ON THE ARC-WISE CONNECTION RELATION IN THE PLANE

GABRIEL DEBS AND JEAN SAINT RAYMOND

Abstract. We prove that the arc-wise connection relation in a \boldsymbol{G}_{δ} subset of the plane is Borel.

Let X be a separable metrizable space. By an arc we mean as usual a compact space homeomorphic to the unit interval $\mathbb{I}=[0,1]$. We recall that the set $\mathcal{J}(X)$ of all arcs in X is a Borel subset of the space $\mathcal{K}(X)$ of all compact subsets of X in the Vietoris topology (see [2]). In particular if X is a Polish space then $\mathcal{K}(X)$ is Polish too, hence $\mathcal{J}(X)$ is an absolute Borel space, and it follows that the arc-wise connectedness equivalence relation E_{X} in X is analytic.

In [3] Kunen and Starbird constructed a compact connected set $K \subset \mathbb{R}^{3}$ with an (analytic) non Borel arc component, hence with E_{K} non Borel. This result can be strengthened in various directions, for example one can impose that all components of K are non Borel ([4]) or that all components of K are Borel but E_{K} is non Borel ([1]). However in all these constructions working in a three dimensional space is fundamental, and in ([3], Problem 1) Kunen and Starbird asked: Question: Is there a compact connected set $K \subset \mathbb{R}^{2}$ with a non Borel arc-wise component?

In fact this question is actually equivalent to ask whether the equivalence relation E_{K} itself is Borel. Indeed Becker and Pol showed ([2], Proposition 5.1) that for a \boldsymbol{G}_{δ} subset X of the plane if all arc components are Borel then the equivalence relation E_{X} is Borel. They also pointed out that no example of a \boldsymbol{G}_{δ} subset of the plane with a non Borel relation E_{X}, is known; and the main goal of this note is to prove:
Theorem 1. If X is any \boldsymbol{G}_{δ} subset of the plane then the equivalence relation E_{X} is Borel.
Let us first fix some notation and recall a few basic facts.
Arcs: For an arc J we denote by $e(J)$ the set of its endpoints and we set $\stackrel{\circ}{J}=J \backslash e(J)$. The mapping $e: J \mapsto e(J)$ from $\mathcal{J}(X)$ to $\mathcal{K}(X)$ is Borel, even of the first Baire class. Also if we endow X with some Borel total ordering $<$ (via any Borel embedding of X in 2^{ω}) and set $e_{0}(J)=\min (e(J))$ and $e_{1}(J)=\max (e(J))$ then the mappings $e_{i}: \mathcal{J}(X) \rightarrow X$ are also Borel. We also recall that given any path in some space X, that is a continuous, non necessarily one-to-one, mapping $\varphi:[0,1] \rightarrow X$, there exists an arc $J \subset \varphi([0,1])$ such that $e(J)=\varphi(\{0,1\})$.

Triods: By a simple triod in a space X we will mean a compact subset $T=J_{0} \cup J_{1} \cup J_{2}$ which is the union of three arcs J_{i} such that:

$$
\forall i \neq j, \quad J_{i} \cap J_{j}=\left\{c_{T}\right\}
$$

The $\operatorname{arcs} J_{i}$, which are uniquely determined up to a permutation, are called the branches of T; and c_{T} is called the center of T.

Notice that this notion is more restrictive than Moore's initial notion of triod introduced in [6] where the branches J_{i} are only assumed to be irreducible continua. In particular since the set $\mathcal{J}(X)$ of all arcs is a Borel subset of $\mathcal{K}(X)$ and the \cup and \cap operations on $\mathcal{K}(X)$ are Borel, it follows from the unicity of the decomposition of a simple triod, that if X is Polish then the set

2020 AMS Subject Classification. 54H05, 03E15.
Key words and phrases. Borel sets, Arc-connectedness, plane topology .
$\mathcal{T}(X)$ of all simple triods in X is a Borel subset of $\mathcal{K}(X)$ and the mapping $\mathbf{c}: \mathcal{T} \rightarrow X$, which assigns to any simple triod T its center c_{T}, is Borel. We also recall the fundamental property of planar triods (see [6]):
Lemma. (Moore) Any family of pairwise disjoint triods in the plane is countable.
Arc-wise components: If C is an arc-wise component in some separable metrizable space X then:

- either $C=\{c\}$ is a singleton and we shall then say that c is a quasi-isolated point in X,
- or C admits a one-to-one continuous parametrization $\varphi: I \rightarrow C$ where I is a (closed, open, half-open) interval in \mathbb{R} or the unit circle, and we shall then say that C is a curve component,
- or else C contains a simple triod and we shall then say that C is a triodic component.

In particular any non triodic arc-wise component is σ-compact. For more details we refer the reader to [2].

Proof of Theorem 1: By ([2], Proposition 5.1) we only need to prove that any triodic arc-wise component of X is Borel.

Since X is a Polish space we can fix a complete distance d compatible with the topology of X, and define $\delta: X \times X \rightarrow[0, \infty]$ by:

$$
\delta(x, y)=\inf \{\operatorname{diam}(H): H \text { arc-wise connected s. t. }\{x, y\} \subset H \subset X\}
$$

where $\inf \emptyset=\infty$. So if $x \neq y$ are in the same arc-wise component then

$$
\delta(x, y)=\inf \{\operatorname{diam}(J): J \in \mathcal{J}(X) \text { s.t. } e(J)=\{x, y\}\}<\infty
$$

and if not then $\delta(x, y)=\infty$. Moreover setting by convention $\alpha+\infty=\infty$ for any $\alpha \in[0, \infty]$ we have for all $x, y, z \in X$

$$
\delta(x, z) \leq \delta(x, y)+\delta(y, z)
$$

Hence δ induces a metric on each arc-wise component, and defines a topology τ on X; and since $\delta \geq d$ then τ is finer than the initial topology t induced by \mathbb{R}^{2}. But unless stated otherwise all topological notions are to be understood relatively to t. Notice that for an arc connected subset $H \subset X$ the d-diameter $\operatorname{diam}(H)$ and the δ-diameter are equal since for any $x, y \in H:$

$$
d(x, y) \leq \delta(x, y) \leq \operatorname{diam}(H)
$$

Lemma 2. Each arc-wise component C of X is a clopen subset of (X, τ) and the metric space (C, δ) is complete.
Proof. If $x_{0} \in C$ then $C=\left\{x \in X: \delta\left(x, x_{0}\right)<\infty\right\}$ is an open subset of (X, τ), and the same holds for any other components. So all components are open, hence closed.

Suppose that $\left(x_{n}\right)$ is a δ-Cauchy sequence. Since $d \leq \delta$ then $\left(x_{n}\right)$ is a d-Cauchy sequence hence converges to some $x \in X$. We can also extract from $\left(x_{n}\right)$ a subsequence $\left(x_{n}^{\prime}\right)$ satisfying for all $n>0, \delta\left(x_{n}^{\prime}, x_{n+1}^{\prime}\right)<2^{-n}$ and we can fix then an arc J_{n} with $\operatorname{diam}\left(J_{n}\right)<2^{-n}$ and a continuous function $\varphi_{n}:\left[\frac{1}{n+1}, \frac{1}{n}\right] \rightarrow J_{n}$ such that $\varphi_{n}\left(\left\{\frac{1}{n+1}, \frac{1}{n}\right\}\right)=\left\{x_{n+1}^{\prime}, x_{n}^{\prime}\right\}=e\left(J_{n}\right)$. Then for all $n>0, \hat{\varphi}_{n}=\bigcup_{m \geq n} \varphi_{m}$ defines a continuous function from $] 0, \frac{1}{n}$] onto $\bigcup_{m \geq n} J_{m}$; and since $\lim _{n} J_{n}=\{x\}$ then setting $\hat{\varphi}_{n}(0)=x$ we get a continuous path from $\left[0, \frac{1}{n}\right]$ onto $\{x\} \cup \bigcup_{m \geq n} J_{m}$ such that $\left(\hat{\varphi}_{n}(0), \hat{\varphi}_{n}\left(\frac{1}{n}\right)\right)=\left(x, x_{n}\right)$, hence there exists an $\operatorname{arc} \hat{J}_{n} \subset\{x\} \cup \bigcup_{m \geq n} J_{m}$ with $e\left(\hat{J}_{n}\right)=$ $\left\{x_{n}^{\prime}, x\right\}$. Then $\operatorname{diam}\left(\hat{J}_{n}\right) \leq \sum_{m \geq n} \operatorname{diam}\left(J_{m}\right)<2^{-n+1}$ so $\delta\left(x_{n}^{\prime}, x\right)<2^{-n+1}$ and x is a δ-cluster value of $\left(x_{n}\right)$, hence $\left(x_{n}\right) \delta$-converges to x, and since C is δ-closed then $x \in C$.

Lemma 3. $\mathcal{J}(X, \tau)=\mathcal{J}(X)$ and for any $J \in \mathcal{J}(X), t_{\mid J}=\tau_{\mid J}$.
Proof. If $J \in \mathcal{J}(X, \tau)$ and $\varphi:[0,1] \rightarrow X$ is a τ-continuous parametrization of J then φ is t-continuous; hence $\mathcal{J}(X, \tau) \subset \mathcal{J}(X)$.

Conversely if $J \in \mathcal{J}(X)$ then J is t-compact hence τ-closed, so δ-complete. Moreover if $\varphi:[0,1] \rightarrow X$ is a t-continuous parametrization of J, then by the uniform continuity of φ, for any $\varepsilon>0$ we can find a covering of J by a finite family $\left(J_{i}\right)_{i \leq k}$ of arcs of d-diameter, hence of δ-diameter, $<\varepsilon$. So J is δ-complete and δ-precompact, hence τ-compact. It follows that $J \in \mathcal{J}(X, \tau)$ and $\tau_{\mid J}=t_{\mid J}$.

For any set $A \subset X$ and any $\varepsilon>0$ let $\mathcal{T}_{\varepsilon}(A)=\{T \in \mathcal{T}(A): \operatorname{diam}(T)<\varepsilon\}$. We recall that for an arc-wise connected set, in particular for a simple triod, the d-diameter and the δ-diameter are equal. If $\mathcal{S} \subset \mathcal{T}(A)$ we shall say that:
$-\mathcal{S}$ is an ε-total subset of $\mathcal{T}(A)$ if for all $T \in \mathcal{T}_{\varepsilon}(A)$ there exists $S \in \mathcal{S} \cap \mathcal{T}_{\varepsilon}(A)$ s. t. $S \cap T \neq \emptyset$ - \mathcal{S} is a total subset of $\mathcal{T}(A)$ if \mathcal{S} is ε-total for any $\varepsilon>0$.

Lemma 4. $\mathcal{T}(A)$ contains a countable total subset.
Proof. For any $\varepsilon>0$ fix a maximal family $\mathcal{S}_{\varepsilon}$ of pairwise disjoint simple triods in $\mathcal{T}_{\varepsilon}(A)$. Then each $\mathcal{S}_{\varepsilon}$ is an ε-total subset of $\mathcal{T}(A)$, so by Moore's Lemma $\mathcal{S}_{\varepsilon}$ is countable. Hence $\mathcal{S}=\bigcup_{n} \mathcal{S}_{\frac{1}{n}}$ is a total countable subset of $\mathcal{T}(A)$.

Lemma 5. If \mathcal{S} is a total subset of $\mathcal{T}(A)$ then the set $\mathbf{c}(\mathcal{S})$ is τ-dense in $\mathbf{c}(\mathcal{T}(A))$.
Proof. Let U be a δ-open ball of center $x_{0} \in A$ and radius r, such that $U \cap \mathbf{c}(\mathcal{T}(A)) \neq \emptyset$. Fix $T \in \mathcal{T}(A)$ and $n>0$ such that $\delta\left(x_{0}, c_{T}\right)+\frac{2}{n}<r$. Replacing T by a subtriod (necessarily with the same center) we may suppose that $\operatorname{diam} T<\frac{1}{n}$. Since \mathcal{S} is a total subset of $\mathcal{T}(A)$ there exists some $S \in \mathcal{S}$ with $\operatorname{diam}(S)<\frac{1}{n}$ such that $S \cap T \neq \emptyset$. Then for any $x \in S \cap T$ we have $\delta\left(x_{0}, c_{S}\right) \leq \delta\left(x_{0}, c_{T}\right)+\delta\left(c_{T}, x\right)+\delta\left(x, c_{S}\right)<r$ hence $U \cap \mathbf{c}(\mathcal{S}) \neq \emptyset$.

We now fix a triodic arc-wise component C in X. Let $R=\mathbf{c}(\mathcal{T}(C))$ be the set of all centers of simple triods in C, and $S=\bar{R}^{\tau}$ be the τ-closure of R. Since C is τ-closed in X then $R \subset S \subset C$, and since C is an arc-wise component then

$$
\mathcal{T}(C)=\{T \in \mathcal{T}(X): T \subset C\}=\{T \in \mathcal{T}(X): T \cap C \neq \emptyset\}
$$

We recall that C is analytic, so since $\mathcal{T}(X)$ is a Borel subset of $\mathcal{K}(X)$, it follows from the previous equality that $\mathcal{T}(C)$ is analytic, and since the mapping \mathbf{c} is Borel then $R=\mathbf{c}(\mathcal{T}(C))$ is an analytic subset of X, and one can easily derive from this that S is an analytic subset of X too. However we have the following:

Lemma 6. (S, τ) is a Polish space, and S is a Borel subset of X.
Proof. (S, δ) is a complete metric space and it follows from Lemmas 4 and 5 that the space (R, δ) is separable, hence (S, τ) is a Polish space. So (S, t) is an injective continuous image of (S, τ), hence (S, t) is an absolute Borel space, in particular S is a Borel subset of X.

Lemma 7. If J, J^{\prime} are two arcs such that $J \not \subset J^{\prime}, J \cap J^{\prime} \neq \emptyset$ and $J \cap J^{\prime} \not \subset e(J)$ then $\stackrel{\circ}{J} \cap J^{\prime}$ contains the center of some simple triod.

Proof. By hypothesis $F=J \cap J^{\prime}$ is a proper closed subset of J which meets $\stackrel{\circ}{J}$. So there exists some $c \in \stackrel{\circ}{J}$ which is the endpoint of some connected component of $J \backslash F$. Then c is the center of a simple triod of the form $J \cup J^{\prime \prime}$ with $J^{\prime \prime} \subset J^{\prime}$ and $c \in e\left(J^{\prime \prime}\right)$.

Lemma 8. Let $\mathcal{B}_{S}=\{(x, J) \in X \times \mathcal{J}(X) ; e(J)=\{x, y\}$ and $J \cap S=\{y\}\}$. Then
a) \mathcal{B}_{S} is Borel.
b) $\forall x \in X, \operatorname{card}\left(\mathcal{B}_{S}(x)\right) \leq 2$.

In particular the projection $\pi\left(\mathcal{B}_{S}\right)$ of \mathcal{B}_{S} on X is Borel.
Proof. a) Observe that \mathcal{B}_{S} is the complement in $X \times \mathcal{J}(X)$ of the projection of the set:

$$
\mathcal{A}=\left\{(x, J, z) \in X \times \mathcal{J}(X) \times X: \exists i \in\{0,1\}, e_{i}(J)=x, e_{1-i}(J) \in S \text { and } z \in J \cap S \backslash e(J)\right\}
$$

which is clearly Borel and all its sections $\mathcal{A}(x, J)=\stackrel{\circ}{J} \cap S$ are σ-compact, hence by the classical Arsenin-Kunugui Theorem \mathcal{B}_{S} is Borel.
b) Suppose that $(x, J) \in \mathcal{B}_{S}$: since $J \cap S \neq \emptyset$ and $S \subset C$ then $J \subset C$; and since $\stackrel{\circ}{J} \cap S=\emptyset$ then $\stackrel{\circ}{J}$ does not contain the center of any simple triod in C. So if (x, J) and $\left(x, J^{\prime}\right) \in \mathcal{B}_{S}$ with $J \neq J^{\prime}$ then by Lemma 7 we necessarily have $J \cap J^{\prime}=\{x\}$, or else $J \cap J^{\prime}=e(J)=e\left(J^{\prime}\right)=\{x, y\}$. It follows that $\mathcal{B}_{S}(x)=\left\{J, J^{\prime}\right\}$ for otherwise x would be the center of a simple triod contained in C, which is impossible since $x \notin S$ and a fortiori $x \notin R$.

The last part of the conclusion follows then from part b) and again the Arsenin-Kunugui Theorem.

Lemma 9. $C=S \cup \pi\left(\mathcal{B}_{S}\right)$.
Proof. If $x \in S \cup \pi\left(\mathcal{B}_{S}\right)$ then $x \in S$ or x can be joined to an element of S by an arc, so since $S \subset C$ then $x \in C$.

Conversely fix any element $x \in C$; if $x \notin S$ there exists an arc I with $e(I)=\left\{x, x_{0}\right\}$, hence $x \in I \backslash S$ and $x_{0} \in I \cap S$. Since $S \cap I$ is a closed subset of I, there exists a sub-arc J of I such that $e(J)=\{x, y\}$ with $y \in S$, and $(J \backslash\{y\}) \cap S=\emptyset$, hence $\stackrel{\circ}{J} \cap S=\emptyset$; so $x \in \pi\left(\mathcal{B}_{S}\right)$.

It follows from Lemmas $6,8,9$ that any triodic arc-wise component of X is Borel, which finishes the proof of Theorem 1.

Note that given any separable metrizable space X, if we set:

$$
X=X^{(0)} \cup X^{(1)} \cup X^{(2)} \quad \text { where }\left\{\begin{array}{l}
X^{(0)} \text { is the set of all quasi-isolated points, } \\
X^{(1)} \text { is the union of all curve arc-wise components } \\
X^{(2)} \text { is the union of all triodic arc-wise components. }
\end{array}\right.
$$

then for any $x \in X$ we have:

$$
\begin{aligned}
& x \in X^{(0)} \Longleftrightarrow \forall y \in X, x=y \text { or }(x, y) \notin E_{X} \\
& x \in X^{(2)} \Longleftrightarrow \exists T \in \mathcal{T}(X), x \in T
\end{aligned}
$$

So if X is Polish, since the space $\mathcal{T}(X)$ is Borel and the equivalence relation E_{X} is analytic, then $X^{(0)}$ is coanalytic and $X^{(2)}$ is analytic, and in this general setting the set $X^{(1)}$ appears as the difference of two analytic sets.

Proposition 10. Suppose that X is Polish. If $X^{(2)}$ is Borel then $X^{(0)}$ and $X^{(1)}$ are Borel.

Proof. By assumption $Y=X \backslash X^{(2)}=X^{(0)} \cup X^{(1)}$ is Borel hence the set $\mathcal{H}=\{(x, J) \in Y \times \mathcal{J}(X)$: $x \in J\}$ is Borel too, and $X^{(1)}$ is the projection of \mathcal{H} on the first factor. Moreover if $x \in X^{(1)}$ then $E(x)=\bigcup_{n \in \omega} \uparrow H_{n}$ is the increasing union of a countable family of arcs H_{n}, hence the section $\mathcal{H}(x)=\bigcup_{n \in \omega} \uparrow \mathcal{J}\left(H_{n}\right)$ is σ-compact. It follows then from Arsenin-Kunugui Theorem that the set $X^{(1)}$ is Borel, so $X^{(0)}=X \backslash\left(X^{(1)} \cup X^{(2)}\right)$ is Borel too.

It follows then from Theorem 1:
Corollary 11. If X is $a \boldsymbol{G}_{\delta}$ subset of the plane then the three sets $X^{(0)}, X^{(1)}, X^{(2)}$ are Borel.

Remarks 12. (1) The proof of Theorem 1 does not give any bound on the Borel rank of E_{X}, which is most likely unbounded. However the situation is totally unclear concerning triodic arcwise components, even in the compact case (we recall that non-triodic arc-wise components are all σ-compact).
(2) One can derive from Williams' work in [7] the construction of planar continua with an arcwise component which is an $\boldsymbol{F}_{\sigma \delta} \backslash \boldsymbol{G}_{\delta \sigma}$ set. The reader can also find in [5] an explicit geometrical example, by Malicki, of such a continuum.
(3) The same boundedness questions can be considered also for the Borel decomposition $X=$ $X^{(0)} \cup X^{(1)} \cup X^{(2)}$ of a planar \boldsymbol{G}_{δ} (or compact) set X. Note that by Moore's Lemma a uniform bound for the Borel rank of arc-wise components provides a uniform bound for rank of the set $X^{(2)}$, but has no impact on the rank of the sets $X^{(0)}$ and $X^{(1)}$.
(4) One can also derive from [7] the construction of a planar continuum K such that $K^{(0)}$ (which by Corollary 11 is Borel) is not an $\boldsymbol{F}_{\sigma \delta}$ set.
(5) Fix an enumeration $\left(q_{n}\right)_{n \in \omega}$ for the set \mathbb{Q} of all rational numbers in $[0,1]$, let $\mathbb{P}=[0,1] \backslash \mathbb{Q}$ and consider the Sierpinski function $f: \mathbb{P} \rightarrow[-1,1]$ defined by $f(x)=\sum_{n \geq 0} 2^{-n-1} \sin \frac{1}{q_{n}-x}$. Then f is clearly continuous and the closure in $[0,1] \times[-1,1]$ of the graph of f is a compact set K with no triodic arc-wise component and $K^{(0)}=\{(\alpha, f(\alpha)) ; \alpha \in \mathbb{P}\} \approx \mathbb{P}$ is a $\boldsymbol{G}_{\delta} \backslash \boldsymbol{K}_{\sigma}$ set, hence $K^{(1)}=K \backslash K^{(0)}$ is a $\boldsymbol{K}_{\sigma} \backslash \boldsymbol{G}_{\delta}$ set.
(6) Since the submission of the present paper we were able to improve Theorem 1 by proving that under the same hypothesis there exists a Borel function $\Phi: E_{X} \rightarrow \mathcal{J}$ wich assigns to any pair (x, y) of distinct elements in E_{X}, an arc J with endpoints $\{x, y\}$

Acknowledgment We would like to thank Roman Pol for pointing to us Williams' paper [7] and Malicki Thesis [5] mentioned above.

References

1. H. Becker, The number of path-components of a compact space, in: J.A. Makowsky, E.V. Ravve (Eds) Logic Colloquium' 95 (1995), 1-15.
2. H. Becker and R. Pol, Note on path-components in complete spaces, Top. and Appl. 114 (2001), 107-114.
3. K. Kunen and M.Starbird, Arc components in metric continua, Top. Appl. 14 (1982)167-170.
4. A. Le Donne, Arc components in metric continua, Top. Appl. 22 (1986) 83-84.
5. M. Malicki Master Thesis University of Warsaw (1999).
6. R.L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. 14 (1928) 85-88.
7. J. Williams, Regarding arc-wise accessibility in the plane, Fund.Math. 85 (1974), 134-136,
