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Abstract. In his paper [2], B. Ricceri considers, for X bounded convex subset

of the real Hilbert space H, the quantity

δX = inf
φ∈ΓX

(
sup
x∈X

(
∥x∥2 + φ(x)

)
− inf

x∈X

(
∥x∥2 + φ(x)

)
where ΓX denotes the set of real convex functions on X, and shows that

δX > 0 for X non singleton without giving any quantitative estimation of
this quantity. And he asks whether δX can be controlled by a function of the

diameter of X.

In this paper we show that δX is exactly the square of the Chebyshev

radius of X, hence is at least
diam(X)2

4
. We deduce from the main result of

[2] a quantitative statement on the zeros of a C1-operator on H with Lipschitz

derivative, and show that this statement is optimal.

Let H be a real Hilbert space and X be a convex bounded subset of H. If φ is
a real convex function on X, we will denote by θ(φ,X) the oscillation on X of the

convex function x 7→ ∥x∥2 + φ(x), so

θ(φ,X) = sup
x∈X

(
∥x∥2 + φ(x)

)
− inf

x∈X

(
∥x∥2 + φ(x)

)
,

hence δX = infφ∈ΓX
θ(φ,X). B. Ricceri shows in [2] in a rather indirect way that

δX > 0 for any convex subset of H containing more than one point. He notices also
that C. Zalinescu gave him in a private communication another indirect (and not
quantitative) proof of this result based on quite hard arguments of convex analysis.

Recall that if C is a bounded subset of some normed space E, the Chebyshev
radius (for short radius) of C is the infimum ρ of all r > 0 such that C is contained
in some ball B(x, r) for x ∈ E. So

ρ = infa∈E supx∈C ∥x− a∥ .

And a Chebyshev center (for short center) of C is any point a ∈ E such that
C ⊂ B(a, ρ). Of course there are examples where such a center does not exist or
is not unique. One can find in [1] what is well known about radius and center of
a bounded set and Jung inequalities. In particular we will use in the sequel the
following three theorems.

Theorem 1. If the Banach space E is uniformly convex (in particular if it is a
Hilbert space), any nonempty bounded subset has a unique center.
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Theorem 2. Let H be a Hilbert space and X be a bounded subset of H of center
a and radius ρ. Then for any ε > 0, a belongs to the closed convex hull of the set
of those points of X such that ∥x− a∥ ≥ ρ− ε. In particular, a ∈ conv(X).

Theorem 3. Let H be a Hilbert space and X be a bounded subset of H of center
a and radius ρ. Then ρ

√
2 ≤ diam(X) ≤ 2ρ. Moreover if H has finite dimension

d, one has even ρ ≤ diam(X)

√
d

2(d+ 1)
.

We now prove our main theorem.

Theorem 4. If X is a bounded convex subset of H having radius ρ, δX is equal to

ρ2. In particular δX ≥ diam(X)2

4
.

Proof. For the proof of this statement we need the next lemmas.

Lemma 5. Let X be a convex bounded subset of H. One has δX = δX+a and
δλX = λ2δX . Moreover if X ⊂ Y , one has δY ≥ δX .

Proof. If φ is convex on X the function φa : x 7→ φ(x− a) is convex on X + a, and

so is the function φ′
a = x 7→ φa(x) + ∥a∥2 − 2⟨a, x⟩. Then for y = x+ a ∈ X + a :

∥y∥2 + φ′
a(y) = ∥x+ a∥2 + φa(y)− ∥a∥2 + 2⟨a, y⟩

= ∥x∥2 + ∥a∥2 + 2⟨a, x⟩+ φ(x) + ∥a∥2 − 2⟨a, x+ a⟩ = φ(x)

whence we deduce that δX+a ≥ δX , and δX+a ≤ δX by replacing a by −a.
In the same way if λ ∈ R∗, and if φ is convex onX, the function φλ : y 7→ λ2φ(

y

λ
)

is convex on λX and for y = λx ∈ λX, we get ∥y∥2 + φλ(y) = λ2 ∥x∥ + λ2φ(x),
whence δλX ≥ λ2δX , and the equality δλX = λ2δX by replacing λ by 1/λ.

If Y ⊃ X and if φ is convex on Y , the function ψ = φ|X is convex on X, and we
get

sup
y∈Y

∥y∥2 + φ(y) ≥ sup
X

∥x∥2 + ψ(x) and inf
y∈Y

(
∥y∥2 + φ(y)

)
≤ inf

X
∥x∥2 + ψ(x) .

Thus δX ≤ θ(ψ,X) ≤ θ(φ, Y ), whence we deduce that δY ≥ δX . □

Lemma 6. Let X be a convex bounded subset of H. If ρ is the radius of X one
has δX ≤ ρ2.

Proof. If a is the center of X and φa the affine function x 7→ ∥a∥2−2⟨a, x⟩, one has
ρ = supx∈X ∥x− a∥ and ∥x∥2 + φa(x) = ∥x− a∥2, hence supx

(
∥x∥2 + φa(x)

)
= ρ2

and infx
(
∥x∥2 + φa(x)

)
= infx∈X ∥x− a∥2 = 0, since a ∈ X̄ by Theorem 2. Thus

δX ≤ θ(φa, X) = ρ2. □

Lemma 7. Let X be a bounded convex subset of H. If φ belongs to Γ(X), there
exists a convex lower semi-continuous function φ̄ on X such that θ(φ̄,X) ≤ θ(φ,X).

Proof. If φ is not bounded from below on X, one has θ(φ,X) = +∞. Then it is

enough to take φ̄ = 0 for getting θ(φ̄,X) ≤ supx∈X ∥x∥2 < θ(φ,X) = +∞.

On the contrary, if φ is bounded from below take φ̄ : X → R the lower semi-
continuous envelope of φ, that is

φ̄(x) = lim inf
y∈X,y→x

φ(y) = sup{ℓ(x) : ℓ affine continuous on H, ℓ ≤ φ on X}
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which is convex on X. We clearly have φ̄ ≤ φ on X, hence

sup
x∈X

(
∥x∥2 + φ(x)

)
≥ sup

x∈X

(
∥x∥2 + φ̄(x)

)
= sup

x∈X̄

(
∥x∥2 + φ̄(x)

)
.

And letting µ = infx∈X

(
∥x∥2 + φ(x)

)
, we have for all y ∈ X : φ(y) ≥ µ − ∥y∥2

hence
φ̄(x) = lim inf

y→x
φ(y) ≥ lim inf

y→x
µ− ∥y∥2 = µ− ∥x∥2

and µ = infx∈X

(
∥x∥2 + φ(x)

)
≥ infx∈X̄

(
∥x∥2 + φ̄(x)

)
≥ µ. We conclude that

θ(φ̄,X) ≤ θ(φ,X). □

The convex sets X and X have same center and same radius. We have already
proved that δX ≤ ρ2. We can reduce by translation the proof to the case where
the center a of X is 0. Let φ be a convex function on X. Following lemma 7, there
exists a l.s.c. convex function φ̄ on X such that θ(φ̄,X) ≤ θ(φ,X). For proving
that θ(φ,X) ≥ ρ2, we can thus assume moreover that X is closed and that φ is
l.s.c.

For ε > 0, define Xε = {x ∈ X : ∥x∥ ≥ ρ − ε} and Kε = conv(Xε) then put
µε = supx∈Xε

φ(x). For all x ∈ Xε one has :

∥x∥2 + φ(x) ≥ (ρ− ε)2 + φ(x) ,

hence

supx∈Xε

(
∥x∥2 + φ(x)

)
≥ (ρ− ε)2 + supx∈Xε

φ(x) = (ρ− ε)2 + µε ,

and
sup
x∈X

(
∥x∥2 + φ(x)

)
≥ sup

x∈Xε

(
∥x∥2 + φ(x)

)
≥ (ρ− ε)2 + µε .

Since the set C of those x in X such that φ(x) ≤ µε is a closed convex set
containing Xε, hence containing Kε, it follows from Theorem 2 that a = 0 ∈ C,
thus that φ(0) ≤ µε. Thus we get

θ(φ,X) ≥
(
(ρ− ε)2 + µε

)
− φ(0) ≥

(
(ρ− ε)2 + µε

)
− µε = (ρ− ε)2 .

Since ε > 0 is arbitrary, we deduce that θ(φ,X) ≥ ρ2, hence that

δX = inf
φ∈ΓX

θ(φ,X) ≥ ρ2 ≥ δX .

By Therorem 3 we deduce that we necessarily have diam(X) ≤ 2ρ and thus

δX = ρ2 ≥ diam(X)2

4
. And this completes the proof of Theorem 4. □

Using Theorem 1.2 from [2] and Theorem 4 above allows us to state the following:

Theorem. Let H be a real Hilbert space, Ω ⊂ H a convex open set, Φ : Ω → H
an operator of class C1, with L-Lipschitz derivative and V ⊆ Ω a set such that
η := infx∈V ∥Φ(x)∥ > 0.

Then, for all bounded convex set X ⊆ V with radius smaller than 2η.L, we have
0 /∈ conv(Φ(X)).

We can also rewrite this result in the following form, denoting by AL the set
of C1 functions with L-Lipschitz derivative from X into a Hilbert space and ρ the
radius of the bounded convex open set X :

sup
{√2d(0,Φ(X))

L
: Φ ∈ AL, 0 ∈ conv

(
Φ(X)

)}
≤ ρ
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We now prove that this result is optimal.

Theorem 8. Let X be a bounded convex nonempty open subset of the Hilbert space
H and ρ be its radius. Then there exists a function Φ of class C1 with L-Lipschitz

derivative from X to the Hilbert space H ⊕ R satisfying ρ2 =
2d(0,Φ(X))

L
and

0 ∈ conv
(
Φ(X)

)
.

Proof. Denote by a the center ofX. Define λ =
1

ρ
√
2
, then the continuous functions

f : X → R and Φ : X → H × R by{
f(x) = λ

(
ρ2 − ∥x− a∥2

)
,

Φ(x) =
(
x− a, f(x)

)
.

Since ∥x− a∥ < ρ for all x ∈ X, we have f > 0 on X.

Lemma 9. One has ∥Φ(x)∥ ≥ ∥Φ(a)∥ =
ρ√
2
for all x ∈ X.

Proof. Indeed :

∥Φ(x)∥2 = ∥x− a∥2 + |f(x)|2 = ∥x− a∥2 + λ2
(
ρ2 − ∥x− a∥2

)2
= λ2ρ4 + λ2 ∥x− a∥4 + (1− 2λ2ρ2) ∥x− a∥2 = λ2ρ4 + λ2 ∥x− a∥4

≥ λ2ρ4 =
ρ2

2
,

thus ∥Φ(x)∥ ≥ ρ√
2
= ∥Φ(a)∥ for all x ∈ X. □

Lemma 10. The function Φ is of class C1 with L-Lipschitz derivative, where L is
equal to 2λ.

Proof. For all x ∈ X and h ∈ H we have :

Φ′(x).h =
(
h, f ′(x).h

)
=

(
h,−2λ⟨x− a, h⟩

)
what shows that Φ is of class C1 (and even of class C∞). Moreover if x and y belong
to X, we have

∥Φ′(x).h− Φ′(y).h∥ =
∥∥(0, 2λ⟨y − x, h⟩

)∥∥ ≤ 2λ ∥x− y∥ . ∥h∥
whence ∥Φ′(x)− Φ′(y)∥ ≤ 2λ ∥x− y∥ and the fact that Φ′ is 2λ-Lipschitz. □

Lemma 11. The origin of H ⊕ R belongs to the closed convex hull of Φ(X)

Proof. It follows from Theorem 2 that for all ε > 0 there exist points (xi)i≤n

of X \ B(a, ρ − ε) and non-negative real numbers (αi)i≤n with sum 1 such that
∥a−

∑
i αixi∥ ≤ ε. Then we have

z =
∑
i

αiΦ(xi) =
(∑

i

αixi − a ,
∑
i

αif(xi)
)

Since ∥xi − a∥ > ρ− ε, one has 0 < f(xi) < λ
(
ρ2 − (ρ− ε)2

)
< 2λρε = ε

√
2, hence

0 ≤
∑

i αif(xi) < ε
√
2 and finally

∥z∥2 =
∥∥∥∑

i
αixi − a

∥∥∥2 + ∣∣∣∑
i
αif(xi)

∣∣∣2 ≤ ε2 + 2ε2 = 3ε2 ,
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whence we deduce that z ∈ conv(Φ(X))∩B
(
(0, 0), ε

√
3
)
, thus that every neighbor-

hood of (0, 0) in H ⊕ R meets the convex hull of Φ(x) and finally that the origin
(0, 0) of H ⊕ R belongs to conv

(
Φ(X)

)
. □

This completes the proof of Theorem 8. □

Corollary 12. Let X be a bounded convex nonempty open subset of the Hilbert
space H and ρ be its radius. Then

sup
{√2d(0,Φ(X))

L
: Φ ∈ AL, 0 ∈ conv

(
Φ(X)

)}
= ρ.

Proof. This follows immediately from Theorems 4 and 8. □
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