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Abstract. The aim of this short note is to show that the minimax equality proved

in [3] cannot be extended to the case where linear operators are replaced by Lipschitz

operators.

In his paper [3], extending the previous [2], the author established the following minimax
theorem :

Theorem. Let E be a infinite-dimensional Banach space, F be a Banach space, X be a
convex subset of E whose interior is non-empty for the weak topology on bounded sets, ∆
a finite-dimensional convex compact subset of L(E,F ), φ : F → R be a continuous convex
coercive map, and ψ : ∆ → R a convex continuous function. Assume moreover that ∆
contains at most one compact operator. Then

sup
x∈X

inf
T∈∆

φ(Tx) + ψ(T ) = inf
T∈∆

sup
x∈X

φ(Tx) + ψ(T )

In particular, taking φ(x) = ∥x∥ and ψ = 0, this gets the minimax equality :

sup
x∈X

inf
T∈∆

∥Tx∥ = inf
T∈∆

sup
x∈X

∥Tx∥ .

The aim of this note is to replace the finite-dimensional convex compact subset ∆ of
L(E,F ) by a finite-dimensional convex compact set of Lipschitz mappings from E to F ,
and more precisely of mappings of the type x 7→ Φ(x)+ψ(x) where Φ is a fixed continuous
surjective linear mapping from E to F , and ψ : E → F is a Lipschitz mapping.

If E and F are Banach spaces and Φ : E → F a continuous linear mapping with closed
range (in particular if Φ is onto) we will denote by ν(Φ) the quantity

ν(Φ) = sup
y∈Φ(E)
∥y∥≤1

d
(
0,Φ−1(y)

)
.

Of course, if moreover Φ is one-to-one, ν(Φ) is the norm of the continuous linear mapping

Φ−1 : Φ(F ) → E. And if ker(Φ) ̸= {0}, Φ factors through the quotient Ê = E/ ker(Φ)

and a one-to-one linear mapping Φ̂ = Ê → Φ(E), and then ν(Φ) is the norm of the linear

mapping Φ̂−1.

The following result which addresses the case where ∆ is an interval, is due to B. Ricceri
and follows from Theorem 2.1 in [1].

Theorem. Let X and Y be two Banach spaces, with dim(Y ) ≥ 2. Let Φ : X → Y be a
continuous surjective linear operator and let Ψ1,Ψ2 : X → Y be two β-Lipschitz operators,
where 1/β = ν(Φ). Then, one has

sup
x∈X

inf
λ∈[0,1]

∥Φ(x) + λΨ1(x) + (1− λ)Ψ2(x)∥ = min
{
sup
x∈X

∥Φ(x) + Ψ1(x)∥ , sup
x∈X

∥Φ(x) + Ψ2(x)∥
}
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Consider now the case where the finite-dimensional compact convex set ∆ has dimension
at least 2 and its elements have small Lipschitz constants.

Theorem 1. Let X and Y be Banach spaces, Φ be a linear continuous operator from X
onto Y , β = 1/ν(Φ) and ∆ be a finite-dimensional compact convex set of Lipschitz mappings
from X to Y . If each element of ∆ has a Lipschitz constant < β, then

inf
ψ∈∆

sup
x∈X

∥Φ(x) + ψ(x)∥ = sup
x∈X

inf
ψ∈∆

∥Φ(x) + ψ(x)∥ = +∞

Proof. On the compact space ∆, the function which assigns to each ψ its Lipschitz constant

Lψ = supx,z∈X
x ̸=z

∥ψ(x)− ψ(z)∥
∥x− z∥

is continuous and attains its supremum λ < β. Also by

compactness R = supψ∈∆ ∥ψ(0)∥ < +∞.

For ε > 0 let Xε =
{
x ∈ X : ∥Φ(x)∥ ≥ β(1 − ε) ∥x∥

}
. By definition of β, we have

Φ(Xε) = Φ(X) = Y , hence supx∈Xε
∥x∥ = +∞. Indeed if Xε was bounded so would be

Y = Φ(Xε). Thus for each ψ ∈ ∆ and each x ∈ Xε we have

∥Φ(x) + ψ(x)∥ ≥ ∥Φ(x)∥ − ∥ψ(x)∥ ≥ ∥Φ(x)∥ −
(
∥ψ(0)∥+ ∥ψ(x)− ψ(0)∥

)
≥ β(1− ε) ∥x∥ −

(
R+ λ ∥x∥

)
=

(
β(1− ε)− λ

)
∥x∥ −R .

Choosing ε <
1

2
(1− λ

β
), we get infψ∈∆ ∥Φ(x) + ψ(x)∥ ≥ β − λ

2
∥x∥ −R for x ∈ Xε, hence

sup
x∈X

inf
ψ∈∆

∥Φ(x) + ψ(x)∥ ≥ sup
x∈Xε

inf
ψ∈∆

∥Φ(x) + ψ(x)∥ ≥ β − λ

2
·
(
sup
x∈Xε

∥x∥
)
−R = +∞

and

inf
ψ∈∆

sup
x∈X

∥Φ(x) + ψ(x)∥ ≥ sup
x∈X

inf
ψ∈∆

∥Φ(x) + ψ(x)∥ = +∞ .

So the proof is complete. □

We now look at the case where ∆ has dimension > 1 and each element of ∆ is β-Lipschitz,
with β = 1/ν(Φ) and want to prove that the previous minimax equality does no longer hold
by constructing a counterexample.

Theorem 2. There exist X and Y Banach spaces, Φ : X → Y linear and onto, and
(Ψj)1≤j≤3 : X → Y , β-Lipschitz, where β = 1/ν(Φ) such that

sup
x∈X

inf
α∈∆

∥∥∥Φ(x) +∑
αjΨj(x)

∥∥∥ < inf
α∈∆

sup
x∈X

∥∥∥Φ(x) +∑
αjΨj(x)

∥∥∥
where ∆ is the canonical 2-dimensional simplex : {α ∈ R3

+ : α1 + α2 + α3 = 1}.

The following result is probably well known.

Lemma 3. Let H be a real Hilbert space and C be a nonempty closed convex subset of H.
Denote by p the orthogonal projection on C and by ϖ : x 7→ p(x) − x the projecting line.
For all x and y in H we have

∥p(x)− p(y)∥2 + ∥ϖ(x)−ϖ(y)∥2 ≤ ∥x− y∥2

In particular p and ϖ are 1-Lipschitz.
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Proof. In the case where C is a closed linear subspace this inequality is in fact an equality
and corresponds to Pythagoras’ theorem.

Let x and y be two points of H, ξ = p(x) and η = p(y) be their projections on C. We
have

⟨x− ξ, η − ξ⟩ ≤ 0 and ⟨y − η, ξ − η⟩ ≤ 0 ,

thus

⟨x− y, ξ − η⟩ =
〈
(x− ξ) + (ξ − η) + (η − y), ξ − η

〉
= ⟨x− ξ, ξ − η⟩+ ⟨ξ − η, ξ − η⟩+ ⟨η − y, ξ − η⟩

= ∥ξ − η∥2 − ⟨x− ξ, η − ξ⟩ − ⟨y − η, ξ − η⟩

≥ ∥ξ − η∥2 .

It follows that

∥p(x)− p(y)∥2 + ∥ϖ(x)−ϖ(y)∥2 = ∥ξ − η∥2 + ∥(ξ − x)− (η − y)∥2

= ∥ξ − η∥2 + ∥(ξ − η)− (x− y)∥2

= 2 ∥ξ − η∥2 + ∥x− y∥2 − 2⟨x− y, ξ − η⟩

≤ ∥x− y∥2 + 2 ∥ξ − η∥2 − 2 ∥ξ − η∥2 = ∥x− y∥2 ,

whence the statement follows. □

Notations
Consider a triangle T in the euclidean plane R2, with edges a1, a2, a3, and suppose all

of its angles are acute. Let Γ be the circumscribed circle to T , ω be the center and ρ the
radius of Γ. Then ω is interior to T .

To simplify the notations, for j ∈ Z, aj will denote the point ai with i ∈ {1, 2, 3} such

that i = j (mod 3). Denote mj =
aj+1 + aj+2

2
the midpoint of the side Jj = [aj+1, aj+2]

opposite to aj ; in particular ω −mj is orthogonal to Jj . We have

(aj − aj+1) ∧ (aj+1 − aj+2) = (aj − aj+2) ∧ (aj+1 − aj+2)− (aj+1 − aj+2) ∧ (aj+1 − aj+2)

= (aj − aj+2) ∧ (aj+1 − aj+2) = (aj+3 − aj+2) ∧ (aj+1 − aj+2)

= −(aj+2 − aj+3) ∧ (aj+1 − aj+2)

= (aj+1 − aj+2) ∧ (aj+2 − aj+3)

so this outer product is independent from j. Up to swapping a2 and a3 if necessary, we will
assume that (aj−aj+1)∧(aj+1−aj+2) > 0 for all j. The linear functionals u 7→ ⟨ω−mj , u⟩
and u 7→ u ∧ (aj+1 − aj+2) have same kernel hence are proportional; so there exists γj ∈ R
such that u 7→ u∧ (aj+1 − aj+2) = γj⟨ω−mj , u⟩. Applying to u = aj − aj+1 we check that
γj⟨ω −mj , aj − aj+1⟩ = γj⟨ω −mj , aj −mj⟩ > 0, hence that γj > 0.

Denote by Qj the half strip:

Qj =
{
x ∈ R2 : (x−mj)∧(aj+1−aj+2) ≤ 0 ≤ |⟨x−mj , aj+1 − aj+2⟩| ≤

1

2
∥aj+1 − aj+2∥2

}
,

whose boundary contains the side Jj , by Pj the orthogonal projection on the closed convex
set Qj and by ϖj : x 7→ Pj(x)− x the corresponding projecting line. It is easily seen that
the intersection of Qj and the line (aj+1, aj+2) = {x : (x−mj) ∧ (aj+2 − aj+1) = 0} is the
segment Jj .

Lemma 4. If (x−mj) ∧ (aj+1 − aj+2) ≥ 0, then Pj(x) belongs to Jj.
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Proof. If not the point y = Pj(x) should satisfy (y−mj)∧(aj+1−aj+2) < 0 since Pj(x) ∈ Qj
and the inequality ⟨y−mj , aj+1 − aj+2⟩ ≤ 0 holds. Then y′ = y+ ε(ω−mj) would belong
to Qj for ε > 0 small enough, and we would have y − x = λ(aj+2 − aj+1)− µ(ω −mj) for
some convenient λ an µ, with µ ≥ 0 since (ω −mj) ∧ (aj+1 − aj+2) > 0 and

µ(ω −mj) ∧ (aj+1 − aj+2) = (x−mj) ∧ (aj+1 − aj+2)− (y −mj) ∧ (aj+1 − aj+2) ≥ 0,

hence also y′ − x = λ(aj+2 − aj+1)− (µ− ε)(ω −mj) thus

∥y′ − x∥2 = λ2 ∥aj+1 − aj+2∥2 + (µ− ε)2 ∥ω −mj∥2

< λ2 ∥aj+1 − aj+2∥2 + µ2 ∥ω −mj∥2 = ∥x− y∥2 ,

so d(x,Qj) ≤ ∥x− y′∥ < ∥x− y∥ = d(x,Qj), a contradiction. □

Lemma 5. For all x ∈ R2 at least one Pj(x) belongs to T .

Proof. Indeed

3∑
j=1

(x−mj) ∧ (aj+1 − aj+2) = (x− ω) ∧
3∑
j=1

(aj+1 − aj+2) +

3∑
j=1

(ω −mj) ∧ (aj+1 − aj+2)

= (x− ω) ∧ 0 +

3∑
j=1

(ω −mj) ∧ (aj+1 − aj+2) =

3∑
j=1

γj⟨ω −mj , ω −mj⟩

=
∑
j

γj ∥ω −mj∥2 > 0 .
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Then at least one of the terms (x−mj)∧(aj+1−aj+2) is positive and the conclusion follows
from lemma 4. □

Define X = Y = R2, Φ(x) = x and Ψj(x) = ϖj(x)−ω, hence Φ(x)+Ψj(x) = Pj(x)−ω.
It is clear from what precedes that the mappings Pj and Ψj are 1-Lipschitz, and that Φ−1

is the identity mapping, so ν(Φ) = 1.
Recall that ∆ is the simplex {(α1, α2, α3) ∈ R3

+ : α1 + α2 + α3 = 1}.

Lemma 6. For whichever α = (α1, α2, α3) ∈ ∆ the function φα =
∑3
j=1 αj

(
Pj(x) − ω

)
satisfies

sup
x∈R2

∥φα(x)∥ = +∞ .

Thus infα∈∆ supx∈R2 ∥φα(x)∥ = +∞.

Proof. Consider first the case αj = 1, αj+1 = αj+2 = 0, hence φα(x) = Pj(x) − ω. Then,
for t ≥ 0, consider the point xt = mj − t.(ω −mj) which belongs to the strip Qj . We have

∥φα(xt)∥ = ∥xt − ω∥ = ∥mj − ω − t.(ω −mj)∥ = (1 + t) ∥ω −mj∥

and supx∈R2 ∥φα(x)∥ ≥ supt≥0 ∥φα(xt)∥ = +∞ since mj ̸= ω.
Otherwise, if both αj+1 and αj+2 are not 0 (e.g. if supi αi < 1 and αj = min(α1, α2, α3)),

consider for t ≥ 0, the point xt = aj + t(ω −mj). We have Pj(xt) = Pj(x0) ∈ Jj for all t.
And for k ̸= j, (k = j + 1 or k = j + 2), we have Pk(xt) = aj + θ(mk − ω) for some θ ≥ 0.
Then since xt − Pk(xt) is orthogonal to mk − ω, we get :

0 = ⟨xt − Pk(xt),mk − ω⟩ = ⟨
(
aj + t(ω −mj)

)
−
(
aj + θ(mk − ω)

)
,mk − ω⟩

= t⟨ω −mj ,mk − ω⟩ − θ⟨mk − ω,mk − ω⟩

hence θ = t
⟨ω −mj ,mk − ω⟩

∥ω −mk∥2
, and

⟨ω −mj , Pk(xt)− ω⟩ = ⟨ω −mj , aj − ω⟩+ t

(
⟨ω −mj , ω −mk⟩

)2
∥ω −mk∥2

.

Finally we get

⟨ω −mj , φα(xt)⟩ = αj⟨ω −mj , Pj(x0)− ω⟩+ αj+1⟨ω −mj , aj − ω⟩+ αj+1t

(
⟨ω −mj , ω −mj+1⟩

)2
∥ω −mj+1∥2

+ αj+2⟨ω −mj , aj − ω⟩+ αj+2t

(
⟨ω −mj , ω −mj+2⟩

)2
∥ω −mj+2∥2

= A+Bt

where B = αj+1

(
⟨ω −mj , ω −mj+1⟩

)2
∥ω −mj+1∥2

+ αj+2

(
⟨ω −mj , ω −mj+2⟩

)2
∥ω −mj+2∥2

> 0, since by the

hypothesis on the angles of T : ⟨ω −mj , ω −mk⟩ ≠ 0 for j ̸= k.
So we get

∥φα(xt)∥ ≥ 1

∥ω −mj∥
|⟨ω −mj , φα(xt)⟩| ≥

Bt− |A|
∥ω −mj∥

whence limt→+∞ ∥φα(xt)∥ = +∞ and supx∈R2 ∥φα(t)∥ = +∞. □
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Lemma 7. For whichever x ∈ R2 there exists some α ∈ ∆ such that ∥φα(x)∥ ≤ ρ. In
particular

sup
x∈R2

inf
α∈∆

∥φα(x)∥ ≤ ρ < +∞ .

Proof. In virtue of lemma 5, for all x ∈ R2 there is at least one Pj(x) in T and for such a
j we have

inf
α∈∆

∥φα(x)∥ ≤ ∥Pj(x)− ω∥ ≤ ρ

since T is included in the disk of center ω and radius ρ. □

Proof of theorem 2. Lemmas 6 and 7 show that the previous construction yields the
desired counterexample. □
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