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Abstract

In this paper, we focus on the famous Talenti’s symmetrization inequality, more
precisely its LP corollary asserting that the LP-norm of the solution to —Awv = f* is higher
than the LP-norm of the solution to —Awu = f (we are considering Dirichlet boundary
conditions, and f* denotes the Schwarz symmetrization of f : Q — R, ). We focus on
the particular case where functions f are defined on the unit ball, and are characteristic
functions of a subset of this unit ball. We show in this case that stability occurs for the
LP-Talenti inequality with the sharp exponent 2.

1 Introduction

In this paper, we will investigate some stability versions of Talenti’s inequality in particular
cases. Given  C R" a bounded open set and f € L?(f2), we will denote by u 7 the unique

weak solution to
—Auy = f in
{ Uy = 0 on 0N (1.1)

The aim of Talenti’s inequality is to compare uy and u s where ff:QF - R is the Schwarz
symmetrization of f, defined on QF the centered ball of same volume as Q (see Definition 2.3):
more precisely Talenti’s inequality (Theorem 2.4) states that if f > 0, then

vz e OF, ugc(:n) < v(x),
where v = u f solves

(1.2)

—Av = ff in QOF
) = 0 on OO

and ugc is the Schwarz symmetrization of uy. This ponctual comparison implies in particular
the following: for every p € [1,+o00],

[utllze) < [IvllLrs)- (1.3)

Moreover, as shown in |2] (see Theorem 2.5), equality is realized in (1.3) for some p € [1, +o0]
only if Q is a ball and f = f* up to translations, see also [16].

In this paper we are interested in quantitative versions of (1.3). Notice that there are
two parameters that are symmetrized in these inequalities:  and f. Therefore the stability
inequalities we may be secking for should take into account both the distance from f to f*
and from Q to QF: to evaluate the asymmetry of Q for example, we denote

: ’QABT($O)’
Q) = ——= |B,| =2
(@) = iy {5540, 15— o

the Fraenkel asymmetry of Q (B, (x) denotes the ball of radius r > 0 and centered at = € R™;
we also denote B, = B,.(0) the centered ball of radius r).
As far as we know, there are only two partial results in this direction:



1. in [9], the author focuses on the case f =1 and shows that for every p € [1, +oc], there
exists ¢ = ¢(n, p) such that for every Q bounded open set in R™,

10170y = lua ooy = ca()*FP if p € [1, +00),
0]l oo gty — luall Lo (o) > ca(€2)?

2. in [3] the authors focus on the case p = oo: it is shown that for any € bounded open set
of R™ and any nonnegative f € L?(Q), there exists ¢ = ¢(n, ||, f*) and 8 = 6(n) such

that
0
Ll(R")> '

Note that the proof of Talenti’s inequality shows that v — ! is radially decreasing, so
that [lv — u?| peo(ary = V] Lo ) = 2l Lo ()

f = Fi(+ o)

— || ooy > Q)%+ inf
o= lieqon = ¢ (@@ + int

In the same paper, the authors also obtain a partial result in the case p = 2, namely:
2 2 4
o2 — lul2agqy = ca(@)*.

In both of these results, the obtained exponents are not expected to be sharp (also in the
second result, # does not seem to be explicit).

The goal of this paper is to provide a first quantitative result for (1.3) with a sharp
exponent. In order to start this investigation with only one parameter (similarly to [9] where
the author assumed f = 1), we will assume that 2 = By is a centered ball of radius 1, so that
Q) = Qf and the only parameter is f. Moreover, we will assume f = g to be the characteristic
function of a set £ C Bj: in this case we denote ug for u,,, and f* = xp, where B, is the
centered ball of same volume as E. This will allow us to use a geometric approach and the
framework of shape derivatives. In this setting, we obtain the following stability result:

Theorem 1.1. Letn > 1, p € [1,+00], and m € (0,|B1|). Then there exists ¢ = c(p,m,n) >0
such that for every measurable set E C By with |E| = m we have

lus. |lzr(y) — upllLes)) > | EAB.?, (1.4)
where B, is the centered ball of volume m.

Moreover, we show in Propositions 2.8, 2.14 and 2.17 that the exponent 2 obtained in Theorem
1.1 is sharp. In a forthcoming work [1| we will generalize the strategy introduced in the present
paper to investigate the more general case where f is not assumed to be a characteristic
function.

The proof of Theorem 1.1 will be divided in three cases depending on the value of p.
In the special case p = 1, the proof is quite straightforward and relies only on Talenti’s
inequality: we provide the proof in Section 2.2, which is based on the study of the following

shape optimization problem:
|E| =m,
|EAB,| =4

for m € (0,|Bj|) and § > 0, which can be seen as looking for the worst set of given asymmetry,
with regard of the Talenti deficit ||up, |1 — |[[ur|l1. We identify explicitely the solution of
this problem as a target-shaped set (it is the union of a ball and an annulus, see Definition 2.6).

max{ HuEH1




In the case p > 1, we were not able to solve explicitly max{||ug|p, |E| = m, |EAB| = ¢},
we therefore follow a strategy developed in [18, 19, 5, 6] to prove (1.4). In fact the case
1 < p < oo falls into the following framework: given a function j : Ry — R, we study the
stability for the following shape optimization problem:

max{ J(E) | [E| =m }, J(E) :Z/B J(up(z))dz (1.5)

which is solved by the centered ball B, if j is non-decreasing. Classically, under convexity
assumption on j, such problem can be relaxed in the class
0<V <1,
My, =< Ve L®(By) /
V=m
B1

where m € (0, |B1|), and we define J(V) := fBl j(uy) for V€ L*°(B;) non-negative. More
precisely we prove:

Theorem 1.2. Letn > 1, m € (0,|B1]), and j € C1(R)NC?((0,+00)) be such that j'(0) > 0
and j"(s) > 0 for every s > 0, and such that

lim sup s%5”(s) < +o0 (1.6)

s—07F

for some a < 1. Then there ezists a positive constant ¢ = c(j, m,n) such that for every
V e M,, we have
J(B.) =T (V) > ||V = xp. |-

where By is the centered ball of volume m.

Remark 1.3. Note that assumption (1.6) implies that j’ is locally 8 := (1 — «)-Holder
continuous. This follows easily from the equality j'(y) — j'(x) = [¥ j”(¢)dt.

Proof of Theorem 1.1 from Theorem 1.2 when p € (1,00): Let p € (1,00): we consider j :
s € ]0,00) + sP, which is C? in (0,00) and C! up to 0, with j/(0) = 0 and j” > 0 on (0, 00),
and satisfies (1.6).

Therefore, Theorem 1.2 applies, and there exists ¢ = ¢(p, m,n) such that

luplly \”
us, 15 (1 - (HUB Hp > ¢|EAB,|?.
* 1P

Then the result follows by using the inequality

1—2P <p(l—=x) Vo > 0.
O

Finally, we give a seperate proof of Theorem 1.1 when p = 0o, see below for more details.

Outline of the paper

In the following section, we recall basic definitions on Schwarz symmetrization, and then
produce a proof of Theorem 1.1 in the particular case p = 1. We then provide useful results
to prepare the proof of Theorem 1.2: in particular we prove that under suitable assumptions
on j,

g5 =max{ 7= [ (o))

VeMm},

3



that B, is the unique maximizer, and that for any small § > 0 there exists Fs such that
|E5‘ =m, |E5AB*| =0 and

|V —xB.l1=9

J(Es) = max{ J(V)

Ve M, }

We also show that the exponent 2 in the stability result of Theorem 1.1 and Theorem 1.2 is
sharp.

We then focus on the proof of Theorem 1.2, which is split in the next two sections:
in Section 3, we show that the proof of Theorem 1.2 reduces to a Fuglede type of result
(Theorem 3.1) asserting that stability occurs for smooth deformations of B,. This strategy falls
into the strategy of “selection principle” first introduced in the setting of shape optimization
by Cicalese and Leonardi [8] to prove the quantitative isoperimetric inequality: the main tool
here is the quantitative baththub principle proved in [19]. Section 4, the most technical part
of the paper, is devoted to the proof of Theorem 3.1. It requires a computation of first and
second order shape derivative of the energy (Section 4.1), a proof of the coercivity of the
second order optimality condition (Section 4.2), and a continuity property of the second order
derivative to control the Taylor expansion (Section 4.3).

In Section 5 we provide the proof of Theorem 1.1 for p = +o0o. The proof uses a
representation of the solution with the Green function of the ball, and relies on adapting
the shape derivative approach of Section 3 and Section 4 to the L* norm. This requires to
compute a second order shape derivative of such norm, which up to our knowledge, is new
(see [14] for a computation of a first order shape derivative in a similar context).

Finally, we detailed in the appendix some results about the way convergence of functions

may imply the convergence of level sets, that did not seem completely new but for which the
literature felt a bit elliptic, so we provided precise proofs for these statements used in Section
3.
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Paolo Acampora was partially supported by the 2025 project GNAMPA 2024: "Analisi di
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2 Tools and first results

2.1 Symmetrization and Talenti’s inequality

We refer the reader to [22] or [16] for an overview about definitions and properties of
rearrangements.

Definition 2.1. Let Q C R” be a bounded open set, and let v : & — R be a measurable
function. We define the distribution function p, : [0,4+00) — [0, +00) of u as the function

pu(t) = [{z € Q, Ju(z)| >t }].

Definition 2.2. Let u : € — R be a measurable function. We define the decreasing
rearrangement u* of u as
u(s) =inf{t >0, puu(t) <s}.



Definition 2.3. Let u: Q — R be a measurable function. We define the Schwarz rearrange-
ment uf of u as
u () = u*(wn)z|™) z e O

where QFf denotes the centered ball having the same volume as €.

The next result is the famous symmetrization result obtained by G. Talenti, see [21,
Theorem IJ.

Theorem 2.4 (Talenti’s comparison). Let 2 C R™ be a bounded open set, let f € L*(Q) and
let vy € Hi(Q) and vy € HY(QF) be the unique solutions to

—Auy = f inQ, —Augpy = i in QF
Uy = 0 onof, U st = 0 on o0

Then

IN

Uﬁf Ufjj.

In particular, for every set E, letting up = uy, and ugs = Uy g WE have

IN

The following result solves the case of equality in Talenti’s inequality and was first proved
in |2, Theorem 1].

Theorem 2.5. Let 2 C R" be a bounded and open set, and let f € L*(2) a non-negative
function such that f £ 0. If ugc = uys almost everywhere, then there exists xo € R™ such that
up to negligible sets Q = xo+ QF, f(-) = fH(-+x0), and ug() = ugs (- +x0) almost everywhere.

2.2 Proof of Theorem 1.1 for p=1

In the case p = 1, the proof of Theorem 1.1 is quick and relies only of Talenti’s symmetrization
result. It also shows the importance of the following annulus.

Definition 2.6. Let m € (0,|By]). For every 6 € (0, min{2m,2(|B;| —m)}) we define the
optimal §-asymmetric radial open set As as

A(;:Bm((;)U{xE]Rn|T*<|$’<T2(5)},

where 7, is the radius of B, the ball of volume m, and r1(d) and r9(d) are chosen in such a
way that
|AsAB,| = 6.

Namely, we have

1
1 o\ " 1 o\ ™
0= (o) w0 =g ()

The next result shows that among sets E of given volume and such that |[EFAB,| =4, A;s
is the worst set with regard to the deficit ||up, |1 — ||ug||1-

Proposition 2.7. Let j: s € Ry — s, i.e. for every measurable set £ C By,

J(E) = /B up dz.



Let m € (0,|B1]) and ¢ € (0,inf{2m,2(|B1| —m)}). Let E C By be a measurable set such
that |E| = m and |EAB,| = § where By is the centered ball of volume m. Then

J(E) < J(As), i.e. / up dr < / ua, d.
Bl Bl
where Ag is defined in Definition 2.6.
Proof. By linearity we may write
up = UpnB, t UEUB, — UB,-

Using Talenti’s comparison result (see Theorem 2.4), we know that

f f
UENB, < UB,. ()’ UEuB, < UB,., )

Integrating over Bj the two inequalities, and using the equi-measurability of the Schwarz
rearrangement, we get:

/ uEda::/ uﬁEmB* dx—i—/ U%UB* da:—/ up, dr
B1 Bl B1 Bl
S/ UB, (s dx—l—/ UB,, s dx—/ up, dx:/ uag d.
By B By By

Proposition 2.8. With the same notations as in Proposition 2.7, there exists a positive
constant ¢ = c¢(m,n) such that

O]

J(B.) = J(E) 2 c| EAB.J?,

for every measurable set E C By such that |E| = m. Moreover, the exponent 2 is optimal, in
the semse that the inequality cannot be valid for any lower exponent.

Proof. Let E C By of volume m. Then § = |[EAB,| € [0,min{2m,2(|B1| —m)}). If 6 =0
then E = B, a.e. and J(By) = J(F). If however ¢ > 0, then we have by Proposition 2.7:

J(Bs) = J(E) =2 J(Bs) = T (As)-

We introduce w € Hg(B;) the unique solution to —Aw = 1 in Bj. Classical computations

lead to w(z) = w(|z|) = = |$| . Moreover

T(B)— T(Ag) = /B (— Aw){up, — ua;) = /B wixs. — x4,

s r2(0)
= |S"7Y (/ (5)w(r)r”_1dr—/ w(r)r”_ldr>
1 T

o ‘Sn71| n+2 n+2 n+2
= et D (7"1((5) + 1a(5) 2" )

When n =1 we compute explicitely r1(8)* 4 ra(8)* — 21 = 3% 3. mé? so that ¢ = m/2* works.

In the case n > 2, we use that the function ¢ : x € (0,1) — 2/ ig strongly convex
(" > %), so that

(5 d
-5 + 35 m
5n+2 6n+272n+2: m m 2 -9
r1(6)" + 12(6) ry @ |B| + il ?\ 15

S 2(n+2) 5 \?
- n2 2|Bl|




hence the result with ¢ = 4n21w . Finally, to show that the exponent is optimal, we use a

Taylor expansion in the previous computation to obtain:

m2/n71
72/7152 + 0(52).

An2w;,

J(Bx) = J(As) =

Therefore, if a € (0,2) then
| BLA Az~ §—0

0.

O]

Remark 2.9. We notice that the case p = 1 implies Theorem 1.2 when j is in C' (R, ), convex
and j'(0) > 0. Indeed, we have by convexity of j

T(B.) ~ T(E) > / 7 (up) (up, —up)dz > §0)([Jup. |1 — lusl),

B1
so the stability inequality for J follows from Proposition 2.8. Of course, this does not apply
to the case j : s — sP (p > 1) whose derivative vanishes at 0.
2.3 Optimization among densities

In this section, we prove the following:

Proposition 2.10. Let j € CO(R,) be a convex non-decreasing function and m € (0,|Bi]).
Then the functional J : V € M, — fB1 j(uy) is well-defined, convez, and

J(B.) = max J(V). (2.1)

VeMm
Moreover, the following properties hold:

1. for any ¢ € (0,min{2m,2(|B1| —m)}), we define the set of fixed asymmetry weights
M, ={V EMp, IV-xplh =6}

Then the optimization problem

sup J(V) (2.2)
vems,

admits a bang-bang solution, which means there exists a set E5 such that

Es) = .
J(Es) VIQ%RJ(V)

2. if j is strictly convex and strictly increasing in (0,00), then xp, is the unique mazimizer
to (2.1).

Before proving this result, we state first a classical elliptic regularity theorem that will be
used often throughout the paper. We refer for instance to [13, Theorem 9.13, Theorem 8.16].

Theorem 2.11. Let ¢ > max{1,n/2}. Then there exists C = C(n,q) such that for every
[ € LU(By),
lugllzg < Cllfllg;

where up€ HY(B1) is the unique solution to (1.1).




Also, we need a few technical results: classically, weak-x L% convergence does not imply
convergence of the L'-norm, but if one has some control on the sign of the involved functions,
then one can retrieve such convergence:

Lemma 2.12. Let h € L>®(By) and (hy) be a sequence of functions in L*°(B1) such that

«—L=(B))

hi h.
We assume that there exists E C By such that
Vk € N, hi, >0 in E, and hi <0 in By \ E.

Then

lim/ hk]da;:/ Ihl. (2.3)
k B1 Bl

Proof. It is sufficient to notice that under these assumptions,
hy = hgXE, hy, = hpxee,

where h; and h; are the positive part and the negative part of hy respectively. In particular,
by weak convergence of hy, we get

[ CEANy Sy B,

hi it CINE hx e,

which implies (2.3) O

Lemma 2.13. Let m € (0,|B1]) and 6 € (0, min{2m, 2(|B1| —m)}). Then the sets M, M3,
are convex and compact with respect to the weak-x+ L topology, and their extremals are
characteristic functions.

Proof. e The convexity for M,, is immediate by definition, while for ./\/lfn, we need to show
that if Wy, W1 € M?, and
Wy = aWi + (1 — o)Wy,

for a € (0,1), then ||W, — Vp|[1 = §. This is true since 0 < W, < 1, and by definition of V}
we have

Wao < Vp in By, Wq > Vo in By \ By,
so that explicitly computing the L! norms,
Wa = Volly = af[W1 = Volls + (1 — ) [[Wo — Volly = 0.

e M,, is compact because if W}, weakly-* converges in L> to some W, then

m = lim Wi dx = W dz.
k JB By

For what regards M? | if we take a sequence W}, € Mg@ converging to W weakly-* in L,

m?

then the functions xp, — Wy, satisfy the assumptions of Lemma 2.12; and then

6= li}énHWk —xB.lh =W = xa.|-



e The fact that extremal points of M, are characteristic functions is classical (see for instance
[15, Prop. 7.2.17]). Let us detail the same result for M2 : let W € M? . and assume that

HO<W <1} >0;

we must show that W is not extremal. Since [|[W]|; = m = ||xB.|/1, we have

0<6:||W_XB*H1:2/ (1-W)dx <2/{0<W <1}n B,

*

Analogously we prove [{0 < W < 1}\ By| > 0. Therefore, for small € > 0 we can split the
set {e < W < 1— ¢} in four pairwise disjoint subsets Si, S2, S3,.S4 of By such that

|S1| = [S2| > 0, |S3] = |S4] > 0,
and
51U52={E<W<1—E}QB* S3US4={€<W<1—€}\B*.

Under these assumptions we can write

1 1
W = §(W — EXS1US3 + EXSQUS4) + i(W + EXS1USs — 5XSQUS4)7

with W F exs,us; £ exs,us, € M;. This proves that a non-bang-bang function is not an
extreme point for M? .

O]

Proof of Proposition 2.10. For V. € M,,, uy > 0 is bounded, so j(uy) € L'(B;) and J is
well-defined.

e Convexity of J: given Wy, W1 € M, and « € [0, 1], if we take W, = aW; + (1 — a)Wp,
then by linearity with respect to V' of the equation (1.1), we get

uw, = auw, + (1 — a)uw,,
which, joint with the convexity of j gives
j(Wa) S Ozj(Wl) + (1 — Ol)j(Wo)

e J(-) is continuous with respect to the weak-x L convergence: let W}, be a sequence
converging in the weak-+ L sense to some function Weo. Let uy := uw, € H(By) solution
o (1.1). We show that uy converges to uw, . Let ¢ > n; since (W) are equibounded in L,
Theorem 2.11 applies, and we have that (uy) are equi-bounded in W29(Bj), namely there
exists some constant C' = C(n,q) > 0 such that

[ukll2q < C.
Therefore, by Kondrachov Theorem, there exists a subsequence (not relabelled) such that

Wl’q(Bl)
Up — U

for some v € W14(By). In particular, by Sobolev’s imbeddings, the convergence happens
strongly in L, and u € H}(B1). Moreover, using the weak-* convergence of Wy, we get,
passing to the limit in the weak formulation of (1.1),

VU'VngCL‘:/ W @ dx Vo € Hi(By),
Bl Bl
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which implies u = uyy_ . Finally, since j is continuous and uy converges strongly in L™ to u,
then

lim J(Wg) =lim | j(ug)de =T (We).

k k /g,

Since the argument is valid for every choice of the subsequence, this proves the continuity.
e Solution to (2.1) and existence to (2.2): by Lemma 2.13 about compactness of M,,
and ./\/lfn and the continuity proved in the previous step, we get the existence of solutions to
(2.1) and (2.2). As extremal points of M., and MY are bang-bang functions, by convexity of
J we get that there exist bang-bang solutions to (2.1) and (2.2). Moreover, the monotonicity
of j implies that j(u®) = j(u)¥, so that, using Talenti’s inequality, we deduce that B, solves
(2.1).
e Uniqueness: since j is strictly convex, also J is strictly convex and any maximizer of J
is necessarily bang-bang. In particular, if E is an optimal set such that ygr maximizes J we
have that

ﬂ&hJWZLﬂwW:Lﬂ%Mu (2.4)

where we used that the monotonicity of j implies j (uti ) = j(ug)?. By Talenti’s inequality
we know that j(uﬁ ) < j(up,). The strict monotonicity of j and (2.4) ensure that uﬁE =up,
almost everywhere. By the rigidity of Talenti’s inequality (see Theorem 2.5) we get F = B,.

O]

2.4 Sharpness of the exponent

We show that the exponent 2 is sharp in Theorem 1.2, in the sense that for o € (0,2), one
can find a sequence of sets E, € M, \ { B} such that

> 0.
‘B*AEk’O‘ k—s0c0

We proceed as in Section 2.2 by using the annulus As (who is a candidate as being the worst
asymmetric set with regard to Talenti’s deficit, though we are not in position to prove it
except in the case of the L'-norm). More precisely, we show the following result:

Proposition 2.14. Let m € (0,|B1]), and let j € CY(R,) be a non-constant, non-decreasing,
convez function. Then there exists 6 > 0 and a positive constant C = C(j, m,n) such that for
every 0 € (0,0),

%ﬁsywn—meécﬁ (2:5)

For the proof of Proposition 2.14 and in several other places in this paper, we need to
define the notion of adjoint state (see also |15, Section 5.8]):

Definition 2.15 (Adjoint State). Let j € C*(Ry). For every V € L?(B;) nonnegative, we
define the adjoint state wy of uy as the unique function solving in the weak sense the adjoint
problem

—va = j’(uv) in Bl,
{w =0 on 0By,
namely,
/B Vwy - Vedr = /B 7 (uy)ep Yo € Hy(By). (2.6)
1 1

When V' = xg we will write wg := wy.

10



Proof of Proposition 2.1/. For every § € [0, min{2m, 2|B1| — 2m} ), let us define us = w4,
ug = up,, and ws = wa,, wo = wp,. Moreover, since these functions are all radial, we will
identify, with a slight abuse of notation

us(w) = us(|z|), ws(z) = ws(|z|).

By convexity of j, we have

/ J'(us)(uo — us) dz < J(By) — J(As) < / 7' (uo) (uo — us) da.
B1

B1

After two integration by parts, we may rewrite

/ ws(XB. — X4s) dx < T (By) — T (As) < / wo(XB, — XA,) d. (2.7)
B By

Noticing that xp, — x4, is non-zero only between the radii r1(6) and r2(d), we focus our
attention on the values of ws and wp near |x| = r,, where we recall that B, = B,,.

e Estimates for wy: by Taylor expansion,
wo(r) = wo(rs) + Gpwo(re) (r — ri) + Ra(r), (2.8)

with
Ri(r) = / (Orwo(s) — Orwo(ry)) dr.

Since wq solves the equation —Awg = j'(ug), then by classical elliptic regularity (Theorem 2.11)
we have that wg € C™ for some 3 € (0, 1), so that

|0,wo(re) = pwo(s)| < Cls — 7’

and

|R1(r)| < C|r — m\HB. (2.9)

Therefore, noticing that (see Definition 2.6 for the definition of r; = 71(§), 72 = r2(9))
| (o = xado =0 X5 (1) = Xay (1) = SE(rs — )Xy (1)

1

we obtain by (2.8) and (2.9)
T2
/ wo(XB, — Xa;) dx = Opwo(r.)|S" | / " — | dr + Ry(6)
By T1
with
’R2(5)| S C|’I”2 — 7‘1‘2+’3.

In particular, since 7o — 1 = O(6), we have

/ wo(XB, — X4;) dx < C6% + 0(6?), (2.10)
By

so that, with (2.7), the upper bound in (2.5) is proven for a suitable choice of 4.

11



e Estimates for ws: we now need to adapt the previous estimate with ws instead of wy: to
that end, we first notice that ws smoothly converges to wq for ¢ that goes to 0. Indeed, since
—Aus = x 44, we have from classical elliptic regularity (see Theorem 2.11) that

L>(By)
us — UQ.

In particular, the continuity of j' ensures that j'(us) converges in L to j'(ug) and, for any

B e(0,1),
ClvB(Bl)
ws ——— wWo-

This convergence, joint with (2.8) and (2.9) ensures that for some uniform positive constant
C we have
ws(r) = ws(ry) + Orws(ry) (r — ry) + R3(r), (2.11)

with
|R3(r)| < Clr — r|' 5. (2.12)

If § is small enough, since 5/ > 0 and j’ #Z 0 we know by Hopf’s lemma that wy is strictly
radially decreasing and we have

—Opwg(ry) > —%&qwo(r*) > 0. (2.13)

We now compute similarly to (2.10), using (2.11), (2.12), and (2.13) we obtain

/ ws(xB, — X4;) dz > ¢6® + 0(6?),
By

for ¢ > 0 small enough, thus concluding the proof.
O

Remark 2.16. We notice that the convexity assumption in Proposition 2.14 is only needed
to make the proof simpler. As in |18, Proof of Formula (32)] we could have used a parametric
derivative approach to obtain the same result without assuming j to be convex.

In the following we show the exponent 2 is sharp also for p = oc.

Proposition 2.17. Let m € (0,|Bi|). Then there exists § > 0 and a positive constant
C = C(m,n) such that for every § € (0,6),

1
552 < lup, lloo = llussllos < C82. (2.14)

Proof. Since both up, and ua; are radially decreasing, if G denotes the Green’s function on
the ball (see subsection 5.1 for the definition), we have

lus. oo — Il oo = /B G(0,9)(x5. — x4,) dy.
1

Using a Taylor expansion of G(0,-), the fact that |V,G(0,-)| > 0 near 0B, and using the
volume constraint, we obtain the result as in the proof of Proposition 2.14. O
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3 Proof of Theorem 1.2

In this section, we provide the first part of the proof of Theorem 1.2 (which implies Theorem
1.1 in the case p € (1,00) as shown in Section 1). In fact, in the spirit of the Selection principle
used in [8] to deduce the sharp quantitative isoperimetric inequality from a stability result
by Fuglede ([11]), we show that Theorem 1.2 is a consequence of the following Theorem 3.1,
asserting stability among smooth deformations of B,. In what follows, for every set £ C B;
and every vector field ® : By — R"”, we use the notation

E® = (Id +®)(E).

Theorem 3.1. Let m € (0,|B1]) and j € C*Ry) N C?((0,00)) be such that j'(0) > 0,
j"(s) > 0 for every s > 0 and
lim sup s%5”(s) < +o0 (3.1)
s—0t
for some o < 1. Then there exist positive constants ¢ = c(j,m,n), n = n(j,m,n) such that
for every ® € W24(By,R") orthogonal to OB, with

[llw2a <, |BY| = |B.| =m,

we have

J(B.) = J(BY) > c| B.ABYP.

We show how one can deduce Theorem 1.2 from Theorem 3.1 in 2 subsequent steps.
The proof of Theorem 3.1 is postponed to Section 4. Let us stress that the orthogonality
assumption in Theorem 3.1 can be removed, since every deformation ® can be replaced with a
deformation ¥ normal to OB, in a way that B® = BY and ||¥||yy2. is equivalent to || ®||yy2.4
(see for instance |15, Lemma 5.9.5]).

3.1 Step 1: local stability implies global stability

In this first step, we show that it is enough to prove Theorem 1.2 in the regime ||V —xp+|1 — 0:
for m € (0,|Bi]) given and ¢ small enough, we recall

0<V<I,
M :={ Ve L®(B)) V =m,
B1
IV —xB.|l1 =46

Proposition 3.2. Let j € C°(Ry) be strictly convexr and strictly increasing. If

liminf inf M

minf if, 52 > 0, (3.2)

then Theorem 1.2 holds true.

Proof. We denote
¢ = liminf inf —j(B*) —JW)
=0 veMs, 62

that is assumed to be positive, and we let V3 be a minimizing sequence for the problem

inf G(V) = M
‘X;eMm V- XB*Hl
#XB*

13



By compactness of M,,, (see Lemma 2.13) we may assume that Vj weakly-x L° converges to
some function V,, € M,,.

First case: if Voo = xB,, then by weak-* convergence and the sign constraints on Vi — xp,
we can apply Lemma 2.12 and we get:

1:07

liinHVk: — XB,

and so by definition of ¢,
lilgn G(Vg) >c>0.

Second case: if Vo # xp, then again by Lemma 2.12 limy, ||V — x5, |1 = [|Voo — xB. |11
and by continuity of J (see Lemma 2.13),

lilgn G(Vk) = G(Vx).
But by the uniqueness stated in Proposition 2.10, G(V4) > 0, hence the result. O

3.2 Step 2: Theorem 3.1 implies Theorem 1.2

To conclude the proof of Theorem 1.2, we will use the following result from [19]:

Theorem 3.3 (Quantitative bathtub principle). Let Q C R"™ be an open bounded set, m €
(0,19]), and u € CH*(2) for some o € (0,1). We assume

Hu>t={u>ti}=m and min |Vu| >0
O{u>t.}

for some unique t. € R. Then there exists a positive constant ¢ = c(||u||c1.«) such that for
every V € LY(Q) non-negative with [,V dz =m,

, 2"=1(9B.)
V< — V-
/Qu > /g;uX{u>t*} c (8{1311;?*}|Vu) H"—l(a{u > t*})H X{u>t.}

where B, is the ball of volume m.

‘2
1

Proof of Theorem 1.2 from Theorem 3.1. By Proposition 2.10 we have that for every ¢ > 0
small there exists a set Ej solution to the problem

Ej) = :
J(Es) V%%HJ(V)

Thanks to Proposition 3.2 it is sufficient to prove that

lim inf J(B.) — J(Es)

6—0 62 > 0.

Let us assume by contradiction, up to extracting a subsequence, that

=0.
6—0 52

For every § we define us := up,, and ws := wg, the adjoint states (see Definition 2.15).

14



e We first claim that there exists ¢5 such that
Es :={ws > ts5}

is of volume m. To that end we prove the function ¢ € (0,00) — [{ws > t}| is continuous,
which is the same as proving that [{ws = t}| = 0 for every ¢t > 0. Let ¢ > 0: we argue similarly
to |7, page 7]. Because ws is in H?(B;), we have Aws = 0 a.e. in {ws = t}, and therefore
j'(us) =0 a.e. in {ws = t}. By assumption j'(s) > 0 for every s > 0 (5’ is strictly increasing
as j” > 01in (0,00)), and since {ws =t} C By and us > 0 in By, we obtain |[{ws = t}| = 0.
This shows the existence of t5, and also that [{ws > t5}| = [{ws > ts}|. Finally, we show that
ts is unique: let ¢ be such that [{w > t}| is also equal to m, and assume for example t5 <
(the other case being similar). Then the set {ts < w < t} is open with zero measure, so it
is empty. But as m € (0,|Bi|), minws < t; <t < maxws, so by connectedness of B; and
continuity of ws, the set {ts < w < tA} can be empty only if t5 = 7.

e Second, we show that Ej is a W29 deformation of B,. First, by classical elliptic estimates
(Theorem 2.11) ug converges to ug in W24(By) for every ¢ < co. As j is locally 3 := (1 — a)-
Holder continuous (see Remark 1.3) this implies that ws converges to wy in W24 for every
q < 0o. On the other hand, j'(ug) is C* far from OBy, so that wg € W34(By_.;R") for every
small . Moreover, since 0 < m < |By|, there exists a positive constant ¢ such that |Vwg| > ¢
on 0B,.

Therefore, we are in position to apply Lemma A.1 to ws and Proposition A.2 to wg — tg, so
that the following holds: for every fixed ¢ > 0 and for § < dg(¢) we can find deformations
s € W29(By;R") such that ||®s]|yy2.4 < &, @5 are orthogonal to dB,, and

Es = B%.

e Third, by the convergence of ws and the regularity of ®4, we find constants ¢, C' > 0 such
that for § small enough,

[Vws| > ¢ on 0B, and H"'({ws =ts}) = / Jac?B(1d +®;) dH" ! < C. (3.3)
9B,

We now compute, using the convexity of 7,
TE) = [ jtus)do < T(Es) ~ [ 5'(us)(@s - ua)
B1 B

where g = u By We integrate by parts two times using j'(us) = —Auwy, so that

T(E) < T(E) ~ [ wslg, - xes)

By
We now notice that thanks to the uniform estimates (3.3) and the quantitative bathtub
principle (Theorem 3.3) we get the existence of a uniform constant ¢ such that

J(Es) — J(Es) > ¢| EsAE;|*. (3.4)

On the other hand, since ||®||yy2.« < €, we can apply Theorem 3.1 when ¢ is small enough,
which gives N B
J(B.) = J(Es) > c|EsAB.[?, (3.5)

also for a positive constant ¢. Finally, noticing that
§ = |E;AB,| < |EsAEs| + |EsAB,|,

we join (3.4) and (3.5), and we get the existence of a constant ¢ such that

¢8? < 2c(|BAEs P + |EsABP) < T(B.) - T (Ey),
which is a contradiction and concludes the proof. O
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4 Proof of Theorem 3.1

So far, we have proved Theorem 1.1 in the special case p = 1, and we have reduced the proof
of Theorem 1.2 (which contains Theorem 1.1 for p € (1,00)) to the proof of Theorem 3.1
asserting stability of B* among smooth deformations. This section is dedicated to the proof
of this last result, which is based on a shape derivative approach (see for example [10] for
references and details). The section is divided in 4 paragraphs:

1. first, the computation of first and second order shape derivatives, that leads to the
expression of the Lagrangian for problem (2.1),

2. then the proof of coercivity for the second order derivative of this Lagrangian,

3. as a classical third step, we then need to prove an improved continuity property of the
second order derivative,

4. and finally we combine all of these ingredients to conclude the proof.

4.1 Computation of shape derivatives
In this section we compute the shape derivatives of the shape functional
E— J(FE)= / jlug).
B

We start by recalling some basic facts about shape derivatives.

Definition 4.1 (Shape derivative). Let s € (0, 1), let O be a family of C'* sets compactly
supported in By, and let
F:0—=X

with X a Banach space. Let ¢ > n large enough to have W24(By; R") — C1%(By;R"). For
every set E € O, we say that F is shape differentiable at first or second order if the functional

® € W9(By;R") — F((Id+®)(E)) € X. (4.1)

admits Fréchet derivatives (of first or second order) at 0, and in this case, we define the shape
derwatives (denoted F'(FE)[®] and F"(E)[®, ¥]) as the Fréchet derivatives at 0 of (4.1).

We will follow the classical approach (see for instance [15, Theorem 5.3.2]) to prove the
existence and compute the shape derivative of ug, wg and finally J(F), in the next three
results respectively. In the whole section, E will denote a set of class C1* such that E C By,
and p large enough so that W4(B;) C C%*(By). Then for every ® € W24(By; R")

E® .= (Id +®)(F)

is also of class C1*, and W14(B;,R") is an algebra.
We then define the functions

Up = Upe Wy = Wpge
Up = Up® O (Id —i—@) W = Wge O (Id +(I>),

where wg is the adjoint state defined in Definition 2.15. Let us recall the classical Hadamard
formula that can be found for instance in [15, Corollary 5.2.8].
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Lemma 4.2 (Hadamard formula). Let T > 0 and F € C*([0,T); WL (R*;R")) and we
denote Fy(x) = F(t,x). We assume F} invertible for every t € [0,T). Then for every function
fect((o,7); LYR™) N CO([0,T); WHH(R™))

d .
at </Ft(E) f(t,:c)dx) = /Ft(E)(atf(t, z) +div(f(t,z) Vi(z))) dz, (4.2)

where V() = 0, F(F ().
Remark 4.3. In particular, when F; = Id +t® with ® € W1°(R"; R"), we define
&, (z) == Vy(x) = ® o F Hx).
Proposition 4.4 (Shape differentiability of ug). The application
® € W29(B;R™) — ugp € Wy '(By)

is of class C* in a neighborhood of 0. In particular, if ® € W24(By;R") is small enough and
we denote by uy := wp, then for every t € [0,1] we have that u} € Wol’q(Bl) s the unique
solution in H}(By) to

—Au; = (@t . Vt) dHn_l I_aEt@, (43)

(in the distributional sense), where ®; = ® o (Id+t®)~! and v; is the exterior unit normal to
E'®,

Proof. e If ||®||]2,4 < 1, we can invert the matrix I,, + D®, so that, defining
Jo := det(I,, + D®P) Ag = Jg (I, + D®) NI, + D®) T,
we have in the distributional sense
—div(AeViug) = xg Jo.
e We introduce X = Hi(By) N W?29(By) and
F: W(B;R")x X — Li(By)
(®,u) —  —div(4eVu) — xp Jo.
Then F is of class C* in a neighbourhood of 0. Indeed, we first notice that the application
(A,u) e RV" x X — —div(AVau) € LP(B)

is of class C*° because it is linear and continuous in both variables. Analogously, using that
W4 is an algebra, multilinearity and continuity in the origin imply that the applications

+o0
® € WU(By) — (I, + D®)~' =) (D®)F € WHI(By)
k=1
d € WY(By) — Jp = det(I, + D®) € WH9(By)
are of class C* in a neighborhood of 0. Therefore, the application

® e WH(B)) — Ap € WH(By)

is C* in a neighborhood of 0, as well as F.
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e We are now in position to use the implicit function theorem to deduce from the previous
point that the application
® € W29(By;R") — 1p € X,

that satisfies F(®,ug) = 0 is of class C in a neighborhood of 0. Indeed, uyp = ug and the
map

EG X — D’TI‘F(O’UE)[&] = _Aé- — XE,

is a diffeomorphism from X onto L?(B;) thanks to the classical elliptic regularity (see for
instance |13, Theorem 9.14]).
e Then, by noticing that ug = U o (Id +®)~!, we know that the application

® € W2U(By;R") — ugp € Wy'(B))

is C! in a neighborhood of 0 (for instance, we can apply [15, Lemma 5.3.3] to Uig o (Id +®) !
and Vig o (Id+®)~!). Let us also recall that u; solves the weak equation:

Vuy - Vodr = / pdx Vo € Hi(By). (4.4)

Bl Ete

Using Lemma 4.2 to differentiate (4.4), we get that u} solves

Vuj - Vodr = / @ (g - 1) dH™ ! Yo € Hi(By),

By OE®

which is (4.3).
O

Proposition 4.5 (Shape differentiability of we). Let j € C1(Ry) N C2((0,00)) such that

lim sup s%5”(s) < +o0
s—0t

for some a € (0,1), and let € € (0,1). Then the application
O € W2U(B;R") v we € Wy(B1) N W4(B;_.)

is of class C* in a neighborhood of 0. In particular, if ® € W24(By;R") is small enough and
we denote by wy = wyap, then for t € [0, 1] we have that w; € W(}”J(Bl) is the unique solution
in H}(By) to

—Awy = " (ur)uy, (4.5)

where u} is defined in Proposition 4.4.

Proof. We proceed as in the proof of Proposition 4.4, with the extra difficulty that j is not
C? up to 0.
e First we claim that the map

G:® e W>B;R") +— j'(Ue) € LY(B1) NWH(By_9)

is of class C'! near 0. Since j' is C! far from 0, we immediately have by Proposition 4.4 that
® — j'(up) € WH(By_.3) is of class C'. It remains to show that ® — j'(ug) € L(By) is
C'. As j' is not assumed to be C' up to 0, as it is done for instance in [12, Lemma 2.5], we
approximate the functional G: for small € > 0 we define

G : ® € W24(By;R") — /(e +Ug) € LI(By).
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From the proof of Proposition 4.4, recalling
X = Hy(B1) N W>(By) c CY(By),

there exists & neighborhood of 0 in W24(By;R™) such that the map ® € U — 7y € X is
Cl. In particular ||U||s is equibounded for ® € U, and since j' € C!([e, +0)), we get that
G. is C! in U and that G.(0) converges to G(0) in L4(B;). Once we prove that

Gi: U — LW>U(BiR"), LY(B1))
o = (n—j"(e+us) upn))

converges uniformly in @, from [4, Theorem 3.6.1] we can conclude that G is C! near 0. If
we let h(t) = tj”(t), then by assumption h € C°(R;) and by uniform continuity, k(e + Ug)
converges to h(tig) uniformly in ® € Y. Therefore, it remains to check that

1 1
lim su U — - — =0. 4.6
e—0+ q;.gg <I>[77] (8 + Up Uq>> q ( )
lImll2,q<1

Up to choosing a smaller U, there exist uniform positive constants ¢, C' such that || Vg, [1]]/ec <
C, and |Vug(y)| > ¢ for every y € By \ B1—. (here we used that |Vug| > 0 near 9B;). This
leads to the following uniform estimate: for every x € By, and for every ¢ € (0, 1),

Ce(1 —|z|) C
~ e+cmax{l —|z|, ¢} =~ 1+ cmax{l—|z|, c}’

£ Ug [1](2)
(€ + Ug(z)) Us(x)

which, by dominated convergence, ensures (4.6).
e As in the proof of Proposition 4.4, we obtain
F: W2(B;;R") x X — Li(By)
(P, u) —  —div(4eVa) — ' (us) Jo.
is Ct. As
DgF(0,wp)[¢] = —AE — j'(uk)
is a diffeomorphism of X onto L9(Bj;), the implicit function theorem applies, and ® €
W24(By;R") +— g € X is of class C! in a neighborhood of 0, and
& € W2U(By;R") — we € Wy (B))

is C! in a neighborhood of 0. Moreover, the function w; solves the weak equation (2.6),
namely

Vuwy - Vepdr = / 7' (up)p dx Vo € Hi(By). (4.7)

B1 Bl

Using Proposition 4.4, we can differentiate (4.7) to obtain that w} solves

Vuw, - Vodr = / 7" (ug)uy o dx Vo € Hi(By),

B1 Bl

which proves (4.5).
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Proposition 4.6 (Shape derivative of J). Let j € CY(Ry) N C?((0,+00)) be such that

lim sup s%5”(s) < +o0
s—0t

for some a € (0,1). Then the application

d € W4(B;R") — J(E®) € R
is of class C? in a neighborhood of 0. Moreover, if ® € W24(By;R") is small enough, then
J(t) = J(E'®) satisfies for t € [0,1],

J,(t) == /8th> Wy (‘it . Vt) dHn_l, (48)

where wy = wgie 1s the adjoint state defined in Definition 2.15, vy = vgie is the outer unit
normal to E'®, and ®; = ® o (Id +t®)~!. Moreover, letting g = ®; - 4,

J'(t) = / (wl'fgt + g (Vwy - (AISt)) dH" ! 4 ay(®, D), (4.9)
C")Etfb

where
CLt((I), ‘I)) = / Wt (gt d1V<(I)t) — ((D‘I’t)q)t) : I/t> dHn_l.
OEt®

Proof. For every ® € W24(By;R")
TE) = [ e d
By

so Proposition 4.4, joint with j € C1(R,), gives that ® — J(E?®) is C'. Let us denote by
up = urp. We begin by noticing that

J'(t) = / 7' (up)uy do = Vuwy - Vuy dr = / wy gy dH™
B, By oEt®

where we used (2.6) and (4.3). Therefore, we have the following shape derivative

7'(En)ly) = |

wge (V- vge ) dH" ! = / div(wge ¥) dz.
OE®

E®

By Proposition 4.5 we know that the map ® + wge € W24(B;_.) is of class C! in a
neighbourhood of 0. In particular, if ® and € are small, we have E® C B;_.. Finally, since
for every fixed f € Wh! the map ® — [ge fdx is of class C' in a neighbourhood of 0 (see
for instance [15, Theorem 5.2.2]), then J is of class C2. We now compute again J'(t) as

J(t) = / div(w,By) da,
Et<1>

so that by the Hadamard’s formula Lemma 4.2 we get

J'(t) = /8 " div(wt&)t)(f)t v dH! —I—/8 ” (wéi)t + wy 51‘&%) v dHTL
E E

Formula (4.9) finally follows by differentiating in ¢ the equation d; 0 (Id +t®) = @, leading to

8, = —(D®,;) ;.
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Remark 4.7. When we evaluate (4.8) in t = 0, we get
J(0) = / wi(® - i) dH"L.
oF

When @ is orthogonal to OF (i.e. ® = govp on OF), then (4.9) in ¢t = 0 reads

Owg

70 = [ (whoo+ wotegd + S0t ) ane,
OF g
with Hg the mean curvature of OF. Indeed, notice that in this case

9o div(®) — (D®)D) - vy = g2 divPE (1) = g2 Hp.

The previous computations allows us to write the Lagrangian for the maximizing problem

\Ei}; J(E). (4.10)

In the following, for x close to 0By, we let myp, () be the unique projection of z onto 0B,
and we let vy(x) = vy(mop, (z)) be the extended unit normal to 0B,.

Corollary 4.8. For 7 € R and E C By, we define
L (E):=J(FE)+1|E|
For m € (0,|B1]) and E = By the centered ball of volume m, we set
T = —wo|yp - (4.11)

Then ® € W29(B;R?) — L. (B2) is of class C? near 0, and

(i) £,(B.) =0

(ii) for every ® € W24(By;R™) small enough such that ® is normal on OB, and o, =

for t € [0,1], if we denote L(t) = L,(BL®) then for every t,

0 _ . e
L'(t) = /83@ (wég + 9281:;:) (ve - 1) dH" Ly /aBﬁb(wt +7) (v - 1/0)92 div(vy) dH L

(4.12)
where g = @ - vyg.

Proof. Let V(t) = |BL®|. From Lemma 4.2 we have
V'(0) = / (® . ) dH Y,
OBy

so (i) follows from (4.8).
Using two times Lemma 4.2 gives (see also [10, Proof of Proposition 4.1]),

V'(t) = / div(®) (D - vy)dH" !
oBte
so with Proposition 4.6 and the fact that 0 = &@t, we get, letting g; = @ - 1/,
L'(t) = / wigr + (Vg - @) g + / (wt + 7) gt div (D).
oBt® oBte

Now, as ® is normal on 9B, and ® o (Id +t®) = @, we have for every t that ®5pe = g,
and we conclude using 0 = 8,®; = —(D®)® = —gVg - 1 so that gdiv(®) = ¢2div(y). O
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Remark 4.9. The general scheme of proof of Theorem 1.2 was strongly inspired by [18];
nevertheless, it seems to us that [18, Section 2.5.7 and formula before (73)] are incomplete
(note that these computations are also used in [19, 5]). Compared to our formula (4.12), the
first discrepancy is due to the assumption @, = ®. This seems to be missing in [18], but
without such assumption we should have

L'(t) = L7(BL®)[®r, &) + L7(BL)[0::]

while in [18] it is used L”(t) = L£?(Bi®)[®, ®], which seems incorrect to us without assuming
;IV)t constant in ¢. The second discrepancy is about the outer unit normal appearing in the
equality: v in [18, Formula before (73)] represents the outer unit normal to 0By, but it should
be replaced with vy = 14 o (Id +t®).

Remark 4.10. We also point out a computation mistake in [10, Proof of Proposition 4.1|

where H should be replaced with m = (divyy) o (Id +t®). Indeed, diviy(z) is not the
mean curvature of OF in myp(z), it represents, up to the sign, the mean curvature in = of the
boundary of the outer parallel set

0{yeR"|d(y,0F) <d(z,0F) }.

4.2 Step 2: coercivity of the second order shape derivative in B,

The goal of this section is to prove a sufficient optimality condition for problem (4.10):

Proposition 4.11. Let m € (0,|B1|), Bs the centered ball of volume m, and j € C*(Ry) N
C?((0,4+00)) such that 5'(0) >0, §” > 0 on (0,00) and

3" (uo) € L*(By).

Then there exist positive constants c = c(j, m),n = n(j,m) such that for every ® € W4(By; R")
such that |B®| = |B.| and ||®||eo < n we have

ﬁZ(B*)[(I), (I)] < _C”(I) ' VOH%Q(BB*)a
where L, is the Lagrangian defined in Corollary /.8.

The rest of this section is devoted to the proof of Proposition 4.11, see the two substeps
below. To simplify the computation of L£”(B,), we first remark that this quadratic form
depends only on the trace of ® on 9B, (this is a well known fact, see for instance [17, proof
of Theorem 2.3]). We can therefore replace ® by ¥(z) := ®(myp, (z)) in a neighborhood of
0B, and extend it smoothly to B;. It is also well-known (see [15, Theorem 5.9.2]) that as
L7 (By) = 0, L7(Bx) only depends on g = (® - 1)9p, , S0 We can also assume ® to be normal
on 0B,. With these adaptations, we have d; = @ for every t, and we can apply Corollary 4.8,
and L?(B,) will reduce to a quadratic form on L?(dB,) (see also [5] and [6, Lemma 35]).

Substep 1: Rewriting £”(B,)

We will compute £”(B,) in terms of g = (® - 19)sB, , defining a suitable eigenvalue problem
that has been introduced in [5] (see in particular [5, Theorem III] and |6, Proposition 34|):
from Proposition 4.4 and Proposition 4.5 we can consider ug := vz [®] and w( := wi_[P]
that are the unique solution in H}(Bj) to the equations

—Aupy = gdH" Lop. = Awg = j" (uo)up.
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Using Corollary 4.8 we get

8w0
L7 (B. <1>,<1>:/ (w’
(B@ 9] = [ {990~ |5,

92> dH™ .

For every g € L*(9B.) we consider (Uy, W,) € H}(B1;R?) the unique solution to the coupled
boundary value problems

—AUy = gdH" 'L op. — AW, = j" (uo)Uy.
Denoting trpp, : W12(By) — L?(0B,) the trace operator on 0B, we also define the operator
T:g€ L*(9B.) — trap, (Wy) € L*(dB,),

which is symmetric, as [, AWydH" ! = fBl 3" (u0)UyUp. Then for h,g € L?(0B,) we define

la(h,g) == h(W, — |0,wolg) dH" ! = hTgdH"™ ' — |9,wolom, hgdH"
OB. OB. aB.

Note that, when g = go = (® - 10)j9B,, We have Uy = ug and W, = wy, and therefore

L7(B.)[®, 9] = I2(g, 9)-

Substep 2: diagonalization of T

In the following, when n > 2 (the case n = 1 will be dealt with separately, see below in the
proof of Proposition 4.11) and k € N we denote (Y m)i<m<n (k) the real spherical harmonics
of degree k (that is to say, a basis of the space of homogeneous, real and harmonic polynomials
of degree k), and it is well known that these are eigenfunctions of the opposite of the spherical
Laplacian —Agn-1, with eigenvalue Ay, = k(k +n — 2) (M (k) being its multiplicity).

In this step we show that 7" is diagonalizable and that the spherical harmonics are its
eigenfunctions:

Proposition 4.12. Letn > 2, and let j € C1(R;)NC?((0,00)) be such that 5'(0) >0, j” >0
and

11 1

7 (UO) el (Bl)

Then for every k € N*, the spherical harmonics of degree k, (Yim)i<m<m (k) are eigenfunctions
of T with the same corresponding eigenvalue 1/\,. Moreover, the sequence (A\g)gen+ s non-
decreasing in k and we have

M > (|0uwolps,) (4.13)

where wo = wp, s the adjoint state of ug = up,

Remark 4.13. The previous result is also valid for & = 0, but the computations are slightly dif-
ferent, and we don’t need it as we naturally work in the space { g € L?(0B,) ‘ Jam. gdH" 1 =0 }

Proof. e Let k > 1 be fixed. Let us define |z| = r and |z|~'z = 6; in the following computa-
tions we will write ug(r) for ug(x) with || = r. To show that Y}, ,(#) are eigenfunctions for
T, we look for a nontrivial function

W(z) = o(r)Yem(0),

solving
(—A) <%(—A)) W = AWdH" L op, in B,
W = (L) AW =0 on 8B,

JN(uO)
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r=0 r=r, r=1 r=0 r=7r, r=1 T =Ty
(3 0 rk 1 0 0 0 0
o +o00 0 0 (2 —n — 2k)rl-—n-2
Y10 0 (1) 0 rk 1 0
U 0 (1) 400 2k 0

Table 1: Evaluation table for g and J@. Empty cells are not needed for the computation.

for some A € R.
Let us denote by A, and DF the differential operators on functions of one variable, defined as

A
Brp =r70,0"70,0), D= Drp— o =R, (1T, (17 ) ), (4.15)

so that
A in(®) = (B + 58001 ) (0011 (0)) = Vi OD ().

As a consequence, we look for ¢ solution of the ODE:

Df(mpfgo) (r) = Agé,, in (0,1),
p(1) = (ﬁ) Dip(1) =0

and such that the behavior of ¢ at 0 makes W smooth enough near the origin.
Using the second formulation of DF in (4.15), we introduce four independent functions

Pi(r) =¥, Po(r) = r? 7k,

and Pp(r) = r* / g~ (n—1+2k) / 3" (uo () ()t L dt ds, B8=1,2,

which respectively solve the equations

Db = 0, DFjg = 5" (wo)vs,  B=1,2. (4.16)

We now define ¢ in the following way

( {Cf¢1+05¢2+0§$1+021;2 < Ty,
p(r) =

cibr +eg o +C§T,Z1 +Cj{7;2 > Ty

The behavior of ¢ near 0,7, and 1 will add 7 independent conditions (see Table 1 for the
values of ¢3 and its derivatives):

— near 0, we require ¢(0) = 0: indeed, if this is not the case, as Y}, is not constant, then
©(1)Yy.m(0) cannot be continuous at 0. Similarly, we require DEp(0) = 0 so that AW is
continuous at 0.

As DFp1(0) = DFpy(0) = fo{/;l(()) = 0 while D¥45(0) = +oo0, the first condition is
c, =0.
And as 91 (0) = 11 (0) = 0 while ¢5(0) = 400, the second condition reads cy =0.
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. . " _ Dk
— near 7, we require three continuity conditions, namely for ¢, 9, (r~*¢) and ﬁ: as we

have chosen 1;5 so that they vanish at r,, these respectively lead to the three equations:

cgrf = cg{rf + cj{rf_"_k

— finally, the two boundary conditions (1) = WD,’?Q@(U = 0 write:

cf + cgr{bvl(l) + CIJQ(].) =0

cd+ef=0

where the summability assumption on j”(uo) ensures that ¢;(1) and (1) are well
defined and finite.

We therefore have 7 linear conditions for 8 variables, so there is at least a one dimensional
vectorial space of solutions, and we choose ¢ a nontrivial one. Notice also that the 7 conditions
are independent: if ¢; = 0, then all the constants cli need to be zero, as by direct computation
(th < 27"k for t € (0,1)) B B

Y1(1) — ¥2(1) <0.

To conclude that W = ¢(r)Y}, () is a solution to (4.14), it remains to observe that ¢(rs) # 0,

so that -
o ()] e
o(r+)
is well defined, where [v](r,) denotes the jump of the function v at r,; this is the case as

o(r.) = ¢, ¥, and we have just observed that if ¢, = 0, then o = 0.

e We now prove the monotonicity of (\g)g:
For k > 1, let ¢ one of the solutions computed in the previous item. We choose the scaling
so that

)\kgok(r*) =1. (4.17)

We make the proof in two steps: first we show that ¢, > 0, and then we study the difference

Yk 1= Pkl — Pk
Step 1: let
1

), = Dk
k (UO) r Pk

j//

where ¢y, is one solution computed in the previous item, and so that

A
A, D) = Tgcpk +6. in(0,1), w1

D (0) =Px(1) = 0,

where §,, denotes the Dirac mass concentrated in r,. We claim that ®; < 0. Indeed, let us
assume that 7 is a maximum point for ®5. If 7 = 1 or 7 = 0, the claim is proved. On the
other hand, the Dirac mass in (4.18) implies that

(1) — @p(ry) = Appr(rs) > 0,
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which ensures that r, cannot be a maximum point. Therefore, we may evaluate the ODE
(4.18) in the maximum point 7 obtaining, after the expansion of A,.,

A
0> 2(7) = Ardy(r) = —5 @k(7),

which proves the claim.
Since @5 < 0, then
Ay,
Arpp < T2 ¥k r € (0,1),

©1r(0) =pr(1) = 0.

With the same argument as above for @, simplified by the fact that ¢}, is of class C? in the
whole interval (0,1), we get (by looking at its minimum) that ¢ > 0.
Step 2: let 9y := Ypr1 — @k, and let Uy := &5 | — P, and note that both are C?(0,1). We
claim that Uy > 0. First we notice that, since &, <0 and Ap < Ag1,

Ak+1 Ak Ak—f—l
<AT_ 7"2 >@k+1:5r*:<AT—T2 (pkg AT—TT @k,

<AT - A7’f2“>(\lfk) <0. (4.19)

so that

As done for ¢y in Step 1, (4.19) ensures that ¥y > 0.
Finally, ¥, > 0 reads

A A A
0< <A’r‘ — :j;—l> ©Ok+1 — (Ar — 715) Yr < <Ar - ::_;_1> (kaJrl - Spk)a

where we have used in the last inequality Axpr < Axy19k. As before, this implies pr1 < @i,
which because of (4.17) leads to Ay < Agy1.

e We can now compute the eigenvalue A;: we drop the exponent k in the notations as its
value will remain 1 in this paragraph. Using equations (4.16) and ¢; = ¢; = 0, we obtain

AL = [87"(%)](’“*) L g+t
1= 901(7"*) - Cl_?”* .

Let us recall the previous system when k£ = 1:

- _ 4+ _ - _

Cg =cy =c; =0
R

G =G

CyTy = cgr* + czri_”

of + i (1) + cfa(1) =0

cd+ef=0

From the third equation, we compute c;{ — c3 in terms of c;f and therefore

+
n &

potl c

A=
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The second equation joint with the fourth one and the fifth one expresses ¢; in terms of CI,

which eventually leads to
n

A = _ . (4.20)
Lt R - B

Now observe that by Fubini’s theorem

Po(1 / —n- 1/ (up(t)) (1™ — t)t" dt ds

1
:/ 7" (uo(t)) t (1—t")/t s dt (4.21)

L[ ey ira - e2ar

n

This leads to

1 1 !
N W/ 7" (uo (1)) 2™ (1 — ¢™)? 17" dt (4.22)

On the other hand, we compute |0,wol|9p,: We first notice

Owy 1 / < 6w0> 1 1 /
— = ——— | dH"™ (—Awp)d
o |iop. - P(B.) Jsg, ov B*) 3
1 / .
= —Aug j/ U() dx > / _] uo VUO dzx,
as j'(ug) € WhY(By) and j/ > 0. Then, identifying ug(x) = wuo(|z|), we observe that

Vug(x) = Orup(]z|) and that ug solves
=0, (r"19ruo(r)) = " X (r) T E(0,1),
Orup(0) =0,
up(1) = 0.

Hence,

which implies
1

|8y wolop, > N / N(E A7)t dt. (4.23)
2) an

1

By comparing the integrands in ( d (4.23), we easily conclude A1 > (|0,woljaB,)~

O

Conclusion of the proof of Proposition 4.11

Proof of Proposition /.11. e In the case n = 1, L?(0B,) is a two dimensional space, B® is
an interval, and because we assume |BL| = |B,|, we can restrict to ® being a translation, in
which case g(z) = sgn(x)a for some o € (r, — 1,1 —r,). Let us denote by W = Wy, We
notice that the functions W and 0,wq are odd, so that the shape derivative computed in
Corollary 4.8 reads

L7(B:)[@, @] = la(g, 9) = 207 (W (rs) — [9ywo| (1)),

27



Finally, reproducing the proof of (4.13) in Proposition 4.12 we get that W (r,) < |0 wol(r«),
and this gives
LY(B)[®,P] < —¢||® - o295,

e Assume now n > 2. Let ® be as in the proposition. We denote g = ® - 199, , and recall
that

L7 (B.)[®,®] = I2(g, 9) =/ gTg — ’auw()‘B*/ 9>
OB 0B

*

From the volume constraint, if ||g|/cc < 1 then

1 1< /n
0:/ l+g)" =1 dH" ' =ap+ — <>/ g" dH 1 > |ag| — Cnllgll2,
S IS () L o] — Cnlg]

where ag = faB* g. We define g = g —ap and we first study 12(g, 9): as (Yem)wen+,1<m<m() 18
an orthogonal basis of { h € L?(9B,) | Jos. hdH"~! = 0}, we can decompose § = > k> 1.m Vkem Yem
and we get from Proposition 4.12:

- 1
1b(3:9)= > Ta%,mHYk,mH%%aB*)_|81/w0||83* > Al Yemlizom.
k>1m Ok k>1.m

1 ~112
< <)\1 _ |81,w0|33*> 1911720.)

so from (4.13) there exists ¢ > 0 such that
15(9,9) < —cllgll720p.)-
Now, as I is continuous on L?(9B,), we get

EZ(B*)[@7@] :l2(g7g) = 12(§7§)+2l2(gua0) —ZQ(O[[],Oé[])
< —dlg — aollf2(op.) + 2laolllgll 2 s.) + ol
and we conclude using g — aol[12(95,) = |9llz20B.) — |aol and |ao| < Cnllglz2o5.) with

n > 0 small enough.
O

4.3 Step 3: improved continuity of the second order shape derivative
We introduce here some useful notations.

Definition 4.14. Let X, Y be two normed vector spaces, and J : X — Y. We write
J(z) = wif (x)

to indicate that
lim |J(z)|ly =0.
l[z]| x —0
In particular, when Y = R we only write w})/( — w¥X. Moreover, when Y = W"*P(By;R") and
X = W74(By;R") then we write
X /s
Wy = Wi;])

When Y = LP(Bi) we write wif = w,X.

Also, when J : [0,1] x X — Y depends on the extra parameter ¢ € [0,1], J(z) = wiS (z) is
meant in a uniform sense in ¢, namely lim o sup; [|J (¢, z)||y = 0.
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The main aim of this section is to prove the following.

Proposition 4.15. Let m € (0, |B1]), ¢ > n and j € C*(Ry) N C2((0,00)) such that

lim sup s%5"(s) < +o0.
s—0F

Then
L"(t) = L"(0) + w*U(®) | ®[|72(9p,)»

that is to say, for every e > 0 there exists n > 0 such that for every t € [0,1] and for every
® € W24(By;R"™) orthogonal to OB, such that ||®||2,, <7, then

L7 (t) = L"(0)] < el|®][72(9p, )
where L is defined in Corollary 4.8.

As explained in the introduction of the proof of Proposition 4.11, it is not restrictive to
assume P to be constant in the normal direction to 9B, (in a neighborhood of dB,), which
allows to apply Corollary 4.8, leading to the following formula:

L'(t) = / Jr (Egg + ¢*Vwy - at) dH"L + by (@, D), (4.24)
OBy
where for every function h we have denoted by h = h o (Id+t®), J7 = Jac?P-(Id +t®),
g=® -1y and
b (D, D) :/ J7 (@ — wo) (B - v0)g? div (o) dH L. (4.25)
OB
Notice also that we used § = ¢ and 7y = 1vy. To prove Proposition 4.15 we need some

geometric estimates on 7y and I,, + tD®, and estimates on w; and w; that will be resumed in
the following lemmas.

Lemma 4.16 ([10, Lemma 4.3, Lemma 4.7],[20, Lemma 3.7]). Letq > n and ® € W24(By;R").
Then

(In +tD®) ™" = I, + w3I(®) det(I, + tD®) = 1 + w2 (®)
U = vo + wl(®), JL =1+ w2i(®),

Lemma 4.17. Let m € (0,|B1|), ® € W»%(By;R") with ¢ > n. We denote u; := upe, and

1/[2 =} o (Id+t®). Then there exist constants C = C(m,n,q) and 6 = 6(m,n,q) such that if
|@]l2,g < 6 then

[uillie < Cll@lL208,)- (4.26)

Moreover, we have N
uj = up + (@) P 2(08.)- (4.27)

Proof. Let us recall that, by Proposition 4.4, uj solves the equation

Vu; - Vodr = / 0@ - vy dH" Vo € Hy(By).

By oBt®

In particular, with the change of variables x = (Id +t®)(y), we get

AV Vpdy= [ Tregan! Ve € HY(By), (4.28)
Bl 8B*
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where
J7 = Jac?Px (Id +t®), Ay = det(I, + tD®)(I,, + tD®) (I, + tD®)~ T,

Choosing ¢ = 1;;, and noticing that by Lemma 4.16 we have that A; is uniformly elliptic for
small ||®||2,4, then there exists a positive constant C' such that

Ivalz<c /a g

Using Poincaré inequality, Young inequality, and the embedding W2(B;) — L?(0B,), we
get for every n > 0

~ R 1 ~
laI2 < C(nllgtH% T nuu;n%,Q).

Formula (4.26) follows by choosing a suitable 7, and by recalling |g;| = |® - 7| < |®|.
Analogously, subtracting the weak equations (4.34) solved by u, and u(, we have

| 5=V oy = [ 7 - oy an! Vee HY(B).  (429)
1 *

In the rest of the proof, we evaluate (4.29) with the test function ¢ = 125 — upy. We estimate
the left-hand side of (4.29) by adding and subtracting A;Vuy - Vi, and using the uniform
ellipticity of A; joint with Lemma 4.16, so that for some constant ¢ > 0

/ (A — Vi) - Vg dy > e[V (i, — ub)|[% — /
By

W2(®) |Vt - V(i = )| dy.
B

Thanks to (4.26), we get
/B (AVuy — Vug) - Vo dy > cl|V(uy — up) |3 — w*1(2)(|12]3 95, (4.30)
1
On the other hand, we may estimate the right-hand side of (4.29) as before and get

/a 73— o = /6 (1 @)D @) ] — )
’ ’ (4.31)

1 —~
< w2a(0) (nu@r\%m) 2l - uarriQ)

for every n > 0. Joining (4.29), (4.30), (4.31), and the Poincaré inequality, with the right
choice of n we get N
luf = w2 < w?U(@)[P]72(,)-

Lemma 4.18. Let m € (0,|Bi|) and j € C1(Ry) N C%((0,0)) such that

lim sup s%5”(s) < +oc.
s—0t

Let ® € W24(By;R™) with ¢ > n, w; = wpee the adjoint state defined in Definition 2.15, and

@Z = wj o (Id+t®). Then there exist constants C = C(j,m,n,q) and 6 = 6(j,m,n,q) such
that if ||®||2,4 < 6 then

[ilh2 < Cll®] 205, (1.32)
Moreover, we have
wy = wp + (@)D 12(08.) - (4.33)
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Proof. As in the proof of Lemma 4.17, we have
/ ANE; -Veody = / det(I, + tDP) j’(ﬂt);;go dy Yo € Hi(By). (4.34)
B1 B

By standard elliptic estimates joint with the continuity of j/, the equi-boundedness of u;, and
the geometric estimates Lemma 4.16, we get

lwtllz < Cllut2.

Therefore, (4.26) in Lemma 4.17 implies (4.32)

Analogously, we now estimate the norm of wj — wy, rewriting the equation as

—

/B (AVw; — V) - Veody = /B (Je j'(ﬂt)tze — 5" (uwo)ug)p dy Vo € HY(By). (4.35)
1 1

Il 12

As done in the proof of Lemma 4.17, we evaluate (4.35) with the test function ¢ = ZUZ — wy
and get
Iz ||V (w; — wp)5 — ()22 95, (4.36)

We also notice that by the shape differentiability of u; (see the proof of Proposition 4.4) we
have
Uy = up + wx(P).

Also, the Holder continuity of j' (see Remark 1.3) ensures that
§' () = 5 (uo) + w3 (®).

Therefore, as in Lemma 4.17,

<O [ |5 (o) +w20(®)) ) — 5 (o)) | ] — | iy
By
<C [ i (wo) | = b [w] — wh| dy + w2(@) / up|[w) —wh|dy  (4.37)
Bl Bl

1 o~
< Cu?(®) <77||‘I’H§,aB* + 2] - wauiz)

for every n > 0 and a suitable constant C' > 0. Joining (4.35), (4.36), (4.37), and the Poincaré
inequality, with the right choice of  we get

lwf = whl > < (@23 o,
which implies (4.33). O
Proof of Proposition /.15. Step 1: we first prove
(@, @) = w2(@) [0/ 015, (4.39)
Since vo(z) = |z|~'z, then we can rewrite (4.25) as

n—1
Ty + tg

dH™

by (@, P) :/9 J{ (@ — wo) (Tt - o) g
B*
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By Lemma 4.16 there exists a constant C' > 0 such that if || ®||2 4 is small enough, then

|J] |+ v - vol +

<
T« + tg

Moreover, by shape differentiability of w; proved in Proposition 4.6, we have
@y = wo + wil (@) (4.39)

These estimates yield
b (@, ®) = w4 (2)|| 2|72 (9. - (4.40)

Step 2: we now prove that
L"(t) = 0y(®, ®) = L"(0) + w*U(®)[[ @] Z2op5,)-

By (4.24)

L) - bie.0) = |

J (Egg + ¢*Vwy yo) (1 - vo) dH™ Y = L"(0) + I + I,
OB

where
h= [ ralew) - upgdn
OB,
IQ = / g2 (J[(V/Et : Vo)(l//\t . 1/0) - (VUJO : 1/0)) dHn_l.
OB

To estimate I;, we use Lemma 4.16, and Lemma 4.18 to get, dropping the dependence on ®

inside the infinitesimal notation (i.e. w¥ = w¥(®)),

= w2’chI)H%2(aB*)’

where we used Holder inequality, [lgll2 = ||| z2(am,), and (4.32).
Finally, to estimate I we use again (4.39) and we notice that

Vwy = (I, + tD®) TV ;. (4.41)

Hence, using (4.41), (4.39), and Lemma 4.16, we get
= [ (T w22) (Vo s+ R+ ) — (T 20) " = BB o,
OB«
O

4.4 Conclusion to the proof of Theorem 3.1

We are now in position to prove Theorem 3.1: let m, g, j as in the statement of the result.
Let also ® € W24(By;R") orthogonal to B, such that |B®| = |B.|. We apply Corollary 4.8
providing the Lagrangian £, for some 7 € R and

vt €[0,1], L(t) = L (BL).
By Proposition 4.11 there exists ¢; > 0 such that

LI(B)[®,®] = L"(0) < —c1]|® - wl|72(9p.) = —C1ll®l720m,)- (4.42)
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By Proposition 4.15, we get the existence of n > 0 such that if || @[z, < 7,
c
vie(0.1],  L'(t) < 2'(0) + 1 ®ll3eo, ) (4.43)

Joining (4.42), (4.43), and the optimality condition L'(0) = 0, we obtain for some ¢y € (0, 1)

L"(t c
LB - £:(BF) = 1) - L) = - > Dy,

The result now follows by noticing that, since ® is orthogonal to 0B, and ||®|| is arbitrarily
small, with g = (® - v9) 9B, ,

1 n n—
|B.ABY| = n/ (1 +9)" = 1|dH" ™ < C(n)llgll L1 (o8.) < Cn,m)| @] L208.).

B

5 The case J(F) = ||lug|~

To deal with the case p = oo in Theorem 1.1, we will follow a similar strategy to that of
Theorem 1.2, but there are significant modification to the proofs. In this section we prove

Theorem 5.1. Let n > 1 and m € (0,|By1|). Then there exists a positive constant ¢ = c¢(m,n)
such that for every V.€ M,, we have

2
1-

lub, loo — l[uvlloo = eIV — xs.
where B, is the centered ball of volume m.

In this section we denote J (V) = ||uy||co-

5.1 Proof of Theorem 5.1 from a Fuglede-type result

As done for the case 1 < p < +00, we start by showing that Theorem 5.1 will follow from the
following Fuglede-type result:.

Theorem 5.2. Let m € (0,|Bi1]), ¢ > n. Then there exist positive constants ¢ = c¢(m,n),
n = n(m,n) such that for every ® € W24(By,R") orthogonal to OB, with

P
1®ll2.q <, |BS| = |Bs| = m,,

we have
J(B.) - J(BY) = c|B.AB.

We postpone the proof of Theorem 5.2 to the next sections, and we show that Theorem 5.1
holds. For r € (0,1), let

1
——1In(r) n =2,
((r) = o 1 o
-2 "7

be the fundamental solution in R™ to the Laplace equation. We identify ((z) with {(|z|) and
we recall the Green’s function for the ball By given by

T

G(x,y) = ((y — ) — ((|z|(y — T)), Q?ZW’

and

G(0,y) = C(y) —¢(1).
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Often we will use the notation G;(y) = G(z,y). Let E C B and let x be a maximum point
of ug. Then

T(E) = luglloo = up(zp) = /E Glas, y) dy.

The function G(zg,-) will play the role of the adjoint state wg in the case 1 < p < +00, as
we will see later.

Proof of Theorem 5.1. e Similarly to Proposition 2.10, we can prove that V € L*(B) +—
J (V) is convex (not strictly) and weakly-* continuous in L>°(Bjy). Therefore, there exists a
bang-bang maximizer of J both in M,, and in M9, for every § > 0. Moreover, the maximizer
in M, is the ball and it is unique. Indeed, B* is a maximizer by Talenti’s inequality and the
fact that there exists a bang-bang maximizer. About uniqueness, let f € M,, be a maximizer
for J and notice that, using the Talenti’s inequality

GO dy=T() 2T () =T B = | GO.y)xs.(4)dy:

1 1

by the rigidity of the bathtub principle, since J(B,) > J(f*), the equality implies that
f* = xp. and then f = yp for some measurable set E. Therefore, E = B, because B, is the
unique maximizer of J among characteristic functions because of the rigidity of the Talenti’s
inequality for the L> norm (see |2, Corollary 1]). Therefore, Proposition 3.2 also holds for
J(V) = ||luy||s, and proving the theorem is equivalent to prove that

liminf inf M

> 0.
5—=0  vVeMs, 92

e Let us assume by contradiction that

i (B2 — T (By)
6—0 52

=0,
where Ej is the maximizer of J in ./\/lfn Since for every measurable set F C By,

J(E) = / G(zp,y)dz, rp € argmaxug,
E

we can reproduce the proof of Theorem 1.2 from subsection 3.2, provided that x5 = xg;
is uniquely determined and x5 converges to 0 = zp,. Indeed, in that case, since G €
C>*(B; x By \ diag(B1 x By)), we have that for every fixed small € > 0, the functions Gs
converge to G in C?(B1 \ B:). Therefore, we have non-degeneracy of VG and the result will
follow by retracing the proof of Theorem 1.2: with similar computations as in subsection 3.2,
we obtain

— for every § small there exists a level set E(; of G5 of measure m;

— by the quantitative bathtub principle applied to Gy,

J(Es) = T (Es) > ug, (¢5) — up,(zs) = : G(ws,-)(xg, — Xiz;) > | EsAEs|”

— by Proposition A.2 Ej are smooth deformations of B, leading to a contradiction with
Theorem 5.2.
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o We let us = ug;. We now show that x5 is uniquely defined and it converges to xp, = 0.
Since |Vug| = 0 only in the origin, we have that any critical point of us has to be uniformly
close to the origin. Thanks to the Schauder’s estimates we have that for every K CC B; \ 0B,

C*(K)
Uy —— o,

and since ug has a unique maximum, and by explicit computations —D?ug(0) is positively
definite, we apply the implicit function theorem to the equation Vus(zs) = 0, so that for
small §, the functions ug also have a unique maximum x5 converging to 0.

O

5.2 Computation of shape derivative

We will now study optimality conditions when the objective functional is E — ||ug|ec. A
similar study was also performed in the paper [14], where the authors deal with the shape
derivative of the L* norm of the torsion function of a set 2; our analysis goes further as
we compute second order derivatives (which requires a computation of the derivative of the
maximum point).

We fix ¢ > n. As we saw in the proof of Theorem 5.1, for ® € W29(By; R") small, ug has
a unique maximum point x4, and we now show that we can differentiate x¢ with respect to ®.

Proposition 5.3 (Shape differentiability of x3). The application
® € W?9(B;R") — z¢ = arg maxuge € R"

is of class C* in a neighborhood of 0. In particular, if ® € W24(By;R") is small enough and
we denote by x; := T4q, then we have that for every t € [0, 1],

zh = —D?uy () V().

Proof. Since ug depends only on the values of ® on dB,, without loss of generality we may
assume that supp(®) C By \ B,, 2. Let us recall that ¢ is uniquely defined as the solution
to the equation

Vue(ze) = 0. (5.1)

As shown in the proof of Theorem 5.1, we know that z¢ is converging to 0 as ® goes to 0,
and we will assume to have z¢ € B,, jo. Since for small ® we have xge = 1 in B, /5, then
using the Schauder’s estimate ||ue — uolc2(B,_,) < Cellue — uol|cc We can easily adapt the
proof of Proposition 4.4 to show that

Tx/2

® € W>4(B1;R") N Hy(B1\ By, j2) — us € Wy (B1) N C*(B,, j2)

is of class C'. The conclusion follows by the implicit function theorem applied to equation (5.1).
O

Proposition 5.4 (Representation formula for u}). Let ® € W29(By;R"), let u; := ue. Then
for every x € By \ OE; we have

up(x) = G (D - vg) dH™ 1. (5.2)
OFy

where &y = ® o (Id +t®) 1.
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Proof. We recall that by Proposition 4.4,
*Au; = (&)t . I/) dHn_l I—BBS;‘I)'
The result then follows by writing u; with the Green’s representation formula. O

In the following we denote by V.G, (y) = V.G(x,y) and VG, (y) = VyG(x,y).
Moreover, we let Gi(y) = VoG, (y) - 23
Proposition 5.5. The application
® € W24(B;R") — J(B?) € R
is of class C? in a neighborhood of 0. If ® € W24(By;R™) is small enough and J(t) = J(BL®),
then for t € [0, 1],
J'(t) = G, (By - 1) dH™ Y, (5.3)
OBt®
where vy = vgre 1s the outer unit normal to B!® and d =do (Id +t®)~t. Moreover, letting
gt = Pt - vy,
JI(t) = / " (thi +9:VyGay, - 5%) dH" " (y) + a(®, @), (5.4)
aBt

where

(P, B) = /8 2 G (gt div(®;) — (D) ®;) - l/t)dH"_l.

Proof. In the following we denote by F; = B!®. We first notice that J(t) = u(z¢), so that by
Proposition 5.4
J (t) = up(xy) + Vug(x¢) - ).
Since x4 is the maximum point for u;, then Vuy(z;) = 0. Using the representation formula for
/
Uy, we get

J'(t) = Gy (¥ - 1) da = — / div(Gy, ®y) dy.
OFE; Bi\E;

Since Gy, is C*°(B1 \ By, /2), we can apply the Hadamard’s formula to conclude the proof. [l
As done in Section 4.1, the previous results lead to the following one about the Lagrangian.
Corollary 5.6. For 7 € R and E C By, we define
L:(E):=J(E)+T|E|
For m € (0,|B1]) and E = By the centered ball of volume m, we set
7= —Golyp.- (5.5)
Then ® € W24(By;R™) — L.(B2) is of class C? near 0, and
(i) L2(By) =0
(ii) for every ® € W24(By;R™) small enough such that ® is normal on OB, and o, =
for t € [0,1], if we denote L(t) = L,(BL®) then for every t,

L"(t) :/a < g+ 928361,/?) (v - vo) dH™ (y) 56
" / (wr — Golra)) (e - vo)g? div(ve) AH" (y),
oBL®

where Go(ry) = Go(y) for any y € 0By and g = ® - vy (recall that we consider an
extension of vy through the projection onto 0By).
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5.3 Coercivity in 0
As done for Theorem 3.1, we now prove that the Lagrangian is coercive.

Proposition 5.7. Let m € (0,|B1]), Bx the centered ball of volume m. Then there exist
positive constants ¢ = c(n,m),n = n(n,m) such that for every ® € W29(By;R") such that
|BP| = |B,| and ||®||sc < n we have

LY(B)[®,P] < —c||® - o295,
where L; is the Lagrangian defined in Corollary 5.6

Proof. Let ® be as in Corollary 5.6 (as explained in subsection 4.2, this is not restrictive), so
that

cume,a =10 = [ (99,60 5) 44 (9,60 L) )i . 6

By Proposition 5.3
1
th= 1 [ VG0, g aH
0B

n

where we used again that D?ug(0) = —1/n I, and Proposition 5.4. By the definition of G
and its symmetries, we may write

VaG(0,y) = VyG(y,0) = —({'(re) — <’<1)r*)%, v,G(0,y) = g’m)%’.

If n = 1, then the constraint |BY| = |B,| gives that g has to be odd. Therefore, direct
computations give V,Go(y) = 5= sgn(y), and z{, = (1 — r.)g(rs), so that (5.7) reads

LN(O) = —(1 - (1- 7’*)2)9(T*)27

which concludes the proof. Let us now assume n > 2, and let us decompose g in spherical
harmonics g = > k.m Ok,m Yk,m, recalling that

n oz 1
Y1(2) = = ayj = / g(2)Y1; dH™ .
J P(By) 7] 1 Wi Bap, Jos, O
We notice that we have
P(B, S y
ViGo-ah = S () = W Sl Yas VG0 =)
j=1

Hence, substituting in (5.7), we obtain

M(k
)54 _ - 2 Y, 4 P(Bl) S ) Y
(0) =" ot 1 Vigllfaom) — g (¢'(r) =g’ (1) + > Z 0 il1¥e 1 T2 (0m.)C (r2)-
j=1 k=1 j=1

Using ¢'(r«) = —(P(By))~! and P(Bl)||Y1,j|y§2(aB*) = P(B.), we rewrite

L//(O) = ZO‘%,j||Y1,j”%2(aB*)C/(T*) <( - 1> + Z Z ak] ‘YkgHm(aB* ( +)

j=1 k=2 j=1

— )2
s <1 - )Hgn%,

where we used that ||g||3 = Elw’ aij”YLjHiQ(aB*). O

IN
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5.4 Improved continuity

Also in this case, we need to show the following improved continuity result.

Proposition 5.8. Let m € (0,|By1|) and ¢ > n. Then
L"(t) = L"(0) + w*¥(®) |®]|72(95,)
where L(t) := L.(B®), i.e. for every e > 0 there exists n > 0 such that
Ve € W2U(By;R") with ||®l2q <n,  Vte([0,1],  [L"(t) = L"(0)] < ]| ®||729p,):

Proof. Since the expression of L”(t) computed in Corollary 5.6 is quite similar to the one
computed in Corollary 4.8, we can perform a proof analogous to the one of Proposition 4.15.
Thanks to Proposition 5.4 and the smoothness of G(-,y) far from y, we know that ® — G, €
W24(By \ B, /5) is of class C! in a neighborhood of 0, and in particular

—

2’
Gy = Go + qu?ﬂ(Bl\BT*/Q)(q))?

where we recall that for every function h we denoted h = h o (Id +t®). It remains to prove
that, letting G} = V,Gy, - 7},

G, = Gh+ w22 o 191 1208, ): 1Ghll = om,) < Cl®l 205 (5:8)

Indeed, we have that
G} = VG, - D?us() Vil (x4). (5.9)

Since G € C*°(By x By \ diag(B1 x B1)) and since we may assume supp ® CC By \ B, /; (as
also done in Proposition 5.4) we get

_ 2,
Vo Glar, (1 +40) 7 (4)) = VaG(0,9) + w22 (@), (5.10)

where we also used the continuity of ® — xg. By the Schauder’s estimates we get
D?uy(24) = D*up(0) + w*(®), (5.11)

and by the representation formula

Vuy(z) = Vo G(z,y)g(vo - ve) dH"
OBy
we finally obtain
[Vui(ze)] < Cligllr2(am.)- (5.12)
Joining (5.9), (5.10), (5.11), and (5.12) we obtain (5.8). The proof now follows by the same
computations in Proposition 4.15. O
Proof of Theorem 5.2. The proof is the same as Section 4.4. O
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A Appendix

A.1 About the convergence of level sets

In this section, we add some details to [18, After formula (68)] or [19, Formula (Def)| where
the authors deduce a strong convergence of level sets from the convergence of functions, as
used in Section 3.2. We felt the proofs to be a bit elliptic, and we decided to expand them in
this section.

Lemma A.1. Let Q C R"™ be a connected and bounded open set, (ug) a sequence of functions
in L®(Q) and u € C°(Q) N L>¥(Q) such that |{ u = essinfqu }| = 0. For ty,t. € R we assume

L>(Q
VkEN, [{up>tidl={u>t} ), ad w Py
Then t, = limy, t,.
Proof. We define m = [{u > t.}| = [{ur > tx}|. Since functions uj converge uniformly,

they are equi-bounded. In particular, this ensures that the sequence t; is bounded in R,
otherwise we would either get for large k that ¢, > sup;||lujlleo, and [{uy >t }| = 0, or
tr < infjessinfu; and [{ ug > ¢ }| = |Q]|. Therefore, up to passing to a subsequence, we can
define ¢t = limy tg, and let ¢ > 0. By L* convergence we get that for large k

{u>t+2e} C{up>t+e} C{up >t },

and therefore defining p(t) = |[{w > t}| (this differs from Definition 2.1 as we did not assume
u to be non-negative), we get
p(t+2¢) < m.

Analogously
{u>f—2€}2{uk>t_—£}2{uk>tk},

and so
p(t+2e) <m < p(t —2e). (A1)

We now observe that pu is strictly decreasing in (essinfq u, ||u||oc). Indeed, if p is constant
in (t1,t2) with essinfu < t; < to < ||u|oo, then [{#; <u <t }| = 0. On the other hand,
since (2 is connected and w is continuous, u~((t1,%2)) is an open non-empty set, which has
positive measure, thus a contradiction. Therefore, as by assumption ¢, € (essinf u, ||ul|),
(A.1) implies

t—2e <ty <t+ 2e,

and since ¢ is arbitrary, ¢ = t,. The argument does not depend on the choice of the subsequence,
and the conclusion follows. O

Proposition A.2. Let ¢ > n, let @ C R" be an open bounded connected set, and let
u € W34(Q) be a function such that for some positive constant k

|Vul|(z) > k, Vo € u1(0).

Assume in addition that d(u=1(0),0Q) > 0. Let u; € C*%(2) be a sequence of functions such
that
w24(Q)
Uj ——u
Then for every j large enough u;l(()) is a CY* hypersurface, with s = 1 —n/q, and there exist
deformations ®; € W24(Q; R™) such that
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(i) ®; are orthogonal to u=*(0);
(ii) uj ' (0) = (Id +®;)(u™"(0));
(i) ln @12 = 0
Proof. e Step 1: we first notice that for every £ > 0 there exists to such that if |¢| < ¢y then
u™H () € (u(0)",

where we use the notation (K)! = {p e R" | d(p,K) <t}, for the outer parallel set.
Indeed, let us assume by contradiction that there exist g > 0 and points v, € u~!(#;) with
limg t = 0 such that

VkeN,  d(yr,u(0)) > eo.
As Q is bounded, up to a subsequence, we may assume that 1, converge to some point 7 € ).
The continuity of u gives u(j) = 0, so that 4 € u=1(0). On the other hand,

d(y,u”"(0)) > e,

which is a contradiction.

e Step 2: We now want to extend the non-degeneracy property of the gradient of u to the
functions u; on their level sets u;l(O). We notice that by uniform convergence and by the
previous step, for every € > 0 there exist o > 0 and jy such that

Y5 > jo, u;l(()) c u Y ((—=to, tg)) C (w™L(0))". (A.2)
On the other hand, Vu is uniformly continuous in €2 so there exists ag > 0 such that

k
V(z,z) € Qst. |z —z| < ao, |Vu(z) — Vu(z)| < 1

In particular,

|

vz € (u=1(0))*, |Vu(x)| >

Also, Vu; uniformly converge to Vu, so for j large enough
k
|Vuj(z) — Vu(z)| < 3 Vo € Q.

From the previous estimates, we get |Vu;|(z) > 0 for every = € uj_l(()) and j large enough,
which implies that the sets uj_l(O) are C'1* hypersurfaces.
e Step 3: Let us denote 3 = (u~1(0))* and

Vu

Vo €, v(x) :_W

().
We show that for every x € €y, the line
t € [—ap,ap] — =+ tv(z)

intersects u~1(0). Let x € Q1. Up to choosing a smaller ap, using that «=1(0) is far
from 0, we may assume that (©21)* C . By Lagrange theorem applied to the function
a = u(x + av(z)) — u(z) — aVu(z) - v(x), there exists z on the segment between x and
x + apv(z) such that

u(z + aov (7)) = u(x) — ao|Vul(z) + ao(Vu(z) — Vu(z)) - v(z) < u(r) - O‘Tok.
Similarly we get By
u(z — apr(x)) > u(x) + a%.
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e Step 4: Now we construct the diffeomorphisms ®;. For every x € ()1, let us define
Fy(a,1) = wy(a + to(x)) — u(a).

We show that F} is strictly monotone in ¢ and that it always admits a zero. First we notice
that
O0F (w,1) = Vg (@ + t1(2)) - v(@).

and from Step 2 we deduce
vVt € [—Oé(),Oé()], VY7 > jo, 8tFj(a:,t) < —]{:/4.

By uniform convergence and the previous step, for j large enough we have Fj(z, o) <0 <
Fj(x, —ag). Therefore, there exists a unique t;(x) € [—ap, o] such that Fj(z,t;(x)) =0, or,
equivalently

uj(x +tj(x)v(z)) = uz). (A.3)
e Step 5: We claim that ®;(z) := t;(z)v(x) works (up to multiplying it by a cutoff function).
Property (i) follows by noticing that by construction v is orthogonal to u~!(0).
Let us now prove (ii). First (A.3) for x € u~1(0) implies

(Id+®;)(u="(0)) C u; ' (0).
For the converse inclusion, let y € uj_l(O). The point y can be written as
y =z +d(y,u"(0)7(z)

with € u=1(0) and either 7 = v(x) or # = —v(x). On the other hand, by (A.2), we have for
large j

w1 (0) € (u(0)°,

so that d(y,u1(0)) < ap. As a consequence, d(y,u~1(0)) = |t;(z)| and we have proved that

(Id +®;)(u=1(0)) = u;l(()).

Finally, (i) follows by noticing that (A.2) implies that ¢; converges uniformly to 0 and by
computing

0. Fj(,t5(2))
O Fj(z,t(x))
Vuj(z + ®;(2)) — tj(x) Dv(z)Vu;(z + ®;(x)) — Vu(x)
Vuj(z + @;(x)) - Vu(z) '

th (.%') =

= [Vul(z)

Since W24 is an algebra, computing the derivatives of t; we iteratively get the convergence of
higher order derivatives.

O]
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