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Abstract. This note investigates, through direct computational methods, the

existence of infinitely many isomorphism classes of stable vector bundles which

become trivial after being pulled back by the Frobenius morphism. We ob-

tain examples, in characteristic two, where infinitely many such isomorphism

classes exist. In characteristic three, however, the computations show that the

aforementioned sets are finite.

1. Introduction

This notes endeavours to investigate through explicit examples a problem in

positive characteristic algebraic Geometry first raised by Nori [N82, Conjecture, p.

89] and studied by [MS02], [MS08] and [P07]. We fix an algebraically closed field

k of characteristic p > 0, and give ourselves a smooth, projective, and connected

curve C over k. Letting Fr : C → C stand for the absolute Frobenius morphism,

we define

(1)

S(C, r, t) =

{

isomorphism classes of stable vector bundles of rank r over C

whose pull–back by the t–th power of Fr is isomorphic to O
r
C

}

.

As pointed out by [MS08], understanding #S(C, r, t) is the key to “base–change”

properties for the fundamental group scheme [N82]. More precisely, Mehta and

Subramanian introduced the local fundamental group scheme [MS08, p. 207]; this

is a quotient of Nori’s fundamental group scheme which permits us to capture

the failure of “good base–change”. In [MS08, Theorem, p.208] it is proved that

if S(C, r, t) is finite for each (r, t), then the local fundamental group scheme of

C⊗k k′, for any algebraically closed extension k′/k, is obtained from that of C, and

conversely. The optimistic view, of course, says that #S(C, r, t) < ∞ for all (r, t).

However, building on a precise analysis of the moduli space of bundles of rank two,

Pauly [P07] showed that this is unrealistic. He constructed, in characteristic two,

a positive dimensional family of isomorphism classes of stable bundles of rank two

over a curve C of genus two, whose members are all trivial when pulled back by the
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fourth power of the Frobenius morphism. More succinctly, Pauly gave an example

in which S(C, 2, 4) is infinite.

In what follows, we concentrate on direct computations of #S(C, 2, 1). Our work

produces curves C over k = F2 with #S(C, 2, 1) = ∞, and curves C, now over F3,

where #S(C, 2, 1) < ∞. See sections 6 and 7. Of course, the curves over F2 give

counterexamples to Nori’s conjecture [N82, Conjecture p.89], [MS02, Conjecture(ii),

p.144], while those over F3 do not; we have included the latter to show the limits

of our methods and hence avoid false hopes.

The method we have chosen has two pillars. The first and most obvious is to

use Cartier’s theorem [Ka70, Theorem 5.1] on the p–curvature to pass from vector

bundles trivialized by the Frobenius morphism to vector bundles with connections.

The second, is E. Letzter’s procedure [L08] to explicitly detect the occurrence of an

infinity of isomorphism classes of semisimple representations of a certain algebra.

The algebras intervening, on the other hand, come from the explicit expression for

the p–curvature of a connection.

Conventions and notations. Throughout this note, C will stand for a a smooth,

connected and projective curve over an algebraically closed field k of characteristic

p > 0. Its genus is denoted by g, its function field by K. The absolute Frobenius

morphisms of C is denoted by Fr : C → C. By a vector bundle, we understand

a locally trivial coherent sheaf of finite rank. A trivial vector bundle is a vector

bundle which is isomorphic to some On.

The free associative (and unital) algebra on m generators X1, . . . , Xm over k

will be denoted by k{X1, . . . , Xm}. An associative algebra on m generators will

be a quotient of k{X1, . . . , Xm} by some two sided ideal. If Λ is an associative

k–algebra, Rep(Λ) will stand for the category of representations of Λ on finite

dimensional vector spaces.

2. Frobenius trivial vector bundles

For the sake of discussion, we say that a vector bundle E over C is Frobenius–

trivial if the pull–back Fr∗E is a trivial vector bundle. (The terminology varies in

the literature, compare [MS08, p. 207] and [P07, p. 2708].) The set of all Frobenius

trivial vector bundles over C will be denoted by FT. The reader can easily verify

that each vector bundle in FT is semi–stable of degree zero. (For standard material

on stability and semi–stability, see [S82].) It is folklore that FT, with the obvious

kernels and cokernels, is an abelian category; there is a hint of this statement in

[MS08, Remark 2, p.208], and a proof can be extracted from [BdS10, Corollary

2.3(iii), p.4]. The latter result can also be used to prove

Lemma 1. An object E of the abelian category FT is simple if and only if the

vector bundle E is stable.
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Proof. The “if” part is straightforward. We prove the “only if” clause. Assume

that E is a simple object of FT of rank r. Let ϕ : E → V be a an epimorphism of

coherent sheaves, where V is a vector bundle of degree zero and rank d ≤ r. We want

to prove that d = r to guarantee stability [S82, pp. 14–15]. (Note that E is already

semi–stable.) In what follows we show that if f : C′ → C is a finite morphism

from a projective, smooth and irreducible k–scheme such that f∗E ∼= Or
C′ , then

f∗V ∼= Od
C′ . This will imply that V is an object of FT. The simplicity of E as an

object of FT will then force the equality d = r.

Let G stand for the Grassmann variety Grass(r, d) and U for the universal vector

bundle on it. See [N05, 5.1.5(2), p.110] for details and notation. The epimorphism

f∗(ϕ) : f∗E → f∗V gives rise to a morphism

γ : C′ −→ G,

such that γ∗U ∼= f∗V . Now detU is very ample on G [N05, 5.1.6, p.112ff], while

deg f∗V = 0. Therefore, γ has to be constant, from which we conclude that f∗V ∼=

Od
C′ , i.e. V is an object of FT. �

3. Connections on O
n and matrices

Let CT denote the category whose objects are couples (E,∇) consisting of a

trivial vector bundle E together with a connection ∇ : E → E ⊗O Ω1, and whose

arrows are just horizontal morphisms. (More details on the terminology can be

found in [Ka70, §1].) This obviously is an abelian category. We let CT
0 denote the

full subcategory of CT whose objects have trivial p–curvature (for the definition,

see [Ka70, §5]). Cartier’s theorem [Ka70, Theorem 5.1] has as consequence that for

each (E,∇) ∈ CT
0, the sheaf of O–modules Fr∗(E

∇) satisfies Fr∗(Fr∗(E
∇)) ≃ E.

Together with the fact that FT is an abelian category, we obtain that CT
0 is in fact

a sub–abelian category of CT. This remark permits us to revisit Cartier’s theorem

and arrive at:

Corollary 2. The construction of Cartier [Ka70, Theorem 5.1] defines an equiva-

lence of abelian categories FT
∼
→ CT

0.

We fix a positive integer n. Let d : On → On ⊗Ω1
C be the obvious connection on

the trivial vector bundle On. If ∇ is any other connection, the difference ∇ − d :

On → On ⊗ Ω1 is O–linear. Conversely, for any A ∈ HomO

(

On, On ⊗ Ω1
)

, d + A

is a connection. We can therefore identify the space of all connections on On with

the vector space HomO

(

On, On ⊗ Ω1
)

. Letting Mn stand for the vector space of

all n × n matrices, from the previous considerations it ensues that the set of all

connections on O
n is, non–canonically, in bijection with M×g

n . Explicitly, we fix a
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basis θ0, . . . , θg−1 of H0(Ω1
C) to obtain a bijection

M×g
n → {connections on O

n} ,

A = (A0, . . . , Ag−1) 7→ dA = d +

g−1
∑

0

Aκ ⊗ θκ.

We now take into consideration the horizontal homomorphisms. Let m be an-

other positive integer and let γ : km → kn be a linear map. It is straightforward to

verify that γ : Om → On induces a horizontal homomorphism (Om, dA) → (On, dB)

if and only if γAκ = Bκγ for all κ. In other words, the map A 7→ dA defines an

equivalence from the category of representations of the free associative algebra on

g generators Rep(k{X0, . . . , Xg−1}) to CT.

4. On the p–curvature

Let A = (A0, . . . , Ag−1) ∈ M×g
n . We now consider the p–curvature [Ka70, §5] of

a connection dA on On. This is a morphism of sheaves of abelian groups

ΨA : Der(C) → EndO(On)

which satisfies

(2) ΨA(a · ∂) = ap · Ψ(∂)

for sections a of O and ∂ of Der(C) over any given open of C. In other words, ΨA

is an O–linear morphism from Der(C) to Fr∗EndO(On). Let U be a dense open

subset of C where Ω1
C is freely generated by dx, x ∈ O(U). If d

dx
stands for the

canonical section of Der(C) over U obtained from dx, then

ΨA

(

d

dx

)

=

(

d

dx
+

g−1
∑

κ=0

Aκ ·

〈

θκ|U ,
d

dx

〉

)p

=

(

d

dx
+ T

)p

,

(3)

where T :=
∑g−1

κ=0
Aκ

〈

θκ|U , d
dx

〉

(this is an endomorphism of On
U ) and 〈•, •〉 : Ω1

C ×

Der(C) → O is the obvious pairing. Formula (2) together with the identity d
dx

◦

M − M ◦ d
dx

= dM
dx

allow us to obtain the following expressions for ΨA

(

d
dx

)

(for

more of these formulas, see [O08, 283ff])

p = 2, T 2 +
dT

dx
(4)

p = 3, T 3 +
dT

dx
· T + 2T ·

dT

dx
+

d2T

dx2
.(5)

.

The vanishing of ΨA

(

d
dx

)

as an endomorphism of On|U is equivalent with the

vanishing of ΨA; this follows from formula (2) and the fact that Fr∗EndO(On)
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is a vector bundle, since Fr∗O is likewise. A convenient choice of U will then

give us relations B0, · · · , Bt which the matrices Aκ have to fulfil in order to have

ΨA

(

d
dx

)

= 0. These relations have coefficients in k, so that we obtain a certain

associative algebra over k whose representation theory is closely related to FT. To

render this algebra conspicuous is the task of the examples.

Proposition 3. There exists an associative algebra ΛC over k on g generators and

an equivalence of abelian categories Rep(ΛC)
∼
→ FT. In particular, a Frobenius–

trivial vector bundle is stable (respectively direct sum of stable bundles) if and only

if the representation of ΛC corresponding to it is simple (respectively, semi–simple).

�

Since there are only finitely many isomorphism classes of line bundles over C

whose Frobenius pull–back is trivial, Proposition 3 has the following consequence.

Corollary 4. The set S(C, 2, 1) defined in eq. (1) is infinite if and only if there

are infinitely many isomorphism classes of semi–simple representations of rank two

of ΛC .

5. Letzter’s algorithm

Building on work of Artin, Procesi, Shirshov, and Belov, Letzter constructs in

[L08] an algorithm which permits one to determine if for a given finitely generated

associative k–algebra the number of semi–simple representations up to isomorphism

is finite or not.

We recall the constructions [L08, §3]. Let Λ = k{X1, . . . , Xs}/(B1, . . . , Bt) be a

finitely generated associative k–algebra. Let n be a fixed positive integer and u a

variable. Let R be the algebra generated over the field k(u) by the variables zij(ℓ),

where 1 ≤ i, j ≤ n and 1 ≤ ℓ ≤ s. We let z(ℓ) stand for the matrix whose (i, j)th

entry is zij(ℓ). We then construct the following sets

RelEntries := entries of the matrices B1(z(1), . . . , z(s)), . . . , Bt(z(1), . . . , z(s)),

RelIdeal := ideal of R generated by the set RelEntries,

Monomialsn := set of products having the form z(i1) · · · z(iq), with q ≤ n,

CharCoeffn := characteristic invariants of the matrices in Monomialsn.

If, for some χ ∈ CharCoeffn,

1 6∈ (u − χ,RelIdeal),

it follows that χ is not algebraic modulo RelIdeal [L08, 2.12, p.3932]. In this

case, the set of isomorphism classes of semisimple representations over k which are

of rank n is infinite.
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6. Examples in characteristic 2

We assume that k = F2 and that K = k(x, y), where x is transcendental and

y2 + y = f ∈ k(x). In other words, K/k(x) is an Artin–Schreier extension. The

place of k(x) corresponding to 0 (resp. ∞) will be denoted by P0 (resp. P∞) in all

examples below. The divisor of a place P will be denoted by [P ].

Example 5. We take f ∈ k[x] of degree five. By [S09, Proposition 3.7.8, p.127], we

know that g = 2, that the place P∞ of k(x) is below a single place Q∞ of K and

that the ramification index is 2. Moreover, from [S09, Proposition 3.7.8(c), p.127]

and [S09, Corollary 3.4.7, p.94], we obtain that the divisor of poles of x in K is

2 · [Q∞], while the divisor of dx in K is 2 · (−2) · [Q∞] + 6 · [Q∞] = 2 · [Q∞]. Hence,

dx, x ·dx is a basis for the regular differentials. Then, using the notation introduced

in section 3, we have T = A0 + A1 · x, and

T 2 +
dT

dx
= A2

0 + (A0A1 + A1A0) · x + A2

1 · x
2 + A1

= B0 + B1 · x + B2 · x
2.

Therefore, the category of connections on trivial vector bundles with vanishing p–

curvature over C is equivalent to the category of representations of the free algebra

ΛC on two generators subjected to the relations B0 = B1 = B2 = 0. Using §5

and Macaulay 2 [M2], we conclude that there are only finitely many isomorphism

classes of semisimple representations of ΛC of rank two. (The command lines we

have written to arrive at this conclusion are similar to those in Example 6.) From

Corollary 4, #S(C, 2, 1) < ∞.

Example 6. Let f = x3 +x−3. From [S09, Proposition 3.7.8, p.127], the only places

of k(x) which ramify in K are P0 and P∞. In both cases, the ramification index

is 2, the genus of K is 1

2
· (−2 + 8) = 3. Let Q0, respectively Q∞, denote the only

place of K above P0, respectively P∞. The divisor of x in K is 2 · ([Q0] − [Q∞]).

The divisors of dx in K is, according to [S09, Proposition 3.7.8, p.127] and [S09,

Corollary 3.4.7, p.94], −2 · 2 · [Q∞] + 4 · [Q0] + 4 · [Q∞] = 4 · [Q0]. Hence the

differentials dx, x−1 · dx and x−2 · dx form a basis of H0(Ω1
C). Keeping with the

notation introduced in section 3, we have T = A0 + A1 · x
−1 + A2 · x

−2. Therefore,

ΨA

(

d

dx

)

= T 2 +
dT

dx

= A2

0 + (A0A1 + A1A0) · x
−1 + (A0A2 + A2

1 + A2A0) · x
−2 +

+(A1A2 + A2A1) · x
−3 + A2

2 · x
−4 + A1 · x

−2

:= B0 + B1 · x
−1 + B2 · x

−2 + B3 · x
−3 + B4 · x

−4.

Thus, the category of connections with vanishing p–curvature is equivalent to the

category of representations of the free algebra on three generators subjected to the
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relations B0 = · · · = B4 = 0. We use Macaulay 2 [M2] to implement Letzter’s

algorithm. Define

R=frac(ZZ/2[u])[a_1..a_4,b_1..b_4,c_1..c_4];

and the matrices

A_0=matrix{{a_1,a_2},{a_3,a_4}};

A_1=matrix{{b_1,b_2},{b_3,b_4}};

A_2=matrix{{c_1,c_2},{c_3,c_4}};

The relations are therefore

B_0=A_0^2;

B_1=A_0*A_1+A_1*A_0;

B_2=A_0*A_2+A_2*A_0+A_1^2+A_1;

B_3=A_1*A_2+A_2*A_1;

B_4=A_2^2;

so that the ideal of relations is

RelIdeal=

minors(1,B_0)+minors(1,B_1)+minors(1,B_2)+minors(1,B_3)+minors(1,B_4);

Then, a direct calculation shows that the 1 6∈ (u − χ,RelIdeal) if and only if

χ = trace(A0A2), trace(A2A0), det(A1), det(A2
1). It follows that there are infinitely

many isomorphism classes of semisimple representations of dimension 2, so, by

Corollary 4, #S(C, 2, 1) = ∞.

Example 7. If we take f = x−5 +x3, then [S09, Proposition 3.7.8, p. 127] and [S09,

Corollary 3.4.7, p. 94] show that C is of genus 4, and dx, x−1 · dx, x−2 · dx, x−3 · dx

is a basis of H0(Ω1). A computation using Macaulay 2 similar to that in Example

6 lets us conclude that there are infinitely many isomorphism classes of semisimple

representations of rank 2 of ΛC . Hence #S(C, 2, 1) = ∞.

7. The case of characteristic 3

We assume that k = F3 and that K = k(x, y), where x is transcendental.

7.1. Hyperelliptic curves. Let y2 = f , where f ∈ k[x] is square free. Then,

according to [S09, Example 3.7.6, p.125]

g =

{

(deg(f) − 1)/2, if deg(f) is odd

(deg(f) − 2)/2, if deg(f) is even.

Moreover, applying [S09, Proposition 3.7.3, p.122] and [S09, Corollary 3.4.7, p.94],

the rational differential forms y−1 · dx, xy−1 · dx, . . . , xg−1y−1 · dx are regular and

form a basis of H0(Ω1
C). Also, we have

dy

dx
=

f ′

2y
,

d

dx
(y−1) = −

f ′

2y3
,

d2

dx2
(y−1) = −

f ′′

2y3
.
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Hence, if we write

T = T0 · y
−1,

= (A0 + A1 · x + . . .) · y−1,

it follows that dT
dx

= T1 · y
−3 and d2T

dx2 = T2 · y
−3, where

T1 =

(

f ′ · T0 + f ·
dT0

dx

)

,

T2 =
dT1

dx
.

Consequently,

ΨA

(

d

dx

)

= y−3 ·
(

T 3

0 + T2 + [T1, T0] · y
−1
)

.

This means that ΛC is the quotient of k{A0, . . . , Ag−1} by the relations T 3
0 + T2 =

[T1, T0] = 0.

Example 8. Let f be an irreducible monic polynomial of degree 5 over F3. A list

of such polynomials can be found in [LN86, p.380]. For each one of these, the

associated algebra ΛC has only finitely many isomorphism classes of semisimple

representations of rank 2. The commands for Macaulay 2 [M2] we have used to

arrive at the ideal of relations RelIdeal in the case f = x5 + 2x4 + 2x3 + x2 + 2

are tailored for generalisation. They are as follows.

S=frac(ZZ/3[u])[a_1..a_4,b_1..b_4];

R=S[x];

f=(matrix{{1,2,2,1,0,2}}*matrix{{x^5},{x^4},{x^3},{x^2},{x^1},{x^0}})_(0,0);

f’=diff(x,f);

A_0=sub(matrix{{a_1,a_2},{a_3,a_4}},R);

A_1=sub(matrix{{b_1,b_2},{b_3,b_4}},R);

T_0=A_0+A_1*x;

T_1=f’*T_0+f*diff(x,T_0);

T_2=diff(x,T_1);

RelIdeal=minors(1,(coefficients(T_0^3+T_2)_(0,0))#1)+

minors(1,(coefficients(T_0^3+T_2)_(0,1))#1)+

minors(1,(coefficients(T_0^3+T_2)_(1,0))#1)+

minors(1,(coefficients(T_0^3+T_2)_(1,1))#1)+

minors(1,(coefficients((T_1*T_0-T_0*T_1)_(0,0)))#1)+

minors(1,(coefficients((T_1*T_0-T_0*T_1)_(0,1)))#1)+

minors(1,(coefficients((T_1*T_0-T_0*T_1)_(1,0)))#1)+

minors(1,(coefficients((T_1*T_0-T_0*T_1)_(1,1)))#1).

The same procedure can be made for polynomials of degree six (in which case

the genus is also two). We have tested with all irreducible monic polynomials of

degree six over F3 (there are 116 of those) and obtained in all cases the same result
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as for polynomials of degree five. For genus 3, that is, polynomials of degree 7,

computations with Macaulay 2 become too long.

Acknowledgments. Thanks are due to C. Pauly and V. Mehta for the interest

they took in this work.
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