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Abstract. Hyperkähler manifolds are important among compact Kähler manifolds with
a trivial canonical bundle, but very few examples are known. We study the topological
constraints for these manifolds. I will present two results: a description of their cobordism
classes in terms of known examples (joint with Georg Oberdieck and Claire Voisin), and a
conditional bound on the second Betti number (joint with Thorsten Beckmann). I will also
talk about some conjectural properties on the positiveness of certain numerical invariants
called generalized Fujiki constants, and explain the consequences.

1. Introduction

Definition 1.1. A simply connected compact Kähler manifold X is called a hyperkähler
manifold if the vector space H2,0(X) := H0(X,Ω2

X) is generated by a symplectic holomorphic
2-form σ (such manifolds are also known as irreducible symplectic varieties).

The existence of a symplectic form gives immediately the following.

Proposition 1.2. Let X be a hyperkähler manifold.
• The dimension of X is even. We will write dim(X) = 2n throughout these notes.
• The symplectic form σ induces an isomorphism σ : TX

∼−→ ΩX . In particular, all odd
Chern classes and Chern characters vanish:

∀ k ∈ Z c2k+1(TX) = 0, ch2k+1(TX) = 0.

Compact hyperkähler manifolds are extremely important in the study of manifolds with
trivial canonical bundle. Notably, by the Beauville–Bogomolov decomposition theorem, they
are one of the three building blocks.

Theorem 1.3 (Beauville–Bogomolov). Let X be a compact Kähler manifold with trivial
canonical bundle. Then there exists a finite étale cover

T ×
∏
i

Yi ×
∏
j

Kj −→ X,

where T is a complex torus, Yi are strict Calabi–Yau manifolds,1 and Kj are hyperkähler
manifolds.

Compact hyperkähler manifolds are also mysterious in that only very few examples are
known, in sharp contrast to strict Calabi–Yau manifolds. We list all the known examples
below.

Example 1.4.

Date: January 25, 2022.
1A strict Calabi–Yau manifold is a simply connected Kähler manifold Y with trivial canonical bundle such

that Hk,0(Y ) = 0 for all k /∈ {0,dim(Y )}.
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• In dimension 2, these are precisely K3 surfaces. They all have the same topological
type, and the second Betti number b2 is equal to 22.

• K3[n] for n ≥ 2: for a K3 surface S, one can consider the Hilbert scheme of points S[n],
which is a hyperkähler manifold of dimension 2n. More generally, their deformations
are also hyperkähler. They have b2 = 23.

• Kumn for n ≥ 2: similarly, for an Abelian surface A, one can consider the Hilbert
scheme of points; but to produce a simply connected manifold, one use the sum map
Σ: A[n+1] → A and take the preimage of a point Kum(A) := Σ−1(0). When n = 1
this gives the Kummer surface of A, which is why the higher dimensional analogues
and their deformations are called generalized Kummer varieties. They have b2 = 7.

• Two sporadic examples discovered by O’Grady, using desingularizations of moduli
spaces of sheaves: one example OG6 of dimension 6 and b2 = 8, and another OG10 of
dimension 10 and b2 = 24.

The talk will mainly revolve around the following conjectural properties of a hyperkähler
manifold.

Conjecture 1.5. Let X be a compact hyperkähler manifold of dimension 2n. Then
•
∫
X
cλ > 0 for all even partitions λ of 2n, that is, partitions that only contain even

integers. For example, when n = 3, this means that the integrals of c6, c4c2, and c32
are positive.

• Similarly, (−1)n
∫
X
chλ > 0 for all even partitions λ of 2n.

We will provide some evidence for this conjecture, as well as some consequences and
applications of it. We will also introduce a generalized version of the conjecture later.

2. Cobordism classes

Consider Ω∗ the complex cobordism ring, for which we omit the definition.2 The cobordism
class of a complex manifold is denoted by [X]. The ring structure on Ω∗ is given by

[X] + [Y ] = [X ⊔ Y ], [X] · [Y ] = [X × Y ].

We have the following nice description.

Theorem 2.1 (Milnor, Novikov, Thom).
(1) The cobordism class of a complex manifold X of dimension m is uniquely determined

by its Chern numbers
{∫

X
cλ
}
λ⊢m, or equivalently, by the Chern character numbers{∫

X
chλ

}
λ⊢m.

(2) Consider a sequence (Xk)k∈Z>0 of manifolds such that dim(Xk) = k and
∫
Xk

chk ̸= 0.
Then the complex cobordism ring with rational coefficients Ω∗

Q := Ω∗⊗Q is isomorphic
to the polynomial ring Q[x1, x2, . . . ] by sending [Xk] to xk. Note that since

∫
Pn chn =

n+1
n!

, such a sequence indeed exists.

2To define complex cobordism, one needs to leave the category of complex manifolds and consider stably
almost complex manifolds instead, which are pairs (X,α) consisting of X, a differential manifold, and α, an
almost complex structure on TX ⊕Rk, the direct sum of the tangent bundle with some trivial real vector
bundle of rank k. This is necessary because the boundary of a manifold with even real dimension is of odd
real dimension, so one needs the extra component to define an almost complex structure.
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We briefly explain the proof of (2) using (1) (see the book Characteristic Classes of
Milnor–Stasheff, Theorem 16.7, where this result is attributed to Thom). Denote by ℓ(λ) the
length of a partition λ. A partition λ is said to be a refinement of another partition µ, if we
can regroup some subsets of λ to get µ. For example, (1, 1, 1) is a refinement of (2, 1). We
state the following lemma.

Lemma 2.2. Let λ, µ ⊢ m be two partitions. If λ is not a refinement of µ, then for all
manifolds X1, . . . , Xℓ(µ) with dim(Xi) = µi, we have∫

Xµ

chλ = 0,

where we write Xµ for the product manifold
∏

i Xi and chλ for the product of Chern characters∏
j chλj

(Xµ).

Proof. We first prove the simple case where λ = (m) and µ = (m1,m2) with m > m1 ≥ m2 > 0
and m1+m2 = m to illustrate the idea. Consider two manifolds X1 and X2 with dim(Xi) = mi.
Due to the additivity of the Chern character, we have

chλ(Xµ) = chm(X1 ×X2) = chm(TX1 ⊞ TX2)

= chm(X1)⊞ chm(X2).

Here, for a product X1 ×X2, the symbol ⊞ for bundles or classes on the two components
means that we pull back them via the projection maps and take the sum over the product
space. Since each Xi has dimension mi < m, the two m-th Chern characters both vanish so
chλ(Xµ) = 0.

In the general case, if we denote ℓ(µ) by l, each term that appears in the product
chλ(Xµ) = chλ1(Xµ) · · · chλℓ(λ)

(Xµ)

=
(
chλ1(X1)⊞ · · ·⊞ chλ1(Xl)

)
· · ·
(
chλℓ(λ)

(X1)⊞ · · ·⊞ chλℓ(λ)
(Xl)

)
.

has the form
chλ1(X1)⊠ chλ2(X2)⊠ · · ·⊠ chλl(Xl),

where (λi)1≤i≤l are disjoint subsets of λ viewed as partitions. Similarly, the symbol ⊠
here means pulling back via the projection maps then taking the product. For each i, if
|λi| > dim(Xi) then the Chern character chλi(Xi) vanishes. Since |λ| = |µ| = m, for this
term to have a non-zero integral, we must have |λi| = dim(Xi) for all 1 ≤ i ≤ l, which means
that λ would be a refinement of µ. Since this is not the case by assumption, we may conclude
that every term in the product chλ has a vanishing integral. □

For a given integer m, we can sort the partitions of m in reverse lexicographic order: for
example when m = 3, we have (3), (2, 1), (1, 1, 1). For two partitions λ, µ, if λ is to the left
of µ then λ is not a refinement of µ, so Lemma 2.2 applies.

Proof of Theorem 2.1(2). The goal is to show that, in each dimension m, the products
Xµ :=

∏
i Xµi

for all partitions µ ⊢ m form an additive basis. In other words, for a
given manifold Y of dimension m, we need to find rational coefficients (aµ)µ⊢m such that∑

µ aµ[Xµ] = [Y ]. Thanks to (1), this is equivalent to the linear equations

∀λ ⊢ m
∑
µ

aµ ·
(∫

Xµ
chλ

)
=
∫
Y
chλ,
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or in terms of row vectors,

(aµ)µ⊢m ·
(∫

Xµ
chλ

)
µ⊢m,λ⊢m

=
(∫

Y
chλ

)
λ⊢m.

If we sort the partitions in reverse lexicographic order, the coefficient matrix is an upper
triangular matrix by the above argument. Moreover, the assumption

∫
Xk

chk ̸= 0 guarantees
that

∫
Xλ

chλ ̸= 0, hence the entries on the diagonal are non-zero and the matrix is invertible,
which proves the statement. □

For us, the interest here is to study the subring of Ω∗
Q generated by elements with vanishing

odd Chern numbers/Chern character numbers: we define

Ω∗
Q,even :=

〈
[X]

∣∣ ∫
X
cλ = 0 for all λ ⊢ dimX containing an odd integer

〉
,

which, by Proposition 1.2, contains the cobordism classes of all hyperkähler manifolds.
By repeating the same argument as above, we deduce the following result.

Proposition 2.3. Consider a sequence (Xk)k∈Z>0 of manifolds with vanishing odd Chern
numbers such that dim(Xk) = 2k and

∫
Xk

ch2k ̸= 0. Then the even complex cobordism ring
Ω∗

Q,even is isomorphic to the polynomial ring Q[x1, x2, . . . ] by sending [Xk] to xk.

The two known infinite families both satisfy the required property: in fact, we obtained
explicit formulae for the integral of the top degree Chern character.

Proposition 2.4 (Oberdieck–S.–Voisin). For n ≥ 1, we have∫
K3[n]

ch2n = (−1)n
(2n+ 2)!

(2n− 1) · n!4
,

and ∫
Kumn

ch2n = (−1)n
(2n+ 2)!

n!4
.

Consequently, both infinite families can be used as generators for the even complex cobordism
ring Ω∗

Q,even.

We remark that neither family can be used to express all hyperkähler manifolds using only
positive linear combinations.

The proof of these formulae uses the explicit descriptions of the cohomology ring for these
two examples in terms of Nakajima operators, and the computation is essentially an analysis
of the combinatorial properties of these objects.

We see that both formulae confirm Conjecture 1.5 for the top degree Chern character. For
other products of Chern classes/characters, we have also verified them in small dimensions
using a computer, although we do not have a closed formula in general (Oberdieck has a
conjectural one for K3[n]).

3. b2 and c2

The analysis of cobordism classes in the previous section is very coarse. In this section, we
will make better use of properties that are specific to hyperkähler manifolds.

One of the most important objects in the study of hyperkähler manifolds is the second
cohomology group H2(X,Z).
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Theorem 3.1 (Beauville–Bogomolov–Fujiki). Let X be a compact hyperkähler manifold of
dimension 2n. There exist a primitive quadratic form q on H2(X,Z) and a constant CX such
that

∀ β ∈ H2(X,Z)

∫
X

β2n = CX · q(β)n.

The form q is called the BBF form. It is of signature (3, b2 − 3). The constant CX is called
the Fujiki constant of X. It is also common to normalize CX by letting CX = (2n− 1)!! · cX ,
and we will refer to cX as the small Fujiki constant.

A lot of information of a hyperkähler manifold is encoded in its second cohomology group.
For example, the global Torelli theorem states that one can (almost) recover a hyperkähler
manifold just from the polarized Hodge structure on H2.

The following question naturally arises if we expect some boundedness results for hyper-
kähler manifolds.
Question 3.2. In each dimension 2n, is the second Betti number b2(X) bounded for all
hyperkähler manifolds X of dimension 2n?

We have the following affirmative result.
Theorem 3.3 (Guan). When n = 2, we have b2(X) ≤ 23 for all hyperkähler fourfolds X.
The bound is sharp and is attained by K3[2].

We will present a conditional bound for b2. We still need to introduce some extra notions.
Theorem 3.4 (Fujiki). Let X be a hyperkähler manifold of dimension 2n, and let α be a
characteristic class of degree (2k, 2k) (for example, a product of even Chern classes).3 Then
there exists a constant C(α) such that

∀ β ∈ H2(X,Z)

∫
X

α · β2n−2k = C(α) · q(β)n−k.

We call it the generalized Fujiki constant of α.
• This generalizes the usual Fujiki constant CX : we have C(1X) = CX .
• It also generalizes characteristic numbers: for products of Chern classes in top degree,

we have C(cλ) =
∫
X
cλ, and similarly for Chern characters.

• We have C(c2) > 0. This positivity is explained by results from differential geometry.
Namely, for a Kähler manifold X of dimension m with trivial canonical bundle, one
can choose a Ricci flat metric and obtain the following pointwise relation

8π2 c2 ω
m−2 =

∥R∥2

m(m− 1)
ωm,

where ω is the Kähler form and R is the curvature tensor. By taking ωm

m!
as the volume

form and integrating over X, we get∫
X

c2 · ωm−2 =
(m− 2)! ∥R∥2

8π2
.

Hence for a hyperkähler manifold X, we have C(c2) > 0 using the Fujiki relations.
Equivalently, we have C(ch2) = C(−c2) < 0.

3The result holds more generally for any class α that remains of type (2k, 2k) on all small deformations of
X. This was proved by Huybrechts.
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This motivates us to extend Conjecture 1.5 to generalized Fujiki constants as well. Similar
conjectures have been made by Sawon and Cao–Oberdieck–Toda.

Conjecture 3.5. Let X be a compact hyperkähler manifold of dimension 2n. Then
• C(cλ) > 0 for all even partitions λ of 2k ≤ 2n.
• Similarly, (−1)kC(chλ) > 0 for all even partitions λ of 2k ≤ 2n.

Moreover, we expect that these positivity results should follow from a similar local argument.
In other words, there are algebraic identities that provide the pointwise positivity, and the
global positivity is obtained by integrating over X.

Again, the conjecture has been verified in small dimensions for the known examples. The
first open case is C(ch4). When n = 2, it is a posteriori positive by the bound of Guan.

We now present the bound on b2, subject to the positivity of C(ch4). The same inequality
has been independently obtained by Sawon.

Theorem 3.6 (Beckmann–S.). For a hyperkähler manifold X of dimension 2n, if C(ch4) > 0,
or equivalently, C(c22) > 2C(c4), then we have the following inequality

(1) b2(X) ≤ 10

C(c22)

C(c4)
− 2

− (2n− 9).

The inequality takes a quite strange form. We will introduce another notion to rewrite it
in a more natural form. Consider the Hirzebruch–Riemann–Roch formula. For a line bundle

L ∈ Pic(X), we have

χ(X,L) =

∫
X

ch(L) tdX =

∫
X

eL tdX

=

∫
X

td2n+td2n−2
L2

2
+ td2n−4

L4

24
+ · · ·

= C(td2n) + C(td2n−2)
q(L)

2
+ C(td2n−4)

q(L)2

24
+ · · ·

The last equality is obtained using the Fujiki relations. So we get the following polynomial
which plays an important role

RRX(q) :=
n∑

k=0

C(td2n−2k)

(2k)!
qk.

We will refer to this polynomial as the (Huybrechts–)Riemann–Roch polynomial of X. Among
the known examples, there are only two types of Riemann–Roch polynomials.

• (Ellingsrud–Göttsche–Lehn, Ríos Ortiz) For K3[n] and OG10, we have RRX(q) =(
q/2+n+1

n

)
;

• (Nieper–Wißkirchen, Ríos Ortiz) For Kumn (n ≥ 2) and OG6, we have RRX(q) =

(n+ 1)
(
q/2+n

n

)
.

In terms of the Riemann–Roch polynomial, the bound on b2 has an alternative form.



TOPOLOGICAL CONSTRAINTS OF HYPERKÄHLER MANIFOLDS 7

Theorem 3.6′. Let X be a hyperkähler manifold of dimension 2n for n ≥ 2. If the Riemann–
Roch polynomial RRX factorizes as a product of linear factors (and not all identical),4 then
C(ch4) > 0, and the inequality (1) becomes

b2(X) ≤ n− 1

n(
∑

λ2
i )

(
∑

λi)2
− 1

− (2n− 2),

where λi are the roots of RRX .

Here we see that the bound measures the dispersion of the roots: it gets smaller as the
roots get more dispersed.

Using this description, we can examine the bound for the two known types of Riemann–Roch
polynomials.

• For RRK3[n] , the bound is b2 ≤ n+ 17 + 12
n+1

;
• For RRKumn , the bound is b2 ≤ n+ 5.

An interesting remark on the inequality is that it holds also for 4-dimensional singular
irreducible symplectic varieties, since all the required ingredients are available for such varieties.
There are many more examples in the singular case, and a lot of them actually attain the
bound for b2. This again suggests that the generalized Fujiki constants for characteristic classes
and consequently the Riemann–Roch polynomial RRX are largely governed by properties
that are of local nature, and motivates the following conjecture by Jiang.

Conjecture 3.7. Let X be a hyperkähler variety of dimension 2n (possibly singular).
(1) The Riemann–Roch polynomial RRX factorizes as a product of linear factors, and the

roots form an arithmetic progression;
(2) When X is smooth, the difference between two roots is equal to 2.

The first point is equivalent to some extra relations on the coefficients of RRX , which we
recall are given by generalized Fujiki constants C(td2n−2k)

(2k)!
. We expect such relations to follow

from a local argument, so they should also hold for singular examples. One evidence for this
is the result of Hitchin–Sawon and Nieper–Wißkirchen: they showed that if one takes the
square root of the Todd class instead, the polynomial

RRX,1/2(q) :=
n∑

k=0

C(td
1/2
2n−2k)

(2k)!
qk

always factorizes as an n-th power, and the argument is purely local using Rozansky–Witten
theory.

On the other hand, the second point relies on the smoothness of X and already fails for
known singular examples. We think this is related to the global geometry of X, and in
particular to Lagrangian fibrations (assuming their existence).

We also remark that, as an immediate consequence of the above result of Nieper-Wißkirchen,
all the values C(td

1/2
2k ) are positive for 0 ≤ k ≤ n. Moreover, Jiang has recently proved the

4In fact one only needs the following weaker assumption: write RRX(q) = A0q
n +A1q

n−1 +A2q
n−2 + · · · ,

then C(ch4) > 0 if and only if 2nA0A2 < (n − 1)A2
1. In this case, the bound becomes b2(X) ≤

(
1 −

2nA0A2

(n−1)A2
1

)−1 − (2n− 2).
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positivity for all the coefficients of the Riemann–Roch polynomial, in other words, C(td2k) > 0
for 0 ≤ k ≤ n. For a fixed α > 0, using the description

tdα
X = exp

(
−2α

∞∑
k=1

b2k (2k)! ch2k

)
and taking into account the signs of the modified Bernoulli numbers b2k, one sees that each
term tdα

2k is a linear combination of products of Chern characters where all coefficients are
of sign (−1)k. This provides further evidence for the conjecture on the positivity of the
generalized Fujiki constants (−1)kC(chλ).

Finally, we explain the proof of the conditional bound.
Idea of proof for the bound. Consider the second Chern class c2 ∈ H4(X,Z). Inside H4(X,Z)
we have the image of

⌣ : H2(X,Z)×H2(X,Z) −→ H4(X,Z).

The cup product is in fact injective, so we have SH2(X) := Sym2H2(X,Z) sitting inside
H4(X,Z). This is part of a more general result by Verbitsky, who studied the subalgebra of
H∗(X,Q) generated by H2(X,Q), which is now known as the Verbitsky component.

A natural question is whether c2 lies in SH2(X) or not. Hence we can project c2 to SH2(X)

c2 = c2 + z,

and study the difference z, which is a primitive (2, 2)-class. By the Hodge–Riemann bilinear
relations, we get ∫

X

z2ω2n−4 ≥ 0,

where equality holds if and only if z = 0.
If we now look at c22, we have

c22 = c2
2 + 2c2z + z2,

and by considering generalized Fujiki constant, we get
C(c22) = C(c2

2) + C(z2) ≥ C(c2
2).

This gives the main inequality. By computing the values of the generalized Fujiki constants,
we get the desired statement involving C(ch4) and b2. □

In other words, the bound (1) is essentially given by a triangle inequality involving c2. This
also gives us the following corollaries on the second Chern class.

Corollary 3.8. Let X be a hyperkähler manifold of dimension 2n with n ≥ 2. Then
c2 ∈ SH2(X) if and only if C(ch4) > 0 and equality holds in (1).

Corollary 3.9. Among known smooth hyperkähler manifolds, we have c2 ∈ SH4(X) if and
only if X is one of the following

K3 (trivial), K3[2], K3[3], Kum2, OG6, OG10.
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