On countable dense and strong n-homogeneity

Jan van Mill

VU University Amsterdam

1 Introduction

2 Ungar’s Theorems

3 Detour: Actions of groups

4 The counterexample
On countable dense and strong n-homogeneity

Introduction

Definition

A space X is called *homogeneous* if for all $x, y \in X$ there is a homeomorphism f of X such that $f(x) = y$.

This notion is of interest only if X is separable. Most of the spaces we are interested in are both separable and metrizable. The first result in this area is due to Cantor, who showed that the reals are CDH. Fréchet and Brouwer, independently, proved that the same is true for the n-dimensional Euclidean space \mathbb{R}^n.
Introduction

Definition
A space X is called *homogeneous* if for all $x, y \in X$ there is a homeomorphism f of X such that $f(x) = y$.

Definition
A space X is *countable dense homogeneous* (abbreviated: CDH) if given any two countable dense subsets D and E of X there is a homeomorphism $f : X \rightarrow X$ such that $f(D) = E$.
Introduction

Definition

A space X is called *homogeneous* if for all $x, y \in X$ there is a homeomorphism f of X such that $f(x) = y$.

Definition

A space X is *countable dense homogeneous* (abbreviated: CDH) if given any two countable dense subsets D and E of X there is a homeomorphism $f : X \to X$ such that $f(D) = E$.

- This notion is of interest only if X is separable. Most of the spaces we are interested in are both *separable* and *metrizable*.
Introduction

Definition

A space X is called $\textit{homogeneous}$ if for all $x, y \in X$ there is a homeomorphism f of X such that $f(x) = y$.

Definition

A space X is $\textit{countable dense homogeneous}$ (abbreviated: CDH) if given any two countable dense subsets D and E of X there is a homeomorphism $f : X \rightarrow X$ such that $f(D) = E$.

- This notion is of interest only if X is separable. Most of the spaces we are interested in are both $\textit{separable}$ and $\textit{metrizable}$.
- The first result in this area is due to Cantor, who showed that the reals are CDH. Fréchet and Brouwer, independently, proved that the same is true for the n-dimensional Euclidean space \mathbb{R}^n.
In 1962, Fort proved that the Hilbert cube is also CDH.
In 1962, Fort proved that the Hilbert cube is also CDH.
There are many other CDH-spaces, as the following results show.
Definition

A space X is called *strongly locally homogeneous* (abbreviated SLH) if it has a base \mathcal{B} such that for all $B \in \mathcal{B}$ and $x, y \in B$ there is a homeomorphism $f : X \to X$ that is supported on B (that is, f is the identity outside B) and moves x to y.

Bessaga and Pełczyński published a paper in 1969 in which they prove that a Polish SLH space is CDH. This paper was submitted for publication in February, 1969. De Groot published the same result in a paper dated October, 1969. Bennett proved in 1972 that every locally compact SLH-space is CDH.
Definition

A space X is called strongly locally homogeneous (abbreviated SLH) if it has a base \mathcal{B} such that for all $B \in \mathcal{B}$ and $x, y \in B$ there is a homeomorphism $f : X \to X$ that is supported on B (that is, f is the identity outside B) and moves x to y.

Definition

A complete, separable metrizable space is called Polish.
Definition

A space X is called *strongly locally homogeneous* (abbreviated SLH) if it has a base \mathcal{B} such that for all $B \in \mathcal{B}$ and $x, y \in B$ there is a homeomorphism $f : X \to X$ that is supported on B (that is, f is the identity outside B) and moves x to y.

Definition

A complete, separable metrizable space is called *Polish*.

- Bessaga and Pełczyński published a paper in 1969 in which they prove that a Polish SLH space is CDH. This paper was submitted for publication in February, 1969.
Definition

A space X is called strongly locally homogeneous (abbreviated SLH) if it has a base \mathcal{B} such that for all $B \in \mathcal{B}$ and $x, y \in B$ there is a homeomorphism $f : X \to X$ that is supported on B (that is, f is the identity outside B) and moves x to y.

Definition

A complete, separable metrizable space is called Polish.

- Bessaga and Pełczyński published a paper in 1969 in which they prove that a Polish SLH space is CDH. This paper was submitted for publication in February, 1969.
- De Groot published the same result in a paper dated October, 1969.
Definition
A space X is called *strongly locally homogeneous* (abbreviated SLH) if it has a base \mathcal{B} such that for all $B \in \mathcal{B}$ and $x, y \in B$ there is a homeomorphism $f : X \to X$ that is supported on B (that is, f is the identity outside B) and moves x to y.

Definition
A complete, separable metrizable space is called *Polish*.

- Bessaga and Pełczyński published a paper in 1969 in which they prove that a Polish SLH space is CDH. This paper was submitted for publication in February, 1969.
- De Groot published the same result in a paper dated October, 1969.
- Bennett proved in 1972 that every locally compact SLH-space is CDH.
So all of the CDH-spaces that we get from this result are *Polish*.
So all of the CDH-spaces that we get from this result are *Polish*.

This is not by accident. It was shown by Hrušák and Zamora Avilés in 2005 that *Borel* spaces that are CDH are Polish. Under $\text{MA}+\neg\text{CH}+\omega_1 = \omega_1^L$ there is an *analytic* CDH-space that is not complete.
So all of the CDH-spaces that we get from this result are *Polish*.

This is not by accident. It was shown by Hrušák and Zamora Avilés in 2005 that *Borel* spaces that are CDH are Polish. Under $\text{MA} + \neg \text{CH} + \omega_1 = \omega_1^L$ there is an *analytic* CDH-space that is not complete.

Farah, Hrušák and Martínez Ranero proved in 2005 that there is a subspace of \mathbb{R} of size \aleph_1 that is CDH.
• So all of the CDH-spaces that we get from this result are *Polish*.

• This is not by accident. It was shown by Hrušák and Zamora Avilés in 2005 that *Borel* spaces that are CDH are Polish. Under $\text{MA}+\neg\text{CH}+\omega_1 = \omega_1^L$ there is an *analytic* CDH-space that is not complete.

• Farah, Hrušák and Martínez Ranero proved in 2005 that there is a subspace of \mathbb{R} of size \aleph_1 that is CDH.

• The topological sum of the 1-sphere \mathbb{S}^1 and \mathbb{S}^2 is an example of a CDH-space that is not homogeneous.
On countable dense and strong \(n \)-homogeneity

Introduction

- So all of the CDH-spaces that we get from this result are *Polish*.
- This is not by accident. It was shown by Hrušák and Zamora Avilés in 2005 that *Borel* spaces that are CDH are Polish. Under \(\text{MA} + \neg \text{CH} + \omega_1 = \omega_1^L \) there is an *analytic* CDH-space that is not complete.
- Farah, Hrušák and Martínez Ranero proved in 2005 that there is a subspace of \(\mathbb{R} \) of size \(\aleph_1 \) that is CDH.
- The topological sum of the 1-sphere \(S^1 \) and \(S^2 \) is an example of a CDH-space that is not homogeneous.
- Bennett proved in 1972 that a *connected* CDH-space is homogeneous. (The converse is not true.)
So all of the CDH-spaces that we get from this result are *Polish*.

This is not by accident. It was shown by Hrušák and Zamora Avilés in 2005 that *Borel* spaces that are CDH are Polish. Under $\text{MA}+\neg \text{CH}+\omega_1 = \omega_1^L$ there is an *analytic* CDH-space that is not complete.

Farah, Hrušák and Martínez Ranero proved in 2005 that there is a subspace of \mathbb{R} of size \aleph_1 that is CDH.

The topological sum of the 1-sphere \mathbb{S}^1 and \mathbb{S}^2 is an example of a CDH-space that is not homogeneous.

Bennett proved in 1972 that a *connected* CDH-space is homogeneous. (The converse is not true.)

Hence for *connected* spaces, countable dense homogeneity can be thought of as a strong form of homogeneity.
Ungar’s Theorems

Ungar published two fundamental papers on homogeneity in 1975 and 1978:

- **Definition 1**: A space X is n-homogeneous provided that for all subsets F and G of X of size n there is a homeomorphism f of X such that $f(F) = G$.

- **Definition 2**: A space X is strongly n-homogeneous provided that for all n-tuples (x_1,\ldots,x_n) and (y_1,\ldots,y_n) of distinct points of X there is a homeomorphism f of X such that $f(x_i) = y_i$ for all $i \leq n$.
Ungar’s Theorems

- Ungar published two fundamental papers on homogeneity in 1975 and 1978:
Ungar’s Theorems

- Ungar published two fundamental papers on homogeneity in 1975 and 1978:

Definition

1. A space X is n-homogeneous provided that for all subsets F and G of X of size n there is a homeomorphism f of X such that $f(F) = G$.
Ungar’s Theorems

- Ungar published two fundamental papers on homogeneity in 1975 and 1978:

Definition

1. A space \(X \) is \(n \)-homogeneous provided that for all subsets \(F \) and \(G \) of \(X \) of size \(n \) there is a homeomorphism \(f \) of \(X \) such that \(f(F) = G \).

2. A space \(X \) is strongly \(n \)-homogeneous provided that for all \(n \)-tuples \((x_1, \ldots, x_n)\) and \((y_1, \ldots, y_n)\) of distinct points of \(X \) there is a homeomorphism \(f \) of \(X \) such that \(f(x_i) = y_i \) for all \(i \leq n \).
Ungar proved:

Theorem

Let X be a locally compact separable metrizable space such that no finite set separates X. Then the following statements are equivalent:

(a) X is CDH.

(b) X is n-homogeneous for every n.

(c) X is strongly n-homogeneous for every n.
Ungar proved:

Theorem

Let X be a locally compact separable metrizable space such that no finite set separates X. Then the following statements are equivalent:

(a) X is CDH.

(b) X is n-homogeneous for every n.

(c) X is strongly n-homogeneous for every n.

Observe that $(c) \implies (b)$ is trivial, and that $(c) \implies (a)$ seems trivial since the obvious approach is to use the standard back-and-forth method. The problem that one faces however is how to ensure that an inductively constructed sequence of homeomorphisms converges to a homeomorphism. At first glance it seems that $(a) \implies (c)$ is the most surprising implication.
Ungar used the Effros Theorem to ensure convergence of homeomorphisms (Polish topological groups). In fact, the Effros Theorem was used in his proof of every implication in his theorem, except for the trivial implication $(c) \Rightarrow (b)$.
Ungar used the Effros Theorem to ensure convergence of homeomorphisms (Polish topological groups). In fact, the Effros Theorem was used in his proof of every implication in his theorem, except for the trivial implication \((c) \Rightarrow (b)\).

The main aim of this talk is to investigate whether Ungar’s elegant theorem is optimal.
Ungar used the Effros Theorem to ensure convergence of homeomorphisms (Polish topological groups). In fact, the Effros Theorem was used in his proof of every implication in his theorem, except for the trivial implication \((c) \Rightarrow (b)\).

The main aim of this talk is to investigate whether Ungar’s elegant theorem is optimal.

The question whether one can prove a similar result with the assumption of local compactness relaxed to that of completeness is a natural one in this context.
Ungar used the Effros Theorem to ensure convergence of homeomorphisms (Polish topological groups). In fact, the Effros Theorem was used in his proof of every implication in his theorem, except for the trivial implication \((c) \Rightarrow (b)\).

The main aim of this talk is to investigate whether Ungar’s elegant theorem is optimal.

The question whether one can prove a similar result with the assumption of local compactness relaxed to that of completeness is a natural one in this context.

It turns out that the implication \((a) \Rightarrow (c)\) in Ungar’s Theorem holds for all spaces, in essence even without connectivity assumptions.
Definition

- If X is a space, then $\mathcal{H}(X)$ denotes the group of homeomorphisms of X.
Definition

- If X is a space, then $\mathcal{H}(X)$ denotes the group of homeomorphisms of X.
- If $G \subseteq \mathcal{H}(X)$, then we say that G makes X CDH if for all countable dense subsets $D, E \subseteq X$ there is an element $g \in G$ such that $g(D) = E$.

Theorem

If the group G makes the space X CDH and no set of size $n-1$ separates X, then G makes X strongly n-homogeneous.
On countable dense and strong n-homogeneity

Ungar’s Theorems

Definition

- If X is a space, then $\mathcal{H}(X)$ denotes the group of homeomorphisms of X.
- If $G \subseteq \mathcal{H}(X)$, then we say that G makes X CDH if for all countable dense subsets $D, E \subseteq X$ there is an element $g \in G$ such that $g(D) = E$.
- Similarly for n-homogenous, strongly n-homogeneous, etc.
Definition

- If \(X \) is a space, then \(\mathcal{H}(X) \) denotes the group of homeomorphisms of \(X \).
- If \(G \subseteq \mathcal{H}(X) \), then we say that \(G \) makes \(X \) CDH if for all countable dense subsets \(D, E \subseteq X \) there is an element \(g \in G \) such that \(g(D) = E \).
- Similarly for \(n \)-homogenous, strongly \(n \)-homogeneous, etc.

Theorem

If the group \(G \) makes the space \(X \) CDH and no set of size \(n-1 \) separates \(X \), then \(G \) makes \(X \) strongly \(n \)-homogeneous.
Proposition

Let X be a space. Suppose that G is a subset of $\mathcal{H}(X)$ that makes X CDH. If $F \subseteq X$ is finite and $D, E \subseteq X \setminus F$ are countable and dense in X, then there are elements $\alpha, \beta \in G$ such that $\alpha|_F = \beta|_F$ and $(\alpha^{-1} \circ \beta)(D) \subseteq E.$
Proposition

Let X be a space. Suppose that G is a subset of $\mathcal{H}(X)$ that makes X CDH. If $F \subseteq X$ is finite and $D, E \subseteq X \setminus F$ are countable and dense in X, then there are elements $\alpha, \beta \in G$ such that $\alpha|F = \beta|F$ and $(\alpha^{-1} \circ \beta)(D) \subseteq E$.

Let h_0 be an arbitrary element in G. Suppose $\{h_\beta : \beta < \alpha\} \subseteq G$ have been constructed for some $\alpha < \omega_1$. Now by CDH, pick $h_\alpha \in G$ such that

$$(\dagger) \quad h_\alpha(F \cup E) = \bigcup_{\beta < \alpha} h_\beta(D).$$
For $1 \leq \alpha < \omega_1$, let T_{α} be a nonempty finite subset of $[1, \alpha)$ such that $h_{\alpha}(F) \subseteq \bigcup_{\beta \in T_{\alpha}} h_{\beta}(D)$. We claim that, for $T : [1, \omega_1) \to [\omega_1]^\omega$ defined by $T(\alpha) = T_{\alpha}$, the fiber $T^{-1}(A)$ is uncountable for some $A \in [\omega_1]^\omega$. If the latter were not true, there would exist a strictly increasing sequence $\{\alpha_n\}_n$ of countable ordinal numbers such that $T^{-1}(A) \subseteq \alpha_{n+1}$ for each $A \in T([1, \alpha_n])$. Then, letting $\alpha = \sup_n \alpha_n$ and $A = T(\alpha)$, one can find n such that $A \subseteq \alpha_n$; hence $A \in T([1, \alpha_n])$, which contradicts $\alpha \in T^{-1}(A) \subseteq \alpha_{n+1}$. (This is of course nothing but the standard argument in the proof of the Pressing Down Lemma.) So pick an $A \in [\omega_1]^\omega$ for which $E = T^{-1}(A)$ is uncountable. Then $h_{\alpha}(F) \subseteq \bigcup_{\beta \in A} h_{\beta}(D)$ for every $\alpha \in E$. Since $\bigcup_{\beta \in A} h_{\beta}(D)$ is countable, and E is uncountable, we may consequently assume without loss of generality that $h_{\alpha} | F = h_{\beta} | F$ for all $\alpha, \beta \in E$. Hence if $\alpha, \beta \in E$ are such that $\beta < \alpha$, then $h_{\alpha} | F = h_{\beta} | F$ and by (\dagger), $(h_{\alpha}^{-1} \circ h_{\beta})(D) \subseteq E$.
Corollary

Let X be a space without isolated points. Assume that the group G makes X CDH. Then for every finite subset $F \subseteq X$, every G_F-invariant subset of $X \setminus F$ is open.

Proof.

For $x \in X \setminus F$, let $Y = G_Fx$. To show that Y has nonempty interior, assume that it is not the case. Then we may pick a countable dense set D in X which is contained in $X \setminus (F \cup Y)$. By 9, there exists $h \in G_F$ such that $h(D \cup \{x\}) \subseteq D$, a contradiction because $h(x) \in G_Fx = Y$ and $h(x) \in D \subseteq X \setminus Y$. So Y is open, being an orbit.
Proof of Theorem 8.

Assume that G makes the space X CDH and no set of size $n-1$ separates X. All we need to show is that for every $F \in [X]^{n-1}$ the group G_F acts transitively on $X \setminus F$. By 10 every orbit G_Fx for $x \in X \setminus F$ is open. Since orbits are disjoint, they are clopen. So we are done by connectivity.
Let \(a : G \times X \to X \) be a continuous action of a topological group on a space \(X \). For every \(g \in G \), the function \(x \mapsto a(g,x) \) is a homeomorphism of \(X \).

We use \(gx \) as an abbreviation for \(a(g,x) \).

The action is called transitive if for all \(x,y \in X \) there exists \(g \in G \) such that \(gx = y \).

Hence a space \(X \) on which some topological group acts transitively is homogeneous.

Is there for every homogeneous space \(X \) a nice topological group acting transitively on it? Nice because \(H(x) \) with the discrete topology acts transitively if \(X \) is homogeneous.
Let \(a: G \times X \rightarrow X \) be a continuous action of a topological group on a space \(X \).
Detour: Actions of groups

- Let $a: G \times X \to X$ be a continuous action of a topological group on a space X.
- For every $g \in G$, the function $x \mapsto a(g, x)$ is a homeomorphism of X.

Hence a space X on which some topological group acts transitively is homogeneous. Is there for every homogeneous space X a nice topological group acting transitively on it? Nice because $H(X)$ with the discrete topology acts transitively if X is homogeneous.
Detour: Actions of groups

- Let $a: G \times X \to X$ be a continuous action of a topological group on a space X.
- For every $g \in G$, the function $x \mapsto a(g, x)$ is a homeomorphism of X.
- We use gx as an abbreviation for $a(g, x)$.
Let \(a : G \times X \to X \) be a continuous action of a topological group on a space \(X \).

For every \(g \in G \), the function \(x \mapsto a(g, x) \) is a homeomorphism of \(X \).

We use \(gx \) as an abbreviation for \(a(g, x) \).

The action is called transitive if for all \(x, y \in X \) there exists \(g \in G \) such that \(gx = y \).
Let \(a : G \times X \to X \) be a continuous action of a topological group on a space \(X \).

For every \(g \in G \), the function \(x \mapsto a(g, x) \) is a homeomorphism of \(X \).

We use \(gx \) as an abbreviation for \(a(g, x) \).

The action is called transitive if for all \(x, y \in X \) there exists \(g \in G \) such that \(gx = y \).

Hence a space \(X \) on which some topological group acts transitively is homogeneous.
Let $a : G \times X \to X$ be a continuous action of a topological group on a space X.

For every $g \in G$, the function $x \mapsto a(g, x)$ is a homeomorphism of X.

We use gx as an abbreviation for $a(g, x)$.

The action is called transitive if for all $x, y \in X$ there exists $g \in G$ such that $gx = y$.

Hence a space X on which some topological group acts transitively is homogeneous.

Is there for every homogeneous space X a nice topological group acting transitively on it?
Let \(a : G \times X \to X \) be a continuous action of a topological group on a space \(X \).

For every \(g \in G \), the function \(x \mapsto a(g, x) \) is a homeomorphism of \(X \).

We use \(gx \) as an abbreviation for \(a(g, x) \).

The action is called transitive if for all \(x, y \in X \) there exists \(g \in G \) such that \(gx = y \).

Hence a space \(X \) on which some topological group acts transitively is homogeneous.

Is there for every homogeneous space \(X \) a nice topological group acting transitively on it?

Nice because \(\mathcal{H}(X) \) with the discrete topology acts transitively if \(X \) is homogeneous.
Example (vM 2008)

There is a homogeneous Polish space X on which no \aleph_0-bounded topological group acts transitively.
Example (vM 2008)

There is a homogeneous Polish space X on which no \aleph_0-bounded topological group acts transitively.

- A (not necessarily metrizable) topological group G is called \aleph_0-bounded provided that for every neighborhood U of the identity e there is a countable subset F of G such that $G = FU$.
Example (vM 2008)

There is a homogeneous Polish space X on which no \aleph_0-bounded topological group acts transitively.

- A (not necessarily metrizable) topological group G is called \aleph_0-bounded provided that for every neighborhood U of the identity e there is a countable subset F of G such that $G = FU$.
- It was proved by Guran that a topological group G is \aleph_0-bounded if and only if it is topologically isomorphic to a subgroup of a product of separable metrizable groups.
Example (vM 2008)

There is a homogeneous Polish space X on which no \aleph_0-bounded topological group acts transitively.

- A (not necessarily metrizable) topological group G is called \aleph_0-bounded provided that for every neighborhood U of the identity e there is a countable subset F of G such that $G = FU$.
- It was proved by Guran that a topological group G is \aleph_0-bounded if and only if it is topologically isomorphic to a subgroup of a product of separable metrizable groups.
- X is a tricky subspace of the product of $\{0, 1\}^\infty \times (0, 1)$. The key fact of the example is that its components are wildly distributed. So the pathology of X is based upon connectivity.
Example (vM 2008)

There is a homogeneous Polish space X on which no \aleph_0-bounded topological group acts transitively.

- A (not necessarily metrizable) topological group G is called \aleph_0-bounded provided that for every neighborhood U of the identity e there is a countable subset F of G such that $G = FU$.
- It was proved by Guran that a topological group G is \aleph_0-bounded if and only if it is topologically isomorphic to a subgroup of a product of separable metrizable groups.
- X is a tricky subspace of the product of $\{0, 1\}^\infty \times (0, 1)$. The key fact of the example is that its components are wildly distributed. So the pathology of X is based upon connectivity.
- X is 1-homogeneous, but not 2-homogeneous.
Example (vM 2008)

There is a homogeneous Polish space X on which no \aleph_0-bounded topological group acts transitively.

- A (not necessarily metrizable) topological group G is called \aleph_0-bounded provided that for every neighborhood U of the identity e there is a countable subset F of G such that $G = FU$.
- It was proved by Guran that a topological group G is \aleph_0-bounded if and only if it is topologically isomorphic to a subgroup of a product of separable metrizable groups.
- X is a tricky subspace of the product of $\{0, 1\}^\infty \times (0, 1)$. The key fact of the example is that its components are wildly distributed. So the pathology of X is based upon connectivity.
- X is 1-homogeneous, but not 2-homogeneous.
- What does this advertising of X have to do with the present talk?
The counterexample

Theorem (Ungar)

Let X be a locally compact separable metrizable space such that no finite set separates X. Then $(a) \iff (b) \iff (c)$, where (a) X is CDH, (b) X is n-homogeneous for every n, (c) X is strongly n-homogeneous for every n.

Example

There are a Polish space X and a (separable metrizable) topological group (G, τ) such that (G, τ) acts on X by a continuous action, and makes X strongly n-homogeneous for every n, X is not CDH. Hence $X \not\approx X$ by the transitive action.
The counterexample

Theorem (Ungar)

Let X be a locally compact separable metrizable space such that no finite set separates X. Then $(a) \iff (b) \iff (c)$, where $(a) X$ is CDH, $(b) X$ is n-homogeneous for every n, $(c) X$ is strongly n-homogeneous for every n.

Example

There are a Polish space \mathcal{X} and a (separable metrizable) topological group (G, τ) such that

1. (G, τ) acts on \mathcal{X} by a continuous action, and makes \mathcal{X} strongly n-homogeneous for every n,

2. \mathcal{X} is not CDH.
The counterexample

Theorem (Ungar)

Let X be a locally compact separable metrizable space such that no finite set separates X. Then $(a) \iff (b) \iff (c)$, where $(a) X$ is CDH, $(b) X$ is n-homogeneous for every n, $(c) X$ is strongly n-homogeneous for every n.

Example

There are a Polish space \mathcal{X} and a (separable metrizable) topological group (G, τ) such that

1. (G, τ) acts on \mathcal{X} by a continuous action, and makes \mathcal{X} strongly n-homogeneous for every n,

2. \mathcal{X} is not CDH.

Hence $\mathcal{X} \not\approx X$ by the transitive action.
On countable dense and strong n-homogeneity

The counterexample

Example

There are a Polish space \mathcal{X} and a (separable metrizable) topological group (G, τ) such that

1. (G, τ) acts on \mathcal{X} by a continuous action, and makes \mathcal{X} strongly n-homogeneous for every n,

2. \mathcal{X} is not CDH.

\mathcal{X} is a variation of the example we discussed earlier, the tricky subspace of the product $\{0, 1\}^\infty \times (0, 1)$. But there is a significant difference. The components of \mathcal{X} are points, so they are not wildly distributed. The pathology must be different.

\mathcal{X} is a tricky subspace of the product $\{0, 1\}^\infty \times E_c$, where E_c is the complete Erdős space.
Example

There are a Polish space \mathcal{X} and a (separable metrizable) topological group (G, τ) such that

1. (G, τ) acts on \mathcal{X} by a continuous action, and makes \mathcal{X} strongly n-homogeneous for every n,

2. \mathcal{X} is not CDH.

The group (G, τ) cannot be chosen to be complete.
There are a Polish space X and a (separable metrizable) topological group (G, τ) such that

1. (G, τ) acts on X by a continuous action, and makes X strongly n-homogeneous for every n,

2. X is not CDH.

- The group (G, τ) cannot be chosen to be complete.
- X totally disconnected, i.e, any two distinct points have disjoint clopen neighborhoods. Moreover, $\dim X = 1$.
On countable dense and strong n-homogeneity

The counterexample

Example

There are a Polish space \mathcal{X} and a (separable metrizable) topological group (G, τ) such that

1. (G, τ) acts on \mathcal{X} by a continuous action, and makes \mathcal{X} strongly n-homogeneous for every n,

2. \mathcal{X} is not CDH.

- The group (G, τ) cannot be chosen to be complete.
- \mathcal{X} totally disconnected, i.e, any two distinct points have disjoint clopen neighborhoods. Moreover, $\dim \mathcal{X} = 1$.
- \mathcal{X} is a variation of the example we discussed earlier, the tricky subspace of the product $\{0, 1\}^\infty \times (0, 1)$.

Example

There are a Polish space \mathcal{X} and a (separable metrizable) topological group (G, τ) such that

1. (G, τ) acts on \mathcal{X} by a continuous action, and makes \mathcal{X} strongly n-homogeneous for every n,

2. \mathcal{X} is not CDH.

- The group (G, τ) cannot be chosen to be complete.
- \mathcal{X} totally disconnected, i.e., any two distinct points have disjoint clopen neighborhoods. Moreover, $\dim \mathcal{X} = 1$.
- \mathcal{X} is a variation of the example we discussed earlier, the tricky subspace of the product $\{0, 1\}^\infty \times (0, 1)$.
- But there is a significant difference. The components of \mathcal{X} are points, so they are not wildly distributed. The pathology must be different.
The counterexample

Example

There are a Polish space \mathcal{X} and a (separable metrizable) topological group (G, τ) such that

1. (G, τ) acts on \mathcal{X} by a continuous action, and makes \mathcal{X} strongly n-homogeneous for every n,

2. \mathcal{X} is not CDH.

- The group (G, τ) cannot be chosen to be complete.
- \mathcal{X} totally disconnected, i.e, any two distinct points have disjoint clopen neighborhoods. Moreover, $\dim \mathcal{X} = 1$.
- \mathcal{X} is a variation of the example we discussed earlier, the tricky subspace of the product $\{0, 1\}^\infty \times (0, 1)$.
- But there is a significant difference. The components of \mathcal{X} are points, so they are not wildly distributed. The pathology must be different.
- \mathcal{X} is a tricky subspace of the product $\{0, 1\}^\infty \times \mathcal{E}_c$, where \mathcal{E}_c is the complete Erdős space.
In 1940 Erdős proved that the ‘rational Hilbert space’ space E, which consists of all vectors in the real Hilbert space ℓ^2 that have only rational coordinates, has dimension one, is totally disconnected, and is homeomorphic to its own square. This answered a question of Hurewicz who proved that for every compact space X and every 1-dimensional space Y we have that $\dim(X \times Y) = \dim X + 1$.
In 1940 Erdős proved that the ‘rational Hilbert space’ space \mathcal{E}, which consists of all vectors in the real Hilbert space ℓ^2 that have only rational coordinates, has dimension one, is totally disconnected, and is homeomorphic to its own square. This answered a question of Hurewicz who proved that for every compact space X and every 1-dimensional space Y we have that $\dim(X \times Y) = \dim X + 1$.

It is not difficult to prove that \mathcal{E} has dimension at most 1. Erdős proved the surprising fact that every nonempty clopen subset of \mathcal{E} is unbounded, and hence that for no $x \in \mathcal{E}$ and no $t > 0$ the open ball $\{y \in \mathcal{E} : \|x - y\| < t\}$ contains a nonempty clopen subset of \mathcal{E}. This implies among other things that \mathcal{E} is nowhere zero-dimensional.
In 1940 Erdős proved that the ‘rational Hilbert space’ space E, which consists of all vectors in the real Hilbert space ℓ^2 that have only rational coordinates, has dimension one, is totally disconnected, and is homeomorphic to its own square. This answered a question of Hurewicz who proved that for every compact space X and every 1-dimensional space Y we have that $\dim(X \times Y) = \dim X + 1$.

It is not difficult to prove that E has dimension at most 1. Erdős proved the surprising fact that every nonempty clopen subset of E is unbounded, and hence that for no $x \in E$ and no $t > 0$ the open ball \{ $y \in E : \|x - y\| < t$ \} contains a nonempty clopen subset of E. This implies among other things that E is nowhere zero-dimensional.

This is the crucial property that makes the Erdős spaces so interesting.
Erdős also proved that the closed subspace \mathcal{E}_c of ℓ^2 consisting of all vectors such that every coordinate is in the convergent sequence $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ has the same property. The space \mathcal{E}_c is called complete Erdős space and was shown by Dijkstra to be homeomorphic to the ‘irrational’ Hilbert space, which consists of all vectors in the real Hilbert space ℓ^2 that have only irrational coordinates. All nonempty clopen subsets of \mathcal{E}_c are unbounded just as the nonempty clopen subsets of \mathcal{E} are.
Erdős also proved that the closed subspace \mathcal{E}_c of ℓ^2 consisting of all vectors such that every coordinate is in the convergent sequence $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ has the same property. The space \mathcal{E}_c is called \textit{complete Erdős space} and was shown by Dijkstra to be homeomorphic to the ‘irrational’ Hilbert space, which consists of all vectors in the real Hilbert space ℓ^2 that have only irrational coordinates. All nonempty clopen subsets of \mathcal{E}_c are unbounded just as the nonempty clopen subsets of \mathcal{E} are.

It was shown by Dijkstra that the complete Erdős space is homeomorphic to the so-called \textit{harmonic Erdős space}. It is the subspace of all vectors x in the real Hilbert space ℓ^1 such that $x_n \in \{0, \frac{1}{n}\}$ for all n. This space is a particularly elegant model of \mathcal{E}_c.

Let $C = \{0, 1\}^\mathbb{N}$ be the Cantor set, and define $\phi : C \to [0, \infty)$ by $\phi(x) = \sum_{n=1}^{\infty} x_n / n$. The harmonic Erdős space is topologically the graph of the function $x \mapsto \phi(x)$ on $\{x \in C : \phi(x) < \infty\}$. So it is a subspace of $C \times [0, \infty)$.

To provide a counterexample for countable dense and strong n-homogeneity:

- The space \mathcal{E}_c is dense in ℓ^2 since every vector in ℓ^2 has a convergent subsequence in \mathcal{E}_c.
- The space \mathcal{E}_c is strongly n-homogeneous since every nonempty clopen subset of \mathcal{E}_c is unbounded, as is every nonempty clopen subset of \mathcal{E}.

On countable dense and strong n-homogeneity

The counterexample
Erdős also proved that the closed subspace \mathcal{E}_c of ℓ^2 consisting of all vectors such that every coordinate is in the convergent sequence $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ has the same property. The space \mathcal{E}_c is called complete Erdős space and was shown by Dijkstra to be homeomorphic to the ‘irrational’ Hilbert space, which consists of all vectors in the real Hilbert space ℓ^2 that have only irrational coordinates. All nonempty clopen subsets of \mathcal{E}_c are unbounded just as the nonempty clopen subsets of \mathcal{E} are.

It was shown by Dijkstra that the complete Erdős space is homeomorphic to the so-called harmonic Erdős space. It is the subspace of all vectors x in the real Hilbert space ℓ^1 such that $x_n \in \{0, \frac{1}{n}\}$ for all n. This space is a particularly elegant model of \mathcal{E}_c.

Let $C = \{0, 1\}^\mathbb{N}$ be the Cantor set, and define $\varphi: C \to [0, \infty]$ by $\varphi(x) = \sum_{n=1}^{\infty} x_n/n$. The harmonic Erdős space is topologically the graph of the function $x \mapsto \varphi(x)$ on $\{x \in C : \varphi(x) < \infty\}$. So it is a subspace of $C \times [0, \infty)$.
The space \mathcal{E}_c surfaces at many places. For example, as the set of endpoints of certain dendroids (among them, the Lelek fan), the set of endpoints of the Julia set of the exponential map, the set of endpoints of the separable universal \mathbb{R}-tree, line-free groups in Banach spaces and Polishable ideals on \mathbb{N}.
The space \mathcal{C}_c surfaces at many places. For example, as the set of endpoints of certain dendroids (among them, the Lelek fan), the set of endpoints of the Julia set of the exponential map, the set of endpoints of the separable universal \mathbb{R}-tree, line-free groups in Banach spaces and Polishable ideals on \mathbb{N}.

Metric and topological characterizations of \mathcal{C}_c were proved by Kawamura, Tymchatyn, Oversteegen, Dijkstra and van Mill.
The space \mathcal{E}_c surfaces at many places. For example, as the set of endpoints of certain dendroids (among them, the Lelek fan), the set of endpoints of the Julia set of the exponential map, the set of endpoints of the separable universal \mathbb{R}-tree, line-free groups in Banach spaces and Polishable ideals on \mathbb{N}.

Metric and topological characterizations of \mathcal{E}_c were proved by Kawamura, Tymchatyn, Oversteegen, Dijkstra and van Mill.

\mathcal{E}_c is a Polish group, and is CDH, as was shown by Kawamura, Tymchatyn and Oversteegen.
The space E_c surfaces at many places. For example, as the set of endpoints of certain dendroids (among them, the Lelek fan), the set of endpoints of the Julia set of the exponential map, the set of endpoints of the separable universal \mathbb{R}-tree, line-free groups in Banach spaces and Polishable ideals on \mathbb{N}.

Metric and topological characterizations of E_c were proved by Kawamura, Tymchatyn, Oversteegen, Dijkstra and van Mill.

E_c is a Polish group, and is CDH, as was shown by Kawamura, Tymchatyn and Oversteegen.

Hence $E_c \not\approx X$, but E_c is a building block for X.
The space \mathcal{C}_c surfaces at many places. For example, as the set of endpoints of certain dendroids (among them, the Lelek fan), the set of endpoints of the Julia set of the exponential map, the set of endpoints of the separable universal \mathbb{R}-tree, line-free groups in Banach spaces and Polishable ideals on \mathbb{N}.

Metric and topological characterizations of \mathcal{C}_c were proved by Kawamura, Tymchatyn, Oversteegen, Dijkstra and van Mill.

\mathcal{C}_c is a Polish group, and is CDH, as was shown by Kawamura, Tymchatyn and Oversteegen.

Hence $\mathcal{C}_c \neq \mathcal{X}$, but \mathcal{C}_c is a building block for \mathcal{X}.

\mathcal{C}_c has the following property: every bounded closed subspace is somewhere zero-dimensional. (This property implies that $\mathcal{C}_c \not\approx \mathcal{C}_c^\infty$.) \mathcal{X} contains arbitrarily small closed copies of \mathcal{C}_c, which are all nowhere zero-dimensional.
The space \mathcal{E}_c surfaces at many places. For example, as the set of endpoints of certain dendroids (among them, the Lelek fan), the set of endpoints of the Julia set of the exponential map, the set of endpoints of the separable universal \mathbb{R}-tree, line-free groups in Banach spaces and Polishable ideals on \mathbb{N}.

Metric and topological characterizations of \mathcal{E}_c were proved by Kawamura, Tymchatyn, Oversteegen, Dijkstra and van Mill.

\mathcal{E}_c is a Polish group, and is CDH, as was shown by Kawamura, Tymchatyn and Oversteegen.

Hence $\mathcal{E}_c \neq X$, but \mathcal{E}_c is a building block for X.

\mathcal{E}_c has the following property: every bounded closed subspace is somewhere zero-dimensional. (This property implies that $\mathcal{E}_c \not\approx \mathcal{E}_c^\infty$.) X contains arbitrarily small closed copies of \mathcal{E}_c, which are all nowhere zero-dimensional.

This last property of X and a variation of Erős’ original argument from 1940, give us that X is not CDH.
So the pathology of \mathcal{X} is not based upon connectivity, but upon the pathology present in the complete Erdős space.