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Introduction

A hyperkähler manifold is a simply connected compact Kähler manifold X
such that

H2,0(X) = H0(X,Ω2
X) = Cσ

is generated by a nowhere vanishing holomorphic 2-form σ (a holomorphic
symplectic form).

(All known) examples
• In dimension 2: K3 surface (e.g., a quartic surface);
• K3[n]: Hilbert scheme of “n points” on a K3 surface (and

deformation);
• Kumn: generalized Kummer variety (and deformation);
• Two examples found by O’Grady, in dimension 6 and 10.
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Hyperkähler manifolds are very interesting because:

First, the cohomology ring H∗(X,Q) has a lot of rich structure.
• The second cohomology group H2(X,Z) carries a natural quadratic

form qX called the Beauville–Bogomolov–Fujiki form.
• The full cohomology H∗(X,Q) admits an action of a Lie algebra

(Looijenga–Lunts–Verbitsky algebra) and naturally decomposes into
irreducible subrepresentations. One particularly important one is the
Verbitsky component SH(X).

Second, a lot of information is encoded in the second cohomology group
(H2(X,Z), qX) equipped with the BBF form, which provides a polarized
Hodge structure. One form of the global Torelli theorem by Verbitsky says
that one can (almost) recover X from it.

The first part of this thesis studies some general properties of hyperkähler
manifolds based on these features. We also emphasize on applying these
results to the known examples.
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From the point of view of algebraic geometry, it is natural to consider
projective or polarized hyperkähler manifolds. We are particularly
interested in locally complete families.
For K3 surfaces, the projective models are known in many small degrees:

• Degree 2: double cover of P2 ramified along a smooth sextic curve;
• Degree 4: quartic surface in P3;
• Degree 6: (2, 3)-complete intersection in P4;
• Degree 8: (2, 2, 2)-complete intersection in P5;
• Degree 10, 12, . . . , 24, 30, 34, 38: works of Mukai.

In higher dimensions, only very few examples are known.
• In dimension 4, the most well-studied example is the variety of lines

of a cubic fourfold.
• Double EPW sextics, Debarre–Voisin varieties, VSP, ...

The main focus of the second part of this thesis is to prove many
analogous results that are available for cubic fourfolds in the case of
Debarre–Voisin varieties.
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Generalities
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Numerical aspects

Let X be a compact hyperkähler manifold of dimension 2n.

Theorem (Beauville–Bogomolov–Fujiki form)
There exists a unique primitive integral quadratic form qX on H2(X,Z) of
signature (3, b2 − 3) and a constant CX ∈ Q satisfying

∀β ∈ H2(X,Z),

∫
X

β2n = CX · qX(β)n.

More generally, let α ∈ H4k(X,Q) be a class that remains of type (2k, 2k)
on all small deformations of X (e.g., any characteristic class), then there
exists a constant C(α) ∈ Q (generalized Fujiki constant of α) such that

∀β ∈ H2(X,Z),

∫
X

α · β2n−2k = C(α) · qX(β)n−k.
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Numerical aspects

Theorem (Looijenga–Lunts–Verbitsky decomposition)
The Looijenga–Lunts–Verbitsky algebra g(X) is the subalgebra of
EndH∗(X,Q) generated by sl2-triples (Lα, h,Λα) for all α ∈ H2(X,Q)
satisfying the Lefschetz property.
• g(X) is isomorphic to so(H2(X,Q)⊕ U);
• H∗(X,Q) is naturally a g(X)-module and decomposes into

irreducible g-submodules which respect the Hodge structures;
• The subalgebra SH(X,Q) of H∗(X,Q) generated by H2(X,Q) is

an irreducible g-submodule, known as the Verbitsky component.
• The decompositions for all known examples have been determined by

Green–Kim–Laza–Robles.

An important object is q ∈ Sym2 H2(X,Q) ⊂ H4(X,Q), the dual of the
Beauville–Bogomolov–Fujiki form qX .

Classes in SH(X) can be studied by pairing them with H2(X).
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Numerical aspects
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Figure: A “picture” of the LLV decomposition and the Verbitsky component
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Numerical aspects

Numerical aspects

Let X be a hyperkähler manifold of dimension 2n for n ≥ 2.

Question. When does the second Chern class c2 = c2(X) lie in the
Verbitsky component SH(X,Q)? Equivalently, when is c2 a multiple of q?

Theorem
If C(c22) > 2C(c4) or equivalently, C(ch4) > 0, then we have the following
bound for the second Betti number b2

b2(X) ≤ 10

C(c22)

C(c4)
− 2

− 2n+ 9,

with equality holds if and only if c2 lies in the Verbitsky component.
If C(c22) ≤ 2C(c4), then c2 is not contained in SH(X).
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Numerical aspects

Some remarks

Among known examples of compact hyperkähler manifolds of dimension
2n ≥ 4, the second Chern class lies in the Verbitsky component only in the
cases of K3[2], K3[3], Kum2, OG6, and OG10.

The bound on b2 can also be equivalently expressed in terms of the
Riemann–Roch polynomial of X.

Curiously, one gets the same bound for K3[5] and OG10 (b2 ≤ 24), as well
as for Kum3 and OG6 (b2 ≤ 8). In both cases, the bound is only attained
by the O’Grady example.

In fact, for both O’Grady examples, all characteristic classes lie in the
Verbitsky component.
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Numerical aspects

Cohomology class of a Lagrangian plane

Let P ⊂ X be a Lagrangian n-plane and let ℓ ∈ H2(X,Z) be the class of
a line in P .

We treat ℓ as a class in H2(X,Q) by considering its dual class
L ∈ H2(X,Q) using the Beauville–Bogomolov–Fujiki form and the
Poincaré duality. In other words, L satisfies

∀α ∈ H2(X,Q) q(L,α) = ℓ · α.

The square q(ℓ) := q(L) is conjectured by Hassett–Tschinkel to be a
constant depending only on the deformation type of X.
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Numerical aspects

For example, for K3 surfaces, ℓ is the class of a smooth rational curve so
we have ℓ2 = −2.

For K3[n]-type, it is shown that q(ℓ) = −n+3
2 . In lower dimensions, the

proof was done by analysing the possible Hodge classes to determine the
cohomology class of the plane P (involving some hardcore Diophantine
analysis).

• n = 2 by Hassett–Tschinkel: [P ] = 1
2L

2 + 1
24 c2;

• n = 3 by Harvey–Hassett–Tschinkel: [P ] = 1
6L

3 + 1
24 c2L;

• n = 4 by Bakker–Jorza: ;

• any n by Bakker, but no formula for [P ].

It would be interesting to determine the cohomology class [P ] in general.
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Numerical aspects

Using the numerical perspective, it turns out that one can easily obtain a
partial result: we can determine the orthogonal projection [P ] ∈ SH(X) to
the Verbitsky component.

Theorem
Let P ⊂ X be a Lagrangian n-plane, we have

[P ] =
[
µn

cX
exp(L/µ) td

1/2
X

]
n

= µn

cX

(
1
n! (

L
µ )

n + 1
(n−2)! (

L
µ )

n−2td
1/2
2 + · · ·

)
where µ =

√
−q(L)
2rX

, and [−]n means the degree-n (cohomological
degree-2n) part of a class. cX and rX are constants depending only on
the deformation type of X.

One would then conjecture that q(L) = −2rX so µ = 1 (which holds for
K3[n]-type, Kum2, and the two O’Grady examples).
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Numerical aspects

In the K3[n]-type case, we obtain the following simple formula

[P ] =
[
exp(L) td

1/2
X

]
n
.

One could conjecture that this equality in fact holds before projection.

Conjecture
For X of K3[n]-type containing a Lagrangian plane P , we have

[P ] =
[
exp(L) td

1/2
X

]
n
.

Under the assumption that the line class ℓ is primitive in H2(X,Z),
Bakker showed that all classes [P ] lie in the same monodromy orbit, so it
suffices to verify the formula for one example.

In this case, I checked the conjecture for n ≤ 6, and a full proof has
recently been found by Oberdieck.
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Image of the period map

Period map and period domain

Consider a fixed deformation type of hyperkähler manifolds so we get a
fixed lattice

Λ := (H2(X,Z), qX).

Recall that a hyperkähler manifold X has H2,0(X) = Cσ, so the Hodge
structure on H2 is of type (1, b2 − 2, 1).

The period map associates with each X the point [H2,0(X)] inside the
projective space P(ΛC) (up to an isometry η : H2(X,Z)

∼−→ Λ)

[X] 7−→ [H2,0(X)] ∈ P(ΛC).

A fundamental result is the global Torelli theorem by Verbitsky. We focus
on the polarized version, obtained by Markman.
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Image of the period map

For a fixed polarization type T , i.e., an O(Λ)-orbit in Λ of a primitive
element h with h2 > 0, there is a coarse moduli space MT for polarized
hyperkähler manifolds (X,H) of type T (there exists an isometry
η : H2(X,Z)→ Λ that maps H to h).

The corresponding period domain PT is defined as

PT := {[x] ∈ P(ΛC) | q(x) = q(x, h) = 0, q(x, x) > 0}/Mon(Λ, h),

the set of all possible period points quotient by the action of the
monodromy group.

The polarized version of the global Torelli theorem states that the period
map

p : MT ↪−→ PT

[(X,H)] 7−→ [H2,0(X)]

is an open immersion of algebraic varieties. The complement of the image
is a union of Heegner divisors.
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Image of the period map

If we take an element κ ∈ h⊥ ⊂ Λ with negative square, its orthogonal
gives a hyperplane in P(ΛC) and the image in the period domain PT is a
divisor that we call a Heegner divisor. The Hodge structures parametrized
by the elements of this divisor would then have κ as a Hodge class.

Each Heegner divisor can be labeled using its discriminant, which is the
discriminant of the sublattice orthogonal to both h and κ.

For K3[n]-type and Kumn-type,
• When n is large, the moduli space MT may not be connected. This

was first studied by Apostolov in the K3[n]-type case (and Onorati in
the Kumn-type case).

• In such case, the period map is defined on each component, but
different components can have different images.
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Geometry of Debarre–Voisin varieties
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General results

Review: cubic fourfolds and their varieties of lines

Theorem (Beauville–Donagi)
Let X ⊂ P5 = P(V6) be a smooth cubic fourfold. Let
F = F (X) := {ℓ ∈ Gr(2, V6) | ℓ ⊂ X} be its variety of lines. Consider
also the incidence variety

I := {(x, ℓ) | x ∈ ℓ ⊂ X}
X F

p q

Then
• F is a hyperkähler fourfold of K3[2]-type. The Plücker ample class H

has q(H) = 6 and is of divisibility 2.
• There is a Hodge isometry

q∗p
∗ : H4(X,Z)van −→ H2(F,Z)prim(−1).
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General results
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Figure: Hodge diamonds of a cubic fourfold and its variety of lines
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General results

Review: cubic fourfolds and their varieties of lines

Theorem (Voisin, Hassett, Laza, Looijenga, ...)
We have the diagram

Mcubic M(2)
6 P(2)

6

[X] [(F,H)] [H2,0(F )]

m p

• The moduli space of cubics Mcubic is the GIT quotient(
P(Sym3 V ∨

6 )∖∆
)
//SL(V6).

• The period map p misses the Heegner divisor D6, while the
composition p ◦m misses D2 ∪ D6.

• Heegner divisors Dd correspond to special cubic fourfolds X (and F )
with extra geometry.
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General results

Review: cubic fourfolds and their varieties of lines

For example, for a general member in ...
• D6: X has an ordinary double point, F is birational to S

[2]
6 ;

• D8: X contains a plane, F is isomorphic to a moduli of sheaves on
(S2, β);
• D14: X is Pfaffian, F is isomorphic to S

[2]
14 .
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General results

Generalities on Debarre–Voisin varieties

Let V10 be a 10-dimensional complex vector space and let σ ∈
∧

3V ∨
10 be

an alternating 3-form.

We consider the following subvariety in Gr(6, V10)

X6 := {[V6] ∈ Gr(6, V10) | σ|V6
= 0}.

For a general σ, Debarre and Voisin showed that X6 is a smooth
4-dimensional hyperkähler manifold of K3[2]-type. We have q(H) = 22
and H is of divisibility 2.

There are two Fano varieties that one can associate with the trivector σ.
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General results

The Fano 20-fold X3

X3 ⊂ Gr(3, V10) is the 20-dimensional Plücker hyperplane section defined
by σ. In other words,

X3 = {[V3] ∈ Gr(3, V10) | σ|V3 = 0}.

We define the vanishing cohomology of X3 as

H20(X3, R)van := ker
[
j∗ : H

20(X3, R) −→ H22(Gr(3, V10), R)
]
,

where j : X3 ↪→ Gr(3, V10) is the natural embedding and R is Z or Q. It
is of type (1, 20, 1), and is equipped with the intersection product.
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General results

The Fano sixfold X1

X1 ⊂ P(V10) is a certain degeneracy locus, known as the Peskine variety

X1 := {[V1] ∈ P(V10) | rankσ(V1,−,−) ≤ 6}.

It is Fano of (expected) dimension 6.

In fact, X1 more naturally embeds into the flag variety Flag(1, 4, V10).

And we similarly define the vanishing cohomologies of X1 for k = 4, 6, 8 as

Hk(X1, R)van := ker
[
j∗ : H

k(X1, R) −→ Hk+42(Flag(1, 4, V10), R)
]
,

where j : X1 ↪→ Flag(1, 4, V10) is the embedding and R = Z or Q. All
three pieces are of type (1, 20, 1). The middle piece H6(X1, R)van is
equipped with the intersection product.
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General results
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Figure: Hodge diamonds of a Debarre–Voisin variety and related Fano varieties
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General results

Analogue of Beauville–Donagi

Theorem
There exist Hodge isometries

H20(X3,Z)van
∼−→ H2(X6,Z)prim(−1)

∼←− H6(X1,Z)van

given by algebraic correspondences X3 ← I3,6 → X6 and
X1 ← I1,6 → X6, whenever they are smooth of expected dimension.

Corollary
The integral Hodge conjecture holds for the two Fano varieties X1 and X3.

The corollary follows from the IHC of curves on K3[n] by Mongardi–Ottem,
where they used this same idea to reprove the IHC for cubic fourfolds.
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General results

Global picture

We have the following picture of the various moduli spaces

P(
∧

3V ∨
10)

M M(2)
22 P(2)

22

// SL(V10)

m p

where M := P(
∧

3V ∨
10)//SL(V10) is the GIT quotient, and M(2)

22 and P(2)
22

are the moduli space for polarized hyperkähler manifolds and the period
domain respectively.

We have SL(V10)-invariant hypersurfaces in P(
∧

3V ∨
10) given by certain

SL(V10)-invariant conditions on the trivector σ, as well as Heegner divisors
in the period domain giving rise to extra Hodge classes on X6. One could
then try to relate the two.
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General results

Three divisors

We consider the following three SL(V10)-invariant conditions on the
trivector σ.

σ satisfying the condition (3, 3, 10)

∃V3 σ(V3, V3,−) = 0.

We obtain the discriminant hypersurface ∆ = ∆3,3,10 ⊂ P(
∧

3V ∨
10).

Proposition
X3 and X6 are smooth of expected dimension if and only if σ does not lie
in ∆3,3,10.

For a general [σ] ∈ ∆3,3,10, the hyperplane section X3 acquires an
ordinary double point at [V3]; X6 is not smooth but birational to S

[2]
22 .
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General results

In particular, inside M := P(
∧

3V ∨
10)//SL(V10) we have an irreducible

divisor D3,3,10 given by the image of ∆3,3,10 and we defineMsmooth to be
its complement, which is precisely the open locus where the corresponding
X3 is smooth.

Since in this case the corresponding X6 is also smooth, we get a morphism

m :Msmooth −→M(2)
22 .

Theorem (Debarre–Voisin and O’Grady)
m is an open immersion.

The period map can be extended to the divisor D3,3,10 which corresponds
to the boundary divisor D22 in the period domain.
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General results

σ satisfying the condition (1, 6, 10)

∃V1 ⊂ V6 σ(V1, V6,−) = 0.

In this case, X1 is singular at [V1] since it further degenerates.

Proposition
X1 is smooth of expected dimension 6 if and only if σ is not in the union
∆3,3,10 ∪∆1,6,10.

X6 contains a uniruled divisor that is a P1-fibration over a K3 surface S6

and provides a natural Brauer class β. A general X6 in the family is
isomorphic to a moduli space of sheaves on (S6, β).

This case corresponds to the Heegner divisor D24.
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General results

σ satisfying the condition (4, 7, 7)

∃V4 ⊂ V7 σ(V4, V7, V7) = 0.

X6 contains a Lagrangian plane Gr(2, V7/V4) = P
(
(V7/V4)

∨).
Proposition
A (linearly embedded) P2 contained in a Debarre–Voisin fourfold X6 is
always of the form P

(
(V7/V4)

∨) for a such flag V4 ⊂ V7.

This case corresponds to the Heegner divisor D28.

The Hodge isometries are proved by specializing to this family.
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General results

In conclusion, for Debarre–Voisin varieties, we have the following picture

P(
∧

3V ∨
10)∖∆3,3,10 M P(2)

22

⊔ q q

∆3,3,10 Msmooth M(2)
22 Im(p)

⊔ ⊔
D3,3,10 D22

π

m p

∼

p̃

bir.

as well as the following divisors

∆1,6,10 D1,6,10 D24

∆4,7,7 D4,7,7 D28

∼

∼
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A special example

Using the representation theory of the simple group G := PSL(2,F11),
one can construct a (unique) trivector σ0 that is G-invariant. We consider
the corresponding Debarre–Voisin variety X6.

Among the three divisorial conditions that we have obtained,
• Condition (3, 3, 10) is not satisfied, so X6 is a smooth hyperkähler

fourfold;
• Condition (1, 6, 10) is satisfied: there are 55 pairs V1 ⊂ V6 and we

get 55 distinct divisors on X6. They generate the Picard lattice which
is of (maximal) rank 21.

• Condition (4, 7, 7) is satisfied: there are 220 pairs V4 ⊂ V7 so there
are 220 distinct planes contained in X6.

With the explicit description of the Picard lattice, we can show that the
(symplectic) automorphism group AutsH(X6) is in fact isomorphic to G.
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A special example

Thank you!
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