MINIMAL OSCILLATION
AND VANISHING OF SMOOTH FUNCTIONS

JEAN SAINT RAYMOND

ABSTRACT. In his paper [2], B. Ricceri considers, for X bounded convex subset
of the real Hilbert space H, the quantity

ox = it (sup () + ()

2
(ol + (=)
where 'y denotes the set of real convex functions on X, and shows that
6x > 0 for X non singleton without giving any quantitative estimation of
this quantity. And he asks whether §x can be controlled by a function of the
diameter of X.

In this paper we show that dx is exactly the square of the Chebyshev
diam(X)?

— inf
zeX

radius of X, hence is at least . We deduce from the main result of

[2] a quantitative statement on the zeros of a Cl-operator on H with Lipschitz
derivative, and show that this statement is optimal.

Let H be a real Hilbert space and X be a convex bounded subset of H. If ¢ is
a real convex function on X, we will denote by 6(p, X) the oscillation on X of the
convex function z — ||z]|> + ¢(z), so

0(p, X) =§g§(||w||2 +o(2)) (2] + (=) ,

— inf

reX
hence dx = inf,er, 0(p, X). B. Ricceri shows in [2] in a rather indirect way that
dx > 0 for any convex subset of H containing more than one point. He notices also
that C. Zalinescu gave him in a private communication another indirect (and not
quantitative) proof of this result based on quite hard arguments of convex analysis.

Recall that if C' is a bounded subset of some normed space E, the Chebyshev
radius (for short radius) of C' is the infimum p of all » > 0 such that C' is contained
in some ball B(z,r) for x € E. So

p=infuer sup,ccle —al -

And a Chebyshev center (for short center) of C is any point a € E such that
C C B(a,p). Of course there are examples where such a center does not exist or
is not unique. One can find in [1] what is well known about radius and center of
a bounded set and Jung inequalities. In particular we will use in the sequel the
following three theorems.

Theorem 1. If the Banach space E is uniformly convex (in particular if it is a
Hilbert space), any nonempty bounded subset has a unique center.
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Theorem 2. Let H be a Hilbert space and X be a bounded subset of H of center
a and radius p. Then for any € > 0, a belongs to the closed convexr hull of the set
of those points of X such that ||z — al| > p —e. In particular, a € conv(X).

Theorem 3. Let H be a Hilbert space and X be a bounded subset of H of center
a and radius p. Then pv/2 < diam(X) < 2p. Moreover if H has finite dimension

[ d
d, one has even p < diam(X) m

We now prove our main theorem.

Theorem 4. If X is a bounded convex subset of H having radius p, §x is equal to
5 , diam(X)?2
p*. In particular 6x > —————.

Proof. For the proof of this statement we need the next lemmas.

Lemma 5. Let X be a convex bounded subset of H. One has dx = dxyq and
dxx = A26x. Moreover if X CY, one has 6y > 6x.

Proof. If ¢ is convex on X the function ¢, : x — p(z — a) is convex on X + a, and
so is the function ¢!, = z — @, (x) + ||la]|* — 2(a,x). Then for y =z +a € X +a:

2 2 2
Iyll" + o (y) = llz + all” + va(y) — llall” + 2(a, y)
2 2 2
= llzl” + llall” + 2(a, z) + ¢(z) + [lal|” — 2(a, z + a) = ¢(x)
whence we deduce that dx1, > dx, and dx 4, < dx by replacing a by —a.
In the same way if A € R*, and if ¢ is convex on X, the function @y : y )\2@(%)

is convex on AX and for y = Az € AX, we get [[yl|> + oa(y) = A2 ||z| + X\2¢(2),
whence dyxx > A2y, and the equality dyx = A\20x by replacing A by 1/\.

If Y D X and if ¢ is convex on Y, the function ¢ = ¢ x is convex on X, and we
get

sup [lyl” + (y) = sup 2l]” + ¥(x) and inf (lyl* + () < inf |l2l]* + ¥ ().
yeyYy X yey X

Thus dx < 8(¢, X) < 0(p,Y), whence we deduce that dy > dx. O

Lemma 6. Let X be a convex bounded subset of H. If p is the radius of X one
has 6x < p?.

Proof. 1f a is the center of X and ¢, the affine function = — ||a||* — 2(a, z), one has
2 2 2

p=sup,cx ||z —all and |[z]|” + pa(z) = ||z — al|", hence sup, (=] + ¢a()) = p?

and inf$(|\gc||2 + a(z)) = infrex [l — al|® = 0, since a € X by Theorem 2. Thus

ox < 0(pa, X) = p*. O

Lemma 7. Let X be a bounded convex subset of H. If ¢ belongs to T'(X), there
exists a convex lower semi-continuous function @ on X such that 0(¢, X) < 0(p, X).

Proof. If ¢ is not bounded from below on X, one has 6(¢, X) = +o0o. Then it is
enough to take ¢ = 0 for getting 6(@, X) < sup,cy |z]|* < 6(p, X) = +o0.

On the contrary, if ¢ is bounded from below take @ : X — R the lower semi-
continuous envelope of ¢, that is

@(z) = liminf ¢(y) = sup{l(z) : £ affine continuous on H, ¢ < ¢ on X}
y

eX,y—x
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which is convex on X. We clearly have ¢ < ¢ on X, hence

jgg(llwﬂ +p(x)) > fg@((\lxﬂ +¢(x)) = :gg(Hxll + ().

And letting p = inf_v,jex(H:L’H2 + ¢(x)), we have for all y € X : o(y) > p— yl?
hence

_ A .. 2 2
= > — — —
¢(e) = liminf p(y) > liminf u — [|y||" = u — |||

and g = infzex(HﬂcH2 + o(z)) > infxex(||x|\2 + @(z)) > p. We conclude that
0(p, X) < 0(p, X). O

The convex sets X and X have same center and same radius. We have already
proved that dx < p?. We can reduce by translation the proof to the case where
the center a of X is 0. Let ¢ be a convex function on X. Following lemma 7, there
exists a L.s.c. convex function ¢ on X such that 6(p, X) < (¢, X). For proving
that 6(p, X) > p?, we can thus assume moreover that X is closed and that ¢ is
Ls.c.

For € > 0, define X, = {x € X : ||z|]| > p — ¢} and K. = conv(X,) then put
pe = Sup,ex. ¢(x). For all x € X, one has :

J2]* + ¢(z) > (p— ) + o(),
hence

|z + ¢(z)) > (p— &) + sup,ex, () = (p— &) + pe

sup,ex. (
and
2 2
sup (||lz]* + ¢(2)) > sup ([l + ¢ (z)) > (p— ) + pe -
xeX reX,

Since the set C' of those x in X such that ¢(z) < p. is a closed convex set
containing X, hence containing K., it follows from Theorem 2 that a = 0 € C,
thus that ¢(0) < p.. Thus we get

0(p, X) > ((p = €)* + pe) —9(0) > ((p—€)* + ) — pre = (p — €)%
Since ¢ > 0 is arbitrary, we deduce that 6(p, X) > p?, hence that
ox = inf O(p, X) > p* > 6x.
pel'x

By Therorem 3 we deduce that we necessarily have diam(X) < 2p and thus

diam(X)?

ox = p? > . And this completes the proof of Theorem 4. O

Using Theorem 1.2 from [2] and Theorem 4 above allows us to state the following:

Theorem. Let H be a real Hilbert space, 0 C H a convex open set, & : QO — H
an operator of class C', with L-Lipschitz derivative and V' C Q a set such that
7= infey ||®(x)] > 0.

Then, for all bounded convex set X C V with radius smaller than 2n.L, we have
0 ¢ conv(®(X)).

We can also rewrite this result in the following form, denoting by Aj; the set

of C' functions with L-Lipschitz derivative from X into a Hilbert space and p the
radius of the bounded convex open set X :

. { 2d(0, 3(X))

T2 @ e Ay, 0 € o (9(X)) ) < p
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We now prove that this result is optimal.

Theorem 8. Let X be a bounded convex nonempty open subset of the Hilbert space

H and p be its radius. Then there exists a function ® of class C* with L-Lipschitz
2d(0,P(X)) and

derivative from X to the Hilbert space H ® R satisfying p* = 7

0 € conv (®(X)).
Proof. Denote by a the center of X. Define A =
f:X—>Rand ®: X - H xR by
{f(fv) =\(p* = & —al),
0(2) = (v - a, f(a)).

Since ||z — a|| < p for all z € X, we have f > 0 on X.

, then the continuous functions

1
pV2

%forallxeX.

7

Lemma 9. One has ||®(z)]| > ||®(a)| =

Proof. Indeed :
2 2 2 2 242
[2(2)|I” = [lz = all” + [f(@)]" = |z — al|” + A*(p* — |z — %)
— N4 2o — all’ + (1 - 2220%) o — al]® = A" + A2 |z — a*

> 22,4 P
Z AP 9
thus [|@(z)]| > = = ||®(a)|| for all z € X. O

V2

Lemma 10. The function ® is of class C* with L-Lipschitz derivative, where L is
equal to 2.

Proof. For all z € X and h € H we have :
®'(z).h = (h, f'(x).h) = (h, —2Xz — a, h))

what shows that ® is of class C (and even of class C*°). Moreover if z and y belong
to X, we have

19" (z).h — @' (y)-hl| = || (0,2XMy — 2, ) || < 2X [l — ]| ||
whence [|®'(z) — ®'(y)|| < 2\ ||z — y|| and the fact that & is 2)-Lipschitz. O
Lemma 11. The origin of H ® R belongs to the closed convex hull of ®(X)

Proof. Tt follows from Theorem 2 that for all € > 0 there exist points (z;)i<n
of X \ B(a,p — €) and non-negative real numbers (;);<, with sum 1 such that
la =", aixi|]| <e. Then we have

z= Z a;®(x;) = (Z oL — a, Zaif(wi))

Since ||lz; — al| > p—e¢, one has 0 < f(z;) < A(p? — (p—¢)?) < 2Ape = £v/2, hence
0 <>, aif(zi) <eVv?2 and finally

el = |32, v | + |32, ur e

2
§€2+252:352,
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whence we deduce that z € conv(®(X))NB((0,0),v/3), thus that every neighbor-
hood of (0,0) in H & R meets the convex hull of ®(z) and finally that the origin
(0,0) of H @& R belongs to conv(®(X)). O

This completes the proof of Theorem 8. (I

Corollary 12. Let X be a bounded conver monempty open subset of the Hilbert
space H and p be its radius. Then
2d(0,®(X))

sup{ 7
Proof. This follows immediately from Theorems 4 and 8. ]

L€ Ay, 0 € Tonv(@(X)) ) = p.
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