MINIMAX AND LIPSCHITZ OPERATORS

JEAN SAINT RAYMOND

ABSTRACT. The aim of this short note is to show that the minimax equality proved in [3] cannot be extended to the case where linear operators are replaced by Lipschitz operators.

In his paper [3], extending the previous [2], the author established the following minimax theorem :

Theorem. Let E be a infinite-dimensional Banach space, F be a Banach space, X be a convex subset of E whose interior is non-empty for the weak topology on bounded sets, Δ a finite-dimensional convex compact subset of $\mathcal{L}(E,F)$, $\varphi:F\to\mathbb{R}$ be a continuous convex coercive map, and $\psi:\Delta\to\mathbb{R}$ a convex continuous function. Assume moreover that Δ contains at most one compact operator. Then

$$\sup_{x\in X}\inf_{T\in\Delta}\varphi(Tx)+\psi(T)=\inf_{T\in\Delta}\sup_{x\in X}\varphi(Tx)+\psi(T)$$

In particular, taking $\varphi(x) = ||x||$ and $\psi = 0$, this gets the minimax equality :

$$\sup_{x \in X} \inf_{T \in \Delta} \|Tx\| = \inf_{T \in \Delta} \sup_{x \in X} \|Tx\|.$$

The aim of this note is to replace the finite-dimensional convex compact subset Δ of $\mathcal{L}(E,F)$ by a finite-dimensional convex compact set of Lipschitz mappings from E to F, and more precisely of mappings of the type $x \mapsto \Phi(x) + \psi(x)$ where Φ is a fixed continuous surjective linear mapping from E to F, and $\psi: E \to F$ is a Lipschitz mapping.

If E and F are Banach spaces and $\Phi: E \to F$ a continuous linear mapping with closed range (in particular if Φ is onto) we will denote by $\nu(\Phi)$ the quantity

$$\nu(\Phi) = \sup_{\substack{y \in \Phi(E) \\ \|y\| \le 1}} d(0, \Phi^{-1}(y)).$$

Of course, if moreover Φ is one-to-one, $\nu(\Phi)$ is the norm of the continuous linear mapping $\Phi^{-1}: \Phi(F) \to E$. And if $\ker(\Phi) \neq \{0\}$, Φ factors through the quotient $\hat{E} = E/\ker(\Phi)$ and a one-to-one linear mapping $\hat{\Phi} = \hat{E} \to \Phi(E)$, and then $\nu(\Phi)$ is the norm of the linear mapping $\hat{\Phi}^{-1}$.

The following result which addresses the case where Δ is an interval, is due to B. Ricceri and follows from Theorem 2.1 in [1].

Theorem. Let X and Y be two Banach spaces, with $\dim(Y) \geq 2$. Let $\Phi: X \to Y$ be a continuous surjective linear operator and let $\Psi_1, \Psi_2: X \to Y$ be two β -Lipschitz operators, where $1/\beta = \nu(\Phi)$. Then, one has

$$\sup_{x\in X}\inf_{\lambda\in[0,1]}\left\|\Phi(x)+\lambda\Psi_1(x)+(1-\lambda)\Psi_2(x)\right\|=\min\Bigl\{\sup_{x\in X}\left\|\Phi(x)+\Psi_1(x)\right\|,\sup_{x\in X}\left\|\Phi(x)+\Psi_2(x)\right\|\Bigr\}$$

²⁰²⁰ Mathematics Subject Classification. 49J35, 46B04, 46B50.

Key words and phrases. minimax, Banach spaces, Lipschitz operators.

Consider now the case where the finite-dimensional compact convex set Δ has dimension at least 2 and its elements have small Lipschitz constants.

Theorem 1. Let X and Y be Banach spaces, Φ be a linear continuous operator from X onto Y, $\beta = 1/\nu(\Phi)$ and Δ be a finite-dimensional compact convex set of Lipschitz mappings from X to Y. If each element of Δ has a Lipschitz constant $< \beta$, then

$$\inf_{\psi \in \Delta} \sup_{x \in X} \|\Phi(x) + \psi(x)\| = \sup_{x \in X} \inf_{\psi \in \Delta} \|\Phi(x) + \psi(x)\| = +\infty$$

Proof. On the compact space Δ , the function which assigns to each ψ its Lipschitz constant $L_{\psi} = \sup_{\substack{x,z \in X \\ x \neq z}} \frac{\|\psi(x) - \psi(z)\|}{\|x - z\|}$ is continuous and attains its supremum $\lambda < \beta$. Also by compactness $R = \sup_{\psi \in \Delta} \|\psi(0)\| < +\infty$.

For $\varepsilon > 0$ let $X_{\varepsilon} = \{x \in X : \|\Phi(x)\| \ge \beta(1-\varepsilon)\|x\|\}$. By definition of β , we have $\Phi(X_{\varepsilon}) = \Phi(X) = Y$, hence $\sup_{x \in X_{\varepsilon}} \|x\| = +\infty$. Indeed if X_{ε} was bounded so would be $Y = \Phi(X_{\varepsilon})$. Thus for each $\psi \in \Delta$ and each $x \in X_{\varepsilon}$ we have

$$\|\Phi(x) + \psi(x)\| \ge \|\Phi(x)\| - \|\psi(x)\| \ge \|\Phi(x)\| - (\|\psi(0)\| + \|\psi(x) - \psi(0)\|)$$

$$\ge \beta(1 - \varepsilon) \|x\| - (R + \lambda \|x\|) = (\beta(1 - \varepsilon) - \lambda) \|x\| - R.$$

Choosing $\varepsilon < \frac{1}{2}(1 - \frac{\lambda}{\beta})$, we get $\inf_{\psi \in \Delta} \|\Phi(x) + \psi(x)\| \ge \frac{\beta - \lambda}{2} \|x\| - R$ for $x \in X_{\varepsilon}$, hence

$$\sup_{x \in X} \inf_{\psi \in \Delta} \|\Phi(x) + \psi(x)\| \ge \sup_{x \in X_{\varepsilon}} \inf_{\psi \in \Delta} \|\Phi(x) + \psi(x)\| \ge \frac{\beta - \lambda}{2} \cdot \left(\sup_{x \in X_{\varepsilon}} \|x\|\right) - R = +\infty$$

and

$$\inf_{\psi \in \Delta} \sup_{x \in X} \|\Phi(x) + \psi(x)\| \ge \sup_{x \in X} \inf_{\psi \in \Delta} \|\Phi(x) + \psi(x)\| = +\infty.$$

So the proof is complete.

We now look at the case where Δ has dimension > 1 and each element of Δ is β -Lipschitz, with $\beta = 1/\nu(\Phi)$ and want to prove that the previous minimax equality does no longer hold by constructing a counterexample.

Theorem 2. There exist X and Y Banach spaces, $\Phi: X \to Y$ linear and onto, and $(\Psi_j)_{1 \le j \le 3}: X \to Y$, β -Lipschitz, where $\beta = 1/\nu(\Phi)$ such that

$$\sup_{x \in X} \inf_{\alpha \in \Delta} \left\| \Phi(x) + \sum \alpha_j \Psi_j(x) \right\| < \inf_{\alpha \in \Delta} \sup_{x \in X} \left\| \Phi(x) + \sum \alpha_j \Psi_j(x) \right\|$$

where Δ is the canonical 2-dimensional simplex: $\{\alpha \in \mathbb{R}^3_+ : \alpha_1 + \alpha_2 + \alpha_3 = 1\}.$

The following result is probably well known.

Lemma 3. Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Denote by p the orthogonal projection on C and by $\varpi: x \mapsto p(x) - x$ the projecting line. For all x and y in H we have

$$||p(x) - p(y)||^2 + ||\varpi(x) - \varpi(y)||^2 \le ||x - y||^2$$

In particular p and ϖ are 1-Lipschitz.

Proof. In the case where C is a closed linear subspace this inequality is in fact an equality and corresponds to Pythagoras' theorem.

Let x and y be two points of H, $\xi = p(x)$ and $\eta = p(y)$ be their projections on C. We have

$$\langle x - \xi, \eta - \xi \rangle \le 0$$
 and $\langle y - \eta, \xi - \eta \rangle \le 0$,

thus

$$\begin{split} \langle x-y,\xi-\eta\rangle &= \left\langle (x-\xi)+(\xi-\eta)+(\eta-y),\xi-\eta\right\rangle \\ &= \left\langle x-\xi,\xi-\eta\right\rangle + \left\langle \xi-\eta,\xi-\eta\right\rangle + \left\langle \eta-y,\xi-\eta\right\rangle \\ &= \left\|\xi-\eta\right\|^2 - \left\langle x-\xi,\eta-\xi\right\rangle - \left\langle y-\eta,\xi-\eta\right\rangle \\ &\geq \left\|\xi-\eta\right\|^2 \;. \end{split}$$

It follows that

$$||p(x) - p(y)||^{2} + ||\varpi(x) - \varpi(y)||^{2} = ||\xi - \eta||^{2} + ||(\xi - x) - (\eta - y)||^{2}$$

$$= ||\xi - \eta||^{2} + ||(\xi - \eta) - (x - y)||^{2}$$

$$= 2||\xi - \eta||^{2} + ||x - y||^{2} - 2\langle x - y, \xi - \eta \rangle$$

$$< ||x - y||^{2} + 2||\xi - \eta||^{2} - 2||\xi - \eta||^{2} = ||x - y||^{2},$$

whence the statement follows.

Notations

Consider a triangle T in the euclidean plane \mathbb{R}^2 , with edges a_1, a_2, a_3 , and suppose all of its angles are acute. Let Γ be the circumscribed circle to T, ω be the center and ρ the radius of Γ . Then ω is interior to T.

To simplify the notations, for $j \in \mathbb{Z}$, a_j will denote the point a_i with $i \in \{1, 2, 3\}$ such that $i = j \pmod{3}$. Denote $m_j = \frac{a_{j+1} + a_{j+2}}{2}$ the midpoint of the side $J_j = [a_{j+1}, a_{j+2}]$ opposite to a_j ; in particular $\omega - m_j$ is orthogonal to J_j . We have

$$(a_{j} - a_{j+1}) \wedge (a_{j+1} - a_{j+2}) = (a_{j} - a_{j+2}) \wedge (a_{j+1} - a_{j+2}) - (a_{j+1} - a_{j+2}) \wedge (a_{j+1} - a_{j+2})$$

$$= (a_{j} - a_{j+2}) \wedge (a_{j+1} - a_{j+2}) = (a_{j+3} - a_{j+2}) \wedge (a_{j+1} - a_{j+2})$$

$$= -(a_{j+2} - a_{j+3}) \wedge (a_{j+1} - a_{j+2})$$

$$= (a_{j+1} - a_{j+2}) \wedge (a_{j+2} - a_{j+3})$$

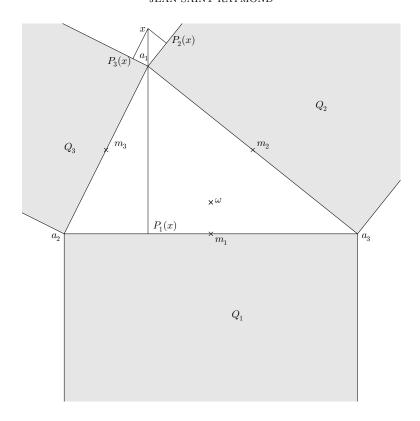
so this outer product is independent from j. Up to swapping a_2 and a_3 if necessary, we will assume that $(a_j-a_{j+1})\wedge(a_{j+1}-a_{j+2})>0$ for all j. The linear functionals $u\mapsto \langle \omega-m_j,u\rangle$ and $u\mapsto u\wedge(a_{j+1}-a_{j+2})$ have same kernel hence are proportional; so there exists $\gamma_j\in\mathbb{R}$ such that $u\mapsto u\wedge(a_{j+1}-a_{j+2})=\gamma_j\langle \omega-m_j,u\rangle$. Applying to $u=a_j-a_{j+1}$ we check that $\gamma_j\langle \omega-m_j,a_j-a_{j+1}\rangle=\gamma_j\langle \omega-m_j,a_j-m_j\rangle>0$, hence that $\gamma_j>0$.

Denote by Q_j the half strip:

$$Q_{j} = \left\{ x \in \mathbb{R}^{2} : (x - m_{j}) \land (a_{j+1} - a_{j+2}) \le 0 \le |\langle x - m_{j}, a_{j+1} - a_{j+2} \rangle| \le \frac{1}{2} \|a_{j+1} - a_{j+2}\|^{2} \right\},$$

whose boundary contains the side J_j , by P_j the orthogonal projection on the closed convex set Q_j and by $\varpi_j : x \mapsto P_j(x) - x$ the corresponding projecting line. It is easily seen that the intersection of Q_j and the line $(a_{j+1}, a_{j+2}) = \{x : (x - m_j) \land (a_{j+2} - a_{j+1}) = 0\}$ is the segment J_j .

Lemma 4. If $(x - m_j) \wedge (a_{j+1} - a_{j+2}) \geq 0$, then $P_j(x)$ belongs to J_j .



Proof. If not the point $y=P_j(x)$ should satisfy $(y-m_j)\wedge (a_{j+1}-a_{j+2})<0$ since $P_j(x)\in Q_j$ and the inequality $\langle y-m_j,a_{j+1}-a_{j+2}\rangle\leq 0$ holds. Then $y'=y+\varepsilon(\omega-m_j)$ would belong to Q_j for $\varepsilon>0$ small enough, and we would have $y-x=\lambda(a_{j+2}-a_{j+1})-\mu(\omega-m_j)$ for some convenient λ an μ , with $\mu\geq 0$ since $(\omega-m_j)\wedge (a_{j+1}-a_{j+2})>0$ and

$$\mu(\omega - m_j) \wedge (a_{j+1} - a_{j+2}) = (x - m_j) \wedge (a_{j+1} - a_{j+2}) - (y - m_j) \wedge (a_{j+1} - a_{j+2}) \ge 0,$$

hence also $y' - x = \lambda(a_{j+2} - a_{j+1}) - (\mu - \varepsilon)(\omega - m_j)$ thus

$$\|y' - x\|^2 = \lambda^2 \|a_{j+1} - a_{j+2}\|^2 + (\mu - \varepsilon)^2 \|\omega - m_j\|^2$$
$$< \lambda^2 \|a_{j+1} - a_{j+2}\|^2 + \mu^2 \|\omega - m_j\|^2 = \|x - y\|^2,$$

so $d(x, Q_j) \le ||x - y'|| < ||x - y|| = d(x, Q_j)$, a contradiction.

Lemma 5. For all $x \in \mathbb{R}^2$ at least one $P_j(x)$ belongs to T.

Proof. Indeed

$$\sum_{j=1}^{3} (x - m_j) \wedge (a_{j+1} - a_{j+2}) = (x - \omega) \wedge \sum_{j=1}^{3} (a_{j+1} - a_{j+2}) + \sum_{j=1}^{3} (\omega - m_j) \wedge (a_{j+1} - a_{j+2})$$

$$= (x - \omega) \wedge 0 + \sum_{j=1}^{3} (\omega - m_j) \wedge (a_{j+1} - a_{j+2}) = \sum_{j=1}^{3} \gamma_j \langle \omega - m_j, \omega - m_j \rangle$$

$$= \sum_{j=1}^{3} \gamma_j \|\omega - m_j\|^2 > 0.$$

Then at least one of the terms $(x-m_j) \wedge (a_{j+1}-a_{j+2})$ is positive and the conclusion follows from lemma 4.

Define $X = Y = \mathbb{R}^2$, $\Phi(x) = x$ and $\Psi_j(x) = \varpi_j(x) - \omega$, hence $\Phi(x) + \Psi_j(x) = P_j(x) - \omega$. It is clear from what precedes that the mappings P_j and Ψ_j are 1-Lipschitz, and that Φ^{-1} is the identity mapping, so $\nu(\Phi) = 1$.

Recall that Δ is the simplex $\{(\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3_+ : \alpha_1 + \alpha_2 + \alpha_3 = 1\}.$

Lemma 6. For whichever $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \Delta$ the function $\varphi_{\alpha} = \sum_{j=1}^{3} \alpha_j (P_j(x) - \omega)$ satisfies

$$\sup_{x \in \mathbb{R}^2} \|\varphi_{\alpha}(x)\| = +\infty.$$

Thus $\inf_{\alpha \in \Delta} \sup_{x \in \mathbb{R}^2} \|\varphi_{\alpha}(x)\| = +\infty$.

Proof. Consider first the case $\alpha_j = 1$, $\alpha_{j+1} = \alpha_{j+2} = 0$, hence $\varphi_{\alpha}(x) = P_j(x) - \omega$. Then, for $t \geq 0$, consider the point $x_t = m_j - t.(\omega - m_j)$ which belongs to the strip Q_j . We have

$$\|\varphi_{\alpha}(x_t)\| = \|x_t - \omega\| = \|m_j - \omega - t \cdot (\omega - m_j)\| = (1+t)\|\omega - m_j\|$$

and $\sup_{x \in \mathbb{R}^2} \|\varphi_{\alpha}(x)\| \ge \sup_{t \ge 0} \|\varphi_{\alpha}(x_t)\| = +\infty$ since $m_j \ne \omega$.

Otherwise, if both α_{j+1} and α_{j+2} are not 0 (e.g. if $\sup_i \alpha_i < 1$ and $\alpha_j = \min(\alpha_1, \alpha_2, \alpha_3)$), consider for $t \ge 0$, the point $x_t = a_j + t(\omega - m_j)$. We have $P_j(x_t) = P_j(x_0) \in J_j$ for all t. And for $k \ne j$, (k = j + 1 or k = j + 2), we have $P_k(x_t) = a_j + \theta(m_k - \omega)$ for some $\theta \ge 0$. Then since $x_t - P_k(x_t)$ is orthogonal to $m_k - \omega$, we get:

$$0 = \langle x_t - P_k(x_t), m_k - \omega \rangle = \langle (a_j + t(\omega - m_j)) - (a_j + \theta(m_k - \omega)), m_k - \omega \rangle$$
$$= t\langle \omega - m_j, m_k - \omega \rangle - \theta\langle m_k - \omega, m_k - \omega \rangle$$

hence
$$\theta = t \frac{\langle \omega - m_j, m_k - \omega \rangle}{\|\omega - m_k\|^2}$$
, and

$$\langle \omega - m_j, P_k(x_t) - \omega \rangle = \langle \omega - m_j, a_j - \omega \rangle + t \frac{\left(\langle \omega - m_j, \omega - m_k \rangle\right)^2}{\left\|\omega - m_k\right\|^2}.$$

Finally we get

$$\langle \omega - m_j, \varphi_{\alpha}(x_t) \rangle = \alpha_j \langle \omega - m_j, P_j(x_0) - \omega \rangle + \alpha_{j+1} \langle \omega - m_j, a_j - \omega \rangle + \alpha_{j+1} t \frac{\left(\langle \omega - m_j, \omega - m_{j+1} \rangle \right)^2}{\left\| \omega - m_{j+1} \right\|^2} + \alpha_{j+2} \langle \omega - m_j, a_j - \omega \rangle + \alpha_{j+2} t \frac{\left(\langle \omega - m_j, \omega - m_{j+2} \rangle \right)^2}{\left\| \omega - m_{j+2} \right\|^2} = A + Bt$$

where $B = \alpha_{j+1} \frac{\left(\langle \omega - m_j, \omega - m_{j+1} \rangle\right)^2}{\|\omega - m_{j+1}\|^2} + \alpha_{j+2} \frac{\left(\langle \omega - m_j, \omega - m_{j+2} \rangle\right)^2}{\|\omega - m_{j+2}\|^2} > 0$, since by the hypothesis on the angles of $T : \langle \omega - m_j, \omega - m_k \rangle \neq 0$ for $j \neq k$. So we get

$$\|\varphi_{\alpha}(x_t)\| \ge \frac{1}{\|\omega - m_i\|} |\langle \omega - m_j, \varphi_{\alpha}(x_t) \rangle| \ge \frac{Bt - |A|}{\|\omega - m_i\|}$$

whence $\lim_{t\to+\infty} \|\varphi_{\alpha}(x_t)\| = +\infty$ and $\sup_{x\in\mathbb{R}^2} \|\varphi_{\alpha}(t)\| = +\infty$.

Lemma 7. For whichever $x \in \mathbb{R}^2$ there exists some $\alpha \in \Delta$ such that $\|\varphi_{\alpha}(x)\| \leq \rho$. In particular

$$\sup_{x \in \mathbb{R}^2} \inf_{\alpha \in \Delta} \|\varphi_{\alpha}(x)\| \le \rho < +\infty.$$

Proof. In virtue of lemma 5, for all $x \in \mathbb{R}^2$ there is at least one $P_j(x)$ in T and for such a j we have

$$\inf_{\alpha \in \Lambda} \|\varphi_{\alpha}(x)\| \le \|P_{j}(x) - \omega\| \le \rho$$

 $\inf_{\alpha \in \Delta} \|\varphi_{\alpha}(x)\| \leq \|P_{j}(x) - \omega\| \leq \rho$ since T is included in the disk of center ω and radius ρ .

Proof of theorem 2. Lemmas 6 and 7 show that the previous construction yields the desired counterexample.

References

- 1. Ricceri, B., Miscellaneous Applications of Certain Minimax Theorems II, Acta Mathematica Vietnamica (2020) 45: 515-524
- 2. Saint Raymond J., A minimax theorem for linear operators, Minimax Theory and its Applications, **1** (2016), No 2, 291–305
- 3. Saint Raymond J., A new minimax theorem for linear operators, Minimax Theory and its Applications, $\mathbf{3}\ (2018)\ ,\ n^{\circ}\ 1,\ 131\text{--}160$

SORBONNE UNIVERSITÉ, CNRS

Institut de Mathématique de Jussieu - Paris Rive Gauche

Boîte 186 - 4 place Jussieu, F
- 75252 Paris Cedex 05, FRANCE

 $Email\ address: \texttt{jean.saint-raymond@imj-prg.fr}$