Sait $x \in M(n, \mathbb{C})$. Onnate ad $x: M(n, \mathbb{C}) \rightarrow M(n, \mathbb{C})$

$$
Y \quad \longmapsto[X, Y]=X Y-Y X
$$

Matren que $(d e x p)(X) \cdot Y=\exp \times \cdot \sum_{k=0}^{+\infty}(-1)^{k} \frac{(a d x)^{k}}{(k+1)!}(y)$ four $y \in m(n, c)$.
Donner une condition néceusaire et suffisante portant sur "la" famiffe ($\lambda_{1}, \ldots, \lambda_{n}$) des valeurs prapres de X, paur que l'apflication exyonentielle se restreigre en un differmarfhiome d'un vaisinage auwent de x dam $M(n, \mathbb{C})$ sur un vaininage ouvent de exq x dans $G L(n, \mathbb{C})$.
denmonstration:
On montre, pour taut $y \in M(n, \mathbb{C})$:
(i) $(\operatorname{dexp})(x) \cdot y=\sum_{j=0}^{+\infty} \frac{1}{(j+1)!} \sum_{q=0}^{j} x^{j-9} y x^{q}$
(ic) $\quad(\exp -x) \cdot[(d \operatorname{exq})(x) \cdot y]=\sum_{k=0}^{+\infty} \frac{1}{(k+1)!}\left(\sum_{q=0}^{k}(-1)^{k-q} C_{k-q}^{k} x^{k-9}\right.$ y $\left.x^{9}\right)$
(iiic) $(-1)^{k}(\operatorname{ad} x)^{k}(y)=\sum_{q=0}^{k}(-1)^{k-q} C_{k}^{k-q} x^{k-q} y x^{q}$ pour $k \geqslant 0$.
(i) La serrie de draite est absolvment convengente car:

$$
\sum_{j=0}^{+\infty} \frac{1}{(j+1)!}\left\|\sum_{q=0}^{j} x^{j-9} y x^{i}\right\| \leqslant \sum_{j=0}^{+\infty} \frac{1}{(j+1)!} \sum_{q=0}^{j}\|x\|^{f-9}\|y\|\|x\|^{9}=e^{\|x\|}\|y\|
$$

Donc: $\exp (x+y)-\operatorname{exy} x=\sum_{j=0}^{+\infty} \frac{1}{j!}(\underbrace{(x+y) \ldots(x+y)}_{j \sin }-x^{j})$
(ii) La série poduit de $\left(\sum \frac{(-X)^{i}}{i!}\right)_{i \geqslant 0}$ et de $\left(\sum \frac{1}{(g+1)!} \sum_{q=0}^{j} X^{j-9} \text { y } X^{9}\right)_{j \geqslant 0}$ est absolument comvengente. San $k^{\text {ienve ternme est: }}$

$$
\sum_{i=0}^{k} \frac{(-x)^{i}}{i!} \cdot \frac{1}{(k-i+1)!} \sum_{q=0}^{k-i} x^{k-i-q} y x^{q}=\frac{1}{(k+1)!} \sum_{q=0}^{k}\left(\sum_{i=0}^{k-q}(-1)^{i} C_{k+i}^{i}\right) x^{k-9} \text { y } x^{q}
$$

avec $C_{k+1}^{0}-C_{k+1}^{1}+\cdots+(-1)^{k-9} C_{k+1}^{k-9} \bar{p}_{\substack{1 \\ \text { convention } C_{k}^{-1}=0}}\left(C_{k}^{-1}+C_{k}^{0}\right)-\left(C_{k}^{0}+C_{k}^{1}\right)+\ldots+(-1)^{k-9}\left(C_{k}^{k-9-1}+C_{k}^{k-9}\right)$

$$
=(-1)^{k-9} c_{k}^{k-9}
$$

(icii) Recurrence sur k. C'est mai paur $k=0$
On finu $k \geqslant 0$ pour lequel l'égalitè est réalisèe.

Ona:
$(-1)^{k+1}(a d x)^{k+1}(y)=-(-1)^{k}(a d x)^{k}(x y-y x)=-\sum_{i=0}^{k}(-1)^{k-9} C_{k}^{k-9}\left(x^{k-4+1} y x^{q}-x^{k-9} y x^{9+1}\right)$

Ainsi, (denq)(x) est bijectute siet seulement si ad $X n^{\prime}$ a pas de w.p.dans $i 2_{\pi}(\pi / 10 a)$
La base conanique $B_{0}=\left(E_{11}, E_{12}, \ldots, E_{1 n n}\right)$ de $m(m, \mathbb{C})$ verifie, en fosent $X=\left[\begin{array}{lll}a_{1} & \ldots & a_{1 m} \\ a_{m 1} & \ldots & a_{m}\end{array}\right]$:
$\operatorname{mat}_{B_{0}}\left(X_{\cdot}\right)=\left[\begin{array}{llll}a_{11} I_{m n} & \cdots & a_{1 m} & I_{m} \\ a_{n n} & I_{m} & \cdots & a_{m n} \\ I_{n}\end{array}\right]$ et $\operatorname{Mat}_{B_{c}}(\cdot x)=\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]$.
On afflique cela à $p^{-1} \times P$ faur un $P \in G(\mid n, \mathbb{C})$ tel que $p^{-1} \times P=\left[\begin{array}{l}d_{2}! \\ 0 \cdots \\ 0\end{array}\right]$:

On en déduit que exf est un difféomayhionne bad en x siet reulement si $\left.\lambda_{i}-\lambda_{j} \notin i 2 \pi(z \mid i 0\}\right)$ foun tous $i, j \in\{1, \ldots, n\}$.

