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A category C consists of objects a, b, c... and arrows (morphisms)

f,g, h.... Each arrow f has a domain (domf) and a codomain (codf), both
are objects. Moreover, for each object a there is a distinguished arrow 1,,
called identity, and for each pair of arrows (f,g) such that

dom(g) = cod(f), there is another arrow gof :domf — codg called their
composition. The operation of composition is supposed to be associative,
and identities to act as neutral elements under composition.?

The morphisms with domain a and codomain b are denoted Hom(a, b).

1These are the metacategories in [4], Section I.1.
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A functor T :C — D assign to each object a of C an object T(a) of D,
and to each morphism f of C a morphism T(f) of D, in such a way that

T(l,)=11, T(gof)=TgoTf.

A subfunctor S of T :C — Sets associates to every c € ObC a subset 5(c¢)
of T(c) and to every arrow f : ¢ — ¢’ the restriction of T(f) to S(c¢).
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O Sets, the category of sets, whose objects are sets. Given sets A and
B, Hom(A, B) are all the set-theoretic maps between A and B.
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O Sets, the category of sets, whose objects are sets. Given sets A and
B, Hom(A, B) are all the set-theoretic maps between A and B.

@ Given a field F, Vecty is the category whose objects are F vector
spaces and whose morphisms are linear maps between them.

© There is a functor O: Vecty — Sets that associates to each vector
space its underlying set. It is called forgetful functor.

@ Similarly, there are categories of groups, rings, modules over a given
ring, etc. and corresponding forgetful functors.

© If C has only one object *, then Hom(x, %), equipped with the
composition above, is a monoid with identity 1.. Every monoid can be
seen as a category with one object. Functors between two of them are
morphisms of monoids.
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Sets, the category of sets, whose objects are sets. Given sets A and
B, Hom(A, B) are all the set-theoretic maps between A and B.

Given a field F, Vecty is the category whose objects are F vector
spaces and whose morphisms are linear maps between them.

There is a functor O: Vecty — Sets that associates to each vector
space its underlying set. It is called forgetful functor.

Similarly, there are categories of groups, rings, modules over a given
ring, etc. and corresponding forgetful functors.

If C has only one object *, then Hom(*, ), equipped with the
composition above, is a monoid with identity 1.. Every monoid can be
seen as a category with one object. Functors between two of them are
morphisms of monoids.

A poset is a set E with a binary relation < that is reflexive, transitive
and anti-symmetric. Every poset can be seen as a category, whose
objects are the elements of E; there is an arrow e — ¢’ iff e<e’. A
functor between posets is a monotone map.
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Natural transformations

Given two functors S, T : C — D, a natural transformation 7:S— T is a

rule that assigns to each object ¢ of C an arrow 7.:Sc — Tc of D, so that
f:c—c'in C yields the commutative diagram

Sc —<— Tc

R

T
S —— T¢
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A diagram of shape J in C is a functor F:J — C. The category J is
thought here as an index category, usually finite.

A cone to the diagram F:J— C is an object N of C and a natural
transformation ¥ : N — F, where N is a constant functor of value N.

A limit of the diagram F is a universal cone (L,¢): this means that for any
other cone (N, ) of F, there exists a unique arrow u: N — L such that, for
every X € ObC, yx =¢xou.

A limit is unique up to unique isomorphism: if (Li,y1) and (Lp,y2) are
limits of F, the universal property gives unique maps vu: Ly — Ly and
v: L, — L that are inverse to each other.

Colimits are defined similarly, as universal cocones F — N.
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Limits: Examples

For instance, if J is a category with two objects (say 1 and 2) and their
identity morphisms, then F :J — Sets is defined simply by a pair of sets,
F(1) and F(2). A cone is a pair of maps ¢1: N — F(1) and v : N — F(2),
and a limit is precisely the cartesian product F(1) x F(2), with the
canonical projections ¢;: F(1) x F(2) — F(i). The universality means that
there is a unique map u: N — F(1) x F(2) such that

commutes for each /.
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Limits: Examples

Similarly, one obtains fiber products as universal cones of J-diagrams, when
J is the category with objects #, 1, and 2, and non-identity arrows

1l — x+ — 2.

The universal property looks like

Q /&
\ L F2)
& J(Pz lgz

F(1) === F(+)

(The components ¢, and v, are omitted, because they can be deduced
from the other arrows.)
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Limits and colimits

Other examples of limits: terminal objects (J empty), equalizers

(J= (%= %)), kernels (an equalizer with one of the non-identity arrows
mapping to a zero map), etc.

Examples of colimits: initial objects, coequalizers, cokernels, etc.
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@ Presheaves

June 3, 2020 11/49



Category of sheaves

Let C be a category.

The category of presheaves on C, denoted Cor PSh(C), is the category
[CP,Sets| of functors from C° to Sets. The morphisms are natural
transformations i.e. an arrow from a sheaf o to a sheaf 9B is a collection of
functions {tc: d(c) — B(c)}ccobc, called components, such that for each
f:c—cinC,

d(c) —< B(c')

Jaac) |-
d(c) —— B(c)

Similarly, the category of sheaves of F-vector spaces, denoted Gr or
Mod(F), is the category of functors [C°P,Vectf]. The morphisms are
natural transformations whose components 7. are linear maps.
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Let C be a category. All limits and colimits exist in the category C.
Moreover, for each c € Ob C, the evaluation functor
eve : C— Sets, o — d(c) commutes with limits and colimits.

In other words, limits and colimits can be computed “object-wise”. See [5,
Tag 00VB.

For instance, the product of two sheaves 4,9 in C is the sheaf that
associates to c € ObC the set d(c) x B(c), and to each arrow f:c— ¢’ in

G the map
A(F) x B(f) : (") x B(c") — dd(c) x B(c).

Similarly, the “abelian” constructions are performed object-wise. For
example, given a morphism 7: 9 — % in Cp, its kernel is the presheaf that
associates to each c € ObC the vector space ker(7.:9(c) — %B(c)).
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Yoneda embedding

Given a category C. We suppose that for every ¢,c¢’ € ObC, Hom(c,c') is a
set.

Given c e ObC, the functor % : C°? — Sets that associates to every

d € ObC the set #o.(d) =Hom(d,c) and to every arrow f :d — d’ the map
fuc(f) :Hom(d',c) = Hom(d,c), ¢ — ¢pof is called the presheaf
represented by c.

Proposition

Let C be a category, F a presheaf on C, and c an object of C. There exists
an isomorphism, functorial in ¢ and &,

v:Home (e, F) — F(c). (1)

In particular, if & =h.o, there is a bijection Homc(c,c") = Homg (foc, fuer):
in other words, f.: C — C is a fully faithful functor.

v
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© Sheaves on graphs and their homology
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Directed graphs

Definition

A directed graph (digraph) is a 4-tuple G =(Vg, Eg, tg, hg), where Vg
and Eg are sets (respectively, the vertexes and edges of the digraph), and
he : E¢ — Vi and tg: Eg — V¢ are functions that assign to each edge a
“head” and a “tail”, respectively.

The digraphs are finite i.e. Vg and Eg are finite sets.

Definition

A morphism of digraphs u: G — K is a pair of maps
(nv : Ve — Vk,ue : Eg — Ek) that commute with the head and tail maps:

Ec — vy Ec -2 v
O
B =2 Vi e 4

v
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The category of digraphs

The category Digraphs has a terminal object: the category Ag with one
object and one morphism (the identity).

It also has fiber products: given maps uy: Gy — G and uy : G — G, their
fiber product K = Gy x¢ Gy is defined by

Vi ={(v1,v) € Vg, x Vg, I u1(v1) = pa(v2)},
Ex ={(e1, @) € Eg, x Eg, lpa(e1) = po(e2)},
tk = (te, t,), hk =(hg, hc,)-
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Each digraph G =(V/, E,t,h) can be seen as a category G, with objects
VUE, and arrows t(e) — e and h(e) — e for each e€ E, in addition to the
identities.

Remark that a morphism of digraphs u: G — K gives a functor u: G — K

Definition

A sheaf of sets (resp. of F-vector spaces) on G is an object of G (resp.
Gr).2

If the category G is equipped with the trivial Grothendieck topology, every
presheaf on G is a sheaf according to the general definition [1, Def. 2.1].

In other words, &F consists of

Q sets F(o) (called values) for each element o€ VUE = ObG;
@ maps F(t,e):F(e) — F(te) and F(h,e):F(e) — F(he) (called
restriction maps), for each e€ E.
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Grothendieck’s operations

Let ¢ : G — K be a functor.

Given a 3B on K, the sheaf ¢p*%B :=Bop: G — Sets is called its pullback.
It maps g€ ObG to B(¢(g)).

The morphism ¢* : K — G has a left adjoint ¢ : G- R which means that,
forall 4€G and BeK

Homg (¢4, B) = Homg (oA, 9™ R).

Similarly, there is a right adjoint ¢, to ¢*. Therefore, ¢* commutes with
limits and colimits (e.g. @*(sd x B) =™ x ¢*B, etc.); ¢ commutes with
colimits (a.k.a. inductive limits) and ¢. with limits (a.k.a. projective
limits). These are general properties of adjoints.?

2The general construction of these functors is the subject of [1, Sec. 1.5] (in french);
the particular case of graphs is treated in [2, Sec. 1.4].
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What is ¢ : G — K in the case of graphs?

Let ¢ : G — K be a morphism of digraphs. For any o € G, we take

(pt)(k)= D s(e).

gept(k)

Given a nonidentity arrow f : v — e, in K, the map ¢ d(f) is the only one
that makes the diagram

d(eg) Becy1(e) 91(e)
l I(p;d(f) (2)
(eg) —2 (V) —m Byep1(n A(V)

Here ¢: vy — eg is an arrow G such that f =¢(¢) i.e. a tail map (resp.
head map) if f is a tail (resp. head) map.
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If ¢ is clear from context, we write sl instead of ¢ 9.

When 1: G’ — G is an inclusion, then F¢ is just the sheaf whose values are
F on G’ and 0 elsewhere.

If ¢: G — K is a morphism of digraphs and sf € K, then
dAg:= (p!(p*&q:éﬂ@[c.

The tensor product is computed object-wise. If K’ — G is another
morphism, then

@bk =Exckr
If L— G is an arbitrary morphism of digraphs, then

O =Fyppr-
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If u: G'— G" is a morphism of graphs “over G” i.e. there is a commutative
triangle
G/ H GII

RN

G

then there is an induced morphism p, :Fo —Fc, in G, which includes the
category of digraphs over G as a subcategory of sheaves over G. This
functor is not full.
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Homology

Let G=(V,E, h,t) be a digraph and F a sheaf on it. Set
F(E):= @Oj(e), F(V)= EB F(v).

ecE veV

Let dp:F(E) — F(V) map pe F(e) to F(h,e)(p) e F(he). A map d; is
defined similarly. Set d = d — d;.

Definition
The zeroth and first homology groups of F are respectively

Ho(F) :=coker(d) =%F(V)/imd, Hi(F) :=ker(d).

The Betti numbers are their dimensions, h;(%) =dim H;(%F).

When F =F, the constant sheaf with value F, then d is the usual incidence
matrix, and H;(G) := H;(E) is the usual homology of W seen as a directed

CW-complex.



Euler characteristic

S

X(F) = ho(F) - hy(F) =dimF (V) —dimF (E).
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Algebraic graph theory

Given a sheaf & on a digraph G, suppose that for each g€ ObG, F(g) is
equipped with an inner product. Then there are adjoint operators d;, d;
and d* =d; —d; from F(V) to F(E). The laplacians of F are

Ao=dd* :F(V)-F(V), A =d*d:F(E)—F(E).

When F is of characteristic zero, then the A; are positive semi-definite
operators.

When &F =F, with the standard inner products, the laplacians above are the
usual laplacians of the graph.

Moreover, one can define the “degree” operator Do = dxd; +drd; and the
“adjacency” operator Ag = dxd; +did, in such a way that Ag = Dy — Ay, etc.

What are the spectral properties of these matrices?
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To each short exact sequence 0 — F, — F, — F3 — 0 (i.e. such that the
kernel of each arrow is the image of the preceding one), there is a long
exact sequence of homology groups

0 — Hi(F1) = Hi(F2) = Hi(F3) — Ho(F1) — Ho(F2) — Ho(F3) — 0.

June 3, 2020 26 / 49



To each short exact sequence 0 — F, — F, — F3 — 0 (i.e. such that the
kernel of each arrow is the image of the preceding one), there is a long
exact sequence of homology groups

0— Hy(F1) — Hi(F2) — Hy(F3) — Ho(F1) — Ho(Fa) — Ho(Fs) — 0.

Definition

A sequence xg, ..., xp of real numbers is triangular if for all /, 0<i<n,

Xi = Xj—1+Xj11.

If AL B £ C satisfies im f = kerg, then
dim B =dim(kerg) +dim(img) =dim(imf) + dim(img) <dimA+dim C.

Hence the Betti numbers of a long exact sequence form a triangular
sequence.
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Quasi-Betti numbers

Let G be a digraph, and ag,a; be two functions from 0bG to [0,00). We
say that (ag,@1) is a quasi-Betti number pair if

© For each d € G, ag(d)—ay(d) = x(sh).
@ For any &4,%6@ and i€ {1,2},

(X,’(&‘l 6993) = a,-(sﬁ) + a,—(QB).

© For any short exact sequence of sheaves on G, 0 — F| — Fp — F3 — 0,
the sequence of integers

0, al(gl), 051(9;2), a1(973), ao(‘f?ﬁ), 0,’0(0-]2), ao(f’;3),0

is triangular.

We say that ay is a “first quasi-Betti number”.
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Outline

@ Hanna Neumann’s conjecture
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Hanna Neumann’s conjecture

The conjecture is a statement about the rank of the intersection K nL of
two finitely generated subgroups K and L of a free group. (The rank is the
smallest cardinality of a generating set.)

In 1954, Howson proved that the intersection of two finitely generated
subgroups is always finitely generated. Hanna Neuman proved that

rank(KNL)—-1=<2(rank K —1)(rank L —1),

and she also conjectured that one can remove the factor 2 in the bound:
rank(KnL)—-1<(rankK —1)(rankL-1).

Later Walter Neumann proposed an stronger conjectural inequality, known

as the SHNC.
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SHNC: graph-theoretic version

A bicolored digraph is a directed graph G such that each edge is labeled 1
or 2; equivalently, it is a digraph morphism v: G — By, where B; is the
graph with one vertex and two loops. It is an étale bigraph if v is étale: an
injection of incoming (resp. outgoing) edges of v into incoming (resp.
outgoing) edges of v(v).

The SHNC is equivalent to

p(K %, L) = p(K)p(L)

for all étale bigraphs K and L, where p denotes the reduced cyclicity of a
graph,
p(G)= Y max(0,h(X)-1).
Xeconn(G)
The sum runs over the connected components of G, and hy is its usual
homology as a CW-complex (number of independent cycles).
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Definition
Let F be a sheaf on a digraph G, and U a subspace of F(V/). The
head/tail neighborhood of U is

Tne(U) = Piw e F(e) I dp(w), de(w) € U}
ecE

The excess of F at U is
ex(F,U) =dimI'p(U) —dim U,

and its maximum over all subspaces of F(V) is the maximum excess of
o
7.

The excess is a supermodular function
ex(U)+ex(V)<ex(U+V)+ex(Un V),
hence the spaces that maximize it form a lattice.

The key fact is m.e.(F) = p(G).



|deas for the proof: contagious vanishing

If a1 Is any first quasi-Betti number for sheaves of F-vector spaces on a
graph G, and if a1(F) =0 for such certain sheaf F, then for any subgraph
G' of G it holds that a1(F¢/)=0.

Proof.

Consider the short exact sequence

0—Fg —F —F/Fg —0.

The triangularity of the sequence 0, a1 (F¢'), a1 (F),... implies the
result. O
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|deas for the proof: contagious vanishing (continued)

To establish the SHNC in its graph-theoretic form, one proves first that the
maximum excess is a first quasi-Betti number. Then one considers certain
exact sequences

0—F —Fp—F3—0

where Fq is a so-called p-kernel. It is proved then that the maximum
excess of a generic p-kernels vanish, which in turn implies that
m.e.(F2) <m.e.(F3).

For any subgraph G’ < G, one can prove that tensoring with the sheaf F,
is an exact functor i.e. there are also short exact sequences

In view of the last theorem and the remarks above, one gets the stronger
statement m.e.((%2) /) = m.e.((F3)gr)—recall that F1 @ F ¢ = (F1) ¢
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The maximum excess is a first quasi-Betti number?

To prove this, Friedman shows that the maximum excess of a sheaf & on
G can be computed as a twisted cohomology of the sheaf ¢*F provided
one has a “sufficiently good” covering map ¢ : G' — G.
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Twisted cohomology

Let F/ be a field extension of F, and v : Eg — F' a function. By a twisting of F € G
by 1, we mean a sheaf of F'-vector spaces F¥ such that F¥(g) =F(g) ®¢F/, for
each object g, and F¥(h,e)=F(h,e), F¥(t,e) =w(e)F(t,e€).

In particular, ¥ can be seen as |E¢| indeterminates, in which case ' is taken to
be F(w), the field of rational functions in the y(e). The differential d = dgv is a
morphism of finite dimensional vector spaces over F(v).

Definition

The i-th twisted homology group is HIFWiS‘(S»F), for i=0,1, is respectively the
cokernel and kernel of dgv.

There is an analogous short/long exact sequences theorem, hence the Betti
numbers hi"'s* also give a triangular sequence.

hiwist(F) = p(G). In turn, hi"t(F) = hi"*'(F) + x(F) = p(G) + x(G) is the number
of acyclic components of G.
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The fundamental theorem

Theorem

For any sheaf & on a digraph G, let u: G" — G be a covering map where
the Abelian girth is at least

2(dimF (V) +dimF(E)) +1.

Then

hWISt(u*F) = m.e.(u* F).

Recall that if 0 — & — F» — F3 — 0, the same is true for
0— ,u*?Il i u*CJQ - ,u*%3 —0.

Friedman also proves that m.e.(u*%F) = m.e.(%)deg(u) using Galois theory
of graphs.

Since hfWiSt is a first Betti number, one gets a triangular sequence involving
the u*%;, and normalization by deg(u) shows that the same holds for the

maximum excess of the F;s.



O Topoi
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Sheaves on topological spaces

Given a topological space (X,7), let O(X) be the category whose objects
are 7 and whose arrows are inclusions.

A sheaf on X is a functor F:0(X)°P — Sets such that:

@ for any open covering {U;}; of an open set U, if f,g e F(U) are such
that fly. = gly, for each U;, then f =g, and

@ for any open covering {U;}; of an open set U, if {f; e F(U;}; is given

such that filyinu; = filunu; for every pair (i,j), then there is f € F(U)
such that f|y. = f; for each i.

A subsheaf of a sheaf F is a subfunctor of F that is itself a sheaf.

— [

The full subcategory of 6(X) made of sheaves is denoted Sh(X) or O(X).
It has a terminal object, 1, that associates to every open U the singleton
{*} and to every inclusion the identity map. Remark that 1 is a
representable functor, 1 =" .
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Inclusion of ©(X) in Sh(X)

From Sh(X) one can recover the lattice O(X) of open subsets of X as the
lattice of subsheaves of the terminal sheaf 1.

Indeed, any open set U determines, by the Yoneda embedding, a subfunctor
fy of 1, and it is easy to verify that it is a sheaf. Conversely, if F —1is a
monomorphism, then F = fvyy, where W =UJ{U € O(X)|F(U) = {*}}, which
is clearly an open set that is mapped by F to {} by definition of a sheaf.

Thus we can recover X itself provided that each point is determined by its
open neighborhoods. For instance, if X is Hausdorff. (The precise
condition is being sober.)
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Graphs as usual topological spaces

Let G be a graph without self loops. Then Topg = {subgraphs of G}
defines a topology on Vs U Eg.

An open set is called irreducible if it cannot be written as a union of its
proper open subsets. The irreducible opens of (VU Eg, Topg) are the
vertexes {v} and the sets {te, e, he}.

If every open can be written as a union of irreducible opens, a sheaf in the
usual sense is determined by its values on these irreducibles. So we recover
the definition above.

But here is the problem: if G is a category with one vertex v and one loop
e, then the resulting topological space has trivial H'. This is because one

only gets one arrow from {v} to {v,e,v} ={v,e}. This is always the case in

topological spaces, because opens form a poset.
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Beyond topology

As we saw, a sober topological space X can be recovered from the category
Sh(X). Based on this result, Grothendieck and his school introduced a vast
generalization of point-set topology. The idea is to introduce a notion of topology
on an arbitrary category C (nowadays known as Grothendieck topologies) and to
give a general definition of sheaf in that setting. Of course, the definitions must
coincide with the former ones when C=0(X).
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Beyond topology

As we saw, a sober topological space X can be recovered from the category
Sh(X). Based on this result, Grothendieck and his school introduced a vast
generalization of point-set topology. The idea is to introduce a notion of topology
on an arbitrary category C (nowadays known as Grothendieck topologies) and to
give a general definition of sheaf in that setting. Of course, the definitions must
coincide with the former ones when C=0(X).

In the topological case, a possible Grothendieck topology associates to every open
U of X the set J(U) of all the open coverings of U. Remark that:

@ Every open cover {U;} of U can be pulled-back under an inclusion ¢: V — U
to get an open cover {V nU;}; of V;

@ If each open set of an open cover {U;}; of U is covered by opens {\/J.i}j
(relative to U), then {\/j"},-,j is an open covering of U,

© For every U, the set {U} is an open covering.

Remark that for an irreducible open U, J(U) = {U}.



Sieves

Given a category C and an object U, a sieve on U is a subfunctor 8 of 7y. It
generalizes the concept of open covering: given an open covering {U;} of an open
U, the associated sieve S : 0(X)°P — Sets satisfies S(V) = {x} iff V < U; for some
i. (Remark that the sieve determines a subcategory of C.)

Definition ([1, Ex. Il, Def. 1.1] or [5, Definition 00Z4])

A topology on C associates to every Ue ObC a set J(U) of sieves on U such
that:

© For every morphism f : oy — fuy and every element 8 € J(U), the pullback
8’ xp,, iy belongs to J(V);

@ For all Ue ObC and all sieves 8,8 on U, if § € J(U) and for all
(f: V—U)eS(V) the pullback §" x4, fv\y € J(V), then S"€ J(U);?

© For every Ue ObC, the maximal sieve %y belongs to J(U).

3The morphism f : fu\, — fuyy is the image of f under the Yoneda embedding.

In particular, J(U) = {fy} defines a topology called chaotic or grossiere.
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Sheaves and topoi

Definition ([1, Ex. 2, Def. 2.1] or [5, Definition 00Z8])

Let (C,J) be a Grothendieck topology. A presheaf F is separable (resp. a
sheaf) if for every object U of C and every sieve S € J(U), the map

Homeg (A y, %) — Homeg (S, F)

given by precomposition with § — % is an injection (resp. bijection).

If Jis the grossiére topology, then every presheaf is a sheaf.

Definition ([1, Ex. 4, Def. 1.1])

A category T is called a topos if it is equivalent to the category of sheaves
on a Grothendieck topology (C, J).
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Back to graphs

The sheaves on G according to Friedman's definition are precisely the
sheaves on G equipped with the grossiére topology.

Then every object of G is gross or irreducible. The sieve associated to a
vertex {v}, seen as a subcategory of G, only contains {v}, but the sieve 7,
associated to an edge e also contains the head and tail of e

So one might say that irreducible opens are either a vertex or an edge with
its endpoints (which could also be a loop). A general subgraph is a colimit
of representable sheaves % x.
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@ Afterword: Homology

June 3, 2020 45 / 49



Homology

It is certainly very difficult to say what is homology or cohomology, since it
appears under many different flavors in many different contexts.

A traditional algebraic viewpoint, also introduced by Grothendieck in [3],
regards (co)homology as a measure of the inexactness of a functor.
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Exactness

A category is abelian if the usual operations common to the categories of
abelian groups and modules have a meaning (addition of morphisms,
kernels, cokernels, etc.). A functor between abelian categories is exact if it
maps short exact sequences to exact sequences. Many functors are not
exact. For instance, if 0 — Gy — Gy — G3 — 0 is an short exact sequence of
abelian groups and G is an arbitrary abelian group, one only has

0 — Hom(Gs, G) = Hom(Gy, G) — Hom( Gy, G).

The derived functors of Hom(—, G), called {Exti(—,G)};Zl, allow us to
continue such exact sequence, in principle indefinitely to the right

0 — Hom(Gs, G) — Hom(Gy, G) — Hom(Gy, G) — Ext}(Gs, G) —
Ext!(G,, G) — Ext'(Gy, G) — Ext?(G3, G) — - (3)
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Friedman’s homology

The category Gr of sheaves of F-vector spaces on G is abelian; as we saw,
the abelian operations are performed “object-wise”.

Friedman’s homology of a sheaf F in G is
H;(G,F) := (Ext/(F,F))",
where * denotes duality.

An injective resolution of F gives the explicit formulae that we used above.
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