
ON THE ARC-WISE CONNECTION RELATION IN THE PLANE

GABRIEL DEBS AND JEAN SAINT RAYMOND

Abstract. We prove that the arc-wise connection relation in a Gδ subset of the plane is Borel.

Let X be a separable metrizable space. By an arc we mean as usual a compact space home-
omorphic to the unit interval I = [0, 1]. We recall that the set J (X) of all arcs in X is a Borel
subset of the space K(X) of all compact subsets of X in the Vietoris topology (see [2]). In par-
ticular if X is a Polish space then K(X) is Polish too, hence J (X) is an absolute Borel space,
and it follows that the arc-wise connectedness equivalence relation EX in X is analytic.

In [3] Kunen and Starbird constructed a compact connected set K ⊂ R3 with an (analytic)
non Borel arc component, hence with EK non Borel. This result can be strengthened in various
directions, for example one can impose that all components of K are non Borel ([4]) or that all
components of K are Borel but EK is non Borel ([1]). However in all these constructions working
in a three dimensional space is fundamental, and in ([3], Problem 1) Kunen and Starbird asked:

Question: Is there a compact connected set K ⊂ R2 with a non Borel arc-wise component?

In fact this question is actually equivalent to ask whether the equivalence relation EK itself is
Borel. Indeed Becker and Pol showed ([2], Proposition 5.1) that for a Gδ subset X of the plane
if all arc components are Borel then the equivalence relation EX is Borel. They also pointed out
that no example of a Gδ subset of the plane with a non Borel relation EX , is known; and the
main goal of this note is to prove:

Theorem 1. If X is any Gδ subset of the plane then the equivalence relation EX is Borel.

Let us first fix some notation and recall a few basic facts.

Arcs: For an arc J we denote by e(J) the set of its endpoints and we set
◦
J = J \ e(J).

The mapping e : J 7→ e(J) from J (X) to K(X) is Borel, even of the first Baire class. Also if
we endow X with some Borel total ordering < (via any Borel embedding of X in 2ω) and set
e0(J) = min(e(J)) and e1(J) = max(e(J)) then the mappings ei : J (X) → X are also Borel. We
also recall that given any path in some space X, that is a continuous, non necessarily one-to-one,
mapping φ : [0, 1] → X, there exists an arc J ⊂ φ([0, 1]) such that e(J) = φ({0, 1}).

Triods: By a simple triod in a space X we will mean a compact subset T = J0 ∪ J1 ∪ J2 which
is the union of three arcs Ji such that:

∀ i ̸= j, Ji ∩ Jj = {cT }.
The arcs Ji, which are uniquely determined up to a permutation, are called the branches of T ;
and cT is called the center of T .

Notice that this notion is more restrictive than Moore’s initial notion of triod introduced in
[6] where the branches Ji are only assumed to be irreducible continua. In particular since the set
J (X) of all arcs is a Borel subset of K(X) and the ∪ and ∩ operations on K(X) are Borel, it
follows from the unicity of the decomposition of a simple triod, that if X is Polish then the set
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T (X) of all simple triods in X is a Borel subset of K(X) and the mapping c : T → X, which
assigns to any simple triod T its center cT , is Borel. We also recall the fundamental property of
planar triods (see [6]):

Lemma. (Moore) Any family of pairwise disjoint triods in the plane is countable.

Arc-wise components: If C is an arc-wise component in some separable metrizable space X
then:

– either C = {c} is a singleton and we shall then say that c is a quasi-isolated point in X,
– or C admits a one-to-one continuous parametrization φ : I → C where I is a (closed, open,

half-open) interval in R or the unit circle, and we shall then say that C is a curve component,
– or else C contains a simple triod and we shall then say that C is a triodic component.

In particular any non triodic arc-wise component is σ-compact. For more details we refer the
reader to [2].

Proof of Theorem 1: By ([2], Proposition 5.1) we only need to prove that any triodic arc-wise
component of X is Borel.

Since X is a Polish space we can fix a complete distance d compatible with the topology of X,
and define δ : X ×X → [0,∞] by:

δ(x, y) = inf{diam(H) : H arc-wise connected s. t. {x, y} ⊂ H ⊂ X}

where inf ∅ = ∞. So if x ̸= y are in the same arc-wise component then

δ(x, y) = inf{diam(J) : J ∈ J (X) s.t. e(J) = {x, y}} < ∞

and if not then δ(x, y) = ∞. Moreover setting by convention α +∞ = ∞ for any α ∈ [0,∞] we
have for all x, y, z ∈ X

δ(x, z) ≤ δ(x, y) + δ(y, z)

Hence δ induces a metric on each arc-wise component, and defines a topology τ on X; and since
δ ≥ d then τ is finer than the initial topology t induced by R2. But unless stated otherwise all
topological notions are to be understood relatively to t. Notice that for an arc connected subset
H ⊂ X the d-diameter diam(H) and the δ-diameter are equal since for any x, y ∈ H :

d(x, y) ≤ δ(x, y) ≤ diam(H).

Lemma 2. Each arc-wise component C of X is a clopen subset of (X, τ) and the metric space
(C, δ) is complete.

Proof. If x0 ∈ C then C = {x ∈ X : δ(x, x0) < ∞} is an open subset of (X, τ), and the same
holds for any other components. So all components are open, hence closed.

Suppose that (xn) is a δ-Cauchy sequence. Since d ≤ δ then (xn) is a d-Cauchy sequence
hence converges to some x ∈ X. We can also extract from (xn) a subsequence (x′

n) satisfying
for all n > 0, δ(x′

n, x
′
n+1) < 2−n and we can fix then an arc Jn with diam(Jn) < 2−n and a

continuous function φn : [
1

n+ 1
,
1

n
] → Jn such that φn({

1

n+ 1
,
1

n
}) = {x′

n+1, x
′
n} = e(Jn). Then

for all n > 0, φ̂n =
⋃

m≥n φm defines a continuous function from ]0,
1

n
] onto

⋃
m≥n Jm; and since

limn Jn = {x} then setting φ̂n(0) = x we get a continuous path from [0,
1

n
] onto {x} ∪

⋃
m≥n Jm

such that
(
φ̂n(0), φ̂n(

1

n
)
)
= (x, xn), hence there exists an arc Ĵn ⊂ {x}∪

⋃
m≥n Jm with e(Ĵn) =

{x′
n, x}. Then diam(Ĵn) ≤

∑
m≥n diam(Jm) < 2−n+1 so δ(x′

n, x) < 2−n+1 and x is a δ-cluster

value of (xn), hence (xn) δ-converges to x, and since C is δ-closed then x ∈ C. □
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Lemma 3. J (X, τ) = J (X) and for any J ∈ J (X), t|J = τ|J .

Proof. If J ∈ J (X, τ) and φ : [0, 1] → X is a τ -continuous parametrization of J then φ is
t-continuous; hence J (X, τ) ⊂ J (X).

Conversely if J ∈ J (X) then J is t-compact hence τ -closed, so δ-complete. Moreover if
φ : [0, 1] → X is a t-continuous parametrization of J , then by the uniform continuity of φ, for
any ε > 0 we can find a covering of J by a finite family (Ji)i≤k of arcs of d-diameter, hence
of δ-diameter, < ε. So J is δ-complete and δ-precompact, hence τ -compact. It follows that
J ∈ J (X, τ) and τ|J = t|J . □

For any set A ⊂ X and any ε > 0 let Tε(A) = {T ∈ T (A) : diam(T ) < ε}. We recall that
for an arc-wise connected set, in particular for a simple triod, the d-diameter and the δ-diameter
are equal. If S ⊂ T (A) we shall say that:

– S is an ε-total subset of T (A) if for all T ∈ Tε(A) there exists S ∈ S ∩ Tε(A) s. t. S ∩ T ̸= ∅
– S is a total subset of T (A) if S is ε-total for any ε > 0.

Lemma 4. T (A) contains a countable total subset.

Proof. For any ε > 0 fix a maximal family Sε of pairwise disjoint simple triods in Tε(A). Then
each Sε is an ε-total subset of T (A), so by Moore’s Lemma Sε is countable. Hence S =

⋃
n S 1

n

is a total countable subset of T (A). □

Lemma 5. If S is a total subset of T (A) then the set c(S) is τ -dense in c(T (A)).

Proof. Let U be a δ-open ball of center x0 ∈ A and radius r, such that U ∩ c(T (A)) ̸= ∅. Fix

T ∈ T (A) and n > 0 such that δ(x0, cT ) +
2

n
< r. Replacing T by a subtriod (necessarily with

the same center) we may suppose that diamT <
1

n
. Since S is a total subset of T (A) there

exists some S ∈ S with diam(S) <
1

n
such that S ∩ T ̸= ∅. Then for any x ∈ S ∩ T we have

δ(x0, cS) ≤ δ(x0, cT ) + δ(cT , x) + δ(x, cS) < r hence U ∩ c(S) ̸= ∅. □

We now fix a triodic arc-wise component C in X. Let R = c(T (C)) be the set of all centers of

simple triods in C, and S = R
τ
be the τ -closure of R. Since C is τ -closed in X then R ⊂ S ⊂ C,

and since C is an arc-wise component then

T (C) = {T ∈ T (X) : T ⊂ C} = {T ∈ T (X) : T ∩ C ̸= ∅}

We recall that C is analytic, so since T (X) is a Borel subset of K(X), it follows from the previous
equality that T (C) is analytic, and since the mapping c is Borel then R = c(T (C)) is an analytic
subset of X, and one can easily derive from this that S is an analytic subset of X too. However
we have the following:

Lemma 6. (S, τ) is a Polish space, and S is a Borel subset of X.

Proof. (S, δ) is a complete metric space and it follows from Lemmas 4 and 5 that the space (R, δ)
is separable, hence (S, τ) is a Polish space. So (S, t) is an injective continuous image of (S, τ),
hence (S, t) is an absolute Borel space, in particular S is a Borel subset of X. □

Lemma 7. If J, J ′ are two arcs such that J ̸⊂ J ′, J ∩ J ′ ̸= ∅ and J ∩ J ′ ̸⊂ e(J) then
◦
J ∩ J ′

contains the center of some simple triod.
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Proof. By hypothesis F = J ∩ J ′ is a proper closed subset of J which meets
◦
J . So there exists

some c ∈
◦
J which is the endpoint of some connected component of J \F . Then c is the center of

a simple triod of the form J ∪ J ′′ with J ′′ ⊂ J ′ and c ∈ e(J ′′). □

Lemma 8. Let BS =
{
(x, J) ∈ X × J (X); e(J) = {x, y} and J ∩ S = {y}

}
. Then

a) BS is Borel.
b) ∀x ∈ X, card

(
BS(x)

)
≤ 2.

In particular the projection π(BS) of BS on X is Borel.

Proof. a) Observe that BS is the complement in X × J (X) of the projection of the set:

A =
{
(x, J, z) ∈ X × J (X)×X : ∃ i ∈ {0, 1} , ei(J) = x , e1−i(J) ∈ S and z ∈ J ∩ S \ e(J)

}
which is clearly Borel and all its sections A(x, J) =

◦
J ∩ S are σ-compact, hence by the classical

Arsenin-Kunugui Theorem BS is Borel.

b) Suppose that (x, J) ∈ BS : since J ∩ S ̸= ∅ and S ⊂ C then J ⊂ C; and since
◦
J ∩ S = ∅

then
◦
J does not contain the center of any simple triod in C. So if (x, J) and (x, J ′) ∈ BS with

J ̸= J ′ then by Lemma 7 we necessarily have J ∩J ′ = {x}, or else J ∩J ′ = e(J) = e(J ′) = {x, y}.
It follows that BS(x) = {J, J ′} for otherwise x would be the center of a simple triod contained
in C, which is impossible since x ̸∈ S and a fortiori x ̸∈ R.

The last part of the conclusion follows then from part b) and again the Arsenin-Kunugui
Theorem. □

Lemma 9. C = S ∪ π(BS).

Proof. If x ∈ S ∪ π(BS) then x ∈ S or x can be joined to an element of S by an arc, so since
S ⊂ C then x ∈ C.

Conversely fix any element x ∈ C; if x ̸∈ S there exists an arc I with e(I) = {x, x0}, hence
x ∈ I \ S and x0 ∈ I ∩ S. Since S ∩ I is a closed subset of I, there exists a sub-arc J of I such

that e(J) = {x, y} with y ∈ S, and (J \ {y}) ∩ S = ∅, hence
◦
J ∩ S = ∅; so x ∈ π(BS). □

It follows from Lemmas 6, 8, 9 that any triodic arc-wise component of X is Borel, which
finishes the proof of Theorem 1. □

Note that given any separable metrizable space X, if we set:

X = X(0) ∪X(1) ∪X(2) where


X(0) is the set of all quasi-isolated points,
X(1) is the union of all curve arc-wise components,
X(2) is the union of all triodic arc-wise components.

then for any x ∈ X we have:

x ∈ X(0) ⇐⇒ ∀ y ∈ X, x = y or (x, y) ̸∈ EX

x ∈ X(2) ⇐⇒ ∃T ∈ T (X), x ∈ T

So if X is Polish, since the space T (X) is Borel and the equivalence relation EX is analytic, then
X(0) is coanalytic and X(2) is analytic, and in this general setting the set X(1) appears as the
difference of two analytic sets.

Proposition 10. Suppose that X is Polish. If X(2) is Borel then X(0) and X(1) are Borel.
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Proof. By assumption Y = X\X(2) = X(0)∪X(1) is Borel hence the setH = {(x, J) ∈ Y ×J (X) :
x ∈ J} is Borel too, and X(1) is the projection of H on the first factor. Moreover if x ∈ X(1) then
E(x) =

⋃
n∈ω ↑ Hn is the increasing union of a countable family of arcs Hn, hence the section

H(x) =
⋃

n∈ω ↑ J (Hn) is σ-compact. It follows then from Arsenin-Kunugui Theorem that the

set X(1) is Borel, so X(0) = X \ (X(1) ∪X(2)) is Borel too. □

It follows then from Theorem 1:

Corollary 11. If X is a Gδ subset of the plane then the three sets X(0), X(1), X(2) are Borel.

Remarks 12. (1) The proof of Theorem 1 does not give any bound on the Borel rank of EX ,
which is most likely unbounded. However the situation is totally unclear concerning triodic arc-
wise components, even in the compact case (we recall that non-triodic arc-wise components are
all σ-compact).

(2) One can derive from Williams’ work in [7] the construction of planar continua with an arc-
wise component which is an F σδ \Gδσ set. The reader can also find in [5] an explicit geometrical
example, by Malicki, of such a continuum.

(3) The same boundedness questions can be considered also for the Borel decomposition X =
X(0) ∪X(1) ∪X(2) of a planar Gδ (or compact) set X. Note that by Moore’s Lemma a uniform
bound for the Borel rank of arc-wise components provides a uniform bound for rank of the set
X(2), but has no impact on the rank of the sets X(0) and X(1).

(4) One can also derive from [7] the construction of a planar continuum K such that K(0)

(which by Corollary 11 is Borel) is not an F σδ set.

(5) Fix an enumeration (qn)n∈ω for the set Q of all rational numbers in [0, 1], let P = [0, 1] \Q
and consider the Sierpinski function f : P → [−1, 1] defined by f(x) =

∑
n≥0 2

−n−1 sin
1

qn − x
.

Then f is clearly continuous and the closure in [0, 1]× [−1, 1] of the graph of f is a compact set
K with no triodic arc-wise component and K(0) = {

(
α, f(α)

)
; α ∈ P} ≈ P is a Gδ \ Kσ set,

hence K(1) = K \K(0) is a Kσ \Gδ set.

(6) Since the submission of the present paper we were able to improve Theorem 1 by proving
that under the same hypothesis there exists a Borel function Φ : EX → J wich assigns to any
pair (x, y) of distinct elements in EX , an arc J with endpoints {x, y}
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