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Abstract. We investigate the descriptive complexity of connectedness (path-
wise connectedness, local connectedness) of Polish spaces, and prove that even
in the frame of finite dimensional euclidean spaces this complexity can be as
high as possible, and much beyond the first projective classes Σ1

1 and Π1
1. In

particular we prove that several of these notions are Π1
2-complete.

1. Introduction

This work is a continuation of [2] where was investigated the maximal possible
complexity of the set of all zero-dimensional closed subsets of a given Polish space.
In the present work we study the analogous question for connectedness which is
a kind of strong negation of zero-dimension. In fact we shall investigate this
question for several variations of the notion of connectedness. More precisely we
shall compute the maximal possible complexity, for a given Polish space X, of
the following sets :

C(X): the set of all closed connected subsets of X,
Č(X): the set of all closed subsets of X whose complement is connected,

Cpath(X): the set of all closed pathwise connected subsets of X,
Cloc(X): the set of all closed locally connected subsets of X.

It turns out that this complexity depends on whether the ground space X is
compact or merely Polish, as shown by the following table which gives upper
bounds for the complexity of these sets:

C(X) Č(X) Cpath(X) Cloc(X)

X compact Π0
1 Π1

1 Π1
2 Π0

3

X Polish Π1
2 Π1

2 Π1
2 Ǎ(Π1

1)
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Note that in the compact case the complexity is computed in the compact
space K(X) of all compact subsets of X, while in the Polish case the complexity
is relatively to the canonical Borel structure of the space F(X) of all closed subsets
of X (see Section 2). These bounds are obtained by a straightforward expansion
of definitions, except the bound Ǎ(Π1

1) (see Section 3 for the notation) which
relies on some specific analysis and properties of Polish locally connected spaces.
As we shall see all these bounds are optimal. More precisely we shall prove:

a) There exists a Polish space X ⊂ R3 with C(X) Π1
2-complete.

b) There exists a Polish space X ⊂ R2 with Č(X) Π1
2-complete.

c) There exists a compact space X ⊂ R3 with Č(X) Π1
1-complete.

d) There exists a Polish space X ⊂ R3 with Cloc(X) Ǎ(Π1
1)-complete.

We point out that by a result of Ajtaj and Becker (see [5], Theorem 37.11)
the set Cpath(Rn) is Π1

2-complete for all n ≥ 3, and following the methods of
the present work we shall give in Section 5 an alternative proof of this result for
n ≥ 4.

Observe that since any Polish space can be embedded as a closed subset of
the Polish space Rω it follows from the previous results that the sets C(Rω)
and Cpath(Rω) are Π1

2-complete, while the set Cloc(Rω) is Ǎ(Π1
1)-complete. Note

however that as we shall see (Proposition 7.5) the set Č(Rω) is actually Borel.

To finish we list next some open questions.

1) There is a priori no topological reason which prevents a 2-dimensional version
of the previous results by imposing that X ⊂ R2. However, aside in case b),
the constructions used in the paper, which necessitate some geometrical freedom
in the surrounding euclidean space, are not easily adaptable to provide such a
requirement.

2) These results give the maximal complexity of the considered sets. They
do not describe the whole spectrum of possible complexity of these sets for an
arbitrary Polish space X.

3) One can try to release the restriction on the space X of being Polish. In
particular one can consider the same questions for an analytic space X. We recall
that in this case the canonical Borel structure on F(X) is isomorphic to the Borel
structure of a Σ1

1 subset of 2ω, and considering descriptive complexity of subsets
of F(X) is meaningful. Then resuming the same computation than in the Polish
case one can check that for an analytic space X the sets C(X) and Č(X) are still
Π1

2, while the natural complexity upper bound of the sets Cpath(X) and Cloc(X)

jumps up to Π1
4; and it is not clear whether in the two latter cases this bound is

optimal.

4) Finally note that one can investigate similarly the descriptive complexity of
various topological notions other than connectedness. We mention in particular
the case of the set F0(X) of all closed zero-dimensional subsets of a Polish space
X. It is not difficult to check that F0(X) is a Σ1

2 set, and it follows from the
results of [2] that the maximal complexity of this set is at least ⅁Σ0

2 (see [8] or
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[2] for the definition of this class of ∆1
2 sets). But the maximal complexity of the

set F0(X) is unknown.

We would like to thank the Referee who pointed to us the result of Ajtaj and
Becker mentioned above and for his very careful reading of the paper.

2. Descriptive Notions and Notations

Along the paper we work in the frame of Polish spaces and we assume the
reader to be familiar with basic notions and results from Descriptive Set Theory
in this setting, for example as presented in [6] or [8]. We recall that the notion of
complexity of a set A is a priori relative to some specified space X containing A.
However when the surrounding space X is not specified the complexity is to be
understood in the maximal sense, that is the complexity relatively to any Polish
space X in which A can be embedded.

We shall mainly consider the classical pointclasses of Borel and projective sets,
namely:

Σ0
ξ : the additive Baire class of rank ξ

Π0
ξ : the multiplicative Baire class of rank ξ (so Π0

2 = Gδ)

Σ1
1: the class of analytic sets.

Π1
1: the class of co-analytic sets.

∆1
1: the class of Borel sets.

Σ1
2: the class of projections of co-analytic sets, also denoted by PCA.

Π1
2: the class of complements of PCA sets, also denoted by CPCA.

∆1
2 := Σ1

2 ∩Π1
2

Also given any pointclass Γ we denote by Γ̌ its dual class, so for any Polish
space X, Γ̌(X) = {X \ A : A ∈ Γ}; and by A(Γ) the class of all sets obtained
by operation A applied to a Souslin scheme of sets from Γ. It is well known that
A(Σ1

1) = Σ1
1 and we shall consider in the sequel the class A(Π1

1) and its dual
class Ǎ(Π1

1) which are both subclasses of the class of C-sets, hence of the class
∆1

2 (see [1] or [2] for more details).

The basic tool for computing complexity is the notion of reduction. We recall
that a mapping φ : X → Y is said to reduce the set A ⊂ X to the set B ⊂ Y
if A = φ−1(B). If Λ is a class of functions, A ⊂ X is said to be Λ-reducible
to B ⊂ Y if there exists φ : X → Y in Λ which reduces A to B; and when Λ
is the class of continuous functions we simply say that A ⊂ X is reducible to
B ⊂ Y . Note that in writing A ⊂ X we mean a pair (A,X) such that A ⊂ X,
and similarly for B ⊂ Y ; and reducibility is actually a relation between such
pairs. However when there is no ambiguity on the surrounding spaces X and Y ,
we shall simply say that the set A is reducible to the set B. As a matter of fact in
many instances, if we impose on the spaces X and Y to be Polish, the notion of
reducibility is absolute in the sense that it does not depend on the specific Polish
spaces in which the sets A and B are embedded.

If Λ is a class of functions between Polish spaces and Γ is a descriptive pointclass
of subsets of Polish spaces, and B is an arbitrary subset of the Polish space Y
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then the set B (or more precisely the pair B ⊂ Y ) is said to be Λ-Γ-hard if any
set A ⊂ 2ω in Γ is reducible to B by a function φ : 2ω → Y in Λ; and if moreover
B is in Γ then the set B is said to be Λ-Γ-complete. Again when Λ is the class of
continuous functions we simply say Γ- hard and Γ-complete.

From the proof of the main result of [4] we have the following (see also [3] for
a generalization of this result):

Theorem 2.1. (Kechris [4]) Let Γ be a pointclass containing the class Π1
1 and

closed under Borel substitutions. If a set B ⊂ 2ω is Borel-Γ-hard then B is Γ-hard.

Note that since any uncountable Polish space is Borel-isomorphic to 2ω, it
follows from Theorem 2.1 that for a projective class Γ, being Γ-complete for a
subset B of some Polish space Y is absolute and does not depend on Y .

In all the sequel we denote by I and J the intervals [0, 1] and [−1, 1] respec-
tively.

3. Topologies and Borel Structures on F(X)

3.1. The topological space K(X)
For any space X we denote by K(X) the space of all compact subsets of X

equipped with the Vietoris topology that is the topology generated by the sets of
the form:

V − = {K ∈ K(X) : K ⊂ V } and V + = {K ∈ K(X) : K ∩ V ̸= ∅}
where V is an arbitrary open subset of X. We recall that if the space X is zero-
dimensional (compact, Polish) then so is the space K(X) itself; also if X is perfect
then so is K∗(X) = K(X) \ {∅}. In particular K∗(2ω) is homeomorphic to 2ω.

3.2. The Borel structure of the space F(X)
If the space X is not compact there is no canonical topology on the space

F(X) of all closed subsets of X. In this case we will always equip F(X) with
its Effros structure, that is the Borel structure generated by the sets of the form
V + = {F ∈ F(X) : F ∩ V ̸= ∅}. If X is compact one recovers then the Borel
structure generated by the canonical topology of K(X) = F(X). It is also well
known that ifX is Polish then this canonical Borel structure on F(X) is standard,
that is can be generated by some Polish topology. One way of constructing such
a topology is to embed the Polish space X in some compact space X̂ and then
to identify any set F ∈ F(X) with its closure F in X̂. The set F(X) is then

identified to a Π0
2 subset of K(X̂), namely:

F(X) ≈ {K ∈ K(X̂) : K ∩X = K} .
This defines on F(X) a Polish topology which is said to be admissible and one can
easily check that the Borel structure defined by an admissible topology is indeed
generated by the sets of the form V +. Nevertheless, when X is not compact we
shall never consider any topological notion when working in F(X) which will be
equipped with its Borel structure solely. Note however that all Borel notions and
beyond such as Σ1

1, Π
1
1,Σ

1
2,Π

1
2, · · · are meaningful for F(X).
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3.3. We state next the main properties of the space F(X) when X is Polish,
which we will use freely in the sequel:

a) The set {(F,G) ∈ F(X)×F(X) : F ⊂ G} is ∆1
1.

b) The set {(F,K) ∈ F(X)×K(X) : F ∩K ̸= ∅} is ∆1
1.

c) The set {(F,G) ∈ F(X)×F(X) : F ∩G ̸= ∅} is Σ1
1.

d) If A is a Σ1
1 subset of X then the set {F ∈ F(X) : F ∩A ̸= ∅} is Σ1

1.

e) Let F∗(X) = F(X) \ {∅}; then there exists a sequence (ck)k∈ω of Borel
functions ck : F∗(X) → X such that for all F ∈ F∗(X), ck(F ) ∈ F and the set
{ck(F ) : k ∈ ω} is dense in F .

In fact if we endow F(X) with some admissible topology then in a) and b)
“∆1

1” can be replaced by “Π0
1” and in e) “Borel” can be replaced by “first Baire

class”.

We recall that a compact set valued mapping Ψ : Σ → K(T ) is said to be u.s.c.
if for any open subset W of T , the set Ψ−1(W−) = {α ∈ Σ : Ψ(α) ⊂ W} is an
open subset of Σ. Note that if T is compact this is equivalent to say that the set
{(α, x) ∈ Σ× T : x ∈ Ψ(α)} is closed in Σ× T .

The following result will be of constant use in the sequel.

Lemma 3.4. Let Σ be a Polish space, T be a compact space, and Ψ : Σ → K(T )
be an u.s.c.mapping. Let S be a Π0

2 subset of T and Φ : Σ → F(S) be the mapping
defined by Φ(α) = S ∩ Ψ(α). If for all α ∈ S, Φ(α) is dense in Ψ(α), then the
mapping Φ is Borel.

Proof. Let V be any open subset of S. Fix W an open subset of T such that
V = S ∩W , write W =

⋃
n Fn with all the Fn’s closed in T and set Wn = T \Fn.

It follows then from the density condition that

Φ(α) ∩ V ̸= ∅ ⇐⇒ Φ(α) ∩W ̸= ∅ ⇐⇒ Ψ(α) ∩W ̸= ∅
⇐⇒ ∃n, Ψ(α) ∩ Fn ̸= ∅ ⇐⇒ ∃n, Ψ(α) ̸⊂Wn.

Hence Φ−1(V +) =
⋃

n

(
Σ \Ψ−1(W−

n )
)
is a Σ0

2 set, which proves that Φ is Borel.

□

In all the sequel, given a subset E of a product space X × Y and an element
x ∈ X in the first factor we set

E(x) := {y ∈ Y : (x, y) ∈ X}.

3.5. A family of projective complete sets.
Let ∆ ≈ 2ω be a copy of the Cantor space and Q ⊂ ∆ be a countable dense

subset of ∆, we define inductively for n ≥ 1 a pair
(
Pn(Q,∆) , Qn(Q,∆)

)
=(

Pn,Qn

)
of subsets of K∗(∆n) ≈ K∗(2ω) ≈ 2ω by: P1 = K∗(Q)

Pn = {K ∈ K(∆n) : ∀α ∈ ∆, K(α) ∈ Qn−1} for n ≥ 2
Qn = K∗(∆n) \ Pn
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Hence with the canonical identification ∆n ≈ ∆n−1 ×∆, for any K ∈ K∗(∆n) we
have:

K ∈ Pn ⇐⇒ ∀α1 ∈ ∆, ∃α2 ∈ ∆, · · · ,∃αn−1 ∈ ∆, K(α1, · · · , αn−1) ⊂ Q ,

if n ≥ 1 is odd, and

K ∈ Pn ⇐⇒ ∀α1 ∈ ∆, ∃α2 ∈ ∆, · · · ,∀αn−1 ∈ ∆, K(α1, · · · , αn−1) ̸⊂ Q

if n is even.

It follows then by a straightforward induction that the set Pn is Π1
n and the

set Qn is Σ1
n. It is also well known that the set P1 is Π1

1-complete.

Lemma 3.6. For all n ≥ 1, Pn is Π1
n-complete.

Proof. If B is any Π1
n subset of 2ω then by definition we can find a sequence

(Ak, Bk)1≤k≤n satisfying for all k:

(i) Bn = B,
(ii) Ak ⊂ 2ω ×∆n−k is Σ1

k and Bk = (2ω ×∆n−k) \Ak is Π1
k,

(iii) An−k ⊂ 2ω×∆k is the projection on 2ω×∆k of Bn−k−1 ⊂ (2ω×∆k)×∆.

Hence A1 ⊂ C := 2ω × ∆n−1 is Σ1
1 and setting P = ∆ \ Q ≈ ωω we can find a

closed subset F of C × P such that A1 is the projection of F on C. Then if H
denotes the closure in C ×∆ = 2ω ×∆n of the set F , the mapping Φ : ε 7→ H(ε)
from 2ω to K(∆n) is u.s.c. hence by Lemma 3.4 the mapping Φ is Borel, and for
all ε ∈ 2ω:

– if n is odd we have:

ε ∈ Bn ⇐⇒ ∀α1 ∈ ∆, (ε, α1) ∈ An−1

⇐⇒ ∀α1 ∈ ∆,∃α2 ∈ ∆ : (ε, α1, α2) ∈ Bn−2

⇐⇒ ∀α1 ∈ ∆,∃α2 ∈ ∆, · · · ,∃αn−1 ∈ ∆,∀αn ∈ P, (ε, α1, · · · , αn) ̸∈ F

⇐⇒ ∀α1 ∈ ∆,∃α2 ∈ ∆, · · · ,∃αn−1 ∈ ∆,∀αn ∈ P, (ε, α1, · · · , αn) ̸∈ H

⇐⇒ ∀α1 ∈ ∆,∃α2 ∈ ∆ · · · ,∃αn−1 ∈ ∆, H(ε, α1, · · · , αn−1) ⊂ Q

⇐⇒ H(ε) ∈ Pn

– similarly if n is even:

ε ∈ Bn ⇐⇒ ∀α1 ∈ ∆,∃α2 ∈ ∆, · · · ,∀αn−1 ∈ ∆,∃αn ∈ P : (ε, α1, · · · , αn) ∈ H

⇐⇒ ∀α1 ∈ ∆,∃α2 ∈ ∆, · · · ,∀αn−1 ∈ ∆, H(ε, α1, · · · , αn−1) ̸⊂ Q

⇐⇒ H(ε) ∈ Pn

This proves that any Π1
n subset of 2ω is Borel reducible to Pn hence by Theo-

rem 2.1 the set Pn is Π1
n-complete. □

4. Connectedness

We recall that C(X) denotes the set of all closed connected subsets of X. It is
well known that if X is compact then C(X) is a closed, hence compact, subset of
K(X).
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Proposition 4.1. If X is a Polish space then C(X) is a Π1
2 subset of F(X).

Proof. By definition given any F ∈ F(X) we have F ̸∈ C(X) if and only if:

∃F0, F1 ∈ F(X) : F0 ∩ F ̸= ∅, F1 ∩ F ̸= ∅, F0 ∩ F1 = ∅ and F ⊂ F0 ∪ F1 .

Since on F(X) the three arguments relation “F ⊂ F0 ∪ F1 ” is Borel and the
binary relation “F ∩F ′ = ∅ ” is Π1

1 it follows that F(X)\C(X) is a Σ1
2 set, hence

C(X) is a Π1
2 set. □

Theorem 4.2. There exists a Polish space X ⊂ I3 for which the set C(X) is
Π1

2-complete.

Proof. Fix ∆ ≈ 2ω such that {1
4
,
3

4
} ⊂ ∆ ⊂ [

1

4
,
3

4
] and Q a dense countable subset

of ∆; then setting P = ∆ \Q we define:

X = {(x, y, z) ∈ I3 : x ̸∈ ∆ or (y ∈ P and z = 0)}

which is clearly a Π0
2 subset of I3 hence a Polish space.

For any set A ⊂ I2 we set Ã = A× {0} ⊂ I3. Let Ψ : K∗(∆2) → K(I3) be the
mapping defined for all K ∈ K∗(∆2) by:

Ψ(K) = {u = (x, y, z) ∈ I3 : z + d(x,∆) ≥ 1

2
d
(
u, K̃

)
}

where d denotes the standard metric on I as well as the ℓ1-metric on I3:

d
(
(x, y, z), (x′, y′, z′)

)
=

∣∣x− x′
∣∣+ ∣∣y − y′

∣∣+ ∣∣z − z′
∣∣ ,

and observe that K̃ ⊂ Ψ(K). Finally we define Φ : K∗(∆2) → F(X) by:

Φ(K) = X ∩Ψ(K).

Lemma 4.3. The mapping Φ is Borel.

Proof. We apply Lemma 3.4: observe first that since the set {(K,u) : u ∈ Ψ(K)}
is a closed subset of K(∆2) × I3 then the mapping Ψ is u.s.c. and we now check
that for all K ∈ K∗(∆2), Φ(K) is dense in Ψ(K).

Let U be an open subset of I3 such that U ∩ Ψ(K) ̸= ∅; we have to show
that U ∩ Φ(K) ̸= ∅. Fix u = (x, y, z) ∈ U ∩ Ψ(K); we have to find some

u′ = (x′, y′, z′) ∈ U ∩ Φ(K). For all t ∈ I and ε > 0 let Jε
t =]t − ε

2
, t +

ε

2
[∩I; we

may suppose that U = Jε
x × Jε

y × Jε
z for some ε > 0.

If x ̸∈ ∆ then u ∈ Φ(K) and we can take u′ = u. If not then d(x,∆) = 0 and

d((x, y),K) + z = d
(
u, K̃

)
≤ 2z hence d((x, y),K) ≤ z; and we distinguish three

cases:

– If z < 1 pick x′ ∈ Jε
x \ ∆, let δ < d(x′,∆) such that z + δ < 1 and pick

z′ ∈]z, z+δ[; then u′ = (x′, y, z′) ∈ U ∩X, d(u′, u) = |x′ − x|+ |z′ − z| ≤ 2d(x′,∆)

and d(u′, K̃) ≤ d(u, K̃) + 2d(x′,∆) ≤ 2z + 2d(x′,∆) ≤ 2z′ + 2d(x′,∆); hence
u′ ∈ Φ(K).
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– If d((x, y),K) < z = 1: let δ < ε such that d((x, y),K) < z − δ and
pick x′ ∈ Jδ

x \∆; then u′ = (x′, y, z) ∈ U ∩ X and d(u′, u) = |x′ − x| ≤ δ hence

d(u′, K̃) ≤ d(u, K̃) + δ = d((x, y),K) + z + δ ≤ 2z so u′ ∈ Φ(K).

– If d((x, y),K) = z = 1: take (x0, y0) ∈ K such that d((x, y), (x0, y0)) = 1;

then since |y − y0| ≤
3

4
we have |x− x0| ≥

1

4
and since x, x0 ∈ ∆ we can find

x′ ∈]x − ε, x + ε[ \∆ such that |x′ − x0| < |x− x0| and then u′ = (x′, y, 1) ∈
U ∩ Φ(K). □

Let P2 = P2(Q,∆) (see Section 3.5).

Lemma 4.4. Let (x, y) ∈ (I \∆)× I and set for all t ∈ I, ut = (x, y, t).
a) If uz ∈ Φ(K) then ut ∈ Φ(K) for all t ≥ z.
b) If K ∈ P2 then there exists z ∈ I such that uz ∈ Φ(K); in particular u1 ∈ Φ(K).

Proof. Observe first that since x ̸∈ ∆ then for all t ∈ I, ut ∈ X \ K̃ hence

ut ∈ Φ(K) ⇐⇒ δ(t) := t+ d(x,∆)− 1

2
d(ut, K̃) ≥ 0.

a) If uz ∈ Φ(K) then for all t ≥ z:

δ(t)− δ(z) = (t− z)− 1

2
d(ut, uz) = (t− z)− 1

2
(t− z) ≥ 0

hence δ(t) ≥ δ(z) ≥ 0 and ut ∈ Φ(K).

b) Fix a ∈ ∆ such that d(x,∆) = |x− a|. Since K ∈ P2 then there exists b ∈ P

such that (a, b, 0) ∈ K̃. Then for all z ≥ 1− d(x,∆):

d
(
uz, K̃

)
≤ |x− a|+ |y − b|+ z ≤ d(x,∆) + 1 + z ≤ 2 d(x,∆) + 2z

hence δ(z) ≥ 0; so uz ∈ Φ(K) and it follows from part a) that u1 ∈ Φ(K). □

Lemma 4.5. If K ̸∈ P2 then Φ(K) ̸∈ C(X).

Proof. Observe first that for any K ∈ K∗(∆2) and any ε ∈ {0, 1}, vε = (ε, 0, 1) is

a member of Φ(K). Indeed if wε = (a, b, 0) ∈ K̃ is such that d
(
vε, K̃

)
= d(vε, wε)

then

d
(
vε, K̃

)
= |ε− a|+ |b|+ 1 ≤ 3

4
+

3

4
+ 1 = 2(

1

4
+ 1) = 2(d(ε,∆) + 1).

If K ̸∈ P2 then by definition of P2 there exists some α ∈ ∆ such that K(α) ⊂ Q
and it follows then from the definition of X that Φ(K)(α) = ∅. Hence the sets
V0 = {(x, y, z) ∈ Φ(K) : x < α} and V1 = {(x, y, z) ∈ Φ(K) : x > α} form an
open partition of Φ(K) with vε ∈ Vε, which shows that Φ(K) is not connected. □

Lemma 4.6. If K ∈ P2 then Φ(K) ∈ C(X).

Proof. Fix K ∈ P2. Let J denote the set of all connected components of I \ ∆
and set for all J ∈ J :

ΦJ(K) = Φ(K) ∩ (J × I2).
Claim 1: ΦJ(K) is pathwise connected.
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Proof. Set CJ = J × I × {1}. Since K ∈ P2 then by part b) of Lemma 4.4,
CJ ⊂ ΦJ(K) and since it is convex the set CJ is pathwise connected. Moreover it
follows from part a) of Lemma 4.4 that any element u = (x, y, z) ∈ ΦJ(K) can be
connected in ΦJ(K) by a linear path to the element u1 = (x, y, 1) ∈ CJ . Hence
ΦJ(K) is pathwise connected. ⋄

Suppose now that (V0, V1) is a partition of Φ(K) into two clopen subsets and
that V0 contains v0 = (0, 0, 1) and set for ε = 0, 1, Jε = {J ∈ J : ΦJ(K) ⊂ Vε}.
It follows then from Claim 1 that J = J0 ∪ J1.

Claim 2: If u = (a, b, 0) ∈ K̃ with a ∈
⋃
Jε then u ∈ Vε.

Proof. Fix a sequence (Jk)k in Jε with for each k some xk ∈ Jk such that
a = limk xk, and let zk = |xk − a|. Since xk ̸∈ ∆ then uk = (xk, b, zk) ∈ X.

Moreover since u ∈ K̃ then u ∈ Φ(K) and

d
(
uk, K̃

)
≤ d(uk, u) = |xk − a|+ zk = 2zk ≤ 2

(
zk + d(xk,∆)

)
hence uk ∈ ΦJk(K) ⊂ Vε; and since Vε is a closed subset of Φ(K) then u =
limk uk ∈ Vε. ⋄

Claim 3: J = J0.

Proof. For otherwise J1 ̸= ∅; let a = inf(
⋃
J1). Since by assumption v0 ∈ V0

then [0,
1

4
[∈ J0 and inf J ∈ ∆ for every J ∈ J1, hence a ∈ ∆. And since K ∈ P2,

we can find some b ∈ P such that u = (a, b, 0) ∈ K̃ ∩ X. Then fixing for all k
some Ik ∈ J with Ik∩]a− 2−k, a[ ̸= ∅, we have that Ik ∈ J0. Also we can find for
all k some Jk ∈ J1 with Jk∩]a, a + 2−k[ ̸= ∅. It follows then from Claim 2 that
u ∈ V0 ∩ V1 which is a contradiction. ⋄

It follows from Claim 3 that
(
(I \ ∆) × I2

)
∩ Φ(K) ⊂ V0. Moreover since(

∆× I2
)
∩Φ(K) ⊂ K̃ then it follows from Claim 2 that Φ(K) ⊂ V0. This proves

that Φ(K) is connected and finishes the proof of Lemma 4.6. □

So by Lemma 4.3, Lemma 4.5 and Lemma 4.6 the mapping Φ : K∗(∆2) → F(X)
is Borel and reduces the complete Π1

2 set P2 to C(X). Hence by Theorem 2.1 the
set C(X) is Π1

2-complete. □

5. Pathwise Connectedness

We recall that Cpath(X) denotes the set of all closed pathwise connected subsets
of X.

Proposition 5.1. If X is a Polish space then Cpath(X) is a Π1
2 subset of F(X).

Proof. Fix a compatible complete metric d on X and equip the space Π(X) of all
continuous paths γ : I → X with the Polish topology of uniform convergence.

Then for any set F ∈ F(X) we have:

F ∈ Cpath(X) ⇐⇒
{

∀x, y ∈ F, ∃ γ ∈ Π(X) : γ(0) = x,
γ(1) = y and ∀t ∈ Q, γ(t) ∈ F
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where Q denotes the set of rational numbers in I.
Since the relations “x ∈ F” and “γ(t) = x” determine relatively Borel, hence

Σ1
1, subsets of X ×F(X) and Π(X)× I×X then Cpath(X) is clearly a Π1

2 subset
of F(X). □

As pointed out in the Introduction Ajtaj and Becker proved that the Cpath(In)
is Π1

2-complete for all n ≥ 3. In this section we give an alternative proof when
n ≥ 4. This proof relies on some general constructions of pathwise connected
spaces that we present first.

Definition 5.2. Given any element a in some set X we set Ia = I× {a}. A set
A ⊂ I×X is said to be pinned at a if A ⊃ Ia.

We denote by π0 and π1 the projection mappings from I × X onto I and X
respectively.

Proposition 5.3. Let A ⊂ I × X be a pinned set at a ∈ X and suppose that
π0(A \ Ia) is of empty interior in I. Then A is pathwise connected if and only if
for all ε ∈ I the section A(ε) is pathwise connected.

Proof. Suppose that all the sections of A are pathwise connected and let (α, x)
and (β, y) be two elements of A. Then (α, x) can be joined to (α, a) by a path in
{α} × A(α) ⊂ A, and (β, a) can be joined to (β, y) by a path in {β} × A(β) ⊂
A. Since (α, a) can trivially be joined to (β, a) by an affine path in Ia then by
concatenation, (α, x) can be joined to (β, y) by a path in A.

Conversely suppose that A is pathwise connected . Let x and y be two elements
of some section A(ε), and let γ be a path in A joining (ε, x) to (ε, y).

– If γ(I) ∩ Ia = ∅ then π0(γ(I)) is a connected subset of I with empty interior,
hence it is a singleton, and since γ(0) = (ε, x) then necessarily π0(γ(I)) = {ε}. It
follows that π1 ◦ γ is a path in A(ε) joining x to y.

– If γ(I) ∩ Ia ̸= ∅ let u = min{t ∈ I : γ(t) ∈ Ia} then γ([0, u[) ∩ Ia = ∅ and
as in the previous case we necessarily have π0 ◦ γ(t) = ε for all t < u hence by
continuity γ(u) = (ε, a) and it follows that γ0 = π1◦γ|[0,u] is a path in A(ε) joining
x to a. Similarly if v = max{t ∈ I : γ(t) ∈ Ia} then π0 ◦ γ(t) = ε for all t ≥ v and
γ1 = π1 ◦ γ|[v,1] is a path in A(ε) joining x to a. Then by the concatenation of γ0
and γ1 one gets a path in A(ε) joining x to y. □

Proposition 5.4. Let A,B ⊂ I ×X be two pinned sets at a and b respectively,
and suppose that E = π0(A \ Ia) ∪ π0(B \ Ib) is of empty interior in I.

If A and B are pathwise connected then C = A ∪ B is pathwise connected if
and only if for some ε ∈ I the section C(ε) is pathwise connected.

Proof. If C(ε) is pathwise connected for some ε then we can find a path in C
joining (ε, a) ∈ A to (ε, b) ∈ B, and since A and B are pathwise connected then
clearly C is pathwise connected too.

Conversely if C is pathwise connected pick any α ∈ I, let γ be a path in C
joining (α, a) to (α, b), consider

u = max{t ∈ I : γ(t) ∈ Ia} and v = min{t ∈ [u, 1] : γ(t) ∈ Ib}
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and set γ(u) = (α′, a) and γ(v) = (α′′, b).
– If u = v then α′ = α′′ and a = b and since by assumption π0(C \ Ia) = E is

of empty interior in I then the set C is pinned at a and by Proposition 5.3, C(ε)
is pathwise connected for all ε.

– If u ̸= v then γ(]u, v[) ∩ (Ia ∪ Ib) = ∅ hence π0(γ(]u, v[)) ⊂ E is of empty
interior in I, hence as in Proposition 5.3, π0(γ(]u, v[)) is a singleton say {ε}. It
follows by continuity that π0(γ([u, v])) = {ε} hence α′ = α′′ = ε and π1 ◦ γ|[u,v]
is a path in C(ε) joining a to b, and since by Proposition 5.3, A(ε) and B(ε) are
pathwise connected, then C(ε) is pathwise connected. □

Remark 5.5. Let X be a compact space and suppose that Φ : 2ω → K(X) is a
continuous mapping reducing some Π1

2 subset A of 2ω to the set Cpath(X). Then

since Cpath(X) is a subset of the compact space C(X) any element from A \ A is
necessarily mapped by Φ to an element in C(X) \ Cpath(X). Hence Theorem 5.6
below provides implicitly compact sets which are connected but not pathwise
connected. As a matter of fact the construction of the space X in this proof will

make use of the classical result that if G is the graph of the function x 7→ sin
1

x
then its closure G = G∪ ({0}× [−1, 1]) is connected but not pathwise connected.
More precisely, we shall use the fact that no element from {0} × [−1, 1] can be
joined to an element from G by a path in G.

Theorem 5.6. (Ajtaj-Becker) The set Cpath(I4) is Π1
2-complete.

Proof. The construction will actually be achieved in the space I2× J2 ≈ I4 where
J = [−1, 1].

Let ε ∈ 2ω that we view as the characteristic function of some set Mε ⊂ ω and
set Nε = {0} ∪Mε. Let νε ∈ ω≤ω \ {∅} be the increasing enumeration of Nε and
set:

H+
ε =

⋃
j∈dom (νε)

{(x, y) ∈]2−νε(j+1), 2−νε(j)]× J : y = 2−νε(j) sin
π

x
} ⊂ ]0, 1]× J

where by convention 2−ν(i) = 0 if i ̸∈ dom (ν). We also set:

H−
ε = H− =

(
[−1, 0]× {0}

)
∪
(
{0} × J

)
⊂ [−1, 0]× J

and

Hε = H−
ε ∪H+

ε ⊂ J2 .

Observe that for all ε, Hε is non empty and compact. More precisely:

– if Nε is infinite then H+
ε = H+

ε ∪ {(0, 0)},
– if Nε is finite and k = maxNε then H+

ε = H+
ε ∪

(
{0} × 2−kJ

)
.

Let:

P = {ε ∈ 2ω : ∀m, ∃n ≥ m, ε(n) = 1} ,
Q = {ε ∈ 2ω : ∃m, ∀n ≥ m, ε(n) = 0} .
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Lemma 5.7. a) For all ε, H−
ε and H+

ε are pathwise connected.
b) If ε ∈ P then Hε is pathwise connected.
c) If ε ∈ Q then Hε is not pathwise connected.

Proof. a) For all ε, H−
ε = H− is clearly pathwise connected and H+

ε is the graph
of a continuous function fε : ]0, 1] → J hence also pathwise connected.

b) If ε ∈ P then limx→0 fε(x) = 0 and H+
ε is also the graph of a continuous

function f̃ε : I → J with f̃ε(0) = 0, hence H+
ε is pathwise connected. Then writing

Hε = H−∪H+
ε each of both sets in this union is pathwise connected and contains

the element (0, 0). It follows that Hε is pathwise connected too.

c) If ε ∈ Q and k = max(Nε) then Gε = Hε ∩
(
]0, 2−k]× J

)
is the graph of the

function x 7→ 2−k sin(
π

x
) on ]0, 2−k] and Gε = Gε ∪

(
{0}× 2−kJ

)
. And as pointed

out in Remark 5.5, no element from Gε \Gε can be joined to an element from Gε

by a path in Gε, hence by a path in Hε since Gε is a retract of Hε. □

From now on we identify 2ω to a compact set ∆ ⊂ I with endpoints 0 and 1
and set P1 = P1(Q,∆) and P2 = P2(Q,∆).

Let a = (−1, 0) and b = (1, 0) viewed as elements of J2 so Ia ∪ Ib ⊂ I × J2.
Observe that for ε ∈ 2ω we have a ∈ H−

ε and b ∈ H+
ε . We then define the

mapping Ψ : K(∆) → K(I× J2) by

Ψ(L) = Ia ∪ Ib ∪
⋃
ε∈L

{ε} ×Hε .

Lemma 5.8. Ψ(L) ∈ Cpath(I× J2) if and only if L ̸∈ P1.

Proof. Set Ψ−(L) = Ψ(L) ∩
(
I× [−1, 0]× J

)
and Ψ+(L) = Ψ(L) ∩

(
I×]0, 1]× J

)
.

Then the subsets Ψ−(L) and Ψ+(L) of I× J2 are pinned at a and b respectively,
and by Lemma 5.7 for all ε ∈ L the sets Ψ−(L)(ε) = {a} ∪ H−

ε = H−
ε and

Ψ+(L)(ε) = {b} ∪ H+
ε = H+

ε are pathwise connected hence by Proposition 5.3,
Ψ−(L) and Ψ+(L) are pathwise connected. Since Ψ(L) = Ψ−(L) ∪ Ψ+(L) and
π0(Ψ

−(L) \ Ia)∪π0(Ψ+(L) \ Ib) ⊂ L is of empty interior in I, it follows then from
Proposition 5.4 and Lemma 5.7 that:

Ψ(L) ∈ Cpath(I× J2) ⇐⇒ ∃ε ∈ I : Ψ(L)(ε) ∈ Cpath(J2)
⇐⇒ ∃ε ∈ L : Hε ∈ Cpath(J2)
⇐⇒ L ∩ P ̸= ∅
⇐⇒ L ̸∈ P1 . □

Let c = (0, b) ∈ I × J2 so Ic ⊂ I2 × J2 and observe that for all L ∈ K(∆),
c ∈ Ψ(L). We then define Φ : K∗(∆2) → K(I2 × J2) by

Φ(K) = Ic ∪
⋃
α∈∆

{α} ×Ψ
(
K(α)

)
.

Lemma 5.9. Φ(K) ∈ Cpath(I2 × J2) if and only if K ∈ P2.
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Proof. The set Φ(K) ⊂ I× (I× J2) is pinned at c. It follows then from Proposi-
tion 5.3 and Lemma 5.8 that:

Φ(K) ∈ Cpath(I2 × J2) ⇐⇒ ∀α ∈ I, Φ(K)(α) ∈ Cpath(I× J2)
⇐⇒ ∀α ∈ ∆,Ψ(K(α)) ∈ Cpath(I× J2)
⇐⇒ ∀α ∈ ∆, K(α) ̸∈ P1

⇐⇒ K ∈ P2. □

To finish observe that the compact-valued mapping ε 7→ Hε is u.s.c. since it has
a closed graph. It follows then that Ψ and Φ viewed as compact-valued mappings
are u.s.c. too. In particular the mapping Φ : K∗(∆2) → K(I2× J2) is Borel. Then
since by Lemma 5.8 and Lemma 5.9, Φ reduces the Π1

2-complete set P2 to the
set Cpath(I2 × J2), it follows from Theorem 2.1 that the the set Cpath(I2 × J2) is

Π1
2-complete. □

6. Local Connectedness

We recall that Cloc(X) denotes the set of all closed locally connected subsets
of X. We also recall that a topological space is said to be locally connected
if any element has a fundamental system of connected (not necessarily open)
neighbourhoods. But a basic result asserts that in a locally connected space any
element has in fact a fundamental system of connected open neighbourhoods,
equivalently that the connected components of any open set are all open.

Proposition 6.1. If X is a compact space then Cloc(X) is a Π0
3 subset of K(X).

Proof. Fix a countable basis (Uj)j∈ω of X and let F ∈ F(X). If F is locally
connected then for all ε > 0 and all x ∈ F there exists an open set V in X such
that x ∈ V , diamV < ε and V ∩ F is connected; then F ′ = V ∩ F is a closed
connected subset of X such that diamF ′ ≤ ε and if j is such that x ∈ Uj ⊂ V
then Uj ∩ F ⊂ F ′. Hence if F is locally connected then

(⋆)

{
∀n, ∀x ∈ F, ∃ j ∈ ω : x ∈ Uj , ∃ F ′ ∈ C(X) :
diamF ′ ≤ 2−n and Uj ∩ F ⊂ F ′

Conversely if (⋆) holds then for all ε > 0, any element of F admits a connected
neighbourhood of diameter < ε and so F is locally connected.

Then it follows from the compactness of F that condition (⋆) is equivalent to

(⋆⋆)

{
∀n, ∃ J finite ⊂ ω : F ⊂

⋃
j∈J Uj and ∀j ∈ J,

∃F ′ ∈ C(X) : diamF ′ ≤ 2−n and Uj ∩ F ⊂ F ′

Hence
Cloc(X) =

⋂
n

⋃
J finite
J⊂ω

⋂
j∈J

K(
⋃
j∈J

Uj) ∩ Lj,n

where Lj,n denotes the set of all compact sets F satisfying the second line of
(⋆⋆). Then since K(

⋃
j∈J Uj) is σ-compact and each each Lj,n is compact as the

projection of a closed subset of the compact space K(X)× C(X), it follows that
Cloc(X) is a Π0

3 subset of K(X). □
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Theorem 6.2. The set Cloc(I2) is Π0
3-complete.

Proof. For any a, b ∈ R2 let [a, b] denote the affine segment joining a to b. Let
S = [(0, 0) , (0, 1)] and given any α ∈ Iω let Sn(α) = [(0, 0) , (2−n, α(n))] and
K(α) = S ∪

⋃
n Sn(α). Then clearly K(α) is a compact connected subset of I2.

If limn α(n) = 0 then the open subset K(α) \ {(0, 0)} of K(α) is locally home-
omorphic to I, hence it is locally connected. Moreover for all s, t > 0 the open
neigbourhood Vs,t = K(α)∩ [0, s[×[0, t[ of {(0, 0)} in K(α) is itself homeomorphic
to K(α), so Vs,t is connected. Hence K(α) is locally connected.

If lim supn α(n) = δ > 0 then any connected neigbourhood of (0, δ) in K(α)
contains the whole segment [(0, 0) , (0, δ)]. Hence K(α) is not locally connected.

Since for all n the mapping Φn : α 7→ S ∪
⋃

p≤n Sp(α) is clearly continuous

it follows that the uniform limit Φ : α 7→ K(α) is continuous too, and by the
previous observations Φ reduces the set A = {α ∈ Iω : limn α(n) = 0} to the set
Cloc(I2), and it is well known that the set A is Π0

3-complete. □

We recall that A(Π1
1) denotes the class of all sets obtained by the Souslin

A-operation from Π1
1 sets, and Ǎ(Π1

1) its dual class.

Theorem 6.3. If X is a Polish space then Cloc(X) is a Ǎ(Π1
1) subset of F(X).

Proof. Fix a sequence (ck)k∈ω of Borel functions ck : F∗(X) → X such that for all
F ∈ F∗(X), ck(F ) ∈ F and the set {ck(F ) : k ∈ ω} is dense in F (see Section 3).
Then given any F ∈ F∗(X) and any V open subset of X we define for all k:

Ck(F, V ) =
{
x : ∃K ∈ C(X) compact : {x, ck(F )} ⊂ K ⊂ F ∩ V

}
which is clearly a closed connected subset of F containing ck(F ).

Claim 1: The set Ak = {(x, F ) ∈ X ×F∗(X) : x ∈ Ck(F, V )} is Σ1
1.

Proof. Let X̂ be any compactification of X and Ûi be open subsets of X̂ such
that Ui = X ∩ Ûi; then

x ∈ Ck(F, V ) ⇐⇒ ∀i, x /∈ Ui or ∃K ∈ C(X̂) :

{
K ∩ Ûi ̸= ∅, K ⊂ F ∩ V,
x ∈ K, ck(F ) ∈ K

Then observe that Ûi being open and V being a Π0
2 subset of the compact space

X̂ the conditions “K ∈ C(X̂), K ∩ Ûi ̸= ∅,K ⊂ F ∩ V ” define a Π0
2 subset of

the compact space K(X̂). Also since ck is Borel then the condition “ck(F ) ∈ K”

determines a Borel, hence a Σ1
1, subset of F∗(X) × K(X̂). It follows that Ak is

Σ1
1. ⋄
Claim 2: For any open set U ⊂ V , the set {F ∈ F∗(X) : F ∩ U ⊂ Ck(F, V )}

is Σ1
1.

Proof. Let J = {j ∈ ω : Uj ⊂ U}; then U =
⋃

j∈J Uj and

F ∩ U =
⋃
j∈J

F ∩ Uj ⊂
⋃
j∈J

F ∩ Uj ⊂
⋃
j∈J

F ∩ Uj = F ∩ U
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hence, since {ci(F ) : i ∈ ω} ∩ Uj is dense in F ∩ Uj :

F ∩ U ⊂ Ck(F, V ) ⇐⇒ ∀j ∈ J, F ∩ Uj ⊂ Ck(F, V )

⇐⇒ ∀j ∈ J, ∀i ∈ ω, ci(F ) ̸∈ Uj or ci(F ) ∈ Ck(F, V ) .

The conclusion follows then from Claim 1. ⋄

Consider the tree

T = {s ∈ ω<ω : ∀m < |s| , diam(Us(m)) ≤ 2−m and Us(m) ⊂ Us(m−1)}.

Set E∅ = F∗(X) and for all s ∈ T ∩ ωn+1 let

Es = {F ∈ F∗(X) : F ∩ Us(n) ̸= ∅ and ∀k, F ∩ Us(n) ̸⊂ Ck(F,Us(0))}

Claim 3: F∗(X) \ Cloc(X) = A
(
(Es)s∈T

)
.

Proof. If F is not locally connected we can find some Ui0 and x ∈ F ∩ Ui0 such
that F ∩Ui0 does not contain any connected neigbourhood of x in F . We can also
find an infinite branch σ of T such that σ(0) = i0 and x ∈ Uσ(n) for all n. Then
for all k, since Ck(F,Ui0) is a connected subset of F ∩Uσ(0), then for no n we can

have F ∩ Uσ(n) ⊂ Ck(F,Ui0). Hence F ∈ Eσ|n for all n, and so F ∈ A
(
(Es)s∈T

)
.

Conversely if for some infinite branch σ of T , we have F ∈ Eσ|n for all n

then F is not locally connected. For otherwise let {x} =
⋂

n Uσ(n) and let C
be the connected component of x in F ∩ Uσ(0). Since F is assumed to be locally
connected then C is open in F and we can find somem and then some k such that
ck(F ) ∈ F ∩Uσ(m) ⊂ C. Moreover C is a connected and locally connected Polish
space, and it is well known that such a space is actually pathwise connected.
Hence any element in C can be joined to ck(F ) by a path in C ⊂ F ∩ Uσ(0). It
follows that x ∈ F ∩ Uσ(m) ⊂ Ck(F,Uσ(0)) which contradicts that F ∈ Eσ|m+1

. ⋄

To finish the proof of Theorem 6.1 observe that by Claim 2 each Es is a Π1
1 set

hence by Claim 3 the set Cloc(X) is in the class Ǎ(Π1
1). □

Theorem 6.4. There exists a Polish space X ⊂ I3 for which the set Cloc(X) is
Ǎ(Π1

1)-complete.

Proof. The space X will be of the form:

X =
⋃

s∈ω<ω

Xs

where each Xs for s ̸= ∅, is contained in a 2-dimensional affine space and is
affinely isomorphic to a fixed Polish space Y ⊂ J × J of the plane. The proof is
rather technical and will be split in three parts:

a) Definition and study of the space Y .

b) Definition of the space X.

c) Construction for any given A(Π1
1) set A ⊂ 2ω of a Borel mapping

Φ : 2ω → F∗(X) which reduces A to F(X) \ Cloc(X).
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a) Definition of the space Y : We fix {−1

2
,
1

2
} ⊂ ∆ ⊂ [−1

2
,
1

2
] a copy of 2ω such

that Q := ∆ ∩Q is dense in ∆, and set P1 = P1(Q,∆) ⊂ K∗(∆).

Let a = (0, 1) , a∗ = (0,−1) , b = (1, 0) , b∗ = (−1, 0) and let Σ ⊂ J× J be the
full square of vertices a , a∗ , b , b∗, that is the convex hull of the set {a, a∗, b, b∗}.
We point out here that despite the formal symmetry between a, a∗ and b, b∗ the
central role in the construction will be played by a, a∗. We then define

Y = Σ \ (Q× {0})
which is clearly a Π0

2 subset of J× J.
In this part of the proof by square we shall mean a subsquare of Σ whose edges

are parallel to the edges of Σ. Hence if we consider the convex cone

C = {(x, y) ∈ R2 : y ≥ |x|}
then a square is a set of the form (v+C)∩(w−C) where (v, w) is a pair of elements
of Σ with same first coordinate. Note that any element u ∈ Σ admits a basis of
neighbourhoods in Σ constituted by squares with vertices v, w ∈ Σ \ (J× {0}).

For any E ⊂ R2 we set:

E0 = E ∩ (R× {0}) , E+ = E ∩ (R×]0,+∞[) , E− = E ∩ (R×]−∞, 0[) ,

so
E = E0 ∪ E+ ∪ E−

Lemma 6.5. There exists a Borel mapping Ψ : K∗(∆) → F(Y ) such that for all
L ∈ K∗(∆),
a) Ψ(L) is locally connected; moreover for any convex setW containing a (resp. a∗)
the set W+ ∩Ψ(L) (resp. W− ∩Ψ(L)) is connected.

b) if L ̸∈ P1 then Ψ(L) ∈ C(Y ).

c) if L ∈ P1 then a and a∗ are separated in Ψ(L) by a clopen set, hence Ψ(L) ̸∈
C(Y ).

Proof. Let Ψ̂ : K∗(∆) → K(Σ) and Ψ : K∗(∆) → F(Y ) defined for all L ∈ K∗(∆)
by:

Ψ̂(L) = {(x, y) ∈ Σ : |y| ≥ d(x, L)} ⊃ L× {0}
where d is the standard metric on I, and

Ψ(L) = Ψ̂(L) ∩ Y .

The mapping Ψ̂ is clearly u.s.c. and for all L ∈ K∗(∆), Ψ(L) is dense in Ψ̂(L)
hence by Lemma 3.4 the mapping Ψ is Borel.

We then set for ε = 0,+,− :

Ψε(L) = Ψ(L) ∩ Y ε

and for all α ∈ J :

Cα = {(x, y) ∈ R2 : y ≥ |x− α|} = (α, 0) + C

C ′
α = {(x, y) ∈ R2 : y ≤ − |x− α|} = (α, 0)− C.
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Hence

Ψ+(L) =
⋃
α∈L

Cα ∩ Σ+ and Ψ−(L) =
⋃
α∈L

C ′
α ∩ Σ− .

The inclusions from right to left are obvious since for all x, α, d(x, L) ≤ |x− α|,
and from left to right since for all x, d(x, L) = |x− α| for some α.

a) Let u ∈ Ψ(L) and ε > 0. Consider a square V = (v + C) ∩ (w − C) such
that u ∈ V with diam(V ) < ε. By symmetry we may suppose that u ̸∈ Ψ−(L)
and w ∈ Σ+.

Since the cones Cα and w−C have parallel edges then V ∩Cα ̸= ∅ if and only
if w ∈ Cα, and since w ∈ Σ+ then

V ∩Ψ+(L) =
⋃

{V ∩ Cα ∩ Σ+ : w ∈ Cα} .

Note that each V ∩ Cα ∩ Σ+ is a convex, hence connected, set and since in the
formula above all the sets V ∩Cα∩Σ+ have w as a common element then V ∩Ψ+(L)
is connected. We now distinguish two cases:

– If u ∈ Ψ+(L) then we can choose V small enough so that V ∩ Ψ(L) =
V ∩Ψ+(L) and we are done.

– If u ∈ Ψ0(L) then
(
V ∩Ψ+(L)

)
∪
(
V ∩Ψ0(L)

)
= V ∩Ψ+(L)

Y
is connected,

and we necessarily have that v ∈ Σ− hence
(
V ∩Ψ−(L)

)
∪
(
V ∩Ψ0(L)

)
is connected

too, and since V ∩Ψ0(L) ̸= ∅ it follows that V ∩Ψ(L) is connected.
Finally if W is any convex set containing a then for any x ∈ Z = W+ ∩Ψ(L)

the segment [a, x] is contained in Z hence Z is connected. ⋄
b) Recall that Ψ+(L) =

⋃
α∈LCα∩Σ+ and the sets Cα∩Σ+ are all convex hence

connected; and since a = (0, 1) ∈ Cα ∩ Σ+ for all α then Ψ+(L) is connected.

Similarly Ψ−(L) is connected. Then as above Ψ+(L) ∪ Ψ0(L) = Ψ+(L)
Y

and

Ψ−(L) ∪ Ψ0(L) = Ψ−(L)
Y

are connected. Hence if L ̸∈ P1 then Ψ0(L) ̸= ∅ and
Ψ(L) = Ψ0(L) ∪Ψ+(L) ∪Ψ−(L) is connected.

c) If L ∈ P1 then Ψ0(L) = ∅ and then
(
Ψ+(L),Ψ−(L)

)
form a non trivial open

covering of Ψ(L) separating a and a∗. ⋄
This finishes the proof of Lemma 6.5. □

Some variations of the space Y :
We recall that a = (0, 1) , a∗ = (0,−1) , b = (1, 0) , b∗ = (−1, 0) and Σ ⊂ J× J

is the full square of vertices a , a∗ , b , b∗.
For any pair (u∗, u) of distinct elements in R3 and any ε > 0 let h : R2 → R3

be the unique affine mapping such that

h(a) = u, h(a∗) = u∗, h(b) =
u+ u∗

2
+ (0, 0,

ε

2
), h(b∗) =

u+ u∗

2
− (0, 0,

ε

2
) .

Set Σ(u∗,u,ε) = h(Σ) , Σ
(u∗,u,ε)
+ = h(Σ+) , Σ

(u∗,u,ε)
− = h(Σ−), Y (u∗,u,ε) = h(Y ) and

let Ψ(u∗,u,ε) : K∗(∆) → F(Y (u∗,u,ε)) be the mapping defined by:

Ψ(u∗,u,ε)(L) = h(Ψ(L))
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where Ψ is the mapping given by Lemma 6.5.

b) Definition of the space X:
For any s ∈ ω≤ω let s+ be the element of (ω \ {0})≤ω of the same length

such that s+(i) = s(i) + 1 for all i < |s+| = |s|, let χ(s) ∈ I be the real whose
expansion into continued fraction is given by s+ and let Is denote the closed
interval of endpoints χ(s) and χ(s⌢⟨0⟩). We recall that:

(i) χ(∅) = 0, χ(⟨n⟩) = 1

n+ 1
and χ(s⌢⟨n, 0⟩) = χ(s⌢⟨n+ 1⟩);

(ii) χ(s) is a rational number if and only if the sequence s is finite;
(iii) for all s ≺ t, χ(t) ∈ It ⊂ Is;
(iv) Is⌢⟨n⟩ ∩ Is⌢⟨n+1⟩ = {χ(s⌢⟨n⟩)} and Is⌢⟨n⟩ ∩ Is⌢⟨m⟩ = ∅ if |m− n| > 1;
(v) lim supn→∞ Is⌢⟨n⟩ = {χ(s)} .

For any s ∈ ω<ω we set ν(s) = |s|+
∑

k<|s| s(k) and let:

εs = 2−ν(s) ; as = (χ(s), εs, 2
−|s|)

and if s ̸= ∅ we set s∗ = s||s|−1 and let

Σs = Σ(as∗ ,as,εs) ; Σ+
s = Σ

(as∗ ,as,εs)
+ ; Σ−

s = Σ
(as∗ ,as,εs)
−

Xs = Y (as∗ ,as,εs) ; Ns = Is∗ × [0, εs∗ ]× [0, 2−|s∗|]

Ψs = Ψ(as∗ ,as,εs) : K∗(∆) → F(Xs) .

Observe that if χ(s) = χ(t) and |s| = |t| then s = t, so as ̸= at whenever s ̸= t.

Finally for any set E ⊂ R we set Ẽ := E × {0} × {0} and define

X∅ = P̃ and X =
⋃

s∈ω<ω

Xs.

One can then check the following properties which follow from the definitions and
properties (i) to (v) above:

(i) for all t ⪰ s, at ∈ Xt ⊂ Σt ⊂ Nt ⊂ Ns;
(ii) for all t ̸= s, Σs ∩ Σt ̸= ∅ if and only if Σs ∩ Σt = {ar}

with: r = s = t∗ or r = t = s∗ or r = s∗ = t∗;
(iii) limn→∞ as⌢⟨n⟩ = âs := (χ(s), 0, 2−|s|−1);

(iv) lim supn→∞Σs⌢⟨n⟩ = lim infn→∞Xs⌢⟨n⟩ = Σ̂s is the line segment [âs, as];

(v) lim supn→∞
⋃

t≻s⌢⟨n⟩Σt = Σ̃s := {(χ(s), 0, z) : 0 ≤ z ≤ 2−|s|−1};
(vi) Σ̂s ∩X = {as} and Σ̃s ∩X = ∅.

Lemma 6.6. X is a Polish space.

Proof. Observe first that X∅ = P̃ = X∩ Ĩ is closed in X. Consider now a sequence
(uk)k in X converging to u = (x, y, z) with for all k, uk ∈ Xsk for some sk ̸= ∅.
Then up to the extraction of some subsequence we may suppose that:

– either there exists s ∈ ω<ω such that sk = s for all k, and then u ∈ Xs;
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– or there exists s ∈ ω<ω such for all k, sk ⊃ s⌢⟨nk⟩ with limk→∞ nk = ∞,

and then by conditions (iv) and (v), u ∈ Σ̂s ∪ Σ̃s, hence by property (vi) either
u ̸∈ X or u = as;

– or there exists an infinite sequence σ ∈ ωω such for all k, sk ⊃ σ|ℓk with
limk→∞ ℓk = ∞. It follows then from property (i) that u = limuk = (χ(σ), 0, 0) ∈
P̃ .

Hence if X denotes the closure of X in I3 then

X \X =
⋃
s

(Σ̃s ∪ Σ̂s \ {as})

which is a countable union of compact sets, hence X is a Π0
2 subset of I3. □

c) Construction of the reduction mappings:
We now fix an arbitrary regular Souslin system (As)s∈ω<ω of Π1

1-sets and let
A = A((As)s∈ω<ω) the result of the Souslin operation on this system. Since P1 is
Π1

1-complete we can fix for all σ ∈ ω<ω, a continuous mapping ψs : 2
ω → K∗(∆)

which reduces As to P1, and set φs = Ψs◦ψs for s ̸= ∅. So by Lemma 6.5,
φs : 2

ω → F∗(Xs) is a Borel mapping satisfying for all α:

a) φs(α) is locally connected and for any convex set W containing as the
set W ∪ Σ+

s ∩ φs(α) is connected (and similarly for as∗ and Σ−
s ).

b) if α ̸∈ As then φs(α) ∈ C(Xs).
c) if α ∈ As then as and a

∗
s are separated by a clopen set, hence φs(α) ̸∈ C(Xs).

We finally define for all α ∈ 2ω

Φ(α) = P̃ ∪
⋃

s∈ω<ω

s̸=∅

φs(α) .

Lemma 6.7. Φ(α) ∈ F∗(X).

Proof. Consider as in the proof of Lemma 6.6 a sequence (uk)k in Φ(α) converging

to some u ∈ X. Again since P̃ is closed in Φ(α) we may suppose that for all k,
uk ∈ φsk(α) for some sk ̸= ∅. Then repeating the arguments of Lemma 6.6 we
are led to three alternatives. In the first alternative we are reduced to the case
where sk = s for all k, and then uk ∈ φs(α) for all k, hence u ∈ φs(α) ⊂ Φ(α).

In the two other alternatives we have u ∈ (Σ̃s ∪ Σ̂s) ∩X hence u = as, or u ∈ P̃ ,
and in both cases u ∈ Φ(α). □

Lemma 6.8. Φ(α) is locally connected at any element of Φ(α) \ P̃ .

Proof. Observe that by property (iv) the set F := {as : s ∈ ω<ω} is a closed
subset of Φ(α), and it follows from properties (iv), (v) and (vi) that for all s in
S∗ = ω<ω \ {∅} the set Σs \ {as, as∗} is open in X hence Us := φs(α) \ {as, as∗}
is an open subset of Φ(α), and by the very choice of φs the set Us is locally

connected. It follows that U := Φ(α) \ (P̃ ∪F ) =
⋃

s∈S∗ Us is a locally connected
open subset of Φ(α). So Φ(α) is locally connected at any element of U .

If u = as ∈ F for some s ∈ ω<ω then the set

S = {r ∈ ω<ω : r ̸= s and ν(r) ≤ 1 + ν(s)}
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is finite and u /∈ Σ̂r for all r ∈ S. It follows that the open neighbourhood

V = {(x, y, z) ∈ I2 × R : y >
εs
2
} of u meets only finitely many segments [ar, âr]

with r ∈ S and that u does not belong to Fu =
⋃
{Σr : r∗ ∈ S, r ̸= s}. So one

can find a convex neighbourhood W ⊂ V of u such that W ∩ Fu = ∅ and that

(x, y, z) ∈W =⇒ 3εs
4

< y <
5εs
4

whence Σt ∩W ̸= ∅ =⇒ u ∈ Σt, that is t = s or

t∗ = s and moreover Ψ−1
s (W ) ⊂ Σ+ and Ψ−1

s⌢⟨n⟩(W ) ⊂ Σ−.

Hence W ∩ Φ(α) =
⋃
{W ∩ φt(α) : t = s or t∗ = s} and it follows from

property a) stated above that W ∩ φt(α) is connected and contains u for such a
t, which proves that W ∩Φ(α) is connected, hence that Φ(α) is locally connected
at u. □

Lemma 6.9. If α ̸∈ A then Φ(α) ∈ Cloc(X).

Proof. By Lemma 6.8 we only need to prove that Φ(α) is locally connected at

any element of P̃ . So let ε > 0 and u ∈ P̃ ; note that u = (χ(σ), 0, 0) for some
unique σ ∈ ωω. Since α ̸∈ A there exists some s ≺ σ such that α ̸∈ As and if |s|
is big enough then diam (X ∩Ns) < ε.

Then for all t ∈ ω<ω such that s ≺ t∗, α ̸∈ At hence φt(α) is connected. It
follows by induction that for all p ≥ |s| the set

⋃
s⪯t,|t|≤p φt(α) is connected, hence

Φ(α) ∩Ns =
⋃

s⪯t φt(α)
X

is connected. □

Lemma 6.10. If α ∈ A then Φ(α) ̸∈ Cloc(X).

Proof. Fix σ ∈ ωω such that α ∈ As for all s ≺ σ. We shall prove that the element
u = (χ(σ), 0, 0) ∈ P̃ has no connected neighbourhood in Φ(α).

So let V be any neighbourhood of u in Φ(α). We can find t ≺ σ such that
Nt ⊂ V hence φt(α) ⊂ V . Since α ∈ At there exists a clopen partition (W,W ∗)

in φt(α) such that at ∈W and a∗t ∈W ∗. Then setting U =W ∪
⋃

s≻t φs(α) and

U∗ = W ∗ ∪
⋃

s̸⪰t φs(α) we have U ∩ U∗ ∩ P̃ = ∅ hence (U,U∗) is a partition of

Φ(α) into two relatively closed subsets, with at ∈ U ∩ V and a∗t ∈ U∗ ∩ V , which
proves that V is not connected. □

To finish the proof of Theorem 6.4 observe that for any open set V , Φ−1(V +) =⋃
s∈ω<ω φ−1

s (V +) and since each mapping φs is Borel then the mapping Φ is Borel
too. Also by Lemma 6.9 and Lemma 6.10 Φ reduces the set 2ω \ A to the set
Cloc(X). Hence by Theorem 2.1 the set Cloc(X) is Ǎ(Π1

1)-complete. □

7. Connectedness of open subsets

Our goal in this section is to study the complexity of the set of all open con-
nected subsets of a given space X that we identify to the set

Č(X) = {F ∈ F(X) : X \ F is connected }.

Proposition 7.1. For any Polish space X there exists a Borel mapping δ :
F(X) → F(X × R) which reduces the set Č(X) to the set C(X × R).
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Proof. Set J =]0,+∞[≈ R and fix a compatible distance d < 1 on X. For all
F ∈ F∗(X) let δ(F ) be the graph of the the restriction of the function d(·, F ) to
U = X \ F , so:

δ(F ) = {(x, t) ∈ X × J : d(x, F ) = t}
and set δ(∅) = X×{1}. Then for all F ∈ F(X), δ(F ) is a closed subset of X×J ,
which is homeomorphic to U , hence the mapping δ : F(X) → F∗(X ×J) reduces
the set Č(X) to the set C(X × J).

To see that δ is Borel, fix a countable basis (Ui)i∈ω of open sets in X. Since X
is Polish we can also fix a sequence (ck)k∈ω of Borel functions ck : F∗(X) → X
such that for all F ∈ F∗(X), ck(F ) ∈ F and the set {ck(F ) : k ∈ ω} is dense in
F (see Section 3). In particular if aj = cj(X) then {aj : j ∈ ω} is dense in X.
Then for any basic open set V×]s, t[ in X × J and F ̸= ∅, δ(F ) ∩ (V×]s, t[) ̸= ∅
if and only if:

∃(n, i, j) : aj ∈ Ui ⊂ V, Ui ∩ F = ∅ and

{
∀k, d(aj , ck(F )) ≥ s+ 2−n

∃k, d(aj , ck(F )) < t

which is a Borel condition on F . □

Let X be a Polish space and Γ be any projective class. Then by Proposition 7.1
if C(X×R) is in Γ then Č(X) is in Γ, and if Č(X) is Γ-hard then C(X×R) is Γ-hard.
Note however that the converse is false: if X = Rω ≈ X×R then since any Polish
space can be embedded as a closed subset in Rω, it follows from Theorem 4.2
that the set C(Rω) is Π1

2-complete while as we shall see in Proposition 7.5 the set
Č(Rω) is Borel.

We recall that if the space X is compact then C(X) is a compact subset of
K(X).

Proposition 7.2. If X is a compact space then Č(X) is a Π1
1 subset of K(X).

Proof. As in the proof of Proposition 4.1 for any F ∈ F(X) we have F ̸∈ Č(X) if
and only if:

∃F0, F1 ∈ F(X) : F0 ∪ F ̸= X, F1 ∪ F ̸= X, F0 ∪ F1 = X and F ⊃ F0 ∩ F1

and since X is compact then the relation “F0 ∪ F1 = X ” is compact and the
relation “F ′ ̸= F ” is open hence σ-compact, while the relation “F ⊃ F0 ∩ F1” is
Gδ and it follows that the right hand side defines a Σ1

1 set hence Č(X) is Π1
1. □

Theorem 7.3. There exists a compact (connected) space X ⊂ I2 for which the
set Č(X) is Π1

1-complete.

Proof. Let Q be the set of all rational numbers in I and P = I \ Q. Fix an
enumeration (qn)n≥1 of Q and consider the Kuratowski-Sierpinski function f :
P → I (see [7]) defined by

f(x) =
∞∑
n=1

2−n sin(
1

x− qn
).

It is clear that the function f is continuous on P but has no continuous extension
to I. More precisely for all q ∈ Q the set of all cluster values of f at q is a
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non trivial interval Jq. Note that the graph G := Gr(f) ≈ P is not connected.

However as shown in [7] (see also [2]) if f̃ : I → I is any extension of f with

f̃(q) ∈ Jq for all q ∈ Q then Gr(f̃) is connected. In particular the closure of G in
I2:

X := G = G ∪
⋃
q∈Q

Jq

is a compact connected space. It follows that if G ⊂ H ⊂ G and for all q ∈ Q,
H(q) ̸= ∅ then H is connected.

We also need the following result from [2]. (Observe that the set F of Lemma 9.5
in [2] is the graph of a function g with the properties stated in Lemma 7.4.)

Lemma 7.4. There exists a perfect zero-dimensional compact set {0, 1} ⊂ ∆ ⊂ I
such that Q = ∆ ∩ Q is dense in ∆ and f|∆∩P admits a continuous extension
g : ∆ → I.

So let (Q,∆) as in Lemma 7.4 and consider the mapping Φ : K∗(∆) → K(X)
defined by

Φ(K) = Gr(g|K).

Then Φ is clearly continuous and we now check that Φ reduces the Π1
1-complete

set P1 = P1(Q,∆) to Č(X). So let K ∈ K∗(∆) and set U = X \ Φ(K):
– If K ∈ P1 then K ⊂ Q; then for all q ∈ Q, U(q) = Jq \ {g(q)} if q ∈ K,

and U(q) = Jq if not. Hence for all q ∈ Q, U(q) ̸= ∅ so U is connected, that is

Φ(K) ∈ Č(X).
– If K ̸∈ P1 then K contains some irrational number α and then G(α) =

{f(α)} = {g(α)} hence U(α) = ∅ and we can write U =
(
U ∩ [0, α[×J

)
∪(

U ∩]α, 1]× J
)
which proves that U is not connected, that is Φ(K) ̸∈ Č(X). □

We recall (Proposition 4.1) that if the space X is Polish then C(X) is a Π1
2

subset of F(X).

Proposition 7.5. a) If X is a Polish space then Č(X) is a Π1
2 subset of F(X).

b) If moreover X is locally connected then Č(X) is a ∆1
1 subset of F(X), more

precisely a Π0
2 subset for any admissible topology on F(X).

Proof. a) Again for F ∈ F(X) we have F ̸∈ Č(X) if and only if:

∃F0, F1 ∈ F(X) : F0 ∪ F ̸= X, F1 ∪ F ̸= X, F0 ∪ F1 = X and F ⊃ F0 ∩ F1

and by the same arguments as in the proof of Proposition 4.1 one can check that
the right hand side defines a Σ1

2 set hence Č(X) is a Π1
2 set.

b) Suppose that X is locally connected. Fix a countable basis (Ui)i∈ω of open
sets inX. Let U be any open subset ofX, since U is also a Polish locally connected
space, then U is connected if and only if it is pathwise connected. Hence for any
F ∈ F(X), F ∈ Č(X) if and only if:

(⋆)

{
∀i, j, F ∩ Ui ̸= ∅ or F ∩ Uj ̸= ∅ or ∃K ⊂ X such that: K ∩ F = ∅,
K ∩ Ui ̸= ∅, K ∩ Uj ̸= ∅, and K is compact and connected



CONNECTEDNESS IN POLISH SPACES 23

Note that if U ⊂ X is open and K ⊂ X is compact then for any admissible
topology on F(X) the sets

U+ = {F ∈ F(X) : F ∩ U ̸= ∅} and K− = {F ∈ F(X) : F ∩K = ∅}

are open subsets of F(X). Hence if Ei,j denotes the set of all compact subsets of
X satisfying the conditions in the second line of (⋆) then

Č(X) =
⋂
i,j

(
U+
i ∪ U+

j ∪
⋃

K∈Ei,j

K−).
Hence Č(X) is a Π0

2 subset of F(X). □

Theorem 7.6. There exists a Polish space X ⊂ I2 for which the set Č(X) is
Π1

2-complete.

For the proof we need the following result which can be viewed as a kind of
dual version of Lemma 3.5 for n = 2. We recall that K∗(X) denote the space of
all non empty compact subsets of X.

Lemma 7.7. Let ∆ ≈ 2ω. Then for any Σ1
2 set A ⊂ 2ω there exists a Π0

2 set
G ⊂ ∆×∆ and a continuous mapping Φ : α 7→ Kα from 2ω to K∗(G) such that

A = {α ∈ 2ω : ∃x ∈ ∆, G(x) = Kα(x)}.

Proof. We may suppose that ∆ = 2ω. Fix a homeomorphism ı : (α, β) 7→ ⟨α, β⟩
from 2ω × 2ω onto 2ω. Let Q = {ε ∈ 2ω : ∃n,∀m ≥ n, ε(m) = 0} and P =
2ω \Q ≈ ωω. We denote by 0 the element ε of Q such that for all n, ε(n) = 0 .

Let A be any Σ1
2 subset of 2ω, fix a Π1

1 set B ⊂ 2ω × 2ω such that A is the
projection of B on the first factor. Since the set 2ω \ ı(B) is Σ1

1 it is the projection
of some closed subset of 2ω × P , so we can fix a compact set H of 2ω × 2ω such
that 2ω \ ı(B) is the projection of H ∩ (2ω × P ). We then define

G =
(
2ω × {0}

)
∪
(
H ∩ (2ω × P )

)
and for all α ∈ 2ω,

Kα = ı({α} × 2ω)× {0} ⊂ G.

Then clearly G is a Π0
2 set, and the mapping Φ : α 7→ Kα is an embedding of 2ω

into K∗(G); and we now verify the conclusion of the lemma.
If α ∈ A we can find β such that (α, β) ∈ B then setting x = ı(α, β) we have

(x,0) ∈ Kα and since x ∈ ı(B) then there is no ε ∈ P such that (x, ε) ∈ H hence
G(x) = {0} ⊂ Kα(x).

Conversely if α ∈ 2ω and for some x ∈ 2ω, G(x) ⊂ Kα(x) = {0} ⊂ G(x) then
we necessarily have G(x) = Kα(x) = {0}. But by the definition of Kα we can
write x = ı(α, β) for some β and we claim that (α, β) ∈ B. For otherwise x would
be in 2ω \ ı(B), and then there would exist some ε ∈ P , such that (x, ε) ∈ H
hence ε ∈ G(x) = {0} which is a contradiction since 0 ̸∈ P . This proves that
(α, β) ∈ B hence α ∈ A. □
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Proof of Theorem 7.6: Fix ∆ ⊂]0, 1[ with ∆ ≈ 2ω and A ⊂ 2ω a complete Σ1
2

set. Let G and Φ, associated to A as in Lemma 7.7 and consider the set

X =
(
(I \∆)× I

)
∪G

which is clearly a Π0
2 subset of I2. Since for all α, Kα ⊂ G we may view Φ as a

continuous mapping from 2ω into F(X) with for all α:

Uα := X \ Φ(α) =
(
(I \∆)× I

)
∪
(
G \Kα

)
and to finish the proof of Theorem 7.6 we now show that Uα is connected if and
only if α ̸∈ A.

Lemma 7.8. If α ∈ A then Uα is not connected.

Proof. If α ∈ A then by definition there exists some x∗ ∈ ∆ such that G(x∗) =
Kα(x

∗), so Uα ∩ ({x∗} × I) = ∅. Hence the sets U0 = U ∩ ([0, x∗[×I) and U1 =
U ∩ (]x∗, 1] × I) form a clopen partition of U with (0, 0) ∈ U0 and (1, 0) ∈ U1,
which proves that U is not connected. □

Lemma 7.9. If α ̸∈ A then Uα is connected.

Proof. The argument is quite similar to the one of Theorem 4.2.
Suppose by contradiction that (V0, V1) is a clopen partition of Uα with (0, 0) ∈

V0. Let J denote the set of all connected components of I\∆, and for ε = 0, 1 let
Jε = {J ∈ J : J×I ⊂ Vε}. Note that for all J ∈ J we have J×I ⊂ Uα ⊂ V0∪V1,
hence by connectedness either J ∈ J0 or J ∈ J1.

We claim that J = J0. For otherwise, for any interval J ⊂ I set xJ := min(J),
and consider x∗ = inf{xJ : J ∈ J1}. Then clearly x∗ ∈ ∆ and since α ̸∈ A we
can find y∗ ∈ I such that (x∗, y∗) ∈ G \Kα. Note that since 0 ̸∈ ∆ then x∗ > 0
and for any J ∈ J if xJ < x∗ then J ∈ J0 hence J × I ⊂ V0, and since V0 is a
closed subset of Uα then (x∗, y∗) ∈ V0. Also from the definition of x∗ we can find
a sequence (Jn) in J1, such that x∗ = limn xJn . Then Jn×I ⊂ V1, and again since
V1 is a closed subset of Uα then (x∗, y∗) ∈ V1. Hence (x∗, y∗) ∈ V0 ∩ V1 which is a
contradiction. □

This finishes the proof of Theorem 7.6. □
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