ON THE ARC-WISE CONNECTION RELATION IN THE PLANE

GABRIEL DEBS AND JEAN SAINT RAYMOND

ABSTRACT. We prove that the arc-wise connection relation in a G5 subset of the plane is Borel.

Let X be a separable metrizable space. By an arc we mean as usual a compact space home-
omorphic to the unit interval T = [0, 1]. We recall that the set J(X) of all arcs in X is a Borel
subset of the space K(X) of all compact subsets of X in the Vietoris topology (see [2]). In par-
ticular if X is a Polish space then K(X) is Polish too, hence J(X) is an absolute Borel space,
and it follows that the arc-wise connectedness equivalence relation Ex in X is analytic.

In [3] Kunen and Starbird constructed a compact connected set K C R? with an (analytic)
non Borel arc component, hence with Ex non Borel. This result can be strengthened in various
directions, for example one can impose that all components of K are non Borel ([4]) or that all
components of K are Borel but Ek is non Borel ([1]). However in all these constructions working
in a three dimensional space is fundamental, and in ([3], Problem 1) Kunen and Starbird asked:

Question: Is there a compact connected set K C R? with a non Borel arc-wise component?

In fact this question is actually equivalent to ask whether the equivalence relation F itself is
Borel. Indeed Becker and Pol showed ([2], Proposition 5.1) that for a G subset X of the plane
if all arc components are Borel then the equivalence relation E'x is Borel. They also pointed out
that no example of a G subset of the plane with a non Borel relation Fx, is known; and the
main goal of this note is to prove:

Theorem 1. If X is any Gs subset of the plane then the equivalence relation Ex is Borel.

Let us first fix some notation and recall a few basic facts.

Arcs: For an arc J we denote by e(J) the set of its endpoints and we set J = J \ e(J).
The mapping e : J — e(J) from J(X) to K(X) is Borel, even of the first Baire class. Also if
we endow X with some Borel total ordering < (via any Borel embedding of X in 2¥) and set
eo(J) = min(e(J)) and e;(J) = max(e(.J)) then the mappings e; : J(X) — X are also Borel. We
also recall that given any path in some space X, that is a continuous, non necessarily one-to-one,
mapping ¢ : [0,1] — X, there exists an arc J C ¢([0,1]) such that e(J) = ¢({0,1}).

Triods: By a simple triod in a space X we will mean a compact subset T' = Jy U J; U J5 which
is the union of three arcs .J; such that:

Vi # j, Jl N Jj = {CT}.
The arcs J;, which are uniquely determined up to a permutation, are called the branches of T
and cr is called the center of T'.

Notice that this notion is more restrictive than Moore’s initial notion of triod introduced in
[6] where the branches J; are only assumed to be irreducible continua. In particular since the set
J(X) of all arcs is a Borel subset of £(X) and the U and N operations on K(X) are Borel, it
follows from the unicity of the decomposition of a simple triod, that if X is Polish then the set
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T(X) of all simple triods in X is a Borel subset of X(X) and the mapping ¢ : 7 — X, which
assigns to any simple triod T its center ¢, is Borel. We also recall the fundamental property of
planar triods (see [6]):

Lemma. (MOORE) Any family of pairwise disjoint triods in the plane is countable.

Arc-wise components: If C is an arc-wise component in some separable metrizable space X
then:

— either C' = {c} is a singleton and we shall then say that ¢ is a quasi-isolated point in X,

—or C' admits a one-to-one continuous parametrization ¢ : I — C where I is a (closed, open,
half-open) interval in R or the unit circle, and we shall then say that C is a curve component,

— or else C' contains a simple triod and we shall then say that C' is a triodic component.
In particular any non triodic arc-wise component is o-compact. For more details we refer the
reader to [2].

Proof of Theorem 1: By ([2], Proposition 5.1) we only need to prove that any triodic arc-wise
component of X is Borel.

Since X is a Polish space we can fix a complete distance d compatible with the topology of X,
and define 0 : X x X — [0, 00] by:

0(x,y) = inf{diam(H) : H arc-wise connected s. t. {z,y} C H C X}
where inf ) = co. So if  # y are in the same arc-wise component then
0(z,y) = inf{diam(J) : J € J(X) s.t. e(J) ={z,y}} < o0

and if not then §(z,y) = co. Moreover setting by convention a + oo = oo for any « € [0, 00] we
have for all z,y,z € X

8(z,2) <d(z,y) + d(y, 2)
Hence § induces a metric on each arc-wise component, and defines a topology 7 on X; and since
§ > d then 7 is finer than the initial topology t induced by R2. But unless stated otherwise all
topological notions are to be understood relatively to ¢. Notice that for an arc connected subset
H C X the d-diameter diam(H ) and the d-diameter are equal since for any z,y € H :

d(z,y) < d(z,y) < diam(H).

Lemma 2. FEach arc-wise component C of X is a clopen subset of (X, 7) and the metric space
(C,0) is complete.

Proof. If zg € C then C = {z € X : 6(z,z9) < oo} is an open subset of (X, 7), and the same
holds for any other components. So all components are open, hence closed.

Suppose that (z,) is a §-Cauchy sequence. Since d < ¢ then (z,) is a d-Cauchy sequence
hence converges to some z € X. We can also extract from (z,) a subsequence (z},) satisfying
for all n > 0, 6(z;,,2;,,1) < 27" and we can fix then an arc J, with diam(.J,) < 27" and a

1 1
continuous function ¢, : [m, E] — Jy, such that cpn({m, E}) ={2,,1,2,,} = e(Jn). Then

for all n > 0, ¢,, = |U,,,>,, ¢m defines a continuous function from ]0, —] onto | J Jm; and since

m>n

Im

m>n

1
lim,, J,, = {«} then setting ¢,(0) = x we get a continuous path from [0, —] onto {z} U
n

1 A
such that (@n (0), gﬁn(f)) = (&, ), hence there exists an arc J, C {z}UlJ,,>,, Jm with e(J,) =
n >

{«! ,x}. Then diam(J,) < > msn diam(Jy,) < 27" s0 §(2y, ) < 27! and @ is a d-cluster
value of (x,), hence (z,) d-converges to x, and since C' is J-closed then x € C. O
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Lemma 3. J(X,7) = J(X) and for any J € J(X),t; = 7).

Proof. If J € J(X,7) and ¢ : [0,1] — X is a 7-continuous parametrization of J then ¢ is
t-continuous; hence J(X,7) C J(X).

Conversely if J € J(X) then J is t-compact hence 7-closed, so §-complete. Moreover if
 :[0,1] — X is a t-continuous parametrization of J, then by the uniform continuity of ¢, for
any € > 0 we can find a covering of J by a finite family (J;);<x of arcs of d-diameter, hence
of d-diameter, < €. So J is d-complete and J-precompact, hence 7-compact. It follows that
JGJ(X7T)aHd’T‘J:t|J. O

For any set A C X and any € > 0 let T.(A) = {T € T(A) : diam(T) < €}. We recall that
for an arc-wise connected set, in particular for a simple triod, the d-diameter and the J-diameter
are equal. If S C T(A) we shall say that:

— & is an e-total subset of T(A) if for all T € TZ(A) there exists S € SNT(A)s. t. SNT # 0

— S is a total subset of T(A) if S is e-total for any € > 0.

Lemma 4. T(A) contains a countable total subset.

Proof. For any € > 0 fix a maximal family S, of pairwise disjoint simple triods in 7:(A). Then
each S is an e-total subset of 7(A), so by Moore’s Lemma S, is countable. Hence S = J,, Sz
is a total countable subset of T (A). O

Lemma 5. If S is a total subset of T(A) then the set c(S) is T-dense in c(T (A)).

Proof. Let U be a d-open ball of center g € A and radius r, such that U N¢c(T(A)) # 0. Fix
2
T € T(A) and n > 0 such that §(xo, cr) + —<r Replacing T by a subtriod (necessarily with

1
the same center) we may suppose that diam7T < —. Since S is a total subset of 7(A) there
n

1
exists some S € S with diam(S) < -~ such that SNT # (. Then for any z € S NT we have
d(zo,cs) < 6(mg, cr) + d(er, z) + 5(z, cs) < r hence U Nc(S) # 0. O

We now fix a triodic arc-wise component C in X. Let R = ¢(7(C)) be the set of all centers of
simple triods in C, and S = R’ be the 7-closure of R. Since C is 7-closed in X then R C S C C,
and since C' is an arc-wise component then

TC)={TeT(X): TCCy={TeT(X): TNC +0}

We recall that C is analytic, so since 7 (X) is a Borel subset of K(X), it follows from the previous
equality that 7(C) is analytic, and since the mapping c is Borel then R = ¢(7(C)) is an analytic
subset of X, and one can easily derive from this that S is an analytic subset of X too. However
we have the following:

Lemma 6. (S,7) is a Polish space, and S is a Borel subset of X .

Proof. (S,0) is a complete metric space and it follows from Lemmas 4 and 5 that the space (R, §)
is separable, hence (5, 7) is a Polish space. So (S,t) is an injective continuous image of (S, 7),
hence (5,t) is an absolute Borel space, in particular S is a Borel subset of X. O

Lemma 7. If J,J' are two arcs such that J ¢ J', JNJ # 0 and JNJ' ¢ e(J) then TN
contains the center of some simple triod.
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Proof. By hypothesis F' = J N J’ is a proper closed subset of J which meets J. So there exists

some ¢ € J which is the endpoint of some connected component of J\ F. Then ¢ is the center of
a simple triod of the form J U J” with J” C J’ and ¢ € e(J"). O

Lemma 8. Let Bg = {(z,J) € X x J(X); e(J) = {z,y} and JNS = {y}}. Then
a) Bg is Borel.
b) Vo e X, card (Bs(z)) < 2.

In particular the projection w(Bg) of Bs on X is Borel.

Proof. a) Observe that Bg is the complement in X x J(X) of the projection of the set:

A= {(m,J,z) EXXT(X)xX: 3ie{0,1}, ei(J) =z, er_s(J) ESandeJﬁS\e(J)}

which is clearly Borel and all its sections A(z,JJ) = J NS are o-compact, hence by the classical
Arsenin-Kunugui Theorem Bg is Borel.

b) Suppose that (x,.J) € Bg: since J NS # 0 and S C C then J C C; and since Jns= 0
then J does not contain the center of any simple triod in C. So if (z,J) and (x,J’) € Bg with
J # J' then by Lemma 7 we necessarily have JNJ' = {z}, or else JNJ' = e(J) = e(J') = {z,y}.
It follows that Bg(z) = {J, J'} for otherwise z would be the center of a simple triod contained
in C, which is impossible since x ¢ S and a fortiori = ¢ R.

The last part of the conclusion follows then from part b) and again the Arsenin-Kunugui
Theorem. ]

Lemma 9. C = SUn(Bg).

Proof. If € SUm(Bg) then z € S or x can be joined to an element of S by an arc, so since
S C C then z € C.

Conversely fix any element z € C; if & ¢ S there exists an arc I with e(l) = {x, 20}, hence
xz €I\ SandxzyelInS. Since SNI is a closed subset of I, there exists a sub-arc J of I such

that e(J) = {z,y} with y € S, and (J \ {y}) NS = 0, hence Jns = 0; so x € m(Bg). O

It follows from Lemmas 6, 8, 9 that any triodic arc-wise component of X is Borel, which
finishes the proof of Theorem 1. O

Note that given any separable metrizable space X, if we set:

X () is the set of all quasi-isolated points,
X=XOuxMyux® where X is the union of all curve arc-wise components,
X ®) is the union of all triodic arc-wise components.

then for any x € X we have:

r€X® «—= Vye X, z=yor (z,y) € Ex

r€X® = ITecT(X), 2T
So if X is Polish, since the space T (X) is Borel and the equivalence relation Ex is analytic, then
X©) is coanalytic and X2 is analytic, and in this general setting the set X(!) appears as the
difference of two analytic sets.

Proposition 10. Suppose that X is Polish. If X is Borel then X and X are Borel.
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Proof. By assumption Y = X\ X® = X yXx ™ is Borel hence the set H = {(z,J) € Y xJ(X) :
x € J} is Borel too, and X(1) is the projection of H on the first factor. Moreover if z € X ) then
E(x) = U, e, T Hy is the increasing union of a countable family of arcs H,, hence the section
H(z) = Upeo, T J(Hy) is o-compact. It follows then from Arsenin-Kunugui Theorem that the
set X1 is Borel, so X(© = X\ (XM U X)) is Borel too. a

It follows then from Theorem 1:

Corollary 11. If X is a G subset of the plane then the three sets X©, X1 X2 gre Borel.

Remarks 12. (1) The proof of Theorem 1 does not give any bound on the Borel rank of Fx,
which is most likely unbounded. However the situation is totally unclear concerning triodic arc-
wise components, even in the compact case (we recall that non-triodic arc-wise components are
all o-compact).

(2) One can derive from Williams’ work in [7] the construction of planar continua with an arc-
wise component which is an F,s5\ Gs, set. The reader can also find in [5] an explicit geometrical
example, by Malicki, of such a continuum.

(3) The same boundedness questions can be considered also for the Borel decomposition X =
Xy Xx®yX® of aplanar G5 (or compact) set X. Note that by Moore’s Lemma a uniform
bound for the Borel rank of arc-wise components provides a uniform bound for rank of the set
X @) but has no impact on the rank of the sets X(© and XM,

(4) One can also derive from [7] the construction of a planar continuum K such that K (%)
(which by Corollary 11 is Borel) is not an F,s set.

(5) Fix an enumeration (g, )ne, for the set Q of all rational numbers in [0, 1], let P = [0,1]\ Q
and consider the Sierpinski function f : P — [—1,1] defined by f(z) = 3_, 5, 27" Lsin

-z
Then f is clearly continuous and the closure in [0, 1] x [—1, 1] of the graph of f is a comggct set
K with no triodic arc-wise component and K = {(a, f(a)); a € P} ~# P is a G5 \ K, set,
hence K = K\ K© is a K, \ Gs set.

(6) Since the submission of the present paper we were able to improve Theorem 1 by proving
that under the same hypothesis there exists a Borel function ® : Ex — J wich assigns to any
pair (x,y) of distinct elements in Ex, an arc J with endpoints {z,y}
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