Espaces de Sobolev

1 - Définition

Soit © un ouvert de R%. Pour s € N et 1 < p < 0o, on notera W*P(Q) 'espace vectoriel
des (classes de) fonctions f sur 2 qui appartiennent & LP(2), ainsi que toutes leurs dérivées
partielles au sens des distributions 9, f pour |a| < s. On définit alors une norme sur W#*?

en posant
1/p
1w = (3 N0 S12)

lor|<s
Théoréme 1.1. L’espace W*P () est un espace de Banach.
Si on note B, = {a € N? : |a| < s}, 'espace W*P s’identifie & un sous-espace de

I'espace de Banach LP(Q)¥s par I'injection linéaire j : f — (9o f)ack,. Il suffit donc de voir
que j(W*P) est fermé, ce qui résulte aisément de ’équivalence :

(9a)ace € JW*P) <= Va € E; Vp € 2(Q) /(goaago — (—1)|O‘|gagp) der =0
Q

puisque ¢ et 0, appartiennent a Lp/(Q). |
Théoréme 1.2. Lorsque p = 2, I'espace W*2(Q) est un espace de Hilbert, souvent noté
H*(9).

Il suffit de remarquer que la norme de W*?2(Q) est associée au produit scalaire défini
par

1) = Y [ 0uf(@)0ug(o) ds
jal<s 7
puisque la complétude résulte du théoreme précédent. |
Théoréme 1.3. Soient et Q' deux ouverts de R%, ® un €*-difféomorphisme de §) sur ',
w un sous-ouvert relativement compact de Q et w' = ®(w). L’application ®* : f — fod~!
envoie continuement W*P(w) dans W*P(w').
On montre par récurrence sur |a| < s l'existence de fonctions continues ¢, g sur

telles que Oy (fo® 1) (z) = > f<a Ca,3(2)0p fo® ! (z). Puisque ' C @(;) est relativement
compact dans €', les fonctions ¢, g sont toutes uniformément bornées sur w’, et le jacobien
Jo de @ est borné sur w. On a

// |05/~ ()] da :/ 05f (W)|” |Ja(y)| dy < 400

dont on déduit que dgfo® ! € LP(w'), et puisque chaque ¢, 5 est bornée sur w’, on conclut
que 9y (fo®1) € LP(W') pour |a| < s, donc que fod~! € W*P(w'). Les majorations de Jg
et des c,,3 ne dépendant que de ® et de w, on voit alors qu’il existe une constante M telle
que Hfoq)_lHW&p <M || fllys.»> ce qui montre la continuité de ®*. |
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Théoreme 1.4. Si ¢ € 2P(Q), I'application M, : f — @.f envoie continuement W*P(Q)
dans lui-méme.

Par la formule de Leibniz, il existe, pour tout a des coefficients (cq,3)s<a tels que
Do(p-f)(x) = 3 5<a Ca,8050(7).0a—pf(z). Par continuité sur le support compact de ¢, les
Opy sont uniformément bornées sur 2. On en déduit aisément que 0, (p.f) est dans LP(2)
pour tout a € E, donc que p.f € WP(£) et qu’on peut trouver une constante M telle que
lo-F)llwer <M. || fllys, ce qui prouve la continuité de I'application linéaire M.,. |

2 - Injections de Sobolev

On va maintenant montrer que sous des hypotheéses convenables sur 'ouvert €2, les
espaces W*P g’injectent les uns dans les autres. On notera désormais H,; le demi-espace

{y e RY:y; <0} de R™

Lemme 2.1. On suppose que I'ouvert §) est borné dans R? et que, pour tout point a € 02,
il existe un €*-difféomorphisme ®, d’un voisinage V, de a sur un voisinage U, de 0 dans R?
tel que ©,(2NV,) = U, N Hy. Alors il existe un recouvrement ouvert fini (V;) ey de 5, des
fonctions ¢; € P(V;) telles que 3, ;¢; = 1 au voisinage de Q, et des difféomorphismes D,
de V; sur des ouverts bornés U; de R? tels que ®;(QNV;) =U; N Hy.

Par hypothese, tout point de la frontiere de §2 possede un voisinage ouvert difféomorphe
a un voisinage de 0 dans R¢ par une fonction transformant la trace de € en celle de Hy.
Et tout point de € possede un voisinage ouvert difféomorphe a un sous-ouvert de Hy

(par exemple par une translation). Par compacité de 2, on peut donc trouver un sous-
recouvrement fini (V});cs extrait de ce recouvrement, puis une partition € de 'unité,
(¢j)jer, subordonnée & ce recouvrement, c’est-a-dire des fonctions positives ¢; € 2(V;)

telles que > j ®; = 1 au voisinage du compact Q. |

Alors si f € W*P(QQ), chaque fonction f; := ®}(1;.f) est dans W*P(Hy) avec un
support compact contenu dans ®;(V;). Inversement, si (f;) est une famille de fonctions
de W*P(H,) telles que le support de f; soit un compact contenu dans ®;(V;), la somme

Zj((ﬁ;)_l(fj) est dans W9 P(Q). Ceci permet de transposer a W*P(2) des résultats prouvés
pour W*P(Hy).

Si K est un compact de R?, on notera encore W;”(12) le sous-espace (fermé) de WP (€2)
formé des fonctions nulles hors de K.

3 - Le cas s = 1 pour le demi-espace

Dans tout ce qui suit, on se place sur l'espace euclidien R?. On note B la boule unité
/2
7r
de R et Bt = BN(—Hy), vg =

1+ 4)
de la sphere unité.
On considere, pour 1 < j < d, les distributions 7} associées aux fonctions

le volume de la boule unité et o4 = dv, le volume

1 —
Xj o e d 1B+($)$]7d
d|lz|



et on a 2?21 0,;T; = %50 —1p+.

d
Lemme 3.1. Chaque T} est dans LP pour 1 < p < 1

On a pour tout j : |x;(z)| < z]|' =% g+ (z), done

1
/|Xj(:6)\p dr < %/0 pPA=d)pd=1 g — g—;l

ong=1—(p—1)(d—1)=p+d— pd, pourvu que p(d — 1) < d,

1
Si o € 2(R?Y), on a pour y € RY : p(y) — ¢(0) = / Zyjé?jgo(ty) dt, donc, en faisant

0
]|

xr = ty, puis s = R

1
[RCORECOE > |t [ wosettnn: ) ay
~Jo
T, x
_Z/ajga dx/o U (5) 2 dt
- Z/ 7,056(a d:c/ Jall = 541 ds
[l
T x
DI 2 5 o) e = 30500 = = Y10,
B+ d” || j j

c’est-a-dire (1p+ —c.do, p) = —(3_,; 0;T}, ¢), en posant ¢ = u(BT) = 2 , d’ot le résultat. MW

Théoréme 3.2. Soit p > d. Si g est dans WP (Hy), alors g est sur Hy presque partout

égale a la restriction d’une fonction de 65(Hy) et I'injection de WYP(Hy) dans 6p(Hy) est
continue.

De plus, si K est un compact de R?, I'injection de WP (Hy) dans %y (Fd) est compacte.

d '
Sip>d,onap < 1 Il en résulte que les y; et 1p+ appartiennent & L? (R?), et

que g * 1+ appartient & %p(R?), ainsi que les X; * 09 pour 1 < j < d. Pour z € Hy, on a
x — BT C Hy. 1l en résulte que si p € Z(Hy), on a

(g% 05X, 0) = (g0 % (Oix5)) = — (9, * 0;X;j) = —(9,05 (¥ * X;j))

Alors 0j(¢ * x;) € Z(Hq), et la quantité précédente est égale a (0;9, ¢ * x;) = (0;9 * Xj, ¥),
donc on a dans 2'(Hy) : 0;g * xj = ¢ * 0;X,. Et puisque les distributions 1z+ et x; sont a
support compact on a dans 2'(Hy) :

1 1
g=00%g C(B+*g+§j i X5 * g) C(B+*9+§j Xj *0;9)



et cette derniere distribution est dans %,(IR?). Sa restriction & ﬁd est dans 6, (Fd) et coincide
sur H; avec g en tant que distributions, donc presque partout en tant que fonctions. De plus
on a

1 1
I90oe < = (15l - lglly + D1l - 19591L,) < = (I25+ 4+ D= sl )- gl
J J

ce qui prouve la continuité de 'injection de W1P(H,) dans 6 (Fd)
Et si K est un compact de Hy, il résulte du théoréeme de compacité des opérateurs de
convolution que linjection de Wy* (Hy) dans %y(Hy) est compacte. |

-
est dans L"(Hy) et I'injection de W1P(H,) dans L"(Hy) est continue. De plus, si K est un
compact de R%, I'injection de WP (H,) dans L"(Hy) est compacte.
1 1 1 1 1
Soit g tel que —+ - =1+ —-.0Ona - =1——+ — >1— —. Il en résulte que Ip+ et
P q r q p o d
les x; sont dans L9(R?), donc que f x 1+ et 9;g * x; appartiennent & L"(R?). Et comme

ci-dessus, on a dans 2'(Hy) :

1 1 1
Théoreme 3.3. Soient p < d et r tel que — > — — 7 Si g est dans WYP(Hy), alors g
p

1 1
9250*9:E(]IBJr*Q+Zanj*9):E(]lB+*g+ZXj* i9)
J J

et cette derniére distribution est dans L"(R?). Sa restriction & Hy est dans L"(H) et coincide
sur H; avec g en tant que distributions, donc presque partout en tant que fonctions.
Et on a

1 1
lgll, < = (sl - g, + > Il 19591, ) < = (154l + - 11, ) lgllys
J J

ce qui montre la continuité de I'injection de W1P(H,) dans L"(Hy).
Enfin, si K est un compact de Hy, il résulte du théoreme de compacité des opérateurs
de convolution que l'injection de W[l{,p (Hq) dans L"(H,) est compacte. |

4 - Le cas général

Théoréme 4.1. Soient s > 1 et p < d. Si g est dans W*P(Hy), alors g est dans W*~1:9(Hy)
pour q tel que % > ]19 — é et I'injection de W*P(H,) dans W*~%9(Hy) est continue. De plus,
si K est un compact de R?, I'injection de WP (Hy) dans W*~14(H,) est compacte.

Pour a € N? tel que |a| < s, 9of € WHP(Hy), avec ||0afllyio < [|X|lyyew- 11 résulte
alors du théoreme 3.3 que chaque 9, f appartient a L1(Hy), puisque 5 > ]; — — et que

d
10afll, < C(g;d). 10af 1o < C(g;d) Xy Ceci montre que f appartient & W*=19(Hy)

et que l'injection de W*P?(Hy) dans W*~149(H,) est continue.

Si de plus, K est un compact de R?, le méme argument montre que linjection de
WgP(Hy) dans W*—14(Hy) est compacte. n




Théoréme 4.2. Soient s > 1 et p > d. Si g est dans W*P(H), alors g est la restriction a
Hy d’un élément de €Y (RY) | et I'injection de W*P(Hy) dans ‘KOS_I(E) est continue. De
plus, si K est un compact de R?, I'injection de W¥ (Hy) dans 6§ _1(Fd) est compacte.

A nouveau, pour tout o € N? tel que |a| < s, il résulte du théoréme 3.2 que 9,9 est la
restriction & Hy d'une fonction de %, (R%). On en déduit que g est €°~! sur Hy et que toutes
ses dérivées partielles d’ordre < s—1 sont continues sur H—d. Et on voit comme précédemment
que l'injection de W*P dans €3 ' est continue, et méme compacte sur Wy* (Hy). [

d
Théoréme 4.3. Soient s > 1 et p > —. Si g est dans W*P(H,), alors g est la restriction
s

— d
a Hy d’un élément de 6€F(RY) pour k tel que s — — > k, et I'injection de W*P(H,) dans
S p

G (Hy) est continue. De plus, si K est un compact de RY, I'injection de WP (Hy) dans

G (Hy) est compacte.

m s—k 1 m
Soit m < s le plus grand entier tel que — — ¥ > 0. On a alors 7 > - > R
p
m+1 1 1 m+1—3j
donc s—m—1 2>k, et i > —. Prenant alors ¢; tel que — = y, on obtient
d p ¢  p(m+1)
1 1 1 . 1 1
G =p<q < q < - -qntelsque — > — ——pour 0 < 7 <met — < —=. 1l
gj+1 q d Um d

résulte alors du théoréme 4.1 que, pour 0 < j < m, W*=749 (H,) s’injecte continuement
dans We=i=L4i+1(Hy), donc que WP (Hy) s’injecte continuement dans W~ (Hy), et
du théoréme précédent que ce dernier espace s’injecte continuement dans 65 (Hy) puisque
s—m-—12>k.

Et de méme, si K est un compact de R?, par composition d’injections compactes, on
trouve que l'injection de WP (Hy) dans 65 (Hy) est compacte. |

Soit s entier non nul. On suppose maintenant que I'ouvert Q est borné dans R¢ et que,
pour tout point a € 92, il existe un % *-difféomorphisme ®, d’'un voisinage V, de a sur un
voisinage U, de 0 dans R? tel que ®,(QNV,) = U, N Hy.

Le recouvrement (V;);cs, les ouverts bornés U; de R?, les difféomorphismes ®; et la
partition € de 'unité, (v;);jcs, fournis par le lemme 2.1 permettent de construire des
opérateurs linéaires continus W, : W*P(Q) — [],.; W*P(Hy) et O, : [[;c, WP (Ha) —

WeP(Q) tels que W, ,(f) = (q);(f-wj))jeJ et O5,((95)5e7) = Ej(q)§)71<gj), vérifiant
O, o0, = Id.
De plus, lorsque f € W*P(Q), la fonction ®7(f.1);) appartient a W;{’f(Hd) pour

K; =U,.
Théoréme 4.4. Soient s > 1 et p < d. Si g est dans W*P(Q), alors g est dans W*~14(Q)

1 1 1
pour q tel que — > — — 7 et I'injection de W*P(Q) dans W*=14(Q) est compacte.
qg P

Soit g € W*P(Q). Powr tout j € J, ®j(g.1h;) € Wgl(Ha) C W[s(;va(Hd). On en
déduit que g.ip; = (®5)7 (P4 (g.15)) € W H9(Q) et enfin que g = 2.9 € we—ba(Q).
Et puisque chaque injection 7; de W;f’ (Hq) dans W;(;l’q(Hd) est compacte, I'injection
T = Os_1,40([[; 7j)oPs,, de W*P(€2) dans Wes=14(Q) est compacte. |

5



Le résultat précédent concernant la compacité de I'injection de W1P(Q) dans LI(£2) est
appelé théoreme de Rellich-Kondrachov.

d
Théoréme 4.5. Soient s > 1 et p > —. Si g est dans W*P(Q), alors g est dans €% () pour
s

d —
k tel que s — — > k, et 'injection de W*P(Q) dans €*(Q) est compacte.
p
Soit g € W*P((2). Comme précédemment, 7 (g.v;) € Wy (Hy) C 6¥(Hy) pour tout
J € J et par composition avec le difféomorphisme ®;, on voit que g.1; est la la restriction
a Q d’une fonction de classe €* sur R?, donc que ¢ est la restriction & € d’une fonction de

classe % sur R%. Et puisque chaque injection 7; de Wf(f (H4) dans 6F(Hy) est compacte,

Vinjection 7 = Oo(][; 7j)o®Ps,, de W*P(12) dans € () est compacte, ot Oy, est 'application
linéaire continue de [, CF (H_d) dans €* (5) définie par O, ((g;)jes) = >_; gjoP;. |

5 - Le cas limite

1 1 1
De fait, si p < d et = = — — =, on peut montrer que W?(Hy) se plonge encore dans

qg p d
L%(H,). Néanmoins, la compacité de 'opérateur de plongement est perdue, comme le montre

I’exemple suivant, ot d =2, p=1et ¢ = 2.

Exemple 5.1. Il existe une suite bornée (gi) de fonctions dans WY'(Hsy), dont les
suppports restent dans un méme compact, mais dont aucune sous-suite ne converge dans

L?(R?).
1
Soit p une fonction de classe 4! positive & support dans | —1, —3 [. On définit la fonction

gr € €1(Hy) par gp(z,y) = 2¥g(2Fx).g(2%y). Clairement le support de g est un compact
contenu dans | —1,0[x]—1,0[, donc dans Hs. On vérifie immédiatement que ||g||, = 27* Hpr
et que ||0.9|l; = |0y9ll; = llplly - 1lP]l;» ce qui montre que la suite (gx) est bornée dans

0 2
WUI(Hy). Enfin, ona||gk||§:/ZQkp2(2km)p2(2ky)dwdy:(/ P(ydt) = [l et
—1

(gk, ge) = 28T / p(2F2)p(2x) p(25y) p(2"y) da dy = 2’“”( / p(2Fz)p(2° ) drlr)2

et cette quantité est nulle si k < ¢ puisque p(2¥z) = 0 si * < —27% et p(2fx) = 0 si
x> —2'"¢ > —27F Tl en résulte que |gr — gell3 = llgulls + llgell5 = 2[pll5 si k # £, et que la
suite (gx) ne peut avoir de sous-suite qui converge dans L2 |

En utilisant les méthodes de la section 4, on montrerait de méme que, sous réserve que
Q) vérifie les conditions convenables, on a W*P(Q2) C W*~19(Q). Et on remarque que cette
inclusion peut ne pas étre vérifiée si on n’impose aucune condition sur (2.

Exemple 5.2. Soit 2 'ouvert borné de R? défini par Q = {(z,y) : 0 <x < 1et |yl < z°}.
Alors la fonction g : (z,y) — x~% est dans WP (Q) pour 1 < p < 5 mais pas dans L1(f2)

3
pour§<q<2.



On a

5

1 T 1
3
/g(x,y)pdxdy:/ a:_4pdx/ dy:2/ 257 dr < foosip < =
Q 0 —ab 0 2

5

1 T 1

6

/ 10,9|" dx dy = / 4P g —5P dac/ dy = 22p+1/ 257P dx < 400 sip < R
Q 0 —x5 0

/ 10yg|” dxdy =0
0

3
mais / g(z,y)!dxdy = 400 sisiq> 3" |
Q

1 1
Au contraire du cas p < d et — = — — p pour lequel WP se plonge dans L9, ’espace
q

p
WLP(Q) ne se plonge pas dans L>°(Q) lorsque p = d > 2, méme pour un ouvert borné

comme la boule unité.

Exemple 5.3. Soit D le disque unité du plan R2. La fonction f : z — log'/®(2/||z|) est
dans W12(D) sans étre localement bornée.

Il est clair que f n’est bornée sur aucun voisinage de 0. Néanmoins, on a

27 1
/ |f(z,v)|) dzdy :/ d@/ log?3(2/r)rdr < 21 sup rlog?3(2/r) < +oo
D 0 0

0<r<1
et
2 2 o ' 1
/|8mf(sc7y)| dx dy = / |0y f(z,y)|” dedy = /0 cos? 9d9/0 02105 (2)1) rdr
1 ~1/3
- g/o #@W =35 [31og—1/3(2/r)}; = M <
ce qui montre que f € W2(D). |



