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Abstract
We study a higher order analogue to the Alt-Caffarelli functional that arises in several

shape optimization problems, among which the minimization of the critical buckling load of
a clamped plate of fixed area. We obtain several regularity results up to the boundary in
two dimensions, in particular we prove the full regularity of the boundary (analytic outside
angles of opening ≈ 1.43π) near any point of density less than 1 of the optimal shape. These
results are based on the monotonicity formula discovered by Dipierro, Karakhanyan, and
Valdinoci in [11], which we improve with a new epiperimetric inequality.

Contents
1 Introduction 2

1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Notations and outline of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminary estimates 10

3 Monotonicity formula and blow-ups 16
3.1 Monotonicity formula of Dipierro, Karakhanyan and Valdinoci recast in exponen-

tial coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Classification of 2-homogeneous minimizers . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Existence of blow-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Epiperimetric inequality 32
4.1 Buckling eigenbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Single mode case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Removal of higher modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 General case v ̸= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Estimates on biharmonic extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Proof of the epiperimetric inequality . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Description of flat, angular and isolated boundary points. 56
5.1 Uniqueness and speed of convergence of blow-ups . . . . . . . . . . . . . . . . . . 56
5.2 C1,α regularity of the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Higher regularity of the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1



6 Quasi-minimizers 68
6.1 Regularity of quasi-minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.1 Cacciopoli inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.2 BMO estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.3 Nondegeneracy lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.4 Sequence of minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.5 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.6 Epiperimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.7 Uniqueness and speed of convergence of blow-ups . . . . . . . . . . . . . . 75
6.1.8 Boundary decomposition for quasiminimizers . . . . . . . . . . . . . . . . . 76

6.2 Application to buckling eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1 Introduction

1.1 General context
The goal of this paper is to study a variational formulation of a fourth order free boundary
problem, which is a natural fourth order version of the classical Alt-Caffarelli free boundary
problem from [1].

Let D some open subset of R2 and let H2(D) = {u ∈ L2(D) : ∇u,∇2u ∈ L2(D)}. For u ∈
H2(D) we define

E(u;D) =
ˆ

D

(
|∆u|2 + χu̸=0

)
, (1.1)

where χ designates the indicator function, meaning χu̸=0(x) =
1 if u(x) ̸= 0

0 if u(x) = 0
. We say u is a

minimizer of E(· ;D) if for every v ∈ H2(D) such that {u ̸= v} is compactly contained in D, we
have

E(u;D) ≤ E(v;D).
We will denote the set of minimizers of E(· ;D) by M (D).

When the |∆u|2 term in the energy is replaced by |∇u|2, and if one assumes u ≥ 0 near ∂D, as
mentioned above we obtain the classical (one-phase) Alt-Caffarelli problem and it is well-known
in this context that solutions u are nonnegative, locally Lipschitz in D (this regularity is called the
optimal regularity, as one expects the gradient to be discontinuous between a region where u = 0
and a region where u > 0), and that the free boundary ∂{u > 0} is analytic. In higher dimension
(D ⊂ Rd for some d ≥ 2), it is known that the free boundary is fully regular for d = 3, 4, that
singularities may appear in high dimension (d ≥ 7), and the situation is still open in dimension
d = 5, 6 (see for instance [36, Sec. 1.4]).

The situation with this fourth order version is more involved, and the existing literature is
more scarce. In [11], the authors studied a similar problem where {u ̸= 0} is replaced by {u > 0}:
as mentioned in [13], while these two cases lead to the same problem when considering the Alt-
Caffarelli functional (as the energy of u+ is lower than the energy of u), when dealing with a
fourth order analogue, the two resulting problems have very different behaviour. The problem
under study here is therefore closer to the one studied in [13], although the mathematical tools
will have similarities with [11], particularly with the use of a monotonicity formula as explained
later in this introduction.
Remark 1. By integration by parts, u belongs to the set of minimizers M (D) if and only if it is
a minimizer (in the same sense) of one of the following functionals:

u 7→
ˆ

D

(
|∇2u|2 + χu̸=0

)
or u 7→

ˆ
D

(
(∂x,xu− ∂y,yu)2 + 4 (∂x,yu)2 + χu̸=0

)
.
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The purpose of this paper is twofold:

• On one hand, we study the regularity properties of the free boundary related to minimizers of
E(·, D): in particular, we classify the blow-ups for this problem, highlighting the possibility
of angular singularities, and we provide regularity properties near flat and angular points
of the free boundary, using an approach based on a monotonicity formula (in the spirit of
[11]) and an epiperimetric inequality (in the spirit of [30, 32] and subsequent works). Some
questions remain open, in particular the behavior of the free boundary near points of density
1 of the support of u, and the optimal regularity for u which is expected to be C1,1.
We describe these results in Section 1.3 below.

• On the other hand, we extend our results to more general energies, by introducing a suitable
notion of quasi-minimizer, and we show that this applies in particular to the minimization
of buckling eigenvalues. This is described in Section 1.2 below.

Note that in the whole paper, we only consider the two-dimensional case (though as seen
in the next paragraph, this includes several rotationally symmetric three-dimensional problems).
Another natural variant would be to study minimizers of

v⃗ ∈ H1(D,Rd) 7→
ˆ

D

(
|∇v⃗|2 + χv⃗ ̸=0

)
(1.2)

under the constraint ∇ · v⃗ = 0. Indeed for d = 2, the minimization of the functional (1.2) is
equivalent (by identifying v⃗ = ∇⊥u) to the minimization of the functional

u ∈ H2(D,R) 7→
ˆ

D

(
|∆u|2 + χ∇u̸=0

)
. (1.3)

When {∇u = 0} is fully included (up to a negligible set) in a single level set of u, then a minimizer
of (1.3) is (up to a translation) a minimizer of (1.1), however the reciprocal is not true in general.

A minimizer v⃗ of (1.2) is expected to verify Stokes’ equation with an overdetermined boundary
condition (v⃗ = 0, ∥∇v∥ = 1) on the regular free boundary.

This is reminiscent of some vectorial versions of the one phase Alt-Caffarelli problem, see for
instance [21, 7, 24, 25, 23, 6, 5], and the recent survey [35]. A notable difference is that in each
of these works, some version of the maximum principle is involved to prove the regularity of the
boundary, something which is not available for the Stokes system.

1.2 Motivations
Generalized versions of the functional E(· ;D) arise in several settings: we give examples coming
both from spectral optimization and fluid mechanics.

Towards a Faber-Krahn inequality for the first buckling eigenvalue: Consider the first
buckling eigenvalue of a clamped plate of shape Ω

Λ1(Ω) = inf
u∈H2

0 (Ω)

´
Ω |∆u|2´
Ω |∇u|2

(1.4)

defined for any open set Ω ⊂ R2 of finite area (here H2
0 (Ω) is the H2-closure of compact support

functions in Ω, see subsection 1.4 for notations). It was conjectured by Pólya and Szegö in
[34, 27] that among open sets of given area, Λ1(Ω) is minimal when Ω is a disk, by analogy with
Rayleigh’s since solved conjectures on the principal frequency of membranes or of clamped plates.
It is known by an argument of Weinberger and Willms (reproduced in [17, Prop 4.4] and [2]) that
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under the assumption that there exists a minimizer Ωopt that is bounded, of class C2, and simply
connected, then Ωopt must be a disk. The regularity hypothesis is central as it implies (by a shape
derivative argument) that ∆u is locally constant on ∂Ω.

One of the motivations in this work is to partially weaken the regularity hypotheses of Wein-
berger & Willms’s argument: we will prove that minimizers of Λ1(Ω) under area constraint are
necessarily bounded, and that they satisfy some partial regularity properties, stated in Theorem
8. In other words, we lower the hypothesis on Weinberger and Willms’s argument on buckling
eigenvalue as follows:

Assume Ω ⊂ R2 is a minimizer of |Ω|Λ1(Ω) among open sets of finite area, such that Ω is
simply connected and for all p ∈ ∂Ω we have

lim inf
r→0

|Dp,r ∩ Ω|
|Dp,r|

<
t1
2π (≈ 0.715). (1.5)

Then Ω is a disk.

Here Dp,r is the disk centered at p of radius r and t1 ≈ 1.43π is uniquely defined by tan(t1) = t1
and t1 ∈ (π, 2π). In particular, if Ω is a minimizer and Ω is convex, then it must be a disk (this
follows from the fact that t1 > π). These results are discussed in subsection 6.2, as well as some
alternative conditions on Ω.

Remark 2. Note that the topological hypothesis of Weinberger & Willms (Ω being simply con-
nected) may be considered as a constraint, in an attempt to prove the minimality of the disk only
among simply connected sets of given area. However, proving the regularity of the boundary under
this type of topological constraint goes beyond the scope of this work: as far as the authors know,
this is not well-understood even for the classical Alt-Caffarelli problem.

Let us now mention some other problems that lead to similar free boundary problems and
where our results may apply, though they all exhibit some specific difficulties, which is why we
leave these applications for future work.

For a rotationally symmetric set K ⊂ R3, the drag of K in the direction e⃗x is defined as

D(K) = inf

ˆ
R3\K

∣∣∣∣∣∇v⃗ + (∇v⃗)∗

2

∣∣∣∣∣
2

, v⃗ ∈ e⃗x +H1(R3,R3) : ∇ · v⃗ = 0, v⃗|∂K ≡ 0
 . (1.6)

The minimization of D(K) under the constraint |K| = 1 has been widely studied, see for instance
in [26, 4] the study of a conjectured optimal shape with two sharp ends of angular opening 2π

3 .
This has also been considered in two dimensions in [31], with an explicit conjectured optimal
shape for the drag with two angles of opening ≈ 0.57π (which corresponds to 2π − t1 where
t1 is as defined in (1.5): the reason for this precise angle is explained in the classification of
2-homogeneous minimizers below). Let us also mention the works [29, 3] for the minimization of
the energy dissipated by a fluid following Stokes’ equation in a pipe.

In the three-dimensional rotationally invariant case, we can define a stream function u ∈
H2

loc(R × R>0,R) by v⃗(x, y, 0) = y−1∇⊥
(
y

1
2u
)
, and it can be checked that the minimality of the

drag D(K) under the constraint |K| = |B| corresponds to the minimality of the energy

u 7→
ˆ

D

(
|∆u|2 + 3

2y
−2|∇u|2 − 63

16y
−4u2

)

for any D ⋐ R×R>0, under the constraint 2π
´
R2 yχ∇u̸=0 = 1: this is a variant of the energy (1.3),

and we consider the study of (1.1) to be a first step towards understanding this free boundary
problem.
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1.3 Main results
Let us first remind several known results from the literature, essentially based on [11, 13] (although
the reference [11] deals with a different free boundary problem, we will see that several tools
developed in [11] find applications here).

We start by studying the regularity of u ∈ M (D). In [13] it is proved that any minimizer u
of E(· ;D) is in C1,α

loc (D,R) for any α ∈ (0, 1), and more precisely that

∆u ∈ BMOloc(D,R).

The expected optimal regularity for u is u ∈ C1,1
loc (D,R), which we will not obtain here. Let us

mention the work [33] where the regularity of the optimal shape for Ω 7→ Λ1(Ω)|Ω| (which is
essentially the same free boundary problem) is analyzed, with an argument for the C1,1 regularity
that appears erroneous to the authors.

Then we note that a function u is a solution in D if and only if x 7→ r−2u(rx) is also a solution
in D/r, for any r > 0, so the expected regularity of the boundary is linked to the study of 2-
homogeneous minimizers. As will be seen in subsection 3.2, we prove that these 2-homogeneous
minimizers belong to one of the four following types:

(I) Flat solutions:

u = suI ◦ rot, uI (x, y) = y2
+
2 , (1.7)

where s ∈ {−1,+1} and rot is a rotation.

(II) Angular solutions:

u = suII ◦ rot, uII
(
reiθ

)
= r2

4

(
1 − cos(2θ) − 2

t1

(
θ − sin(2θ)

2

))
χ0≤θ≤t1 , (1.8)

where t1 ≈ 1.43π is the unique fixed point of tan in (π, 2π), s ∈ {−1,+1} and rot is a
rotation.

(III) Nodal solutions:

u = λuIII ◦ rot, uIII (x, y) = y2

2 , (1.9)

where |λ| ≥ 1 and rot is a rotation.

(IV) Isolated points:

u(x, y) = ua,b,c (x, y) = a(x2 + y2) + b(x2 − y2) + 2cxy, (1.10)

for some (a, b, c) ∈ R3 such that a2 ̸= b2 + c2 (a2 = b2 + c2 corresponds to the previous case).

Note that we do not claim each of these functions are minimizers, only that all homogeneous
minimizers are among these. A detailed discussion on this issue may be found in Remark 28.

A central property of elements of M (D1) is the monotonicity formula discovered in a different
context by Dipierro, Karakhanyan, and Valdinoci in [11, Th. 1.12], which may be seen as a
higher-order analogue of the monotonicity formula introduced by Weiss in [40] for the classical
Alt-Caffarelli problem. We define

W (u, r) = 1
r2

ˆ
Dr

{
|∆u|2 + χu̸=0

}
+D(u, r), (1.11)
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where

D(u, r) = 1
r

ˆ
∂Dr

{
2∂ru∆u

r
− 10(∂ru)2

r2 − 4u∆u
r2 + 24u∂ru

r3 + 4∂θu∂r,θu

r3 − 16u2

r4 − 6(∂θu)2

r4

}

is a “corrective term” that is well-defined for almost every r. Then we show (see Theorem 19)
that r 7→ W (u, r) is continuous, nondecreasing, and it is constant if and only if u is one of the
2-homogeneous minimizers described above. Moreover, in this case we identify

W (u, r) = |{u ̸= 0} ∩ D1| ∈
{
π

2 ,
t1
2 , π

}
,

the value π
2 corresponding to type I, t1

2 corresponding to type II, and π corresponding to types III
and IV. For a general minimizer u, we write W (u, 0) ∈ R ∪ {−∞} the limit of W (u, r) as r → 0
(which always exists since r 7→ W (u, r) is nondecreasing).

When u ∈ M (D), it is known from [13, Th. 2] (see also section 2 below) that u and ∇u are
continuous, and we define the support of u as the open set

Spt(u) = {u ̸= 0} ∪ {∇u ̸= 0}.

Defining the support of a function as an open set may seem non-standard, however it is necessary
to capture some part of the free boundary that would otherwise be in the interior of the support.
Our main result is as follows:

Theorem 3. Let D be an open set of R2 and u ∈ M (D). Then u ∈ C1,α
loc (D) for every α ∈ (0, 1)

and there is a partition
D ∩ ∂Spt(u) = Ru ⊔ Au ⊔ Nu ⊔ Ju ⊔ Eu,

where

• Ru (regular points) is the regular boundary of Spt(u), meaning every point for which Spt(u)
is (after rotation) the epigraph of an analytic function in a neighbourhood, Ru is relatively
open in ∂Spt(u), u|Spt(u) is analytic up to Ru, and the trace of ∆u|Spt(u) on Ru takes values
in {−1,+1}.

• Au (angular points) is a discrete set where two connected components of Ru (where ∆u|Ru

takes opposite signs) join with an angular opening t1.

• Nu (nodal points) is the set of points of ∂Spt(u) such that u is biharmonic in a neighbour-
hood. It is a disjoint union of singletons, and of real analytic curves in ∂Spt(u) on which
|∆u| ≥ 1.

• Ju (junction points) is the set of points p, such that r−2u(p + r·) converges as r → 0
in H2

loc(R2) to a homogeneous solution of type III and such that for any r > 0, we have
|{u = 0} ∩ Dp,r| > 0.

• Eu (explosion points) is a set of points p ∈ ∂Spt(u) such that

lim sup
r→0

|{u = 0} ∩ Dp,r|
πr2 = 0, W (u(p+ ·), 0) < π, ∥up,r∥H1(D1) −→

r→0
+∞,

where up,r := r−2u(p + r·). Moreover, any accumulation point of up,r

∥up,r∥H1(D1)
in H1(D1) as

r → 0 is a non-zero 2-homogeneous biharmonic polynomial.

More details on the behavior of u at points of Au and Ju may be found in Theorems 6 and 7.
In order to close the regularity question in this context, the two remaining open problems are:
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• Whether the explosion set Eu is empty, which is strongly linked to the conjectured C1,1

regularity of u.

• A finer understanding of the junction set Ju. A key step here would be to first prove the
blow-up of u at a point of Ju is necessarily ±uIII ◦ rot for some rotation rot (in other words,
proving that |λ| = 1 in (1.9)).

The proof of Theorem 3 can be found in section 5, and is split into several results: Theorem
4 gives the existence and uniqueness of blow-ups at any boundary point that is not of density 1
in the support of u, or at points for which W (u, 0) is sufficiently large, and it provides a speed
of convergence to these blow-ups as well. Then Theorems 5, 6 and 7 are ϵ-regularity results for
minimizers that are assumed to be close to one of the homogeneous solutions: for type I and
II we prove that any solution that is close enough to these is itself a smooth perturbation of a
homogeneous solution, whereas for type III and IV we prove a quantified speed of convergence of
the blow-up sequence.

Theorem 4 (Existence and uniqueness of blow-ups). There exists γ ∈ (0, 1) such that the fol-
lowing holds: let D ⊂ R2 be an open set and u ∈ M (D). Let p ∈ D ∩ ∂Spt(u) such that one of
the following hypothesis is verified:

(i) lim infr→0
|Spt(u)∩Dp,r|

πr2 < 1.

(ii) W (u(p+ ·), 0) ≥ π.

Define the blow-up sequence up,r(z) = u(p+rz)
r2 , then there exists up,0 ∈ H2

loc(R2) a 2-homogeneous
minimizer of type I or II in case (i), III or IV in case (ii), such that

∥up,r − up,0∥H1(D1) = Or→0 (rγ) .

In particular, this implies that any point that is not of Lebesgue density 1 in Spt(u) has
density 1

2 (corresponding to type I blow-ups) or t1
2π

(corresponding to type II blow-ups).

We now state the first ϵ-regularity theorem: any minimizer that is H1-close to a flat solution
is itself smooth.

Theorem 5 (ϵ-regularity : flat case). There exist α, κ ∈ (0, 1), ϵ, C > 0 with the following
property: for any u ∈ M (D1) such that

∥u− uI∥H1(D1) ≤ ϵ,

there exists an analytic function h :
(
−1

2 ,
1
2

)
→
(
−1

2 ,
1
2

)
such that

∥h∥C1,α((− 1
2 , 1

2)) ≤ C∥u− uI∥κ
H1(D1)

and
D 1

2
∩ Spt(u) =

{
(x, y) ∈ D 1

2
: y > h(x)

}
.

We now state the second ϵ-regularity theorem at angular boundary points: one notable dif-
ference in the statement is that we now assume that W (u, 0) ≥ t1

2 . This hypothesis is verified for
instance when there exists one blow-up of type other than I at the origin, by Lemma 29.
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Theorem 6 (ϵ-regularity : angular case). There exist ν, µ ∈ (0, 1), ϵ, C > 0 with the following
property: for any u ∈ M (D1) such that

W (u, 0) ≥ t1
2 , ∥u− uII∥H1(D1) ≤ ϵ,

then there exists a diffeomorphism Φ ∈ C1,γ
(
D 1

2
,D 1

2

)
such that

Φ(0) = 0, DΦ(0) = I2, ∥Φ − id∥
C1,ν

(
D 1

2

) ≤ C∥u− uII∥µ
H1(D1)

and
Spt(u) ∩ D1/2 = Φ

(
Spt(uII) ∩ D1/2

)
,

where Spt(uII) is the union of two half-lines meeting with the angle t1.

The last ϵ-regularity result concerns homogeneous solutions of type III and IV (which we do
not differentiate at this stage), that we remind are of the form

ua,b,c(x, y) = a(x2 + y2) + b(x2 − y2) + 2cxy

for some (a, b, c) ∈ R3. The main feature of this case (compared to Theorem 5 and 6) is that the
set of homogeneous solutions of type III, IV is non-compact.

Theorem 7 (ϵ-regularity : nodal and isolated case). There exist ϵ, γ, C > 0 such that the following
holds: let a, b, c ∈ R and u ∈ M (D1) such that

0 ∈ ∂Spt(u), W (u, 0) ≥ π, ∥u− ua,b,c∥H1(D1) ≤ ϵ∥ua,b,c∥H1(D1).

Then there exists a′, b′, c′ ∈ R such that

|a′ − a| + |b′ − b| + |c′ − c| ≤ C∥u− ua,b,c∥γ
H1(D1)∥ua,b,c∥1−γ

H1(D1)

and such that for any r ∈ (0, 1]:

∥r−2u(r·) − ua′,b′,c′∥H1(D1) ≤ C min
(
r,

∥u− ua,b,c∥H1(D1)

∥ua,b,c∥H1(D1)

)γ

∥ua,b,c∥H1(D1).

Finally, we state a generalization of Theorem 3 to a notion a quasi-minimizer.

Theorem 8. Let D ⊂ R2 be an open set, and u ∈ H2(D,R) such that for any v ∈ H2(D,R) with
{u ̸= v} ⋐ D we haveˆ

D

(
|∆u|2 + χu̸=0

)
≤
ˆ

D

(
|∆v|2 + χv ̸=0

)
+ ∥v − u∥L2(D).

Then u ∈ C1,γ
loc (D) for every γ ∈ (0, 1), and there is a partition

D ∩ ∂Spt(u) = Ru ⊔ Au ⊔ Nu ⊔ Ju ⊔ Eu,

where

• Ru is the regular boundary of Spt(u), meaning every point for which Spt(u) is the epigraph
of a C1,α function in a neighbourhood, Ru is relatively open in ∂Spt(u), and ∆u|Spt(u) is
continuous up to Ru with value ±1,

• the sets Au, Nu, Ju, Eu satisfy the same conclusions as in Theorem 3.

The discussion of this notion of quasi-minimizer as well as applications to the buckling problem
can be found in section 6.
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1.4 Notations and outline of the paper
In all the paper, we make use of the following notation: we write a ≲ b when a, b are two quantities
such that b > 0 and a ≤ Cb for some universal constant C > 0, i.e. some constant that does not
depend on any parameter.

We denote Dr the centered disk of radius r in R2, and Dp,r = p + Dr for p ∈ R2. We also let
S1 = ∂D1, that we identify with R

2πZ .
For any k ∈ N, q ∈ [1,+∞[, any smooth bounded open set D ⊂ R2, and any measurable

function u : D → R with k derivative in the distributional sense we let by convention

∥u∥W k,q(D) =
 ∑

α∈N2:α1+α2≤k

ˆ
D

|∂α1
x ∂α2

y u|q
 1

q

.

We denote Hk(D) = W k,2(D), and Hk
0 (D) the closure of C∞

c (D,R) functions with respect to the
Hk(D) norm.

For a function u : D → R, p ∈ D, r > 0, we let

up,r(z) = u(p+ rz)
r2 . (1.12)

the associated rescaling defined on D−p
r

. When p = 0 we simply write ur := u0,r. In particular, if
u is a local minimizer of E(·;D) (which we remind is written u ∈ M (D)), then up,r ∈ M

(
D−p

r

)
.

In all the paper, when u is a C1 function, we denote by Spt(u) the set of points p where either
u(p) or ∇u(p) is non-zero.

The plan of the paper is as follows.

• In section 2, we prove several low regularity estimate on u that will be repeatedly used
later. This includes a log-lipschitz bound on ∇u depending on the H1 norm of u in a
neighbourhood, as well as a nondegeneracy lemma that states that a minimizer cannot be
“too small” near a point of the support. The methods of proofs are relatively standard with
respect to the classical Alt-Caffarelli problem, based on [1], [10], [36]. The main difference
is that there is no maximum principle nor notion of viscosity solutions in our setting.

• In section 3 we introduce and prove the monotonicity formula for the renormalized energy
W (u, r) (defined in (1.11)) and several of its consequences, namely a classification of 2-
homogeneous minimizers as well as a proof of Theorem 4 about existence of blow-ups. Even
though the monotonicity formula was already found in [11], we propose a new way to tackle
the computation, which most importantly leads to a new interpretation of the corrective
term. The proof is based on the criticality of the solution for the energy, with respect to
inner variation (i.e. comparison of E(u;D1) with E(u◦(id+tζ);D1) at t → 0, for any vector
field ζ ∈ C∞

c (D1,R2)) similarly to [38]. The monotonicity implies in particular a maximal
speed of growth of the H1(Dr) norm of u with respect to r (given by Lemma 33). This
property is central in the proof of existence of blow-ups under weak geometrical hypothesis
(being a non-Lebesgue point of the support of u).

• In section 4 we prove an epiperimetric inequality for the renormalized energy W , that takes
the form

W (u, e−1) ≤ (1 − η)W (u, 1) + η
Θ
2

when u is sufficiently close to a blow-up of opening Θ ∈ {π, t1, 2π}. This is obtained by
constructing, for almost every r in the interval [e−1, 1], a competitor v for u in Dr such that
v−u ∈ H2

0 (Dr) while the energy of v is well-controlled by the boundary data u|∂Dr , ∂ru|∂Dr .
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• In section 5 we prove Theorems 4, 5, 6, and 7. This is obtained by iterating the epiperimet-
ric inequality to deduce geometrical information on the boundary (see Proposition 52). The
main difficulty compared to the classical Alt-Caffarelli problem is that blow-ups are only
known to exist under some a priori condition, either on the density of the support or on a
lower bound of W (u, r): we obtain the C1,α regularity of the boundary near type I blow-ups
by a careful analysis of contact points of the boundary with a cone from outside the sup-
port. Higher regularity is obtained by a conformal hodograph transform on the associated
overdetermined Stokes equation. The combination of these results implies Theorem 3.

• In section 6, we define a suitable notion of quasi-minimizers of E(·;D) and prove Theorem
8. We then apply these results to the minimization of the first buckling eigenvalue (1.4).
Our quasiminimality is similar to the quasiminimality condition from [24]; a central point is
that a suitable quasiminimality condition must be sufficiently strong to extract information
from small inner variations, which is not the case for weaker quasiminimality conditions
(like the one found in [10] for classical Alt-Caffarelli problem). The reason for this is that
the monotonicity formula is proved via inner variations of u, and it is unclear whether it
can be accessed differently.

2 Preliminary estimates
In this section we state and prove several regularity estimates on minimizers: a Cacciopoli-
type estimate (Lemma 10) to show that the H1 norm of u locally controls its energy, a BMO
estimate (Lemma 11) on ∆u that implies the gradient of u is almost Lipschitz (Lemma 12), a
non-degeneracy lemma (Lemma 14) that shows a minimizer always carry some minimal threshold
of energy near the boundary of the support, and finally a lemma showing that a bounded sequence
of minimizers converges (after extraction) to some minimizer in a strong way. The first two results
already appear in some form in [13] or [33] and our proofs in this section are not original in this
regard, however we carry them here with a more explicit statement for later uses.

In this section, we will need to consider the following slightly more general version: for any
λ ≥ 0 we let Mλ(D) be the minimizers (in the sense given in the beginning of the introduction)
of the energy

u ∈ H2(D) 7→ Eλ(u;D) :=
ˆ

D

(
|∆u|2 + λχu̸=0

)
.

We start by a remark on our definition of minimality, showing that it is equivalent to consider
compactly supported perturbations, or perturbations up to the boundary with fixed traces of
u,∇u.

Lemma 9. Let u ∈ H2(D1), λ ≥ 0, then u ∈ Mλ(D1) if and only if for every v ∈ u+H2
0 (D1) we

have Eλ(u;D1) ≤ Eλ(v;D1).

Proof. Assume u ∈ M (D1), let w ∈ H2
0 (D1), r ∈ (0, 1), and η ∈ C∞

c (D1) such that η ≡ 1 on Dr.
Then (1 − η)w ∈ H2

0 (D1 \ Dr), so there exists some sequence χn ∈ C∞
c (D1 \ Dr) that converges to

(1 − η)w in H2(D1 \ Dr). Since u ∈ M (D1), we have Eλ(u;D1) ≤ Eλ(u+ ηw + χn;D1), and

lim sup
n→+∞

Eλ(u+ ηw + χn;D1) ≤ Eλ(u+ w;D1) + λπ(1 − r2)

by the H2 convergence of χn to (1 − η)w. We conclude by taking r arbitrarily close to 1.

We then prove a Cacciopoli-type estimate: in this result we only use the fact that u is bi-
harmonic on its support, with a competitor of the form etϕu for some smooth function ϕ with
compact support.
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Lemma 10. Let r ∈
[

1
2 , 1

)
, let λ ≥ 0 and u ∈ Mλ(D1). Then

∥u∥H2(Dr) ≲
1

(1 − r)2 ∥u∥H1(D1\Dr).

Note that this estimate does not depend on λ.

Proof. For this proof, it is more convenient to see u as a local minimizer of u 7→
´
D1

(|∇2u|2 + λχu̸=0)
(see remark 1). Let η ∈ C∞

c (D1, [0, 1]) to be fixed later. The optimality condition on u gives

d

dt

∣∣∣∣∣
t=0

ˆ
D1

(
|∇2(eη4tu)|2 + λχeη4tu̸=0

)
= 0,

which after computations develops as
´
D1

∇2(η4u) : ∇2u = 0, with

∇2(η4u) = η4∇2u+ 8η3∇η ⊗ ∇u+ 4
(
3η2∇η ⊗ ∇η + η3∇2η

)
u.

The previous relation becomes
ˆ
D1

η4|∇2u|2 = −
ˆ
D1

η2∇2u :
(
8η∇η ⊗ ∇u+ 4

(
3(∇η ⊗ ∇η) + η∇2η

)
u
)

≤ 1
2

ˆ
D1

η4|∇2u|2 + 1
2

ˆ
D1

∣∣∣8η∇η ⊗ ∇u+ 4
(
3(∇η ⊗ ∇η) + η∇2η

)
u
∣∣∣2 ,

which simplifies to
ˆ
D1

η4|∇2u|2 ≲
ˆ
D1

([
|∇η|4 + |η∇2η|2

]
|u|2 + η2|∇η|2|∇u|2

)
.

Now, choosing an appropriate profile η equal to 1 in Dr, with |∇kη| ≲ (1 − r)−k for k = 0, 1, 2,
we obtain ∥∇2u∥L2(Dr) ≲ (1 − r)−2∥u∥H1(D1\Dr).

The bound on the full H1(Dr) norm is then obtained by the general inequality

∥v∥2
H2(Dr) ≲ ∥∇2v∥2

L2(Dr) + ∥v∥2
L2(∂Dr) ≲ ∥∇2v∥2

L2(Dr) + 1
1 − r

∥v∥2
H1(D1\Dr),

for any v ∈ H2(Dr) ∩H1(D1), applied to v = u.

Next we prove an estimate on the BMO semi-norm of ∇2u. We remind our definition of this
seminorm on a smooth set Ω: a function f ∈ L1

loc(Ω) is in BMO(Ω) if for every disk Dp,r ⊂ Ω we
have  

Dp,r

∣∣∣∣∣f −
 
Dp,r

f

∣∣∣∣∣
2

≤ M2

for some constant M > 0, and the best constant M is denoted [f ]BMO(Ω). Here
ffl

U
g :=

´
U g

|U | by
convention.

We recall that the BMO space embeds in every Lp space, for p ∈ [1,+∞), by the John-
Nirenberg Lemma [16, Lem. 1], but not in L∞(Ω).

Lemma 11. Let u ∈ M (D1), then

[∇2u]BMO(D1/2) ≲ 1 + ∥u∥H2(D1).
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Proof. In this proof we will only use the following property: if v is the biharmonic extension of u
on some open set Ω ⊂ D1 - meaning u− v ∈ H2

0 (Ω) and ∆2v = 0 in Ω - then by minimality of u
we have  

Ω
|∆(u− v)|2 = 1

|Ω|

ˆ
Ω

(
|∆u|2 − |∆v|2

)
≤ 1.

We recall (see for instance [15, Lem. 1.41]) that for any harmonic function h : DR → R and r < R
we have the decay property

 
Dr

∣∣∣∣∣h−
 
Dr

h

∣∣∣∣∣
2

≲
(
r

R

)2  
DR

∣∣∣∣∣h−
 
DR

h

∣∣∣∣∣
2

. (2.1)

Let now Dp,r ⊂ D1, v the biharmonic extension of u in Dp,r and τ ∈ (0, 1): then we have
 
Dp,τr

|∆u− ⟨∆u⟩p,τr|2 ≲
 
Dp,τr

(
|∆(u− v)|2 + |⟨∆u⟩p,τr − ⟨∆v⟩p,τr|2 + |∆v − ⟨∆v⟩p,τr|2

)
≲ τ−2

 
Dp,r

|∆(u− v)|2 + τ 2
 
Dp,r

|∆v − ⟨∆v⟩p,r|2 by (2.1)

≲ τ−2 + τ 2
 
Dp,r

(
|∆(u− v)|2 + |⟨∆u⟩p,r − ⟨∆v⟩p,r|2 + |∆u− ⟨∆u⟩p,r|2

)
≲ τ−2 + τ 2

 
Dp,r

|∆u− ⟨∆u⟩p,r|2.

As a consequence, letting g(p, r) :=
ffl
Dp,r

|∆u− ⟨∆u⟩p,r|2, we may fix a sufficiently small τ ∈ (0, 1)
such that for some (universal) constant C ≳ 1:

g(p, τr) ≤ C + 1
2g(p, r).

By induction on g(p, τ kr), we obtain that for any x ∈ D 3
4

and for any r ∈
(
0, 1

4

)
we have

g(p, τ kr) ≤
(

1 + 1
2 + . . .+ 1

2k−1

)
C + 1

2k
g(p, r).

Thus, for any r ∈
(
0, 1

4

)
, we have

 
Dp,r

|∆u− ⟨∆u⟩p,r|2 ≲ 1 +
ˆ
D1

|∆u|2,

Hence [∆u]BMO(D 3
4

) ≲ 1 + ∥∆u∥L2(D1). By [12, Cor. 2], this implies [∇2u]BMO(D 1
2

) ≲ 1 + ∥u∥H2(D1).

Lemma 12. Let u ∈ M (D1), then for any p, q ∈ D1/2:

|∇u(p) − ∇u(q)| ≲ |p− q| log
(

1
|p− q|

)(
1 +

 
D1

|∇u|2 + u2
) 1

2

.

Proof. This is a consequence of Lemmas 10, 11, to which we apply general Orlicz space embeddings
(see for instance [9, Th. 3]).

Remark 13. This lemma implies that when u ∈ M (D1) with u(0) = |∇u(0)| = 0, then

∀p ∈ D1/2, |∇u(p)| + |u(p)|
|p|

≲
(
1 + ∥u∥H1(D1)

)
|p| log

(
1
|p|

)
.
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The non-degeneracy property is central in the classical Alt-Caffarelli problem (see [1, Lem.
3.4]): it implies that blow-ups, when they exist, are not zero. The next lemma is a non-degeneracy
property for minimizers of (1.1), and our proof is similar to the proof of non-degeneracy in [10],
by an induction on the energy of u relying on the three following estimates:

a) The H2 norm of u is locally controlled by its H1 norm by our Cacciopoli-type estimate.

b) The area of the support of u is locally controlled by its H2 norm, by minimality of u.

c) The H1 norm of u is locally controlled by a product of the area of its support and its H2

norm. The nonlinear nature of this estimate is what makes the induction work.

Lemma 14. There exists ϵ > 0 such that for any u ∈ M (D1), if ∥u∥H1(D1) ≤ ϵ, then u|D1/2 ≡ 0.

Proof. It is enough to prove that for any minimizer in D1 and for a small enough ϵ,ˆ
D1

|u|2 + |∇u|2 ≤ ϵ implies u(0) = 0,

because this can be applied to up,1/2 for every p ∈ D1/2 (the definition of up,r is given in (1.12)).

•
´
D1

|∇u|2 + |u|2 ≤ ϵ implies E(u;D1/2) ≲ ϵ. Indeed, by the Cacciopoli-type inequality from
Lemma 10, we haveˆ

D 9
10

|∆u|2 ≤ ∥u∥2
H2(D 9

10
) ≲

ˆ
D1\D 9

10

(
|u|2 + |∇u|2

)
≲ ϵ.

Let now η ∈ C∞
c (D 9

10
, [0, 1]) such that η ≡ 1 in D 1

2
with ∥η∥C2(D1) ≲ 1, we then compare the

energies of u and (1 − η)u:

|D1/2 ∩ {u ̸= 0}| +
ˆ
D1

|∆u|2 ≤
ˆ
D1

|∆(u− ηu)|2.

Since u is biharmonic on its support (see [13, Theorem 2]) we haveˆ
D1

|∆(u− ηu)|2 =
ˆ
D1

|∆u|2 + |∆(ηu)|2,

so

|D 1
2

∩ {u ̸= 0}| ≤
ˆ
D1

|∆(ηu)|2 ≲ ∥u∥2
H2(D 9

10
) ≲ ϵ,

and thus E(u;D 1
2
) ≲ ϵ.

• E(u;D1) +
´
D1

(|∇u|2 + |u|2) ≤ ϵ implies
´
D 1

2

(|∇u|2 + |u|2) ≲ ϵ
3
2 .

Indeed, let η be defined as previously, then
ˆ
D 1

2

|∇u|2 ≤
ˆ
D1

|∇(ηu)|2 ≤ |{ηu ̸= 0}|
1
2

(ˆ
D1

|∇(ηu)|4
)1/2

≲ E(u;D1)
1
2

ˆ
D1

|∆(ηu)|2 by the Sobolev inclusion W 2,2
0 (D1) ↪→ W 1,4

0 (D1)

≲ E(u;D1)
1
2

(
E(u;D1) +

ˆ
D1

(|∇u|2 + |u|2)
)

≲ ϵ
3
2
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and similarly ˆ
D 1

2

u2 ≤
ˆ
D1

(ηu)2 ≤ |{ηu ̸= 0}|
1
2

(ˆ
D1

(ηu)4
) 1

2

≲ ϵ
3
2 .

We now proceed by induction. We let ur(x) := u(rx)
r2 . Then for some constant C1 ≳ 1 we have

(by the first point above):

E(u 1
2
;D1) + ∥u 1

2
∥2

H1(D1) ≤ C1∥u∥2
H1(D1).

By the second point applied to u 1
2
, for some constant C2 ≳ 1 we have

∥u 1
4
∥2

H1(D1) ≤ C2
(
C1∥u∥2

H1(D1)

) 3
2 .

In particular suppose that ∥u∥2
H1(D1) ≤ 1

4C
−3
1 C−2

2 , then we obtain by induction

∀k ∈ N, ∥u4−k∥2
H1(D1) ≤ 2−k∥u∥2

H1(D1).

This implies u(0) = 0.

Finally, we prove a result about sequences of minimizers.

Lemma 15. Let (λ(n))n∈N∗ be a sequence of nonnegative numbers converging to some limit λ ≥ 0,
and (u(n))n∈N∗ a sequence of H2(D1) such that for any n ∈ N∗, u(n) ∈ Mλ(n)(D1). Suppose
moreover that

sup
n∈N∗

∥u(n)∥H1(D1) < ∞.

Then there exists some extraction (ni)i∈N∗, and some u ∈ Mλ(D1) such that

u(ni) −→
i→+∞

u in H2
loc(D1),

λ(ni)χu(ni) ̸=0 −→
i→+∞

λχu̸=0 in L1(D1).

Proof. The proof is similar to its equivalent in the Alt-Caffarelli problem and is fairly standard
(see for instance [36, Lem. 6.3]). Since (u(n))n is bounded in H1(D1), by the Cacciopoli inequality
from Lemma 10 it is bounded in H2(Dr) for every r ∈ (0, 1). Up to extraction we may suppose
that for every r ∈ (0, 1), (u(n))n∈N∗ converges strongly in H1(Dr), weakly in H2(Dr), as well as
almost everywhere, to some limit u. By the weak H2 convergence we have

ˆ
D1

|∆u|2 ≤ lim inf
n→+∞

ˆ
D1

|∆u(n)|2.

Since u(n) converges almost everywhere to u, then by Fatou lemma:
ˆ
D1

χu̸=0 ≤
ˆ
D1

lim inf
n→∞

χu(n) ̸=0 ≤ lim inf
n→∞

ˆ
D1

χu(n) ̸=0.

Thus, Eλ(u;D1) ≤ lim infn→∞ Eλ(n)(u(n);D1). Let now v be a competitor for u, meaning
v ∈ H2(D1) and {u ̸= v} ⊂ Ds for some s < 1. Let r ∈ (s, 1), and ζ ∈ C∞

c (D1) a function such
that ζ = 1 in Ds, ζ = 0 in D1 \ Dr. Then

v(n) := (1 − ζ)u(n) + ζv
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is a valid competitor for u(n). By our assumption on u(n) we have

Eλ(n)(v(n);D1) − Eλ(n)(u(n);D1) ≥ 0.

We first computeˆ
D1

(
|∆v(n)|2 − |∆u(n)|2

)
=
ˆ
D1

(∣∣∣(1 − ζ)∆u(n) + ζ∆v + 2∇(v − u(n)) · ∇ζ + (v − u(n))∆ζ
∣∣∣2 − |∆u(n)|2

)

=
ˆ
D1

((
(1 − ζ)2 − 1

)
|∆u(n)|2 + ζ2|∆v|2 + 2ζ(1 − ζ)∆u∆v

)
+ on(1)

=
ˆ
D1

(
|∆v|2 − |∆u|2 +

(
(1 − ζ)2 − 1

) (
|∆u(n)|2 − |∆u|2

))
+ on(1)

where the on(1) term is due to the weak H2(D1) (and strong H1(D1)) convergence v(n) → v, which
is equal to u on the support of ∇η,∆η. Next,

λ(n)
ˆ
D1

(
χv(n) ̸=0 − χu(n) ̸=0

)
≥ λ(n)

ˆ
D1

(
χDs

(
χv ̸=0 − χu(n) ̸=0

)
− χDr\Ds

)
= λ(n)

ˆ
D1

(
(χv ̸=0 − χu̸=0) + χDs

(
χu̸=0 − χu(n) ̸=0

)
− χDr\Ds

)
,

so we may rearrange E(u(n);D1) ≤ E(v(n);D1) into

Eλ(n)(v;D1) − Eλ(n)(u;D1) ≥
ˆ
D1

((
1 − (1 − η)2

) (
|∆u(n)|2 − |∆u|2

)
+ λ(n)χDs

(
χu(n) ̸=0 − χu̸=0

))
+ on(1) − 2πλ(n)(r − s).

Taking n → +∞, we get

Eλ(v;D1) − Eλ(u;D1) ≥ lim inf
n→∞

ˆ
D1

((
1 − (1 − η)2

) (
|∆u(n)|2 − |∆u|2

)
+ λ(n)χDs

(
χu(n) ̸=0 − χu̸=0

))
−2πλ(r − s)

≥ −2πλ(r − s). (2.2)

Taking r ↘ s, we obtain Eλ(v,D1) ≥ Eλ(u;D1) so u ∈ Mλ(D1). Moreover, the convergence is
strong in H2

loc: indeed taking v = u, inequality (2.2) gives

2πλ(r − s) +
ˆ
D1

(
1 − (1 − η)2

)
|∆u|2 ≥ lim inf

n→∞

ˆ
D1

(
1 − (1 − η)2

)
|∆u(n)|2,

which implies

2πλ(r − s) +
ˆ
Dr

|∆u|2 ≥ lim inf
n→∞

ˆ
Ds

|∆u(n)|2.

By taking r arbitrarily close to s, we obtain
´
Ds

|∆u|2 ≥ lim infn→∞
´
Ds

|∆u(n)|2 for every s, so u(n)

converges strongly (in H2(Ds)) to u. Similarly, for the convergence of the area term, inequality
(2.2) with v = u gives ˆ

Ds

λχu̸=0 ≥ lim inf
ˆ
Ds

λ(n)χu(n) ̸=0,

for every s (and the opposite inequality is a consequence of Fatou’s lemma). By dominated
convergence, λ(n)χu(n) ̸=0 −→

n→+∞
λχu̸=0 in L1(D1).
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3 Monotonicity formula and blow-ups
Monotonicity formulas are roughly speaking a way to express the notion that, as we zoom in on
a solution, the solution can only look simpler and simpler. For the Alt-Caffarelli problem, i.e. for
minimizers of

u 7→
ˆ
D1

(
|∇u|2 + χu>0

)
,

Weiss found in [38, 40] that the quantity

r 7→ 1
r2

ˆ
Dr

(
|∇u|2 + χu>0

)
− 1
r3

ˆ
∂Dr

u2

is always non-decreasing, and it is constant if and only if u is 1-homogeneous. From this mono-
tonicity alone one can deduce that blow-ups are always 1-homogeneous, and that for any solution
u, the H1(Dr) norm is controlled by the L2(∂Dr) norm (with appropriate scaling) for small r.
This monotonicity formula was later refined in several settings (see [39], [32], and also the mono-
graph [36]) to prove the convergence to a unique blow-up by an epiperimetric inequality (which
originates from [30] with a similar estimate for the perimeter of a minimal surface, and later in
[39] in the setting of obstacle problems). Our interest in these techniques is due to the fact that
even for classical Alt-Caffarelli problem, these epiperimetric methods use no maximum principle
or notion of viscosity solutions, something which is not available in our setting.

In [11, Th. 1.12], the authors found a similar monotone quantity for higher order problem
(note that their functional is not exactly the same as ours, however it is applied to points where
the solution has homogeneity 2). We start by stating again the monotonicity of this quantity in
our setting, with a proof that is made slightly shorter by an exponential change of variable.

The monotonicity formula of Weiss for the classical Alt-Caffarelli problem may be obtained
in several ways. The first is by comparing the energy of the solution u with its 1-homogeneous
extension |x|u

(
rx
|x|

)
in Dr. The second is by using that u is critical for the energy with respect

to small deformation u (x+ tf(|x|)x) for a smooth function f that approximates χ[0,r]. In our
setting, the 2-homogeneous extension is not always a valid competitor (since it may create a
jump in the gradient), and we do not obtain the monotonicity by the comparison with a single
competitor as in the classical Alt-Caffarelli problem: however we are able to adapt the second
method to our setting.

3.1 Monotonicity formula of Dipierro, Karakhanyan and Valdinoci
recast in exponential coordinates

In this paragraph, we deal with the monotonicity formula. We start choosing a specific set of
coordinates that is convenient to express the energy. We deduce in this set of coordinates a
monotonicity formula (Theorem 18) and then express it again in the usual coordinates (Theorem
19).

We will denote CT = (T,+∞) × S1 the half-infinite cylinder, such that (t, θ) ∈ CT 7→ e−t+iθ ∈
De−T \{0} is a bijective anticonformal map. We denote byH2

lin(CT ) the set of functions v ∈ H2
loc(CT )

such that for some constant C > 0 (that may depend on v), we have

∀t ≥ T, ∥v∥H2(Ct\Ct+1) ≤ C(t− T + 1). (3.1)

For any τ ∈ R, v ∈ H2
lin(C0), we denote

G(v, τ) =
ˆ

Cτ

e−2(t−τ)
{
(∂t,tv)2 + 2 (∂t,θv)2 + (∂θ,θv)2 − 4 (∂θv)2 + χv ̸=0

}
(3.2)
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Lemma 16. Let u ∈ H2(D1) such that v ∈ H2
loc(C0) defined by

v(t, θ) = e2tu
(
e−t+iθ

)
is in H2

lin(C0). Then for every τ ≥ 0, we have

1
(e−τ )2

ˆ
De−τ

{
|∆u|2 + χu̸=0

}
= G(v, τ) + 2

ˆ
∂Cτ

{
2 (∂tv)2 − 4v∂tv + 4v2 − (∂θv)2 + ∂t,θv∂θv

}
.

Proof. We express u in terms of v with

u(reiθ) = r2v(− log(r), θ).
Then

∆u(reiθ) = (∂θ,θv + ∂t,tv − 4∂tv + 4v) (− log(r), θ),
so we may rewrite the energy of u in the disk De−τ as

ˆ
De−τ

{
|∆u|2 + χu̸=0

}
=
ˆ

Cτ

e−2t
{
|∂θ,θv + ∂t,tv − 4∂tv + 4v|2 + χv ̸=0

}
. (3.3)

We develop this expression:
ˆ

Cτ

e−2(t−τ)
{
|∂t,tv − 4∂tv + 4v + ∂θ,θv|2 + χv ̸=0

}
=
ˆ

Cτ

e−2(t−τ)
{
(∂t,tv)2 + 16 (∂tv)2 + 16v2 + (∂θ,θv)2 + χv ̸=0

}
+
ˆ

Cτ

e−2(t−τ) {−8∂t,tv∂tv + 8∂t,tvv + 2∂t,tv∂θ,θv − 32∂tvv − 8∂tv∂θ,θv + 8v∂θ,θv} .

By integration by parts we have:
ˆ

Cτ

e−2(t−τ)(−8∂t,tv∂tv) =
ˆ

Cτ

e−2(t−τ)(−8 (∂tv)2) +
ˆ

∂Cτ

4 (∂tv)2

ˆ
Cτ

e−2(t−τ)8∂t,tvv =
ˆ

Cτ

e−2(t−τ)8(−∂tv + 2v)∂tv +
ˆ

∂Cτ

−8v∂tv

=
ˆ

Cτ

e−2(t−τ)(−8 (∂tv)2 + 16v2) +
ˆ

∂Cτ

(−8v∂tv − 8v2)
ˆ

Cτ

e−2(t−τ)(−32∂tvv) =
ˆ

Cτ

e−2(t−τ)(−32v2) +
ˆ

∂Cτ

16v2

ˆ
Cτ

e−2(t−τ)(−8∂tv∂θ,θv) =
ˆ

Cτ

e−2(t−τ)8∂t,θv∂θv

=
ˆ

Cτ

e−2(t−τ)8 (∂θv)2 +
ˆ

∂Cτ

−4 (∂θv)2 .

In each integration by parts we used the growth estimate (3.1) so that there is no boundary term
at t = +∞. Finally, for almost every τ ≥ 0 we have

ˆ
Cτ

e−2(t−τ)2∂t,tv∂θ,θv =
ˆ

Cτ

e−2(t−τ)(2 (∂t,θv)2 − 4 (∂θv)2) +
ˆ

∂Cτ

(2 (∂θv)2 + 2∂t,θv∂θv).

Summing all these contributions, we indeed get for almost every τ ≥ 0:
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ˆ
Cτ

e−2(t−τ)
{
|∂t,tv + 4∂tv + 4v + ∂θ,θv|2 + χv ̸=0

}
=
ˆ

Cτ

e−2(t−τ)
{
(∂t,tv)2 + 2 (∂t,θv)2 + (∂θ,θv)2 − 4 (∂θv)2 + χv ̸=0

}
+ 2

ˆ
∂Cτ

{
2 (∂tv)2 − 4v∂tv + 4v2 − (∂θv)2 + ∂t,θv∂θv

}
dθ.

(3.4)

Definition 17. A function v ∈ H2
loc(Cτ ) is called a minimizer of G(·, τ) if v ∈ H2

lin(Cτ ) and if
letting

u
(
reiθ

)
= r2v (− log(r), θ) ,

we have u ∈ M (De−τ ).

In particular, for any w ∈ H2
lin(Cτ ) such that {v ̸= w} ⊂ Cτ+ϵ (for some ϵ > 0), we have (by

Lemma 16):
G(v, τ) ≤ G(w, τ).

The reason we do not define minimizers of G(·, τ) only by this condition, is because this does not
take into account competitors for u for which either u(0) or ∇u(0) do not vanish. Indeed, G(·, τ)
is a priori only defined for functions that grow sufficiently slow as t → +∞.

We now define a “corrected” energy, for any v ∈ H2
lin(Cτ ):

W(v, τ) = G(v, τ) + 2
ˆ

∂Cτ

∂tv(∂tv − ∂t,tv), (3.5)

where the corrective term is chosen so that W ′ has a sign. Due to the last term, W(v, τ) is a
priori defined for almost every τ only. The next result implies in fact that W(v, τ) is continuous
in τ when v is a minimizer, so it is well-defined for every τ > 0.

Theorem 18. Let v be a minimizer of G(· ; 0), then τ 7→ W(v, τ) belongs to W 1,1
loc (R+), and its

weak derivative (defined for almost every τ ≥ 0) is

W ′(v, τ) = −4
ˆ

∂Cτ

{
(∂t,tv)2 + (∂t,θv)2

}
.

Here W ′(v, τ) designates the derivative of W(v, τ) along the variable τ , which exists in L1
loc(R+)

in the weak sense since W(v, ·) is absolutely continuous. In particular, W(v, τ) is constant in τ if
and only if ∂tv(t, θ) is constant.

Proof. We write ∥·∥ (resp. ⟨·, ·⟩) the L2(S1) norm (resp. the L2(S1) scalar product). It is sufficient
to prove the following: for any φ ∈ C∞

c (R>0,R), we have
ˆ +∞

0
φ′(t)W(v, t)dt = 4

ˆ +∞

0
φ(t)

{
∥∂t,tv(t)∥2 + ∥∂t,θv(t)∥2

}
dt. (3.6)

Let now f ∈ C∞(R+,R), such that f = 0 in a neighbourhood of 0, and f, f ′, f ′′ are bounded
in L∞(R+) (note that f does not have compact support in general). For any small enough ϵ
(positive of negative), the function t 7→ t+ ϵf(t) is a diffeomorphism of R+, with inverse ψϵ. Let

vϵ(t, θ) = v(ψϵ(t), θ).
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Then vϵ ∈ H2
lin(C0) is a valid competitor for v. We compute

∂θvϵ(t, θ) = ∂θv(ψϵ(t), θ), ∂θ,θvϵ(t, θ) = ∂θ,θv(ψϵ(t), θ)
∂tvϵ(t, θ) = (1 − ϵf ′(t) + o(ϵ))∂tv(ψϵ(t), θ),
∂t,θvϵ(t, θ) = (1 − ϵf ′(t) + o(ϵ))∂t,θv(ψϵ(t), θ),
∂t,tvϵ(t, θ) = (1 − 2ϵf ′(t) + o(ϵ))∂t,tv(ψϵ(t), θ) − (ϵf ′′(t) + o(ϵ))∂tv(ψϵ(t), θ),

so

G(vϵ, 0) = G(v, 0) + o(ϵ) − ϵ

ˆ
C0

e−2t
{
4f ′(∂t,tv)2 + 2f ′′∂tv∂t,tv + 4f ′(∂t,θv)2

}
+ ϵ

ˆ
C0

e−2t(f ′ − 2f)
{
(∂t,tv)2 + 2(∂t,θv)2 + (∂θ,θv)2 − 4(∂θv)2 + χv ̸=0

}
.

Taking the derivative at ϵ = 0 above, we have for any such f thatˆ
C0

e−2t(f ′ − 2f)
{
(∂t,tv)2 + 2(∂t,θv)2 + (∂θ,θv)2 − 4(∂θv)2 + χv ̸=0

}
− 2e−2tf ′′∂tv∂t,tv

= 4
ˆ

C0

e−2tf ′
{
(∂t,tv)2 + (∂t,θv)2

}
.

Let φ ∈ C∞
c (R>0,R), and f(t) =

´ t

0 e
2sφ(s)ds. The function f verifies the previous hypothesis

(in particular it is constant for any large enough t, meaning it is bounded), and f ′(t) = e2tφ(t),
f ′′(t) = e2t (φ′(t) + 2φ(t)), so the previous relation becomes
ˆ

C0

(
φ(t) − 2e−2t

ˆ t

0
e2sφ(s)ds

){
(∂t,tv)2 + 2(∂t,θv)2 + (∂θ,θv)2 − 4(∂θv)2 + χv ̸=0

}
− 2

ˆ
C0

(φ′(t) + 2φ(t)) ∂tv∂t,tv = 4
ˆ

C0

φ(t)
{
(∂t,tv)2 + (∂t,θv)2

}
.

On one hand,

−2
ˆ

C0

(φ′(t) + 2φ(t)) ∂tv∂t,tv = 2
ˆ +∞

0
φ′(t)⟨∂tv(t), ∂tv(t) − ∂t,tv(t)⟩dt,

and on the other hand,
ˆ

C0

(
φ(t) − 2e−2t

ˆ t

0
e2sφ(s)ds

){
(∂t,tv)2 + 2(∂t,θv)2 + (∂θ,θv)2 − 4(∂θv)2 + χv ̸=0

}
=
ˆ

C0

(
e2tφ(t) − 2

ˆ t

0
e2sφ(s)ds

)
e−2t

{
(∂t,tv)2 + 2(∂t,θv)2 + (∂θ,θv)2 − 4(∂θv)2 + χv ̸=0

}
=
ˆ +∞

0

(
e2tφ(t) − 2

ˆ t

0
e2sφ(s)ds

)
d

dt

{
−e−2tG(v, t)

}
dt

=
ˆ +∞

0
φ′(t)G(v, t)dt,

by integration by parts (we remind that φ has compact support). As a consequence, we obtain
that for any φ ∈ C∞

c (R>0,R), we have
ˆ +∞

0
φ′(t) {G(v, t) + 2⟨∂tv(t), ∂tv(t) − ∂t,tv(t)⟩} dt = 4

ˆ +∞

0
φ(t)

{
∥∂t,tv(t)∥2 + ∥∂t,θv(t)∥2

}
dt.

By the definition of W in (3.5), we have obtained that t 7→ W(v, t) admits a weak derivative,
which is of the form given in (3.6).
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We may now state this theorem in usual coordinates (both will be useful). Suppose u ∈ M (D1)
such that u(0) = |∇u(0)| = 0, and we remind that for any r ∈ (0, 1) we let

ur(x) = u(rx)
r2

the natural 2-homogeneous rescaling of u, defined in D1/r. To avoid notational ambiguity, we
always denote ∂r the radial derivative of a function, and d

dr
the derivative with respect to the

parameter r, in other words

∀x ∈ S1,
d

dr
ur(x) = 1

r
(∂rur(x) − 2ur(x)).

We denote

N(u, r) =
ˆ
S1

r2
∣∣∣∣∣ ddrur

∣∣∣∣∣
2

+ |∂θur|2 + |ur|2
 . (3.7)

In particular N(u, r) verifies

∥ur∥2
L2(S1) + ∥∇ur∥2

L2(S1) ≲ N(u, r) ≲ ∥ur∥2
L2(S1) + ∥∇ur∥2

L2(S1),

r 7→ N(u, r) is absolutely continuous, and its (weak) derivative defined almost everywhere is

N ′(u, r) = 2
r

ˆ
S1

((∂rur − 2ur) (∂r,rur − 3∂rur + 4ur) + (∂r,θur − 2∂θur) ∂θur + (∂rur − 2ur)ur)

= 2
r

ˆ
S1

(
∂rur∂r,rur − 2ur∂r,rur + ∂θur∂r,θur − 3(∂rur)2 + 11ur∂rur − 2(∂θur)2 − 10u2

r

)
.

(3.8)

We will also denote

R(u, r) := 2
ˆ
S1

{
(∂θur)2 − (∂rur)2 + 2u2

r − ur∂rur

}
. (3.9)

Theorem 19. Let u ∈ M (D1) such that u(0) = |∇u(0)| = 0, define

W (u, r) := 1
r2E(u;Dr) + rN ′(u, r) +R(u, r). (3.10)

Then r 7→ W (u, r) is non-decreasing, and it is constant in r if and only if u is 2-homogeneous
and in this case

W (u, r) = W (u, 1) = |{u ̸= 0} ∩ D1| .

Moreover, if we denote v(t, θ) = r−2u
(
reiθ

)
where r = e−t, then v is a minimizer of G(· ; 0)

and for any t ≥ 0:
W(v, t) = W (u, r).

Although the corrective term looks different, once everything is developed we find that the
normalized energy of (3.10) is equal to the one defined in [11, Th. 1.12] (up to a scalar factor),
also recalled in (1.11).

Proof. By Lemma 16, we have

G(v, τ) = e2τE (u;De−τ ) − 2
ˆ

∂Cτ

{
2 (∂tv)2 − 4v∂tv + 4v2 − (∂θv)2 + ∂t,θv∂θv

}
dθ.
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We replace v(t, θ) = e2tu
(
e−t+iθ

)
, so

∂tv(t, θ) = 2e2tu
(
e−t+iθ

)
− et∂ru

(
e−t+iθ

)
,

∂t,θv(t, θ) = 2e2tuθ

(
e−t+iθ

)
− et∂r,θu

(
e−t+iθ

)
,

∂t,tv(t, θ) = 4e2tu
(
e−t+iθ

)
− 3et∂ru

(
e−t+iθ

)
+ ∂r,ru

(
e−t+iθ

)
,

∂θv(t, θ) = e2t∂θu
(
e−t+iθ

)
.

Denoting r = e−τ , the boundary integral term above becomes

−2
ˆ

∂Cτ

{
2 (∂tv)2 − 4v∂tv + 4v2 − (∂θv)2 + ∂t,θv∂θv

}
dθ

= −2
r

ˆ
∂Dr

2
(

2u
r2 − ∂ru

r

)2

− 4 u
r2

(
2u
r2 − ∂ru

r

)
+ 4u

2

r4 − (∂θu)2

r4 + ∂θu

r2

(
2∂θu

r2 − ∂r,θu

r

)
= −2

r

ˆ
∂Dr

(
8u

2

r4 + 2(∂ru)2

r2 − 8u∂ru

r3 − 8u
2

r4 + 4u∂ru

r3 + 4u
2

r4 + (∂θu)2

r4 − ∂θu∂r,θu

r3

)

= −2
r

ˆ
∂Dr

(
4u

2

r4 + 2(∂ru)2

r2 − 4u∂ru

r3 + (∂θu)2

r4 − ∂θu∂r,θu

r3

)
.

We obtain

G(v, τ) = 1
r2E(u;Dr) − 2

r

ˆ
∂Dr

(
4u

2

r4 + 2(∂ru)2

r2 − 4u∂ru

r3 + (∂θu)2

r4 − ∂θu∂r,θu

r3

)
.

Then from the definition of W(v, τ) (3.5),

W(v, τ) = G(v, τ) + 2
ˆ

∂Cτ

∂tv(∂tv − ∂t,tv)

= G(v, τ) + 2
r

ˆ
∂Dr

(
∂ru

r
− 2 u

r2

)(
∂r,ru− 2∂ru

r
+ 2 u

r2

)

= G(v, τ) + 2
r

ˆ
∂Dr

(
∂ru∂r,ru

r
− 2u∂r,ru

r2 − 2(∂ru)2

r2 + 6u∂ru

r3 − 4u
2

r4

)
.

So replacing the expression of G(v, τ) found above we obtain

W(v, τ) = 1
r2E(u;Dr)+

2
r

ˆ
∂Dr

(
∂ru∂r,ru

r
− 2u∂r,ru

r2 + ∂θu∂r,θu

r3 − 4(∂ru)2

r2 + 10u∂ru

r3 − (∂θu)2

r4 − 8u
2

r4

)
.

(3.11)
This is the same expression as in (1.11). Moreover, the boundary integral term on the right-hand
side is exactly the sum of rN ′(u, r) (see (3.8)) and R(u, r) (see (3.9)).

Suppose now that r 7→ W (u, r) is constant. Then t 7→ W(v, t) is constant, so by Theorem 18,
∂t,θv and ∂t,tv are identically zero. Thus for some constant c ∈ R, we have

v(t, θ) = v(0, θ) + ct.

We denote g(θ) = v(0, θ), then u may be rewritten as

u(reiθ) = cr2 log(r) + r2g(θ).

Assume by contradiction c is non-zero. Since u ∈ C1(D1,R) (by Lemma 12), in particular g is
bounded, so there is some sufficiently small radius r such that u ̸= 0 in Dr \ {0}. Let h be the
biharmonic extension of u in Dr. Since u has full support in Dr we have by minimality of uˆ

Dr

|∆(u− h)|2 =
ˆ
Dr

(
|∆u| − |∆h|2

)
≤ 0,

21



so u is biharmonic in Dr. This is in contradiction with the fact that c ̸= 0.
As a consequence, u is of the form

u(reiθ) = r2g(θ),

meaning it is 2-homogeneous. Reciprocally if u is of this form, then we see that

W (u, r) = W(v,− log(r)) = W(v, 0) = W (u, 1)

for every r < 1, so W (u, ·) is constant.

Although the boundary term in the definition of W (3.10) is not continuous with respect to
H2, due to its structure the energy W still verifies a type of Cacciopoli inequality:

Lemma 20. Let u ∈ M (D1) such that u(0) = |∇u(0)| = 0, then∣∣∣∣W (
u,

1
2

)∣∣∣∣ ≲ ∥u∥2
H1(D1).

Proof. If Spt(u) ∩ D 1
2

= ∅ there is nothing to prove: without loss of generality we assume this is
not the case. By the non-degeneracy Lemma 14 this implies ∥u∥H1(D1) ≳ 1.

Let φ ∈ C∞
c

(]
1
2 ,

3
4

[
,R+

)
be such that

´ 1
0 φ(s)ds = 1 and |φ′| ≲ 1, then by the monotonicity

of r 7→ W (u, r):

W
(
u,

1
2

)
≤
ˆ 3/4

1/2
φ(r)W (u, r)dr

=
ˆ 3/4

1/2
φ(r)

( 1
r2E(u;Dr) + rN ′(u, r) +R(u, r)

)
dr

=
ˆ 3/4

1/2

(
φ(r)
r2 E(u;Dr) − (rφ(r))′N(u, r) + φ(r)R(u, r)

)
dr

≲ 1 + ∥u∥2
H2(D 3

4
)

≲ 1 + ∥u∥2
H1(D1) by lemma 10

≲ ∥u∥2
H1(D1) since ∥u∥H1(D1) ≳ 1.

Similarly, choosing φ ∈ C∞
c

(]
1
4 ,

1
2

[
,R+

)
such that

´ 1
0 φ(s)ds = 1 and |φ′| ≲ 1 we get the opposite

estimate.

The monotonicity formula extends to minimizers of E0(u,D) :=
´

D
|∆u|2 i.e. biharmonic

functions. We denote

W0(u, r) := 1
r2E0(u;Dr) + rN ′(u, r) +R(u, r). (3.12)

Let u ∈ H2(D1) be a biharmonic function: by using its Goursat decomposition (h1 + (x2 + y2)h2
for h1, h2 harmonic in D1), u can be decomposed as

u
(
reiθ

)
=
∑
n∈Z

(
anr

|n|+2 + bnr
|n|
)
einθ (3.13)

for some complex coefficients (an)n∈Z, (bn)n∈Z, such that the sum converges absolutely in D1.
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Lemma 21. Let u ∈ H2(D1) be a biharmonic function, and let (an)n∈Z, (bn)n∈Z be the coefficients
defined in the decomposition (3.13), then for any r ∈ (0, 1) we have

W0(u, r) = 8π
∑
n∈Z

{
|n|3r2|n||an|2+2|n|2(|n|−2)r2|n|−2ℜ(anbn)+(|n|−2)(|n|2−2|n|+2)r2|n|−4|bn|2

}
.

Proof. For this computation, we will directly use definition (1.11).
Let us first notice that for any r < 1, W0(u, r) = W0(ur, 1), and the coefficients associated to the
Goursat decomposition of ur are (r|n|an, r

|n|−2bn)n∈Z: we lose no generality in proving the result
at r = 1 only, for a function u that is biharmonic in a neighbourhood of D1.

For a function f : D1 → C we define

cn[f ] = 1
2π

ˆ
∂D1

e−inθf(eiθ)dθ

the Fourier coefficients of f . Then we compute

cn[u] = an + bn,

cn[∂ru] = (|n| + 2)an + |n|bn,

cn[∂θ,θu] = −|n|2(an + bn),
cn[∆u] = 4(|n| + 1)an.

We deduce E0(u;D1) =
´
D1

∣∣∣∑n∈Z 4(|n| + 1)anr
|n|einθ

∣∣∣2 = 8π∑n∈Z(2|n| + 2)|an|2, and

N ′(u, 1) +R(u, 1) =
ˆ

∂D1

{
2∂ru∆u− 10(∂ru)2 − 4u∆u+ 24u∂ru+ 4∂θu∂r,θu− 16u2 − 6(∂θu)2

}
= 2π

∑
n∈Z

{
2((|n| + 2)an + |n|bn)4(|n| + 1)an − 10

∣∣∣(|n| + 2)an + |n|bn

∣∣∣2 − 16(|n| + 1)an(an + bn)
}

+ 2π
∑
n∈Z

{
(24 + 4|n|2)((|n| + 2)an + |n|bn)(an + bn) − (16 + 6|n|2)|an + bn|2

}

= 8π
∑
n∈Z

{(
|n|3 − 2|n| − 2

)
|an|2 + 2|n|2(|n| − 2)ℜ(anbn) + |n|(|n| − 2)(|n|2 − 2|n| + 2)|bn|2

}
.

Then W0(u, 1) = E0(u;D1) + N ′(u, 1) + R(u, 1) simplifies to the expression of the lemma with
r = 1.

Remark 22. Let u ∈ H2(D1) be a biharmonic function, and we write (an, bn)n∈Z the coefficient
in the Goursat decomposition (3.13) of u. Then for any r ∈ (0, 1) we have

W ′
0(u, r) =16π

r

∑
n∈Z

|n|4r2|n||an|2 + 2|n|2(|n| − 1)(|n| − 2)r2|n|−2ℜ(anbn)

+ 16π
r

∑
n∈Z

(|n| − 2)2(|n|2 − 2|n| + 2)r2|n|−4|bn|2.

The discriminant of the n-th term (seen as a Hermitian form of r|n|an, r
|n|−1bn) is −4|n|4(|n|−2)2:

for n /∈ {−2, 0, 2}, the n-th term is positive definite, and for n ∈ {−2, 0, 2}, it is positive semi-
definite. We find again the monotonicity of W0 in this special case. Another observation is that

1
8πW0(u, r) = −4r−4|b0|2 − r−2

(
|b1|2 + |b−1|2

)
+ Or→0(1).

In particular, W0(u, 0) is finite if and only if u(0) = |∇u(0)| = 0. This implies that if v ∈ M (D1)
and 0 ∈ Spt(v), then necessarily W (v, r) → −∞ as r → 0.
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3.2 Classification of 2-homogeneous minimizers
From the monotonicity formula of Theorem 19, we expect that limits of r 7→ ur := r−2u(r·) as
r → 0, when they exist with a strong enough notion of convergence, should be 2-homogeneous.
For this reason we classify every 2-homogeneous minimizers; we will see there are only four types.
We start with a lemma on biharmonic functions in angular sectors. For any ω ∈ (0, 2π] we denote
by

Sω := {reiθ : 0 < r < 1, 0 < θ < ω}

the angular sector. As mentioned previously, we will denote by t1 the unique fixed point of
t ∈ (π, 2π) 7→ tan(t).

Lemma 23. Let ω ∈ (0, 2π], and u ∈ H2 (Sω) \ {0} such that u = ∂θu = 0 on ∂Sω \ ∂D1 and
∆2u = 0 on Sω. Suppose u is of the form u(reiθ) = r2b(θ) (for some b ∈ H2

0 ([0, ω])). Then either

(i) ω = π and b is a multiple of
bI(θ) = 1

2 sin(θ)2
+. (3.14)

(ii) ω = t1 and b is a multiple of

bII(θ) = 1
4

(
1 − cos(2θ) − 2

t1

(
θ − sin(2θ)

2

))
χ0≤θ≤t1 . (3.15)

(iii) ω = 2π and b is a multiple of
bIII(θ) = 1

2 sin(θ)2. (3.16)

Proof. The equation verified by u rewrites as∂4
θb+ 4∂2

θb = 0 in (0, ω),
b(0) = b′(0) = b(ω) = b′(ω) = 0,

so b must be a linear combination of the solutions of the homogeneous differential equation, that
is of cos(2θ), sin(2θ), 1, θ. Denote χ(θ) = θ − sin(2θ)

2 , the conditions b(0) = b′(0) = 0 implies that
b must be a linear combination of χ(θ) and χ′(θ) = 1 − cos(2θ), so for some (α, β) ∈ R2 \ {(0, 0)}:αχ(ω) + βχ′(ω) = 0

αχ′(ω) + βχ′′(ω) = 0.

There is a nonzero solution if and only if χ′′(ω)χ(ω) = χ′(ω)2, meaning

sin(ω) (ω cos(ω) − sin(ω)) = 0.

The only solutions in (0, 2π] are ω = π, t1, 2π, and in each case the space of solutions has dimension
1 and is generated by the function

θ 7→ χ(ω)χ′(θ) − χ′(ω)χ(θ),

which gives bI, bII, bIII (up to some multiplicative constant).

Lemma 24. Let u ∈ M (D1) such that ∂Spt(u) = {(x, y) ∈ D1 : y = 0}.

• If Spt(u) is a half-disk, then the trace of ∆u|Spt(u) on ∂Spt(u) is +1 or −1.

• If Spt(u) is two half-disks, then u is biharmonic in D1 and |∆u| ≥ 1 on ∂Spt(u).
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Proof. If u ∈ M (D1), then for any ϕ = (ϕx, ϕy) ∈ C∞
c (D1,R2) we have

d

dt

∣∣∣∣∣
t=0+

E
(
u ◦ (Id + tϕ)−1 ;D1

)
≥ 0,

which is equivalent to the following inner variation relation (see [11, Lem. 4.4.] for a detailed
computation):

∀ϕ ∈ C∞
c (D1,R2),

ˆ
D1

(
|∆u|2 + χu̸=0

)
∇ · ϕ ≥ 2

ˆ
D1

∆u
(
2∇2u : ∇ϕ+ ∇u · ∆ϕ

)
(3.17)

and when we replace ϕ with −ϕ, we have an equality above. Suppose that Spt(u) = {(x, y) ∈
D1 : y > 0}, then u is smooth up to the boundary (since it is biharmonic with Dirichlet condition
for u and ∇u along a smooth boundary), so

ur −→
r→0

∆+u(0)
2 y2

+

in every Ck(D1 ∩ {y > 0}) space (here ∆+ designate the trace of ∆u|{y>0} on {y = 0}). Replacing
u with ur in the inner variation relation (3.17) gives, as r → 0, and for any ϕ ∈ C∞

c (D1,R2),
ˆ
D1∩{y>0}

(
|∆+u(0)|2 + 1

)
∇·ϕ = 2

ˆ
D1∩{y>0}

∆+u(0)
(
2∆+u(0)ey ⊗ ey : ∇ϕ+ ∆+u(0)(yey) · ∆ϕ

)
,

which after integration by parts gives
(
(∆+u(0))2 − 1

)ˆ
D1∩{y=0}

ϕy = 0.

And so (∆+u)2 = 1 on {(x, y) ∈ D1 : y = 0}.
Suppose now that Spt(u) = {(x, y) ∈ D1 : y ̸= 0}. Let ϕ = (ϕx, ϕy) ∈ C∞

c (D1,R2) such that
ϕy(x, 0) ≥ 0 for any x, and let

ut =


u ◦ (Id + tϕ)−1 in (Id + tϕ) ({y > 0})
u in {y < 0}
0 elsewhere.

Then ut is a valid competitor for u (note that this would not be true when replacing ϕ with
−ϕ due to overlapping of (Id + tϕ) ({y > 0}) and {y < 0}): by the inner variation (3.17), this
gives |∆+u(0)| ≥ 1. Finally, let v be the biharmonic extension of u in D1: then by minimality
we have E(u;D1) ≤ E(v;D1) and since u has full support in D1, then

´
D1

|∆u|2 ≤
´
D1

|∆v|2, so u
must be equal to its own biharmonic extension.

Proposition 25. Let u ∈ M (D1) \ {0}, suppose that u is 2-homogeneous. Then u belongs to one
of the four types of functions described in (1.7) (1.8), (1.9), (1.10).

Proof. Since u ∈ M (D1), by Lemma 12, ∇u is continuous. Therefore, Spt(u)(= {u ̸= 0}∪{∇u ̸=
0}) is an open cone, and on each connected component, u must be a biharmonic function with
Dirichlet boundary conditions. By Lemma 23, each angular sector (that is not the full disk D1)
must have an opening π, t1 or 2π. This reduces to five different cases, up to rotation:

• u = cuI for some c ∈ R, and Lemma 24 gives c = ±1.

• u = cuII for some c ∈ R, and Lemma 24 gives c = ±1.
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• u = cuIII for some c ∈ R, and Lemma 24 gives |c| ≥ 1.

• u(x, y) = c+uI(x, y)χy>0 + c−uI(x,−y)χy<0 for some c+, c− ∈ R, and Lemma 24 gives
c+ = c−, so u = c+uIII, and this is already covered in the previous case.

• ∂Spt(u) is reduced to a point. In this case, u is a general 2-homogeneous biharmonic
function: using it Goursat decomposition, we may write u = (x2 + y2)v + w where v, w
are harmonic and respectively 0-homogeneous (meaning it is constant) and 2-homogeneous
(meaning it is a linear combination of xy and x2 − y2), so it is written as in (1.10). Note
that when a2 = b2 + c2, the solution is in fact of type III.

Definition 26. We let Mhom be the set of non-zero 2-homogeneous functions u in M (D1). We
have a splitting

Mhom = M π
hom ⊔ M t1

hom ⊔ M 2π
hom,

such that u ∈ M Θ
hom if and only if u ∈ Mhom and Θ = 2|Spt(u) ∩ D1|. Similarly, we write Bhom

the set of non-zero minimizers of G(·, 0) that are invariant with respect to the t variable, and we
have a splitting

Bhom = Bπ
hom ⊔ Bt1

hom ⊔ B2π
hom

such that u ∈ M Θ
hom if and only if u(reiθ) = r2b(θ) where b (seen as a function of t, θ that is

constant with respect to t) belongs to BΘ
hom.

Lemma 27. There exists d > 0 such that for any u, v ∈ Mhom with |Spt(u)∩D1| ̸= |Spt(v)∩D1|,
we have ∥u− v∥H1(D1) ≥ d.

Proof. Suppose |Spt(u)∩D1| < |Spt(v)∩D1|. Since the supports of u and v have an opening π, t1
(for u), t1, 2π (for v), there exists a sector S ⊂ D1 of opening at least t1−π

2 such that u = 0 on S
and S ⊂ Spt(v). In particular there exists p ∈ ∂D 1

2
such that Dp, 1

10
⊂ S: by the nondegeneracy

Lemma 14 applied to v on this disk we get

∥u− v∥H1(D1) ≥ ∥v∥H1(D
p, 1

10
) ≳ 1.

Remark 28. We will show below that functions of type I described in (1.7) are in fact minimizers,
see remark 32. We conjecture (but do not prove) that every functions of type II and III described
in (1.8), (1.9) also belong to M (D1).

On the contrary, by the non-degeneracy Lemma 14, we know that the function ua,b,c described
in (1.10) cannot be a minimizer when the parameters a, b, c are too small. In fact, in the work in
preparation [14], H.-C. Grunau and M. Müller prove that for any (a, b, c) ∈ R3, the function ua,b,c

belong to M (D1) when |a| ≥ 1
4 , which includes the case of type III minimizers. The situation for

uII and ua,b,c with |a| < 1
4 and (b, c) ̸= (0, 0) remains open.

3.3 Existence of blow-ups
The first use of the monotonicity formula of Theorem 19 is to show that any blow-up is necessarily
2-homogeneous.

Lemma 29. Let u ∈ M (D1), assume 0 ∈ ∂Spt(u), and let r1 ≥ r2 ≥ r3 ≥ . . . → 0 such that

sup
n∈N∗

∥urn∥H1(D1) < ∞.
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Then there exists some extraction (ni)i≥1, and some 2-homogeneous minimizer v as characterized
in Lemma 25 such that

urni
−→

i→+∞
v in H2

loc(D1),

and W (v, r) = W (u, 0) for any r ∈ (0, 1).
Proof. Since urn is bounded in H1(D1), in particular u(0) = |∇u(0)| = 0. The sequence (urn)n

satisfies the hypothesis of Lemma 15, so after extraction we may suppose urn converges in H2
loc(D1)

to some limit v. Let ϕ ∈ C∞
c (]1/2, 1[,R+) be such that

´ 1
0 ϕ(s)ds = 1, and

Wϕ(v, s) :=
ˆ 1

0
ϕ(ρ)W (v, sρ)ds.

Then Wϕ(v, s) may be rewritten as

Wϕ(v, s) =
ˆ 1

0
ϕ(ρ)

(
E(v;Dρs)

(ρs)2 + ρsN ′(v, ρs) +R(v, ρs)
)
dρ

=
ˆ 1

0

{
ϕ(ρ)

(
E(v;Dρs)

(ρs)2 −N(v, ρs) +R(v, ρs)
)

− ρϕ′(ρ)N(v, ρs)
}
dρ.

Since urn converges to v in H2
loc(D1) and χurn ̸=0 converges in L1(D1) to χu̸=0 (by Lemma 15), then

for fixed s:
Wϕ(v, s) = lim

n→+∞
Wϕ(urn , s) = lim

n→+∞
Wϕ(u, srn),

and we see the expression on the right-hand side is independent of s (by the monotonicity of W ),
so Wϕ(v, ·) is constant. Since W (v, s/2) ≤ Wϕ(v, s) ≤ W (v, s) for any s ∈ (0, 1), this implies
W (v, ·) is constant.

By Theorem 19, v is therefore 2-homogeneous. Moreover, v cannot be zero, since otherwise
urn would be zero in D1/2 for some large enough n by the nondegeneracy Lemma 14, which would
contradict the fact that 0 ∈ ∂Spt(u). As a consequence, by Lemma 25, v is equal to one of the
four types of solutions described in (1.7), (1.8), (1.9), (1.10).

Our goal in the rest of the section is to prove the two following results, on the existence of
blow-ups under some a priori information on the solution.
Proposition 30. Let u ∈ M (D1) such that

lim sup
r→0

|{u = 0} ∩ Dr|
|Dr|

> 0.

Then there exists a blow-up of type I or II at the origin.
When there is no such density estimate of {u = 0}, we do not know yet whether a blow-up

exists. However, we can prove that there is a nonzero “renormalized” blow-up in the following
sense.
Proposition 31. Let u ∈ M (D1) such that u(0) = |∇u(0)| = 0 and (rn)n∈N∗ a sequence converg-
ing to 0 such that

lim
r→0

∥urn∥H1(D1) = +∞.

Then there exists some subsequence rnk
, and some nonzero 2-homogeneous biharmonic function

v, such that
urnk

∥urnk
∥H1(D1)

−→
k→+∞

v in H2
loc(R2).
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Remark 32. We may now prove that the function defined in (1.7) belongs to M (D1) by a blow-up
argument. Indeed, for every small ϵ > 0 consider uϵ ∈ M (D1) verifying (uϵ, ∂ru

ϵ) = (ϵ, 0) on
∂D1. Such minimizer exists by standard arguments. Let η ∈ C∞

c (R,R) with η ≡ 1 near 0, then

E(uϵ;D1) ≤ E

(
ϵη

(
1 − | · |√

ϵ

)
;D1

)
= Oϵ→0

(√
ϵ
)
.

So by the nondegeneracy Lemma 14, uϵ = 0 in D 1
2

for a sufficiently small ϵ > 0 that we fix. Let
r > 0 be the largest radius such that uϵ = 0 in Dr, and p ∈ ∂Dr ∩ ∂Spt(uϵ). Since Spt(uϵ) has
density at most 1

2 at p, then by Proposition 30, uϵ(p + ·) admits a blow-up of type I, which must
then be a minimizer.

The proofs of Proposition 30, 31 rely on the structure of W (u, r). We remind that by Theorem
19, W (u, r) is decomposed as

W (u, r) := 1
r2E(u;Dr) + rN ′(u, r) +R(u, r),

where N,R are defined in (3.7), (3.9). Since N(u, r) ≳ ∥ur∥2
L2(∂D1) +∥∇ur∥2

L2(∂D1) ≳ R(u, r), there
exists some universal constant κ > 0 (which could be made explicit, although we will not need
it) such that for any function u ∈ H2(D1), r ∈ (0, 1):

|R(u, r)| ≤ κN(u, r). (3.18)

The next lemma uses this decomposition of W (u, r) to ensure that for any u ∈ M (D1), ur

cannot be too small compared to u for r close to 1, in a uniform way.

Lemma 33. Let u ∈ M (D1) such that u(0) = |∇u(0)| = 0, r ∈ (0, 1), κ the constant from (3.18).
Then

N(u, r) ≥ rκN(u, 1) − 1 − rκ

κ
W (u, 1).

A scale-invariant statement of this lemma is that for any s < r, u ∈ M (Dr) such that
u(0) = |∇u(0)| = 0:

N(u, s) ≥
(
s

r

)κ

N(u, r) −
1 −

(
s
r

)κ

κ
W (u, r).

This is obtained by applying Lemma 33 to ur with a radius s
r
.

Proof of Lemma 33. We start from W (u, r) ≤ W (u, 1), (given by the monotonicity from Theorem
19), and we decompose W (u, r) as:

1
r2E(u;Dr) + rN ′(u, r) +R(u, r) ≤ W (u, 1).

Using the estimate |R| ≤ κN (see (3.18)), and the fact that the energy E is nonnegative, we get

rN ′(u, r) − κN(u, r) ≤ W (u, 1)

which may be rewritten as
d

dr

N(u, r)
rκ

≤ W (u, 1)
rκ+1 .

We integrate this from r(< 1) to 1:

N(u, 1) − N(u, r)
rκ

≤
( 1
rκ

− 1
)
W (u, 1)

κ
,

which is the result.
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Lemma 34. There exists σ > 0 such that the following holds: let (u(n))n be a sequence in M (D1)
such that

u(n)(0) = |∇u(n)(0)| = 0, N(u(n), 1) −→
n→+∞

+∞, W (u(n), 1) ≤ σN(u(n), 1).

Then there exists a subsequence (nk)k≥1 and a nonzero biharmonic function v : D1 → R such that

u(nk)

∥u(nk)∥H1(D1)
−→

k→+∞
v in H2

loc(D1).

Proof. Let (u(n)) be such a sequence, for a value σ > 0 that will be fixed sufficiently small. By
Lemma 33 we have, for all r ∈

[
1
2 , 1

]
,

N(u(n), r) ≥ 2−κN(u(n), 1) − 1 − 2−κ

κ
W (u(n), 1) ≥ 2−κ−1N(u(n), 1) for a small enough σ.

Let Mn = 2
´ 1

1
2
N(u(n), r)dr. Then Mn ≥ 2−κ−1N(u(n), 1) → +∞ and by the Cacciopoli inequality

of Lemma 10 we have
∥u(n)∥2

H1(D1) ≲Mn ≲ ∥u(n)∥2
H1(D1).

It is enough to prove that M−1/2
n u(n) converges to some non-zero biharmonic function. Since

this sequence is bounded in H1(D1), and M−1/2
n u(n) ∈ MM−1

n
(D1), by Lemma 15 it admits (after

extraction of a subsequence nk) some limit v in the H2
loc(D1) sense such that v ∈ M0(D1) (meaning

v is biharmonic).
We now prove that v is not identically zero. There exists some rn ∈

[
1
2 , 1

]
such that Mn =

N(u(n), rn), and by application of Lemma 33 we have, for all r ∈
[

1
4 ,

1
2

]
(⊂

[
rn

4 , rn

]
),

N(u(n), r) ≥ 4−κMn − 1 − 4−κ

κ
W (u(n), 1) ≥ 4−κ−1Mn for a small enough σ.

In particular, ∥M−1/2
n u(n)∥2

H1(D1/2) is bounded from below by a positive constant. Since the con-
vergence of M−1/2

nk
u(nk) to v is strong in H1(D1/2), necessarily v is non-zero.

The next lemma is central for the existence of blow-ups: it states that at points where Spt(u)c

has a positive density, W (u, r) controls N(u, r) from above. Since r 7→ W (u, r) is nondecreasing,
this will imply a uniform bound of N(u, r) as r → 0.

Lemma 35. Let δ ∈ (0, 1), there exists Cδ > 0 such that for any u ∈ M (D1) with u(0) =
|∇u(0)| = 0 and

|{u ̸= 0} ∩ D1| ≤ (1 − δ)|D1|,
we have

N(u, 1) ≤ Cδ(1 +W (u, 1)+).

Note that this lemma fails without the hypothesis on the support: we expect u : (x, y) 7→ λy2

to be a solution in M (D1) for any λ ≥ 1, but W (u, 1) = π, whereas N(u, 1) = cλ2 for some c > 0,
so the estimate cannot hold for large enough λ.

Proof. Suppose that for some sequence of minimizers u(n) verifying this density estimate we have
N(u(n), 1) ≥ n(1 + W (u(n), 1)+). In particular Lemma 34 applies for large enough n: up to the
extraction of a subsequence, u(n)

∥u(n)∥H1(D1)
converges in H2

loc(D1) to a non-zero biharmonic function
v.

By Fatou’s lemma we have |{v = 0}| ≥ lim supn→+∞ |{u(n) = 0}| ≥ δ, which is a contradiction
since, for instance, any biharmonic function is analytic, so its support must have full measure.
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We now deduce the proofs of Proposition 30 and 31.

Proof of Proposition 30. Let rn → 0 be a sequence such that for some δ ∈
(
0, 1

2

)
, we have

|{u = 0} ∩ Drn|
|Drn|

> 2δ.

Let τ =
√

1 − δ, such that for any r ∈ (τrn, rn), we have

|{u = 0} ∩ Dr|
|Dr|

> δ.

Then for every such n, r ∈ (τrn, rn), we have by Lemma 35

N(u, r) ≤ Cδ(1 +W (u, r)+) ≤ Cδ(1 +W (u, 1)+),

where Cδ is the constant from Lemma 35. We integrate this in r ∈ (τrn, rn):

∥urn∥2
H1(D1\Dτ ) ≲

ˆ 1

τ

N(u, srn)ds ≲ δCδ(1 +W (u, 1)+),

and by the Cacciopoli inequality of Lemma 10, ∥urn∥H1(Dτ ) is also bounded independently of n.
So we can apply Lemma 29 to the sequence urn , and there exists some subsequence urnk

that
converges in H2

loc(D1) to some v ∈ Mhom. Since the density estimate is still verified at the limit,
necessarily v ∈ M I

hom ⊔ M II
hom.

Proof of Proposition 31. By the Cacciopoli inequality of Lemma 10,

∥urn∥2
H1(D1) ≲

ˆ rn

rn/2
N(u, s)ds

s
≲ ∥urn∥2

H1(D1),

so there exists some sn ∈
[

rn

2 , rn

]
such that

∥urn∥2
H1(D1) ≲ N(u, sn) ≲ ∥urn∥2

H1(D1) −→
n→+∞

+∞.

Since W (usn , 1) = W (u, sn) ≤ W (u, 1), Lemma 34 applies to usn for large enough n: up to
extracting a subsequence, we may suppose that usn/∥usn∥H1(D1) converges in H2

loc(D1) to some
nonzero biharmonic function v.

Let R > 2: usn is well-defined in DR for large enough n, and we now prove that up to extracting
another subsequence, usn converges to v in H2

loc(DR). By Lemma 33 applied to u with the radii
sn, snr for r ∈ [R/2, R], we have

N(u, sn) ≥ R−κN(u, snr) − 1 −R−κ

κ
W (u, snr)+.

By integrating this estimate in r ∈
[

R
2 , R

]
we get

∥usn∥2
H1(DR\DR

2
) ≲ Rκ (N(u, sn) +W (u, 1)+) .

Thus usn is locally bounded in H1(DR) for any R > 0: up to extracting a subsequence, we obtain
that usn/∥usn∥H1(D1) converges in H2

loc(R2) to v.
Next we prove that v is a sum of k-homogeneous biharmonic functions for k ∈ {0, 1, 2}. Since

v is biharmonic, it admits a decomposition (as in (3.13)):

v
(
reiθ

)
=
∑
n∈Z

(
anr

|n|+2 + bnr
|n|
)
einθ,
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for some complex coefficients (an)n∈Z, (bn)n∈Z. Proving v is a sum of k-homogeneous function for
k ≤ 2 is thus equivalent to proving that every coefficient other than a0, b0, b±1, b±2 vanishes.

For any r > 0, we have

W0(v, r) = lim
n→+∞

W0

(
usn

∥usn∥H1(D1)
, r

)
= lim

n→+∞

W0(usn , r)
∥usn∥2

H1(D1)

≤ lim sup
n→+∞

W (u, snr)
∥usn∥2

H1(D1)
≤ lim sup

n→+∞

W (u, 1)
∥usn∥2

H1(D1)

= 0 since ∥usn∥H1(D1) → +∞.

By Lemma 21 we have the explicit expression

W0(v, r) = 8π
∑
n∈Z

Hn

(
r|n|an, r

|n|−2bn

)
,

where Hn is the Hermitian form

Hn(z, w) = |n|3|z|2 + 2|n|2(|n| − 2)ℜ(zw) + (|n| − 2)(|n|2 − 2|n| + 2)|w|2.

Note that Hn is positive definite for |n| ≥ 3; using this, we get

∀r > 0, 0 ≥W0(v, r)
8π ≥

∑
|n|≤2

Hn

(
r|n|an, r

|n|−2bn

)
= − 4r−4|b0|2 + 2r2

(
|a1|2 + |a−1|2

)
− 2 (ℜ(a1b1) + ℜ(a−1b−1))

− r−2
(
|b1|2 + |b−1|2

)
+ 8r4

(
|a2|2 + |a−2|2

)
,

so a±2 = a±1 = 0, and∑
|n|≤2

Hn

(
r|n|an, r

|n|−2bn

)
= −4r−4|b0|2 − r−2

(
|b1|2 + |b−1|2

)
.

Now, for any N ∈ Z such that |N | ≥ 3 we have

0 ≥ W0(v, r)
8π ≥ HN

(
r|N |aN , r

|N |−2bN

)
− 4r−4|b0|2 − r−2

(
|b1|2 + |b−1|2

)
.

If aN ̸= 0, the highest degree term of the right-hand side is |N |3|aN |2r2|N |, which is a contradiction
as r → +∞. So necessarily aN = 0, and the previous inequality becomes

0 ≥ (|N | − 2)(|N |2 − 2|N | + 2)|bN |2r2(|N |−2) − 4r−4|b0|2 − r−2
(
|b1|2 + |b−1|2

)
.

Since |N | ≥ 3, then necessarily bN = 0 (otherwise the inequality above does not hold as r → +∞).
This ends the proof that v is a sum of k-homogeneous biharmonic polynomials for k ≤ 2.

Finally, we prove that v is 2-homogeneous. Indeed, for any n ∈ N∗, for any p ∈ D 1
2
, by Lemma

12 applied to urn we have

|urn(p)| ≤ C|p|2 log
(

1
|p|

)
∥urn∥H1(D1),

for some universal constant C > 0. As a consequence, we have for any p ∈ D 1
2
:

|v(p)| ≤ C|p|2 log
(

1
|p|

)
.

Since v is already known to be a polynomial of degree 2, this implies that v is 2-homogeneous.
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4 Epiperimetric inequality
Our goal is now to prove a quantitative version of the monotonicity formula of Theorems 18 and
19. In the classical Alt-Caffarelli problem (see for instance [32], or [36, Lem. 12.14.]), this is
based mainly on two observations: first, the derivative of the normalized energy

WAC(u, r) = 1
r2

ˆ
Dr

(
|∇u|2 + χu>0

)
− 1
r3

ˆ
∂Dr

u2,

with respect to r is bounded from below by W AC(ur,r)−W AC(u,r)
r

, where ur is the 1-homogeneous
extension of u in Dr. The second observation is that for some universal constant η > 0, we have

WAC(u, r) < (1 − η)WAC(ur, r) + η
π

2 .

Here π
2 is the energy of homogeneous minimizers. This leads to a differential inequality of the

form
d

dr

(
WAC(u, r) − π

2

)
≥ η

(1 − η)r

(
WAC(u, r) − π

2

)
.

When WAC(u, 0) ≥ π
2 , this integrates to an explicit rate of convergence

∀r ∈ (0, 1), WAC(u, r) − π

2 ≤ r
η

1−η

(
WAC(u, 1) − π

2

)
.

See [36, Lem. 12.14] for a more extensive discussion on the epiperimetric inequality and on how
to deduce geometric information from this decay.

Neither of these observations is known in our setting: the (2-)homogeneous extension of u in
Dr is generally not a valid competitor for u (since the radial derivatives may not match on each
side of ∂Dr, so the 2-homogeneous extension does not belong to H2), and it is unclear whether
the derivative of W (u, r) is bounded from below by W (ur,r)−W (u,r)

r
, where ur would be some other

“natural” competitor for u in Dr.
Instead of proving a differential inequality on W (u, r), we prove directly the growth rate

estimate
W (u, e−1) − Θ

2 ≤ (1 − η)
(
W (u, 1) − Θ

2

)
,

for some universal constant η ∈ (0, 1), when u is sufficiently close to some homogeneous solution
of opening Θ ∈ {π, t1, 2π}. Here e−1 does not play any particular role and could be replaced by
any constant strictly lower than 1.

We also obtain a control of the variation ∥ur − us∥H1(D1) at different scales 0 < s < r < 1 by√
W (u, 1) − Θ

2 . This will be enough to obtain the uniqueness and rate of convergence of blow-ups.

Theorem 36. Let Θ ∈ {π, t1, 2π}. There exist constants c1 > 0, η ∈ (0, 1) such that the following
holds: let u ∈ M (D1), u ∈ M Θ

hom if Θ ∈ {π, t1} (resp. u ∈ Span(x2 + y2, x2 − y2, xy) if Θ = 2π)
such that

∥u− u∥H1(D1\De−1 ) ≤ c1∥u∥H1(D1), and W (u, 0) ≥ Θ
2 .

Then
W (u, e−1) − Θ

2 ≤ (1 − η)
(
W (u, 1) − Θ

2

)
,

and

∥u− ue−1∥H1(D1\De−1 ) ≤ C1

√
W (u, 1) − Θ

2 .
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Similarly to Section 3, it is more convenient to first prove the epiperimetric inequality in
exponential coordinates. In all that follows, a function of θ will also be seen, by an abuse of
notation, as a function of (t, θ) that is constant with respect to t.

Theorem 37. Let Θ ∈ {π, t1, 2π}. There exist constants c0 > 0, η ∈ (0, 1), such that the
following holds: let u ∈ H2

lin(C0) be a minimizer of G(·, 0), assume that there exists b ∈ BΘ
hom if

Θ ∈ {π, t1} (resp. b ∈ Span(1, cos(2θ), sin(2θ)) if Θ = 2π) such that

∥u− b∥H1(C0\C1) ≤ c0∥b∥H1(S1) and W(u, 1) ≥ Θ
2 . (4.1)

Then
W(u, 1) ≤ W(u, 0) − η

((
W(u, 0) − Θ

2

)
+ ∥∂tu∥2

H1(C0\C1)

)
.

Theorem 36 will be obtained as a direct consequence of Theorem 37. A central point in the
statement of Theorem 37 is that the monotonicity formula of Theorem 18 only gives a control

∥∂t,tu∥2
L2(C0\C1) + ∥∂t,θu∥2

L2(C0\C1) ≤ W(u, 0) − W(u, 1)
4 ,

and it is unclear whether ∥∂tu∥2
L2(C0\C1) is also controlled by the right-hand side, which explains

the presence of the term ∥∂tu∥2
H1(C0\C1) in the conclusion of Theorem 37). When u vanishes on a

sufficiently large subset of C0 \ C1 we may apply a Poincaré inequality to ∂tu, whereas the case
where the support of u is close to C0 \ C1 will be handled separately.

The proof of Theorem 37 relies on a comparison of the solution u with an appropriate com-
petitor. The construction of the competitor is summarized in the two lemmas below, and their
proof will occupy subsections 4.2 to 4.5.

We recall that Spt(u) designates every point where either u or ∇u does not vanish, and we
restrict it to S1 for functions only depending on θ.

Lemma 38. Let Θ ∈ {π, t1, 2π}. There exist c, ϵ, C > 0 such that for any u ∈ H2(S1), v ∈
H1(S1), with {v ̸= 0} ⊂ Spt(u) and(c,Θ − c) ⊂ Spt(u) ⊂ (−c,Θ + c) when Θ ∈ {π, t1},

(c, π − c) ∪ (π + c, 2π − c) ⊂ Spt(u) ⊂ (0, 2π) when Θ = 2π,
(4.2)

there exists U ∈ H2
lin(C0) such that U(0, θ) = u(θ), ∂tU(0, θ) = v(θ) and

G(U, 0) ≤ G(u, 0) − ϵ

(
G(u, 0) − Θ

2

)
+

+ C

ˆ
S1

(∂θv)2. (4.3)

Here G(u, 0) = 1
2

´
S1

(
(∂θ,θu)2 − 4(∂θu)2 + χ{u̸=0}

)
, since (t, θ) 7→ u(θ) is constant with respect

to t ; in a way we are comparing the energy of U(t, θ) with the energy of the homogeneous
extension (t, θ) 7→ u(θ), and the last term takes into account the effect of the boundary condition
∂tU(0, θ) = v(θ) on the estimate.

The support condition (4.2), and more particularly the case disjunction on the value of Θ,
is based on the following observation (see the proof of Theorem 37): assume u ∈ H2

lin(C0) is a
minimizer of G(·, 0), such that ∥u−b∥H1(C0\C1)

∥b∥H1(S1)
is small for some b ∈ BΘ

hom with Θ ∈ {π, t1, 2π}:

• if Θ ∈ {π, t1}, then up to a translation the support of b is (0,Θ), and we may prove that
the support of u(t, ·) for t ∈

(
1
4 ,

3
4

)
verifies the support assumption (4.2).
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• if Θ = 2π, then up to a translation the support of b is either S1 or (0, π) ∪ (π, 2π); when u
is sufficiently close to b, the support of u(t, ·) contains (c, π− c) ∪ (π+ c, 2π− c). Lemma 38
treats this case under the additional assumption that Spt(u(t, ·)) is not S1. The case where
Spt(u) = S1 is purposefully set aside, and is treated separately by the following lemma.

Lemma 39. Let v ∈ H2
lin(C0) be a nonzero minimizer of G(·, 0) such that |Spt(v(0, ·))| = 2π, then

G(v, 0) ≤ G(v(0, ·), 0) − 1
10 (G(v(0, ·), 0) − π)+ + 6∥∂t,θv(0, ·)∥2 − 2∥∂tv(0, ·)∥2.

The proof of Lemma 38 is broken down into several steps, where we construct competitors for
increasingly complex boundary conditions (u, v):

• In subsection 4.2, we treat the case where v = 0, and u is a single one-dimensional buckling
mode (see subsection 4.1 for an introduction of this basis).

• In subsection 4.3, we suppose v = 0, for a general u.

• In subsection 4.4, we remove the v = 0 hypothesis and prove the full estimate of (4.3).

Lemma 39 is obtained by a direct comparison with the biharmonic extension in the disk model,
in subsection 4.5.

Finally, in subsection 4.6 we deduce the epiperimetric inequality from Lemmas 38 and 39.

4.1 Buckling eigenbasis
We will denote by ∥ · ∥ (resp. ⟨·, ·⟩) the L2(S1) norm (resp. scalar product). Let (bn)n≥1 be
an eigenbasis associated to the buckling operator in the segment [0, π]: in other words it is an
orthonormal basis ofH1

0 ([0, π]) for the scalar product ⟨∂θbn, ∂θbm⟩ = δn,m, such that bn ∈ H2
0 ([0, π])

and ∂4
θbn = −µn∂

2
θbn where µn is the n-th buckling eigenvalue. The eigenvalues (µn)n≥1 can be

defined as the n-th positive root of the function

µ 7→ sin
(
π

√
µ

2

)(
π

√
µ cos

(
π

√
µ

2

)
− 2 sin

(
π

√
µ

2

))
. (4.4)

In particular µn = (n+ 1)2 for odd n, and n2 < µn < (n+ 2)2 for even n. The first few values are

µ1 = 4, µ2 =
(2t1
π

)2
≈ 8.183, µ3 = 16, µ4 ≈ 24.187, . . .

and b1(θ) =
√

2
π

sin(θ)2
+. For any ω > 0, we denote

bn,ω(θ) =
√
ω

π
bn

(
π

ω
θ
)
, µn,ω = π2

ω2µn (4.5)

Such that bn,ω is a ⟨∂θ·, ∂θ·⟩-orthonormal basis of H1
0 ([0, ω]), such that bn,ω ∈ H2

0 ([0, ω]) and
∂4

θbn,ω = −µn,ω∂
2
θbn,ω. A central point is that (bn,ω) is not orthogonal for the L2([0, ω]) scalar

product (⟨b1, b3⟩ ̸= 0 for instance, since both do not change sign). We will use the following
estimate.

Lemma 40. For any ω ∈ (0, 2π], for any n ≥ 1, we have

∥bn,ω∥2 ≲
1
µn,ω

.
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Proof. It is enough to prove this for ω = π, by change of variable.
When n is odd, we have µn = (n+ 1)2 and

bn(θ) =
√

2
π

1 − cos((n+ 1)θ)
n+ 1

And so ∥bn∥2 ≲ 1
(n+1)2 = 1

µn
.

When n is even, the computation is simpler on the interval
[
−π

2 ,+
π
2

]
. We know that µn ∈

(n2, (n+ 2)2) and θ 7→ bn

(
θ + π

2

)
is a scalar multiple of the function

fn(θ) = sin (√µnθ) − βnθ

where βn ∈ R is chosen such that fn

(
±π

2

)
= f ′

n

(
±π

2

)
= 0, meaning

sin
(
π

√
µn

2

)
= βn

π

2 ,
√
µn cos

(
π

√
µn

2

)
= βn. (4.6)

The first condition gives |βn| ≲ 1, so |fn| ≲ 1. Then, using these two estimates,

∥bn∥2 = ∥fn∥2

∥∂θfn∥2 ≲
1´ +π/2

−π/2

(√
µn sin(√µnθ) − βn

)2
dθ

≲
1
µn

.

From the expression (4.5), we see that for ω ∈ (0, 2π], µn,ω = 4 is only verified in three cases:

(I) ω = π, n = 1. Then we have µ1,π = 4, µ2,π ≈ 8.187.

(II) ω = t1, n = 2. Then we have µ1,t1 ≈ 1.955, µ2,t1 = 4, µ3,t1 ≈ 7.821.

(III) ω = 2π, n = 3. Then we have µ2,2π ≈ 2.046, µ3,2π = 4, µ4,2π ≈ 6.047.

For Θ ∈ {π, t1, 2π}, we will denote

i(Θ) =


1 if Θ = π,

2 if Θ = t1,

3 if Θ = 2π,

and the numerical values above give us the following estimate: for any ω ∈ (0, 2π] such that
|ω − Θ| ≤ 0.1Θ, n ∈ N∗, we have

n < i(Θ) ⇒ µn,ω ≤ 3, n > i(Θ) ⇒ µn,ω ≥ 5. (4.7)

Similarly, if ω ≤ π
2 , then µn,ω ≥ 5 for any n ∈ N∗.

4.2 Single mode case
We start by proving Lemma 38 under the simplest boundary conditions: v = 0, and u is a single
buckling mode on a segment with eigenvalue close to 4, meaning the first buckling mode (for
angle close to π), or the second buckling mode (for angles close to t1), or the third buckling mode
(for angles close to 2π). The proof in each case is exactly the same, so we prove all three at the
same time.
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Lemma 41. Let Θ ∈ {π, t1, 2π}. There exist c, ϵ > 0 such that for any a ∈ R∗, ω ∈ [Θ − c,Θ +
c] ∩ (0, 2π), if one denotes

u(θ) = abi(Θ),ω(θ),
then there exists U ∈ H2

lin(C0) such that U(0, θ) = u(θ), ∂tU(0, θ) = 0 and

G(U, 0) ≤ G(u, 0) − ϵ

(
G(u, 0) − Θ

2

)
+
. (4.8)

Proof. We denote in this proof

Gnorm(U, 0) = G(U, 0) − Θ
2

so that our goal is to find some competitor U such that Gnorm(U, 0) ≤ Gnorm(u, 0) − ϵGnorm(u, 0)+.
When Gnorm(u, 0) ≤ 0, this is obvious by taking U(t, θ) = u(θ) for every t ≥ 0: we therefore
suppose in what follows that Gnorm(u, 0) > 0. We let ϵ > 0 to be fixed sufficiently small later, and

χϵ(t) = 1 − 9ϵ(1 − (1 + t)e−t),

which is positive in R+ (for small enough ϵ), decreasing, with χϵ(0) = 1, χ′
ϵ(0) = 0, χϵ(t) −→

t→+∞
1 − 9ϵ and ˆ +∞

0
e−2t (χϵ(t) − (1 − ϵ)) dt = 0. (4.9)

We define δ0 ∈ R by
ω = (1 + δ0)Θ,

and for any δ we write

ϕδ(θ) = bi(Θ),Θ

(
θ

1 + δ

)

so that u(θ) = a
√

1 + δ0ϕδ0(θ). We define our competitor U = U(t, θ) by

U(t, θ) = a
√

1 + δ0ϕδ0χϵ(t)(θ).

First observe that U(0, θ) = u(θ), ∂tU(0, θ) = 0 (since χϵ(0) = 1, χ′
ϵ(0) = 0) and U ∈ H2

lin(C0)
(since χϵ → 1 − 9ϵ, and χ′

ϵ, χ′′
ϵ → 0 at +∞). Then

Gnorm(U, 0) =
ˆ +∞

0
e−2t

{
∥∂t,tU∥2 + 2∥∂t,θU∥2

}
dt

+
ˆ +∞

0
e−2t

{
∥∂θ,θU∥2 − 4∥∂θU∥2 + Θδ0χϵ

}
dt,

so

Gnorm(U, 0) − (1 − ϵ)Gnorm(u, 0) =a2(1 + δ0)
ˆ +∞

0
e−2t

{
∥∂t,tϕδ0χϵ∥2 + 2∥∂t,θϕδ0χϵ∥2

}
dt

+ (1 − a2(1 + δ0))Θδ0

ˆ +∞

0
e−2t {χϵ − (1 − ϵ)} dt

+ a2(1 + δ0)
ˆ +∞

0
e−2t

{
∥∂θ,θϕδ0χϵ∥2 − 4∥∂θϕδ0χϵ∥2 + Θδ0χϵ

}
dt

− a2(1 + δ0)(1 − ϵ)
ˆ +∞

0
e−2t

{
∥∂θ,θϕδ0∥2 − 4∥∂θϕδ0∥2 + Θδ0

}
dt.

(4.10)
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Since |χ′
ϵ| + |χ′′

ϵ | ≲ ϵ, the first line of (4.10) is bounded by

A1(1 + δ0)a2ϵ2δ2
0

for some universal constant A1 > 0. The second line is zero by our normalization condition (4.9).
Now we estimate the sum of the third and fourth lines, which is equal to a2(1 + δ0)F (δ0), where

Fϵ(δ) : =
ˆ +∞

0
e−2t (f(δχϵ) − (1 − ϵ)f(δ)) dt,

f(δ) : = ∥∂θ,θϕδ∥2 − 4∥∂θϕδ∥2 + Θδ.

We first compute f(δ) explicitly:

f(δ) = Θδ +
ˆ Θ(1+δ)

0

 1
(1 + δ)4∂θ,θbi(Θ),Θ

(
θ

1 + δ

)2

− 4
(1 + δ)2∂θbi(Θ),Θ

(
θ

1 + δ

)2
 dθ

= Θδ + 4
(

1
(1 + δ)3 − 1

1 + δ

)
.

In particular f(0) = 0, f ′′(0) = 40, and there exists C > 0 such that for any δ ∈ [−1/2, 1/2], we
have

|f(δ) − f ′(0)δ − 20δ2| ≤ C|δ|3.

Then

Fϵ(0) =
ˆ +∞

0
e−2t (f(0) − (1 − ϵ)f(0)) dt = 0 since f(0) = 0

F ′
ϵ(0) =

ˆ +∞

0
e−2t (χϵ(t)f ′(0) − (1 − ϵ)f ′(0)) dt = 0 by (4.9)

F ′′
ϵ (0) =

ˆ +∞

0
e−2t

(
χϵ(t)2f ′′(0) − (1 − ϵ)f ′′(0)

)
dt

= f ′′(0)
ˆ +∞

0
e−2t

(
(1 − 9(1 − (1 + t)e−t)ϵ)χϵ(t) − (1 − ϵ)

)
dt

= 40
ˆ +∞

0
e−2t

(
−9(1 − (1 + t)e−t)ϵ)χϵ(t)

)
dt by (4.9)

= −20
(

1 − 45
16ϵ

)
ϵ.

Moreover, for any δ ∈ [−1/2, 1/2] we can estimate uniformly∣∣∣∣Fϵ(δ) + 10
(

1 − 45
16ϵ

)
ϵδ2
∣∣∣∣ =

∣∣∣∣Fϵ(δ) − Fϵ(0) − F ′
ϵ(0)δ − 1

2F
′′
ϵ (0)δ2

∣∣∣∣
≤
ˆ +∞

0
e−2t

∣∣∣∣f(δχϵ) − f(0) − f ′(0)δχϵ − 1
2f

′′(0)(δχϵ)2
∣∣∣∣ dt

+ (1 − ϵ)
ˆ +∞

0
e−2t

∣∣∣∣f(δ) − f(0) − f ′(0)δ − 1
2f

′′(0)δ2
∣∣∣∣ dt

≤A2|δ|3,

for some A2 > 0 that is independent of ϵ: in particular, for ϵ ≤ 8
45 we obtain

Fϵ(δ) ≤ −5ϵδ2 + A2|δ|3.
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Going back to (4.10), we may now bound

Gnorm(U, 0) − (1 − ϵ)Gnorm(u, 0) =a2(1 + δ0)
ˆ +∞

0
e−2t

{
∥∂t,tϕδ0χϵ∥2 + 2∥∂t,θϕδ0χϵ∥2

}
dt

+ a2(1 + δ0)F (δ0)
≤(1 + δ0)a2

(
A1ϵ

2δ2
0 − 5ϵδ2

0 + A2|δ0|3
)
.

Thus we may fix a small enough ϵ ≤ min
(

8
45 ,

1
A1

)
such that for any δ0 verifying |δ0| ≤ ϵ

A2
, the

right-hand side above is negative so

Gnorm(U, 0) ≤ (1 − ϵ)Gnorm(u, 0).

In the case Θ = 2π, there is an additional possibility we have to consider here: the support of
u is the union of two disjoint segments of length close to π, and u is a first buckling eigenmode
on each connected component of the support.
Lemma 42. There exist c, ϵ > 0 such that for any a1, a2 ∈ R∗, ω1, ω2 ∈ [π − c, π + c] with
ω1 + ω2 ≤ 2π, for any β ∈ [0, 2π − ω1 − ω2], if one denotes

u(θ) =
a1b1,ω1(θ) if θ ∈ [0, ω1]
a2b1,ω2(θ − ω1 − β) if θ ∈ [ω1 + β, ω1 + β + ω2]

,

then there exists U ∈ H2
lin(C0) such that U(0, θ) = u(θ), ∂tU(0, θ) = 0 and

G(U, 0) ≤ G(u, 0) − ϵ (G(u, 0) − π)+ (4.11)

Proof. Again the case G(u, 0) ≤ π is direct by choosing U(t, θ) = u(θ), so we assume G(u, 0) > π.
Without loss of generality (up to switching the roles of the two sectors) we suppose that

β ≥ 2π−ω1−ω2
2 . Let U1, U2 be the competitors built in Lemma 41 for a1b1,ω1 , a2b1,ω2 respectively.

We let ϵ be the constant from Lemma 41, so that Spt(Ui(t, ·)) = [0, π + (ωi − π)χϵ(t)] where we
remind χϵ(t) = 1 − 9ϵ(1 − (1 + t)e−t) takes values between 1 − 9ϵ and 1. We define

U(t, θ) = U1(t, θ) + U2(t, ω1 + ω2 + β − θ).

We claim the support of the two terms on the right-hand side are disjoint: indeed for any t ≥ 0,
we have

Spt(U1(t, ·)) = [0, π + (ω1 − π)χϵ(t)],
Spt(U2(t, ω1 + ω2 + β − ·)) = [ω1 + ω2 + β − π − (ω2 − π)χϵ(t), ω1 + ω2 + β]

and the condition

π + (ω1 − π)χϵ(t) ≤ ω1 + ω2 + β − π − (ω2 − π)χϵ(t)

reduces to
(2π − ω1 − ω2)χϵ(t) ≥ 2π − ω1 − ω2 − β.

By our hypothesis on β, the right-hand side is smaller than 2π−ω1−ω2
2 , while the left-hand side is

larger than (1−9ϵ)(2π−ω1 −ω2): since ϵ may be chosen smaller than 1
18 , this condition is always

verified. Thus, we have by additivity

G(U, 0) = G(U1, 0) + G(U2, 0)

≤ G(a1b1,ω1 , 0) + G(a2b1,ω2 , 0) − ϵ
(

G(a1b1,ω1 , 0) − π

2

)
+

− ϵ
(

G(a2b1,ω2 , 0) − π

2

)
+

≤ G(u, 0) − ϵ (G(u, 0) − π)+ by the general inequality x+ + y+ ≥ (x+ y)+, ∀x, y ∈ R.

This concludes the proof.
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4.3 Removal of higher modes
We now prove Lemma 38 in the case where v = 0, and u is a general function such that Spt(u)
verifies the hypothesis of Lemma 38. We reduce the problem to the single mode case to obtain
the estimate (4.3).

We first prove some useful computations. Let u ∈ H2
0 ([0, ω]), written in the eigenbasis (bn,ω)

as
u(θ) =

∑
n≥1

unbn,ω(θ)

where (un)n≥1 is uniquely defined, and ∑n≥1 µn,ω|un|2 = ∥∂θ,θu∥2
L2([0,ω]) < ∞. For any uniformly

bounded sequence of functions fn ∈ C2(R+,R) with fn(0) = 1, f ′
n(0) = 0, we let

u(fn)n≥1(t, θ) =
∑
n≥1

unfn(t)bn,ω(θ).

In particular, u(fn) ∈ H2
lin(C0) verifies u(fn)n≥1(0, θ) = u(θ), ∂t|t=0u

f,N(t, θ) = 0.

Lemma 43. There exists some universal constant C0 > 0 such that the following holds: for any
ω ∈ (0, 2π], u ∈ H2

0 ([0, ω]), (fn)n≥1 a sequence of uniformly bounded functions in C2(R+,R) such
that fn(0) = 1, f ′

n(0) = 0, and u(fn)n≥1 defined as above, we have

G(u(fn)n≥1 , 0) ≤ ω

ˆ +∞

0
e−2tχ∃n:fn(t)̸=0dt+

∑
n≥1

Qµn,ω−4(fn)u2
n, (4.12)

where
Qλ(f) :=

ˆ +∞

0
e−2t

{
C0f

′′(t)2 + 2f ′(t)2 + λf(t)2
}
dt. (4.13)

Moreover, when fn ≡ 1 for every n and |{u ̸= 0}| = ω, then (4.12) is an equality, and in this
case we have

G(u(1)n≥1 , 0) = G(u, 0) = ω

2 +
∑
n≥1

µn,ω − 4
2 u2

n.

Proof. We compute directly

G(u(fn)n≥1 , 0) =
ˆ +∞

0
e−2t

(ˆ
S1
χ

u
(fn)n≥1 ̸=0

)
dt+

ˆ +∞

0
e−2t


∥∥∥∥∥∥
∑
n≥1

f ′′
n(t)unbn,ω

∥∥∥∥∥∥
2

+ 2
∥∥∥∥∥∥
∑
n≥1

f ′
n(t)un∂θbn,ω

∥∥∥∥∥∥
2
 dt

+
ˆ +∞

0
e−2t


∥∥∥∥∥∥
∑
n≥1

fn(t)un∂θ,θbn,ω

∥∥∥∥∥∥
2

− 4
∥∥∥∥∥∥
∑
n≥1

fn(t)un∂θbn,ω

∥∥∥∥∥∥
2
 dt

≤ω

ˆ +∞

0
e−2tχ∃n:fn(t)̸=0dt+

∑
n,m≥1

ˆ +∞

0
e−2tf ′′

n(t)f ′′
m(t)dt⟨bn,ω, bm,ω⟩unum

+ 2
∑
n≥1

ˆ +∞

0
e−2tf ′

n(t)2dt u2
n +

∑
n≥1

(µn,ω − 4)
ˆ +∞

0
e−2tfn(t)2dt u2

n

Here we recall the orthogonality properties ⟨∂θbn,ω, ∂θbm,θ⟩ = δn,m, ⟨∂θ,θbn,ω, ∂θ,θbm,θ⟩ = µn,ωδn,m,
but ⟨bn,ω, bm,ω⟩ is generally not zero; by Cauchy-Schwarz inequality, we have

∑
n,m≥1

(ˆ +∞

0
e−2tf ′′

n(t)f ′′
m(t)dt

)
⟨bn,ω, bm,ω⟩unum ≤

∑
n≥1

(ˆ +∞

0
e−2tf ′′

n(t)2dt

) 1
2

∥bn,ω∥|un|

2

≤

∑
n≥1

∥bn,ω∥2

∑
n≥1

ˆ +∞

0
e−2tf ′′

n(t)2dt u2
n

 .
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Denote C0 = supω∈(0,2π]

(∑
n≥1 ∥bn,ω∥2

)
, C0 is finite since by Lemma 40, ∥bn,ω∥2 ≲ µ−1

n,ω = ω2

π2µ
−1
n

which is summable (we recall that µ−1
n = O

(
1

n2

)
). Then we identify

G(u(fn)n≥1 , 0) ≤ ω

ˆ +∞

0
e−2tχ∃n:fn(t)̸=0dt+

∑
n≥1

Qµn,ω−4(fn)u2
n

with an equality in the chain of inequality above when every fn is constant and the measure of
the support of u is ω. In this case Qλ(1) = λ

2 , which concludes the proof.

The constant function f ≡ 1 is clearly not a minimizer of the integral Qλ(f) for λ > 0, since
it does not verify the associated Euler-Lagrange equation. It is however non-trivial whether there
is a function with compact support and quantifiably lower energy Qλ for every λ ≥ 1: this is
shown in the following Lemma.

Lemma 44. There exist η > 0, f ∈ C2
c ([0,+∞[, [0, 1]) verifying f(0) = 1, f ′(0) = 0, such that

for any λ ≥ 1 we have
Qλ(f) ≤ (1 − η)Qλ(1),

where Qλ is defined in (4.13).

Note that the condition λ ≥ 1 could be replaced by any condition λ ≥ λ0 for some λ0 > 0.

Proof. It is sufficient to prove the result for λ = 1, and it implies the result for any λ ≥ 1. Indeed,
suppose f verifies the inequality for the value λ = 1, since f ≤ 1 and f is not identically 1, then
for some constant η′ ∈ (0, 1) we have

ˆ +∞

0
e−2tf(t)2dt ≤ 1 − η′

2

so for any λ ≥ 1,

Qλ(f) = Q1(f) + (λ− 1)
ˆ +∞

0
e−2tf(t)2dt

≤ (1 − η)1
2 + (1 − η′)λ− 1

2
≤ (1 − η ∧ η′)λ2 .

Now we prove the result for λ = 1. Let ϵ ∈ (0, 1), T > 1 to be fixed later, χ ∈ C∞(R, [0, 1]) equal
to 1 on ] − ∞,−1[, 0 on [0,+∞[, and

fϵ(t) = (1 + ϵt)e−ϵt, fϵ,T (t) = χ(t− T )fϵ(t).

We prove that for any sufficiently small ϵ we have the two estimates:

(i) Q1(fϵ) ≤
(

1 − 1
4ϵ

2
)
Q1(1), (ii) Q1(fϵ,T ) ≤

(
1 + Ce−2T

)
Q1(fϵ), (4.14)

for some universal constants c, C > 0 (that are independant of T, ϵ). The result is then obtained
by fixing a sufficiently small ϵ such that the estimates hold, and then choosing T large enough
depending on ϵ such that Q1(fϵ,T ) ≤

(
1 − 1

8ϵ
2
)
Q1(1).
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(i) We compute f ′
ϵ(t) = −ϵ2te−ϵt, f ′′

ϵ (t) = −ϵ2(1 − ϵt)e−ϵt. So for some constant C > 0 we may
bound the first two terms of Q1(fϵ) (see (4.13)) by Cϵ4. Then the last term of (4.13) is
estimated by

ˆ +∞

0
e−2tfϵ(t)2dt =

ˆ +∞

0
e−2(1+ϵ)t(1 + ϵt)2dt = 1

2

(
1 − ϵ2

2 + O(ϵ3)
)
.

This proves (i) for sufficiently small ϵ (we remind that Q1(1) = 1
2).

(ii) We compute directly, using the (rough) estimate fϵ, f
′
ϵ, f

′′
ϵ ≲ 1 and Q(fϵ) ≳ 1 (for any

ϵ ∈ (0, 1)):

Q1(fϵ,T ) −Q1(fϵ) ≤
ˆ T

T −1
e−2t

(
C0(f ′′

ϵ,T )2 + 2(f ′
ϵ,T )2 + (fϵ,T )2

)
dt

≤ Ce−2TQ1(fϵ),

for some constant C > 0. So we get the estimate (ii).

This concludes the proof.

We now prove an analogue of Lemma 44 for negative values of λ.

Lemma 45. There exists f ∈ C2
c ([0,+∞[,R) verifying f(0) = 1, f ′(0) = 0, such that for any

λ ≤ −1 we have
Qλ(f) ≤ Qλ(1),

where Qλ is defined in (4.13).

Note that in this case Qλ(1) = λ
2 < 0 since λ < 0, in particular we have Qλ(1) ≤ (1 − η)Qλ(1)

for any η > 0.

Proof. Define, as in the previous proof, χ ∈ C∞(R, [0, 1]) equal to 1 on ] − ∞,−1], 0 on [0,+∞[.
We let

fϵ(t) = ϵt+ e−ϵt,

for some ϵ ∈ (0, 1) to be fixed. We have fϵ(0) = 1, f ′
ϵ(0) = 0, and moreover f ′

ϵ(t) = ϵ (1 − e−ϵt),
f ′′

ϵ (t) = ϵ2e−ϵt. Thus
ˆ +∞

0
e−2tf ′′

ϵ (t)2dt ≲ ϵ4,

ˆ +∞

0
e−2tf ′

ϵ(t)2dt ≲ ϵ3

ˆ +∞

0
e−2tfϵ(t)2dt = 1

2 + ϵ2

4 + O
(
ϵ3
)

≥ 1
2

(
1 + ϵ2

3

)
for small ϵ.

We now fix ϵ ∈ (0, 1) small enough such that the last inequality holds. Let

fϵ,T (t) = χ(t− T )fϵ(t)

for some T > 1 to be fixed. With the rough estimate |fϵ(t)| + |f ′
ϵ(t)| + |f ′′

ϵ (t)| ≲ 1 + t (for small
ϵ), we have for any λ ≤ −1:

Qλ(fϵ,T ) = Qλ(fϵ) + (Qλ(fϵ,T ) −Qλ(fϵ))

≤ λ

2

(
1 + ϵ2

3

)
+
ˆ +∞

T −1
e−2t

(
C0f

′′2
ϵ,T + 2f ′2

ϵ,T − λf 2
ϵ

)
dt

≤ λ

2

(
1 + ϵ2

3 − CT 2e−2T

)

for some universal constant C > 0. Thus for a large enough T we have Qλ(fϵ,T ) ≤ λ
2 = Qλ(1).
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We now use Lemma 44 and 45, to prove the Lemma 38 in the case where v = 0. We prove in
fact a slightly stronger estimate, with an additional control on ∂θu that will be useful in the next
section.

We first introduce some notations: consider u ∈ H2(S1) such that Spt(u) ̸= S1. Its support is
a countable union of disjoint intervals (θk, θk + ωk)k∈N of respective lengths

ω0 ≥ ω1 ≥ ω2 ≥ . . . → 0.

We let uk(θ) = u(θk + θ)χ0<θ<ωk
such that uk ∈ H2

0 ([0, ωk]) is decomposed as

uk =
∑
n≥1

uk
nbn,ωk

(4.15)

for some sequence of coefficients (uk
n)n≥1,k≥0.

Lemma 46. Let Θ ∈ {π, t1, 2π}. There exist c, ϵ, a > 0 such that for any u ∈ H2(S1) that verifies

Spt(u) ̸= S1, [c,Θ − c] ⊂ Spt(u) ⊂ [−c,Θ + c],

there exists U ∈ H2
lin(C0) such that U(0, θ) = u(θ), ∂tU(0, θ) = 0 and

G(U, 0) ≤ G(u, 0) − ϵ

(
G(u, 0) − Θ

2

)
+

− a


∥∥∥∥∥∥∂θ,θ

u0 −
i(Θ)∑
n=1

u0
nbn,ω0

∥∥∥∥∥∥
2

+
∑
k≥1

∥∂θ,θu
k∥2

 (4.16)

where uk is defined from the decomposition of u in (4.15).

Proof. Let ω = |Spt(u)|. Let (θk, ωk, u
k, uk

n) be defined from the decomposition of u as in (4.15).
By our hypothesis we have |ω0 − Θ| ≤ 2c and |ω1| ≤ 2c. We suppose c is sufficiently small so that
|ω0 − Θ| < 0.1Θ and ω1 ≤ π

2 (see equation (4.7))
Let now g be the function constructed from Lemma 44, and h the function constructed from

Lemma 45. Denote T > 0 the smallest value such that g = h = 0 on [T,+∞[. We now define,
for any n ≥ 1, k ≥ 0,

fk
n(t) =


g(t) if µn,ωk

≥ 5 i.e. k ≥ 1 or n > i(Θ),
h(t) if µn,ωk

≤ 3 i.e. k = 0 and n < i(Θ),
1 if |µn,ωk

− 4| < 1 i.e. k = 0 and n = i(Θ).

We define the competitor

Ũ(t, θ) =
∑
k≥0

∑
n≥1

fk
n(t)uk

nbn,ωk
(θ − θk).

By the definition of (fk
n), we have for any t ≥ T :

Ũ(t, θ) = u0
i(Θ)bi(Θ),ω0(θ − θ0).

Denote η > 0 the constant from Lemma 44, ϵ > 0 the constant from Lemma 41, and Û(t, θ) the
competitor built in Lemma 41 from the initial data u0

i(Θ)bi(Θ),ω0 , so that

G(Û , 0) ≤ G(u0
i(Θ)bi(Θ),ω0 , 0) − ϵ

(
G(u0

i(Θ)bi(Θ),ω0 , 0) − Θ
2

)
+
.

Let then

U(t, θ) =
Ũ(t, θ) if t < T

Û(t− T, θ + θ0) if t ≥ T
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For any k ≥ 1, since every function (fk
n)n≥1 vanishes on [T,+∞[, then

ˆ +∞

0
e−2tχ∃n:fk

n ̸=0dt ≤ 1 − e−2T

2 .

We compute:

G(U, 0) = G(Ũ , 0) +
(
G(U, 0) − G(Ũ , 0)

)
≤ G(u0

i(Θ)bi(Θ),ω0 , 0) + (1 − η)
∑

n>i(Θ)
Qµn,ω0 −4(1)|u0

n|2 +
∑

n<i(Θ)
Qµn,ω0 −4(1)|u0

n|2

+
∑
k≥1

1 − e−2T

2 ωk + (1 − η)
∑
n≥1

Qµn,ωk
−4(1)|uk

n|2


+ e−2T
(
G(Û , 0) − G(u0

i(Θ)bi(Θ),ω0 , 0)
)

by Lemmas 43, 44, 45

≤ G(u0
i(Θ)bi(Θ),ω0 , 0) − e−2T ϵ

(
G(u0

i(Θ)bi(Θ),ω0 , 0) − Θ
2

)
+

+ (1 − η)
∑

n>i(Θ)
Qµn,ω0 −4(1)|u0

n|2 +
∑

n<i(Θ)
Qµn,ω0 −4(1)|u0

n|2

+
∑
k≥1

1 − e−2T

2 ωk + (1 − η)
∑
n≥1

Qµn,ωk
−4(1)|uk

n|2
 by Lemma 41.

Denote ϵ = min
(
e−2T ϵ, e−2T , η

2

)
. We remind that when n < i(Θ), Qµn,ω0 −4(1) < 0 soQµn,ω0 −4(1) <

(1 − ϵ)Qµn,ω0 −4(1). We remind also that for any x, y ∈ R, we have x+ + y+ ≥ (x+ y)+, which we
will use repeatedly to gather each term. We identify

G(u, 0) = G(u0
i(Θ)bi(Θ),ω0 , 0) +

∑
n̸=i(Θ)

Qµn,ω0 −4(1)|u0
n|2 +

∑
k≥1

1
2ωk +

∑
n≥1

Qµn,ωk
−4(1)|uk

n|2
 .

Then following the estimates above we obtain

G(U, 0) ≤ G(u0
i(Θ)bi(Θ),ω0 , 0) − ϵ

(
G(u0

i(Θ)bi(Θ),ω0 , 0) − Θ
2

)
+

+
(

1 − ϵ− η

2

) ∑
n>i(Θ)

Qµn,ω0 −4(1)|u0
n|2 + (1 − ϵ)

∑
n<i(Θ)

Qµn,ω0 −4(1)|u0
n|2

+
∑
k≥1

1 − ϵ

2 ωk +
(

1 − ϵ− η

2

)∑
n≥1

Qµn,ωk
−4(1)|uk

n|2


≤ G(u, 0) − ϵ

(
G(u, 0) − Θ

2

)
+

− η

2
∑

(n,k):n>i(Θ) or k≥1
Qµn,ωk

−4(1)|uk
n|2.

We remind for the last line that if (n, k) is such that n > i(Θ) or k ≥ 1, then µn,ωk
≥ 5 so

Qµn,ωk
−4(1) = µn,ωk

−4
2 ≥ 1

10µn,ωk
. We now conclude the proof with a = η

20 , since∑
(n,k):n>i(Θ) or k≥1

µn,ωk
|uk

n|2 =
∑

n>i(Θ)
µn,ω0|u0

n|2 +
∑
n≥1

∑
k≥1

µn,ωk
|uk

n|2

=
∥∥∥∥∥∥∂θ,θ

u0 −
i(Θ)∑
n=1

u0
nbn,ω0

∥∥∥∥∥∥
2

+
∑
k≥1

∥∂θ,θu
k∥2.
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Next, we treat separately the case Θ = 2π where the support of u is the union of two disjoint
segments of length close to π. The proof follows the same computations, we have separated the
two for clarity.

Lemma 47. There exist c, ϵ, a > 0 such that for any u ∈ H2(S1) such that

[c, π − c] ∪ [π + c, 2π − c] ⊂ Spt(u), [π − c, π + c] ⊈ Spt(u), [2π − c, 2π + c] ⊈ Spt(u),

there exists U ∈ H2
lin(C0) such that U(0, θ) = u(θ), ∂tU(0, θ) = 0 and

G(U, 0) ≤ G(u, 0)−ϵ (G(u, 0) − π)+−a

∥∥∥∂θ,θ

(
u0 − u0

1b1,ω0

)∥∥∥2
+
∥∥∥∂θ,θ

(
u1 − u1

1b1,ω1

)∥∥∥2
+
∑
k≥2

∥∂θ,θu
k∥2

 .
(4.17)

where uk is defined from the decomposition of u in (4.15).

Proof. Let ω = |Spt(u)|. Let (θk, ωk, u
k, uk

n) be defined from the decomposition of u (see (4.15)).
By our hypothesis we have |ω0 − π| ≤ 2c, |ω1 − π| ≤ 2c, and |ω2| ≤ 2c: we suppose that c is
sufficiently small so that |ω1 − π|, |ω2 − π| ≤ 0.1π, and ω3 ≤ 1

2π.
As previously, let g be the function constructed from Lemma 44. Denote T > 0 the smallest

value such that g = 0 on [T,+∞[. Let

fk
n(t) =

g(t) if µn,ωk
≥ 5 i.e. k ≥ 2 or n ≥ 2,

1 if |µn,ωk
− 4| < 1 i.e. k ∈ {0, 1} and n = 1.

The last case µn,ωk
≤ 3 never happens in this context. We define the competitor

Ũ(t, θ) =
∑
k≥1

∑
n≥1

fk
n(t)uk

nbn,ωk
(θ − θk).

We remind that from the estimates (4.7), we have exactly

Ũ(t, θ) = u0
1b1,ω0(θ − θ0) + u1

1b1,ω1(θ − θ1)

for all t ≥ T . Denote Û(t, θ) the competitor built in Lemma 42 from the initial data

Ũ(T, · + θ0) = udouble := u0
1b1,ω0 + u1

1b1,ω1(· + θ0 − θ1),

so that
G(Û , 0) ≤ G(udouble, 0) − ϵ

(
G(udouble, 0) − π

)
+
.

Let then

U(t, θ) =
Ũ(t, θ) if t < T,

Û(t− T, θ + θ0) if t ≥ T.

Following the computations from the previous lemma (denoting η > 0 the constant from Lemma
44, ϵ > 0 the constant from Lemma 42), we get

G(U, 0) = G(Ũ , 0) +
(
G(U, 0) − G(Ũ , 0)

)
≤ G(udouble, 0) + (1 − η)

1∑
k=0

∑
n>1

Qµn,ωk
−4(1)|uk

n|2

+
∑
k≥2

1 − e−2T

2 ωk + (1 − η)
∑
n≥1

Qµn,ωk
−4(1)|uk

n|2


+ e−2T
(
G(Û , 0) − G(udouble, 0)

)
by Lemmas 43, 44.
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Then, by lemma 41, we have

G(U, 0) ≤ G(udouble, 0) − e−2T ϵ
(
G(udouble, 0) − π

)
+

+ (1 − η)
1∑

k=0

∑
n>1

Qµn,ωk
−4(1)|uk

n|2

+
∑
k≥2

1 − e−2T

2 ωk + (1 − η)
∑
n≥1

Qµn,ωk
−4(1)|uk

n|2
 .

Denote ϵ = min
(
e−2T ϵ, e−2T , η

2

)
, and identify

G(u, 0) = G(udouble, 0) +
1∑

k=0

∑
n>1

Qµn,ωk
−4(1)|uk

n|2 +
∑
k≥2

1
2ωk +

∑
n≥1

Qµn,ωk
−4(1)|uk

n|2
 .

Then

G(U, 0) ≤ G(u, 0) − ϵ (G(u, 0) − π)+ − η

2
∑

(n,k):n>1 or k≥2
Qµn,ωk

−4(1)|uk
n|2

≤ G(u, 0) − ϵ (G(u, 0) − π)+ − η

20
∑

(n,k):n>1 or k≥2
µn,ωk

|uk
n|2.

This ends the proof with a = η
20 , since

∑
(n,k):n>1 or k≥2

µn,ωk
|uk

n|2 =
1∑

k=0

∑
n≥2

µn,ωk
|uk

n|2 +
∑
k≥2

∑
n≥1

µn,ωk
|uk

n|2

=
∥∥∥∂θ,θ

(
u0 − u0

1b1,ω0

)∥∥∥2
+
∥∥∥∂θ,θ

(
u1 − u1

1b1,ω1

)∥∥∥2
+
∑
k≥2

∥∂θ,θu
k∥2.

4.4 General case v ̸= 0
In this subsection, we give the proof of Lemma 38, by handling general boundary data (u, v)
where v is not necessarily zero. We prove it by reducing the analysis to the case where v = 0.
We first prove a purely technical lemma used below in the proof of Lemma 49.

Lemma 48. For any ω ∈ [0.5π, 2π], there exists χω ∈ C∞(R+,R) such that χω(t) = 1 in a
neighbourhood of 0, χω(t) = 0 in [1,+∞[, supω∈[0.5π,2π] ∥χω∥C2 ≲ 1 and

∀ω ∈ [0.5π, 2π], ∀n ∈ {1, 2, 3},
ˆ +∞

0
te−(2+µ

1/3
n,ω)tχω(t)dt = 0.

Proof. Let gn,ω(t) = te−(2+µ
1/3
n,ω)t. Let ti = i

4 for i = 1, 2, 3. For any ω ∈ [0.5π, 2π], we have

det ((gn,ω(tm))1≤n,m≤3) ̸= 0,

since this is (up to a nonzero scalar factor) the determinant of the non-trivial Vandermonde
matrix (

e−
2+µ

1/3
n,ω

4 k

)
1≤k,n≤3

.
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Functions gn,ω depend continuously on ω, so we may find some approximation of unity
σ1, σ2, σ3 ∈ C∞

c ((0, 1)) around t1, t2, t3 respectively such that

inf
ω∈[0.5π,2π]

∣∣∣∣∣∣det
(ˆ 1

0
gn,ω(t)σm(t)dt

)
1≤n,m≤3

∣∣∣∣∣∣ > 0

Let now h ∈ C∞(R+,R) that is equal to 1 in a neighbourhood of 0, and to 0 on [1,+∞[, then there
exists continuously defined a1(ω), a2(ω), a3(ω) ∈ R such that for any ω ∈ [0.5π, 2π], n ∈ {1, 2, 3},
we have ˆ 1

0
(a1(ω)σ1 + a2(ω)σ2 + a3(ω)σ3) gn,ω =

ˆ 1

0
hgn,ω.

The function χω(t) = h(t)−a1(ω)σ1(t)−a2(ω)σ2(t)−a3(ω)σ3(t) has all the required properties.
Lemma 49. Let ω ∈ (0, 2π], u ∈ H2(S1), v ∈ H1(S1), with

{v ̸= 0} ⊂ Spt(u) = (0, ω),
then there exists U ∈ H2

lin(C0) such that U(0, ·) = u, ∂tU(0, ·) = v, U(t, ·) = u for all t ≥ 1 and

G(U, 0) ≤ G(u, 0) + C
(
∥∂θ,θu∥ ∥∂θv∥ + ∥∂θv∥2

)
.

Moreover, if |ω − Θ| ≤ 0.1Θ for some Θ ∈ {π, t1, 2π}, then we have the improved bound

G(U, 0) ≤ G(u, 0) + C

∥∥∥∥∥∥∂θ,θ

u−
i(Θ)∑
n=1

unbn,ω

∥∥∥∥∥∥ ∥∂θv∥ + ∥∂θv∥2


where (un)n≥1 are the coefficients in the decomposition u = ∑

n≥1 unbn,ω.
Proof. For any n ∈ N∗, we define

fn,ω(t) = te−µ
1/3
n,ωt.

Note that fn,ω(0) = 0 and f ′
n,ω(0) = 1. Let now χω be defined from Lemma 48, such thatˆ +∞

0
e−2tfn,ω(t)χω(t)dt = 0

for n = 1, 2, 3 when ω ≥ 0.5π. When ω < 0.5π we just set χω := χ0.5π. We define
U(t, θ) =

∑
n≥1

(un + χω(t)fn,ω(t)vn) bn,ω(θ).

Then U verifies U ∈ H2
lin(C0), U(0, ·) = u, ∂tU(0, ·) = v, U(t, ·) = u for t ≥ 1, and

G(U, 0) ≤ ω

2 +
ˆ +∞

0
e−2t


∥∥∥∥∥∥
∑
n≥1

(χωfn,ω)′′(t)vnbn,ω

∥∥∥∥∥∥
2

+ 2
∥∥∥∥∥∥
∑
n≥1

(χωfn,ω)′(t)vn∂θbn,ω

∥∥∥∥∥∥
2
 dt

+
ˆ +∞

0
e−2t


∥∥∥∥∥∥
∑
n≥1

(un + (χωfn,ω)(t)vn)∂θ,θbn,ω

∥∥∥∥∥∥
2

− 4
∥∥∥∥∥∥
∑
n≥1

(un + (χωfn,ω)(t)vn)∂θbn,ω

∥∥∥∥∥∥
2
 dt

= 1
2
(
ω + ∥∂θ,θu∥2 − 4∥∂θu∥2

)
+
∑
n≥1

(µn,ω − 4)
(ˆ +∞

0
2e−2tχω(t)fn,ω(t)dt

)
unvn

+
∑
n≥1

(ˆ +∞

0
e−2t

{
2|(χωfn,ω)′(t)|2 + (µn,ω − 4)|χωfn,ω(t)|2

}
dt

)
v2

n

+
∑

n,m≥1

(ˆ +∞

0
e−2t(χωfn,ω)′′(t)(χωfm,ω)′′(t)dt

)
⟨bn,ω, bm,ω⟩vnvm.

We handle each of these four lines separately.
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• The first line is exactly G(u, 0).

• When ω ≥ 0.5π and n = 1, 2, 3, this term vanishes by the orthogonality condition we
imposed on χω in Lemma 48. In all other cases we have∣∣∣∣∣(µn,ω − 4)

ˆ +∞

0
2e−2tχω(t)fn,ω(t)dt

∣∣∣∣∣ ≲ µn,ω

ˆ +∞

0
e−(2+µ

1/3
n,ω)ttdt ≲ µ1/3

n,ω.

• Using the uniform bound on ∥χω∥C2 , we haveˆ +∞

0
e−2t

{
2|(χωfn,ω)′(t)|2 + (µn,ω − 4)|χωfn,ω(t)|2

}
dt ≲

ˆ +∞

0
e−2t

{
f ′

n,ω(t)2 + µn,ωfn,ω(t)2
}
dt

≲
1
µ

1/3
n,ω

+ 1 ≲ 1

by the definition of fn,ω.

• Similarly, we haveˆ +∞

0
e−2t |(χωfn,ω)′′(t)|2 dt ≲

ˆ +∞

0
e−2t

{
f ′′

n,ω(t)2 + f ′
n,ω(t)2 + fn,ω(t)2

}
dt

≲ µ1/3
n,ω + µ−1/3

n,ω + µ−1
n,ω ≲ µ1/3

n,ω

so by Cauchy-Schwarz inequality and using the bound ∥bn,ω∥ ≲ µ−1/2
n,ω from Lemma 40, we

have (ˆ +∞

0
e−2t(χωfn,ω)′′(t)(χωfm,ω)′′(t)dt

)
⟨bn,ω, bm,ω⟩ ≲ 1

µ
1/3
n,ωµ

1/3
m,ω

.

We gather the three estimates. First for a general ω ∈ (0, 2π]:

G(U, 0) − G(u, 0) ≲
∑
n≥1

µ1/3
n,ω|unvn| +

∑
n≥1

v2
n +

∑
n,m≥1

|vnvm|
µ

1/3
n,ωµ

1/3
m,ω

≲
∑
n≥1

µ1/2
n,ω|unvn| +

∑
n≥1

v2
n +

∑
n≥1

|vn|
µ

1/3
n,ω

2

≲ ∥∂θ,θu∥ ∥∂θv∥ +
1 +

∑
n≥1

1
µ

2/3
n,ω

∑
n≥1

|vn|2

≲ ∥∂θ,θu∥ ∥∂θv∥ + ∥∂θv∥2 .

We used the fact that µn,ω ≳ n2

ω2 , so µ−2/3
n,ω is summable with uniformly bounded sum in ω.

Then, when |ω − Θ| ≤ 0.1Θ for some Θ ∈ {π, t1, 2π}, in particular ω ≥ 0.5π so using Lemma
48 we have the stronger estimate:

G(U, 0) − G(u, 0) ≲
∑

n>i(Θ)
µ1/3

n,ω|unvn| +
∑
n≥1

v2
n +

∑
n,m≥1

|vnvm|
µ

1/3
n,ωµ

1/3
m,ω

≲
∑

n>i(Θ)
µ1/2

n,ω|unvn| +
∑
n≥1

v2
n +

∑
n≥1

|vn|
µ

1/3
n,ω

2

≲

∥∥∥∥∥∥∂θ,θ

u−
∑

n≤i(Θ)
unbn,ω

∥∥∥∥∥∥ ∥∂θv∥ +
1 +

∑
n≥1

1
µ

2/3
n,ω

∑
n≥1

|vn|2

≲

∥∥∥∥∥∥∂θ,θ

u−
∑

n≤i(Θ)
unbn,ω

∥∥∥∥∥∥ ∥∂θv∥ + ∥∂θv∥2 .
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We can now prove Lemma 38 as a combination of Lemma 49 on each interval of the support
of u, and Lemma 46.

Proof of Lemma 38. As in the previous section, we first introduce the decomposition of u on the
connected component of its support: we write Spt(u) as a countable union of disjoint intervals
[θk, θk + ωk] of lengths ω0 ≥ ω1 ≥ ω2 ≥ . . . → 0. We remind that either

|ω0 − Θ| ≤ 2c, ω1 ≤ 2c,

or
Θ = 2π, |ω0 − π| ≤ 2c, |ω1 − π| ≤ 2c, ω2 ≤ 2c.

We call (a) the first case, (b) the second case. We let uk(θ) = u(θk + θ)χ0<θ<ωk
such that

uk ∈ H2
0 ([0, ωk]). Likewise, we let vk(θ) = v(θk + θ)χ0<θ<ωk

∈ H1
0 ([0, ωk]).

We now construct the competitor U as follows: we let Uk be the competitor defined in Lemma
49 from the initial condition uk, vk, U(t, θ) = ∑

k≥0 U
k(t, θ− θk), and Û the competitor defined in

Lemma 46 (in the case (a)) or Lemma 47 (in the case (b)) from the initial condition u. Then we
let

U(t, θ) =
U(t, θ) if t < 1,
Û(t− 1, θ) if t ≥ 1.

which verifies U(0, θ) = u(θ), ∂tU(t, θ) = v(θ). We denote c, ϵ, a > 0 the constants from Lemma
46, 47 (note that we may always take the minimum between each) and C the constant from
Lemma 49.

(a) We first suppose we are in the case (a) i.e. |ω0 − Θ| ≤ 2c, ω1 ≤ 2c. Then by Lemma 46 we
have

G(U, 0) = G(U, 0) +
(
G(U, 0) − G(U, 0)

)
= G(U, 0) + e−2

(
G(Û , 0) − G(u, 0)

)
≤ G(u, 0) + C

∥∂θv∥2 + ∥∂θv
0∥

∥∥∥∥∥∥∂θ,θ

u0 −
∑

n≤i(Θ)
u0

nbn,ω0

∥∥∥∥∥∥+
∑
k≥1

∥∂θv
k∥ ∥∂θ,θu

k∥


− e−2ϵ

(
G(u, 0) − Θ

2

)
+

− e−2a


∥∥∥∥∥∥∂θ,θ

u0 −
∑

n≤i(Θ)
u0

nbn,ω0

∥∥∥∥∥∥
2

+
∑
k≥1

∥∂θ,θu
k∥2

 .
Now, we bound

C∥∂θv
0∥

∥∥∥∥∥∥∂θ,θ

u0 −
∑

n≤i(Θ)
u0

nbn,ω0

∥∥∥∥∥∥ ≤ C2e

4a ∥∂θv
0∥2 + e−2a

∥∥∥∥∥∥∂θ,θ

u0 −
∑

n≤i(Θ)
u0

nbn,ω0

∥∥∥∥∥∥
2

,

and C∥∂θv
k∥ ∥∂θ,θu

k∥ ≤ C2e

4a ∥∂θv
k∥2 + e−2a

∥∥∥∂θ,θu
k
∥∥∥2

for k ≥ 1,

so

G(U, 0) ≤ G(u, 0) − e−2ϵ

(
G(u, 0) − Θ

2

)
+

+
(
C + C2e2

4a

)
∥∂θv∥2,

which prove the result in case (a).
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(b) This time we have

G(U, 0) = G(U, 0) +
(
G(U, 0) − G(U, 0)

)
= G(U, 0) + e−2

(
G(Û , 0) − G(u, 0)

)
≤ G(u, 0) + C

∥∂θv∥2 +
1∑

k=0
∥∂θv

k∥
∥∥∥∂θ,θ

(
uk − uk

1b1,ωk

)∥∥∥+
∑
k≥2

∥∂θv
k∥ ∥∂θ,θu

k∥


− e−2ϵ

(
G(u, 0) − Θ

2

)
+

− e−2a

 1∑
k=0

∥∥∥∂θ,θ

(
uk − uk

1b1,ωk

)∥∥∥2
+
∑
k≥2

∥∂θ,θu
k∥2

 .
Now, we bound

C∥∂θv
k∥

∥∥∥∥∥∥∂θ,θ

uk −
∑

n≤i(Θ)
uk

nbn,ω0

∥∥∥∥∥∥ ≤ C2e

4a ∥∂θv
k∥2 + e−2a

∥∥∥∥∥∥∂θ,θ

uk −
∑

n≤i(Θ)
uk

nbn,ω0

∥∥∥∥∥∥
2

for k = 0, 1

and C∥∂θv
k∥ ∥∂θ,θu

k∥ ≤ C2e

4a ∥∂θv
k∥2 + e−2a

∥∥∥∂θ,θu
k
∥∥∥2

for k ≥ 2,

so

G(U, 0) ≤ e−2ϵπ + (1 − e−2ϵ)G(U, 0) +
(
C + C2e2

4a

)
∥∂θv∥2,

which prove the result in case (b).

4.5 Estimates on biharmonic extensions
We now prove Lemma 39, which is an analog of Lemma 38 in the case Spt(u) = S1. Our
method in this case is a more elementary construction of competitors: we consider the competitor
corresponding to the biharmonic extension in the disk coordinates. We follow closely the energy
difference between a biharmonic function in D1 and its 2-homogeneous extension.

In what follows, for any f ∈ L1(S1), we denote

cn[f ] = 1
2π

ˆ
S1
e−inθf(eiθ)dθ,

its Fourier coefficients: by the convention we chose we have

∥f∥2
L2(∂D1) = 2π

∑
n∈Z

|cn[f ]|2.

Proof of Lemma 39. We remind that v being a minimizer of G(·, 0) means that

u(reiθ) := r2v(− log(r), θ)

belongs to M (D1). Consider ũ the biharmonic extension of the boundary data (u|∂D1 , ∂ru|∂D1) in
D1, which can be decomposed as

ũ
(
reiθ

)
=
∑
n∈Z

(
anr

|n|+2 + bnr
|n|
)
einθ,
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for some coefficients an, bn (we recall this is called Goursat’s decomposition, also discussed at
(3.13)). As we already noticed in the proof of Lemma 21, the energy

´
D1

|∆ũ|2 only depends on
the (an)n coefficients, and more precisely ∆ũ = ∑

n∈Z 4(|n| + 1)anr
|n|einθ, so

ˆ
D1

|∆ũ|2 =
ˆ 1

0
2πr

∣∣∣∣∣∣
∑
n∈Z

4(|n| + 1)r|n|einθ

∣∣∣∣∣∣
2

dr = 16π
∑
n∈Z

(|n| + 1)|an|2.

We may identify

cn[u] = cn[ũ] = an + bn,

cn[∂ru] = cn[∂rũ] = (|n| + 2)an + |n|bn,

so an = cn[∂ru]−|n|cn[u]
2 and

E(ũ;D1) =
ˆ
D1

(
|∆ũ|2 + χũ̸=0

)
= π + 2π

∑
n∈Z

2(|n| + 1)
∣∣∣∣cn[∂ru] − |n|cn[u]

∣∣∣∣2.
We identify u(eiθ) = v(0, θ), ∂ru(eiθ) = 2v(0, θ) − ∂tv(0, θ), so cn[u] = cn[v(0, ·)], cn[∂ru] =
2cn[v] − cn[∂tv(0, ·)], meaning

E(ũ;D1) = π + π
∑
n∈Z

4(|n| + 1)
∣∣∣∣cn[∂tv(0, ·)] + (|n| − 2)cn[v(0, ·)]

∣∣∣∣2.
Since u ∈ M (D1), we have E(u;D1) ≤ E(ũ;D1), so by Lemma 16, we get

G(v, 0) ≤π + π
∑
n∈Z

4(|n| + 1)
∣∣∣∣cn[∂tv(0, ·)] + (|n| − 2)cn[v(0, ·)]

∣∣∣∣2
− 2

ˆ
∂Cτ

(
2 (∂tv)2 − 4v∂tv + 4v2 − (∂θv)2 + ∂t,θv∂θv

)
(0, ·)dθ.

We express everything in terms of Fourier coefficients of v(0, ·), ∂tv(0, ·). To simplify notations
we write xn = cn[v(0, ·)], yn = cn[∂tv(0, ·)]:

G(v, 0) − π ≤π
∑
n∈Z

4(|n| + 1)
∣∣∣∣yn + (|n| − 2)xn

∣∣∣∣2
+ π

∑
n∈Z

−8|yn|2 − 4(n2 − 4)ℜ(xnyn) + 4(n2 − 4)|xn|2,

so
G(v, 0) − π ≤ π

∑
n∈Z

4n2(|n| − 2)|xn|2 + 4|n|(|n| − 2)ℜ(xnyn) + 4(|n| − 1)|yn|2. (4.18)

We can also express in terms of Fourier coefficients:

G(v(0, ·), 0) − π = 1
2∥∂θ,θv(0, ·)∥2 − 2∥∂θv(0, ·)∥2 = π

∑
n∈Z

n2(n2 − 4)|xn|2. (4.19)

Here we used the fact that the support of v(0, ·) has measure 2π. Now we compare the n-th term
of (4.18) and (4.19):

• if |n| ≥ 2, then we bound 4|n|(|n| − 2)ℜ(xnyn) ≤ 1
2n

2(|n| − 2)|xn|2 + 8(|n| − 2)|yn|2, so

4n2(|n| − 2)|xn|2 + 4|n|(|n| − 2)ℜ(xnyn) + 4(|n| − 1)|yn|2

≤ 9
2n

2(|n| − 2)|xn|2 + (12|n| − 20)|yn|2

≤ 0.9n2(n2 − 4)|xn|2 + (12|n| − 4)|yn|2.

Here the factor “0.9” is sharp for n = 3 in the last inequality.
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• For n = 0, then the 0-th terms of (4.18) and (4.19) are respectively −4|y0|2, 0.

• For n = ±1, we write

−4|x±1|2 − 4ℜ(x±1y±1) ≤ −3|x±1|2 + 4|y±1|2 ≤ (12(12 − 4))|x±1|2 + (12 − 4)|y±1|2.

Summing every contributions, we obtain

G(v, 0) − G(v(0, ·), 0) ≤ −0.1π
∑

n∈Z\{−1,1}
n2(n2 − 4)|xn|2 + π

∑
n∈Z

(12|n| − 4)|yn|2

≤ −0.1
π∑

n∈Z
n2(n2 − 4)|xn|2


+

+ 2π
∑
n∈Z

(6|n| − 2)|yn|2

≤ −0.1 (G(v(0, ·), 0) − π)+ + 6∥∂t,θv(0, ·)∥2 − 2∥∂tv(0, ·)∥2,

which implies the result.

4.6 Proof of the epiperimetric inequality
As a consequence of Lemma 38 and 39, we obtain the following corollary.

Corollary 50. Let Θ ∈ {π, t1, 2π}. There exist constants c, ϵ, C > 0 such that, if u ∈ H2
lin(C0) is

a minimizer of G(·, 0) that verifies the support condition(c,Θ − c) ⊂ Spt(u(0, ·)) ⊂ (−c,Θ + c) when Θ ∈ {π, t1}
(c, π − c) ∪ (π + c, 2π − c) ⊂ Spt(u(0, ·)) when Θ = 2π,

then

G(u, 0) ≤ G(u(0, ·), 0) − ϵ

(
G(u(0, ·), 0) − Θ

2

)
+

+ C∥∂t,θu(0, ·)∥2
L2(S1) − 2∥∂tu(0, ·)∥2

L2(S1). (4.20)

Proof. Denote c, ϵ, C the constants from Lemma 38. If u verifies the support condition and
Spt(u) ̸= S1, then by Lemma 38 applied to u we get

G(u, 0) ≤ G(u(0, ·), 0) − ϵ

(
G(u(0, ·), 0) − Θ

2

)
+

+ C∥∂t,θu(0, ·)∥2
L2(S1)

≤ G(u(0, ·), 0) − ϵ

(
G(u(0, ·), 0) − Θ

2

)
+

+ (C + 8) ∥∂t,θu(0, ·)∥2
L2(S1) − 2∥∂tu(0, ·)∥2

L2(S1)

where we used the Poincaré inequality ∥f∥2
L2(S1) ≤ 4∥∂θf∥2

L2(S1), which is valid since Spt(u(0, ·)) ̸=
S1.

Suppose now that Spt(u) = S1 (so in particular we are in the case Θ = 2π), then the result is
directly implied by Lemma 39 (for any ϵ ≤ 0.1, C ≥ 6).

We now have all the tools to prove the epiperimetric inequality. We will make use of the
following interpolation inequality: for any smooth bounded set D ⊂ R2, there exists c(D) > 0
such that for any u ∈ W 2,4(D)(⊂ C1(D)):

∥u∥C1(D) ≤ c(D)∥u∥
1
2
H1(D)∥u∥

1
2
W 2,4(D). (4.21)

This is a consequence of the following classical Gagliardo-Nirenberg inequality applied to f = ∇u:

∥f∥L∞(D) ≤ C(D)∥f∥
1
2
L2(D)∥f∥

1
2
W 1,4(D).
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Proof of Theorem 37. Let c0 > 0 be some quantity that we fix (arbitrarily small) later such that

∥u− b∥H1(C0\C1) ≤ c0∥b∥H1(S1).

By the Cacciopoli inequality of Lemma 10 and the BMO estimate of Lemma 11, we have

∥u∥W 2,4(C 1
4

\C 3
4

) ≲ ∥u∥H1(C0\C1) ≲ ∥b∥H1(S1).

By the interpolation inequality (4.21) we then have

∥u− b∥C1(C 1
4

\C 3
4

) ≲ ∥u− b∥
1
2
H1(C 1

4
\C 3

4
)∥u− b∥

1
2
W 2,4(C 1

4
\C 3

4
) ≲ c

1
2
0 ∥b∥H1(S1). (4.22)

We claim that for a sufficiently small c0, u(t, ·) verifies the support hypothesis of Corollary 50 for
almost every t, up to a rotation in θ. We denote by c the constant from Corollary 50.

First note that {∂tu ̸= 0} ⊂ Spt(u), so {∂tu(t, ·) ̸= 0} ⊂ Spt(u(t, ·)) for almost every t. Then
we differentiate whether Θ ∈ {π, t1} or Θ = 2π.

• Θ ∈ {π, t1}. Suppose without loss of generality that b = bI or b = bII. Then

inf
θ∈[c,Θ−c]

(|b(θ)| + |∂θb(θ)|) ≳ 1.

So by the C1 estimate of u− b in (4.22), we have for a small enough c0:

∀t ∈
[1
4 ,

3
4

]
, inf

θ∈[c,Θ−c]
(|u(t, θ)| + |∂θu(t, θ)|) ≳ 1.

As a consequence, (c,Θ − c) ⊂ Spt(u(t, ·)) for any t ∈
[

1
4 ,

3
4

]
.

On the other hand, for any disk D = Dp,c with p ∈
[

1
4 ,

3
4

]
× (S1 \ [−c,Θ + c]), we have

∥u∥H1(D) = ∥u− b∥H1(C0\C1) ≲ c0.

For a small enough c0 we may apply Lemma 14, so u(p) = 0. This implies that for every
t ∈

[
1
4 ,

3
4

]
, we have Spt(u(t, ·)) ⊂ (−c,Θ + c).

• Θ = 2π. Up to a rotation (and change of sign) there exists (α, β) ∈ R2
+, such that

b(θ) = α− β cos(2θ).

In particular

|b(θ)|2 + 1
4 |b′(θ)|2 = α2 + β2 − 2αβ cos(2θ)

≥ 1 − cos(2θ)
2 (α + β)2

≳ (1 − cos(2θ))∥b∥2
H1(S1),

so for any θ ∈ (c, π − c) ∪ (π + c, 2π − c), we have |b(θ)| + |b′(θ)| ≳ ∥b∥H1(S1). By the C1

estimate (4.22) we obtain for a small enough c0:

∀t ∈
[1
4 ,

3
4

]
, inf

θ∈[c,π−c]∪[π+c,2π−c]
(|u(t, θ)| + |u′(t, θ)|) ≳ ∥b∥H1(S1),

so the support hypothesis of Corollary 50 is verified.
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Let ϕ ∈ C∞
c

(]
1
4 ,

3
4

[
, [0, 1]

)
, such that

|ϕ′| ≲ 1, ϕ|[ 1
3 , 2

3 ] ≡ 1.

Then

W(u, 0) − W(u, 1) =
ˆ 1

0
−W ′(u, t)dt ≥

ˆ 1

0
−ϕ(t)2W ′(u, t)dt

=
ˆ 1

0

(
−ϕ(t)2G ′(u, t) − 2ϕ(t)2∂t⟨∂tu, ∂tu− ∂t,tu⟩

)
dt

=
ˆ 1

0
ϕ(t)2

(
∥∂t,tu∥2 + 2∥∂t,θu∥2 + ∥∂θ,θu∥2 − 4∥∂θu∥2 + |{u(t, ·) ̸= 0}| − 2G(u, t)

)
dt

− 4
ˆ 1

0
ϕ(t) (ϕ(t) + ϕ′(t)) ⟨∂tu, ∂t,tu⟩dt.

Since G(u(t, ·), t) = 1
2 (∥∂θ,θu∥2 − 4∥∂θu∥2 + |{u(t, ·) ̸= 0}|), we may rewrite this as

W(u, 0) − W(u, 1) ≥
ˆ 1

0
ϕ(t)2

(
∥∂t,tu∥2 + 2∥∂t,θu∥2 + 2G(u(t, ·), t) − 2G(u, t)

)
dt

− 4
ˆ 1

0
ϕ(t) (ϕ(t) + ϕ′(t)) ⟨∂tu, ∂t,tu⟩dt.

(4.23)

Now we apply Corollary 50 to u(t+ ·, ·) (which verifies the hypothesis for almost every t ∈
[

1
4 ,

3
4

]
,

from the previous discussion). The estimate of Corollary 50 may be rewritten as

G(u(t, ·), t) − ϵ

(
G(u(t, ·) − Θ

2

)
+

− G(u, t) ≥ −C∥∂t,θu(0, ·)∥2
L2(S1) + 2∥∂tu(0, ·)∥2

L2(S1),

which implies (supposing without loss of generality that ϵ is less that 1
2 , so that − 1

1−ϵ
≥ −2):

G(u(t, ·), t) − G(u, t) ≥ ϵ

1 − ϵ

(
G(u, t) − Θ

2

)
− 2C∥∂t,θu(t, ·)∥2

L2(S1) + 2
1 − ϵ

∥∂tu(t, ·)∥2
L2(S1)

≥ ϵ

(
W(u, t) − Θ

2

)
+ 2∥∂tu(t, ·)∥2 − 4ϵ |⟨∂tu, ∂t,tu⟩| − 2C∥∂t,θu(t, ·)∥2

L2(S1).

We inject this estimate in (4.23):

W(u, 0) − W(u, 1) ≥ 2ϵ
(

W(u, 1) − Θ
2

)ˆ 1

0
ϕ(t)2dt+

ˆ 1

0
4ϕ(t)2∥∂tu∥2dt

+
ˆ 1

0
ϕ(t)2

(
∥∂t,tu∥2 + 2∥∂t,θu∥2 − 8ϵ |⟨∂t,tu, ∂tu⟩| − 4C∥∂t,θu∥2

)
dt

− 4
ˆ 1

0
ϕ(t) (ϕ(t) + ϕ′(t)) ⟨∂tu, ∂t,tu⟩dt

(4.24)

We have −8ϵ |⟨∂t,tu, ∂tu⟩| ≥ −∥∂t,tu∥2−∥∂tu∥2, for a sufficiently small ϵ > 0 (which we can assume
without loss of generality). Similarly, we bound

−4ϕ(t) (ϕ(t) + ϕ′(t)) ⟨∂tu, ∂t,tu⟩ ≥ −ϕ(t)2∥∂tu∥2 − 8(ϕ(t)2 + ϕ′(t)2)∥∂t,tu∥2.
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We obtain (for some universal constant C ′ > 0):

W(u, 0) − W(u, 1) ≥ 2ϵ
(

W(u, 1) − Θ
2

)ˆ 1

0
ϕ(t)2dt+

ˆ 1

0
2ϕ(t)2∥∂tu∥2dt

− C ′
ˆ 1

0

(
ϕ(t)2 + ϕ′(t)2

) (
∥∂t,θu∥2 + ∥∂t,tu∥2

)
dt.

(4.25)

We remind that ϕ|[ 1
3 , 2

3 ] ≡ 1 and |ϕ′| ≲ 1, so

W(u, 0) − W(u, 1) ≥ 2ϵ
3

(
W(u, 1) − Θ

2

)
+ 2∥∂tu∥2

L2(C 1
3

\C 2
3

)

− C ′′
ˆ 1

0

(
∥∂t,θu∥2 + ∥∂t,tu∥2

)
dt,

(4.26)

for some constant C ′′ > 0. Finally, f 7→
√

∥f∥2
L2(C 1

3
\C 2

3
) + ∥∇f∥2

L2(C0\C1) is a norm for H1(C0 \ C1),
so

∥f∥2
L2(C 1

3
\C 2

3
) + ∥∇f∥2

L2(C0\C1) ≳ ∥f∥2
L2(C0\C1) + ∥∇f∥2

L2(C0\C1),

and there is some universal constant d ∈ (0, 1), D > 0 such that

W(u, 0) − W(u, 1) ≥ d

((
W(u, 1) − Θ

2

)
+ ∥∂tu∥2

H1(C0\C1)

)
− 4D

ˆ 1

0

(
∥∂t,θu∥2 + ∥∂t,tu∥2

)
dt.

(4.27)
Using the expression of W ′(u, t) (see Theorem 18), we have

4
ˆ 1

0

(
∥∂t,tu∥2 + ∥∂t,θu∥2

)
dt = W(u, 0) − W(u, 1), (4.28)

so we may replace the last term of (4.27) with D(W(u, 0) − W(u, 1)). We obtain

W(u, 0) − W(u, 1) ≥ d

D + 1

((
W(u, 1) − Θ

2

)
+ ∥∂tu∥2

H1(C0\C1)

)
,

which can be rearranged into

W(u, 1) ≤ W(u, 0) − d

D + 1 − d

((
W(u, 0) − Θ

2

)
+ ∥∂tu∥2

H1(C0\C1)

)
,

which is the result.

We also need the following lemma to control the variation of the blow-up sequence (ur) by
the variation of W .

Lemma 51. There exist c, C > 0 such that, for any u ∈ H2
lin(C0) a local minimizer of G(· ; 0),

assume that there exists b ∈ BΘ
hom if Θ ∈ {π, t1} (resp. b ∈ Span(1, cos(2θ), sin(2θ)) if Θ = 2π)

such that
∥u− b∥H1(C0\C1) ≤ c∥b∥H1(S1), W(u,+∞) ≥ Θ

2 ,

then
∥u− u(1 + ·, ·)∥H1(C0\C1) ≤ C

√
W(u, 0) − W(u,+∞).
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Proof. For any τ ∈ (0, 1), we write
ˆ
S1

|∇u(τ + 1, θ) − ∇u(τ, θ)|2 dθ =
ˆ
S1

∣∣∣∣∣
ˆ τ+1

τ

∂t∇u(s, θ)ds
∣∣∣∣∣
2

dθ

≤
ˆ
S1

ˆ τ+1

τ

|∂t∇u(s, θ)|2dsdθ

≤ W(u, 0) − W(u,+∞)
4 by Theorem 18.

Likewise,
ˆ
S1

|u(τ + 1, θ) − u(τ, θ)|2 dθ =
ˆ
S1

∣∣∣∣∣
ˆ τ+1

τ

∂tu(s, θ)ds
∣∣∣∣∣
2

dθ ≤
ˆ
S1

ˆ τ+1

τ

|∂tu(s, θ)|2dsdθ

=
ˆ
S1

ˆ τ+1

τ

∣∣∣∣∣∂tu(τ, θ) +
ˆ s

τ

∂t,tu(s′, θ)ds′
∣∣∣∣∣
2

dsdθ

≤ 2
ˆ
S1

|∂tu(τ, θ)|2dθ + 2
ˆ
S1

ˆ τ+1

τ

|∂t,tu(s, θ)|2dsdθ

≤ 2
ˆ
S1

|∂tu(τ, θ)|2dθ + W(u, 0) − W(u,+∞)
2

so
ˆ

C0\C1

ˆ
S1

|u(τ + 1, θ) − u(τ, θ)|2 dθdτ ≤ 2
ˆ

C0\C1

|∂tu(τ, θ)|2dθdτ + W(u, 0) − W(u,+∞)
2 .

When ∥u−b∥H1(C0\C1)
∥b∥H1(S1)

is small enough, then by the epiperimetry inequality of Theorem 37 we have´
C0\C1

|∂tu|2 ≲ W(u, 0) − W(u, 1)(≤ W(u, 0) − W(u,+∞)), which concludes the proof.

We now prove the main result of this section.

Proof of Theorem 36. We let v(t, θ) = e2tu
(
e−t+iθ

)
, so that v is a minimizer of G(·, 0). We let

also b ∈ BΘ
hom be such that

u(reiθ) = r2b(θ).
We remind that W(v, t) = W (u, e−t) (by Theorem 19). Let c1 > 0 to be fixed small enough later.
The bound on ∥u− u∥H1(D1\De−1 ) implies

∥v − b∥H1(C0\C1) ≲ c1∥b∥H1(S1).

Then for a small enough c1, Theorem 37 applies and we have

W (u, e−1) ≤ η
Θ
2 + (1 − η)W (u, 1).

Similarly, for a small enough c1, we may apply Lemma 51, which implies

∥u− ue−1∥H1(D1\De−1 ) ≲ ∥v − v(1 + ·, ·)∥H1(C0\C1) ≤ C1

√
W (u, 1) − Θ

2 .

Since W (u, 0) ≥ Θ
2 , this concludes the proof.
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5 Description of flat, angular and isolated boundary points.
In this section, we prove the main Theorems 4, 7, 6, 5 (in this order), and conclude with the proof
of Theorem 3.

The proof of Theorem 4 and 7 is based on the epiperimetric inequality and variation control
given by Theorem 36: we will see in subsection 5.1 this implies an explicit polynomial rate of
convergence of ur to a (unique) limit, given in Proposition 52.

We then prove in subsection 5.2 ϵ-regularity results near flat boundary points (Proposition 53)
and angular boundary points (Proposition 54); assuming u is sufficiently close to a flat or angular
blow-up, we prove that the support of u is a C1,α perturbation of the support of the associated
homogeneous solution. This will imply Theorem 6.

In subsection 5.3, we make a conformal change of variable to transform an overdetermined
Stokes equation on a C1,α free boundary into an overdetermined elliptic equation on a disk: from
this we obtain the higher regularity of the boundary and Theorem 5.

Finally, we prove the main Theorem 3 in subsection 5.4 by gathering all the previous results.

5.1 Uniqueness and speed of convergence of blow-ups
Proposition 52. Let Θ ∈ {π, t1, 2π}. There exist constants c2, C2 > 0, γ ∈ (0, 1) such that the
following holds: let u ∈ M Θ

hom if Θ ∈ {π, t1} (resp. u ∈ Span(x2 + y2, x2 − y2, xy) if Θ = 2π),
u ∈ M (D1) such that

W (u, 0) ≥ Θ
2 , ∥u− u∥H1(D1) ≤ c2∥u∥H1(D1).

Then there exists û ∈ M Θ
hom such that for any r ∈ (0, 1]:

∥ur − û∥H1(D1) ≤ C2 min
(
r,

∥u− u∥H1(D1)

∥u∥H1(D1)

)γ

∥u∥H1(D1),

and
∥u− û∥H1(D1) ≤ C2∥u− u∥γ

H1(D1)∥u∥1−γ
H1(D1).

Note that the hypothesis W (u, 0) ≥ Θ
2 is implied by the existence of a blow-up of opening Θ

(i.e. type I if Θ = π, II if Θ = t1, III, IV if Θ = 2π).
In the proof, we will use the following scaling property: for any r ∈ (0, 1), for any u ∈ H1(rD)

for some domain D ⊂ R2,

r−2∥u∥H1(rD) ≤ ∥ur∥H1(D) ≤ r−3∥u∥H1(rD). (5.1)

Indeed, this is a consequence of the change of variable ∥ur∥H1(D) =
(´

rD
r−4u2 + r−6|∇u|2

) 1
2 .

Proof. Let c2 > 0 be some constant that will be fixed arbitrarily small later. Let c1, C1, η be the
constants from Theorem 36. By Lemma 20, we have

W
(
u,

1
2

)
≤ C∥u∥2

H1(D1),

for some universal constant C > 0. We define the auxiliary constants

α =
(
c1 (1 −

√
1 − η)

2C1

)2

, K =
⌈

log(α/C)
log(1 − η)

⌉
+
, r = 1

2e
−K ,
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i.e. K ∈ N is the smallest integer such that (1 − η)KC ≤ α. We suppose c2 verifies

c2 ≤ r3c1

2 . (5.2)

For any k ∈ {0, 1, 2, . . . , K − 1}, we have (by the scaling formula (5.1)):

∥u 1
2 e−k − u∥H1(D1\De−1 ) = ∥ (u− u) 1

2 e−k ∥H1(D1\De−1 ) since u is homogeneous

≤ 8e3k∥u− u∥H1(D1) by the scaling (5.1)
≤ r−3c2∥u∥H1(D1) by definition of r

≤ c1

2 ∥u∥H1(D1) by assumption (5.2).

As a consequence, Theorem 36 applies to u 1
2 e−k , and we get

∀k = 0, 1, 2, . . . , K − 1, W
(
u,

1
2e

−k−1
)

− Θ
2 ≤ (1 − η)

(
W
(
u,

1
2e

−k
)

− Θ
2

)
.

By induction on k = 0, 1, . . . , K − 1, we obtain

W (u, r) − Θ
2 = W

(
u,

1
2e

−K
)

− Θ
2 ≤ (1 − η)K

(
W
(
u,

1
2

)
− Θ

2

)
≤ C(1 − η)K∥u∥2

H1(D1) by Lemma 20
≤ α∥u∥2

H1(D1) by definition of α.

We claim now that for any k ∈ N, we have

W
(
u, e−kr

)
≤ Θ

2 + (1 − η)kα∥u∥2
H1(D1),

∥ue−kr − u∥H1(D1\De−1 )

∥u∥H1(D1)
≤ c1

2 +C1
√
α

k−1∑
j=0

(1 − η)
j
2 (5.3)

We prove this by induction on k: this is verified at k = 0, since we verified W (u, r) ≤ Θ
2 +

α∥u∥2
H1(D1) and

∥ur − u∥H1(D1\De−1 )

∥u∥H1(D1)
≤ r−3c2 ≤ 1

2c1.

Suppose now that (5.3) is verified for some k ∈ N. By our definition of α, we have

c1

2 + C1
√
α

k−1∑
j=0

(1 − η)
j
2 ≤ c1

2 + C1
√
α

1 −
√

1 − η
= c1,

so Theorem 36 applies to ue−kr. This gives the two conclusions of (5.3) for k + 1:

W
(
u, e−k−1r

)
− Θ

2 ≤ (1 − η)
(
W
(
u, e−kr

)
− Θ

2

)
≤ (1 − η)k+1α∥u∥2

H1(D1)

and
∥ue−k−1r − u∥H1(D1\De−1 )

∥u∥H1(D1)
≤

∥ue−kr − u∥H1(D1\De−1 ) + ∥ue−k−1r − ue−kr∥H1(D1\De−1 )

∥u∥H1(D1)

≤ c1

2 + C1
√
α

k−1∑
j=0

(1 − η)
j
2 + C1

√
W (u, e−kr) − Θ

2 by (5.3)

≤ c1

2 + C1
√
α

k∑
j=0

(1 − η)
j
2 by (5.3).
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As a consequence, we have for every k ∈ N:

W
(
u, e−kr

)
≤ Θ

2 + (1 − η)kα∥u∥2
H1(D1), ∥ue−kr − u∥H1(D1\De−1 ) ≤ c1∥u∥H1(D1),

so using again Theorem 36:

∥ue−kr − ue−(k−1)r∥H1(D1\De−1 ) ≤ C1
√
α(1 − η) k

2 ∥u∥H1(D1)

and

∥ue−kr − ue−(k−1)r∥H1(D1) =
√∑

p∈N
∥ue−kr − ue−(k−1)r∥2

H1(De−p \De−p−1 )

≤
√∑

p∈N
e−4p∥ue−(k+p)r − ue−(k+p−1)r∥2

H1(D1\De−1 ) by (5.1)

≤
√∑

p∈N
e−4pC2

1α(1 − η)k+p∥u∥H1(D1)

≲ (1 − η) k
2 ∥u∥H1(D1),

The quantity ∥ue−kr − ue−(k−1)r∥H1(D1) is summable in k: as a consequence there exists û ∈ Mhom
a limit of ue−kr such that for any k ≥ 0:

∥ue−kr − û∥H1(D1) ≤
∑
p≥k

∥uepr − ue−p−1r∥H1(D1) ≲
∑
p≥k

(1 − η)
p
2 ∥u∥H1(D1) ≲ (1 − η) k

2 ∥u∥H1(D1).

Denoting ν = − log
√

1 − η, we obtain, for any r ∈ [0, 1]:

∥ur − û∥H1(D1) ≲ rν∥u∥H1(D1). (5.4)

Consider now any r ∈ (0, 1], and let s ∈ (0, 1) to be fixed. Then

∥ur − û∥H1(D1) ≤ ∥ur − u∥H1(D1) + ∥u− us∥H1(D1) + ∥us − û∥H1(D1)

≲
( 1
r3 + 1

s3

)
∥u− u∥H1(D1) + sν∥u∥H1(D1).

We optimize this quantity in s by fixing s =
(

∥u−u∥H1(D1)
∥u∥H1(D1)

) 1
3+ν

(which is smaller than 1 since
c1 ≤ 1), so

∥ur − û∥H1(D1) ≲
∥u− u∥H1(D1)

r3 + ∥u− u∥
ν

3+ν

H1(D1)∥u∥
3

3+ν

H1(D1).

We gather this estimate and (5.4):

∥ur − û∥H1(D1) ≲ min
(
rν∥u∥H1(D1),

∥u− u∥H1(D1)

r3 + ∥u− u∥
ν

3+ν

H1(D1)∥u∥
3

3+ν

H1(D1)

)

≲ min
(
rν∥u∥H1(D1), ∥u∥

3
3+ν

H1(D1)∥u− u∥
ν

3+ν

H1(D1)

)
≲ min

(
r,

∥u− u∥H1(D1)

∥u∥H1(D1)

)γ

∥u∥H1(D1),

with γ = ν
3+ν

. Evaluating this at r = 1 we get

∥u− û∥H1(D1) ≤ ∥u− ur∥H1(D1) + ∥ur − û∥H1(D1)

≲ ∥u− u∥H1(D1) + ∥u− u∥γ
H1(D1)∥u∥1−γ

H1(D1)

≲ (c2 + cγ
2) ∥u∥H1(D1),

so for a sufficiently small constant c2 we obtain that û ∈ M Θ
hom (by Lemma 27: the H1(D1)

distance between M π
hom,M

t1
hom,M

2π
hom is positive). This concludes the proof.
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As a corollary, we obtain Theorem 7 and 4.

Proof of Theorem 7. This is a direct consequence of the previous Proposition 52 for Θ = 2π.

Proof of Theorem 4. Let u ∈ M (D1) such that 0 ∈ Spt(u). By Proposition 52, it is sufficient to
prove the following claims:

(i) In the case lim infr→0
|Spt(u)∩Dp,r|

πr2 < 1, then there exists a sequence rn → 0 and u ∈ Bπ
hom ∪

Bt1
hom such that urn converges to u. Indeed this impliesW (u, 0) ≥ Θ

2 (with Θ = 2|Spt(u)∩D1|)
and for some sufficiently large n we have

∥urn − u∥H1(D1)

∥u∥H1(D1)
≤ c2,

where c2 is the constant from Proposition 52, and this proposition implies the result.

(ii) In the case W (u, 0) ≥ π, then there exists u ∈ Span(x2 + y2, x2 − y2, xy) and r ∈ (0, 1) such
that

∥ur − u∥H1(D1) ≤, c2∥u∥H1(D1).

Indeed, by Proposition 52, this implies the result.

The first claim is an immediate consequence of Proposition 30.
Assume now we are in the second case. If some sequence urn is bounded in H1(D1) as rn → 0,
then by Lemma 29, urn converges to some 2-homogeneous limit v. Since W (v, 1) ≥ π, necessarily
v is of type III or IV, and we obtain the result.

Assume that ∥ur∥H1(D1) −→
r→0

+∞ instead. By Proposition 31, there exists some extracted
sequence rn → 0 and some nonzero 2-homogeneous biharmonic function v such that

urn

∥urn∥H1(D1)
−→

n→+∞
v in H2

lin(R2).

In particular, for some large enough n we have∥∥∥urn − ∥urn∥H1(D1)v
∥∥∥

H1(D1)

∥urn∥H1(D1)
=
∥∥∥∥∥ urn

∥urn∥H1(D1)
− v

∥∥∥∥∥
H1(D1)

≤ c2,

which concludes the proof.

5.2 C1,α regularity of the boundary
We are now ready to prove a weaker form (with only C1,γ bound) of Theorem 5. We will use the
following interpolation inequalities: for any smooth bounded open set D ⊂ R or R2, 0 < α < β <
1, there exists C = C(D,α, β) ≥ 0 such that for any f ∈ C1,β(D,R):

∥f∥C1(D) ≤ C∥f∥
β

1+β

L∞(D)∥f∥
1

1+β

C1,β(D), (5.5)

∥f∥C1,α(D) ≤ C∥f∥
β−α

β

C1(D)∥f∥
α
β

C1,β(D), (5.6)

∥f∥C1,α(D) ≤ C∥f∥
β−α
β+1
L∞(D)∥f∥

α+1
β+1
C1,β(D). (5.7)
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Proposition 53. There exist c3 > 0, α, κ ∈ (0, 1), with the following property: for any u ∈
M (D1) such that

∥u− uI∥H1(D1) ≤ c3,

there exists a function h ∈ C1,α
([

−1
2 ,

1
2

]
,R
)

such that ∥h∥L∞([− 1
2 , 1

2 ]) ≤ 6
√

∥u− uI∥H1(D1) and

∥h∥C1,α([− 1
2 , 1

2 ]) ≲ ∥u− uI∥κ
H1(D1)

and {
(x, y) ∈ D 3

4
: |x| ≤ 1

2 , u(x, y) ̸= 0
}

=
{

(x, y) ∈ D 3
4

: |x| ≤ 1
2 , y > h(x)

}
.

Moreover, ∆u ∈ C1,α
loc

(
D 1

2
∩ Spt(u)

)
and ∆u = 1 in D 1

2
∩ ∂Spt(u).

Proof. In this proof, when up,r has a unique limit as r → 0, we write its limit up,0. We let ϵ > 0
be such that ∥u− uI∥H1(D1) ≤ ϵ, and ϵ will be supposed arbitrarily small. We define the cone

C = {(x, y) ∈ R2 : y < −|x|/2}.

The angular opening of the cone C is approximately 0.7π, which is strictly larger than 2π − t1 ≈
0.57π. We let

G =
{
p ∈ ∂Spt(u) ∩

[
−1

2 ,
1
2

]2
: (p+ C) ∩ D 3

4
⊂ {u = 0}

}
.

Note that the square
[
−1

2 ,
1
2

]2
is fully contained in the open disk D 3

4
.

We now prove a sequence of claims on G and ∂Spt(u), to prove that G is exactly ∂Spt(u) ∩[
−1

2 ,
1
2

]2
and that it is a C1,α graph (over the x coordinate) for some α ∈ (0, 1) to be defined.

(Claim a) For a sufficiently small ϵ, which we will suppose in the rest of the proof, we have

D 3
4

∩ ∂Spt(u) ⊂ {(x, y) ∈ R2 : |y| ≤ 6
√
ϵ}.

Indeed, let r = 6
√
ϵ, p = (x, y) ∈ D 3

4
such that y ≤ −r, then uI

p,r = 0 in D1 so

∥up,r∥H1(D1) = ∥(u− uI)p,r∥H1(D1) ≤ 1
r3 ∥u− uI∥H1(D1) ≤ ϵ

r3 =
√
ϵ

so for a small enough ϵ by the non-degeneracy of Lemma 14 we have u = 0 in Dp,r/2: p
cannot be in the boundary of the support.
Assume now instead that y ≥ r. Lemma 10 gives a bound ∥u∥H2(D 3

4
) ≲ 1, so

∥u− uI∥C0(D 3
4

) ≲ ∥u− uI∥W 1,4(D 3
4

) ≲ ∥u− uI∥
1
2
H2(D 3

4
)∥u− uI∥

1
2
H1(D 3

4
)

≲ ∥u− uI∥
1
2
H1(D 3

4
) ≲

√
ϵ

by Gagliardo-Nirenberg interpolation inequality. Thus, u(x, y) ≥ 1
2y

2 − C
√
ϵ for some

universal constant C. Since y ≥ 6
√
ϵ, then u(x, y) > 0 for a small enough ϵ. This concludes

claim (a).

(Claim b) For any p ∈ D 3
4

∩ ∂Spt(u), we claim ∥up, 1
8

− uI∥H1(D1) ≲ 12
√
ϵ. Indeed, using Lemma 10, 12,

we have a uniform bound
∥u∥

C1, 1
2 (D7/8)

≲ 1.
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Let p = (x, y) ∈ G, by the claim (a) we have |y| ≤ 6
√
ϵ, so

∥up, 1
8

− uI∥H1(D1) ≤ ∥u(x,y), 1
8

− u(x,0), 1
8
∥H1(D1) + ∥u(x,0), 1

8
− uI∥H1(D1)

≲
√

|y| + ∥
(
u− uI

)
(x,0), 1

8
∥H1(D1) by the C1, 1

2 (D 7
8
) bound

≤ 12
√
ϵ+ ϵ ≲ 12

√
ϵ

We obtain claim (b).

(Claim c) G is a graph in the variable x ∈
[
−1

2 ,
1
2

]
: by definition two distinct points of G cannot share

the same x coordinate, so it is sufficient to prove that for any x0 ∈
[
−1

2 ,
1
2

]
there exists

y0 ∈ R such that (x0, y0) ∈ G.
To prove this, consider the largest possible value of y0 such that ((x0, y0)+C)∩D 3

4
⊂ {u = 0}.

Since y0 is maximal, there must exist some contact point

q = (x, y) ∈ ∂
[
((x0, y0) + C) ∩ D 3

4

]
∩ ∂Spt(u).

By the claim (a), necessarily |y| ≤ 6
√
ϵ.

Suppose q is not (x0, y0). Then Spt(u) has Lebesgue density at most 1
2 at q, so there exists

a unique blow-up uq,0 that is necessarily of the form

uq,0 = s1u
I ◦ rots2θ0

where θ0 = arctan(1/2), s1, s2 ∈ {−1,+1}. However by the claim (b) we have

∥uq, 1
8

− uI∥H1(D1) ≲
12
√
ϵ,

so Proposition 52 applied to uq, 1
8

gives

∥s1u
I ◦ rots2θ0 − uI∥H1(D1) ≲ ϵ

γ
12 .

Here γ is the constant from Proposition 52. This is a contradiction when ϵ is small enough:
as a consequence G is a graph, and it is automatically the graph of a 1-Lipschitz function
(since the slope of C is smaller than 1), denoted

g :
[
−1

2 ,
1
2

]
→
[
− 6

√
ϵ, 6

√
ϵ
]
.

(Claim d) For every p ∈ G, u admits at p a unique blow-up of type I, denoted up,0, such that for every
r ∈

(
0, 1

8

)
we have

∥up,r − up,0∥H1(D1) ≲ min
(
ϵ

1
12 , r

)γ
.

Indeed, the existence of a blow-up of type I is a consequence of Proposition 30, since the
density of the support of u at points of G is strictly less than t1

2π
. The uniqueness and rate of

convergence follows from applying Proposition 52 to up, 1
8
, which verifies ∥up, 1

8
−uI∥H1(D1) ≲

12
√
ϵ by the claim (b).

(Claim e) ∥g∥C1,β([− 1
2 , 1

2 ]) ≲ 1, where β = γ
2γ+1 ∈ (0, 1).

To prove this, consider p, q two points in G, d := |p − q|, and r = d
1

2γ+1 . We suppose d is
small enough so that r ≤ 1

16 and d
r

≤ 1
4 . We apply claim (d) above to u at p and q:

∥up,2r − up,0∥H1(D1) ≲ rγ = d
γ

2γ+1

∥uq,r − uq,0∥H1(D1) ≲ rγ = d
γ

2γ+1 .
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By the Cacciopoli-type and higher regularity estimates from Lemma 10, 12, we have

∥up,2r∥C1, 1
2 (D 3

4
)
≲ 1

Then,

∥up,r − uq,r∥H1(D1) =
∥∥∥∥up,r − up,r

(
· + q − p

r

)∥∥∥∥
H1(D1)

≲ ∥up,r∥C1, 1
2 (D 3

2
)

√
|q − p|
r

≲ d
γ

2γ+1 .

This implies ∥uq,0 −up,0∥H1(D1) ≲ d
γ

2γ+1 , so g (the function defining the graph G) is differen-
tiable at every point x ∈

[
−1

2 ,
1
2

]
, with |g′(x) − g′(y)| ≲ (|x− y| + |g(x) − g(y)|)β ≲ |x− y|β.

(Claim f)
{
(x, y) ∈ D 3

4
: |x| ≤ 1

2

}
∩ ∂Spt(u) ⊂ G. Indeed, suppose that there exists some point

q ∈
{

(x, y) ∈ D 3
4

: |x| ≤ 1
2

}
∩ ∂Spt(u) \G.

Let p be a projection of q on G (p may not be unique). Since the y-coordinate of p and q
are bounded by 6

√
ϵ, we have necessarily |p− q| ≲ 6

√
ϵ. Let r = 4|p− q|, then by application

of claim (d) to u at the point p with radius r, we have

∥up,r − uI∥H1(D1) ≲ ϵ
γ
12 .

Let (ũ, q̃) =
(
up,r,

q−p
r

)
. Let G̃ be the graph associated to ũ (defined in the same way that

G is defined for u), note that 0 ∈ G̃ (since p ∈ G).
All the above claims apply to ũ: by claims (a,e) applied to ũ, we obtain that G̃ is the graph
of a function g̃ ∈ C1,α

([
−1

2 ,
1
2

])
such that ∥g̃∥L∞([− 1

2 , 1
2 ]) ≲ ϵ

γ
72 . By definition of r, we have

|q̃| = 1
4 . By claim (a), we have |q̃y| ≲ ϵ

γ
36 . At the same time, the origin is a projection of q̃

on G−p
r

: this is a contradiction for a small enough ϵ, which proves the claim (f).

Thus, we have proved that{
(x, y) ∈ D 3

4
: |x| ≤ 1

2

}
∩ Spt(u) =

{
(x, y) ∈ D 3

4
: |x| ≤ 1

2 , y > g(x)
}

for some function g :
[
−1

2 ,
1
2

]
→ R that verifies

∥g∥C1,β([− 1
2 , 1

2 ]) ≲ 1, ∥g∥L∞([− 1
2 , 1

2 ]) ≤ 6
√
ϵ.

We define α = β
2 , κ = α

12α+4 . By the interpolation properties (5.7), this implies

∥h∥C1,α([− 1
2 , 1

2 ]) ≲ ϵκ.

Now we prove the C1,α
loc (D 1

2
) regularity of ∆u on its support. Let q ∈ Spt(u) ∩ D 1

2
, and let p be

a projection of q on G. We suppose r := 2|p − q| is sufficiently small such that r ≤ 1
8 . Then we

may apply claim (d) to u at the point p:

∥up,r − up,0∥H1(D1) ≲ ϵ
γ
12 .
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Moreover, since p is a projection of q on G, then for a small enough ϵ we have Dq̃, 1
2

⊂ Spt(up,0),
where q̃ = q−p

r
. Let now χ ∈ C∞

c (D 1
2
,R) a radial function with integral 1 with |∇kχ| ≲ 1 for

k = 0, 1. Since ∆u is harmonic on its support, then

|∆u(q) − 1| = |∆up,r (q̃) − ∆up,0 (q̃)| =

∣∣∣∣∣∣∣
ˆ
D

q̃, 1
2

(∆up,r − ∆up,0)χ(· − q̃)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ˆ
D

q̃, 1
2

∇(up,r − up,0) · ∇χ(· − q̃)

∣∣∣∣∣∣∣ ≲ ϵ
γ
12

(5.8)

Thus ∆u−1 is harmonic on its support and continuous up to the boundary G, with a homogeneous
Dirichlet condition. Since G has a regularity C1,α, then by classical boundary elliptic regularity
we have ∆u ∈ C1,α

loc

(
D 1

2
∩ Spt(u)

)
.

Proposition 54. There exist c4, C4 > 0, α ∈ (0, 1), with the following property: for any u ∈
M (D1) such that

∥u− uII∥H1(D1) ≤ c4,

there exist two functions θ−, θ+ ∈ C1,α
([

1
4 ,

3
4

])
such that

∥θ−∥C1,α([ 1
4 , 3

4 ]) + ∥θ+∥C1,α([ 1
4 , 3

4 ]) ≲ 1,

∥θ−∥L∞([ 1
4 , 3

4 ]) + ∥θ+∥L∞([ 1
4 , 3

4 ]) ≲ 6
√

∥u− uII∥H1(D1),

and {
reiθ ∈ Spt(u) ∩ D 3

4
\ D 1

4

}
=
{
reiθ ∈ D 3

4
\ D 1

4
: θ−(r) ≤ θ ≤ t1 + θ+(r)

}
.

Proof. We denote

ϵ = ∥u− uII∥H1(D1), S0 =
[1
4e1,

3
4e1

]
, St1 = rott1(S0),

where rott1 is the rotation of angle t1. We let ϵ > 0 that will be fixed sufficiently small later. We
let also for any δ > 0:

Sδ
0 = {p ∈ D 3

4
\ D 1

4
: dist(p, S0) ≤ δ, Sδ

t1 = rott1(Sδ
0).

Let c2, C2, γ be the constants from Proposition 52, and c3, C3, α, κ be the constants from Propo-
sition 53. Let r ∈

[
1
4 ,

3
4

]
, θ ∈

[
−π

2 ,
π
2

]
, then

uII(reiθ) − uI(reiθ) = − r2

2t1

(
θ − sin(2θ)

2

)
.

Observe the last factor is of the form Oθ→0(|θ|3), so for any ρ ∈
[
0, 1

4

]
we get

∥uII
re1,ρ − uI∥H1(D1) ≲ ρ3.

Thus,
∥ure1,ρ − uI∥H1(D1) ≤ ∥ure1,ρ − uII

re1,ρ∥H1(D1) + ∥uII
re1,ρ − uI∥H1(D1) ≲

ϵ

ρ3 + ρ3. (5.9)

We may fix a sufficiently small ρ ≳ 1 such that, when ϵ is sufficiently small, then

∀r ∈
[1
4 ,

3
4

]
, ∥ure1,ρ − uI∥H1(D1) ≤ c3.
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We apply Proposition 53 to every r ∈
[

1
4 ,

3
4

]
. As a consequence, we get that

S
ρ/2
0 ∩ ∂Spt(u) =

{
teiθ−(t), t ∈

[1
4 ,

3
4

]}
with ∥θ−∥C1,α([ 1

4 , 3
4 ]) ≲ 1. Moreover, using again (5.9) with ρ := 6

√
ϵ and Proposition 53, we have

∥θ−∥L∞([ 1
4 , 3

4 ]) ≲ 6
√
ϵ.

We define similarly θ+ from the rotation u ◦ rott1 , and we obtain

S
ρ/2
t1 ∩ ∂Spt(u) =

{
tei(t1+θ+(t)), t ∈

[1
4 ,

3
4

]}
with

∥θ+∥C1,α([ 1
4 , 3

4 ]) ≲ 1, ∥θ+∥L∞([ 1
4 , 3

4 ]) ≲ 6
√
ϵ.

By the interpolation inequality (4.21), and Lemmas 10, 11:

∥u− uII∥C1(D 3
4

) ≲ ∥u− uII∥
1
2
H1(D 3

4
)∥u− uII∥

1
2
W 2,4(D 3

4
)

≲ ∥u− uII∥
1
2
H1(D1)

(
∥u∥H1(D1) + ∥uII∥H1(D1)

) 1
2

≲ ϵ
1
2 .

In particular, for a sufficiently small ϵ, we obtain

∂Spt(u) ∩
(
D 3

4
\ D 1

4

)
⊂ S

ρ/2
0 ∪ S

ρ/2
t1 ,

and this proves the result.

We are now ready to prove Theorem 6.

Proof of Theorem 6. Let ϵ = distH1(D1)
(
u,M t1

hom

)
, which we will suppose to be arbitrarily small.

We let c2, C2 > 0, γ ∈ (0, 1) be the constants from Proposition 52, and c4, C4 > 0, α ∈ (0, 1)
be the constants from Proposition 54. By Proposition 52 there exists û ∈ M t1

hom such that

∥ur − û∥H1(D1) ≲ min(r, ϵ)γ

for any r ∈ (0, 1). Up to a rotation and a change of sign, we may assume without loss of
generality that û = uII. By Proposition 54 applied to ur for every r ∈ (0, 1), there exists two
functions θ−, θ+ ∈ C1,α

((
0, 3

4

]
,R
)

such that

∥θ−(r·)∥C1,α([ 1
4 , 3

4 ]) + ∥θ+(r·)∥C1,α([ 1
4 , 3

4 ]) ≲ 1,

∥θ−(r·)∥L∞([ 1
4 , 3

4 ]) + ∥θ+(r·)∥L∞([ 1
4 , 3

4 ]) ≲ min (r, ϵ)
γ
6 ,

(5.10)

for every r ∈ (0, 1) and{
reiθ ∈ Spt(u) ∩ D 3

4
\ {0}

}
=
{
reiθ ∈ D 3

4
: r > 0, θ−(r) ≤ θ ≤ t1 + θ+(r)

}
.

Functions θ± extends to r = 0 with the value 0. We now define the diffeomorphism (seeing it as
a complex-valued function)

Φ
(
reiθ

)
= re

i

(
θ+θ−(r)+ θ+(r)−θ−(r)

t1
θ

)
,

so that
Φ
(
D 3

4
∩ Spt(uII)

)
= D 3

4
∩ Spt(u).

We now verify that Φ − id is small in a suitable Hölder space:
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• By (5.10), we have ∥Φ − id∥L∞(D1) ≲ ϵ
γ
6 .

• For any x ∈ D 1
2

\ {0}, then by (5.10) applied to r := 2|x| we have

|DΦ(x) − I2| ≲ |x|
γ
6

α
α+1

We used here the interpolation inequality (5.5).

• For any distinct x, y ∈ D 1
2
, suppose that |x| ≤ |y| ≤ 3|x| i.e. there exists r ∈ (0, 1) such

that 1
4r ≤ |x| ≤ |y| ≤ 3

4r. We let

β :=
γ
6α

α + 1 + γ
6
.

Then by (5.10) applied with the radius r we have

|DΦ(x) −DΦ(y)| ≲
(

∥θ+(r·)∥C1,β([ 1
4 , 3

4 ]) + ∥θ−(r·)∥C1,β([ 1
4 , 3

4 ])
) ∣∣∣∣x− y

r

∣∣∣∣β
≲ r

γ
6

α−β
α+1

∣∣∣∣x− y

r

∣∣∣∣β by (5.7), (5.10)

= |x− y|β by definition of β.

The second and third point imply ∥Φ∥C1,β(D 1
2

) ≲ 1. Since ∥Φ − id∥L∞(D 1
2

) ≲ ϵ
γ
6 , then we may

apply interpolation inequality (5.7); we let

ν = β

2 , µ = β

β + 1
γ

12 ,

then
∥Φ − id∥C1,ν(D 1

2
) ≲ ϵµ.

5.3 Higher regularity of the boundary
In the classical Alt-Caffarelli problem, higher order regularity of the boundary is usually obtained
by some form of partial hodograph transform (i.e. seeing the state function u as a coordinate, and
finding a nonlinear, overdetermined elliptic equation verified in this coordinate system), based
on [18, Th. 2]. This was generalized for elliptic systems in [19], and for higher order systems in
[20]: in particular our boundary condition appears verbatim in [20, Th. 4.2] with n = m = 2,
F (p, u,∇u, . . . ,∇4u) = ∆2u, g(x,M) = Tr(M) − 1. However, in [20, Th. 4.2] u is assumed to
be of class C4 up to the free boundary, so we cannot apply it directly. A similar issue for the
Alt-Caffarelli problem (regarding the results from [19]) was pointed out in the appendix of [21].

For this reason, we give an independent proof of higher regularity based on a conformal
transform of the boundary. We find that the Stokes system associated to the biharmonic equation
is conformally transported to an overdetermined elliptic equation, where the additional boundary
condition (from the optimality condition) allows a bootstrap procedure. A similar method was
used for a second order problem in [22].

The key argument is that after a conformal change of variable to flatten the boundary, the op-
timality conditions imply that the pressure (which is harmonic) verifies a homogeneous Neumann
condition, so it is automatically smooth up to the boundary. From there, we treat the system as
a complex-valued linear elliptic equation.

65



Lemma 55. Let Ω ⊂ D1 an open set such that Γ := D1 ∩∂Ω is a C1,α curve (for some α ∈ (0, 1))
that connects two points of ∂D1. Let u ∈ H2(Ω) such that ∆u ∈ C0(Ω ∪ Γ) and

∆2u = 0 (Ω)
u = |∇u| = 0 (Γ)
∆u = c (Γ)

for some nonzero constant c. Then D1 ∩ ∂Ω is an analytic curve.

Proof. We identify R2 with C (so vector fields are complex-valued functions) and write the
Wirtinger derivative

∂z = 1
2 (∂x − i∂y) , ∂z = 1

2 (∂x + i∂y) .

Since D1 ∩ ∂Ω is a C1,α curve and ∆u − c is a harmonic function that verify a (homogeneous)
dirichlet condition on D1 ∩ ∂Ω, then ∆u ∈ C1,α

loc (Ω ∪ Γ). Let v : Ω → C and p : Ω → R two
functions defined by

v = i∂zu, ∂zp = i∂z∂z∂zu

i.e. p is a harmonic conjugate (uniquely defined up to an additive constant) of the harmonic
function 1

4∆u, that belongs to C1,α
loc (Ω ∪ Γ). (v, p) verifies the Stokes equation with Dirichlet (or

no-slip) boundary condition ∂z∂zv = ∂zp (Ω)
v = 0 (Γ).

Moreover, the condition ∆u|Γ = c gives an additional boundary condition on p and v: since p is
the harmonic conjugate of ∆u, which is constant in Γ, then p verifies a homogeneous Neumann
boundary condition in Γ, and since ∂zv = i

4∆u we have:

∂zv = 1
4ic in Γ.

Let Φ : D1 → Ω be a bijective conformal map (that is uniquely defined up to some conformal
automorphism of the disk): by the Carathéodory Theorem [8] (see [28, Th. 2.6] for a modern
reference), Φ extends as a homeomorphism D1 → Ω, and we let Γ′ be the reciprocal image of Γ
through Φ. By the Kellogg-Warschawski heorem [37] (see also [28, Th. 3.6], or [28, Prop. 3.4] for
a local version), we have Φ ∈ C1,α

loc (D1 ∪ Γ′).
Let

p̂ = p ◦ Φ, v̂ = v ◦ Φ
Then p̂ is harmonic and verifies a homogeneous Neumann boundary condition on Γ′ (since this
property is transported through the conformal mapping). Thus p̂ is analytic in D1 ∪ Γ′.

Then we compute the equation verified by (v̂, p̂) in D1:

∂zv̂ = Φ′(∂zv) ◦ Φ, ∂zp̂ = Φ′(∂zp) ◦ Φ,

so
∂z∂zv̂ = |Φ′|2(∂z∂zv) ◦ Φ = |Φ′|2(∂zp) ◦ Φ = Φ′∂zp̂.

We obtain that v̂ verifies the overdetermined elliptic equation
∂z∂zv̂ = Φ′∂zp̂ (D1)
v̂ = 0 (Γ′)
∂zv̂ = 1

4icΦ
′ (Γ′).
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Since ∂zp̂ is analytic up to the boundary Γ′, and Φ′ ∈ C0,α
loc (D1 ∪ Γ′), by standard Schauder theory

(using the first two equations only) we have v̂ ∈ C2,α
loc (D1 ∪ Γ′). Using the third line, we see

Φ′ ∈ C1,α
loc (Γ′), so Φ ∈ C2,α

loc (D1 ∪ Γ′).
Iterating this, for any k ∈ N>0, if Φ ∈ Ck,α

loc (D1∪Γ′), then v̂ ∈ Ck+1,α
loc (D1∪Γ′), so Φ′|Γ′ ∈ Ck,α

loc (Γ′),
which implies Φ ∈ Ck+1,α

loc (D1 ∪ Γ′).
Thus, we obtain Φ ∈ C∞(D1 ∪ Γ′). From here on, the analyticity of Φ up to the boundary Γ′ may
be obtained through tracking constants in this bootstrapping procedure, or simply by application
of [20, Th. 4.2] with n = m = 2, F (p, u,∇u, . . . ,∇4u) = ∆2u, g(x,M) = Tr(M) − c to the
function u.

From this we obtain the main Theorem 5.

Proof of Theorem 5. This is a direct combination of Proposition 53, and Lemma 55.

5.4 Proof of the main result
We may now conclude with the proof of Theorem 3.

Proof of Theorem 3. Let u ∈ M (D) for some open set D ⊂ R2. We define

• Ru the points of D ∩ ∂Spt(u), with density 1
2 in Spt(u).

• Au the points of D ∩ ∂Spt(u), with density t1
2π

in Spt(u).

• Nu the points p ∈ D ∩ ∂Spt(u) such that for some sufficiently small r > 0, we have
|Dp,r \ Spt(u)| = 0.

• Ju is the set of points p ∈ D∩∂Spt(u)\(Ru∪Au∪Nu) such that lim infr→0 ∥up,r∥H1(D1) < ∞.

• Eu := D ∩ ∂Spt(u) \ (Ru ∪ Au ∪ Nu ∪ Ju)

These sets are a partition of D ∩ ∂Spt(u) by construction. Now, we prove the claim of Theorem
3 case-by-case.

• Let p ∈ Ru: by Theorem 4, up,r converges in H1(D1) as r → 0 to some homogeneous
solution of type I. By Theorem 5 applied to up,2r for a sufficiently small r, we obtain that
Spt(u) ∩ Dp,r is, after rotation, the epigraph of some analytic function. In particular, every
point of ∂Spt(u) ∩ Dp,r is also regular.

• Let p ∈ Au. By the same reasoning, by Theorem 4 and 6, there exists a sufficiently small
r > 0 such that Spt(u) ∩ Dp,r is the image of the angular cone Spt(uII) ∩ D1 through
a C1,γ diffeomorphism (sending 0 to p, ∂D1 to ∂Dp,r). As a consequence, every point of
∂Spt(u) ∩ Dp,r \ {p} belongs to Ru, Au is a discrete set where two connected components
of Ru join with an angle t1 and ∆u|Ru takes opposite signs on each.

• Let p ∈ Nu. Then u is biharmonic in a neighbourhood of p. Since biharmonic functions are
analytic, this implies that for a sufficiently small r > 0, ∂Spt(u) ∩ Dp,r is an intersection of
zeros of analytic function. Since u(p) = |∇u(p)| = 0, the blow-up up,0 is well-defined and
non-zero by the nondegeneracy Lemma 14, and it is a blow-up either of type III (in which
case |∆u(p)| ≥ 1) or of type IV (in which case ∂Spt(u) ∩ Dp,r = {p} for a sufficiently small
r).

• Let p ∈ Ju. By Lemma 29 and the fact that p /∈ Ru ∪ Au, u admits a blow-up of type III
or IV, denoted û. By Theorem 7, we have ∥up,r − û∥H1(D1) → 0 as r tends to 0. If û was of
type IV, then p would be an isolated point of ∂Spt(u) and in particular it would be in the
nodal set Nu: thus û is necessarily of type III.
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• Let p ∈ Eu. Since p belongs to none of the sets above we know that p neither has density
1
2 or t1

2π
in Spt(u) - meaning by Proposition 30 that it has density 1 in Spt(u) - nor is it

isolated in ∂Spt(u) - meaning it does not admit a blow-up of type IV - nor does it admit a
blow-up of type III since it would otherwise belong to Nu ∪ Ju. Since u admits no blow-up
at p, necessarily we have

∥up,r∥H1(Dp,r) −→
r→0

+∞.

By Theorem 4, we have necessarily W (u(p + ·), 0) < π, since otherwise there would be
a blow-up of type III or IV. Finally, since ∥up,r∥H1(D1) → +∞, then for any subsequence
rn → 0 we may apply Proposition 31 to the sequence up,rn : there is some subsequence
(ni) such that up,rni

∥up,rni
∥H1(up,rni

)
converges in H2

loc(R2) norm to some nonzero 2-homogeneous
biharmonic function.

6 Quasi-minimizers
We explain here how the method we developed for the energy E(·, D) extends to a more general
setting, with applications to the buckling eigenvalue minimization (1.4). We do not attempt to
find the weakest optimality condition that would still imply the main regularity results: for the
sake of clarity we instead give some mild optimality condition that contains the buckling problem.

6.1 Regularity of quasi-minimizers
Definition 56. Let D ⊂ R2 be an open set, we say u is a quasiminimiser of E(·, D), and we
write

u ∈ QM (D),
if for any v ∈ H2(D) such that {u ̸= v} ⋐ D, we have

E(u;D) ≤ E(v;D) + ∥v − u∥L2(D). (6.1)

More generally, for µ ≥ 0 we say u is a µ-quasiminimizer of E(·;D), we write u ∈ QM µ(D)
if for any v ∈ H2(D) such that {u ̸= v} ⋐ D we have

E(u;D) ≤ E(v;D) + µ∥v − u∥L2(D). (6.2)

This notion of quasi-minimizer scales as follows.
Lemma 57. Let D ⊂ R2 be an open set, µ ≥ 0, r > 0, and u ∈ QM µ(D). Then ur ∈
QM rµ(D/r).

In other words, it is sufficient to prove the minimality condition (6.2) for some (possibly large)
constant µ > 0 to know that some rescaling of u is a quasiminimizer in the sense of (6.1).

Proof. Consider v ∈ H2(D/r) such that {v ̸= ur} ⋐ D/r. This means that v = wr, for some
w ∈ H2(D) such that {w ̸= u} ⋐ D. By the minimality condition (6.2) we have

E(u;D) ≤ E(w;D) + µ∥v − u∥L2(D).

After a change of variable, we obtain

E(ur;D/r) ≤ E(v;D/r) + rµ∥v − ur∥L2(D/r).

So ur ∈ QM rµ(D).

We now explain the different changes to adapt the proofs to quasi-minimizers, following the
sections of the rest of the paper.
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6.1.1 Cacciopoli inequality

Extending Lemma 10 to elements of u ∈ QM (D1) is a direct consequence of the quasiminimality
condition (6.1) with v = e−tη4

ur for any r ∈ (0, 1), η ∈ C∞
c (D1, [0, 1]), t ∈ R. Indeed, this implies

E(ur;D1) − E(etη4
ur;D1) ≤ r∥(etη4 − 1)ur∥L2(D1),

so for t → 0+ we get ˆ
D1

2∇2ur : ∇2(η4ur) ≤ r∥η4ur∥L2(D1).

We bound

r∥η4ur∥L2(D1) ≤ r∥η2ur∥L2(D1) since η ≤ 1
≲ r∥∇2(η2ur)∥L2(D1) by Poincaré inequality
≲ r2 + ∥∇(η2) ⊗ ∇ur∥2

L2(D1) + ∥∇2(η2)ur∥2
L2(D1) + ∥η2∇2ur∥2

L2(D1).

The rest of the proof follows with the same computation as in Lemma 10. We obtain

Lemma 58. Let u ∈ QM (D1), r ∈ (0, 1), ρ ∈
[

1
2 , 1

)
, then

∥ur∥H2(Dρ) ≲
r2 + ∥ur∥H1(D1\Dρ)

(1 − ρ)2 . (6.3)

6.1.2 BMO estimate

The BMO estimate is proved similarly to Lemma 11: we compare u with its biharmonic replace-
ment on any disk, and deduce a BMO bound on ∆u.

Lemma 59. Let u ∈ QM (D1). Then we have

[∇2u]BMO(D 1
2

) ≲ 1 + ∥u∥H2(D1). (6.4)

Proof. For any Dp,r ⋐ D, we let uDp,r be the biharmonic extension of u in Dp,r. Then the
quasiminimality of u gives

ˆ
Dp,r

|∆(u− uDp,r)|2 ≤ |Dp,r| + ∥u− uDp,r∥L2(Dp,r).

We bound ∥u − uDp,r∥L2(Dp,r) ≲ r2∥∆(u − uDp,r)∥L2(Dp,r) by Poincaré inequality, so by Young
inequality: ˆ

Dp,r

|∆(u− uDp,r)|2 ≲ |Dp,r| + r4.

We divide by the measure of Dp,r:
 
Dp,r

|∆(u− uDp,r)|2 ≲ 1 + r2.

The rest of the proof is the same as the one of Lemma 11.
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6.1.3 Nondegeneracy lemma

The extension of Lemma 14 to the quasi-minimal context has no major changes.

Lemma 60. There exists ϵ > 0 such that the following holds: let u ∈ QM (D1), such that
Spt(u) ∩ D 1

2
̸= ∅, then

∥u∥H1(D1) ≥ ϵ. (6.5)

Proof. It is sufficient to prove that when ∥u∥H1(D1) is sufficiently small, then u(0) = |∇u(0)| = 0
(since we may apply this to up, 1

2
for p ∈ D 1

2
). Let r ∈ (0, 1), we have the first (non-linear)

estimate:

∥ur∥2
H1(D 1

2
) ≲ |Spt(ur) ∩ D 3

4
|

1
2 ∥ur∥2

W 1,4(D 3
4

) by Hölder inequality

≲ |Spt(ur) ∩ D 3
4
|

1
2 ∥ur∥2

H2(D 3
4

) by Sobolev embedding H2 → W 1,4

≲ |Spt(ur) ∩ D1|
1
2
(
r2 + ∥ur∥2

H1(D1)

)
by Lemma 58.

Then we have an estimate of the area of the support, obtained by the minimality condition applied
to v = (1 − η)ur, where η ∈ C∞

c (D 3
4
) verifies η = 1 in D 1

2
:

|Spt(ur) ∩ D 1
2
| ≤

ˆ
D 1

2

(χur ̸=0 − χv ̸=0)

≤
ˆ
D 3

4

(
|∆(ur − ηur)|2 − |∆ur|2

)
+ r∥ηur∥L2(D1) by (6.1)

≲
ˆ
D 3

4

(
|∆(ηur)|2 − 2∆(ηur)∆ur

)
+ r∥ηur∥L2(D1)

≲ ∥ur∥2
H1(D1) + r2 by Lemma 58.

Denoting g(r) = ∥ur∥2
H1(D1), we obtain that for some constant C0 > 0:

∀r > 0 : Dp,r ⊂ D, we have g
(
r

4

)
≤ C0

(
r3 + g(r) 3

2
)
.

Let a0 = (4C0)−2, r0 := min
(

1, C− 1
2

0 , 3
4a0

)
, then for any r ∈ (0, r0), assume g(r) ≤ a0, then we

have
g
(
r

4

)
≤ r + 1

4g(r)(≤ a0)

and by induction g
(
4−kr

)
≤ k41−kr + 4−kg(r) for any k ∈ N∗. This tends to 0 as k → +∞.

Assume ∥u∥H1(D1) ≤ r3
0a

1
2
0 , then ∥ur0∥H1(D1) ≤ a

1
2
0 , so u(0) = |∇u(0)| = 0. This concludes the

proof.

From the previous results we can deduce a weaker (but easier to work with) optimality con-
dition.

Lemma 61. There exists Q > 0 such that for any u ∈ QM (D1) such that 0 ∈ ∂Spt(u), for any
r ∈

(
0, 1

2

)
, v ∈ u+H2

0 (Dr), we have

E(u;Dr) ≤ E(v;Dr) +Q∥u∥H1(D1)r
5
2 .
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Proof. We assume without loss of generality that E(v;Dr) ≤ E(u;Dr) (otherwise there is nothing
to prove). By the non-degeneracy lemma we have

∥u∥H1(D1) ≳ 1. (6.6)

By combining Lemma 59, 58, we have for any p ∈ D 3
2 r:

|u(p)|
|p|

+ |∇u(p)| ≲ r
1
2 [∇u]

C0, 1
2 (D 3

4
)
≲ r

1
2 ∥u∥H1(D1).

So
∥ur∥H2(D1) ≲ ∥ur∥H1(D 3

2
) ≲ r− 1

2 . (6.7)

Then, by the quasi-minimality condition on u we have

E(u;Dr) ≤ E(v;Dr) + ∥u− v∥L2(Dr)

and we bound the remainder term:

∥u− v∥L2(Dr) ≲ r2∥∆(u− v)∥L2(Dr) by Poincaré inequality
≲ r2

(
∥∆u∥L2(Dr) + ∥∆v∥L2(Dr)

)
≲ r2E(u;Dr)

1
2 since we assume E(v;Dr) ≤ E(u;Dr)

≲ r2
(
r2 + ∥∆u∥2

L2(Dr)

) 1
2

= r3
(
1 + ∥∆ur∥2

L2(D1)

) 1
2

≲ r
5
2
(
1 + ∥u∥2

H1(D1)

) 1
2 by (6.7)

≲ r
5
2 ∥u∥H1(D1) by (6.6).

And so

E(u;Dr) − E(v;Dr) ≤ ∥u− v∥L2(Dr) ≲ r
5
2 ∥u∥H1(D1).

This concludes the proof.

6.1.4 Sequence of minimizers

For the next lemma, we write (for λ, µ ≥ 0) u ∈ QM µ
λ(D) if for every Dp,r ⋐ D, v ∈ u+H2

0 (Dp,r),
we have

Eλ(u;Dp,r) ≤ Eλ(v;Dp,r) + µ∥u− v∥L2(Dp,r).

Lemma 62. Let λ(n) ∈ R+ some sequence that converges in C0(D1) to λ ≥ 0, µ(n) a sequence of
[0, 1] that converge to µ ≥ 0. For each n, let u(n) ∈ QM µ(n)

λ(n)(D1) such that

lim sup
n→+∞

∥u(n)∥H1(D1) < +∞.

Then there is a subsequence u(nk) that converges in H2
loc(D1) to u ∈ QM µ

λ(D1), with a strong
L1(D1) convergence of λ(nk)χu(nk) ̸=0 to λχu̸=0.
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Proof. By Lemma 58, (u(n))n∈N is bounded in H2
loc(D1). Consider u a H2

loc(D1)-weak limit of
(u(n))n∈N (after extraction, which we do not write here for clarity), v ∈ H2(D1) such that {u ̸=
v} ⋐ D1, η ∈ C∞

c (D1) such that η = 1 on Spt(u−v), then we apply the quasi-optimality condition
to (1 − η)u(n) + ηv:

Eλ(n)(u(n);D1) ≤ Eλ(n)((1 − η)u(n) + ηv;D1) + µ(n)∥η(v − u(n))∥L2(D1). (6.8)

Following the proof of Lemma 15, with v = u we obtain

∥u∥H2(Dr) = lim
n→+∞

∥u(n)∥H2(Dr)

for any r ∈ (0, 1), thus the convergence u(n) → u is strong in H2
loc(D1). Then Lemma 62 for a

general v gives as n → +∞:

Eλ(u;D1) ≤ Eλ(v;D1) + µ∥v − u∥L2(D1),

so u ∈ QM µ
λ(D1).

6.1.5 Monotonicity

In this section, we consider a minimizer u ∈ QM (D1) with 0 ∈ ∂Spt(u). We prove that up to
adding a sufficiently large polynomial term to W (u, r), we still obtain an increasing function.
Theorem 63. There exists λ0 > 0 such that the following holds. For any u ∈ QM (D1) such
that 0 ∈ ∂Spt(u), we let

v(t, θ) = e2tu(e−t+iθ)
Then the function

r ∈
(

0, 1
2

)
7→ W (u, r) + λ0∥u∥H1(D1)

√
r

is non-decreasing. More precisely, for any τ ≥ 0, we have W (u, e−τ ) = W(v, τ) and
d

dτ

(
W(v, τ) + λ0∥u∥H1(D1)e

− τ
2
)

≤ −4∥∂t∇t,θv∥2
L2(∂Cτ ).

Since W (u, r)+λ0∥u∥H1(D1)
√
r is nondecreasing, this means that W (u, r) admits a limit - that

we denote W (u, 0) - as r → 0.

Proof. By Lemma 59, we have v ∈ H2
lin(C0). By a change of variable (see Lemma 16), the quasi-

minimality of u implies the following: for any τ ≥ 0, any w ∈ H2
lin(C0) such that {v ̸= w} ⊂ Cτ ,

we have

G(v, τ) ≤ G(w, τ) + e2τ

√√√√ˆ
Cτ

e−6t(v − w)(t, θ)2dtdθ.

The minimality condition simplifies to

G(v, τ) ≤ G(w, τ) + e−τ ∥v − w∥L2(Cτ ,e−2tdtdθ). (6.9)

As in the proof of Theorem 18, let τ > 0, consider the vector field ϕ(t, θ) = (f(t), 0) for some
function f ∈ C∞(R+) with f = 0 on [0, τ ], ∥f∥W 1,∞(R+) < ∞, ψϵ the inverse of t 7→ t+ ϵf(t) and
w(t, θ) = v(ψϵ(t), θ). Then the optimality condition (6.9) applied for ϵ → 0 gives the conditionˆ +∞

0
e−2t(2f − f ′)

{
∥∂t,tv∥2 + 2∥∂t,θv∥2 + ∥∂θ,θv∥2 − 4∥∂θv∥2 +

ˆ
∂Ct

χv ̸=0

}
dt

+ 2
ˆ +∞

0
e−2tf ′′⟨∂tv, ∂t,tv⟩dt

≤ −4
ˆ +∞

0
e−2tf ′

{
∥∂t,tv∥2 + ∥∂t,θv∥2

}
dt+ e−τ ∥f∂tv∥L2(Cτ ,e−2tdtdθ).
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By Lemma 59, we bound |∂tv| ≲ e
t
2 ∥u∥H1(D1). So taking formally f → χt≥τ (or using the weak

derivative characterization as in the proof of Theorem 18) we obtain

W ′(v, τ) + 4
(
∥∂t,tv(τ)∥2 + ∥∂t,θv(τ)∥2

)
≲ ∥u∥H1(D1)e

− τ
2 .

So for some sufficiently large λ0 ≳ 1, we have

d

dτ

(
W(v, τ) + λ0∥u∥H1(D1)e

− τ
2
)

≤ −4
(
∥∂t,tv(τ)∥2 + ∥∂t,θv(τ)∥2

)
.

The rest follows exactly the proof of Theorem 19 with the additional corrective term.

We obtain as a consequence the following blow-up results, that is a combination of Lemma 29
and Propositions 30, 31.

Lemma 64. Let u ∈ QM (D1) such that 0 ∈ ∂Spt(u), then

• Any converging subsequence of ur as r → 0 converges to a 2-homogeneous minimizer of
E(·;D1).

• If lim infr→0
|Spt(u)∩Dr|

|Dr| < 1, then there exists some sequence rn → 0 such that urn converges
to an element of M π

hom ⊔ M t1
hom.

• If lim supr→0 ∥ur∥H1(D1) = +∞ and 0 ∈ ∂Spt(u), then there exists a sequence rn → 0 such
that urn

∥urn ∥H1(D1)
converges in H2

loc(R2) to a non-zero 2-homogeneous biharmonic function.

Proof. • This is a direct consequence of Lemma 62 and Theorem 63.

• With the same computation as for Lemma 33, we have for any u ∈ QM (D1), 0 < s < r < 1:

N(u, s) ≥
(
s

r

)κ

N(u, r) −
1 −

(
s
r

)κ

κ

(
W (u, 1) + λ0∥u∥H1(D1)

)
(6.10)

which implies by contradiction that for any sequence rn → 0 such that lim supn |Spt(urn) ∩
D1| < π, we have

lim sup
n→+∞

∥urn∥H1(D1) < ∞.

Indeed, otherwise urn/∥urn∥H1(D1) would converge to a non-zero biharmonic function v, such
that {v = 0} has a positive measure, which is a contradiction.
Since urn is bounded in H1(D1) and belongs to QM rn(D1) (by Lemma 57), then up to
extracting some subsequence we may suppose (by Lemma 62) that urn converges to some
v ∈ QM 0(D1) = M (D1), which is non-zero by the nondegeneracy Lemma 60.
Since W (u, r) converges to a constant as r → 0, then W (v, r) is constant with respect to r,
so v is a 2-homogeneous element of M (D1). Since the density of its support is less than 1,
necessarily

v ∈ M π
hom ⊔ M t1

hom.

• This follows the same proof as Lemma 31. Let λn = ∥urn∥−1
H1(D1), the renormalized func-

tion λnurn belongs to M λn

λ2
n

(D1): by Lemma 62 we may suppose (after extraction) that
∥urn∥−1

H1(D1)urn converges to v ∈ QM 0
0(D1), meaning some biharmonic function v. Function

v is non-zero by the growth estimate (6.10) and we conclude as in Proposition 31.
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6.1.6 Epiperimetry

The central cornerstone of the epiperimetry formula is the estimate of Corollary 50: we do not
need to re-prove this result, indeed we can just use the competitor of 50 in the minimality
characterization of Lemma 61.

Theorem 65. Let Θ ∈ {π, t1, 2π}. There exist constants c1, C1, λ1 > 0, η ∈ (0, 1) such that
the following holds: let u ∈ QM (D1) such that 0 ∈ ∂Spt(u), u ∈ M Θ

hom if Θ ∈ {π, t1} (resp.
u ∈ Span(x2 + y2, x2 − y2, xy) if Θ = 2π), r ∈

(
0, 1

2

)
, assume

∥ur − u∥H1(D1\De−1 ) ≤ c1∥u∥H1(D1), W (u, 0) ≥ Θ
2 .

Then, denoting
W quasi(u, r) := W (u, r) + λ1∥u∥H1(D1)

√
r, (6.11)

we have
W quasi(u, e−1r) − Θ

2 ≤ (1 − η)
(
W quasi(u, r) − Θ

2

)
and

∥ur − ue−1r∥H1(D1\De−1 ) ≤ C1

√
W quasi(u, r) − Θ

2 .

Proof. We let v(t, θ) = e2tu(e−t+iθ) and proceed as in the proof of Theorem 18. We fix τ =
− log(r). When the ratio

∥ur − u∥H1(D1\De−1 )

∥u∥H1(D1)

is sufficiently small, we obtain (by the same argument as in the proof of Theorem 37) that
(v(t, ·), ∂tv(t, ·)) verifies the support hypothesis of 50 for almost every t ∈

[
τ + 1

4 , τ + 3
4

]
.

We let ϕ ∈ C∞
c (R, [0, 1]) such that

{ϕ ̸= 0} ⊂
[
τ + 1

4 , τ + 3
4

]
, |ϕ′| ≲ 1, ϕ = 1 in

[
τ + 1

3 , τ + 2
3

]
.

Then following the computations of the proof of Theorem 37, we have

W(v, τ) − W(v, τ + 1) ≥
ˆ τ+1

τ

ϕ(t)2
(
∥∂t,tv∥2 + 2∥∂t,θv∥2 + 2G(v(t, ·), t) − 2G(v, t)

)
dt

− 4
ˆ τ+1

τ

ϕ(t) (ϕ(t) + ϕ′(t)) ⟨∂tv, ∂t,tv⟩dt.

By the minimality condition of Lemma 61, applied to the competitor built in Corollary 50 with
the initial conditions (v(t, ·), ∂tv(t, ·)), we have for every t ∈

[
τ + 1

4 , τ + 3
4

]
:

G(v(t, ·), t) − G(v, t) ≥ ϵ

(
W(v, t) − Θ

2

)
+ 2∥∂tv(t, ·)∥2 − 4ϵ |⟨∂tv, ∂t,tv⟩| − 2C∥∂t,θv(t, ·)∥2

L2(S1)

−Qe− τ
2 ∥u∥H1(D1)

for some constant C > 0. Here G is as defined in (3.2). Injecting this in the previous estimate, and
rearranging the terms as in the proof of Theorem 37, we obtain for some constants d,D,C ′ > 0:

W(v, τ) − W(v, τ + 1) ≥ d

((
W(v, τ + 1) − Θ

2

)
+ ∥∂tv∥2

H1(C0\C1)

)
− 4D

ˆ 1

0

(
∥∂t,θv∥2 + ∥∂t,tv∥2

)
dt

− C ′e− τ
2 ∥u∥H1(D1).
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By the monotonicity formula of Theorem 63 (we denote λ0 the constant from this result), we have

4
ˆ 1

0

(
∥∂t,θv∥2 + ∥∂t,tv∥2

)
dt ≥ W(v, τ) − W(v, τ + 1) −

(
1 − e− 1

2
)
λ0∥u∥H1(D1)e

− τ
2 .

And so we obtain that for some constant C ′′:

W(v, τ + 1) ≤ W(v, τ) − d

D + 1 − d

(
W(u, τ) − Θ

2 + ∥∂tv∥2
H1(Cτ \Cτ+1)

)
+ C ′′∥u∥H1(D1)e

− τ
2 .

Going back to the disk coordinate, and handling the estimate of ∥ue−1r − ur∥H1(D1\De−1 ) as in the
proof of Lemma 51, we obtain the result.

6.1.7 Uniqueness and speed of convergence of blow-ups

The adaptation of Proposition 52 to the quasiminimal setting is as follows.

Proposition 66. Let Θ ∈ {π, t1, 2π}, M ≥ 1. There exist constants c2, C2 > 0, γ ∈ (0, 1) such
that the following holds: let u ∈ QM (D1) such that 0 ∈ ∂Spt(u), u ∈ M Θ

hom if Θ ∈ {π, t1} (resp.
u ∈ Span(x2 + y2, x2 − y2, xy) if Θ = 2π), assume

W (u, 0) ≥ Θ
2 , ∥u− u∥H1(D1) ≤ c2∥u∥H1(D1).

Then there exists û ∈ M Θ
hom such that for any r ∈ (0, 1]:

∥ur − û∥H1(D1) ≤ C2 min
(
r,

∥u− u∥H1(D1)

∥u∥H1(D1)

)γ

∥u∥H1(D1),

and
∥u− û∥H1(D1) ≤ C2∥u− u∥γ

H1(D1)∥u∥1−γ
H1(D1).

Proof. The proof is the same as the proof of Proposition 52, by replacing W with W quasi, and
the constant c1, C1 from Theorem 36 by c1, C1 from Theorem 65.

The ϵ-regularity results near flat and angular boundary point also follow.

Proposition 67. There exist c3 > 0, α, κ ∈ (0, 1), with the following property: for any u ∈
M (D1), u ∈ M π

hom ∪ M t1
hom such that

∥u− u∥H1(D1) ≤ c3,

then

• If u = uI, then there exists a function h ∈ C1,α
([

−1
2 ,

1
2

]
,R
)

such that ∥h∥L∞([− 1
2 , 1

2 ]) ≤
6
√

∥u− uI∥H1(D1) and
∥h∥C1,α([− 1

2 , 1
2 ]) ≲ ∥u− uI∥κ

H1(D1)

and {
(x, y) ∈ D 3

4
: |x| ≤ 1

2 , u(x, y) ̸= 0
}

=
{

(x, y) ∈ D 3
4

: |x| ≤ 1
2 , y > h(x)

}
.

Moreover, ∆u ∈ C0,α
loc

(
D 1

2
∩ Spt(u)

)
and ∆u = 1 in D 1

2
∩ ∂Spt(u).
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• If u = uII and W (u, 0) ≥ t1
2 , then there exists a diffeomorphism Φ ∈ C1,γ

(
D 1

2
,D 1

2

)
such that

Φ(0) = 0, DΦ(0) = I2, ∥Φ − id∥
C1,ν

(
D 1

2

) ≤ C∥u− uII∥µ
H1(D1)

and
Spt(u) ∩ D1/2 = Φ

(
Spt(uII) ∩ D1/2

)
.

In the first case, the only difference with Proposition 53 is that ∆u is only proved to be C0,α

(instead of C1,α) up to the boundary. This is because we do not know that ∆u is harmonic in
Spt(u) anymore.

Proof. We only detail the part that differs (in the proof of Proposition 53) in the quasi-minimal
setting: the regularity of ∆u up to the boundary. Indeed, starting over from equation (5.8), we
have

|∆u(q) − 1| = |∆(up,r − up,0) (q̃)| .
Since up,r ∈ QM (D1) and Dq̃, 1

2
⊂ Spt(up,r), in particular we have for every φ ∈ C∞

c (Dq̃, 1
2
,R),

t ∈ R, ˆ
D

q̃, 1
2

|∆up,r|2 ≤
ˆ
D

q̃, 1
2

|∆(up,r + tφ)|2 + |t|∥φ∥L2(D
q̃, 1

2
).

This implies that for every such φ, we have,∣∣∣∣∣∣∣
ˆ
D

q̃, 1
2

∆up,r∆φ

∣∣∣∣∣∣∣ ≤ 1
2∥φ∥L2(D

q̃, 1
2

).

Since ∆2up,0 = 0 in Dq̃, 1
2
, we obtain

∥∆2(up,r − up,0)∥L2(D
q̃, 1

2
) ≤ 1

2 .

We remind that ∥up,r − up,0∥H1(D1) ≲ ϵ
γ
12 , so up,r − up,0 is bounded in H4(Dq̃, 1

2
). By Gagliardo-

Nirenberg inequality (interpolating W 2,∞(Dq̃, 1
2
) between H1(Dq̃, 1

2
) and H4(Dq̃, 1

2
)) we obtain

|∆u(q) − 1| = |∆(up,r − up,0) (q̃)|

≲ ∥up,r − up,0∥
1
3
H1(D

q̃, 1
2

)∥up,r − up,0∥
2
3
H4(D

q̃, 1
2

)

≲ r
γ
36 .

This concludes the proof of the Hölder regularity of ∆u up to the regular boundary.

6.1.8 Boundary decomposition for quasiminimizers

Proof of Theorem 8. The proof is identical to the proof of Theorem 3: we define Ru,Au,Nu,Ju, Eu

the same way. Proposition 67 implies the claim on Ru,Au. The claim on Ju is a consequence
of Proposition 66. Finally, the description of Eu is a consequence of Lemma 64 and Proposition
66.
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6.2 Application to buckling eigenvalue
We remind that the definition of Λ1(Ω), for an open set Ω with finite area, is given in (1.4). We
write uΩ an (arbitrary) choice of non-zero eigenfunction on Ω associated to Λ1(Ω). Weinberger
and Willms’s argument may be decomposed in the following steps (we remind a detailed proof
may be found in [17, Prop 4.4] and [2]).

a) If Ω ⊂ R2 has finite measure, C2 boundary, and is a critical point of the functional |Ω|Λ1(Ω)
with respect to shape derivatives, then |∆uΩ| must be constant in ∂Ω.

b) If Ω ⊂ R2 is a bounded simply connected set and |∆uΩ| is constant on ∂Ω, then ∆uΩ +
Λ1(Ω)uΩ is constant in Ω.

c) If Ω ⊂ R2 is open with finite area such that ∆uΩ + Λ1(Ω)uΩ is constant in Ω, then Λ1(Ω) ≥
Λ1(Ω∗), where Ω∗ is a disk with the same area as Ω.

These three steps imply that if Ω is a minimizer of |Ω|Λ1(Ω) that is bounded, simply connected,
with C2 boundary, then Ω must be the disk.

As a direct consequence of Theorem 8, we may lower the initial hypothesis to obtain this in
two ways. We first prove that the first eigenfunction of a minimizers of the buckling eigenvalue
problem (1.4) under area constraint belong to the class of quasi-minimizers given in Definition
56.

We remind that since Λ1(tΩ) = t−2Λ1(Ω), then up to a dilation, minimizing Λ1(Ω) under an
area constraint on Ω is equivalent to minimizing either |Ω|Λ1(Ω) or Λ1(Ω) + |Ω| among every set.

Lemma 68. Let u ∈ H2(R2) be a minimizer of E(·;R2) under the constraint
´
R2 |∇u|2 = 1. Then

there exists r > 0 such that for any p ∈ R2, we have ur ∈ QM (Dp,1).

Similar computation may be found in [33] (as well as the existence of such a minimizer,
obtained via a concentration-compactness procedure).

Proof. The function u is a minimizer of the functional

v ∈ H2(R2) \ {0} 7→
´
R2 |∆v|2´
R2 |∇v|2

+ |Spt(v)|.

We write Λ :=
´
R2 |∆u|2. Let v ∈ H2(R2) such that {u ̸= v} ⊂ Dp,r for some disk Dp,r, suppose

without loss of generality that
E(v;Dp,r) ≤ E(u;Dp,r),

otherwise the quasiminimality condition (6.1) is directly verified. Then∣∣∣∣∣1 −
ˆ
R2

|∇v|2
∣∣∣∣∣ =

∣∣∣∣∣
ˆ
Dp,r

|∇u|2 − |∇v|2
∣∣∣∣∣ =

∣∣∣∣∣
ˆ
Dp,r

(u− v)∆(u+ v)
∣∣∣∣∣

≤ ∥u− v∥L2(Dp,r)∥∆(u+ v)∥L2(Dp,r)

≲ r2∥∆(u− v)∥L2(Dp,r)∥∆(u+ v)∥L2(Dp,r) by Poincaré inequality
≲ r2

(
∥∆u∥2

L2(Dp,r) + ∥∆v∥2
L2(Dp,r)

)
≲ r2

(
∥∆u∥2

L2(R2) + |Spt(u)|
)

since E(v;Dp,r) ≤ E(u;Dp,r).

So for a small enough r > 0, we have
´
R2 |∇v|2 ̸= 0. Then by the minimality of u we obtain

Λ + |Spt(u)| ≤
Λ +

´
Dp,r

(|∆v|2 − |∆u|2)
1 +

´
Dp,r

(|∇v|2 − |∇u|2) + |Spt(v)|.
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This simplifies to

E(u;Dp,r) − E(v;Dp,r) ≤ (Λ + |Spt(u)| − |Spt(v)|)
ˆ
Dp,r

(
|∇u|2 − |∇v|2

)
.

We bound the last term:ˆ
Dp,r

(
|∇u|2 − |∇v|2

)
=
ˆ
Dp,r

∆(v + u)(v − u)

≲ ∥∆(v + u)∥L2(Dp,r)∥v − u∥L2(Dp,r)

≲
(
∥∆u∥L2(R2) + |Spt(u)| 1

2
)

∥v − u∥L2(Dp,r) since E(v;Dp,r) ≤ E(u;Dp,r).

And Λ + |Spt(u)| − |Spt(v)| ≤ Λ + πr2. This proves the result, for some sufficiently small r.

Corollary 69. Let Ω ⊂ R2 be a minimizer of Ω 7→ Λ1(Ω) among open sets of area 1. Let uΩ be a
buckling eigenfunction associated to Λ1(Ω). Then Ω is bounded and uΩ satisfies the conclusion of
Theorem 8; in particular for any p ∈ ∂Ω such that lim infr→0

|Ω∩Dp,r|
|Dp,r| < 1, then there exists r > 0

such that Dp,r ∩ Ω is either a C1,α curve, or two C1,α curves meeting with an angle t1.

Proof. Up to a dilation, we assume that Ω is a minimizer (among open sets of finite area) of
Ω 7→ Λ1(Ω) + |Ω|. We assume uΩ is normalized by

´
Ω |∇uΩ|2 = 1. This means that uΩ is a

minimizer of E(·;R2) under the constraint
´
R2 |∇uΩ|2 = 1. By Lemma 68, there exists r > 0 such

that for every p ∈ R2 we have
(uΩ)p,r ∈ QM (D1).

By the non-degeneracy Lemma 60, there exists c > 0 such that for any p ∈ R2, if u(p) ̸= 0 then
ˆ
Dp,r

(
|∇uΩ|2 + u2

Ω

)
≥ c.

Consider a sequence of disjoint disks (Dpi,r)i=1,...,N (for some N ∈ N∗) such that uΩ(pi) ̸= 0 for
every i, then applying the above inequality to each disk we obtain

ˆ
R2

(
|∇uΩ|2 + |uΩ|2

)
≥ Nc.

Thus the number N of such disjoint disks is bounded from above, meaning that Ω must be a
bounded set.

We now apply Theorem 8 to (uΩ)r, which gives the rest of the conclusions. Note that ∂Ω is,
a priori, only a subset of ∂Spt(uΩ).

Corollary 70. Let Ω ⊂ R2 be a minimizer of Ω 7→ Λ1(Ω) among open sets of area 1. Let uΩ be
a buckling eigenfunction associated to Λ1(Ω) and assume either that

Ω is simply connected and for all p ∈ ∂Ω, lim inf
r→0

|Dp,r ∩ Ω|
|Dp,r|

<
t1
2π (≈ 0.715), (6.12)

or

∆uΩ + Λ1(Ω)uΩ ≥ 0 in Ω and for all p ∈ ∂Ω, we have lim inf
r→0

|Dp,r ∩ Ω|
|Dp,r|

< 1. (6.13)

Then Ω is a disk.
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Proof. We first apply corollary 69: Ω is bounded, and uΩ verifies the conclusion of Theorem 8.
If the first hypothesis (6.12) is verified, then we know that every point of ∂Ω belongs to RuΩ .

Since Ω is bounded and simply connected, then RuΩ is connected. ∆uΩ is continuous up to the
boundary with values in {−1,+1}, so by the connectedness of the boundary it is constant. By
maximum principle, the (harmonic) function ∆uΩ + Λ1(Ω)uΩ is constant in Ω: the step c) of
Weinberger and Willms’s argument applies and Ω must be a disk.

If the second hypothesis (6.13) is verified, then every point of ∂Ω belongs to Ru ⊔Au. Assume
there exists some p ∈ Au, then ∆uΩ + Λ1(Ω)uΩ must change sign in any neighbourhood of p.
Indeed, the blow-up sequence (uΩ)p,r converges in H2(D1) to a homogeneous solution of type II,
denoted û, and ∆û = limr→0 (∆up,r + r2Λup,r) changes sign. This contradicts our hypothesis, so
Au must be empty and every point of ∂Ω is regular.

Thus ∂Ω ⊂ RuΩ , ∆uΩ|Ω extends continuously to ∂Ω with value ±1. Since uΩ = 0 on ∂Ω and
∆uΩ + Λ1(Ω)uΩ ≥ 0, then ∆uΩ + Λ1(Ω)uΩ = 1 in ∂Ω and harmonic, so it is constant in Ω. We
conclude with step c) of Weinberger and Willms’s argument described above: Ω is necessarily a
disk.

There are several obstacles to obtain a general proof of the optimality of the disk from this.
First is proving the hypothesis (6.12) would hold for a general minimizer ; either the simple con-
nectedness should be attained as a consequence of the optimality, from some unknown geometric
argument, or it could be considered as a constraint (in an attempt to prove the optimality of the
disk at least among simply connected sets). If it is considered as a constraint, then our main
Theorem 8 does not apply since we frequently use non-simply connected competitors (for instance
as early as in the proof of Lemma 11 and Lemma 14).

The density assumption is not obvious either ; although relying on heuristics in some parts,
the optimal set for the drag of Richardson in [31] shows that angular points may occur in optimal
shapes. Even assuming that we work among simply connected shapes, some geometric argument
specific to the buckling problem would be needed to prove that angular points do not occur for
minimizers. The same can be said for the assumption ∆uΩ + Λ1(Ω)uΩ ≥ 0 in (6.13).

Finally, even assuming that ∂Ω is connected, one would need to understand the behaviour of
∆uΩ|∂Ω near junction point (here ∆uΩ|∂Ω is expected to not change sign) and explosion points
(which are expected to not exist).
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