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Abstract. Let Ω ⊂ Rn be an open set with the same volume as the unit ball B and let λk(Ω)
be the k-th eigenvalue of the Laplace operator of Ω with Dirichlet boundary conditions on ∂Ω.
In this work, we answer the following question:

If λ1(Ω) − λ1(B) is small, how large can |λk(Ω) − λk(B)| be ?
We establish quantitative bounds of the form |λk(Ω)−λk(B)| ≤ C(λ1(Ω)−λ1(B))α with sharp
exponents α depending on the multiplicity of λk(B). We first show that such an inequality is
valid with α = 1/2 for any k, improving previous known results and providing the sharpest
possible exponent. Then, through the study of a vectorial free boundary problem, we show
that one can achieve the better exponent α = 1 if λk(B) is simple. We also obtain a similar
result for the whole cluster of eigenvalues when λk(B) is multiple, thus providing a complete
answer to the question above. As a consequence of these results, we obtain the persistence of
the ball as the minimizer for a large class of spectral functionals which are small perturbations
of the fundamental eigenvalue on the one hand, and a full reverse Kohler-Jobin inequality on
the other hand, solving an open problem formulated by M. Van Den Berg, G. Buttazzo and A.
Pratelli.

1. Introduction

1.1. Presentation of the problem. Let Rn be Euclidean space, for some n ≥ 2 and let ωn

denote the measure of the unit ball in Rn. We set
A = {Ω ⊂ Rn open set of measure ωn} ,

and B(= B1) the unit ball of Rn centered at the origin. For Ω an open set of finite volume, we
write

λk(Ω) := inf
{

sup
v∈V

�
Ω |∇v|2�

Ω v
2 , V ⊂ H1

0 (Ω) of dimension k

}
the k-th eigenvalue of the Laplacian on Ω with Dirichlet boundary conditions on ∂Ω (counting
multiplicities). The associated eigenfunctions, normalized in L2(Ω), are denoted (uk)k≥1 and
verify

uk ∈ H1
0 (Ω), −∆uk = λk(Ω)uk in Ω.

For every Ω ∈ A, the Faber-Krahn inequality implies λ1(Ω) ≥ λ1(B), with equality if and
only if Ω coincides with a ball (up to a set of zero capacity). Several recent works point
out that Ω must, in some sense, be close to B when λ1(Ω) is close to λ1(B). We refer to
[6, 1] and the references therein for the most recent results and a history of the quantitative
Faber-Krahn inequality. Roughly speaking, the variation of the first eigenvalue λ1(Ω) − λ1(B)
controls both (the square of) the Fraenkel asymmetry of Ω and the L2 norm of the variation of
the eigenfunction.

The main purpose of this paper is to get a sharp control by λ1(Ω) −λ1(B) of the variation of
the full spectrum. Precisely, given k and l such that λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B),
we seek inequalities of the form

(1)
∣∣∣∣∣

l∑
i=k

(
λi(Ω) − λi(B)

)∣∣∣∣∣ ≤ Cn,kλ1(Ω)1−α(λ1(Ω) − λ1(B))α,

Key words and phrases. vectorial free boundary problem, spectral optimization, Dirichlet Laplacian.
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for which the power α is sharp (note that this formulation with λ1(Ω)1−α is just a way to avoid
assuming that λ1(Ω) is bounded from above as in the previous references).
Heuristics about sharp power α. In some particular cases, inequality (1) has already been
studied in the literature. In a first paper [4], in 2006, Bertrand and Colbois established

|λk(Ω) − λk(B)| ≤ Cn,k (λ1(Ω) − λ1(B))
1

80n ,

valid for λ1(Ω) bounded from above. Later, in 2019, relying on the quantitative Faber-Krahn
inequality from [6], Mazzoleni and Pratelli improved the exponents into (see [38])

(2) −cn,k (λ1(Ω) − λ1(B))
1
6 −ϵ ≤ λk(Ω) − λk(B) ≤ Cn,k (λ1(Ω) − λ1(B))

1
12 −ϵ ,

for any ϵ > 0 (and with better exponents in dimension n = 2) when λ1(Ω) is bounded from
above, but the authors naturally expected these exponents not to be optimal.

Indeed, the following observation is in order. When looking at domains which are volume-
preserving smooth perturbations of the ball, one may see B as a non-degenerate stable critical
point of λ1 under volume constraint. On the other hand, for k ≥ 2, the condition for B to
be a critical point of λk is that the associated eigenfunction uk has constant gradient on the
boundary. This is the case for eigenvalues associated to radial eigenfunctions, which precisely
correspond to the simple eigenvalues. In conclusion, when λk(B) is simple one may expect a
sharp bound of the type

(3) |λk(Ω) − λk(B)| ≤ Cn,k(λ1(Ω) − λ1(B)).

However, when λk(B) is degenerate (multiple), then λk has only directional derivatives at B
which, in general, are non-zero. Consequently, we cannot expect a better bound than

(4) |λk(Ω) − λk(B)| ≤ Cn,kλ1(Ω) 1
2 (λ1(Ω) − λ1(B)) 1

2 .

Nevertheless, as observed in [38], while λ2(B) is multiple, one can still get the one-sided estimate

(5) λ2(Ω) − λ2(B) ≤ C(λ1(Ω) − λ1(B))

as a consequence of Ashbaugh-Benguria’s inequality which asserts that the ball maximizes the
ratio λ2/λ1. The proper generalization of this observation is the following (see also Remark
1.4): for a whole cluster associated to a multiple eigenvalue

λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B),

while each individual λi is not differentiable at B (for k ≤ i ≤ l) any smooth symmetric function
of (λk, . . . , λl) is differentiable and has a critical point at B. Consequently, one can indeed still
hope for a result better than (4), namely a linear bound on the sum

(6)
∣∣∣∣∣

l∑
i=k

[λi(Ω) − λi(B)]
∣∣∣∣∣ ≤ Cn,k(λ1(Ω) − λ1(B))

generalizing the estimate for simple eigenvalues.
The goal of this paper is to show that these inequalities (3), (4), (6) indeed hold, and that

the above observations turn out to provide the sharp exponents in (1).
Strategy. As a first result (see Theorem 1.1 below), we will show that one can obtain (4) where
α = 1

2 (valid for simple and for multiple eigenvalues) with suitable choices of test functions and
the quantitative Saint-Venant inequality. This improves the previous results from [4, 38]. Let
us briefly recall that the Saint-Venant inequality states that for every Ω ∈ A it holds�

Ω
wΩ ≤

�
B

wB,
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with equality if and only if Ω and B differ by a set of zero capacity, and where wΩ denotes the
torsion function, defined as the (weak) solution of

(7)
−∆wΩ = 1 in Ω,
wΩ = 0 on ∂Ω.

To obtain a sharper result with exponent α = 1 (the case of a simple eigenvalue or of a whole
cluster of a multiple eigenvalue) our proof appeals to the analysis of a new type of vectorial
free boundary problem which falls outside from the situations already studied in the literature.

Indeed, let us consider λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B): inequality (1) with α = 1
becomes ∣∣∣∣∣

l∑
i=k

[λi(Ω) − λi(B)]
∣∣∣∣∣ ≤ Cn,k(λ1(Ω) − λ1(B)).

Its proof is equivalent to the fact that, for some ϵ > 0 small enough, the ball is the unique
solution of both shape optimization problems below (i.e. for both signs + and −)

(8) min
{
λ1(Ω) − ϵ

l∑
i=k

λi(Ω) : Ω ∈ A
}
, and min

{
λ1(Ω) + ϵ

l∑
i=k

λi(Ω) : Ω ∈ A
}
.

This assertion is proved through the following strategy, based on regularity theory. We prove
first the existence of an optimal domain and the Lipschitz regularity of the associated torsion
function and eigenfunctions (although we will prove higher regularity of these functions inside
Ω, this regularity is already optimal when the functions are seen as extended by 0 in Rn \Ω). In
a second step, we prove the regularity of the boundary and that, in some strong C3,γ sense, the
optimal domain is close to the ball. Finally, we use a second order shape derivative argument
to conclude that the optimal domain is the ball, provided ϵ is small enough. Those steps have
been followed for example by Knüpfer, Muratov for the study of Gamow’s model, which is a
perturbation of the classical isoperimetric problem, see [29, 30]. Similar ideas can be found in
the work by Cicalese and Leonardi [18], where the authors prove the quantitative isoperimetric
inequality. On the other hand, we are dealing here with a perturbation of λ1 instead of the
perimeter functional, so we use the theory of regularity of free boundary problems, as was done
in [7] and in the proof of the quantitative Faber-Krahn inequality by Brasco, De Phillipis and
Velichkov in [6].

Although the strategy to solve the shape optimization problems (8) follows the same main
lines as [6], the nature of our problem raises a series of new technical difficulties, mostly in the
case of the negative sign. First, in this case the shape functional is not decreasing for inclusions,
so that the existence of a solution is not guaranteed from the general result of Buttazzo-Dal
Maso [14]. Second, the optimality condition reads formally

(
∂u1

∂νΩ

)2

− ϵ
l∑

i=k

(
∂ui

∂νΩ

)2

= constant on ∂Ω,

where νΩ is the outward normal vector at the boundary ∂Ω. The presence of the negative sign
falls out from all the situations studied in the literature [32, 39, 16, 39] including the degenerate
case from [33]. The regularity analysis of this situation requires most of the technicalities. We
will use some key ideas from [37] for the analysis of our problem: more precisely, when k = l
(case of simple eigenvalues), we will be able to apply some results of [37] (see Section 4.3),
but when k < l (case of multiple eigenvalues), we will have to prove the same results in more
general situations (see Sections 5.1 and 5.2).
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As a global picture, our analysis will require the analysis of a generalization of the vectorial
Alt-Caffarelli problems in the wider setting

−∆vi = fi in Ω, ∀i = 1, . . . ,m,
vi = 0 in ∂Ω, ∀i = 1, . . . ,m,
q
(

∂v1
∂νΩ

, . . . , ∂vm

∂νΩ

)
= 1 in ∂Ω,

where Ω is the common domain of (vi)i=1,...,m, fi ∈ L∞
loc(Ω) and q is a quadratic form on Rm.

The outward normal derivatives ∂vi

∂νΩ
at the boundary are understood in some weak sense -

variational or viscosity - and the states (vi) are assumed to be “flat” (in a sense defined in
Sections 4 and 5 and Corollary 5.17):

• The case m = 1, q(x) = x2 corresponds to the classical Alt-Caffarelli problem of [2].
• The case m ≥ 2, q(x1, . . . , xm) = ∑m

i=1 cix
2
i is the one treated in [32, 33] with uniform

estimates in (ci) as long as ci ≥ 0, ∑m
i=1 ci = 1. Similar results (obtained through

different methods) may also be found in [16, 39] in the case ci = 1.
• The case m = 2, q(x1, x2) = x1x2 under the additional hypothesis that u1, u2 are positive

is treated in [37].
Our problem may be seen as

• m ≥ 2 with q(x1, . . . , xm) = x2
1 + b(x2, . . . , xm),

where b is a quadratic form on Rm−1 with no positivity assumption, with the additional hy-
pothesis that the function v1 “dominates” all the others, meaning

∣∣∣∣ vi

v1

∣∣∣∣ is not too large for every
i ≥ 2 (for precise statements we refer to Definition 5.7). This hypothesis holds for free in some
situations, for instance if v1 is the torsion function wΩ defined below and vi is a small multiple of
the eigenfunction ui of Ω, so that as we shall see this will be true in the cases we are interested
in.
Applications in spectral geometry and a reverse Kohler-Jobin inequality. It has been
observed numerically in [26, Fig 5.4] that the set minimizing λk(Ω) in A is also minimizing
λk(Ω) + ϵλk−1(Ω), provided ϵ > 0 is small (the computations were performed for 3 ≤ k ≤ 6).

This phenomenon of persistence of minimizers for perturbed functionals has also been con-
jectured in [43] for a functional involving the first Dirichlet eigenvalue and the torsional rigidity
which are interacting in a competing way. Recall that the torsional ridigidy is defined by

T (Ω) :=
�

Ω
wΩ = 2

�
Ω
wΩ −

�
Ω

|∇wΩ|2 = max
{

2
�

Ω
v −

�
Ω

|∇v|2, v ∈ H1
0 (Ω)

}
,

where wΩ is the torsion function, i.e. the weak solution of (7). While the Saint-Venant inequal-
ity states that the set with maximal torsional rigidity in A is the ball, the conjecture from [43]
reads

(9) ∃pn > 0,∀Ω ∈ A, T (Ω)λ1(Ω)
1

pn ≤ T (B)λ1(B)
1

pn .

As this inequality becomes Saint-Venant inequality when pn → ∞, the challenge is to prove
that the ball B remains a maximizer of T (Ω)λ1(Ω)1/p for some finite values of p.

If pn = 2
n+2 , the inequality above occurs in the opposite sense and is due to Kohler-Jobin

[31]. This is why, for pn large, inequality (9) can be seen as a reverse Kohler-Jobin inequality.
In [8] it has been proved to hold locally for some pn large, in the class of C2,γ nearly spherical
domains.

The main consequence of our analysis is the occurence of the persistance phenomenon of
the ball as the minimizer for spectral functionals which are either small perturbations of the
first Dirichlet eigenvalue (for instance as in (8)) or of the (inverse of the) torsional rigidity. In
particular we will prove the validity of the full reverse Kohler-Jobin inequality (9), see Corollary
1.6.
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1.2. Main results. Inequalities (1) for sharp exponents α will actually be proved in a stronger
version, with the torsional deviation T (Ω)−1 − T (B)−1 on the right-hand side in place of the
eigenfrequency deviation λ1(Ω) − λ1(B).

Indeed, as noted just above, Kohler-Jobin’s inequality [31] states that A ∋ Ω 7→ T (Ω)λ1(Ω)n+2
2

is minimal on the ball; this implies the following bound, for all Ω ∈ A:

T (Ω)−1 − T (B)−1 ≤ λ1(B)− n+2
2 T (B)−1

(
λ1(Ω)n+2

2 − λ1(B)n+2
2
)

≤ n+ 2
2 λ1(B)− n+2

2 T (B)−1λ1(Ω)n
2 (λ1(Ω) − λ1(B)) .

(10)

Relying on this inequality when λ1(Ω) ≤ 2λ1(B), and on growth estimates of the type λk(Ω) ≤
Cn,kλ1(Ω) (see Proposition 2.1) when λ1(Ω) ≥ 2λ1(B), it is therefore enough to prove (1) for
the torsional deviation in the right hand side instead.

One of the reasons why we replace the first eigenvalue with the torsion energy is of a technical
nature. In our problem, which involves simultaneously several eigenfunctions, we have a clear
advantage to do this, since some uniform regularity estimates on those eigenfunctions may be
directly deduced from the same estimates on the torsion function (see for instance Lemma 2.2).
As a second advantage, replacing (λ1(Ω) −λ1(B)) by (T (Ω)−1 −T (B)−1) in the right hand side
of inequality (1) and setting k = 1 in the left hand side, we obtain a nontrivial conjectured
inequality, reverse of (10).

For the sake of clarity, we split inequality (1) with sharp exponents α in three results. The
first one applies to every eigenvalue, and is sharp when λk(B) is degenerate (see Proposition
6.1).

Theorems 1.1, 1.2 and 1.3 are stated in a scale-invariant way among every open sets Ω ⊂ Rn

of finite measure. In practice, we will restrict to sets Ω ∈ A, meaning open sets with measure
|B|.

Theorem 1.1. There exists Cn > 0 such that for any open set Ω ⊂ Rn with finite measure,

|λk(Ω) − λk(BΩ)| ≤ Cnk
2+ 4

nλ1(Ω) 1
2 |Ω|

1
2
(
T (Ω)−1 − T (BΩ)−1

) 1
2 ,

where BΩ is a ball in Rn with the same measure as Ω.

Thanks to (10), this result improves the previous best known result (2) from Mazzoleni-
Pratelli [38] into

|λk(Ω) − λk(B)| ≤ Cnk
2+ 4

nλ1(Ω) 1
2 (λ1(Ω) − λ1(B))

1
2 .

Note that this inequality is only relevant when λ1(Ω) is close to λ1(B); when λ1(Ω) ≥ 2λ1(B)
we may apply more directly the inequality λk(Ω) ≤ Cnk

2
nλ1(Ω) from [17, Theorem 3.1] to

obtain 2Cnk
2
nλ1(Ω) on the right-hand side.

We also point out that in the constant appearing in the right-hand side of the inequality we
keep track of the dependence on k. This will be exploited in Section 6.3 in order to study the
stability of more general functionals. Even if we cannot prove it, we do not expect the exponent
2 + 4

n
to be optimal. We know nevertheless that the optimal power cannot be lower than 1

n
,

thanks to the Weyl asymptotic formula.
As a useful tool for following the dependency of the constants on k we thus introduce for any

k ≥ 1 the spectral gap

(11) gn(k) = min
{

1, inf
i:λi(B)̸=λk(B)

|λi(B) − λk(B)|
}
.

It is a positive bounded function of k. We state first the case of a simple eigenvalue of the
ball which gives a sharper estimate than the one from Theorem 1.1.
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Theorem 1.2. There exists Cn > 0 such that for every k ∈ N∗ with λk(B) simple and for any
open set Ω ⊂ Rn with finite measure,

|λk(Ω) − λk(BΩ)| ≤ Cn
k4+ 8

n

gn(k) |Ω|
(
T (Ω)−1 − T (BΩ)−1

)
,

where BΩ is a ball in Rn with the same measure as Ω.
The constant Cn is not explicitly known since there are two implicit arguments in the proof

(the flatness improvement used in Proposition 4.13 which is obtained by contradiction, and the
application of the quantitative Saint-Venant inequality of [6]). Combining this result with the
Kohler-Jobin inequality (10) we thus obtain, for any such k,

|λk(Ω) − λk(B)| ≤ Cn
k4+ 8

n

gn(k) (λ1(Ω) − λ1(B)) .

In dimension 2 the valid choices of k are
k = 1, 6, 15, 30, 51, 74, 105, 140, 175, 222, 269, 326, 383, 446, 517, 588, ...

Let us mention again here that the crucial argument making the previous result work is that
the ball is a critical point of λk when λk(B) is simple.

Consider now k ≤ l such that
λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B).

The function Ω 7→ ∑l
i=k λi(Ω) has a critical point at the ball (see for instance [34, Proposition

2.30]) and a result analogous to Theorem 1.2 holds:

Theorem 1.3. There exists Cn > 0 such that for every k, l ∈ N∗ with k ≤ l satisfying
λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B),

and for any open set Ω ⊂ Rn with finite measure,∣∣∣∣∣
l∑

i=k

[
λi(Ω) − λi(BΩ)

]∣∣∣∣∣ ≤ Cn
k6+ 10

n

gn(k) |Ω|
(
T (Ω)−1 − T (BΩ)−1

)
,

where BΩ is a ball in Rn with the same measure as Ω.
Using again the Kohler-Jobin inequality (10) this implies (1) for any such k ≤ l with α = 1,

and Cn,k = Cnk
6+ 10

n gn(k)−1.

Remark 1.4. A consequence of Theorem 1.3 is the following one-sided linear control: for any
Ω ∈ A such that λ1(Ω) ≤ 2λ1(B), if k ≥ 2 is such that λk(B) is multiple, we have for some
Cn,k > 0:

if λk(B) < λk+1(B), then λk(Ω) − λk(B) ≥ −Cn,k(λ1(Ω) − λ1(B)),
if λk−1(B) < λk(B), then λk(Ω) − λk(B) ≤ Cn,k(λ1(Ω) − λ1(B)).

The second one generalizes inequality (5) which was observed for k = 2.
As a consequence of Theorems 1.1 and 1.3, we can state a general result on the stability of

the Saint-Venant (and Faber-Krahn) inequality through perturbation by a spectral functional
which has enough symmetries:

Theorem 1.5. Let k ∈ N∗ be such that λk(B) < λk+1(B). Let F ∈ C2(R∗k
+ ,R) satisfy

• |F (λ)| ≤ C(1 + |λ|), for some C > 0,
• ∀i, j ∈ {1, . . . , k}, with λi(B) = λj(B), ∂F

∂λi
= ∂F

∂λj
at (λ1(B), . . . , λk(B)).

Then there exists δF > 0 such that the functional
(12) Ω ∈ A 7→ T (Ω)−1 + δF (λ1(Ω), . . . , λk(Ω))
is minimal on the ball for any δ ∈ R such that |δ| < δF .
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In particular, the full reverse Kohler-Jobin inequality holds:

Corollary 1.6. There exists pn > 1 such that A ∋ Ω 7→ T (Ω)λ1(Ω)
1

pn is maximal on the ball.

Notice finally that under suitable assumptions, we are also able to deal with functionals
involving the whole spectrum (λk(Ω))k≥1, see Proposition 6.3.

1.3. Outline of the paper. In Section 2, we recall some classical estimates of Dirichlet eigen-
values and eigenfunctions. In Section 3, we prove Theorem 1.1 as well as several useful lemmas
on eigenfunctions and the torsion function. This is established by combining estimates from
[10] on eigenvalues of nested domains, some estimates with explicit test functions and the
quantitative Faber-Krahn inequality of [6].

The next two sections are devoted to the proof of Theorems 1.2 and 1.3; while the second
result is strictly stronger than the first, for expository reasons we shall first give a full proof of
Theorem 1.2 in Section 4 and then adapt this proof to the vectorial case in Section 5, pointing
out the differences.

Precisely, in Section 4 we start by restating Theorem 1.2 as a shape optimization problem in
the spirit of (8). In a first step, we prove the existence of a relaxed minimizer among capacitary
measures and, in a second step we show that this measure corresponds to an open set which is
a smooth perturbation of the ball in an increasingly stronger sense. The key passage from an
open set to a C1,γ set is obtained by relating our problem to a vectorial Alt-Caffarelli problem
as in [32] or as in the more recent result [37], depending on the sign of the perturbation. We
finally conclude through second order shape derivative arguments for small perturbations of
the ball.

Section 5 is a summary of the steps of the previous section for the vectorial problem, with in
addition a careful examination of the dependency of the constants in terms of the multiplicity
of the eigenspace, obtained by following the proof of [32] on the one hand and through a full
proof of a vectorial version of [37] on the other hand.

The last section is devoted to the discussion of the consequences, namely the proof of Theorem
1.5 and of the reverse Kohler-Jobin inequality, Corollary 1.6.

2. Some preliminary estimates

Here we summarize some results on eigenvalues and eigenfunctions which we will use through-
out the paper. Although these results are not original, for the readability of the paper we give
short proofs when possible or, at least, we comment on the proofs.
Eigenvalues of the ball. For any d ∈ N we define Hn,d the space of harmonic homogeneous
polynomials of degree d in n variables x1, . . . , xn. For any α > 0 we denote by Jα the α-th
Bessel function

Jα(x) =
∑
p≥0

(−1)p

p!Γ(p+ α + 1)

(
x

2

)2p+α

,

where Γ is the standard Gamma function and we call jα,p the p-th positive zero of Jα, which
is well-defined for every p ∈ N∗. Then for every eigenvalue λk(B), there exists a unique
(d, p) ∈ N × N∗, such that

λk(B) = j2
d+ n−2

2 ,p

and, conversely, for every (d, p) ∈ N × N∗, j2
d+ n−2

2 ,p
is an eigenvalue of B associated to the

eigenspace x 7→
Jd+ n−2

2

(
jd+ n−2

2 ,p|x|
)

|x|d+ n−2
2

P (x) , P ∈ Hn,d





8 D. BUCUR, J. LAMBOLEY, M. NAHON, AND R. PRUNIER

which has dimension

dim(Hn,d) =


1 if d = 0,
2 if d > 0, n = 2,
(2d+ n− 2) (d+n−3)!

d!(n−2)! if d ≥ 0, n ≥ 3.

In particular an eigenvalue λk(B) is either simple with a radial eigenfunction, or degenerate
with only non-radial eigenfunctions. This particular fact (and more generally the fact that any
eigenvalue corresponds to a unique couple (d, p)) is a result due to Siegel [41]. In the literature,
it is also called “Bourget’s hypothesis” since it has been mentioned in [5], with an incomplete
proof.

Eigenvalues and eigenfunctions estimates on general domains. We start by recalling
the following inequalities.

Proposition 2.1. Let Ω ∈ A, k ∈ N∗, then

(13)
(

n

n+ 2

) 4π2

ω
4/n
n

k
2
n ≤ λk(Ω) ≤

(
1 + 4

n

)
λ1(Ω)k 2

n ,

λ1(Ω)T (Ω) ≤ ωn.

The lower bound in the first inequality is due to Li and Yau in [36, Corollary 1], while
the upper bound was obtained by Chen and Yang in [17, Theorem 3.1]. On the other hand
inequality λ1(Ω)T (Ω) ≤ ωn follows directly from using the torsion function as a competitor in
the Rayleigh quotient defining λ1.

Lemma 2.2. Let Ω ∈ A, k ≥ 1, and let w be the torsion function of Ω and uk some L2-
normalized eigenfunction. Then

w ≤ 1
2n, |uk| ≤ e

1
8πλk(Ω)n

4 , |uk| ≤ e
1

8πλk(Ω)1+ n
4w in Ω,

sup
Ω

|∇uk|2 ≤
(

1
n

+ sup
Ω

|∇w|2
)
e

1
4πλk(Ω)2+ n

2 .

Proof. Talenti’s inequality (see [42, Theorem 1 (iv)]) implies that the supremum of the torsion
function is maximal on the unit ball, on which the torsion function has the explicit expression
w(x) = 1−|x|2

2n
, hence the first estimate. Then classical heat kernel estimates (see for instance

[20, Ex. 2.1.8]) give |uk| ≤ e
1

8πλk(Ω)n
4 so

∆
(
±uk − e

1
8πλk(Ω)1+ n

4w
)

= −(±)λk(Ω)uk + e
1

8πλk(Ω)1+ n
4 ≥ 0,

therefore |uk| ≤ e
1

8πλk(Ω)1+ n
4w by the maximum principle.

For the gradient bound, we suppose that ∇w is bounded, the estimate being trivial if
supΩ |∇w| = +∞. By direct computation we have that ∆(|∇a|2) ≥ 2∇a · ∇(∆a) for a smooth
function a : Rn → R. Using the bounds on w and uk we have

∆(|∇uk|2 + λk(Ω)u2
k) ≥ −2λk(Ω)2u2

k ≥ −2e 1
4πλk(Ω)2+ n

2 in Ω,

thus giving
∆
(
|∇uk|2 + λk(Ω)u2

k − 2e 1
4πλk(Ω)2+ n

2w
)

≥ 0 in Ω.
Suppose first that Ω is a C∞ domain, then ∇uk and ∇w extend continuously to the boundary
and the inequality |uk| ≤ e

1
8πλk(Ω)1+ n

4w (together with uk = w = 0 on ∂Ω) ensures

∀x ∈ ∂Ω, |∇uk(x)| ≤ e
1

8πλk(Ω)1+ n
4 |∇w(x)|,
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and so by maximum principle:
sup

Ω
|∇uk|2 ≤ 2e 1

4πλk(Ω)2+ n
2w + sup

∂Ω
|∇uk|2

≤ e
1

4π

n
λk(Ω)2+ n

2 + e
1

4πλk(Ω)2+ n
2 sup

Ω
|∇w|2.

In the general case, by Sard’s Theorem and since w is smooth inside Ω we may find arbitrarily
small regular values ϵ > 0 such that {w = ϵ} = ∂{w > ϵ} is a smooth hypersurface. Denote
Ωϵ = {w > ϵ} and wϵ, (uϵ

k)k∈N∗ the associated torsion function and eigenfunctions. Note that
wϵ = (w − ϵ)+, hence ∥wΩ − wΩϵ∥L2(Rn) ≤ ωnϵ → 0, so that Ωϵ γ-converges to Ω (see for
example [12] for the definition and properties of γ-convergence). In particular, for all k ≥ 1,
λk(Ωϵ) → λk(Ω) thanks to [23, Corollaries 3 and 4, pp. 1089-1090]. Now, since uϵ

k is bounded
in H1

0 (Ω) we can assume (up to extraction) that uϵ
k converges strongly in L2(Ω) and weakly in

H1
0 (Ω) to some limit u0

k. Passing to the limit in the sense of distributions in −∆uϵ
k = λk(Ωϵ)uϵ

k

we obtain that (u0
k)k∈N is an orthonormal eigenbasis for Ω.

Now, since wϵ = (w − ϵ)+ we have

sup
Ωϵ

|∇uϵ
k|2 ≤ e

1
4π

n
λk(Ωϵ)2+ n

2 + e
1

4πλk(Ωϵ)2+ n
2 sup

Ω
|∇w|2

Using the L∞ bound on uϵ
k

(
ω−1/n

n |Ωϵ|1/n·
)

(so that its support has measure ωn), we get |uϵ
k| ≤

(1 + oϵ→0(1))e 1
8πλk(Ωϵ)n

4 ≤ 2e 1
8πλk(Ω)n

4 for small ϵ. Thus uϵ
k is bounded in W 1,∞ as ϵ → 0, so

that it converges (up to subsequence) locally uniformly to u0
k.The uniform gradient bound on

∇uϵ
k transfers to ∇uk, thus concluding the proof. □

As the next result shows, one can control the difference of eigenvalues by the difference of
torsions for two nested domains ω ⊂ Ω.

Lemma 2.3. Let ω ⊂ Ω be two open sets of finite measure, then
1

λk(Ω) − 1
λk(ω) ≤ e

1
4π kλk(Ω)n

2 [T (Ω) − T (ω)]

Proof. This result is proved in [10, Theorem 3.4], where one has to follow the proof to keep
track of the constants (using for instance the L∞ bound |uk| ≤ e

1
8πλk(Ω)n

4 ). □

The quantitative Faber-Krahn inequality. The Fraenkel asymmetry F , defined as
F(Ω) = inf

x∈Rn
|(B + x)∆Ω|,

plays a crucial role in the following quantitative Faber-Krahn inequality obtained in [6]. Note
that since the set Ω is of finite measure, the infimum is always attained, hence equality occurs
for some x ∈ Rn.

Theorem 2.4. There exists cn > 0 such that for any Ω ∈ A,
(14) T (Ω)−1 ≥ T (B)−1 + cnF(Ω)2,

(15) λ1(Ω) ≥ λ1(B) + cnF(Ω)2.

3. Proof of Theorem 1.1: the square root bound

The proof of 1.1 is obtained as a consequence of the quantitative Saint-Venant inequality
(15), growth estimates over λk(Ω) from (13) and the next proposition, which, we believe, is of
independent interest.

Proposition 3.1. Let Ω ∈ A, then∣∣∣∣∣ 1
λk(Ω) − 1

λk(B)

∣∣∣∣∣ ≤
(

1 + 4
n

)n
2
e

1
4π k2λ1(Ω)n

2

[
T (B) − T (Ω) +

( 1
n

+ 1
n2

)
|Ω∆B|

]
.
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To show this result, we first prove the following lemma.

Lemma 3.2. Let Ω ∈ A, then

T (Ω) − T (Ω ∩B) ≤
( 1
n

+ 1
n2

)
|Ω \B|

Proof. We write w := wΩ and v = wB. Then let w̃ = w ∧ v: we have w̃ ∈ H1
0 (Ω ∩B) so

T (Ω ∩B) ≥
�

Ω∩B

(
2w̃ − |∇w̃|2

)
=
�

Ω∩B

(
2(w ∧ v) − |∇(w ∧ v)|2

)
,

and

T (Ω) − T (Ω ∩B) +
�

Ω\B

|∇w|2 ≤
�

Ω\B

2w +
�

B∩Ω

(
2(w − w̃) + |∇(w ∧ v)|2 − |∇w|2

)
≤
�

Ω\B

2w +
�

B∩Ω
(2(w − v)+ + 2∇(w ∧ v) · ∇(w ∧ v − w))

=
�

Ω\B

2w +
�

B∩Ω
(2(w − v)+ − 2∇(w ∧ v) · ∇(w − v)+) .

Notice that ∇(w ∧ v) · ∇(w − v)+ = ∇v · ∇(w − v)+ = ∇ · ((w − v)+∇v) + (w − v)+ in Ω ∩B
so by Stokes’ formula,

T (Ω) − T (Ω ∩B) +
�

Ω\B

|∇w|2 ≤
�

Ω\B

2w − 2v′(1)
�

∂B

w

Notice that −v′(1) = 1
n

and using the trace estimate
�

∂B
w ≤

�
Rn\B

|∇w| we get

2(−v′(1))
�

∂B

w ≤ 2
n

�
Ω\B

|∇w| ≤ 1
n2 |Ω \B| +

�
Ω\B

|∇w|2,

so
T (Ω) − T (Ω ∩B) ≤

�
Ω\B

2w + 1
n2 |Ω \B| ≤

( 1
n

+ 1
n2

)
|Ω \B|.

□

We may now prove Proposition 3.1.

Proof of Proposition 3.1. Applying the bound from Lemma 2.3 to (Ω ∩ B,B) and (Ω ∩ B,Ω),
we have the two inequalities

1
λk(Ω) − 1

λk(Ω ∩B) ≤ e
1

4π kλk(Ω)n
2 [T (Ω) − T (Ω ∩B)]

≤
(

1 + 4
n

)n
2
e

1
4π k2λ1(Ω)n

2 [T (Ω) − T (Ω ∩B)] ,

1
λk(B) − 1

λk(Ω ∩B) ≤ e
1

4π kλk(B)n
2 [T (B) − T (Ω ∩B)]

≤
(

1 + 4
n

)n
2
e

1
4π k2λ1(Ω)n

2 [T (B) − T (Ω ∩B)] .

So combining them, we get∣∣∣∣∣ 1
λk(Ω) − 1

λk(B)

∣∣∣∣∣ ≤
(

1 + 4
n

)n
2
e

1
4π k2λ1(Ω)n

2 [T (Ω) + T (B) − 2T (Ω ∩B)]

=
(

1 + 4
n

)n
2
e

1
4π k2λ1(Ω)n

2 [(T (B) − T (Ω)) + 2(T (Ω) − T (Ω ∩B))] .
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Using Lemma 3.2,∣∣∣∣∣ 1
λk(Ω) − 1

λk(B)

∣∣∣∣∣ ≤
(

1 + 4
n

)n
2
e

1
4π k2λ1(Ω)n

2

[
(T (B) − T (Ω)) + 2

( 1
n

+ 1
n2

)
|Ω \B|

]
which is the result as |Ω \B| = 1

2 |Ω∆B|. □

We can now prove Theorem 1.1.

Proof of Theorem 1.1. We may take the result of Proposition 3.1 and apply, up to a translation
of Ω, (14) as well as (13),

|λk(Ω) − λk(B)|

≤
(

1 + 4
n

)n
2
e

1
4π k2λ1(Ω)n

2 λk(B)λk(Ω)
[
(T (B) − T (Ω)) + 2

( 1
n

+ 1
n2

)
|Ω \B|

]
≤ Cnk

2+ 4
nλ1(Ω)1+ n

2

[
(T (B) − T (Ω)) + Cn

√
T (Ω)−1 − T (B)−1

]
.

This gives the result when T (Ω) ≥ 1
2T (B) (notice that in this case, thanks to λ1(Ω) ≤ ωnT (Ω)−1

from Proposition 2.1, we bound λ1(Ω) ≤ C ′
n for some C ′

n > 0). When T (Ω) ≤ 1
2T (B) we may

write more direcly

|λk(Ω) − λk(B)| ≤
(

1 + 4
n

)
k

2
n (λ1(Ω) + λ1(B)) ≤ 2

(
1 + 4

n

)
k

2
nλ1(Ω)

≤ 2
√

2ωn

(
1 + 4

n

)
k

2
nλ1(Ω) 1

2
(
T (Ω)−1 − T (B)−1

) 1
2

where we used the estimates from Proposition 2.1. In both cases the result holds for some
constant Cn > 0. □

4. Proof of Theorem 1.2: the linear bound

Let us fix k ≥ 1 as in Theorem 1.2, which is such that λk(B) is simple (we also include k = 1,
as it will give non-trivial results). In order to prove Theorem 1.2, we will show an equivalent
statement, namely that when δ ∈ R is close to 0 (depending on n and k) the ball is a minimizer
of the functional
(16) Ω ∈ A 7→ T (Ω)−1 + δλk(Ω).
Precisely, the goal of this section is to prove the following result, which directly implies Theorem
1.2:

Proposition 4.1. There exists cn > 0 such that for any δ ∈ R with |δ| ≤ cnk
−(4+ 8

n)gn(k) the
ball is the unique minimizer of (16).

Remark 4.2. We remind the reader that gn(k) has been defined in (11). As far as we know,
there is no explicit lower bound of gn(k); it was proved by Siegel (see [41] or [45, 15.28], referred
to as “Bourget’s hypothesis”) that zeroes of different Bessel functions are distinct, but with no
quantified separation between successive zeroes. We conjecture that there exists an exponent
κ > 1 such that for any m, p, q ∈ N∗, µ ∈ N/2, it holds that

|jµ,p − jµ+m,q| ≥ j−κ
µ,p.

The validity of this conjecture would improve the quality of our bounds.

In Proposition 4.1 we have to consider the case when δ is positive and negative in order to get
a proof of Theorem 1.2 and to obtain a bound of (λk(Ω)−λk(B)) on both sides. Then, by (10),
which is a consequence of Kohler-Jobin’s inequality, Theorem 1.2 directly implies inequality
(1) as a consequence, as explained in the introduction.

The plan of proof of Proposition 4.1 is the following.



12 D. BUCUR, J. LAMBOLEY, M. NAHON, AND R. PRUNIER

• For δ close enough to 0 we prove the existence of a minimizer Ω for (16) . The case δ < 0
raises extra difficulties: we obtain existence through careful concentration-compactness
methods, first as a capacity measure and second as a quasi-open set, see Proposition 4.5
(we recall that a quasi-open set is by definition the level set {w > 0} of an H1-function
w; see for example [25] for more details); we then show that the torsion function w of
Ω verifies some uniform bounds, namely the Lipschitz bound |∇w| ≤ Cn, and a non
degeneracy condition: for all x ∈ Ω, r ∈ (0, 1) 

∂Bx,r

w ≥ cnr.

In particular, the global continuity of w provides the existence of an open set for (16).
The estimates (see Lemma 4.7) are obtained by perturbing Ω and controlling the varia-
tion of λk by the variations of the torsion T . All of these results are detailed in Section
4.1.

• In Section 4.2, we prove that if Ω solves (16), then its torsion function w and its L2-
normalized k-th eigenfunction uk verify, in some sense that will be made precise, the
equations

(17)
−∆w = 1, −∆uk = λk(Ω)uk in Ω

|∇w|2 + T (Ω)2δ|∇uk|2 = Q on ∂Ω

where Q= Q(n, k, δ) > 0 is a constant which is arbitrarily close to 1
n2 when δ → 0. This

part of the proof uses blow-up methods similar to [32] and [15].
• We then use (17) to improve the regularity properties of Ω, and show in Section 4.3

that, as δ → 0, ∂Ω is an arbitrarily small C3,γ graph on ∂B (up to translation). The
case δ > 0 relies on the results from [32] while the case δ < 0 is obtained by applying
the results from [37].

• Finally, in Section 4.4 we prove a Fuglede-type result, namely that the ball is optimal
for (16) among small C3,γ perturbations of the ball, through a second shape derivative
estimate which follows the method of [19]. Combined with the previous step, this allows
to conclude that the ball is the unique solution to (16) for small δ, which was our goal.

Throughout the proof we extensively use the two following notations:
• a ≲ b when a ≤ Cnb for some (possibly) large Cn > 0 which only depends on the

dimension n.
• a ≪ b when a ≤ cnb for some cn > 0 that can be made as small as we want, and only

depends on the dimension n.
In both cases the notation does not involve a dependence on the order of the eigenvalue k.

4.1. Existence of a minimizer. To prove existence we first prove some a priori estimates
for sets whose energy T−1 + δλk is bounded from above by the one of the ball, which we may
suppose to be verified without loss of generality for any element of a minimizing sequence. This
is the object of the next Lemma.

Lemma 4.3. Let Ω ∈ A be such that
T (Ω)−1 + δλk(Ω) ≤ T (B)−1 + δλk(B),

and suppose Ω is translated such that F(Ω) = |Ω∆B|. Then if |δ| ≪ k− 2
n the following

inequalities hold
• |Ω∆B| ≲ k

1
n |δ| 1

2 , T (Ω)−1 ≲ 1, λk(Ω) ≲ k
2
n ,

• T (Ω)−1 − T (B)−1 ≲ k
2
n |δ| and for all i ∈ N∗, |λi(Ω) − λi(B)| ≲ i2+ 4

nk
1
n |δ| 1

2 ,

• ∥wΩ − wB∥L1(Rn) ≲ k
1
n |δ| 1

2 .
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Proof. Thanks to the upper bound from (13), we have

T (Ω)−1 − T (B)−1 ≤ δ (λk(B) − λk(Ω)) ≲ k
2
nλ1(Ω)|δ| ≲ k

2
nT (Ω)−1|δ|

so when |δ| ≪ k− 2
n we get that T (Ω)−1 ≲ 1, and using the same series of inequalities together

with T (Ω) ≤ T (B) we deduce
T (B) − T (Ω) ≲ k

2
n |δ|.

Applying the quantitative Saint-Venant inequality (14), we get

|Ω∆B| ≲ k
1
n |δ|

1
2 when |δ| ≪ k− 2

n ,

from which we also deduce, using Theorem 1.1, that for any i ∈ N∗ it holds

|λi(Ω) − λi(B)| ≲ i2+ 4
nk

1
n |δ|

1
2 .

For the third item, we write
∥wΩ − wB∥L1(Rn) ≤ ∥wΩ − wΩ∩B∥L1(Rn) + ∥wB − wΩ∩B∥L1(Rn)

= T (B) − T (Ω) + 2(T (Ω) − T (Ω ∩B))

≤ T (B) − T (Ω) +
( 1
n

+ 1
n2

)
|Ω∆B|,

where we used Lemma 3.2 and |Ω∆B| = 2|Ω \B| in the last line. We obtain the last result by
recalling that |Ω∆B| ≲ k

1
n |δ| 1

2 . □

Using the bound from Theorem 1.1 we can also improve the decay of the quantities from the
previous lemma, in terms of δ, to the price of having larger polynomial growth in k. We deduce
from these estimates that if δ is small enough (precisely if |δ| ≪ k−(4+ 8

n
)gn(k) as in Proposition

4.1), then any Ω satisfying the hypothesis of Lemma 4.3 will be such that λk(Ω) is simple.

Corollary 4.4. Let Ω ∈ A and δ be chosen as in the previous lemma 4.3. Then

T (Ω)−1 − T (B)−1 ≲ k4+ 8
n |δ|2,

F(Ω) ≲ k2+ 4
n |δ|,

∀i ∈ N∗, |λi(Ω) − λi(B)| ≲ i2+ 4
nk2+ 4

n |δ|.

As a consequence, if |δ| ≪ k−(4+ 8
n

)gn(k) then λk(Ω) is simple.

Proof. By Theorem 1.1 we have

T (Ω)−1 − T (B)−1 ≤ δ (λk(B) − λk(Ω)) ≲ k2+ 4
n |δ|

(
T (Ω)−1 − T (B)−1

) 1
2 ,

which gives the first estimate. The second estimate follows from the quantitative Saint-Venant
inequality and the third estimate from applying Theorem 1.1 again. We deduce that λk(Ω) is
simple by applying separately |λi(Ω) − λi(B)| ≲ i2+ 4

nk2+ 4
n |δ| for i = k − 1, k, k + 1. □

Proposition 4.5. If |δ| ≪ k−(2+ 4
n), then the functional (16) has a minimizer in the class of

quasi-open sets of measure ωn.

To prove this proposition, we will use the setting of capacitary measures (see for instance
[14]). A capacitary measure is a nonnegative Borel measure µ, possibly infinite valued, such
that µ(E) = 0 as soon as E has zero capacity. We typically assign to any quasi-open set A the
capacitary measure

∞Rn\A(E) :=
+∞ if Cap(E \ A) > 0

0 else.
Given a capacitary measure µ, we define the regular set of µ, denoted Aµ as the union of all finely
open sets of finite µ-measure. If Aµ has finite Lebesgue measure, we define the torsion T (µ)
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and the eigenvalues λk(µ) of a capacitary measure as follows (L n denotes the n-dimensional
Lebesgue measure):

T (µ) := sup
u∈H1(Rn)∩L2(µ)

�
Rn

(
2u− |∇u|2

)
dL n −

�
Rn

u2dµ

= sup
H1(Rn)∩L2(µ)

(�
Rn udL

n
)2

�
Rn |∇u|2dL n +

�
Rn u2dµ

=
�
Rn

wµ,

λk(µ) := inf
{

sup
v∈V

�
Rn |∇v|2dL n +

�
Rn v

2dµ�
Rn v2dL n

, V ⊂ H1(Rn) ∩ L2(µ) of dimension k

}

=
�
Rn

|∇uk,µ|2dL n +
�
Rn

u2
k,µdµ.

Above, wµ is the torsion function associated to µ and is a variational solution of

(18)
−∆wµ + µwµ = 1 in [H1(Rn) ∩ L2(Rn, µ)]′,

wµ ∈ H1(Rn) ∩ L2(Rn, µ),
and (uk,µ)k∈N∗ is a choice of an L2-orthonormal basis of eigenfunctions associated to µ, that
verify −∆uk,µ + µuk,µ = λk(µ)uk,µ in [H1(Rn) ∩ L2(Rn, µ)]′,

uk,µ ∈ H1(Rn) ∩ L2(Rn, µ).
Note that µ 7→ T (µ) and µ 7→ λk(µ) are continuous for the L1(Rn) distance between the
associated torsion functions wµ (which is called γ-distance, see [14]). Moreover Aµ = {wµ > 0},
up to a set of zero capacity.

This setting is in fact only necessary when δ < 0, since the case δ > 0 could be solved using
only the lower semicontinuity of the functionals T−1, λk, however we choose a unified approach
to both problems.
Proof of Proposition 4.5. A first remark is that when |δ| is small enough the measure constraint
|Ω| = ωn may be relaxed into |Ω| ≤ ωn, since any set Ω which does not saturate the constraint
|Ω| ≤ ωn may be dilated into a set with lower energy. Indeed if |Ω| =: (1 − t)ωn for some
t∈ (0, 1), then (1 − t)− 1

n Ω is still admissible and using λk(Ω) ≲ k
2
nT (Ω)−1 (from Lemma 2.1)

we get
T ((1 − t)− 1

n Ω)−1 + δλk((1 − t)− 1
n Ω) = (1 − t)n+2

n T (Ω)−1 + (1 − t) 2
n δλk(Ω)

≤ (1 − t)T (Ω)−1 + δλk(Ω) + |δ|tλk(Ω)

≤ T (Ω)−1 + δλk(Ω) − t
(
T (Ω)−1 − Cnk

2
n |δ|T (Ω)−1

)
< T (Ω)−1 + δλk(Ω) when |δ| ≪ k− 2

n .

(19)

Let (Ωp)p∈N be a minimizing sequence of T−1 + δλk in A. By replacing Ωp by B if needed we
can assume without loss of generality that T−1(Ωp) + δλk(Ωp) ≤ T−1(B) + δλk(B) for every p,
so that Ωp satisfies the hypothesis of Lemma 4.3. Then by Lemma 4.3 we have a bound on the
Fraenkel asymmetry F(Ωp) ≲ k

1
n |δ| 1

2 so, up to translation, we may suppose

|Ωp∆B| ≲ k
1
n |δ|

1
2 .

Let us first prove that this sequence γ-converges to a capacitary measure µ (meaning that the
associated torsion functions wΩp converges weakly in H1(Rn) to the function wµ given by (18))
and that Aµ = {wµ > 0} verifies |Aµ|≤ωn.

By concentration-compactness for sequences of open sets of bounded measure (see [9, Th
2.2.]), in order to prove that convergence occurs we must exclude the dichotomy behaviour.
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We thus assume by contradiction that we are in the latter situation, meaning that one can
find Ω̃p = Ω1

p ∪Ω2
p ⊂ Ωp with dist(Ω1

p,Ω2
p) → ∞, lim infp→∞ |Ωi

p| > 0 for i ∈ {1, 2}, and verifying
∥wΩp −wΩ̃p

∥L2(Rn) → 0. As a consequence |T (Ω̃p)−T (Ωp)| → 0 and |λk(Ω̃p)−λk(Ωp)| → 0, and
Ω̃p is therefore still a minimizing sequence. By Lemma 4.3 we have T (Ωp)−1 −T (B)−1 ≲ k

2
n |δ|,

hence we also have T (Ω̃p)−1−T (B)−1 ≲ k
2
n |δ| and this ensures |Ωp\Ω̃p| ≲ k

2
n |δ| using the Saint-

Venant inequality. We therefore have |Ω̃p∆B| ≤ |Ωp∆B| + |Ωp \ Ω̃p| ≲ k
1
n |δ| 1

2 for |δ| ≪ k− 2
n .

Furthermore, since d(Ω1
p,Ω2

p) → +∞ we have (say) that |Ω1
p∆B| ≲ k

1
n |δ| 1

2 and |Ω2
p| ≲ k

1
n |δ| 1

2 .
We claim that λk(Ω̃p) = λk(Ω1

p) when |δ| ≪ k−2− 2
n . Indeed on the one hand by Faber-Krahn

inequality we have
λ1(Ω2

p) ≳ |Ω2
p|−

2
n ≳ k− 2

n2 |δ|−
1
n ,

and on the other hand thanks to Proposition 2.1

λk(Ω1
p) ≲ k

2
nT (Ω1

p)−1 ≲ k
2
n .

To justify the last inequality we note that by Saint-Venant it holds T (Ω2
p) ≲ k

n+2
n2 |δ|n+2

2n and
thanks to the a priori estimates from Lemma 4.3 we have

T (Ω1
p) = T (Ω̃p) − T (Ω2

p) ≥ T (B) − Cn

(
k

2
n |δ| + k

(n+2)
n2 |δ|

n+2
2n

)
≥ 1

2T (B) for |δ| ≪ k− 2
n .

Hence λ1(Ω2
p) ≥ λk(Ω1

p) if |δ| ≪ k−2− 2
n and therefore λk(Ω̃p) = λk(Ω1

p) under the same condition
on δ; as a consequence

T (Ω̃p)−1 + δλk(Ω̃p) =
(
T (Ω1

p) + T (Ω2
p)
)−1

+ δλk(Ω1
p).

Set tp ∈ (0, 1) such that |Ω2
p| = tpωn, so tp ≲ k

1
n |δ| 1

2 and lim infp→∞ tp > 0. We now argue that
(1 − tp)− 1

n Ω1
p is a strictly better minimizing sequence. Indeed, since T (Ω2

p) ≲ t
n+2

n
p ≲ k

n+2
n2 |δ|n+2

2n

and T (Ω1
p) ≳ 1, one has 1

T (Ω1
p) ≤ 1

T(Ω1
p)+T (Ω2

p)
+ Cnt

n+2
n

p for some Cn > 0 so that

1
T
(
(1 − tp)− 1

n Ω1
p

) + δλk

(
(1 − tp)− 1

n Ω1
p

)
= (1 − tp)n+2

n
1

T
(
Ω1

p

) + (1 − tp) 2
n δλk

(
Ω1

p

)

≤ 1
T
(
Ω1

p

) + δλk

(
Ω1

p

)
− tp

(
1

T (Ω1
p) − |δ|λk(Ω1

p)
)

≤ 1
T
(
Ω1

p

)
+ T (Ω2

p)
+ δλk

(
Ω1

p

)
− tp

(
1

T (Ω1
p) − Cnt

2
n
p − |δ|λk(Ω1

p)
)

≤ 1
T
(
Ω1

p

)
+ T (Ω2

p)
+ δλk

(
Ω1

p

)
− tp

(
1

T (B) − Cnk
2

n2 |δ|
1
n − Cnk

2
n |δ|

)
.

Since lim infp→∞ tp > 0, this provides a strictly better minimizing sequence when |δ| ≪ k− 2
n ,

providing a contradiction and thus proving that dichotomy does not occur.
Thanks to [9, Th 2.2.] we deduce that there exists some capacitary measure µ such that

after extraction (and translation of the Ωp) the sequence (Ωp)p γ-converges to µ. In particular
one has convergence of the torsional rigidity and eigenvalues. We let wµ be the associated
torsion function and Aµ = {wµ > 0} the (quasi-open) associated domain. Notice that we
can assume without loss of generality that the limiting measure verifies µ(E) = ∞ whenever
Cap(E \ Aµ) > 0, since this leaves wµ unchanged.

We first notice that |Aµ| ≤ ωn by a.e. pointwise convergence of the torsion functions. To
conclude, we now have to show that µ corresponds to some quasi-open domain, precisely that
µ = ∞Rn\Aµ . The idea is to use the optimality of µ to prove that the torsions of µ and Aµ are
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equal. We denote by wAµ the torsion function of Aµ. We have (see [14])−∆wµ + µwµ ≤ 1 in D′(Rn)
wµ ∈ H1(Rn) ∩ L2(µ)

, while
−∆wAµ = 1 in Aµ,

wAµ ∈ H1
0 (Aµ).

By the maximum principle, it holds that wAµ ≥ wµ, implying in particular T (Aµ) ≥ T (µ).
Thanks to [8, Lemma 3.1], the sequence Ωp ∩ Aµ still γ-converges to µ. As a consequence, by
applying Lemma 2.3 to Aµ and Ωp ∩ Aµ and passing to the limit one gets

0 ≤ 1
λk(Aµ) − 1

λk(µ) ≤ e
1

4π kλk(Aµ)n
2 [T (Aµ) − T (µ)] ,

which we rewrite, using that λk(Aµ) ≤ λk(µ) ≲ k
2
n (using monotonicity and Lemma 4.3), as

0 ≤ λk(µ) − λk(Aµ) ≲ k2+ 4
n

[
T (µ)−1 − T (Aµ)−1

]
.

Then by minimality of µ,

T (µ)−1 + δλk(µ) ≤ T (Aµ)−1 + δλk(Aµ)

≤ T (µ)−1 + δλk(µ) +
(
1 − Cnk

2+ 4
n |δ|

) (
T (Aµ)−1 − T (µ)−1

)
.

When |δ| ≪ k−(2+ 4
n) this gives T (Aµ) ≤ T (µ), hence T (Aµ) = T (µ). Now, since wµ ∈ H1

0 (Aµ)
we deduce�

Rn

(
2wµ − |∇wµ|2

)
dL n ≤ T (Aµ) = T (µ) ≤

�
Rn

(
2wµ − |∇wµ|2

)
dL n −

�
Rn

w2
µdµ

thus implying
�
Rn w

2
µdµ = 0. As a consequence µ = 0 in Aµ, meaning µ = ∞Rn\Aµ . Hence

Aµ is a minimizer of the functional (16) in the class of quasi-open sets of measure ωn, thus
concluding the proof. □

Remark 4.6. f In order to prove regularity estimates, a scale-invariant functional is easier to
handle than a measure constraint: we recall that any minimizer of (16) in the class of open (or
quasi-open) sets of measure ωn, is also a minimizer of the scale-invariant functional

(20) A ∈ {(quasi-)open sets} 7→ |A|
2
n

(
|A|

ωnT (A) + δλk(A)
)
.

Now that we have shown the existence of a solution for (16) in the class of quasi-open sets,
we show some weak regularity properties of those solutions, implying in particular the existence
of a solution in the class of open sets.

Lemma 4.7. Let Ω be a minimizer of (16) in the class of quasi-open sets of measure ωn, and
suppose that |δ| ≪ k−(2+ 4

n). Then Ω is bounded and there exists cn, Cn > 0 such that

∥∇wΩ∥L∞(Rn) ≤ Cn, ∥∇uk∥L∞(Rn) ≤ Cnk
2
n

+ 1
2 , diam(Ω) ≤ Cn

and for all x ∈ Rn, r ∈ (0, 1],

(21)
 

∂Bx,r

wΩ < cnr implies wΩ|Bx,r/2 = 0.

In particular, the open set {wΩ > 0}(equal to Ω up to a set of 0-capacity) is an open minimizer
of (16).

Property (21) will be referred to as non-degeneracy, as it accounts in a weak sense for the
fact that |∇wΩ| stays away from 0 near ∂Ω.
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Proof. Lipschitz regularity. Let us first prove the Lipschitz regularity of wΩ, which will imply
the Lipschitz regularity of the eigenfunctions uk by the estimates of Lemma 2.2. To prove the
Lipschitz regularity it is enough to prove the following property on the torsional rigidity: for
any open set Ω̃ that contains Ω and such that |Ω̃ \ Ω| is small enough, we have
(22) T (Ω)−1 ≤ T (Ω̃)−1 + Λn|Ω̃ \ Ω|.

Indeed, if this property is true, consider some ball Bx,r with r small enough such that this
inequality applies to Ω̃ = Ω ∪Bx,r; for any w̃ ∈ H1

0 (Ω ∪Bx,r) coinciding with w outside of Bx,r,
writing T (Ω ∪Bx,r) ≥

�
Rn 2w̃ − |∇w̃|2 we get by rearranging (22):�

Bx,r

(
|∇w|2 − 1

2w
)

≤
�

Bx,r

(
|∇w̃|2 − 1

2w̃
)

+ Λ′
nr

n

for some Λ′
n > 0. This corresponds to the notion of quasi-minimizer of [13, Definition 3.1] for

f = 1, so we may apply [13, Theorem 3.3] to get a uniform Lipschitz bound.
Let us therefore prove claim (22). Let Ω̃ be an open set that contains Ω with |Ω̃| ≤ 2|Ω|. We

separate the case δ > 0 and δ < 0 for clarity:
• Case δ > 0. By monotonicity of λk we have λk(Ω) ≥ λk(Ω̃), so using minimality of Ω

against the competitor
(

|Ω|
|Ω̃|

) 1
n Ω̃ we have

T (Ω)−1 ≤
(

|Ω̃|
|Ω|

)n+2
n

T (Ω̃)−1 + δ

( |Ω̃|
|Ω|

) 2
n

− 1
λk(Ω)

which implies
T (Ω)−1 ≤ T (Ω̃)−1 + Cn

(
1 + |δ|k

2
n

)
|Ω̃ \ Ω|

thanks to T (Ω̃)−1 ≤ T (Ω)−1 ≲ 1 and λk(Ω) ≲ k
2
n from Lemma 4.3. We thus get (22)

as soon as |δ|k 2
n ≲ 1.

• Case δ < 0. In this case, we use the same competitor as in the positive case, but we
have to use Lemma 2.3 instead of the monotonicity of λk. Comparing the energy of Ω
to the energy of

(
|Ω|
|Ω̃|

) 1
n Ω̃ gives

T (Ω)−1 − T (Ω̃)−1 ≤ δ
(
λk(Ω̃) − λk(Ω)

)
+

( ˜|Ω|
|Ω|

)n+2
n

− 1

T (Ω̃)−1

≤ |δ|e
1

4π kλk(Ω)λk(Ω̃)1+ n
2
[
T (Ω̃) − T (Ω)

]
+ Cn|Ω̃ \ Ω|

≤ C ′
n|δ|k2+ 4

n

[
T (Ω)−1 − T (Ω̃)−1

]
+ Cn|Ω̃ \ Ω|

for some Cn, C
′
n > 0. When |δ| ≪ k−(2+ 4

n) we get (22).
Non-degeneracy property. The non-degeneracy is obtained by similar arguments, now
choosing sets Ω̃ such that Ω̃ ⊂ Ω. Let us prove that for any Ω̃ ⊂ Ω with |Ω̃] ≥ 1

2 |Ω| it holds

(23) T (Ω)−1 + Λn|Ω \ Ω̃| ≤ T (Ω̃)−1.

This is enough to obtain the nondegeneracy property, thanks to [11, Lemma 1].
This time, it is the case δ > 0 which requires a more careful analysis, so we start with the

negative case.
• Case δ < 0. Consider any open set Ω̃ contained in Ω with |Ω̃| ≥ 1

2 |Ω|. By monotonicity

λk(Ω) ≤ λk(Ω̃), hence testing minimality of Ω against
(

|Ω|
|Ω̃|

) 1
n Ω̃ we have

T (Ω)−1 − δ

( |Ω̃|
|Ω|

) 2
n

− 1
λk(Ω) ≤

(
|Ω̃|
|Ω|

)n+2
n

T (Ω̃)−1 ≤ T (Ω̃)−1
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which provides (23) for |δ| ≪ k− 2
n , using λk(Ω) ≲ k

2
n from Lemma 4.3.

• Case δ > 0. We proceed as before, using in addition Lemma 2.3. Testing the minimality
of Ω against the competitor

(
|Ω|
|Ω̃|

) 1
n Ω̃ we get

T (Ω)−1 − T (Ω̃)−1 ≤ δ
(
λk(Ω̃) − λk(Ω)

)
+

( ˜|Ω|
|Ω|

)n+2
n

− 1

T (Ω̃)−1

≤ δe
1

4π kλk(Ω)1+ n
2 λk(Ω̃)

[
T (Ω) − T (Ω̃)

]
− Cn|Ω̃ \ Ω|

≤ C ′
nδk

2+ 4
n

[
T (Ω̃)−1 − T (Ω)−1

]
− Cn|Ω̃ \ Ω|

for some Cn, C
′
n > 0, using T (Ω̃)−1 ≳ T (B)−1 and also λk(Ω) ≲ k

2
n from Lemma 4.3.

We get (23) for |δ| ≪ k−(2+ 4
n).

Bound on diam(Ω). We have shown above that ∥∇wΩ∥L∞(Rn) ≲ 1. Hence by the Gagliardo-
Nirenberg inequality,
(24)
∥wΩ − wB∥C0(Rn) ≲ ∥∇(wΩ − wB)∥

n
n+1
L∞(Rn)∥wΩ − wB∥

1
n+1
L1(Rn) ≲ ∥wΩ − wB∥

1
n+1
L1(Rn) ≲

(
k

1
n |δ|

1
2
) 1

n+1

where we also used ∥wΩ − wB∥L1(Rn) ≲ k
1
n |δ| 1

2 from Lemma 4.3. Let now cn denote the non-
degeneracy constants found above. Then for any x ∈ Rn \B2 we have 

∂Bx,1

wΩ =
 

∂Bx,1

(wΩ − wB) ≲
(
k

1
n |δ|

1
2
) 1

n+1

and this is strictly less than cn for |δ| ≪ k− 2
n . Hence wΩ(x) = 0 for any x ∈ Rn \ B2, so that

we find Ω ⊂ B2. This gives the desired upper bound on diam(Ω), thus concluding the proof.
□

4.2. Blow-ups and viscosity solutions. We recall (see Remark (4.6)) that if Ω is a minimizer
of (16), then it is also a minimizer (among open sets of any measure) of

J : A 7→ |A|
2
n

(
|A|

ωnT (A) + δλk(A)
)
.

Consider a smooth vector field ξ ∈ C∞
c (Rn,Rn). Assuming enough regularity on Ω, the shape

derivative
d

dt

∣∣∣∣∣
t=0

J((Id + tξ)(Ω))

of this functional at Ω in the direction ξ is given by
�

∂Ω

ω 2
n

−1
n

(
n+ 2
nT (Ω) + 2

n
δλk(Ω)

)
− ω

2
n
n

T (Ω)2 |∇w|2 − ω
2
n
n δ|∇uk|2

 (ξ · νΩ)dH n−1,

where νΩ is the outward unit normal vector of Ω (see for instance [25] for the expressions of
the shape derivatives of | · |, T and λk). So letting

(25) Q := T (Ω)2

ωn

(
n+ 2
nT (Ω) + 2

n
δλk(Ω)

)
we expect an overdetermined boundary condition

|∇w|2 + T (Ω)2δ|∇uk|2 = Q on Ω.
Note that when δ → 0, using that T (Ω)−1 − T (B)−1 ≲ |δ|k 2

n and λk(Ω) ≲ k
2
n (see Lemma 4.3)

we find
Q → 1

n2 ,
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which is expected because it corresponds to the value of |∇wB|2|∂B. We may even estimate its
rate of convergence

(26)
∣∣∣∣Q− 1

n2

∣∣∣∣ ≲ k
2
n |δ|.

Let us now prove that these informal considerations hold true in the viscosity sense; for any
“contact point” of the boundary as defined below, we may define the gradient of the function
in a weak sense through a characterization of blow-ups for such points: this is the object of
Lemma 4.10 below.

Definition 4.8. Let Ω ⊂ Rn be an open set and x ∈ ∂Ω. We say that x is a contact point of
Ω if there exists R > 0 and ν ∈ Sn−1 verifying

Bx+Rν,R ⊂ Ω or Bx−Rν,R ⊂ Rn \ Ω.
The vector ν is called the inward “normal” vector of Ω at x.

For a function w : Rn → R and z ∈ Rn, r > 0 we will denote (w)z,r the rescaled function
(w)z,r : Rn → R defined by

(w)z,r(x) := w(z + rx)
r

.

Let us recall a classical lemma of the one-phase free boundary problem. A function w which
satisfies the following property

(27) |∇w| ≤ C, and ∀r ∈ (0, 1), x ∈ Rn,

 
∂Bx,r

w < cr implies w|Bx,r/2 = 0

for some constants c, C > 0, enjoys the following blow-up behaviour.

Lemma 4.9. Let w ∈ C0(Rn,R+) that satisfy w(0) = 0, property (27) for some constants
c and C, and |∆w|1{w>0} ∈ L∞

loc(Rn). Then there exists a sequence ri → 0 and a function
w ∈ C0(Rn,R+) verifying w(0) = 0, property (27) for the same constants c, C, ∆w = 0 on
{w > 0} such that

w0,ri
−−−−→
C0

loc(Rn)
w, w0,ri

−−−−→
C1

loc({w>0})
w,

{w0,ri
> 0} −−−−→

loc.Hausd.
{w > 0}, {w0,ri

= 0} −−−−→
loc.Hausd.

{w = 0}.

Proof. The functions (w0,r) all verify the same Lipschitz bound so there exists a sequence (w0,ri
)

(for ri → 0) that converges locally uniformly to some w ∈ C0(Rn,R+). Property (27) directly
transfers to w for the same constants. Letting now U be some open set compactly included in
{w > 0}, we have that U ⊂ {w0,ri

> 0} for any large enough i with |∆w0,ri
| ≤ ∥∆w∥L∞(U)ri

on U , giving both that ∆w = 0 in {w > 0} and the local C1 convergence in the support.
Finally, the local Hausdorff convergence of the supports and their complements is obtained by
non-degeneracy and (near-)harmonicity of w and (w0,ri

), see for instance [44, Section 6]. □

Lemma 4.10. Let Ω ⊂ Rn be a minimizer of (16). Let z ∈ ∂Ω be a contact point of Ω with
inward normal vector ν. Then provided |δ| ≪ k−(4+ 8

n)gn(k), there exists α > 0, β ∈ R and a
positive sequence si → 0 such that

(w)z,si
−→

C0
loc(Rn)

α(x · ν)+,

(uk)z,si
−→

C0
loc(Rn)

β(x · ν)+,
(28)

as i → ∞, and
(29) α2 + T (Ω)2δβ2 = Q

where Q is defined in (25).
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Before the proof of Lemma 4.10, we state the following technical result, in which we use the
notation Hn = {x ∈ Rn : xn > 0}.

Lemma 4.11. There exists θn > 0 and ϵn > 0 such that the following property holds: for any
u ∈ H1(B1,R+), such that ∥u− x+

n ∥L∞(B1∩Hn) < ϵn, we have�
B1

|∇u|2 ≥ θn +
�

B1

|∇Hu|2.

where Hu is the harmonic extension of u|∂B1 in B1.

Proof. Suppose that ∥u − x+
n ∥L∞(B1∩Hn) ≤ ϵ for some ϵ > 0 and let us adjust ϵ so that the

conclusion holds. We have�
B

(|∇u|2 − |∇Hu|2) =
�

B

|∇(u− Hu)|2 ≥ λ1(B)
�

B

|u− Hu|2

≥ 2λ1(B)
ωn

(�
B∩Hn

(Hu− u)+

)2

,

where we used Faber-Krahn and Cauchy-Schwarz inequalities. Since�
B∩Hn

(Hu− u)+ ≥
�

B∩Hn

(Hx+
n − x+

n ) − ωnϵ

then by taking ϵ = ϵn := 1
4

�
B∩Hn(Hx+

n − x+
n ) and θn := 1

2

�
B∩Hn(Hx+

n − x+
n ) the conclusion

follows. □

Proof of Lemma 4.10. The proof is divided in three steps. Up to a displacement we may assume
z = 0, ν = en. We also write

wr(x) := w(rx)
r

, ur(x) := uk(rx)
r

We start by proving that (w, uk) admits (αx+
n , βx

+
n ) as a blow-up (for some subsequence) at 0

for some α > 0, β ∈ R.
Step 1. Blow-up for an exterior contact sphere. Supposing that there is an exterior
contact sphere B := B−Ren,R, we prove that w(x) = αx+

n + o(|x|) and uk(x) = βx+
n + o(|x|) for

some α > 0, β ∈ R, thus getting (28). We follow the method of [15, Lemma 11.17], using the
non-degeneracy and Lipschitz bounds on w and uk from Lemma 4.7.
Let us first prove the expansion for w: set

G(x) =


(
R log

(
|x+Ren|

R

))
+

if n = 2
(R2−n−|x+Ren|2−n)+

(n−2)R1−n if n ≥ 3
, ∀m ∈ N, αm := inf {α ≥ 0 : w ≤ αG in B2−m} .

Above, αm is well-defined and finite since w(x) ≲ d(x,B) whereas G(x) ≳ d(x,B) on B1.
It is also bounded from below by a positive constant due to the non-degeneracy property.
The sequence (αm) decreases and therefore we can set α = limm→∞ αm. We claim that w(x) =
αG(x)+o(|x|), which is sufficient for proving the expansion, considering that G(x) = x+

n +o(|x|).

Suppose it is not the case, meaning there is some sequence of points (xp)p∈N in Rn \ B
converging to 0 and some ϵ ∈ (0, 1] such that

∀p ∈ N, w(xp) < αG(xp) − ϵ|xp|.
We let L be the Lipschitz constant of w − αG, and we will suppose without loss of generality
that ϵ ≪ L. Letting yp = xp + ϵ

2L
|xp|en, then 1

2 |xp| ≤ |yp| ≤ 2|xp| and by the Lipschitz bounds
we have

∀p, w(yp) − αG(yp) < − ϵ

4 |yp|,
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as well as
yp

n = ϵ

2L |xp| + xn ≥ ϵ

4L |yp| − 1
2R |xp|2 ≥ ϵ

8L |yp|,

where the last inequality holds for any large enough p and we have used that xp
n ≥ −1

2R
|xp|2

(since xp /∈ B). We now let rp = |yp| and Bp the ball of center yp/rp and of radius ϵ
16L

on which
we have, still by the Lipschitz bound,

(w − αG)rp ≤ − ϵ

8
and for which dist(Bp, ∂(B2 \ B)) ≥ ϵ

16L
. Let now φp be the continuous function defined by

φp = η in Bp

φp = 0 on ∂(B2 \ (B/rp))
∆φp = 2rp in (B2 \ (B/rp)) \Bp

where η > 0 is fixed small ; if η ≤ ϵ
8 is small enough we have φp ≤ αGrp in B2 for all p, by the

maximum principle. Then for a large enough p we have φp ≥ 0 and φp ≥ cGrp in B1/2 for some
c > 0 by Hopf’s lemma. We claim that for a large enough p in this case(

w −
(
α + c

2

)
G
)

rp
≤ −φp

by maximum principle in the domain ωp := {wrp > 0} ∩ (B2 \ ((B/rp) ∪ Bp)). Indeed suppose
p is large enough such that wrp ≤

(
α + c

2

)
Grp in B2, then

∆
(
w −

(
α + c

2

)
G
)

rp
= −rp > −2rp = −∆φp on ωp

and the inequality is verified on ∂ωp:(
w −

(
α + c

2

)
G
)

rp
+ φp ≤ φp − αGrp ≤ 0 on {wrp = 0},(

w −
(
α + c

2

)
G
)

rp
+ φp = wrp −

(
α + c

2

)
Grp ≤ 0 on ∂B2,(

w −
(
α + c

2

)
G
)

rp
+ φp ≤ − ϵ

8 + φp ≤ 0 on Bp.

This implies w(x) ≤
(
α− c

2

)
G(x) in some neighbourhood of the origin, which contradicts the

definition of α = infm αm. This gives the announced expansion for w and hence (28) for w.
The exact same reasoning can then be done for w + cuk for any c chosen such that w + cuk is
positive in its support and ∆(w + cuk) ≥ −2 (which holds for c small enough ), thus getting
the existence of β ∈ R such that (28) holds true for uk. This finishes the proof of (28) in the
case of an exterior contact sphere.
Step 2. Blow-up for an interior contact sphere. Assume now that there is an inte-
rior contact sphere BRen,R ⊂ Ω; in particular for any blow-up (w, uk) of (w, uk) at 0 we have
Hn ⊂ {w > 0}. We apply [15, Lemma 11.17 and Remark 11.18] to w (and w + cuk for a small
enough c ≪ k−( 1

2 + 2
n)); this gives w(x) = αx+

n + o(|x|) and uk(x) = βx+
n + o(|x|) in Hn for some

α > 0, β ∈ R.

We recall that a blow-up (at 0) of a blow-up (at 0) of w is still a blow-up of w: indeed if
w0,ri

→ w and w0,si
→ w̃ then there is some extraction φ(i) such that w0,rφ(i)si

→ w̃.
As a consequence, there is a blow-up of w, uk at 0 (that we still denote w, uk) such that

w(x) = αx+
n and uk(x) = βx+

n in Hn.
We now prove that w(x) = o(|x|) on Rn \ Hn, which is enough to conclude since (αx+

n , βx
+
n )

is then a blow-up of (w, uk) at 0. Arguing by contradiction we assume that w(x) = o(|x|) is
not verified on Rn \ Hn, so that in particular {w > 0} ∩ (Rn \ Hn) is a non-empty open set
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which accumulates at 0 and since w|∂Hn ≡ 0, then w1Rn\Hn is continuous and admits Ben,1 as
an exterior contact sphere at 0. We can therefore proceed as in the exterior sphere condition
case to deduce that there exists γ ≥ 0 such that w(x) = γx−

n + o(|x|) on {w > 0} ∩ (Rn \ Hn).
Thanks to the contradiction hypothesis we must have γ > 0. In particular the density of

{w = 0} at the origin is zero. We recall that w is a blow-up of w at 0 for some sequence ri → 0,
so

(30) lim
τ→0

lim
i→∞

|Bτri
\ Ω|

(τri)n
= lim

τ→0

|Bτ \ {w > 0}|
|Bτ |

= 0.

Let then si = τri for some τ > 0 to be fixed later. We arrive at a contradiction by proving

that the energy of Ω̃i :=
(

ωn

|Ω∪Bsi |

) 1
n

Ω ∪ Bsi
is strictly lower. We rely on Lemma 4.11 to build

a good competitor for T (Ω ∪Bsi
). Using the harmonic extension of w in Bsi

as a test function
for T (Ω ∪Bsi

), and using the fact that 1
α
wsi

−→
C0(B∩Hn)

x+
n , we find that for any large enough i,

T (Ω ∪Bsi
) − T (Ω) ≥ sn

i

�
B1

(
2(Husi

− usi
) − |∇Husi

|2 + |∇usi
|2
)

≥ θnαs
n
i

so T (Ω ∪Bsi
)−1 − T (Ω)−1 ≳ sn

i . At the same time we have by Lemma 2.3

λk(Ω) − λk(Ω ∪Bsi
) ≲ k2+ 4

n (T (Ω ∪Bsi
) − T (Ω)) ≲ k2+ 4

n

(
T (Ω)−1 − T (Ω ∪Bsi

)−1
)

where we also used Lemma 4.3 to write λk(Ω∪Bsi
) ≤ λk(Ω) ≲ k

2
n . We now compare the energy

of Ω and Ω̃i :=
(

ωn

|Ω∪Bsi |

) 1
n

Ω ∪Bsi
:

0 ≤
(
T−1 + δλk

) (
Ω̃i

)
−
(
T−1 + δλk

)
(Ω)

=
(

|Ω ∪Bsi
|

ωn

)n+2
n

T (Ω ∪Bsi
)−1 − T (Ω)−1 + δ

( |Ω ∪Bsi
|

ωn

) 2
n

λk(Ω ∪Bsi
) − λk(Ω)


≤
(
1 − Cn|δ|k2+ 4

n

) (
T (Ω ∪Bsi

)−1 − T (Ω)−1
)

+ (C ′
n + k

2
nC ′′

n)|Bsi
\ Ω|

for some constants Cn, C
′
n, C

′′
n > 0: as a consequence, when |δ| ≪ k−2− 4

n we get
|Bsi

\ Ω| ≳ T (Ω)−1 − T (Ω ∪Bsi
)−1 ≳ sn

i .

Finally, we get |Bsi
\Ω| ≥ cns

n
i for all i ∈ N, for some constant cn > 0, which is in contradiction

with (30) for large i ∈ N when τ is chosen small enough. As a consequence we have w(x) = o(|x|)
on Hn, thus finishing the proof of the interior sphere case.
Step 3. Relation between α and β. Let ζ ∈ C∞

c (Rn,Rn) and ζt = Id + tζ, which is a
diffeomorphism for any t ∈ R small enough. Since for |δ| ≪ k−(4+ 8

n)gn(k) we have that λk(Ω)
is simple (by Corollary 4.4), so we may compute the shape derivatives of T , λk and | · | at the
bounded open set Ω (see respectively [35, Proposition 6] and [34, Theorem 2.6 (iii)] for the
derivatives of T and λk). We have

d

dt

∣∣∣∣∣
t=0

∣∣∣ζt(Ω)
∣∣∣ =

�
Ω

∇ · ζ,

d

dt

∣∣∣∣∣
t=0

T
(
ζt(Ω)

)
=
�

Ω

[(
2w − |∇w|2

)
∇ · ζ + 2∇w ·Dζ · ∇w

]
,

d

dt

∣∣∣∣∣
t=0

λk

(
ζt(Ω)

)
=
�

Ω

[(
|∇uk|2 − λk(Ω)u2

k

)
∇ · ζ − 2∇uk ·Dζ · ∇uk

]
.

Thanks to Ω being a minimizer of the scale-free functional (20), the optimality condition writes
d

dt

∣∣∣∣∣
t=0

[∣∣∣ζt(Ω)
∣∣∣ 2

n

(
|ζt(Ω)|

ωnT (ζt(Ω)) + δλk

(
ζt(Ω)

))]
= 0.
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It gives, after simplification,�
Ω

[(
|∇w|2 + T (Ω)2δ|∇uk|2 +Q

)
∇ · ζ − 2

(
∇w ·Dζ · ∇w + T (Ω)2δ∇uk ·Dζ · ∇uk

)]
=
�

Ω

(
2w + T (Ω)2δλk(Ω)u2

k

)
∇ · ζ.

We now replace ζ with ζi(x) := ζ(x/si), where si is a positive sequence for which (28) holds,
and we rescale the previous equality to obtain�

s−1
i Ω

( (
|∇wsi

|2 + T (Ω)2δ|∇uk,si
|2 +Q

)
∇ · ζ

−2
(
∇wsi

·Dζ · ∇wsi
+ T (Ω)2δ∇uk,si

·Dζ · ∇uk,si

))
= si

�
s−1

i Ω

(
2wsi

+ siT (Ω)2δλk(Ω)(uk,si
)2
)

∇ · ζ.

Now, we have shown in the first part that wsi
→ αx+

n and uk,si
→ βx+

n in the C0
loc(Rn)∩C1

loc(Hn)
sense. Using also the L∞ and Lipschitz bounds on wsi

and uk,si
, and recalling that s−1

i Ω =
{wsi

> 0} converges locally in Rn in the Hausdorff sense to Hn thanks to Lemma 4.9, every
term above passes to the limit and we get

�
Hn

[(
α2 + T (Ω)2δβ2 +Q

)
∇ · ζ − 2

(
α2 + T (Ω)2δβ2)∂nζn

)]
= 0.

Applying Stoke’s theorem, this gives
�

∂Hn (α2 + T (Ω)2δβ2 −Q) (ζ·en) = 0. Since ζ ∈ C∞
c (Rn,Rn)

was chosen arbitrarily, we conclude that α2 + T (Ω)2δβ2 = Q. □

4.3. Minimizers are nearly spherical. In this section we improve the regularity properties
of Ω solution to (16) and prove that under sufficient smallness of δ, minimizers are nearly
spherical sets. In this context, “nearly spherical” means that

Ω = Bh := {s(1 + h(x))x, s ∈ [0, 1), x ∈ ∂B} ,

where h ∈ C3,γ
(
∂B, [−1

2 ,
1
2 ]
)

with a bound ∥h∥C3,γ ≲ 1. This is achieved in two main steps:
first in Lemma 4.13 we show a C1,γ regularity estimate by relying on recent results from free
boundary theory, using [32] for the δ > 0 case and [37] for the δ < 0 one. Then in Lemma 4.14,
we go further to obtain C3,γ-regularity.

It will be useful for us to consider centered sets, where we say Ω ∈ A is centered when
bar(Ω) :=

�
Ω xdx is well-defined and equals zero. We know from Lemma 4.7 that minimizers

are bounded , so that their barycenters are well defined. Note that since the functional under
study T−1 + δλk is translation invariant, there is no loss of generality in assuming that a given
minimizer is centered.

Lemma 4.12. Let Ω be a centered minimizer of (16) for |δ| ≪ k−(2+ 4
n). Then we have

∥wΩ − wB∥C0(Rn) ≲
(
k

1
n |δ|

1
2
) 1

n+1 ,

|Ω∆B| ≲ F(Ω).

Proof. Suppose that Ω is translated into Ω̃ so that F(Ω̃) = |Ω̃∆B| and Ω = Ω̃ − bar(Ω̃).
If |δ| ≪ k−(2+ 4

n) then we have shown in (24) that ∥wΩ̃ − wB∥C0(Rn) ≲
(
k

1
n |δ| 1

2
) 1

n+1 . Now,
since the diameter of Ω̃ is bounded by a dimensional constant thanks to Lemma 4.7, we have
|bar(Ω̃)| = |bar(Ω̃) − bar(B)| ≲ |Ω̃∆B| ≲ k

1
n |δ| 1

2 using also Lemma 4.3. As a consequence, we
deduce

∥wΩ − wB∥C0(Rn) ≤ ∥wΩ̃ − wB∥C0(Rn) + ∥wB−bar(Ω̃) − wB∥C0(Rn) ≲
(
k

1
n |δ|

1
2
) 1

n+1
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as well as
|Ω∆B| ≤ |Ω̃∆B| + |(B + bar(Ω̃))∆B| ≲ F(Ω̃).

□

Lemma 4.13. Let Ω be a centered minimizer of (16). If |δ| ≪ k−(4+ 8
n)gn(k) then we have

Ω = {s(1 + h(x))x, s ∈ [0, 1), x ∈ ∂B} ,

where h ∈ C1,γ
(
∂B, [−1

2 ,
1
2 ]
)

for some γ = γn ∈ (0, 1) depending only on n, and ∥h∥C1,γ(∂B) ≲ 1.

In the rest of the section, the value of γ will be fixed as given from this Lemma.

Proof. We again separate the cases δ < 0 and δ > 0.
Case δ < 0. Set

w = Q− 1
2
(
w + T (Ω)

√
−δuk

)
and w = Q− 1

2
(
w − T (Ω)

√
−δuk

)
.

For |δ| ≪ k−1− 4
n the functions w and w are positive on their support, due to the estimates from

Lemma 2.2. Since |δ| ≪ k−4− 8
n gn(k), Lemma 4.10 applies to ensure that the couple (w,w) is a

viscosity solution in the sense of [37, Definition 2.4] of the system

−∆w = Q− 1
2
(
1 + T (Ω)

√
−δλk(Ω)uk

)
in Ω,

−∆w = Q− 1
2
(
1 − T (Ω)

√
−δλk(Ω)uk

)
in Ω,

w, w > 0 in Ω,
w = w = 0 on ∂Ω,
∂νw · ∂νw = 1 on ∂Ω.

Note that w and w both converge uniformly to
(

1−|x|2
2

)
+

as k1+ 4
n |δ| → 0. In fact, by respectively

Lemma 4.12, inequality (26) and Lemma 2.2 we have

∥wΩ − wB∥C0(Rn) ≲
(
k

1
n |δ|

1
2
) 1

n+1 ,
∣∣∣∣Q− 1

n2

∣∣∣∣ ≲ k
1
n |δ|

1
2 ,

√
−δ|uk| ≲ k

1
2 |δ|

1
2 ,

so that ∥∥∥∥∥w −
(

1 − |x|2

2

)
+

∥∥∥∥∥
C0(Rn)

+
∥∥∥∥∥w −

(
1 − |x|2

2

)
+

∥∥∥∥∥
C0(Rn)

≲
(
k

1
n |δ|

1
2
) 1

n+1 .

Our goal is now to apply the C1,γ regularity theorem [37, Theorem 3.1] for balls Bx,r with
x ∈ ∂B and sufficiently small r > 0. To simplify notations we assume that x = −en and we let
r > 0 be a radius which will be fixed later. Since ∥(wB)−en,r − x+

n ∥C0(B1) ≲ r we deduce from
the convergence of w and w

∥w−en,r − x+
n ∥C0(B1) + ∥w−en,r − x+

n ∥C0(B1) ≲ r + r−1
(
k

1
n |δ|

1
2
) 1

n+1 ,

|∆w−en,r| + |∆w−en,r| ≲ r in {w−en,r > 0},

where we also used |∆w−en,r|, |∆w−en,r| ≲ r(1+|δ| 1
2k

1
2 + 4

n ) ≲ r (in Ω−en,r) thanks to λk(Ω) ≲ k
2
n

(Lemma 4.3) and the choice of δ.
We let ϵ :=

√
r and choose r small enough so that the ϵ-regularity Theorem [37, Theorem

3.1] applies to ϵ (note that our inequalities are up to a dimensional constant, so the choice of ϵ
may also differ up to a constant). Then when

(
k

1
n |δ| 1

2
) 1

n+1 ≪ r2 the couple (w−en,r, w−en,r) is
ϵ-flat so by [37, Theorem 3.1], ∂{w−en,r > 0}∩B 1

2
is a C1,γ graph with controlled C1,γ norm (for

some dimensional constant γ = γn ∈ (0, 1)), meaning that there exists g :
[
−1

2 ,
1
2

]
→ [−1, 1]

such that

{w−en,r > 0} ∩B 1
2

=
{

(x′, xn) ∈ Rn−1 × R, |x′| < 1
2 , xn>g(x)

}
, ∥g∥C1,γ([− 1

2 , 1
2 ]) ≲ 1.
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This translates into the fact that ∂Ω∩B−en,r/2 is a C1,γ graph with graph function g̃ := r(−1+g).
Covering ∂Ω with a finite number of such balls of radius r/2 we find h : ∂B → R such that
∂Ω = {(1 + h(x))x, x ∈ ∂B} with ∥h∥C1,γ(∂B) ≲ 1.
Case δ > 0. We analogously set

w = Q− 1
2
(
w + T (Ω)

√
δuk

)
and w = Q− 1

2
(
w − T (Ω)

√
δuk

)
,

This time the couple (w,w) is a viscosity solution with boundary condition (∂νw)2+(∂νw)2

2 = 1
in the sense given by [32, Definition 4.1]. By the exact same argument as in the previous case
we may apply [32, Theorem 7.2] to the couple (wx,r, wx,r) for x ∈ ∂B and some dimensional r,
thus providing again the existence of h : ∂B → R such that ∂Ω = {(1 + h(x))x, x ∈ ∂B} with
∥h∥C1,γ(∂B) ≲ 1 (with a possibly different dimensional constant γ).

□

Lemma 4.14. Let Ω be a centered minimizer of (16). If |δ| ≪ k−(4+ 8
n)gn(k) then

Ω = {s(1 + h(x))x, s ∈ [0, 1), x ∈ ∂B} ,

where h ∈ C3,γ
(
∂B, [−1

2 ,
1
2 ]
)

and ∥h∥C3,γ(∂B) ≤ Dn for some dimensional γ = γn ∈ (0, 1)
introduced in lemma 4.13 and Dn > 0.

Proof. 1 Since |δ| ≪ k−4− 8
n gn(k) we may apply Lemma 4.13 to Ω, thus giving that Ω is the

graph on the sphere of a function h ∈ C1,γ(∂B,
[
−1

2 ,
1
2

]
) with ∥h∥C1,γ(∂B) ≲ 1. By classical C1,γ

elliptic regularity (see for instance [24, Th. 3.13]) and the W 1,∞ bounds from Lemmas 2.2 and
4.7 we have ∥wΩ∥C1,γ(Ω) ≲ 1 and ∥uk∥C1,γ(Ω) ≲ k

1
2 + 4

n .
We remind the optimality condition that is verified (now in the classical sense) on ∂Ω:

|∇wΩ|2 + T (Ω)2δ|∇uk|2 = Q

where Q is the constant defined in equation (25), and satisfies
∣∣∣Q− 1

n2

∣∣∣ ≲ k
2
n |δ|. In other words,

noting that |∇wΩ| does not vanish on ∂Ω thanks to Lemma 2.2 and λk(Ω) ≲ k
2
n (by Lemma

4.3) , we have

(31) |∇wΩ|2 = Q

1 + T (Ω)2δ |∇uk|2
|∇wΩ|2

on ∂Ω

We claim that
∥∥∥ |∇uk|

|∇wΩ|

∥∥∥
C1,γ(∂Ω)

≲ k
1
2 + 4

n , as a consequence of [22, Th. 2.4] applied to the ratio
uk

wΩ
. In [22] this is stated for a harmonic denominator, so we introduce the auxiliary function

v : Ω \B1/2 → R

to be the harmonic extension of the boundary data 1 on ∂B1/2 (which does not meet ∂Ω) and
0 on ∂Ω. By classical elliptic regularity we have

∥v∥C1,γ(Ω\B1/2) ≲ 1.

1A former version of this Lemma, albeit enough for the purposes of this paper, was initially proved by the
authors via a partial hodograph transform, by considering the torsion function wΩ as a coordinate: this type
of approach is detailed for instance in [32, 16]. Based on a suggestion of one of the reviewers (to whom we
extend our thanks), we give a shorter and less computational proof based on the boundary Harnack inequality
[22, Theorem 2.4].
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By [22, Th. 2.4] applied to (wΩ, v) and (uk, v) in every ball Bp,1/2 for p ∈ ∂B, we have∥∥∥∥wΩ

v

∥∥∥∥
C1,γ(Ω\B3/4)

≲ ∥wΩ∥L∞(Ω\B1/2) + ∥∆wΩ∥C0,γ(Ω\B1/2) ≲ 1,∥∥∥∥uk

v

∥∥∥∥
C1,γ(Ω\B3/4)

≲ ∥uk∥L∞(Ω\B1/2) + ∥∆uk∥C0,γ(Ω\B1/2),

≲ ∥uk∥L∞(Ω) + ∥λkuk∥W 1,∞(Ω) ≲ k
1
2 + 4

n .

By maximum principle, since v ≲ wΩ on ∂B1/2 and both functions vanish on ∂Ω, then for some
dimensional constant cn > 0 we have wΩ

v
≥ cn on Ω \B1/2, so by writing uk

wΩ
= uk/v

wΩ/v
we have∥∥∥∥ uk

wΩ

∥∥∥∥
C1,γ(Ω\B3/4)

≲ k
1
2 + 4

n .

Since uk, wΩ both vanish on ∂Ω, then the trace of uk

wΩ
on ∂Ω is equal to the trace of |∇uk|

|∇wΩ| , which
proves our earlier claim.

So when |δ| ≪ k−1− 8
n (which is implied by our hypothesis), we obtain a bound

∥∇wΩ∥C1,γ(∂Ω) ≲ 1.
As a consequence, wΩ verifies in a distributional sense ∆wΩ = −χ{wΩ>0} + qHn−1⌊∂Ω for

some q ∈ C1,γ(Rn): by [28, Th. 2] (see also [2, Th. 8.4], [32, Lem. A.3]), ∂Ω is bounded in C2,γ,
in the sense that Ω is the graph on the sphere of some h ∈ C2,γ(∂B) with in addition

∥h∥C2,γ(∂B) ≲ 1.
Note that in both references, this is stated for harmonic functions instead of torsion functions,
but the proof by hodograph transform adapts seamlessly. Then ∆wΩ = −χ{wΩ>0} + qHn−1⌊∂Ω
for some q ∈ C2,γ(Rn), and iterating [28, Th. 2] again gives that for some dimensional constant
Dn > 0 we have

∥h∥C3,γ(∂B) ≤ Dn.

□

4.4. Minimality of the ball among nearly spherical sets. This section is dedicated to
the proof that the ball is the unique local minimizer for (16) in the class of nearly spherical
sets. In the following definition we let γ ∈ (0, 1) and Dn > 0 be given by Lemma 4.14 (or by
Lemma 5.18 later).
Definition 4.15. An open set Ω ⊂ Rn is said to be nearly spherical if |Ω| = |B| and there is a
function h ∈ C3,γ(∂B,

[
−1

2 ,
1
2

]
) with ∥h∥C3,γ(∂B) ≤ Dn and such that Ω = Bh , where

Bh := {s(1 + h(x))x, s ∈ [0, 1), x ∈ ∂B}.
By convention, hνB will be extended as a vector field from Rn to Rn by the expression

(32) ζ(x) = φ(|x|)h
(
x

|x|

)
x

|x|
,

where φ ∈ C∞
c (R∗

+, [0, 1]) is such that φ ≡ 1 on [1/2, 3/2], φ ≡ 0 on [0, 1/4] and φ is nonde-
creasing on [0, 1/2]. This way ζt(x) = x+ tζ(x) is a C3,γ diffeomorphism from B to Bth for all
|t| ≤ 1.
Finally, we recall that Ω is said to be centered when its barycenter is at the origin.

To be consistent with the notation Br of the centered ball of radius r it would probably be
more natural to denote instead B1+h the nearly spherical set, but we will however carry on
with the notation Bh through the whole section for sake of simplicity. Note also that the values
of γ,Dn, which are taken as in lemma 4.14, do not matter as they could be replaced in this
section by any γ′ ∈ (0, 1), D′

n > 0 (so long as they are fixed).
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The local minimality result is the following.

Proposition 4.16. Let Bh be a nearly spherical centered set such that ∥h∥L1(∂B) ≪ k−1− 4
n gn(k).

Then when |δ| ≪ k−(1+ 8
n)gn(k) we have

T (Bh)−1 + δλk(Bh) ≥ T (B)−1 + δλk(B)
with equality if and only if h ≡ 0.

This will be obtained by performing a second-order Taylor expansion of the functional
T−1 + δλk. The rough idea is the following: on the one hand, the first shape derivative (taken
among measure-preserving variation) of T−1 and λk vanish, while on the other hand the sec-
ond shape derivative of T−1 is coercive in H1/2(∂B) (in some sense that takes into account
the invariance by translation), see (36), and the second shape derivative of λk is bounded in
H1/2(∂B). This will be enough to get the local minimality of T−1 + δλk at the ball.

We begin with a Lemma which states that the eigenvalues and eigenfunctions may be ap-
proximated smoothly. It includes the case of degenerate eigenvalues, which will also be useful
in the next section.
Lemma 4.17. Let h ∈ C2,γ

(
∂B,

[
−1

2 ,
1
2

])
and ζ the corresponding vector field (in accordance

with (32)). Then there exists real analytic functions
t ∈ [−1, 1] 7→ µi(t) ∈ R, t ∈ [−1, 1] 7→ ûi(t) ∈ H1

0 (B)
for every i ∈ N∗, such that µi(0) = λi(B), and denoting ui(t) = ûi(t) ◦ (ζt)−1, the func-
tions (ui(t))i∈N∗ form an orthonormal basis of (non-ordered) eigenfunctions of Bth associated
to (µi(t))i∈N∗ and

t ∈ [−1, 1] 7→ ui(t) ∈ L2(Rn)
is differentiable with u′

i(t) ∈ H1(Bth). Moreover, we have the expressions

µ′
i(t) = −

�
∂Bth

|∇ui(t)|2(ζ · νt),

µ′′
i (t) =

�
∂Bth

|∇ui(t)|2
(
Ht(ζ · νt)2 − bt(ζτt , ζτt) + 2ζτt · ∇|∂Bth

(ζ · νt)
)

+ 2
�

Bth

(
|∇u′

i(t)|2 − µi(t)|u′
i(t)|2

)
,

where bt is the second fundamental form of ∂Bth, Ht its (outward) mean curvature, νt its
(outward) normal vector and ζτt := ζ − (ζ · νt)νt. Finally, u′

i(t) verifies

(33)


−∆u′

i(t) − µi(t)u′
i(t) = µ′

i(t)ui(t) in Bth,

u′
i(t) = −(ζ · νt)∂νtui(t) on ∂Bth,

∀j ∈ N∗,
�

Bth
(u′

i(t)uj(t) + ui(t)u′
j(t)) = 0.

Proof. For each i ∈ N∗ and |t| ≤ 1, ui is an eigenfunction on Bth associated to λi(Bth) if and
only if ûi := ui ◦ ζt verifies

∇ ·
[
Jt(Dζt)−1((Dζt)−1)∗∇ûi

]
= λi(Bth)Jtûi,

where Jt := det(Dζt). Letting ûi := v̂i√
Jt

, the family ((v̂i, λi(Bth)))i∈N∗ consists of the eigenele-
ments of the self-adjoint operator

Ttv := − 1√
Jt

∇ ·
[
Jt(Dζt)−1((Dζt)−1)∗∇ v√

Jt

]
.

We apply the result [27, VII.3.5. Theorem 3.9] to the family of self-adjoint operators Tt as
defined above, over L2(B) with fixed domain D(Tt) = D0 := H2(B) ∩ H1

0 (B). This provides
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the existence of real analytic rearrangements t ∈ [−1, 1] 7→ µi(t) and t ∈ [−1, 1] 7→ ûi(t) ∈
L2(B) of respectively eigenvalues and orthonormal eigenfunctions for the operator Tt such that
µi(0) = λi(B) for all i. Writing

ûi(t) = Rt (µi(t)ûi(t)) ,
where Rt is the resolvent of Tt, and using that t ∈ [−1, 1] 7→ Rt ∈ L(H−1(B), H1

0 (B)) is real
analytic (by the implicit function theorem), we improve the analyticity of the eigenfunctions
into t ∈ [−1, 1] 7→ ûi(t) ∈ H1

0 (B).

Now, by construction we have that

(ui(t), µi(t)) :=
 ûi(t) ◦ (ζt)−1√

Jt ◦ (ζt)−1
, µi(t)


are eigenvalues and (orthonormal) eigenfunctions of the Dirichlet Laplacian over Bth. Since
t 7→ ûi(t) ∈ H1

0 (B) is differentiable, one proves as in [25, Theorem 5.3.1] that the map t ∈
[−1, 1] 7→ ui(t) ∈ L2(Rn) is differentiable. The expressions of the first and second derivative
are then classical formulas which we derive as in [25, Section 5.9.3]. Let us recall how these
expressions are found.
First derivative. The map t ∈ [−1, 1] 7→ ui(t) ∈ L2(Rn) is differentiable with derivative u′

i(t)
verifying u′

i(t) + ∇ui(t) · ζ ∈ H1
0 (Bth). One can therefore differentiate−∆ui(t) = µi(t)ui(t), in Bth�

Bth
ui(t)uj(t) = δij

to deduce that u′
i(t) verifies the equation and the boundary conditions of (33). Integrating by

parts (see [25, (5.87), (5.88)]) we get the expression

µ′
i(t) = −

�
∂Bth

(∂νtui(t))2(ζ · νt)

Second derivative. We write the first derivative as an integral on the interior

µ′
i(t) = −

�
Bth

∇ ·
(
|∇ui(t)|2ζ

)
and apply the differentiation formula [25, Corollary 5.2.8]. The same computations as in [25,
Section 5.9.6] lead to an analogous expression to the case of a simple eigenvalue:

µ′′
i (t) = 2

�
∂Bth

u′
i(t)∂νtu

′
i(t)

+
�

∂Bth

(∂νtui(t))2
[
Ht(ζ · νt)2 − bt((ζ)τt , (ζ)τt) + 2∇τt(ζ · νt) · (ζ)τt

]
= 2

�
Bth

(
|∇u′

i(t)|2 − µi(t)|u′
i(t)|2

)
+
�

∂Bth

(∂νtui(t))2
[
Ht(ζ · νt)2 − bt((ζ)τt , (ζ)τt) + 2∇τt(ζ · νt) · (ζ)τt

]
where ζτt := ζ − (ζ · νt)νt and ∇τt is the gradient over ∂Bth.

□

Proposition 4.18. Let Bh be a nearly spherical set such that ∥h∥L1(∂B) ≪ k−1− 4
n gn(k), then

|λk(Bh) − λk(B)| ≤ Cn
k1+ 8

n

gn(k)∥h∥2
H1/2(∂B).
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Here the H1/2(∂B) norm is defined as

∥h∥2
H1/2(∂B) = ∥h∥2

L2(∂B) +
�

B

|∇Hh|2

where Hh is the harmonic extension of h in B. This is equivalent to the usual Gagliardo-
Nirenberg norm ∥h∥2

L2(∂B) +
�

(∂B)2
|h(x)−h(y)|2

|x−y|n .

Proof of Proposition 4.18. Recall that by definition of a nearly spherical set it holds ∥h∥C3,γ(∂B) ≲
1.

Let (ui(t), µi(t))i∈N∗ be the eigenelements of Bth as defined in Lemma 4.17. We claim that for
any |t| ≤ 1 and i ̸= k we have |µi(t)−µk(t)| ≥ 1

2gn(k) when ∥h∥L1(∂B) ≪ k−1− 4
n gn(k). Indeed we

have |ui(t)| ≲ µi(t)
n
4 by [20, Example 2.1.8] and Proposition 2.1, hence using classical elliptic

regularity we deduce

∥ui(t)∥C1,γ(Bth) ≲ ∥µi(t)ui(t)∥L∞(Bth) ≲ µi(t)1+ n
4 .

Using the expression of µ′
i(t) from Lemma 4.17 we get

|µ′
i(t)| ≲ ∥h∥L1(∂B)µi(t)2+ n

2 .

Integrating this expression we get that for any |t| ≤ 1 and i ∈ N,∣∣∣µi(t)−1− n
2 − µi(0)−1− n

2
∣∣∣ ≲ ∥h∥L1(∂B)

and for any i ̸= k we have ∣∣∣µi(0)−1− n
2 − µk(0)−1− n

2
∣∣∣ ≳ k−1− 4

n gn(k),

so when ∥h∥L1(∂B) ≪ k−1− 4
n gn(k) we get the claim. In particular this means that µk(t) =

λk(Bth) for such h. Again by elliptic regularity we have

(34) ∥uk(t)∥C1,γ(Bth) ≲ k
1
2 + 2

n , ∥uk(t)∥C2,γ(Bth) ≲ k
1
2 + 4

n .

The eigenvalue λk(B) being simple, the associated eigenfunction uk(0) is radial, so that by
setting |∇uk(0)|2|∂B =: cn,k(≲ k1+ 4

n ) we have d
ds

∣∣∣
s=0

(λk(Bsh) + cn,k|Bsh|) = 0. As a consequence,
by Taylor expansion and recalling that |Bh| = |B|, there exists some t ∈ [0, 1] such that

λk(Bh) − λk(B) = 1
2

(
d2

ds2

∣∣∣∣∣
s=t

λk(Bsh) + cn,k
d2

ds2

∣∣∣∣∣
s=t

|Bsh|
)
.

To reduce notations we fix t and do not write the dependency in t in the rest of the proof,
and set instead Ω := Bth, ui := ui(t), v := u′

k(t) and write µi, µ′
i, µ′′

i in place of µi(t), µ′
i(t),

µ′′
i (t). The expression of µ′′

k thus reads

µ′′
k =

�
Ω

2
(
|∇v|2 − µkv

2
)

+
�

∂Ω
|∇uk|2

[
H(ζ · ν)2 − b(ζτ , ζτ ) + 2ζτ · ∇|∂Ω(ζ · ν)

]
,

where v verifies

(35)


−∆v − µkv = µ′

kuk in Ω,
v = −(ζ · ν)∂νuk on ∂Ω,�

Ω vuk = 0.
On the other hand we have the following expression for the second derivative of the volume
(see [19, Theorem 2.1 and Lemma 2.8]):

d2

ds2

∣∣∣∣∣
s=t

|Bsh| =
�

∂Ω
H(ζ · ν)2 +

�
∂Ω
b(ζτ , ζτ ) − 2ζτ · ∇|∂Ω(ζ · ν).

We recall that ζ|∂B = hνB is extended thanks to (32). Let us now bound each term indepen-
dently.
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Estimate of v. We write v = z + w, where z is harmonic and w ∈ H1
0 (Ω). In particular z is

the harmonic extension of −(ζ · ν)∂νuk so

∥z∥H1(Ω) ≲ ∥(ζ · ν)∂νuk∥H1/2(∂Ω) ≲ k
1
2 + 4

n ∥h∥H1/2(∂B),

∥z∥L2(Ω) ≲ ∥z∥L2(∂Ω) ≲ k
1
2 + 2

n ∥h∥H1/2(∂B),

where we used ∥h∥C2,γ ≲ 1. Above, we used the general property
∥fg∥H1/2(∂B) ≲ ∥f∥L∞(∂B)∥g∥H1/2(∂B) + ∥∇f∥L∞(∂B)∥g∥L2(∂B),

which is a consequence of the inequality�
B

|∇H(fg)|2 ≤
�

B

|∇(H(f)H(g))|2 ≤ 2
�

B

|∇Hf |2|Hg|2 + |Hf |2|∇Hg|2

≤ 2∥∇f∥2
L∞(∂B)∥g∥2

L2(∂B) + ∥f∥2
L∞(∂B)

�
B

|∇Hg|2.

Now w verifies −∆w − µkw = µkz + µ′
kuk, with

�
Ω wuk = µ′

k

µk
. For every i ̸= k, this equation

implies
(µi − µk)

�
Ω
wui = µk

�
Ω
zui,

whereas for i = k we simply have �
Ω
wuk = −

�
Ω
zuk.

Using the spectral decomposition, we have�
Ω

(
|∇v|2 − µkv

2
)

=
�

Ω

(
|∇z|2 + |∇w|2 − µkv

2
)

=
�

Ω
|∇z|2 +

∑
i∈N∗

µi

(�
Ω
wui

)2

− µk

(�
Ω
vui

)2


=
�

Ω
|∇z|2 + µk

(�
Ω
zuk

)2

+
∑
i̸=k

(
µ2

k

µk − µi

− µk

)(�
Ω
zui

)2

,

so ∣∣∣∣∣
�

Ω

(
|∇v|2 − µkv

2
)∣∣∣∣∣ ≲ ∥∇z∥2

L2(Ω) + k
2
n ∥z∥2

L2(Ω) + gn(k)−1k
4
n ∥z∥2

L2(Ω)

≲ gn(k)−1k1+ 8
n ∥h∥2

H1/2(∂B).

Curvature terms. We directly have, using again ∥h∥C2,γ ≲ 1:∣∣∣∣∣
�

∂Ω
|∇uk|2

[
H(ζ · ν)2 − b(ζτ , ζτ )

]∣∣∣∣∣ ≲ ∥∇uk∥2
L∞(Ω)∥ζ∥2

L2(∂Ω) ≲ k1+ 4
n ∥h∥2

H1/2(∂B),∣∣∣∣∣
�

∂Ω

[
H(ζ · ν)2 + b(ζτ , ζτ )

]∣∣∣∣∣ ≲ ∥h∥2
H1/2(∂B).

Last term. We have ∥∇|∂Ωζ∥H−1/2(∂Ω) ≲ ∥ζ∥H1/2(∂Ω) and

∥|∇uk|2ζ∥H1/2(∂Ω) ≲ ∥∇|∂Ω|∇uk|2∥L∞(∂Ω)∥ζ∥H1/2(∂Ω)

≲ ∥∇uk∥L∞(Ω)∥∇2uk∥L∞(Ω)∥ζ∥H1/2(∂Ω) ≲ k1+ 6
n ∥h∥H1/2(∂B),

so ∣∣∣∣∣
�

∂Ω
|∇uk|2ζτ · ∇|∂Ω(ζ · ν)

∣∣∣∣∣ ≲ k1+ 6
n ∥h∥2

H1/2(∂B).



SHARP QUANTITATIVE STABILITY OF THE DIRICHLET SPECTRUM NEAR THE BALL 31

We also have ∣∣∣∣∣
�

∂Ω
ζτ · ∇|∂Ω(ζ · ν)

∣∣∣∣∣ ≲ ∥h∥2
H1/2(∂B).

Adding all the estimates we get

|µ′′
k| ≲ k1+ 8

n

gn(k)∥h∥2
H1/2(∂B) ≲

k1+ 8
n

gn(k)∥h∥2
H1/2(∂B)

and ∣∣∣∣∣cn,k
d2

ds2

∣∣∣∣∣
s=t

|Bsh|
∣∣∣∣∣ ≲ k1+ 4

n ∥h∥2
H1/2(∂B),

therefore

|µk(Bh) − µk(B)| ≤ |µ′′
k| ≲ k1+ 8

n

gn(k)∥h∥2
H1/2(∂B).

□

We can now prove minimality of the ball for nearly spherical sets.

Proof of Proposition 4.16. It was proven in [6, Theorem 3.3] that for any Bh with bar(Bh) = 0
and ∥h∥C2,γ(∂B) ≪ 1 it holds

(36) T (Bh) ≤ T (B) − 1
32n2 ∥h∥2

H1/2(∂B).

By interpolation, using for instance the interpolation inequalities between Hölder space

∥h∥C2,γ(∂B) ≲ ∥h∥κ
L1(∂B)∥h∥1−κ

C3,γ(∂B)

for some κn ∈ (0, 1). Then ∥h∥C2,γ(∂B) ≪
(
k−1− 4

n gn(k)
)κ

≪ 1. We can therefore apply (36),
which together with Proposition 4.18 yields

T (Bh)−1 + δλk(Bh) ≥
(
T (B) − 1

32n2 ∥h∥2
H1/2(∂B)

)−1
+ δλk(B) − Cn|δ| k

1+ 8
n

gn(k)∥h∥2
H1/2(∂B)

≥ T (B)−1 + δλk(B)

where the last line holds provided δ is sufficiently small (|δ| ≪ k−(1+ 8
n)gn(k)), with equality if

and only if h = 0. This finishes the proof. □

4.5. Conclusion.

Proof of Proposition 4.1. When |δ| ≪ k−4− 8
n gn(k), Proposition 4.5 applies and there exists a

minimizer Ω to the functional (16). By Lemma 4.14, up to translation Ω is a centered minimizer
of the form Bh with ∥h∥C3,γ(∂B) ≤ Dn, and hence is nearly spherical in the sense of Definition
4.15. By Lemma 4.12 and Corollary 4.4 we have

∥h∥L1(∂B) ≲ |Ω∆B| ≲ F(Ω) ≲ k2+ 4
n |δ|.

Now, for δ such that k2+ 4
n |δ| ≪ k−1− 4

n gn(k) (meaning |δ| ≪ k−3− 8
n gn(k)) we can apply

Proposition 4.16 to Ω, so that we obtain that Ω is a ball. This finishes the proof. □
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5. Proof of Theorem 1.3: linear bound on clusters of multiple eigenvalues

In this section, we consider 1 ≤ k ≤ l such that
λk−1(B) < λk(B) = · · · = λl(B) < λl+1(B).

We denote the multiplicity of the eigenspace by m = l − k + 1 ≥ 1 and note that l and k are
comparable since (see Lemma 2.1)

l
2
n ≲ λl(B) = λk(B) ≲ k

2
n .

In dimension n = 2 it is known that the multiplicity of an eigenspace is at most 2, but in di-
mensions n ≥ 3 the multiplicity of the eigenspace may get arbitrarily large, since the dimension
of degree d homogeneous harmonic polynomials in three variables is 2d+ 1.

Similarly to Section 4, in order to prove Theorem 1.3, we will prove the equivalent formulation
that the ball is a minimizer of the functional

(37) Ω ∈ A 7→ T (Ω)−1 + δ
l∑

i=k

λi(Ω),

for any δ ∈ R sufficiently close to 0. More precisely, we prove the following.

Proposition 5.1. There exists cn > 0 such that for any δ ∈ R with |δ| ≤ cnk
−(6+ 10

n )gn(k), the
ball is the unique minimizer of (37).

Remark 5.2. This result admits the following natural generalization, following the same proof:
let k ≤ l such that λk−1(B) < λk(B) and λl(B) < λl+1(B) (note that we do not ask λl(B) =
λk(B)). Then for any Ω ∈ A:∣∣∣∣∣

l∑
i=k

(
λi(Ω) − λi(B)

)∣∣∣∣∣ ≤ Cnl
6+ 10

n

min {λl+1(B) − λl(B), λk(B) − λk−1(B)}
(
T (Ω)−1 − T (B)−1

)
,

where Cn > 0 is some dimensional constant.

The proof of Proposition 5.1 follows the same plan as in the non-degenerate case (Section 4).
Several steps of the proof will be very similar, particularly the existence of a solution for (37),
the first regularity estimates and the existence of blow-ups are proved in the same way as in
Section 4 (see Proposition 4.5, Proposition 4.7 and Proposition 4.10 respectively). We gather
these results just below and emphasize the slight differences in the proofs. Going from C1,γ to
C3,γ is also similar, see Lemma 5.18.

The main difference with the case when λk(B) is simple concerns the C1,γ estimates of a
minimizer Ω, which was the purpose of Lemma 4.13 in the previous section. When δ > 0 we
are able to again apply the results from [32], but we need to obtain estimates that are uniform
in the multiplicity m. However, when δ < 0 we cannot directly apply [37] as we did in Section
4; instead we have to see (37) as a vectorial version of the problem studied in [37], and follow
the strategy of [37] (as in [21] for the one-phase free boundary problem) by proving first some
partial Harnack inequality (see Proposition 5.14) and then get by contradiction an improvement
of flatness (see Proposition 5.16) in order to get C1,γ regularity of a minimizer Ω. In this second
case we must also follow carefully the dependency of the estimates in the multiplicity. These
new technical results are gathered in Sections 5.1 and 5.2 below, but as announced, we start
by summarizing the first steps of the strategy for which the proofs are very similar to the ones
in Section 4:

Lemma 5.3. Let Ω be a domain such that

T (Ω)−1 + δ
l∑

i=k

λi(Ω) ≤ T (B)−1 + δ
l∑

i=k

λi(B).

Then if |δ| ≪ k−1− 2
n , we have the following properties (up to a translation of Ω):



SHARP QUANTITATIVE STABILITY OF THE DIRICHLET SPECTRUM NEAR THE BALL 33

• |Ω∆B| ≲ k
1
2 + 1

n |δ| 1
2 .

• It holds

T (Ω)−1 ≲ 1, and for k ≤ i ≤ l, λi(Ω) ≲ k
2
n ,

T (Ω)−1 − T (B)−1 ≲ k1+ 2
n |δ|, and for all i ∈ N∗, |λi(Ω) − λi(B)| ≲ i2+ 4

nk
1
2 + 1

n |δ|
1
2 .

• ∥wΩ − wB∥L1(Rn) ≲ k
1
2 + 1

n |δ| 1
2 .

Proof. This follows the proof of Lemma 4.3. Thanks to the upper bound from Lemma (13), we
have

T (Ω)−1 − T (B)−1 ≤ δ
l∑

i=k

(λi(B) − λi(Ω)) ≲ k1+ 2
nλ1(Ω)|δ| ≲ k1+ 2

nT (Ω)−1|δ|

so when |δ| ≪ k−1− 2
n we get T (Ω)−1 ≲ 1, and using the quantitative Saint-Venant inequality

(14), we get
|Ω∆B| ≲

√
T (B) − T (Ω) ≲ k

1
2 + 1

n |δ|
1
2 .

Then Theorem 1.1 applied to any i ∈ N∗ gives

|λi(Ω) − λi(B)| ≲ i2+ 4
nk

1
2 + 1

n |δ|
1
2 .

For the third item, we write as in the proof of Lemma 4.3

∥wΩ − wB∥L1(Rn) ≤ ∥wΩ − wΩ∩B∥L1(Rn) + ∥wB − wΩ∩B∥L1(Rn) = T (B) − T (Ω) + 2(T (Ω) − T (Ω ∩B))

≤ T (B) − T (Ω) +
( 1
n

+ 1
n2

)
|Ω∆B| ≲ k

1
2 + 1

n |δ|
1
2 .

□

Corollary 5.4. Let Ω ∈ A and δ satisfy the same hypotheses as in Lemma 5.3. Then

T (Ω)−1 − T (B)−1 ≲ k6+ 8
n |δ|2,

∀i ∈ N∗, |λi(Ω) − λi(B)| ≲ i2+ 4
nk3+ 4

n |δ|.

Proof. We follow the proof of Corollary 4.4. Thanks to the hypothesis on Ω and Theorem 1.1
we have

T (Ω)−1 − T (B)−1 ≤ δ
l∑

i=k

(λi(B) − λi(Ω)) ≲ k3+ 4
n |δ|

(
T (Ω)−1 − T (B)−1

) 1
2 .

This gives the first estimate. The second estimate follows by applying Theorem 1.1 again. □

In the following result we adapt the results of Proposition 4.5, Lemma 4.7 and Lemma 4.12
to the case of multiple eigenvalues.

Proposition 5.5. If |δ| ≪ k−(3+ 4
n), then the functional (37) has a minimizer Ω ∈ A. Besides,

there exists cn, Cn > 0 such that ∥∇wΩ∥L∞(Rn) ≤ Cn, for all k ≤ i ≤ l, ∥∇ui∥L∞(Rn) ≤ Cnk
1
2 + 2

n

and for all x ∈ Rn, r ∈ (0, 1), 
∂Bx,r

wΩ < cnr implies wΩ|Bx,r/2 = 0.

Moreover, Ω is bounded with diam(Ω) ≲ 1, and up to translating Ω we have

∥wΩ − wB∥C0(Rn) ≲
(
k

1
2 + 1

n |δ|
1
2
) 1

n+1 ,

|Ω∆B| ≲ k3+ 4
n |δ|.
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Proof. This proof is completely similar to the proofs of Proposition 4.5 and Lemmas 4.7, 4.12.
The condition |δ| ≪ k−(3+ 4

n) in place of |δ| ≪ k−(2+ 4
n) in Proposition 4.5 again comes from the

multiplicity estimate m ≲ k, as well as some of the estimates above.
□

Analogously to the case of a simple eigenvalue, we set

(38) Q := T (Ω)2

ωn

(
n+ 2
nT (Ω) + 2

n
δ

l∑
i=k

λi(Ω)
)

and we have

(39)
∣∣∣∣Q− 1

n2

∣∣∣∣ ≲ k1+ 2
n |δ|.

Lemma 5.6. Let Ω ∈ A be a minimizer of (37) and suppose |δ| ≪ k−(6+ 8
n)gn(k). Suppose

z ∈ ∂Ω has a contact sphere on either side with inward normal vector ν. Then there exists
β > 0, βi ∈ R, and a sequence sj → 0 such that

(w)z,sj
−−−−→
C0

loc(Rn)
β(x · ν)+,

(ui)z,sj
−−−−→
C0

loc(Rn)
βi(x · ν)+ for any k ≤ i ≤ l

(40)

as j → ∞, and

(41) β2 + T (Ω)2δ
l∑

i=k

β2
i = Q,

where Q is defined in (38).

Proof. Since |δ| ≪ k−(6+ 8
n)gn(k) we have λk−1(Ω) < λk(Ω) ≤ λl(Ω) < λl+1(Ω) thanks to

Corollary 5.4. The proof is then completely analogous to the proof of Lemma 4.10, the only
difference lying in the computation of the shape derivative: while each λi is not necessarily
differentiable, the sum ∑l

i=k λi is, thanks to [34, Theorem 2.6], and we have

d

dt

∣∣∣∣∣
t=0

(
l∑

i=k

λi

)(
ζt(Ω)

)
=

l∑
i=k

�
Ω

[(
|∇ui|2 − λk(Ω)u2

i

)
∇ · ζ − 2∇ui ·Dζ · ∇ui

]
,

where (ui)k≤i≤l is an orthonormal basis of the eigenspaces associated to (λi(Ω))k≤i≤l. □

5.1. Harnack inequality. Let us start by introducing the space of viscosity solutions relevant
to us, which we will be denoted by Sm,δ(L), m being the multiplicity of the eigenspace associated
to λk(B).

Definition 5.7. Let L ≥ 1, δ ∈ R, m ∈ N∗. We define Sm,δ(L) to be the set of functions
(v, v1, v1, . . . , vm, vm) ∈ H1(B1,R+)2m+1 such that

|∇v| ≤ L,

|∇vi|, |∇vi| ≤ L|δ|
1
4 ,

0 < vi

v
,
vi

v
≤ L|δ|

1
4 in {v > 0},

1
L
<
vi

vi

≤ L in {v > 0}

and for every z ∈ ∂{v > 0} with a contact sphere on either side with inward normal vector ν,
there exists numbers α > 0, αi > 0, αi > 0 such that x 7→ (α(x · ν)+, α1(x · ν)+, . . . , αm(x · ν)+)
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is a blow-up of (v, v1, . . . , vm) at z in the sense of (40) and

α2 +
m∑

i=1

α2
i + α2

i

2 = 1 if δ > 0,

α2 +
m∑

i=1
αiαi = 1 if δ < 0.

Note that this last condition may be written as (∂νv)2 +∑m
i=1

(∂νvi)2+(∂νvi)2

2 = 1 when δ > 0
(resp. (∂νv)2 +∑m

i=1(∂νvi)(∂νvi) = 1 when δ < 0) on ∂{v > 0} in the viscosity sense, although
the traces of the gradients are not assumed to be well-defined here.

Remark 5.8. According to this definition, αi and αi are bounded by L|δ| 1
4 , so that α2 ≥

1 − L2m|δ| 1
2 . In particular α ≥ 1

2 when L2m|δ| 1
2 ≤ 1

8 , which is the hypothesis we will make in
order to obtain Harnack inequalities.

In the next Lemma we link this definition of viscosity solutions to our free boundary problem.
Let Ω be a minimizer of (37) and let w, uk, . . . , ul be its torsion function and eigenfunctions
associated to the eigenvalues (λi(Ω))k≤i≤l. Set m = l − k + 1, and Bx,r a ball of Rn where
r ∈ (0, 1] is arbitrary. We let

v(y) = 1
r
Q− 1

2
(
1 −mT (Ω)2|δ|

1
2
) 1

2 w(x+ ry),

vi(y) = 1
r
Q− 1

2T (Ω)|δ| 1
4
(
w + |δ|

1
4uk+i−1

)
(x+ ry), i = 1, . . . ,m,

vi(y) = 1
r
Q− 1

2T (Ω)|δ| 1
4
(
w − |δ|

1
4uk+i−1

)
(x+ ry), i = 1, . . . ,m.

Lemma 5.9. There exists Cn, Ln > 0 such that if |δ| ≤ Cnk
−2− 8

n then for any x ∈ Rn and
v, v1, v1, . . . , vm, vm defined as above, it holds

(v, v1, v1, . . . , vm, vm) ∈ Sm,δ (Ln) .

Proof. Since |ui| ≲ k
2
n

+ 1
2w for k ≤ i ≤ l (by Lemma 2.2) then for |δ| ≪ k−2− 8

n we have
0 < vi, vi ≲ |δ| 1

4v and also 1 ≲ vi/vi ≲ 1. By Proposition 5.5 and (39) we have |∇w| ≲ 1 and
|δ| 1

4 |∇ui| ≲ |δ| 1
4k

2
n

+ 1
2 ≲ 1 since |δ| ≪ k−2− 8

n , hence there exists L = Ln verifying the properties
of Definition 5.7. Finally, for any z ∈ ∂{v > 0} which has a contact sphere with inward normal
vector ν, thanks to Lemma 5.6 there exists blow-ups (β(x · ν)+, βk(x · ν)+, . . . , βl(x · ν)+) of
(w, uk, . . . , ul) at z such that

β2 + T (Ω)2δ
l∑

i=k

β2
i = Q

which may be rearranged as(
1 −mT (Ω)2|δ|

1
2
)
β2 + T (Ω)2|δ|

1
2

l∑
i=k

(
β2 + sign(δ)|δ| 1

2β2
i

)
= Q.

Letting

α = Q− 1
2
(
1 −mT (Ω)2|δ|

1
2
) 1

2 β,

αi = Q− 1
2T (Ω)|δ| 1

4
(
β + |δ|

1
4βk+i−1

)
, i = 1, . . . ,m,

αi = Q− 1
2T (Ω)|δ| 1

4
(
β − |δ|

1
4βk+i−1

)
, i = 1, . . . ,m,

these correspond to the gradients of the blow-ups of (v, v1, . . . , vm) at z, thus concluding the
proof. □
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As in [37], in order to use a viscosity method in the vectorial setting, the key observation
consists in noting that if (v, v1, v1, . . . , vm, vm) ∈ Sm,δ(L), then

(v,
√
v1v1, . . . ,

√
vmvm)

is a supersolution of a vectorial problem of the type of [32] because (see [37, Lemma 2.9 and
Remark 4.1])

∆
√
vivi ≤ 1

2

(√
vi

vi

∆vi +
√
vi

vi

∆vi

)
≤

√
L

(∆vi)+ + (∆vi)+

2 ,

∂ν

√
vivi =

√
(∂νvi)(∂νvi) at blow-ups of contact points.

(42)

Similarly for any positive (ci)i=1,...,m with ci ∈ [1/(2L), 2L] we have that(
v,

1
2(c1v1 + c−1

1 v1), . . . ,
1
2(cmvm + c−1

m vm)
)

is a subsolution in the sense that

∆civi + c−1
i vi

2 ≥ −
ci∆vi + c−1

i ∆vi

2 ,

∂ν

(
civi + c−1

i vi

2

)
≥
√

(∂νvi)(∂νvi) at blow-ups of contact points.
(43)

We will now prove an ϵ-regularity result (see Corollary 5.17 below), following the general
compactness strategy of [21] (inspired from [40]): our goal is to prove that any sufficiently flat
(i.e. close to affine) solution becomes flatter on a smaller ball, as is stated in Lemma 5.16.
The first step (Lemma 5.11) is a weaker improvement, which is related to Harnack’s inequality
in the classical elliptic setting, regarding the total oscillation of a solution. This implies an
equicontinuity property (see Lemma 5.14) which then allows us to use a compactness argument
to prove the flatness improvement result.

Let us start by defining a notion of flatness for solutions.

Definition 5.10. We say (v, v1, v1, . . . , vm, vm) ∈ Sm,δ(L) is ϵ-flat with parameters

a, b, (α, α1, α1, . . . , αm, αm)

when |a|, |b| ≤ ϵ and
0 ≤ b− a ≤ ϵ

α2 +
m∑

i=1

α2
i + α2

i

2 = 1 if δ > 0, α2 +
m∑

i=1
αiαi = 1 if δ < 0,

(xn + a)+ ≤ v(x)
α

,
vi(x)
αi

,
vi(x)
αi

≤ (xn + b)+ in B1,

|∆v|
α

,
|∆vi|
αi

,
|∆vi|
αi

< ϵ2 in B1 ∩ {v > 0}.

(44)

We remark that the second and third equations of (44) (evaluated at x → en) directly imply,
for a small enough ϵ,

(45) αi

αi

∈
[ 1
2L, 2L

]
and αi, αi ≤ 2L|δ|

1
4 .

In all the following we let η ∈ C∞
c (R, [0, 1]) such that η ≡ 1 on [−3/5, 3/5] and η = 0 outside

of [−4/5, 4/5]. Then for any small enough t (positive or negative) we set

Ht := {(x′, xn) ∈ Rn : xn > −tη(|x′|)}.
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We define three functions depending on t:
∆φt = 0 in B ∩Ht

φt = xn on ∂B ∩Ht

φt = 0 on B ∩ ∂Ht

,


∆ψt = 0 in (B ∩Ht) \B

(
1
2en,

1
4

)
ψt = 1 in B

(
1
2en,

1
4

)
ψt = 0 on ∂(B ∩Ht)

,

∆ζt = 2 in B ∩Ht

ζt = −χ on ∂(B ∩Ht)

where χ ∈ C∞(B1, [0, 1]) is such that χ > 0 on B1 \ B 9
10

and χ ≡ 0 on B 9
10

. Note that ζt ≤ 0
and ψt ≥ 0 for every t.

Lemma 5.11. There exists tn ∈ (0, 1), cn, dn > 0 such that for any t ∈ (−tn, tn),

∂nψt ≥ cn, |∇φt − en| ≤ dnt, |ζt| ≤ dn, |∇ζt| ≤ dn, on ∂Ht ∩
{

|x′| ≤ 9
10

}
and

if t > 0, φt ≥
(
xn + 1

32t
)

+
on B 1

8
√

n
∩Ht,

if t < 0, φt ≤
(
xn + 1

32t
)

+
on B 1

8
√

n
∩Ht.

Proof. For the four first estimates, we only explain how the estimate of ∂nψt is obtained, as
the three others are derived analogously. We have first that ∂nψ0 ≥ c > 0 for some c > 0 by
Hopf Lemma, while on the other hand by elliptic estimates ∥∂n(ψt ◦ Tt − ψ0)∥L∞(H0∩B 9

10
) ≲ t

where Tt is a diffeomorphism sending B∩Ht over B∩H0 = B∩Hn, thus giving ∂nψt ≥ cn over
∂Ht ∩

{
|x′| ≤ 9

10

}
for any |t| ≤ tn for some dimensional cn > 0 and tn > 0.

For the second point, we consider for 0 ≤ t ≤ 1
4
√

n

Pt(x) := xn + 4t
n(xn − 1

4
√
n

)2

− |x′|2
 .

We check that Pt(x) ≤ x+
n ≤ φt on ∂

(
Bn−1

1
2

×
[
−t, 1

4
√

n

])
, while ∆Pt = 8t, so by maximum

principle we have Pt ≤ φt on Bn−1
1
2

×
[
−t, 1

4
√

n

]
. Since we have Pt(x) ≥ xn + 1

32t on B 1
8

√
n

∩Ht

we deduce the claim in this case.
The case t < 0 is treated similarly: this time we have Pt ≥ x+

n ≥ φt by maximum principle
and Pt ≤ xn + 1

32t on B 1
8

√
n

∩Ht.
□

Proposition 5.12. Let L ≥ 1, δ ∈ R and m ∈ N∗ be such that L2m|δ| 1
2 ≤ 1

8 . Then there exists
cn > 0 such that for any ϵ ≪ L− 1

2 and any (v, v1, v1, . . . , vm, vm) ∈ Sm,δ(L) that is ϵ-flat in the
sense of Definition 5.10 with parameters

a, b, (α, α1, α1, . . . , αm, αm),
then there exists a′, b′ such that a ≤ a′ ≤ b′ ≤ b, b′ − a′ ≤ (1 − cn)ϵ and

(xn + a′)+ ≤ v(x)
α

,
vi(x)
αi

,
vi(x)
αi

≤ (xn + b′)+ on B 1
8

√
n
.

Remark 5.13. The hypothesis L2m|δ| 1
2 ≤ 1

8 may be replaced by L2m|δ| 1
2 ≤ 1 − η for any

η > 0, but how small ϵ needs to be would depend on η.

Proof. First note that by the estimates (45) and the hypothesis L2m|δ| 1
2 ≤ 1

8 we get α ≥ 1
2 .

We suppose without loss of generality that b−a ≥ 1
2ϵ otherwise we are done. As a consequence

we have either v( 1
2 en)
α

≥ 1
2 + a+ ϵ

4 (Case A) or v( 1
2 en)
α

≤ 1
2 + b− ϵ

4 (Case B).
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Case A. Without loss of generality, we can set a = 0, meaning v( 1
2 en)
α

≥ 1
2 + ϵ

4 .
Assume first δ < 0. Since |∆v| < αϵ2 in B1 ∩ {v > 0}, then for a small enough ϵ we get

by the usual Harnack inequality applied to the positive function v− αxn the existence of some
σn ∈ (0, 1/4) such that

(46) v(x)
α

≥ xn + 2σnϵ on B
(1

2en,
1
4

)
.

We now consider the set of t ≥ 0 such that the following m + 1 inequalities are all verified on
B ∩Ht:

v

α
≥ φt + ϵσnψt + ϵ2ζt,√

vi

αi

· vi

αi

≥ φt + L
1
2 ϵ2ζt.

(47)

Note first that for each t ≥ 0,

∆v
α

< ϵ2 = ∆(φt + ϵσnψt + ϵ2ζt) in B ∩Ht \B(1
2en,

1
4),

∆
√
vi

αi

· vi

αi

≤ L
1
2 ϵ2 < ∆

(
φt + L

1
2 ϵ2ζt

)
in B ∩Ht,

where we used (42) in the second series of inequalities.
By (46), it holds v(x)/α ≥ xn +σnϵψ0(x). As a consequence the first inequality in (47) is ver-

ified at t = 0 by maximum principle inside B∩H0 \B(1
2en,

1
4), and the second inequality of (47)

is verified at t = 0 by maximum principle inside B ∩ H0 (using also v(x)/α, vi/αi, vi/αi ≥ xn

in B1 and noting that φ0 = xn and ζt ≤ 0). We can therefore consider the largest t ≥ 0 such
that the inequalities (47) are verified in B ∩ Ht. We want to prove that t ≥ ϑnϵ for some
dimensional ϑn > 0. Note that we lose no generality in supposing that t is at most comparable
to ϵ (meaning t ≪ ϵ), since the claim holds otherwise.

At the maximal t there is a equality in one of the inequalities (47) at some point x ∈ B ∩Ht.
Let us consider the possible cases.

• We cannot have x ∈ ∂(Ht ∩B) \B 9
10

, since ζt < 0, ψt = 0 and φt = xn over this set.
• Suppose that x ∈ B ∩ Ht. Then let us show that in this case we must have v(x) > 0.

Otherwise, we would have v(x) = vi(x) = vi(x) = 0 so that necessarily xn ≤ 0. But
φt +L

1
2 ϵ2ζt > 0 (and likewise φt +ϵσnψt +ϵ2ζt > 0) over B∩Ht ∩{xn ≤ 0}, which comes

from φt+L
1
2 ϵ2ζt = φt−L

1
2 ϵ2χ = 0 over B∩∂Ht∩{xn ≤ 0} and |∇(φt+L

1
2 ϵ2ζt)−en| ≪ 1

thanks to Lemma 5.11. As a consequence v(x) > 0 and we can apply the maximum
principle inside B ∩Ht ∩ {v > 0} to get that the equality cannot happen for the second
inequality of (47). On the other hand, equality cannot happen for v by maximum
principle inside {v > 0} ∩B ∩Ht \B(1

2en,
1
4) and since in B(1

2en,
1
4) one has for t ≪ ϵ:

φt + ϵσnψt + ϵ2ζt ≤ φt + ϵσn ≤ xn + Cnt+ ϵσn < xn + 2σnϵ.

As a consequence, x ∈ ∂Ht ∩ B 9
10

. Since (φt + ϵσnψt + ϵ2ζt)(x) = (φt + L
1
2 ϵ2ζt)(x) = 0 then

v(x) = vi(x) = vi(x) = 0 and there is equality in all the inequalities (47). Since on the other
hand one has B ∩ Ht ⊂ {v > 0}, hence at any interior contact sphere for B ∩ Ht at x there
exists a blow-up of (v, v1, . . . , vm) of the form z 7→ (βz · ν, β1z · ν, β1z · ν, . . . , β

m
z · ν) as in

Definition 5.7. As a consequence we have the viscosity condition:
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1 = β2 +
m∑

i=1
βiβi

≥ α2|∇(φt + ϵσnψt + ϵ2ζt)(x)|2 +
m∑

i=1
αiαi|∇(φt + L

1
2 ϵ2ζt)(x)|2

≥ α2
[
(∂nφt)(x)2 + 2∂nφt(x)∂nψt(x)σnϵ− Cnϵ

2
]

+
m∑

i=1
αiαi

[
(∂nφt(x))2 − CnL

1
2 ϵ2
]

for some large enough dimensional constant Cn > 0

≥ ∂nφt(x)2 + 2α2∂nφt(x)∂nψt(x)σnϵ− CnL
1
2 ϵ2

≥ 1 − 2dnt+ 1
2cnσnϵ− CnL

1
2 ϵ2 since α ≥ 1

2
where cn, dn > 0 come from Lemma 5.11. So when ϵ ≪ L− 1

2 we get

t ≥ cnσn

8dn

ϵ =: ϑnϵ

so that using Lemma 5.11 we find for any y ∈ B 1
8

√
n

∩Ht

v(y)
α

,
vi(y)
αi

,
vi(y)
αi

≥ φt(y) +
√
Lϵ2ζt(y) ≥ yn + 1

32ϑnϵ−
√
L∥ζt∥∞ϵ

2 ≥ yn + 1
64ϑnϵ

for ϵ ≪ 1. For y ∈ B 1
8

√
n

\Ht the above inequalities always hold, since yn + 1
64ϑnϵ ≤ 0 and the

functions are non-negative. This finishes the proof when δ < 0.
The case δ > 0 follows the same strategy, and was proven in [32, Theorem 5.1], though we

notice in addition that one can keep track of the constants. Roughly speaking, in this case we
find instead the viscosity condition

1 = β2 +
m∑

i=1

β
2
i + β2

i

2 ≥ α2|∇(φt + ϵσnψt + ϵ2ζt)(x)|2 +
m∑

i=1
αiαi|∇(φt + L

1
2 ϵ2ζt)(x)|2

≥ 1 − 2dnt+ 1
2cnσnϵ− CnL

1
2 ϵ2 since α ≥ 1

2
and conclude in the same way.

Case B. We suppose without loss of generality that b = 0, meaning v( 1
2 en)
α

≤ 1
2 − ϵ

4 . The proof
here follows the same outline, thus we only give rough details.

First, the Harnack inequality applied to αxn −v gives the existence of some σn > 0 such that
v(x)

α
≤ xn − 2σnϵ on B

(
1
2en,

1
4

)
. We now consider the largest t > 0 such that all the following

inequalities are verified in B ∩H−t:
v

α
≤ φ−t − ϵσnψ−t − ϵ2ζ−t,

1
2

(√
αi

αi

vi +
√
αi

αi

vi

)
≤ φ−t − (2L) 1

2 ϵ2ζ−t.

It is verified at t = 0 by the previous remark and the maximum principle. We then identify a
contact point x associated to the largest t that we suppose small compared to ϵ: it is not inside
B ∩H−t by maximum principle since

∆v
α

> ∆(φ−t − ϵσnψ−t + ϵ2ζ−t) in B ∩H−t \B(1
2en,

1
4)

∆1
2

(√
αi

αi

vi +
√
αi

αi

vi

)
> ∆

(
φ−t − (2L) 1

2 ϵ2ζ−t

)
in B ∩H−t,

where we used the estimates (45) in the last line. The contact point is not in ∂(B1 ∩H−t) \B 9
10

for the same reason as before, thus giving that it lies in ∂H−t ∩B 9
10

. We then use the boundary
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condition (understood in the viscosity sense at the contact point)

1 ≤ (∂νv)2 +
m∑

i=1

(
∂ν

1
2

(√
αi

αi

vi +
√
αi

αi

vi

))2

≤ 1 + ant− bnϵ

for some an, bn > 0. This yields t ≥ ϑnϵ for some ϑn > 0 and we conclude by the last property
of Lemma 5.11. The case δ > 0 is similar. □

Proposition 5.14. Let L ≥ 1, δ ∈ R and m ∈ N∗ be such that L2m|δ| 1
2 ≤ 1

8 . Then there
exists Cn > 0 and κn ∈ (0, 1), such that the following holds: for any ϵ ≪ L− 1

2 , and for any
(v, v1, v1, . . . , vm, vm) ∈ Sm,δ(L) that is ϵ-flat in the sense of definition 5.10 with parameters

a, b, (α, α1, α1, . . . , αm, αm),
then defining

V (x) = v(x) − αxn

αϵ
, V i(x) = vi(x) − αixn

αiϵ
, V i(x) = vi(x) − αixn

αiϵ
,

W ϵ
i (x) =

√
vivi −

√
αiαixn√

αiαiϵ

we have that for any x, y ∈ B 1
2

∩ {v > 0} such that |x− y| > ϵ,

|V (x) − V (y)| ,
∣∣∣V i(x) − V i(y)

∣∣∣ , ∣∣∣V i(x) − V i(y)
∣∣∣ , |Wi(x) −Wi(y)| ≤ Cn|x− y|κn .(48)

Proof. This is obtained by applying successively the previous Lemma, as in [21, Corollary 3.2]
or [44, Lemma 7.14]. □

5.2. Flatness improvement. We start by stating a general result on sequences in compact
metric spaces.

Lemma 5.15. Let (X, d) be a nonempty compact metric space. Let mk be a sequence of integers
such that mk → ∞ and (xk

j )k∈N∗,1≤j≤mk
be a sequence in X. Then there exists a sequence of

permutations σk ∈ S(J1,mkK) and a sequence (xj)j∈N∗ such that

lim inf
k→∞

sup
1≤j≤mk

d
(
xk

σk(j), xj

)
= 0.

We do not claim that this lemma is original, but since we have not found any reference in
the literature we provide a short proof.
Proof. Note first that it is enough to prove the Lemma for the Cantor set X = {0, 1}N∗ endowed
with the dyadic metric d(x, y) = 2− inf{i≥1:x(i)̸=y(i)}, as it surjects continuously onto any compact
metric space. We write XN = {0, 1}N and πN : X → XN the projection onto the first N
coordinates. Let φ1 : N∗ → N∗ be an extraction such that the number of 0’s and 1’s among(

π1x
φ1(k)
1 , . . . , π1x

φ1(k)
mφ1(k)

)
is nondecreasing in k. Starting from φ1 we define recursively φN in the following way: if φN−1
is given we build φN as an extraction of φN−1 to guarantee that the number of occurrences of
each b ∈ XN in (

πNx
φN (k)
1 , . . . , πNx

φN (k)
mφN (k)

)
is nondecreasing in k. We finally set φ(k) := φk(k). We now define a sequence of permutations
σk ∈ Smφ(k) as follows: we let σ1 be the identity, and provided σk, we define σk+1 recursively.
Since in the list (

πkx
φ(k+1)
1 , . . . , πkx

φ(k+1)
mφ(k+1)

)
there are at least as many occurrences of each element of Xk as in the list(

πkx
φ(k)
1 , . . . , πkx

φ(k)
mφ(k)

)
.
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Then we may fix σk+1 ∈ Smφ(k+1) such that for each j ∈ {1, . . . ,mφ(k)}, we have

πkx
φ(k+1)
σk+1(j) = πkx

φ(k)
σk(j).

We now define xj as the unique element of X such that for every k ∈ N∗, as soon as mφ(k) ≥ j
we have

πkxj = πkx
φ(k)
σk(j).

By construction this gives for every k ∈ N∗, j ∈ {1, . . . ,mφ(k)}:

d
(
x

φ(k)
σk(j), xj

)
≤ 1

2k+1 .

Hence (xφ(k)
σk(j)) −→

k→∞
(xj) thus concluding the proof. □

Coming back to the flatness improvement claim, we let τ = τn ∈ (0, 1) be a fixed constant
depending only on n, such that for any harmonic function h : B1 → [−5, 5] and for any x ∈ Bτ

it holds

(49) |h(x) − h(0) − x · ∇h(0)| ≤ 1
8τ.

This constant is used in the statement of the next result.
Proposition 5.16. Let L ≥ 1, δ ∈ R and m ∈ N∗ with L2m2|δ| 1

2 ≤ 1
8 . Then there exists

ϵn(L) such that we have the following flatness reduction property for any ϵ < ϵn(L). Suppose
(v, v1, v1, . . . , vm, vm) ∈ Sm,δ(L) is ϵ-flat in the sense of Definition 5.10 with parameters

a, b, (α, α1, α1, . . . , αm, αm).
Then there exists a′ ≤ b′, e′ ∈ Sn−1, and α′, α′

i, α
′
i verifying

α′2 +
m∑

i=1

α′
i
2 + α′

i
2

2 = 1 if δ > 0, α′2 +
m∑

i=1
α′

iα
′
i = 1 if δ < 0

such that

(e′ · x+ a′) ≤ v(τx)
τα′ ,

vi(τx)
τα′

i

,
vi(τx)
τα′

i

≤ (e′ · x+ b′) on B1 ∩ {v > 0}
τ

,

and b′ − a′ ≤ 1
2ϵ, with moreover

|e′ − en|,
∣∣∣∣∣1 − α′

α

∣∣∣∣∣ ,
∣∣∣∣∣1 − α′

i

αi

∣∣∣∣∣ ,
∣∣∣∣∣1 − α′

i

αi

∣∣∣∣∣ ≲ ϵ.

Proof. We follow the ideas of the proof of [32, Theorem 6.1], with a different treatment when
the multiplicity of the eigenspace goes to infinity (see the case mϵ → ∞ below): we will proceed
by contradiction and compactness. Suppose there exists a sequence ϵp → 0 (we drop the index
p and just write ϵ → 0 to lighten the notations) and some sequences

(vϵ, vϵ
1, v

ϵ
1, . . . , v

ϵ
mϵ , vϵ

mϵ) ∈ Smϵ,δϵ(L), aϵ, bϵ, (αϵ, αϵ
1, α

ϵ
1, . . . , α

ϵ
mϵ , αϵ

mϵ)
which verify the hypotheses but not the conclusion. This means that at least one of the functions
vϵ, vϵ

1, vϵ
1, . . ., vϵ

mϵ , vϵ
mϵ does not verify the flatness improvement on Bτ .

Consider the sequences

V ϵ(x) = vϵ(x) − αϵxn

αϵϵ
, V

ϵ
i(x) = vϵ

i(x) − αϵ
ixn

αϵ
iϵ

, V ϵ
i(x) = vϵ

i(x) − αϵ
ixn

αϵ
iϵ

,

Wi(x) =
√
vϵ

iv
ϵ
i −

√
αϵ

iα
ϵ
ixn√

αϵ
iα

ϵ
iϵ

.

We also write Ωϵ = B1 ∩{vϵ > 0} their (common) domain of definition, which converges locally
Hausdorff to B1 ∩ Hn since {x ∈ B1, xn > ϵ} ⊂ Ωϵ ⊂ {x ∈ B1, xn > −ϵ}. Each function has
values in [−1, 1], with Laplacian bounded by ϵ in Ωϵ. Moreover thanks to Proposition 5.12,
they verify the Hölder-type property (48) for some κn ∈ (0, 1) up to the boundary ∂Hn.
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After extraction in ϵ we have a local Hausdorff convergence of the graphs of V ϵ, V ϵ
i , V ϵ

i on
Ωϵ to the graphs of functions V, V i, V i : B ∩ Hn → [−1, 1], which are in C0,κn

loc (B ∩ Hn) and
harmonic in B∩Hn (see for instance [44, Lemma 7.15]). The functions (W ϵ

i )ϵ→0 verify the same
oscillation reduction so after extraction their graphs converge in the local Hausdorff sense to a
limit Wi, which we identify (by taking a limit for any x ∈ B ∩ {xn > δ}) as

Wi = V i + V i

2 .

We now distinguish four cases depending on whether mϵ is stationary at some finite value
m ∈ N∗ or not, and whether δ > 0 or δ < 0: we detail the cases δ < 0 and outline the
cases δ > 0, for which more details may be found (though without focus on the control of the
constants in m) in [32].

Case mϵ → m, δ < 0. We lose no generality in assuming mϵ = m for all ϵ. Up to extraction
there exists α, αi, αi ≥ 0 such that

αϵ → α, αϵ
i → αi, α

ϵ
i → αi,

V − V i and V − V i verify a Dirichlet boundary condition on B1 ∩ {xn = 0} (since V ϵ − V ϵ
i =

V ϵ − V
ϵ
i = 0 on ∂Ωϵ). This makes 2m Dirichlet boundary conditions for 2m + 1 harmonic

functions, and we claim that we have an additional boundary condition

(50) ∂nh = 0 in B1 ∩ {xn = 0}, where h =
(
α2V +

m∑
i=1

αiαi

V i + V i

2

)
,

holding in the viscosity sense.

Inequality ∂nh ≤ 0. To prove this claim set x0 ∈ B1∩{xn = 0}, and we suppose by contradiction
that there are constants p > 0, z ∈ Rn−1 × {0}, σ > 0 such that

(51) h(x) ≥ h(x0) + pxn + z · (x−x0) +σ
(
x2

n − 1
n+ 1

∣∣∣x− x0
∣∣∣2) =: φ(x), ∀x ∈ B(x0, ρ) ∩Hn

Note that we can always change p into p/2, replace σ by some arbitrarily large σ′ ≥ σ and ρ
by some small enough ρ′ < ρ such that the equality holds only at x = x0. Since the functions
V − h, V i − h and V i − h are harmonic and vanish on B1 ∩ {xn = 0}, they are smooth over
B1 ∩ Hn so that there exists q, qi, qi

∈ R such that

(V − h)(x) = qxn + O
(
|x− x0|2

)
,

(V i − h)(x) = qixn + O
(
|x− x0|2

)
,

(V i − h)(x) = q
i
xn + O

(
|x− x0|2

)
,

(Wi − h)(x) =
qi + q

i

2 xn + O
(
|x− x0|2

)
=: qixn + O

(
|x− x0|2

)
,

and which verify in addition α2q+∑m
i=1 αiαiqi = 0. Up to reducing p and increasing σ, we have

by uniform interior C2 estimates on the harmonic functions:
V (x) ≥ qxn + φ(x), Wi(x) ≥ qixn + φ(x),

in a neighbourhood of x0 in B ∩ Hn, which we denote by Bx0,ρ ∩ B ∩ Hn. Then by the local
uniform Hausdorff convergence of the graphs there exists cϵ → 0 such that

V ϵ(x) ≥ qxn + φ(x) − cϵ, W ϵ
i (x) ≥ qixn + φ(x) − cϵ,

for x ∈ Bx0,ρ ∩ Ωϵ. This may be rewritten as
vϵ(x) ≥ αϵ (xn + ϵqxn + ϵφ(x) − ϵcϵ) ,√

vϵ
iv

ϵ
i(x) ≥

√
αϵ

iα
ϵ
i (xn + ϵqixn + ϵφ(x) − ϵcϵ) .
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Hence, up to changing cϵ into 2cϵ +Cϵ, for some large enough constant C (that does not depend
on ϵ), we have for any x ∈ Bx0,ρ ∩ Ωϵ:

(52) vϵ(x) ≥ αϵ(1 + ϵq)ψ0(x),
√
vϵ

iv
ϵ
i(x) ≥

√
αϵ

iα
ϵ
i(1 + ϵqi)ψ0(x),

where for any t ≥ 0 we have defined

ψt(x) = xn + ϵφ(x) − ϵcϵ + t.

We can therefore consider the maximal tϵ ≥ 0 such that the previous set of inequalities (52)
still holds with ψt instead of ψ0. There must be a contact point xϵ ∈ Bx0,ρ ∩ Ωϵ for one of the
functions, and we may assume without loss of generality (up to changing p into p/2, increasing
σ and reducing ρ accordingly) that xϵ → x0.

Suppose xϵ ∈ Ωϵ and that it is a contact point for vϵ (the same argument holds for the other
functions W ϵ

i ), and we then have by maximum principle

(1 + ϵq)ϵ 2σn
n+ 1 = (1 + ϵq)ϵ∆φ(xϵ) ≤ 1

αϵ
∆vϵ(xϵ) ≤ ϵ2,

which is a contradiction for a small enough ϵ. As a consequence xϵ ∈ ∂Ωϵ, so that there is
equality in all of the above inequalities at xϵ. Hence there exists a blow-up of (v, v1, . . . , vm) at
xϵ, and comparing the derivatives at this blow-up (42) we get

1 ≥ |αϵ|2(1 + ϵq)2|∇ψtϵ(xϵ)|2 +
m∑

i=1
αϵ

iα
ϵ
i(1 + ϵqi)2|∇ψtϵ(xϵ)|2

which after simplification becomes

|∇ψt(xϵ)|2 ≤ 1 + oϵ→0(ϵ).

This is a contradiction since |∇ψt(xϵ)|2 = 1 + 2pϵ+ oϵ→0(ϵ). As a consequence we get ∂nh ≤ 0
on B ∩ {xn = 0} in the viscosity sense.

Inequality ∂nh ≥ 0. Suppose by contradiction, that this time h(x) ≤ φ(x) with p < 0 and
σ < 0. As a consequence following the previous reasoning for some sequence cϵ → 0 and in
some neighbourhood B(x0, ρ) ∩ Hn we have

vϵ(x) ≤ αϵ(1 + ϵq)ψ0(x), vϵ
i(x) ≤ αϵ

i(1 + ϵqi)ψ0(x), vϵ
i(x) ≤ αϵ

i(1 + ϵq
i
)ψ0(x),

where ψt is defined as previously. Consider the largest t such that the inequalities

vϵ(x) ≤ αϵ(1 + ϵq)ψt(x), 1
2

(√
αϵ

i

αϵ
i

vϵ
i(x) +

√
αϵ

i

αϵ
i

vϵ
i

)
≤
√
αϵ

iα
ϵ
i(1 + ϵqi)ψt(x)

are verified in B(x0, ρ) ∩Hn: at the largest t there is some contact point xϵ, and either xϵ /∈ Ωϵ

by maximum principle as earlier (we use here the estimates (45)) or xϵ ∈ ∂Ωϵ and we have the
viscosity condition

1 ≤ |αϵ|2(1 + ϵq)2|∇ψtϵ(xϵ)|2 +
m∑

i=1
αϵ

iα
ϵ
i(1 + ϵqi)2|∇ψtϵ(xϵ)|2

which after simplification becomes

|∇ψt(xϵ)|2(= 1 + 2pϵ+ o(ϵ)) ≥ 1 + oϵ→0(ϵ).

Since p < 0 this is a contradiction for a small enough ϵ.

Now that the Neumann boundary condition (50) is verified in the viscosity sense, h may be
extended as a smooth harmonic function on B1 by an even reflexion through ∂Hn.
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We may now conclude: V , V i, V i may be respectively extended as harmonic functions V ′,
V

′
i, V ′

i on B1, with values in [−5, 5]. Indeed we first write

V =
(
α2V +

m∑
i=1

αiαi

V i + V i

2

)
+

m∑
i=1

αiαi

(V − V i) + (V − V i)
2 .

The first term extends by even reflection thanks to (50), and the second by odd reflection (since
V − V i = V − V i = 0 over B1 ∩ {xn = 0}), and as a consequence V extends harmonically with
a bound |V | ≤ 3. We then write for each i, V i = V − (V −V i) and V i = V − (V −V i), so that
V i, V i extend harmonically in B1 into functions bounded by 5. Recalling (49) we find c ∈ R,
z ∈ Rn−1 × 0, q, qi, qi

∈ R such that for any x ∈ Bτ ,

|V (x) − c− z · x′ − qxn| ≤ 1
8τ,∣∣∣V i(x) − c− z · x′ − qixn

∣∣∣ ≤ 1
8τ,∣∣∣V i(x) − c− z · x′ − q

i
xn

∣∣∣ ≤ 1
8τ.

Thus by Haudsdorff convergence of the graphs, for any small enough ϵ and any x ∈ Bτ we have

(53)
∣∣∣∣∣vϵ(x) − αϵxn

ϵαϵ
− c− z · x′ − qxn

∣∣∣∣∣ ≤ 1
6τ,

and the same holds accordingly for vϵ
i , vϵ

i . Set now

Sϵ = (1 + ϵq)2(αϵ)2 +
m∑

i=1
αϵ

iα
ϵ
i(1 + ϵqi)(1 + ϵq

i
).

Since qα2 +∑m
i=1 α

ϵ
iα

ϵ
i

qi+q
i

2 = 0, then |Sϵ − 1| = o(ϵ). Let now

αϵ′ = (1 + ϵq)αϵ

√
Sϵ

, αϵ
i
′ = (1 + ϵqi)αϵ

i√
Sϵ

, αϵ
i
′ = (1 + ϵqi)αϵ

i√
Sϵ

,

and let
e′ = en + ϵz√

1 + ϵ2|z′|2
, a′ = c

τ
− 1

4ϵ, b′ = c

τ
+ 1

4ϵ.

Then (53) may be rewritten as

[(1 + ϵq)en + ϵz′] · x+ ϵc− 1
6τ ≤vϵ(x)

αϵ
≤ [(1 + ϵq)en + ϵz′] · x+ ϵc+ 1

6τ,

[(1 + ϵqi)en + ϵz′] · x+ ϵc− 1
6τ ≤vϵ

i(x)
αϵ

i

≤ [(1 + ϵqi)en + ϵz′] · x+ ϵc+ 1
6τ,[

(1 + ϵq
i
)en + ϵz′

]
· x+ ϵc− 1

6τ ≤vϵ
i(x)
αϵ

i

≤
[
(1 + ϵq

i
)en + ϵz′

]
· x+ ϵc+ 1

6τ,

for any x ∈ Bτ ∩ Ωϵ, which simplifies as ϵ → 0 to

e′ · x+ a′ ≤ vϵ(x)
α′ϵ ,

vϵ
i(x)
α′

i
ϵ ,

vϵ
i(x)
α′

i
ϵ ≤ e′ · x+ b′, ∀x ∈ Ωϵ ∩Bτ

so that all functions verify the flatness improvement, which is a contradiction for small enough
ϵ. This concludes the proof in this case.
Case mϵ → m, δ > 0. This case follows more closely [32]; the only difference here is that the
Neumann boundary condition verified at the limit is

∂n

(
α2V +

m∑
i=1

α2
iV i + α2

iV i

2

)
= 0 in B1 ∩ {xn = 0}.
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Case mϵ → ∞. In this case we treat δ > 0 and δ < 0 at once. Define V ϵ, V
ϵ
i and V ϵ

i

as previously and thanks to Lemma 5.15, we may change their order (in i) and assume a
convergence to some limits V, V i and V i as ϵ → 0 (in the sense of local Hausdorff convergence
of the graphs) which is uniform in i. We still have the Dirichlet boundary condition V − V i =
V − V i = 0 on B1 ∩ {xn = 0}. Due to the estimates (45) we have∣∣∣1 − (αϵ)2

∣∣∣ ≤ 4L2|δϵ|
1
2mϵ ≤ 2L2(mϵ)−1 → 0.

We now prove the Neumann boundary condition (in the viscosity sense)
(54) ∂nV = 0 on B ∩ {xn = 0}.
We proceed as previously: letting x0 ∈ B1 ∩ {xn = 0}, we pick a polynomial function defined
as in (51) with p > 0 touching V from below at a point x0. Writing V i(x) = V (x) + qixn +
O(|x−x0|2) (where the remainder term only depends on 1−|x0| and n but not on i, by uniform
regularity of harmonic functions) and similarly for V i, using the uniform convergence of the
graphs we get that in a neighborhood Bx0,ρ ∩ Ωϵ of x0 it holds for every i:

vϵ(x) ≥ αψ0(x), vϵ
i(x) ≥ αi(1 + ϵqi)ψ0(x), vϵ

i(x) ≥ αi(1 + ϵq
i
)ψ0(x) if δ > 0,

vϵ(x) ≥ αψ0(x),
√
vϵ

i(x)vϵ
i(x) ≥

√
αiαϵ

i

(
1 + ϵ

qi + q
i

2

)
ψ0(x) if δ < 0,

where for any t ≥ 0 we have defined
ψt(x) = xn + ϵφ(x) − ϵcϵ + t

and cϵ → 0+. Note that (qi, qi
) are uniformly bounded by a constant M only depending on n

and 1 − |x0|.

Taking then the largest tϵ ≥ 0 such that these inequalities are verified over Bx0,ρ ∩ Ωϵ for
every i, then there is a contact point xϵ either for the function vϵ or one of the vϵ

i , v
ϵ
i , with

xϵ → x0. Then as previously by maximum principle the contact point xϵ lies in ∂Ωϵ when ϵ is
small enough, and there is equality at xϵ in all the inequalities. Comparing the derivatives at
xϵ we get (with the viscosity condition)

1 ≥ |αϵ|2|∇ψtϵ(xϵ)|2 +
mϵ∑
i=1

1
2
(
|αϵ

i |2(1 + ϵqi)2 + |αϵ
i |2(1 + ϵq

i
)2
)

|∇ψtϵ(xϵ)|2

≥
(
1 − 2L2mϵ|δϵ|

1
2 (Mϵ+M2ϵ2)

)
|∇ψtϵ(xϵ)|2

≥
(

1 − M

mϵ
ϵ+ oϵ→0(ϵ)

)
(1 + ϵ∂nφ(xϵ)) ,

which is a contradiction for small enough ϵ since ∂nφ(xϵ) → p > 0. This ensures ∂nV ≤ 0 over
B1 ∩ {xn = 0} in the viscosity sense.

Likewise we get ∂nV ≥ 0 on {xn = 0} in the viscosity sense. As a consequence V verifies the
Neumann boundary condition (54). We may extend V by an even reflexion and the V − V i,
V − V i by odd reflexions, so that V , V i, V i extend as harmonic functions on B1 with values in
[−3, 3], and relying on (49) we obtain as previously a contradiction, finishing the proof in the
case mϵ → ∞. □

Corollary 5.17. Let L ≥ 1 and δ ∈ R. Then there exists ϵn(L) > 0, γn ∈ (0, 1) verifying the
following property. For any m ∈ N∗, δ ∈ R verifying L2m2|δ| 1

2 ≤ 1
8 , and for any ϵ < ϵn(L),

(v, v1, v1, . . . , vm, vm) ∈ Sm,δ(L) that is ϵ-flat in the sense of Definition 5.10, then there exists
g ∈ C1,γn

(
Bn−1

1/2 , [−ϵ, ϵ]
)

such that ∥g∥
C1,γn

(
Bn−1

1/2

) ≲ ϵ and

{v > 0} ∩
(
Bn−1

1/2 × [−1/2, 1/2]
)

=
{
(x′, xn) ∈ Bn−1

1/2 × (−1/2, 1/2) : xn > g(x′)
}
.
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Proof. This step comes from iterating the flatness improvement Proposition 5.16 as is done in
[44, Theorem 8.1]. □

This implies that for δ small enough the boundary of any minimizer Ω can be written as a
C3,γ graph on the sphere. This is the object of next Lemma.

Lemma 5.18. Suppose that |δ| ≪ k−(6+ 8
n)gn(k) and let Ω be a centered minimizer of (37).

Then there exists some dimensional γ = γn ∈ (0, 1), Dn > 0 and some h ∈ C3,γ
(
∂B,

[
−1

2 ,
1
2

])
with ∥h∥C3,γ(∂B) ≤ Dn such that

Ω = {s(1 + h(x))x, s ∈ [0, 1), x ∈ ∂B} .

Proof. For the C1,γ estimate on h we proceed exactly as in the proof of Lemma 4.13. The C3,γ

bound on h follows again from [22, Theorem 2.4]: indeed this time the optimality condition is

|∇wΩ|2 + T (Ω)2δ
l∑

i=k

|∇ui|2 = Q

where Q is the constant defined in equation (38), whence

|∇wΩ|2 = Q

1 + T (Ω)2δ
∑l

i=k
|∇ui|2
|∇wΩ|2

.

By [22, Theorem 2.4] applied to each ui

wΩ
we get ∥∇wΩ∥C1,γ(∂Ω) ≲ 1, which implies ∥h∥C2,γ(∂Ω) ≲

1, and then ∥h∥C3,γ(∂Ω) ≲ 1 by iterating again.
□

5.3. Minimality of the ball among nearly spherical sets. The purpose of this subsection
is to show the minimality of the ball for the functional T−1 + δ

∑l
i=k λi among nearly spherical

sets in the sense of Definition 4.15. This time in the definition of a nearly spherical set (see
Definition 4.15) we rather take γ and Dn as in Lemma 5.18 instead of Lemma 4.14, although
for simplicity we do not introduce additional definition and notations. We will keep that same
γ for the rest of the section. The minimality result is the following.

Proposition 5.19. Let Bh be a nearly spherical centered set such that ∥h∥L1(∂B) ≪ k−1− 4
n gn(k)

and suppose that |δ| ≪ k−(2+ 8
n)gn(k). Then we have

T (Bh)−1 + δ
l∑

i=k

λi(Bh) ≥ T (B)−1 + δ
l∑

i=k

λi(B)

with equality if and only if Bh = B.

The strategy is the same as in Subsection 4.4, with some differences due to the fact that
we are considering multiple eigenvalues. We will make use of Lemma 4.17 which still applies
to multiple eigenvalues, and as in the case of Proposition 4.16 we perform a second order
Taylor expansion of the functional T−1 +∑l

i=k λi: the main difference is that even though the
eigenvalues λk(B) = . . . = λl(B) are multiple (in which case each individual eigenvalue is not
shape differentiable), the sum ∑l

i=k λi((Id + ζ)(B)) is still smooth in ζ (and even analytic, see
[34, Theorem 2.6]), and has a critical point at the ball.

Proposition 5.20. Let Bh be a nearly spherical set such that ∥h∥L1(∂B) ≪ k−1− 4
n gn(k). Then

it holds ∣∣∣∣∣
l∑

i=k

(λi(Bh) − λi(B))
∣∣∣∣∣ ≤ Cn

k2+ 8
n

gn(k)∥h∥2
H1/2(∂B).
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Proof. We proceed as in the proof of Proposition 4.18: letting (µi(t), ui(t)) be given by Lemma
4.17, since ∥h∥L1(∂B) ≪ k−1− 4

n gn(k) we have by the same argument that |µi(t) − µj(t)| ≥
1
2gn(k) for any |t| ≤ 1 and i, j such that i ∈ {k, . . . , l}, j /∈ {k, . . . , l}. As a consequence,
uk(t), . . . , ul(t) is an orthonormal basis of eigenfunctions of the sum of eigenspaces correspond-
ing to (λi(Bth))i=k,...,l, and (µi(t))i=k,...,l is a permutation of (λi(Bth))i=k,...,l.

We have
d

dt

∣∣∣∣∣
t=0

l∑
i=k

λi(Bth) =
l∑

i=k

µ′
i(0) = −

�
∂B

(
l∑

i=k

|∇ui(0)|2
)
ζ · ν.

Because of the structure of the eigenfunctions of the ball, we know that ∑l
i=k |∇ui(0)|2 is a

constant on the boundary of the ball (independent on (µi(t), ui(t))), which we denote by cn,k,
and therefore

d

dt

∣∣∣∣∣
t=0

(
l∑

i=k

λi(Bth) + cn,k|Bth|
)

= 0.

Also by elliptic regularity we have cn,k ≲ k1+ 6
n . Using a Taylor formula and since |B| = |Bh|,

there exists some t ∈ [0, 1] such that

l∑
i=k

(λi(Bh) − λi(B)) = 1
2

(
l∑

i=k

µ′′
i (t) + cn,k

d2

ds2

∣∣∣∣∣
s=t

|Bsh|
)
.

To reduce notations we fix t and we do not write the dependency in t in the rest of the proof.
We thus set Ω = Bth, ui = ui(t), vi := u′

i(t) and write µi, µ′
i, µ′′

i in place of µi(t), µ′
i(t), µ′′

i (t).
The expression of µ′′

i takes the form

(55) µ′′
i =

�
Ω

2
(
|∇vi|2 − µiv

2
i

)
+
�

∂Ω
|∇ui|2

[
H(ζ · ν)2 − b(ζτ , ζτ ) + 2ζτ · ∇|∂Ω(ζ · ν)

]
and each vi verifies

(56)


−∆vi − µivi = µ′

iui in Ω,
vi = −(ζ · ν)∂νui on ∂Ω,�

Ω(viuj + vjui) = 0, ∀j ∈ N∗,

where the last line is a consequence of
�

Bth
ui(t)uj(t) = δij for all t.

The “geometric” terms in (55) are estimated exactly as in the proof of Proposition 4.18. We
thus have ∣∣∣∣∣

�
∂Ω

|∇ui|2
[
H(ζ · ν)2 − b(ζτ , ζτ ) + 2ζτ · ∇|∂Ω(ζ · ν)

]∣∣∣∣∣ ≲ k1+ 6
n ∥h∥2

H1/2(∂B).

To estimate the first term of (55), there is a difference with the case of a simple eigenvalue
lying in the fact that we do not have (and do not expect) a good control of

�
Ω viuj when

i, j ∈ {k, . . . , l}. Refining the analysis we will see that these terms in fact cancel in the sum∑l
i=k µ

′′
i .

Set I = {k, . . . , l} and for each i ∈ I, write vi = zi + wi with zi the harmonic extension of
−(∂νui)ζ · ν and wi ∈ H1

0 (Ω). The functions zi verify the same estimates as in the proof of
Proposition 4.18:

∥zi∥H1(Ω) ≲ k
1
2 + 4

n ∥h∥H1/2(∂B), ∥zi∥L2(Ω) ≲ k
1
2 + 2

n ∥h∥H1/2(∂B).

The function wi verifies −(∆ + µi)wi = µizi + µ′
iui which ensures

(57) ∀j ̸= i, (µj − µi)
�

Ω
wiuj = µi

�
Ω
ziuj
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or, written differently,

(58) ∀j ̸= i, (µj − µi)
�

Ω
viuj = µj

�
Ω
ziuj.

We have∑
i∈I

�
Ω

(
|∇vi|2 − µi|vi|2

)
=
∑
i∈I

�
Ω

(
|∇zi|2 + |∇wi|2 − µiv

2
i

)

=
∑
i∈I

�
Ω

|∇zi|2 +
∑

i∈I,j∈N∗
µj

(�
Ω
wiuj

)2

− µi

(�
Ω
viuj

)2

=
∑
i∈I

�
Ω

|∇zi|2 +
∑

i∈I,j /∈I

(
µ2

i

µj − µi

− µi

)(�
Ω
ziuj

)2

+
∑

i∈I,j∈I

µj

(�
Ω
ziuj

)2

− (µj − µi)
(�

Ω
viuj

)2

,

where we used (58) in the last line. Thanks to the orthogonality conditions from (56), we have∑
i,j∈I(µi − µj)

(�
Ω viuj

)2
= 0, hence we conclude∣∣∣∣∣∑

i∈I

�
Ω

(
|∇vi|2 − µi|vi|2

)∣∣∣∣∣ ≲∑
i∈I

∥∇zi∥2
L2(Ω) + gn(k)−1k

4
n

∑
i∈I

∥zi∥2
L2(Ω)

≲ gn(k)−1k1+ 8
n |I|∥h∥2

H1/2(∂B)

≲ gn(k)−1k2+ 8
n ∥h∥2

H1/2(∂B).

As a consequence,
∣∣∣∑l

i=k µ
′′
i (t)

∣∣∣ ≲ k2+ 8
n gn(k)−1∥h∥2

H1/2(∂B) which ends the proof.
□

Proof of Proposition 5.19. This is done exactly as in the proof of Proposition 4.16.
□

5.4. Conclusion.

Proof of Proposition 5.1. We proceed exactly as in the proof of Proposition 4.1. Since |δ| ≪
k−(3+ 4

n), by application of Proposition 5.5 there exists a minimizer Ω (which we can suppose to
be centered) with |Ω∆B| ≲ k3+ 4

n |δ|. By Lemma 5.18, since |δ| ≪ k−6− 8
n gn(k) we have Ω = Bh

where ∥h∥C3,γ(∂B) ≤ Dn, so that Ω is a nearly spherical set. Since

∥h∥L1(∂B) ≲ |Ω∆B| ≲ k3+ 4
n |δ|.

then for k3+ 4
n |δ| ≪ k−2− 8

n gn(k) (which is verified for |δ| ≪ k−6− 10
n gn(k)), we can therefore

apply Proposition 5.19 to conclude that Ω is a ball.
□

6. Discussion and consequences

6.1. About the sharpness of the results. We prove in the proposition below that the
exponents α = 1/2 and α = 1 on the right-hand side of (1) given by Theorems 1.1 and 1.2
are sharp for every k in dimension n = 2, and that similarly Theorem 1.3 is sharp for any
k ̸= 2. Proving it for any dimension would require a full second order analysis of the spectrum
of smooth deformations of the ball in every dimension, in the spirit of the two dimensional work
of Berger in [3].
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Proposition 6.1. Let n = 2, k ≥ 2. There exists a constant ck > 0 and Ωϵ = ϕϵ(B) a sequence
of domains (in A) with ∥ϕϵ − Id∥C1 ≤ ϵ such that
(59) if λk(B) is simple |λk(Ωϵ) − λk(B)| ≥ ck(λ1(Ωϵ) − λ1(B)),

(60) if λk(B) is double |λk(Ωϵ) − λk(B)| ≥ ck (λ1(Ωϵ) − λ1(B))
1
2 ,

and moreover if λk(B) is double and k ̸= 2, there exists a sequence (Ωϵ) such that
|λk(Ωϵ) − λk(B) + λk+1(Ωϵ) − λk+1(B)| ≥ ck (λ1(Ωϵ) − λ1(B)) .

Proof. Suppose first λk(B) is simple. Then, following [3, Lemmas 1 and 3] we get an explicit
perturbation ϕϵ of the identity, expressed as a Fourier series, which is preserving the area at
the second order and for which the second order term in the asymptotic developments of both
λ1(ϕϵ(B)) and λk(ϕϵ(B)) are non vanishing, proving (59).

If λk(B) is double, (for instance λk(B) = λk+1(B), the other case λk(B) = λk−1(B) being
similar), then for any vector field ζ ∈ C∞

c (R2,R2) such that
�

∂B
ζ · x = 0 the directional

derivatives of λk, λk+1 in the direction ζ are respectively the first and second eigenvalues of the
symmetric matrix (

−
�

∂B
|∇uk|2ζ · x −

�
∂B

(∇uk · ∇uk+1)(ζ · x)
−
�

∂B
(∇uk · ∇uk+1)(ζ · x) −

�
∂B

|∇uk+1|2ζ · x

)
.

Moreover, since the functions (uk, uk+1) are not radial, we may choose a field ζ such that�
∂B

|∇uk|2ζ · x ̸= 0, which gives a non-zero matrix with two nonzero (opposite) eigenvalues.
Letting Ωϵ = (Id+ϵζ)(Ω)

|(Id+ϵζ)(Ω)|1/2 we have |λk(Ωϵ) − λk(B)| > cϵ for some c > 0 and small enough ϵ,
whereas λ1(Ωϵ) − λ1(B) < Cϵ2.

The last property is a consequence of the proof of [3, Lemma 5]: in this paper, the author
defines Ωϵ = Bhϵ with

hϵ(θ) =
∑
n∈Z

(ϵan + ϵ2bn)einθ,

where all but a finite number of coefficients are non-zero, and the coefficients are chosen such
that h is real-valued. Let k ̸= 2 such that λk(B) = λk+1(B), then in the proof of [3, Lemma
5], they prove the existence of a choice of coefficients (an), (bn), such that either a2 or a3 is
non-zero and for j ∈ {k, k + 1} we have

|Ωϵ|λj(Ωϵ) = |B|λj(Ω) − ckϵ
2 + O(ϵ3)

for some constant ck > 0. On the other hand, since a2 or a3 is non-zero, then for some constant
dk > 0 we have

|Ωϵ|λ1(Ωϵ) ≥ |B|λ1(B) + dkϵ
2.

Thus, Ωϵ is an example of sequence satisfying the last property. □

6.2. Proof of Corollary 1.6: the reverse Kohler-Jobin inequality. The linear bound of
Theorem 1.2 (or equivalently Proposition 4.1) gives us a non-trivial conclusion on the reverse
of the Kohler-Jobin inequality from Corollary 1.6. This answers, in full generality, the question
raised in [43].

Proof of Corollary 1.6. By Proposition 4.1 there exists some δn > 0 such that A ∋ Ω 7→
T−1(Ω) − δnλ1(Ω) is minimal on the ball. Let p ≥ 1 and Ω ∈ A be such that T (Ω)λ1(Ω)

1
p >

T (B)λ1(B)
1
p , then
λ1(Ω)
λ1(B) >

(
T (B)
T (Ω)

)p

≥ 1 + p

(
T (B)
T (Ω) − 1

)
≥ 1 + δnpT (B) (λ1(Ω) − λ1(B))

which implies p < pn := (δnT (B)λ1(B))−1. □
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Note that we do not have explicit information on the value of pn even in low dimension as the
proof of Proposition 4.1 relies on a contradiction and compactness argument at several points.

6.3. Stability of more general spectral functionals and proof of Theorem 1.5. The lin-
ear bound on a cluster of eigenvalues in Theorem 1.3 is established for the sum∑l

i=k [λi(Ω) − λi(B)];
one could argue that this choice of function is arbitrary and we could, for instance, replace it
by the geometric mean. We thus consider in this section the general functionals verifying the
hypotheses given by Theorem 1.5, and prove the stability result stated in this result.

Proof of Theorem 1.5. It is useful to partition J1, kK into (Is)s=1,...,p made of indices of clusters
of eigenvalues. Let cs be the common value of ∂F

∂λi
(λ1(B), . . . , λk(B)) for i ∈ Is. Then there

exists some C > 0 such that for any λ ∈ (R∗
+)k:

∣∣∣∣∣∣F (λ1, . . . , λk) − F (λ1(B), . . . , λk(B)) −
p∑

s=1
cs

∑
i∈Is

[λi − λi(B)]
∣∣∣∣∣∣ ≤ C

l∑
i=k

(λi − λi(B))2.

Applying Theorem 1.3 to each ∑i∈Is
[λi(Ω) − λi(B)] and Theorem 1.1 to each (λi(Ω)−λi(B))2:

we get some constant D > 0 such that

(61) |F (λ1(Ω), . . . , λk(Ω)) − F (λ1(B), . . . , λk(B))| ≤ D
(
T (Ω)−1 − T (B)−1

)
T (Ω)−1.

Let δ ∈ R, consider Ω ∈ A a domain such that
T−1(Ω) + δF (λ1(Ω), . . . , λk(Ω)) ≤ T−1(B) + δF (λ1(B), . . . , λk(B))

for some δ ∈ R. Due to Proposition 2.1, this gives for some Cn,k > 0
T−1(Ω) ≤ T−1(B) + δF ((λi(B))i=1,...,k) + C|δ|(1 + |(λi(Ω))i=1,...,k|)

≤ T−1(B) + δF ((λi(B))i=1,...,k) + CCn,k|δ|(1 + T−1(Ω)).

As a consequence, when |δ| is small enough then T−1(Ω) ≤ 2T−1(B). Equation (61) then gives

|F (λ1(Ω), . . . , λk(Ω)) − F (λ1(B), . . . , λk(B))| ≤ 2DT (B)−1
(
T (Ω)−1 − T (B)−1

)
which gives the result when |δ| ≤ (2D)−1T (B). □

From the Kohler-Jobin inequality, we get:

Corollary 6.2. Let F be as in Theorem 1.5, then there exists δF > 0 such the functional
Ω ∈ A 7→ λ1(Ω) + δF (λ1(Ω), . . . , λk(Ω))

is minimal on the ball as soon as |δ| ≤ δF .

As the reader noticed, in the whole paper we kept track of the dependence of constants in
terms of k the order of the involved eigenvalues; this allows us to consider spectral functionals
which depend on an infinite number of eigenvalues, such as the trace of the heat kernel

ZΩ(t) :=
�

Ω
Kt(x, x)dx =

∑
k≥1

e−tλk(Ω).

In the following proposition we denote an =
(

n
n+2

)
4π2

ω
4/n
n

so that λk(Ω) ≥ ank
2
n thanks to

Proposition 2.1.

Proposition 6.3. Let f ∈ C2(R∗
+,R) be a smooth function such that

Bn(f) :=
∑
i≥1

i7+ 8
n sup

λ≥ani
2
n

|f ′(λ)| + i6+ 10
n sup

λ≥ani
2
n

|f ′′(λ)|
 < +∞.
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Then there exists Cn > 0 such that for any Ω ∈ A we have∑
i≥1

(f(λi(Ω)) − f(λi(B))) ≤ CnBn(f)(λ1(Ω) − λ1(B)).

In particular, this gives
(62) |ZΩ(t) − ZB(t)| ≤ Cnt

−(4n+3)(λ1(Ω) − λ1(B)).

Note that the hypotheses above apply also to f(λ) = λ−s for any s > 4n + 3. To prove
Proposition 6.3, we start with the following Lemma:

Lemma 6.4. There exists constants cn, Dn > 0 such that for any k ≤ l satisfying λi+1(B) −
λi(B) ≤ cni

2
n

−1 for every i ∈ {k, . . . , l}, we have l ≤ Dnk.

Proof. Let cn := an

n
, then for any such k, l we have

anl
2
n ≤ λl(B) ≤ λk(B) + cn

l−1∑
i=k

i
2
n

−1 ≤
(

1 + 4
n

)
λ1(B)k 2

n + ncn

2 l
2
n

so with our choice of cn:
l

k
≤
((

1 + 4
n

) 2λ1(B)
an

)n
2

=: Dn.

□

Proof of Proposition 6.3. Let us first prove an a priori estimate on λ1(Ω). Indeed by application
of Theorem 1.1 we have for any Ω∈ A,∑

i≥1
f(λi(Ω)) − f(λi(B)) ≲

∑
i≥1

sup
t≥ani

2
n

|f ′(t)|i2+ 4
nλ1(Ω) 1

2 (λ1(Ω) − λ1(B)) 1
2

≲ Bn(f)(λ1(Ω) − λ1(B)) if λ1(Ω) ≥ 2λ1(B)

We now suppose without loss of generality that λ1(Ω) ≤ 2λ1(B). Using lemma 6.4 we split N∗

into a partition of intervals (Ip)p∈N∗ such that sup(Ip) ≤ Cn inf(Ip) and for any i = sup(Ip) we
have λi(B) < λi+1(B) − cni

2
n

−1: for this we define i to be in the same interval as i+ 1 as soon
as

λi+1(B) − λi(B) < cni
2
n

−1

where cn is the constant lemma 6.4. As a consequence using Remark 5.2 for each Ip we have a
stability result ∣∣∣∣∣∣

∑
i∈Ip

λi(Ω) − λi(B)
∣∣∣∣∣∣ ≲ (inf Ip)7+ 8

n (λ1(Ω) − λ1(B))

Now each Ip is split into an (ordered) partition of intervals (Ip,s)s=1,...,sp such that λi(B) = λj(B)
if and only if there exists p, s such that i, j ∈ Ip,s. Let Jp,s = ∪s′≥sIp,s′ , the stability result on
Jp,s gives ∣∣∣∣∣∣

∑
i∈Jp,s

λi(Ω) − λi(B)
∣∣∣∣∣∣ ≲ (inf Ip)6+ 10

n (λ1(Ω) − λ1(B))
λmin Jp,s(B) − λmin Jp,s−1(B) .

We write∑
i≥1

(f(λi(Ω)) − f(λi(B))) ≤
∑
i≥1

f ′(λi(B)) (λi(Ω) − λi(B)) + 1
2
∑
i≥1

sup
t≥ani

2
n

|f ′′(t)|(λi(Ω) −λi(B))2.

The second term is estimated using Theorem 1.1:

1
2
∑
i≥1

sup
t≥ani

2
n

|f ′′(t)|(λi(Ω) − λi(B))2 ≲

∑
i≥1

i4+ 8
n sup

t≥ani
2
n

|f ′′(t)|
 (λ1(Ω) − λ1(B)).
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The first term is split as ∑p≥1
∑

i∈Ip
f ′(λi(B)) (λi(Ω) − λi(B)) and, denoting is = inf(Ip,s)(=

inf(Jp,s), each term is bounded by∑
i∈Ip

f ′(λi(B)) (λi(Ω) − λi(B)) = f ′(λi1(B))
∑
i∈Ip

(λi(Ω) − λi(B))

+
sp∑

s=2

[f ′(λis(B)) − f ′(λis−1(B))
] ∑

i∈Jp,s

(λi(Ω) − λi(B))


≲ f ′(λi1(B))(inf Ip)7+ 8
n (λ1(Ω) − λ1(B))

+
sp∑

s=2
sup

t≥ani
2
n
s−1

|f ′′(t)|(λis(B) − λis−1(B))(inf Ip)6+ 10
n (λ1(Ω) − λ1(B))

λis(B) − λis−1(B)

≲ f ′(λi1(B))(inf Ip)7+ 8
n (λ1(Ω) − λ1(B))

+
sp∑

s=2
sup

t≥ani
2
n
s−1

|f ′′(t)|(inf Ip)6+ 10
n (λ1(Ω) − λ1(B)).

Summing this for p ∈ N∗ we find ∑
i≥1 (f(λi(Ω)) − f(λi(B))) ≤ CnBn(f)(λ1(Ω) − λ1(B)) for

some Cn > 0, thus proving the first claim.
The bound (62) follows by direct estimates of Bn(ft) for the function ft(λ) = e−tλ. Indeed,

Bn(ft) =
∑
i≥1

(
i7+ 8

n t exp
(
−anti

2
n

)
+ i6+ 10

n t2 exp
(
−anti

2
n

))
= t−3−4n

∑
i≥1

t
n
2
(
t

n
2 i
)7+ 8

n exp
(

−an

(
t

n
2 i
) 2

n

)
+ t−4−2n

∑
i≥1

t
n
2
(
t

n
2 i
)6+ 10

n exp
(

−an

(
t

n
2 i
) 2

n

)
and both sums converge to a finite limit as t → 0, and to 0 when t → +∞. We can therefore
apply the previous estimate to deduce (62).

□
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