). On
note j(x)1 la composante connexe de 0 dans {Y ∈ j(x) | x expY ∈ Gss reg}.

Il existe des éléments pl de S(j(x)∗C) associés aux l∈ j(x)∗C vérifiant χ=χUgC
l

(notation de 8.4 (a)), tels que pour tout Y ∈ j(x)1 on ait

|DG(x expY )|1/2 (tr π)aG0(x expY ) =
∑

l∈j(x)∗C tel que χ=χUgC
l

pl(Y ) el(Y ) .

De plus, quand χ est « régulier » (c’est-à-dire associé à une orbite semi-
simple régulière de int gC dans g∗C ) chaque pl est un scalaire.

(c) On suppose que π a un caractère infinitésimal régulier χ. On choisit
Λ ∈ g∗C semi-simple régulière telle que χ = χUgC

Λ . On note C l’unique chambre de
R(gC, gC(Λ)) dans gC(Λ)

∗∩D(gC)∗ telle que Λ ∈ C+Z(gC)
∗, et C son adhérence.

Soit πF une représentation linéaire de G dans un espace de Hilbert complexe
de dimension finie F, dont la restriction à G0 est irréductible, et telle que le plus
bas poids de gC(Λ) dans F relativement à C, noté ΛF, vérifie Λ+ΛF ∈ C+Z(gC)

∗.
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La restriction à G0 de la représentation π⊗πF de G donne un G0 -module
de longueur finie admissible et G opère dans sa composante Z(UgC)-primaire
(V ⊗C F )

χUgC
Λ+ΛF au moyen d’une représentation πZuc ayant encore cette propriété.

Soit x ∈ aG0 ∩ Gss reg . On lui associe une sous-algèbre de Cartan j de g et
des nombres complexes pl comme au (b). Pour tout Y ∈ j(x)1 , on a

|DG(x expY )|1/2 (tr πZuc)aG0(x expY ) =
∑

l∈ j(x)∗C tel que χ=χUgC
l

x lF
pl e

(l+ lF )(Y ) ,

où lF ∈ j∗C est défini à partir de l comme ΛF à partir de Λ et x lF
est le scalaire

par lequel l’élément x := a (a−1 x) de G (qui fixe lF ) agit sur l’espace propre (de
dimension 1) de poids lF pour l’action de j(x)C dans F.
Démonstration de la proposition. On utilisera l’action canonique par opé-
rateurs différentiels invariants à gauche de l’algèbre enveloppante d’un groupe de
Lie réel sur l’espace vectoriel des fonctions généralisées sur ce groupe de Lie.

(a) La représentation π est traçable d’après le lemme 12.1. La fonction
généralisée (trπ)aG0 , égale à δa ∗ (δa−1 ∗ tr π aG0) , est invariante sous intG0 .

Soient u0 ∈ Z(UgC) et φ ∈ C∞
c (aG0) . On pose u =

∏
χ∈P

(u0 − χ(u0)) . La

démonstration de [KV 95, cor. 7.207 p. 530] fournit l’existence d’une suite finie
W0 = V ⊇ W1 ⊇ · · · ⊇ WN = {0} de sous-G-modules fermés de V tels que les
quotients Wk−1/Wk avec 1 ≤ k ≤ N ′ sont topologiquement irréductibles sous G .

Soit k ∈ {1, . . . , N ′} . On note πk la représentation de G dans Wk−1/Wk .
Tout sous-quotient d’un G0 -module de longueur finie admissible est un G0 -module
de longueur finie admissible. Donc Wk−1/Wk a un sous-G0 -modules fermé topo-
logiquement irréductible E qui possède un caractère infinitésimal. L’action de u
sur

∑
n∈Z

anE∞ est nulle. Donc πk(φdG ∗ u) = 0 .

Ainsi : ∂u(tr π) (φdG) = trπ1(φdG ∗ u) + · · · + trπN ′(φdG ∗ u) = 0 (cf.
[Wal 88, lem. 8.1.3 p. 293]). De plus, on a a u = u . Il en résulte que :

∂u((tr π)aG0) = δa ∗ ((δa−1 ∗ tr π aG0) ∗ (δa ∗ ǔ ∗ δa−1)) = 0 .
D’après [Bou 87, th. 2.1.1 p. 10] et [KV 95, th. 4.95 p. 286 et th. 7.30 (a) p. 450],
(tr π)aG0 est localement intégrable sur aG0 et analytique sur aG0 ∩Gss reg .

Soient χ ∈ P tel que aχ ̸= χ et (à nouveau) φ ∈ C∞
c (aG0) . On note m

le cardinal de l’orbite χ̇ de χ sous l’action du sous-groupe ⟨a⟩ de G engendré par
a , et πχ̇ la représentation de G dans W :=

∑
n∈Z

an V χ. La restriction de πχ̇(φdG)

à la somme directe V χ ⊕ aV χ ⊕ · · · ⊕ am−1V χ se décompose en blocs avec des
blocs diagonaux nuls. J’exploite cette propriété en utilisant une suggestion de
G. Skandalis pour me ramener au cas de la dimension finie.

La sous-algèbre de L(W ) formée des endomorphismes qui stabilisent simul-
tanément V χ , aV χ, . . . , am−1V χ est fermée. D’après [B 67, remarque p. 55 et prop.
7 p. 47], les sous-espaces primaires W z de la restriction de πχ̇(φdG)

m à W associés
aux z ∈ C \{0} , qui sont de dimension finie, sont tous sommes de leurs intersec-
tions avec V χ et · · · et am−1V χ . En outre, chaque W z avec z ∈ C \{0} est égal
à la somme des sous-espaces primaires de la restriction de πχ̇(φdG) à W associés
aux racines mièmes de z . La formule de Lidskij (« la trace est la somme des valeurs
propres ») donne ensuite l’égalité trπχ̇(φ dG) =

∑
z∈C\{0}

tr
(
πχ̇(φ dG) W z

)
= 0 .

D’où, en utilisant cette fois-ci [B 67] relativement à L(V ) (cf. dem. de 12.1):
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(tr π)aG0 =
∑

χ̇∈⟨a⟩\P

(tr πχ̇)aG0 =
∑

χ∈P tel que aχ=χ

(tr πχ̇)aG0 .

(b) Je vais préciser ici les calculs de [Bou 87, p. 33 et p. 34].
On pose θ(Y ) = |DG(x expY )|1/2 (tr π)aG0(x expY ) pour tout Y ∈ j(x)1 .

On note W le groupe W (gC, jC) et pr la projection canonique de S jC sur S j(x)C
obtenue comme dans les conventions 2 (b). La démonstration du (a) montre que
(tr π)aG0 est vecteur propre de Z(UgC) associé à χ . On fixe un élément l0 de j∗C
tel que χ = χUgC

l0
. D’après [Bou 87, ligne 4 de 2.5 p. 20], on a :

q(l0) θ = ∂pr(q)θ pour tout q ∈ (S jC)
W.

On répète dans ce qui suit les arguments de [Kna 86, p. 369 à p. 371].
Soit X ∈ jC . On note q0, . . . , q|W |−1 les éléments de (S jC)

W pour lesquels
on a l’égalité suivante de polynômes en l’indéterminée T :∏

w∈W

(T − wX) = T |W | + q|W |−1T
|W |−1 + · · · + q0 dans (S jC)[T ] .

À partir de là, d’une part en remplaçant T par X , et d’autre part en prenant la
valeur de chaque membre en l0 puis remplaçant T par X , on obtient dans S jC :

X |W | + X |W |−1q|W |−1 + · · · + q0 = 0

et X |W | + X |W |−1q|W |−1(l0) + · · · + q0(l0) =
∏
w∈W

(X − l0(wX)) .

On utilise l’équation aux dérivées partielles vérifiée ci-dessus par θ avec q succes-
sivement égal à q|W |−1, . . . , q0 . Elle donne l’égalité suivante, qu’il reste à exploiter :∏

w∈W
(∂pr(X) − l0(wX)) · θ = 0 .

On fait décrire à X une base de j(x)C . D’après [Var 77, prop. 3 p. 58], il
existe une unique famille (pl)l∈j(x)∗C d’éléments de S(j(x)∗C) à support fini telle que

θ(Y ) =
∑

l∈j(x)∗C

pl(Y ) el(Y ) pour tout Y ∈ j(x)1 .

On va obtenir des renseignements plus précis en substituant cette expression de θ
dans l’égalité qui précédait (et prolongeant analytiquement à j(x)).

Soit l ∈ j(x)∗C tel que pl ̸= 0 . On note d le degré de pl dans S(j(x)∗C) et p[d]l

la composante homogène de pl de degré d . Soit X ∈ jC . Pour tout w ∈ W , on a
(∂pr(X) − l0(wX)) · pl el = (l(X)− l0(wX)) pl e

l + (∂pr(X)pl) e
l .

Le polynôme nul e−l×
∏

w∈W
(∂pr(X)− l0(wX)) ·pl el admet

∏
w∈W

(l−w−1l0)(X) × p
[d]
l

comme composante homogène de degré d . Vu que l’anneau S j∗C est intègre, cela
montre que l ∈ W · l0 , puis χ = χUgC

l .
On suppose maintenant pl non scalaire. On choisit X ∈ jC tel que, pour

tout w ∈ W hors de W (l) on ait (w l)(X) ̸= l(X) , et p
[d]
l (pr(X)) ̸= 0 . On note

(pr(X)∗) la base de (C pr(X))∗ duale de (pr(X)) . La restriction du polynôme nul
e−l ×

∏
w∈W (l)

(∂pr(X) − l(wX)) ·
( ∏
w∈W et w/∈W (l)

(∂pr(X) − l(wX)) · pl el
)

à C pr(X) est somme d’un polynôme de la forme ζ × (∂pr(X))
|W (l)| ·(pr(X)∗)d avec

ζ ∈ C \{0} et de monômes de degrés strictement plus petits. D’où |W (l)| > 1 .
(c) Je m’inspire de [Zuc 77, p. 301].
D’après [KV 95, cor. 7.207 p. 530], π ⊗ πF et les représentations de G0

sur les composantes Z(UgC)-primaires de V ⊗C F donnent des G0 -modules de
longueur finie admissibles.
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Par hypothèse, on a aχ = χ . Il existe donc σ ∈ (Ad a)C int gC tel que
σ(Λ) = Λ . On a: σ(gC(Λ)) = gC(Λ) et σ(C) = C , puis σ(ΛF ) = ΛF . On en déduit
que aχUgC

Λ+ΛF
= σ χUgC

Λ+ΛF
= χUgC

Λ+ΛF
. Le groupe G laisse donc stable (V ⊗C F )

χUgC
Λ+ΛF .

On note P ′ l’ensemble des poids de Z(UgC) dans (V ⊗C F )
∞ , P (F, j(x)C)

l’ensemble des poids de j(x)C dans F et F γ l’espace propre de j(x)C associé à un
élément γ de P (F, j(x)C) . Pour tout Y ∈ j(x)1 , on a grâce au (a) :

(tr π)aG0(x expY ) × tr πF (x expY ) =
∑

χ′∈P ′ tel que aχ′=χ′

(tr(π ⊗ πF )χ̇′)aG0(x expY )

et tr πF (x expY ) =
∑

γ∈P (F,j(x)C)

tr(πF (x) F γ ) e
γ(Y ) .

On applique le (b) à π , et aux (π ⊗ πF )χ̇′ avec χ′ ∈ P ′ tel que aχ′ = χ′ , parmi
lesquels se trouve πZuc . En identifiant les facteurs polynomiaux écrits devant les
fonctions el avec l ∈ j(x)∗C , on trouve que pour tout Y ∈ j(x)1 on a

|DG(x expY )|1/2 (tr πZuc)aG0(x expY ) =
∑

(l,γ)∈A

tr(πF (x) F γ ) pl e
(l+ γ)(Y ) ,

où on a posé A = {(l, γ) ∈ j(x)∗C × P (F, j(x)C) | χ = χUgC
l et χUgC

Λ+ΛF
= χUgC

l+γ } .

Pour finir, on vérifie que A = {(l, γ) ∈ j(x)∗C × j∗C | χ = χUgC
l et γ = lF} , et

dimF γ = 1 pour (l, γ) ∈ A . L’inclusion ⊇ est claire. On considère un (l, γ) ∈ A .
On modifie le choix de Λ en prenant Λ = l . On va montrer que γ = ΛF , et
calculer dimF γ. On fixe un w ∈ W (gC, jC) tel que l + γ = w(Λ + ΛF ) .
On a γ−ΛF = w(Λ+ΛF )− (Λ+ΛF ) et w(Λ+ΛF )− (Λ+ΛF ) ≤ 0 pour l’ordre
associé à C , car Λ + ΛF ∈ C + Z(gC)

∗. D’autre part, il existe un poids ζ de jC
dans F tel que γ = ζ j(x)C

. L’inclusion j(x)∗C ⊆ j∗C identifie γ à l’isobarycentre
de la partie finie {Ad∗ xn · ζ}n∈Z de l’ensemble des poids de jC dans F. Donc
γ − ΛF ≥ 0 pour l’ordre associé à C . Par conséquent γ = ΛF . Comme γ est un
poids extrémal de jC dans F qui est isobarycentre d’un ensemble fini de poids de
jC dans F, il est égal en particulier à ζ . Ainsi le sous-espace propre de F de poids
γ sous l’action de j(x)C est de dimension 1 .

13. Passage de TM ′

λr,σr
à TM ′

λ̃,τM′

Pour simplifier les notations, on pose dans cette section : M′ = G(ν+) ,
ρ = ρm′,h , σ = τM ′ , et λr = λ+,m′ . On a donc λr = (µ− 2iρ) + ν ∈ m′∗

ss reg . On va
voir qu’en gros, le caractère trTM ′

λ̃,σ
se déduit d’un caractère de la forme trTM ′

λr,σr

par translation au sens de Zuckerman.
La proposition suivante va s’obtenir en prouvant une variante des résultats

de Bouaziz dans [Bou 84, (i) et (ii) p. 550] (cf. aussi [KV 95, p. 547 et p. 548]). Elle
a pour origine le lemme 3.1 p. 406 de [KZ 82], qui fournit l’égalité des restrictions
à M ′

0 des caractères considérés au (b) ci-dessous.

Proposition 13.1. On fixe â ∈M ′(λ̃)m
′/h au-dessus d’un élément elliptique a

de M ′(λ̃). On note M ′ le produit semi-direct de Z par M ′
0 tel que a := 1 ∈ Z

agisse sur M ′
0 par int a.

(a) Il existe une représentation linéaire continue πF de M ′ dans un espace
de Hilbert complexe de dimension finie F , unique à isomorphisme près, dont la
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restriction à M ′
0 est irréductible avec pour plus bas poids −2ρ pour l’action de hC

et relativement à l’ordre déduit de R+(m′
C, hC), telle que a agisse trivialement sur

l’espace propre de poids −2ρ.

(b) On prolonge les représentations unitaires T
M ′

0

λ̃
et TM ′

0
λr

de M ′
0 « d’es-

paces » notés H et V , en des représentations linéaires continues πλ̃ et πλr de M ′

par les conditions πλ̃(a) = Sλ̃(â) et πλr(a) = Sλr(â), où Sλ̃ et Sλr sont les
représentations de M ′(λ̃)m

′/h (qui est égal à M ′(λr)
m′/h ) attachées à λ̃ et λr dans

la proposition 8.1 (b).
Les représentations de M ′ dans H et (V ⊗C F )

χUm′
C

iλ sont traçables et ont
même caractère.

Démonstration de la proposition. (a) Il existe — et on se donne — une
représentation linéaire irréductible de m′

C dans un espace de Hilbert complexe
F de dimension finie, de plus bas poids −2ρ pour l’action de hC relativement à
l’ordre déduit de R+(m′

C, hC) . Elle s’intègre en une représentation « du » revête-
ment universel de M ′

0 avec un caractère central trivial, puis en une représentation
de M ′

0 notée πF,0 . Comme a normalise h et fixe −2ρ , il existe un unique opéra-
teur d’entrelacement Φ de (F, int a · πF,0) sur (F, πF,0) qui agit trivialement sur
le sous-espace propre de F de poids −2ρ sous l’action de hC , commun aux deux
représentations et de dimension 1 . On construit πF en prolongeant πF,0 et choi-
sissant πF (a) égal à Φ .

(b) On remarque d’abord que M ′ stabilise H0 := (V ⊗C F )
χUm′

C
iλ . D’après

le lemme 12.1 et la proposition 12.3 (c), les représentations de M ′ dans H et H0

sont traçables.
On fixe un sous-groupe compact maximal KM ′

0
de M ′

0 stable par int a et
dont l’involution de Cartan normalise h . Par exemple exp(cM ′ ∩ m′) , où cM ′ est
l’algèbre de Lie d’un sous-groupe compact maximal du produit semi-direct de {1, c}
(c : conjugaison de M′(C)) par M′(C) qui contient à la fois c et le sous-groupe
engendré par le produit de la projection dans M′(R) de a avec expM′(C)(i h(R)) . On
note Hf, Hf

0 et V f les (m′
C, KM ′

0
)-modules stables par a associés à H , H0 et V .

D’après [Kna 86, prop. 10.5 p. 336] avec sa démonstration (cf. [Kna 86, cor. 8.8
p. 211]), les représentations de M ′ dans H et H0 ont même caractère s’il existe un
isomorphisme de (m′

C, KM ′
0
)-modules de Hf sur Hf

0 compatible à l’action de a .
On a vu au cours de la démonstration de 8.1 (a) que Hf et V f sont

irréductibles, isomorphes à Rq′

M ′
0
(C iλ−ρ) et Rq′

M ′
0
(C iλr−ρ) où Rq′

M ′
0

est le foncteur
d’induction cohomologique relatif à bM ′ et CΛ est pour chaque Λ ∈ i h∗ le
(hC, T0)-module Csur lequel h agit par Λ . D’après [KV 95, th. 7.237 p. 544] et en
utilisant la notation ψl′

l de [KV 95, (7.141) p. 493], on a
Rq′

M ′
0
(ψ iλ−ρ

iλr−ρ(C iλr−ρ)) ≃ ψ iλ
iλr

(Rq′

M ′
0
(C iλr−ρ)) .

Ainsi, les (m′
C, KM ′

0
)-modules Hf et Hf

0 sont isomorphes.
Compte tenu de la caractérisation de Sλ̃(â) dans 8.1 (b), du lemme de Schur

de [Wal 88, lem. 3.3.2 p. 80] et de l’identification Hq′(nM ′ ,H∞)∗ = Hq′(nM ′ ,Hf )∗

de [Duf 82a, lem. 4 p. 165], pour obtenir la compatibilité à l’action de a d’un
isomorphisme de (m′

C, KM ′
0
)-modules fixé de Hf sur Hf

0 , il suffit de montrer que
a agit à partir de πλr(a) ⊗ πF (a) dans (Hq′(nM ′ ,Hf

0)
∗)−(iλ+ρ) par ρm

′/h

λ̃
(â)−1 id ,

c’est-à-dire par ρm
′/h

λr
(â)−1 id .
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L’idée de Bouaziz consiste en gros à vérifier la compatibilité à l’action de a
de l’isomorphisme qu’on obtiendrait au niveau de l’homologie en prenant q égal au
conjugué de bM ′ et X égal à V f dans [KV 95, th. 7.242 p. 546]. Malheureusement,
l’hypothèse « iλr est au moins autant singulier que iλ » n’est pas satisfaite. Au
lieu de passer de V f à Hf

0 , on va passer de Hf
0 à V f en utilisant une propriété de

la composée de deux foncteurs de translation de Zuckerman.

D’après [KV 95, th. 7.220 p. 536], le morphisme de (m′
C, KM ′

0
)-modules com-

patible à l’action de a de (Hf
0 ⊗CF

∗)χ
Um′

C
iλr dans V f obtenu par restriction à partir

de l’application canonique de V f⊗C F ⊗C F
∗ dans V f, est non nul donc surjec-

tif. Les composantes Z(UhC)-primaires associées à χUhC
iλr+ρ dans la suite exacte de

hC -modules d’homologie issue de cette surjection fournissent un morphisme de hC -
modules de Hq′(nM ′ , (Hf

0 ⊗C F
∗)χ

Um′
C

iλr )χ
UhC
iλr+ρ dans Hq′(nM ′ , V f )χ

UhC
iλr+ρ compatible

à l’action de a , qui est surjectif d’après [KV 95, lem. 8.9 p. 553].
Soit v∗0 un vecteur non nul de F ∗ de poids 2ρ pour l’action de hC . On

a nM ′ · v∗0 = {0} et a · v∗0 = v∗0 d’après (a). Il reste à prouver que chacun des
deux morphismes de hC -modules compatibles à l’action de a déduits des injections
canoniques de (Hf

0⊗CF
∗)χ

Um′
C

iλr et Hf
0⊗CCv∗0 dans Hf

0⊗CF
∗, définis respectivement

sur Hq′(nM ′ , (Hf
0 ⊗C F

∗)χ
Um′

C
iλr )χ

UhC
iλr+ρ et Hq′(nM ′ ,Hf

0)
χUhC
iλ+ρ ⊗C Cv∗0 , et tous deux à

valeurs dans Hq′(nM ′ ,Hf
0 ⊗C F

∗)χ
UhC
iλr+ρ , est bijectif.

En effet, dans ce cas et avec la notation CΛ introduite plus haut dans cette
démonstration, la droite formée des morphismes de hC -modules de Hq′(nM ′ , V f )
dans Ciλr+ρ s’injectera de manière compatible à l’action de a dans celle formée
des morphismes de hC -modules de Hq′(nM ′ ,Hf

0) dans Ciλ+ρ .

Le premier des deux morphismes précédents est bijectif d’après [KV 95,
(7.243) p. 547, cf. prop. 7.166 p. 506]. Pour le second, on pose W = F ∗/Cv∗0 .

La suite exacte de bM ′ -modules 0→Hf
0 ⊗CCv∗0→Hf

0 ⊗CF
∗→Hf

0 ⊗CW→0
fournit le morceau suivant de la suite exacte de hC -modules d’homologie :
Hq′+1(nM ′ ,Hf

0 ⊗C W ) → Hq′(nM ′ ,Hf
0)⊗C Cv∗0
→ Hq′(nM ′ ,Hf

0 ⊗C F
∗) → Hq′(nM ′ ,Hf

0 ⊗C W ) .
On termine la démonstration en montrant que H•(nM ′ ,Hf

0 ⊗C W )χ
UhC
iλr+ρ = {0} .

Par le théorème de Lie, il existe — et on fixe — une suite {0} = W (−1) ⊆
W (0) ⊆ · · · ⊆ W (N) = W de sous-bM ′ -modules de W avec dimW (j)/W (j−1) = 1
pour 0 ≤ j ≤ N . D’après [KV 95, prop. 3.12 p. 188], pour tout (bM ′ , T0)-module
E et tout n ∈ N , le hC -module Hn(nM ′ , E) est isomorphe à Pn(E) , où Pn est
le nième foncteur dérivé du foncteur exact à droite de la catégorie des (bM ′ , T0)-
modules dans celle des (hC, T0)-modules noté P hC,T0

bM′ ,T0
dans [KV 95, (2.8) p. 104].

D’après [KV 95, prop. D.57 (b) p. 887, cf. (2.123) p. 162], il existe — et on fixe
— une filtration {0} = C(−1)

• ⊆ C(0)
• ⊆ · · · ⊆ C(N)

• = C• d’un complexe de
chaines C• en (hC, T0)-modules nul en degré strictement négatif, dont chaque hC -
modules d’homologie Hn(C•) est isomorphe à Hn(nM ′ ,Hf

0 ⊗C W ) pour n ∈ N ,
et dont la suite spectrale (Er)r≥0 fournit des hC -modules E1

p,q isomorphes à
Hp+q(nM ′ ,Hf

0)⊗C (W (p)/W (p−1)) pour 0 ≤ p ≤ N et p+ q ≥ 0 . D’après [KV 95,
prop. 7.56 p. 460], les composantes Z(UhC)-primaires de chacun de ces hC -modules
E1

p,q sont associées à des caractères de la forme χUhC
w iλ+ρ+ γ

avec w ∈ W (m′
C, hC) ,

où on a noté γ le poids de hC dans W (p)/W (p−1) . Ainsi, au vu de [KV 95, prop.
7.166 p. 506], on a (E1

p,q)
χUhC
iλr+ρ = {0} . Par ailleurs, pour n ∈ N et q ∈ Z ,
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le hC -module E∞
n−q,q est un sous-quotient de E1

n−q,q isomorphe au quotient de
prHn(C•)(Hn(C

(n−q)
• )) par prHn(C•)(Hn(C

(n−q−1)
• )) , où on a utilisé la même notation

prHn(C•) pour les applications canoniques à valeurs dans Hn(C•) . D’où pour chaque
n ∈ N les relations suivantes entre hC -modules :
Hn(nM ′ ,Hf

0 ⊗C W )χ
UhC
iλr+ρ ≃ prHn(C•)(Hn(C

(N)
• ))χ

UhC
iλr+ρ

= · · · = prHn(C•)(Hn(C
(−1)
• ))χ

UhC
iλr+ρ = {0} .

Cela achève la démonstration.

Remarque 13.2. On conserve les notations de la démonstration précédente.
En particulier, KM ′

0
est stable par int a . On fixe un opérateur d’entrelacement Φ

de (H, int a · TM ′
0

λ̃
) sur (H, TM ′

0

λ̃
) et un isomorphisme Ψ de (m′

C, KM ′
0
)-modules

de Hf sur Hf
0 . On note Φf la restriction de Φ à Hf et π0(a)f l’opérateur par

lequel a agit sur Hf
0 . D’après le lemme de Schur, il existe z ∈ C \{0} tel que

Φf = z Ψ−1◦ π0(a)f ◦ Ψ . La démonstration de la proposition 13.1 (b) montre que
la représentation S de la proposition 8.1 (b) vérifie S(â) = z−1Φ . Par ailleurs,
KM ′

0
est inclus dans un sous-groupe compact maximal de M ′ qui contient a , et

les sous-groupes compacts maximaux de M ′ sont conjugués sous M ′
0 (cf. [Hoc 65,

th. 3.1 p. 180 et lignes avant le th. 3.7 p. 186]). Il est facile d’en déduire que z
est indépendant du choix de KM ′

0
. On aurait donc pu définir S en se ramenant

au cas semi-simple régulier traité par M. Duflo (pour les valeurs sur les éléments
elliptiques) et en s’arrangeant pour que S(expX) = e−iλ(X) T

M ′
0

λ̃
(expX) quand

X ∈ h . Il resterait à prouver à partir de cette nouvelle définition que S est une
représentation (unitaire) de M ′(λ̃)m

′/h .

Fin de la démonstration du théorème. Il reste à prouver le théorème pour
la représentation TM ′

λ̃,σ
. La situation de référence est celle de [Zuc 77, lem. 5.4

p. 304], dans laquelle M ′ est remplacé par M0 et e est remplacé par un élément
semi-simple régulier de M0 .

On suppose que e ∈M ′ . On note VM ′
e , dM ′

e et DM ′
e les objets analogues à

Ve , de et De attachés à M ′ . On choisit â ∈M ′(λ̃)m
′/h au-dessus d’un a ∈M ′(λ̃)

elliptique tel que e ∈ aM ′
0 . On lui associe M ′ , πλ̃ et πλr comme dans la dernière

proposition. On va utiliser les notations de la proposition 12.3 (a) relatives au
groupe M ′ . On introduit l’élément σr de X irr

M ′(λr) tel que :
σr(û) = det(AduC)nM′ σ(û) pour û ∈M ′(λ̃)m

′/h .
Il vérifie: trTM ′

λ̃,σ eM ′
0

= trσ(â) × (tr πλ̃)aM ′
0

et trTM ′

λr,σr eM ′
0

= trσr(â) × (tr πλr)aM ′
0
.

Pour terminer la démonstration, on remarque que compte tenu de la proposition
13.1, la proposition 12.3 va ensuite permettre de relier

(
trTM ′

λ̃,σ

)
e

à
(
trTM ′

λr,σr

)
e
.

On vérifie la formule du caractère pour trTM ′

λ̃,σ
(sous la forme proposée dans

le début de la démonstration du théorème) sur l’ouvert inclus dans m′(e)ss reg de
complémentaire négligeable et sur lequel les deux membres de l’égalité sont des
fonctions analytiques, formé des X ∈ VM ′

e tels que e expX ∈M ′
ss reg .

Soit X ∈ VM ′
e tel que x := e expX ∈ M ′

ss reg . On pose jx := m′(x) . Donc
jx = m′(e)(X) ∈ Carm′(e) (vu les dimensions) et j := Cm′(jx) ∈ Carm′ . On note
Γ la composante connexe de X dans j(x) ∩ m′(e)ss reg . Pour poursuivre le calcul,
on considère un Y ∈ j(x)1 (cf. 12.3 (b) pour G =M ′ ) tel que X+Y ∈ Γ ∩ VM ′

e .
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D’après [Bou 87, th. 5.5.3 p. 52] et grâce à 4.3 (b), la formule du caractère
est acquise pour trTM ′

λr,σr
. Par conséquent, on a :

tr σr(â) × |DM ′(x expY )|1/2 (tr πλr)aM ′
0
(x expY )

= | det (1− Ad e)
m′/m′(e)

|1/2 |Dm′(e)(X+Y )|1/2
(
trTM ′

λr,σr

)
e
(X+Y )

(⋆)

= i−dM
′

e (DM ′
e )−

1
2 | det (1− Ad e)

m′/m′(e)
|1/2

∑
.
λ′
r ∈M ′(e)0\M ′

0·λr∩m′(e)∗

O(ê′)(1−Ad e′)(m′/h)
O(Bλr )(1−Ad e′)(m′/h)

tr σr(ê′) |Dm′(e)(X+Y )|1/2 β̂M ′(e)0·λ′
r
(X+Y )

où g ∈M ′
0 vérifie λ′r = gλr et ê′ ∈M ′(λ̃)m

′/h est au-dessus de e′ = g−1eg .

On se donne g ∈M ′
0 comme ci-dessus. On note pr l’application canonique

de M ′ dans M′(C) . On associe à g un élément yg de M′(C)(pr(e))0 vérifiant
j(x)C = yg · (gh)(e)C . On fixe un système de racines positives R+(m′(e)C, j(x)C) de
R(m′(e)C, j(x)C) . D’après la proposition 2.6 (b), il existe des nombres complexes
cgw indépendants de Y et indexés par les w ∈W (m′(e)C, j(x)C) tels qu’on ait∏
α∈R+(m′(e)C,j(x)C)

α(X+Y ) × β̂M ′(e)0·gλr(X+Y )
(⋆⋆)

=
∑

w∈W (m′(e)C,j(x)C)

cgw eiwyggλr(X+Y )

et
∏

α∈R+(m′(e)C,j(x)C)

α(X) × β̂M ′(e)0·(gλ̃)[e](X) =
∑

w∈W (m′(e)C,j(x)C)

cgw eiwyggλ (X)

quand (gλ̃)[e] ∈ m̃′(e)∗reg , et
∑

w∈W (m′(e)C,j(x)C)

cgw eiwyggλ (X) = 0 si (gλ̃)[e] /∈ m̃′(e)∗reg .

En outre, la fonction |Dm′(e)|1/2 ×
( ∏
α∈R+(m′(e)C,j(x)C)

α
)−1 sur Γ est à valeurs

dans l’ensemble des racines quatrièmes de l’unité, donc constante. On déduit des
égalités (⋆) et (⋆ ⋆) une formule pour trσr(â) × (tr πλr)aM ′

0
(x expY ) qui fait

intervenir cette constante.
D’après la proposition 8.4 (a), la représentation πλr de M ′ admet pour ca-

ractère infinitésimal χUm′
C

iλr
. On applique la proposition 12.3 (c) à M ′ avec π = πλr ,

Λ = iλr et ΛF = −2ρ (πF ci-dessous). On dispose d’une représentation (πλr)Zuc

de M ′ et, vu ce qui précède, d’une formule pour trσr(â) × (tr(πλr)Zuc)aM ′
0
(x expY ) .

Par la proposition 13.1 (b), on a aussi tr(πλr)Zuc = trπλ̃ par choix de πF .
On choisit maintenant Y = 0 , et récapitule. On constate que

(
trTM ′

λ̃,σ

)
e
(X)

se déduit de l’expression de
(
trTM ′

λr,σr

)
e
(X) obtenue ci-dessus, en remplaçant le

coefficient cgw eiwygg λr(X) par (det(Ad aC)nM′ )
−1 × x lF

cgw eiwygg λr(X) pour chaque
w ∈W (m′(e)C, j(x)C) , où lF := −2wygg ρ .

Soit w ∈W (m′(e)C, j(x)C) . On va calculer le terme x lF
qui lui est associé.

On se donne un représentant w̃ de w dans M′(C)(pr(e))0 . On note M ′
C le produit

semi-direct de Z par M′(C)0 tel que 1 ∈ Z agisse sur M′(C)0 par int pr(a) , et
pr l’application canonique de M ′ dans M ′

C . Il existe une unique représentation
holomorphe πF,C de M ′

C dans F telle que πF = πF,C ◦pr . On fixe un vecteur non
nul v0 de F de poids −2ρ pour l’action de hC dans F . On s’intéresse au vecteur
non nul w̃ygg ·v0 de F qui a pour poids lF sous l’action de j(x)C . On pose encore
e′ = g−1eg . En se plaçant dans le produit semi-direct de Z par M′(C) au moyen
de int pr(a) et utilisant la définition de x (cf. 12.3 (c)), on obtient :
pr(x) w̃yg pr(g) = pr(x) w̃yg pr(g) pr(a)−1 pr(a)

= pr(expX) w̃yg pr(g) pr(e′a−1) pr(a)
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puis x · (w̃ygg · v0) = expX · (w̃ygg · ((e′a−1) · v0)) .
La propriété e′a−1∈M ′

0(λ̃) = exp h permet d’en déduire que :
x lF

= det(Ad aC)nM′ (det(Ad e
′C)nM′ )

−1 e−2wygg ρ(X) .
Cela permet de conclure.
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Ĝ , 138
g(f) , 142
G(f) , 142
G(f)g/g(f) , 156
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q , 161
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R+
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sg , 152
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, 163, 165
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λ̃,τ
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TM ′

λr,σr
, 165

T
M ′
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T
M ′

0

λ̃
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U , 163

Ve , 172
V χ , 178
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Xfinal,+
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XInd
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G (λ̃) , 160
X irr
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X irr
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X irr,+
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βΩ̃ , 147

δ , 153
δ
g/h
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Θe , 172
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ρF+ , 144
ρg,h , 141
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ρ
g/h
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ρ
g/g(λ)(iρF+ )

λ̃
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ρ
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