
Espaces de Sobolev

1 - Définition

Soit Ω un ouvert de Rd. Pour s ∈ N et 1 6 p 6 ∞, on notera W s,p(Ω) l’espace vectoriel
des (classes de) fonctions f sur Ω qui appartiennent à Lp(Ω), ainsi que toutes leurs dérivées
partielles au sens des distributions ∂αf pour |α| 6 s. On définit alors une norme sur W s,p

en posant

kfkW s,p =
≥ X

|α|6s

k∂αfkp
p

¥1/p

Théorème 1.1. L’espace W s,p(Ω) est un espace de Banach.

Si on note Es = {α ∈ Nd : |α| 6 s}, l’espace W s,p s’identifie à un sous-espace de
l’espace de Banach Lp(Ω)Es par l’injection linéaire j : f 7→ (∂αf)α∈Es . Il suffit donc de voir
que j(W s,p) est fermé, ce qui résulte aisément de l’équivalence :

(gα)α∈E ∈ j(W s,p) ⇐⇒ ∀α ∈ Es ∀ϕ ∈ D(Ω)
Z

Ω
(g0∂αϕ− (−1)|α|gαϕ) dx = 0

puisque ϕ et ∂αϕ appartiennent à Lp0
(Ω). •

Théorème 1.2. Lorsque p = 2, l’espace W s,2(Ω) est un espace de Hilbert, souvent noté
Hs(Ω).

Il suffit de remarquer que la norme de W s,2(Ω) est associée au produit scalaire défini
par

hf, gi =
X

|α|6s

Z

Ω
∂αf(x).∂αḡ(x) dx

puisque la complétude résulte du théorème précédent. •

Théorème 1.3. Soient Ω et Ω0 deux ouverts de Rd, Φ un C s-difféomorphisme de Ω sur Ω0,
ω un sous-ouvert relativement compact de Ω et ω0 = Φ(ω). L’application Φ∗ : f 7→ f◦Φ−1

envoie continuement W s,p(ω) dans W s,p(ω0).

On montre par récurrence sur |α| 6 s l’existence de fonctions continues cα,β sur Ω0

telles que ∂α(f◦Φ−1)(x) =
P

β6α cα,β(x)∂βf◦Φ−1(x). Puisque ω0 ⊂ Φ(ω) est relativement
compact dans Ω0, les fonctions cα,β sont toutes uniformément bornées sur ω0, et le jacobien
JΦ de Φ est borné sur ω. On aZ

ω0

ØØ∂βf◦Φ−1(x)
ØØp dx =

Z

ω
|∂βf(y)|p |JΦ(y)| dy < +∞

dont on déduit que ∂βf◦Φ−1 ∈ Lp(ω0), et puisque chaque cα,β est bornée sur ω0, on conclut
que ∂α(f◦Φ−1) ∈ Lp(ω0) pour |α| 6 s, donc que f◦Φ−1 ∈ W s,p(ω0). Les majorations de JΦ

et des cα,β ne dépendant que de Φ et de ω, on voit alors qu’il existe une constante M telle
que

∞∞f◦Φ−1
∞∞

Ws,p
6 M kfkW s,p , ce qui montre la continuité de Φ∗. •

version du 24 Novembre 2009



Théorème 1.4. Si ϕ ∈ D(Ω), l’application Mϕ : f 7→ ϕ.f envoie continuement W s,p(Ω)
dans lui-même.

Par la formule de Leibniz, il existe, pour tout α des coefficients (cα,β)β6α tels que
∂α(ϕ.f)(x) =

P
β6α cα,β∂βϕ(x).∂α−βf(x). Par continuité sur le support compact de ϕ, les

∂βϕ sont uniformément bornées sur Ω. On en déduit aisément que ∂α(ϕ.f) est dans Lp(Ω)
pour tout α ∈ Es, donc que ϕ.f ∈ W s,p(Ω) et qu’on peut trouver une constante M telle que
kϕ.f)kW s,p 6 M. kfkW s,p , ce qui prouve la continuité de l’application linéaire Mϕ. •

2 - Injections de Sobolev

On va maintenant montrer que sous des hypothèses convenables sur l’ouvert Ω, les
espaces W s,p s’injectent les uns dans les autres. On notera désormais Hd le demi-espace
{y ∈ Rd : y1 < 0} de Rd.

Lemme 2.1. On suppose que l’ouvert Ω est borné dans Rd et que, pour tout point a ∈ ∂Ω,
il existe un C s-difféomorphisme Φa d’un voisinage Va de a sur un voisinage Ua de 0 dans Rd

tel que Φa(Ω∩ Va) = Ua ∩Hd. Alors il existe un recouvrement ouvert fini (Vj)j∈J de Ω, des

fonctions ψj ∈ D(Vj) telles que
P

j∈J ψj = 1 au voisinage de Ω, et des difféomorphismes Φj

de Vj sur des ouverts bornés Uj de Rd tels que Φj(Ω ∩ Vj) = Uj ∩Hd.

Par hypothèse, tout point de la frontière de Ω possède un voisinage ouvert difféomorphe
à un voisinage de 0 dans Rd par une fonction transformant la trace de Ω en celle de Hd.
Et tout point de Ω possède un voisinage ouvert difféomorphe à un sous-ouvert de Hd

(par exemple par une translation). Par compacité de Ω, on peut donc trouver un sous-
recouvrement fini (Vj)j∈J extrait de ce recouvrement, puis une partition C∞ de l’unité,
(ψj)j∈J , subordonnée à ce recouvrement, c’est-à-dire des fonctions positives ψj ∈ D(Vj)
telles que

P
j ψj = 1 au voisinage du compact Ω. •

Alors si f ∈ W s,p(Ω), chaque fonction fj := Φ∗
j (ψj .f) est dans W s,p(Hd) avec un

support compact contenu dans Φj(Vj). Inversement, si (fj) est une famille de fonctions
de W s,p(Hd) telles que le support de fj soit un compact contenu dans Φj(Vj), la sommeP

j(Φ
∗
j )−1(fj) est dans W s,p(Ω). Ceci permet de transposer à W s,p(Ω) des résultats prouvés

pour W s,p(Hd).
Si K est un compact de Rd, on notera encore W s,p

K (Ω) le sous-espace (fermé) de W s,p(Ω)
formé des fonctions nulles hors de K.

3 - Le cas s = 1 pour le demi-espace

Dans tout ce qui suit, on se place sur l’espace euclidien Rd. On note B la boule unité

de Rd et B+ = B∩ (−Hd), vd =
πd/2

Γ(1 + d
2 )

le volume de la boule unité et σd = dvd le volume

de la sphère unité.
On considère, pour 1 6 j 6 d, les distributions Tj associées aux fonctions

χj : x 7→ 1lB+(x).xj
1− kxkd

d kxkd
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Lemme 3.1. Chaque Tj est dans Lp pour 1 6 p <
d

d− 1
, et on a

Pd
j=1 ∂jTj =

vd

2
δ0−1lB+ .

On a pour tout j : |χj(x)| 6 kxk1−d .1lB+(x), donc

Z
|χj(x)|p dx 6

σ

2

Z 1

0
rp(1−d)rd−1 dr =

σd

2q

où q = 1− (p− 1)(d− 1) = p + d− pd, pourvu que p(d− 1) < d,

Si ϕ ∈ D(Rd), on a pour y ∈ Rd : ϕ(y) − ϕ(0) =
Z 1

0

X

j

yj∂jϕ(ty) dt, donc, en faisant

x = ty, puis s =
kxk
t

,

Z

B+
(ϕ(y)− ϕ(0)) dy =

X

j

Z 1

0
dt

Z
yj∂jϕ(ty)1lB+(y) dy

=
X

j

Z
∂jϕ(x) dx

Z 1

0
1lB+(

x

t
)

xj

td+1
dt

=
X

j

Z

B+
xj∂jϕ(x) dx

Z 1

kxk
kxk−d sd−1 ds

=
X

j

Z

B+

xj .(1− kxkd)
d kxkd

∂jϕ(x) dx =
X

j

hTj , ∂jϕi = −
X

j

h∂jTj , ϕi

c’est-à-dire h1lB+−c.δ0, ϕi = −h
P

j ∂jTj , ϕi, en posant c = µ(B+) =
vd

2
, d’où le résultat. •

Théorème 3.2. Soit p > d. Si g est dans W 1,p(Hd), alors g est sur Hd presque partout

égale à la restriction d’une fonction de C0(Hd) et l’injection de W 1,p(Hd) dans C0(Hd) est
continue.

De plus, si K est un compact de Rd, l’injection de W 1,p
K (Hd) dans C0(Hd) est compacte.

Si p > d, on a p0 <
d

d− 1
. Il en résulte que les χj et 1lB+ appartiennent à Lp0

(Rd), et

que g ∗ 1lB+ appartient à C0(Rd), ainsi que les χj ∗ ∂jg pour 1 6 j 6 d. Pour x ∈ Hd, on a
x−B+ ⊂ Hd. Il en résulte que si ϕ ∈ D(Hd), on a

hg ∗ ∂jχj , ϕi = hg, ϕ ∗ (∂jχj )̌ i = −hg, ϕ ∗ ∂jχ̌ji = −hg, ∂j(ϕ ∗ χ̌j)i

Alors ∂j(ϕ ∗ χ̌j) ∈ D(Hd), et la quantité précédente est égale à h∂jg, ϕ ∗ χ̌ji = h∂jg ∗χj , ϕi,
donc on a dans D 0(Hd) : ∂jg ∗ χj = g ∗ ∂jχj . Et puisque les distributions 1lB+ et χj sont à
support compact on a dans D 0(Hd) :

g = δ0 ∗ g =
1
c
(1lB+ ∗ g +

X

j

∂jχj ∗ g) =
1
c
(1lB+ ∗ g +

X

j

χj ∗ ∂jg)

3



et cette dernière distribution est dans C0(Rd). Sa restriction à Hd est dans C0(Hd) et cöıncide
sur Hd avec g en tant que distributions, donc presque partout en tant que fonctions. De plus
on a

kgk∞ 6
1
c

≥
k1lB+kp0 . kgkp +

X

j

kχjkp0 . k∂jgkp

¥
6

1
c

≥
k1lB+kp0 +

X

j

kχjkp0

¥
. kgkW 1,p

ce qui prouve la continuité de l’injection de W 1,p(Hd) dans C0(Hd).
Et si K est un compact de Hd, il résulte du théorème de compacité des opérateurs de

convolution que l’injection de W 1,p
K (Hd) dans C0(Hd) est compacte. •

Théorème 3.3. Soient p < d et r tel que
1
r

>
1
p
− 1

d
. Si g est dans W 1,p(Hd), alors g

est dans Lr(Hd) et l’injection de W 1,p(Hd) dans Lr(Hd) est continue. De plus, si K est un
compact de Rd, l’injection de W 1,p

K (Hd) dans Lr(Hd) est compacte.

Soit q tel que
1
p

+
1
q

= 1 +
1
r
. On a

1
q

= 1 − 1
p

+
1
r

> 1 − 1
d
. Il en résulte que 1lB+ et

les χj sont dans Lq(Rd), donc que f ∗ 1lB+ et ∂jg ∗ χj appartiennent à Lr(Rd). Et comme
ci-dessus, on a dans D 0(Hd) :

g = δ0 ∗ g =
1
c
(1lB+ ∗ g +

X

j

∂jχj ∗ g) =
1
c
(1lB+ ∗ g +

X

j

χj ∗ ∂jg)

et cette dernière distribution est dans Lr(Rd). Sa restriction à Hd est dans Lr(Hd) et cöıncide
sur Hd avec g en tant que distributions, donc presque partout en tant que fonctions.

Et on a

kgkr 6
1
c

≥
k1lB+kq . kgkp +

X

j

kχjkq k∂jgkp

¥
6

1
c

≥
k1lB+kq +

X

j

kχjkq

¥
kgkW 1,p

ce qui montre la continuité de l’injection de W 1,p(Hd) dans Lr(Hd).
Enfin, si K est un compact de Hd, il résulte du théorème de compacité des opérateurs

de convolution que l’injection de W 1,p
K (Hd) dans Lr(Hd) est compacte. •

4 - Le cas général

Théorème 4.1. Soient s > 1 et p < d. Si g est dans W s,p(Hd), alors g est dans W s−1,q(Hd)

pour q tel que
1
q

>
1
p
− 1

d
et l’injection de W s,p(Hd) dans W s−1,q(Hd) est continue. De plus,

si K est un compact de Rd, l’injection de W s,p
K (Hd) dans W s−1,q(Hd) est compacte.

Pour α ∈ Nd tel que |α| < s, ∂αf ∈ W 1,p(Hd), avec k∂αfkW 1,p 6 kχkW s,p . Il résulte

alors du théorème 3.3 que chaque ∂αf appartient à Lq(Hd), puisque
1
q

>
1
p
− 1

d
et que

k∂αfkq 6 C(q, d). k∂αfkW 1,p 6 C(q, d) kχkW s,p . Ceci montre que f appartient à W s−1,q(Hd)
et que l’injection de W s,p(Hd) dans W s−1,q(Hd) est continue.

Si de plus, K est un compact de Rd, le même argument montre que l’injection de
W s,p

K (Hd) dans W s−1,q(Hd) est compacte. •
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Théorème 4.2. Soient s > 1 et p > d. Si g est dans W s,p(Hd), alors g est la restriction à

Hd d’un élément de C s−1
0 (Rd) , et l’injection de W s,p(Hd) dans C s−1

0 (Hd) est continue. De

plus, si K est un compact de Rd, l’injection de W s,p
K (Hd) dans C s−1

0 (Hd) est compacte.

A nouveau, pour tout α ∈ Nd tel que |α| < s, il résulte du théorème 3.2 que ∂αg est la
restriction à Hd d’une fonction de C0(Rd). On en déduit que g est C s−1 sur Hd et que toutes
ses dérivées partielles d’ordre 6 s−1 sont continues sur Hd. Et on voit comme précédemment
que l’injection de W s,p dans C s−1

0 est continue, et même compacte sur W s,p
K (Hd). •

Théorème 4.3. Soient s > 1 et p >
d

s
. Si g est dans W s,p(Hd), alors g est la restriction

à Hd d’un élément de C k
0 (Rd) pour k tel que s − d

p
> k, et l’injection de W s,p(Hd) dans

C k
0 (Hd) est continue. De plus, si K est un compact de Rd, l’injection de W s,p

K (Hd) dans

C k
0 (Hd) est compacte.

Soit m < s le plus grand entier tel que
1
p
− m

d
> 0. On a alors

s− k

d
>

1
p

>
m

d
,

donc s −m − 1 > k, et
m + 1

d
>

1
p
. Prenant alors qj tel que

1
qj

=
m + 1− j

p(m + 1)
, on obtient

q0 = p < q1 < q2 < · · · qm tels que
1

qj+1
>

1
qj
− 1

d
pour 0 6 j < m et

1
qm

<
1
d
. Il

résulte alors du théorème 4.1 que, pour 0 6 j < m, W s−j,qj (Hd) s’injecte continuement
dans W s−j−1,qj+1(Hd), donc que W s,p(Hd) s’injecte continuement dans W s−m,qm(Hd), et
du théorème précédent que ce dernier espace s’injecte continuement dans C k

0 (Hd) puisque
s−m− 1 > k.

Et de même, si K est un compact de Rd, par composition d’injections compactes, on
trouve que l’injection de W s,p

K (Hd) dans C k
0 (Hd) est compacte. •

Soit s entier non nul. On suppose maintenant que l’ouvert Ω est borné dans Rd et que,
pour tout point a ∈ ∂Ω, il existe un C s-difféomorphisme Φa d’un voisinage Va de a sur un
voisinage Ua de 0 dans Rd tel que Φa(Ω ∩ Va) = Ua ∩Hd.

Le recouvrement (Vj)j∈J , les ouverts bornés Uj de Rd, les difféomorphismes Φj et la
partition C∞ de l’unité, (ψj)j∈J , fournis par le lemme 2.1 permettent de construire des
opérateurs linéaires continus Ψs,p : W s,p(Ω) →

Q
j∈J W s,p(Hd) et Θs,p :

Q
j∈J W s,p(Hd) →

W s,p(Ω) tels que Ψs,p(f) = (Φ∗
j (f.ψj))j∈J et Θs,p((gj)j∈J) =

P
j(Φ

∗
j )−1(gj), vérifiant

Θs,p◦Ψs,p = Id.
De plus, lorsque f ∈ W s,p(Ω), la fonction Φ∗

j (f.ψj) appartient à W s,p
Kj

(Hd) pour

Kj = Uj .

Théorème 4.4. Soient s > 1 et p < d. Si g est dans W s,p(Ω), alors g est dans W s−1,q(Ω)

pour q tel que
1
q

>
1
p
− 1

d
et l’injection de W s,p(Ω) dans W s−1,q(Ω) est compacte.

Soit g ∈ W s,p(Ω). Pour tout j ∈ J , Φ∗
j (g.ψj) ∈ W s,p

Kj
(Hd) ⊂ W s−1,q

Kj
(Hd). On en

déduit que g.ψj = (Φ∗
j )−1(Φ∗

j (g.ψj)) ∈ W s−1,q(Ω) et enfin que g =
P

j g.ψj ∈ W s−1,q(Ω).
Et puisque chaque injection τj de W s,p

Kj
(Hd) dans W s−1,q

Kj
(Hd) est compacte, l’injection

τ = Θs−1,q◦(
Q

j τj)◦Φs,p de W s,p(Ω) dans W s−1,q(Ω) est compacte. •
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Le résultat précédent concernant la compacité de l’injection de W 1,p(Ω) dans Lq(Ω) est
appelé théorème de Rellich-Kondrachov.

Théorème 4.5. Soient s > 1 et p >
d

s
. Si g est dans W s,p(Ω), alors g est dans C k(Ω) pour

k tel que s− d

p
> k, et l’injection de W s,p(Ω) dans C k(Ω) est compacte.

Soit g ∈ W s,p(Ω). Comme précédemment, Φ∗
j (g.ψj) ∈ W s,p

Kj
(Hd) ⊂ C k

0 (Hd) pour tout
j ∈ J et par composition avec le difféomorphisme Φj , on voit que g.ψj est la la restriction
à Ω d’une fonction de classe C k sur Rd, donc que g est la restriction à Ω d’une fonction de
classe C k sur Rd. Et puisque chaque injection τj de W s,p

Kj
(Hd) dans C k

0 (Hd) est compacte,

l’injection τ = Θk◦(
Q

j τj)◦Φs,p de W s,p(Ω) dans C k(Ω) est compacte, où Θk est l’application
linéaire continue de

Q
j C k

0 (Hd) dans C k(Ω) définie par Θk((gj)j∈J) =
P

j gj◦Φj . •

5 - Le cas limite

De fait, si p < d et
1
q

=
1
p
− 1

d
, on peut montrer que W 1,p(Hd) se plonge encore dans

Lq(Hd). Néanmoins, la compacité de l’opérateur de plongement est perdue, comme le montre
l’exemple suivant, où d = 2, p = 1 et q = 2.

Exemple 5.1. Il existe une suite bornée (gk) de fonctions dans W 1,1(H2), dont les
suppports restent dans un même compact, mais dont aucune sous-suite ne converge dans
L2(R2).

Soit ρ une fonction de classe C 1 positive à support dans ]−1,−1
2
[. On définit la fonction

gk ∈ C 1
c (H2) par gk(x, y) = 2kg(2kx).g(2ky). Clairement le support de gk est un compact

contenu dans ]−1, 0[×]−1, 0[, donc dans H2. On vérifie immédiatement que kgk1 = 2−k kρk21
et que k∂xgk1 = k∂ygk1 = kρk1 . kρ0k1, ce qui montre que la suite (gk) est bornée dans

W 1,1(H2). Enfin, on a kgkk22 =
Z

22kρ2(2kx)ρ2(2ky) dx dy =
≥Z 0

−1
ρ2(t) dt

¥2
= kρk42, et

hgk, g`i = 2k+`

Z
ρ(2kx)ρ(2`x)ρ(2ky)ρ(2`y) dx dy = 2k+`

≥Z
ρ(2kx)ρ(2`x) dx

¥2

et cette quantité est nulle si k < ` puisque ρ(2kx) = 0 si x 6 −2−k et ρ(2`x) = 0 si
x > −21−` > −2−k. Il en résulte que kgk − g`k22 = kgkk22 + kg`k22 = 2 kρk42 si k 6= `, et que la
suite (gk) ne peut avoir de sous-suite qui converge dans L2. •

En utilisant les méthodes de la section 4, on montrerait de même que, sous réserve que
Ω vérifie les conditions convenables, on a W s,p(Ω) ⊂ W s−1,q(Ω). Et on remarque que cette
inclusion peut ne pas être vérifiée si on n’impose aucune condition sur Ω.

Exemple 5.2. Soit Ω l’ouvert borné de R2 défini par Ω = {(x, y) : 0 < x < 1 et |y| < x5}.
Alors la fonction g : (x, y) 7→ x−4 est dans W 1,p(Ω) pour 1 6 p <

6
5
, mais pas dans Lq(Ω)

pour
3
2

6 q 6 2.
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On a

Z

Ω
g(x, y)p dx dy =

Z 1

0
x−4p dx

Z x5

−x5
dy = 2

Z 1

0
x5−4p dx < +∞ si p <

3
2

Z

Ω
|∂xg|p dx dy =

Z 1

0
4px−5p dx

Z x5

−x5
dy = 22p+1

Z 1

0
x5−5p dx < +∞ si p <

6
5

Z

Ω
|∂yg|p dx dy = 0

mais
Z

Ω
g(x, y)q dx dy = +∞ si si q >

3
2
. •

Au contraire du cas p < d et
1
q

=
1
p
− 1

d
pour lequel W 1,p se plonge dans Lq, l’espace

W 1,p(Ω) ne se plonge pas dans L∞(Ω) lorsque p = d > 2, même pour un ouvert borné
comme la boule unité.

Exemple 5.3. Soit D le disque unité du plan R2. La fonction f : x 7→ log1/3(2/ kxk) est
dans W 1,2(D) sans être localement bornée.

Il est clair que f n’est bornée sur aucun voisinage de 0. Néanmoins, on a

Z

D
|f(x, y)|2 dx dy =

Z 2π

0
dθ

Z 1

0
log2/3(2/r) r dr 6 2π sup

0<r61
r log2/3(2/r) < +∞

et
Z

|∂xf(x, y)|2 dx dy =
Z

|∂yf(x, y)|2 dx dy =
Z 2π

0
cos2 θ dθ

Z 1

0

1
9r2 log4/3(2/r)

r dr

=
π

9

Z 1

0

dr

r log4/3(2/r)
=

π

9

h
3 log−1/3(2/r)

i1

0
=

π log−1/3(2)
3

< ∞

ce qui montre que f ∈ W 1,2(D). •
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