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Categories

A category C consists of objects a,b,c ... and arrows (morphisms)
f ,g ,h.... Each arrow f has a domain (dom f ) and a codomain (cod f ), both
are objects. Moreover, for each object a there is a distinguished arrow 1a,
called identity, and for each pair of arrows (f ,g) such that
dom(g)= cod(f ), there is another arrow g ◦ f : dom f → codg called their
composition. The operation of composition is supposed to be associative,
and identities to act as neutral elements under composition.1

The morphisms with domain a and codomain b are denoted Hom(a,b).

For each category C, there is a category Cop with the same objects but
reversed arrows (i.e. for each arrow f of C, there is an arrow f op in Cop

such that dom f op = cod f and cod f op = dom f ).

1These are the metacategories in [4], Section I.1.
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A functor T :C→D assign to each object a of C an object T (a) of D,
and to each morphism f of C a morphism T (f ) of D, in such a way that

T (1a)= 1Ta, T (g ◦ f )=Tg ◦Tf .

A subfunctor S of T :C→Sets associates to every c ∈ObC a subset S(c)
of T (c) and to every arrow f : c → c ′ the restriction of T (f ) to S(c).
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Example

1 Sets, the category of sets, whose objects are sets. Given sets A and
B , Hom(A,B) are all the set-theoretic maps between A and B .

2 Given a �eld F, VectF is the category whose objects are F vector
spaces and whose morphisms are linear maps between them.

3 There is a functor ä :VectF →Sets that associates to each vector
space its underlying set. It is called forgetful functor.

4 Similarly, there are categories of groups, rings, modules over a given
ring, etc. and corresponding forgetful functors.

5 If C has only one object ∗, then Hom(∗,∗), equipped with the
composition above, is a monoid with identity 1∗. Every monoid can be
seen as a category with one object. Functors between two of them are
morphisms of monoids.

6 A poset is a set E with a binary relation ≤ that is re�exive, transitive
and anti-symmetric. Every poset can be seen as a category, whose
objects are the elements of E ; there is an arrow e→ e ′ i� e ≤ e ′. A
functor between posets is a monotone map.
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Natural transformations

Given two functors S ,T :C→D, a natural transformation τ : S →T is a
rule that assigns to each object c of C an arrow τc : Sc →Tc of D, so that
f : c → c ′ in C yields the commutative diagram

Sc Tc

Sc ′ Tc ′

←→τc

←→ Sf ←→ Tf

←→τc ′

.
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Limits

A diagram of shape J in C is a functor F : J→C. The category J is
thought here as an index category, usually �nite.

A cone to the diagram F : J→C is an object N of C and a natural
transformation ψ :N → F , where N is a constant functor of value N.

A limit of the diagram F is a universal cone (L,φ): this means that for any
other cone (N ,ψ) of F , there exists a unique arrow u :N → L such that, for
every X ∈ObC, ψX =φX ◦u.

A limit is unique up to unique isomorphism: if (L1,ψ1) and (L2,ψ2) are
limits of F , the universal property gives unique maps u : L1 → L2 and
v : L2 → L1 that are inverse to each other.

Colimits are de�ned similarly, as universal cocones F →N.
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Limits: Examples

For instance, if J is a category with two objects (say 1 and 2) and their
identity morphisms, then F : J→Sets is de�ned simply by a pair of sets,
F (1) and F (2). A cone is a pair of maps ψ1 :N → F (1) and ψ :N → F (2),
and a limit is precisely the cartesian product F (1)×F (2), with the
canonical projections φi : F (1)×F (2)→ F (i). The universality means that
there is a unique map u :N → F (1)×F (2) such that

N

F (1)×F (2) F (i)

←→ u

←

→
ψi

←→φi

commutes for each i .
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Limits: Examples

Similarly, one obtains �ber products as universal cones of J-diagrams, when
J is the category with objects ∗, 1, and 2, and non-identity arrows

1 ∗ 2.←→ ←→

The universal property looks like

Q

L F (2)

F (1) F (∗)

←

→
u

←
→

ψ1
←

→
ψ2

← →φ1
←→ φ2 ←→ g2

←→g1

(The components φ∗ and ψ∗ are omitted, because they can be deduced
from the other arrows.)
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Limits and colimits

Other examples of limits: terminal objects (J empty), equalizers
(J= (∗â∗)), kernels (an equalizer with one of the non-identity arrows
mapping to a zero map), etc.

Examples of colimits: initial objects, coequalizers, cokernels, etc.
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Category of sheaves

Let C be a category.

The category of presheaves on C, denoted Ĉ or PSh(C), is the category
[Cop ,Sets] of functors from Cop to Sets. The morphisms are natural
transformations i.e. an arrow from a sheaf A to a sheaf B is a collection of
functions {τc :A(c)→B(c)}c∈ObC, called components, such that for each
f : c → c ′ in C,

A(c ′) B(c ′)

A(c) B(c)

←→τc ′
←→ A(f ) ←→ B(f )

←→τc

.

Similarly, the category of sheaves of F-vector spaces, denoted ĜF or
Mod(F), is the category of functors [Cop ,VectF]. The morphisms are
natural transformations whose components τc are linear maps.
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Theorem

Let C be a category. All limits and colimits exist in the category Ĉ.

Moreover, for each c ∈ObC , the evaluation functor

evc : Ĉ→Sets, A→A(c) commutes with limits and colimits.

In other words, limits and colimits can be computed �object-wise�. See [5,
Tag 00VB].

For instance, the product of two sheaves A,B in Ĉ is the sheaf that
associates to c ∈ObC the set A(c)×B(c), and to each arrow f : c → c ′ in
G the map

A(f )×B(f ) :A(c ′)×B(c ′)→A(c)×B(c).

Similarly, the �abelian� constructions are performed object-wise. For
example, given a morphism τ :A→B in ĈF, its kernel is the presheaf that
associates to each c ∈ObC the vector space ker(τc :A(c)→B(c)).

June 3, 2020 13 / 49
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Yoneda embedding

Given a category C. We suppose that for every c ,c ′ ∈ObC, Hom(c ,c ′) is a
set.

Given c ∈ObC, the functor hc :C
op →Sets that associates to every

d ∈ObC the set hc(d)=Hom(d ,c) and to every arrow f : d → d ′ the map
hc(f ) : Hom(d ′,c)→Hom(d ,c), φ 7→φ◦ f is called the presheaf
represented by c .

Proposition

Let C be a category, F a presheaf on C, and c an object of C. There exists

an isomorphism, functorial in c and F,

ι : Hom
Ĉ
(hc ,F)

∼→F(c). (1)

In particular, if F=hc ′ , there is a bijection HomC(c ,c ′)=Hom
Ĉ
(hc ,hc ′):

in other words, h :C→ Ĉ is a fully faithful functor.
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Directed graphs

De�nition

A directed graph (digraph) is a 4-tuple G = (VG ,EG ,tG ,hG ), where VG

and EG are sets (respectively, the vertexes and edges of the digraph), and
hG :EG →VG and tG :EG →VG are functions that assign to each edge a
�head� and a �tail�, respectively.

The digraphs are �nite i.e. VG and EG are �nite sets.

De�nition

A morphism of digraphs µ :G →K is a pair of maps
(µV :VG →VK ,µE :EG →EK ) that commute with the head and tail maps:

EG VK

EK VK

←→tG

←→ µE ←→ µV

←→tK

EG VK

EK VK

←→hG
←→ µE ←→ µV

←→hK
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The category of digraphs

The category Digraphs has a terminal object: the category ∆0 with one
object and one morphism (the identity).

It also has �ber products: given maps µ1 :G1 →G and µ2 :G2 →G , their
�ber product K =G1×G G2 is de�ned by

VK = {(v1,v2) ∈VG1
×VG2

|µ1(v1)=µ2(v2) },

EK = {(e1,e2) ∈EG1
×EG2

|µ1(e1)=µ2(e2) },

tK = (tG1
,tG2

), hK = (hG1
,hG2

).
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Sheaves

Each digraph G = (V ,E ,t,h) can be seen as a category G, with objects
V ∪E , and arrows t(e)→ e and h(e)→ e for each e ∈E , in addition to the
identities.

Remark that a morphism of digraphs µ :G →K gives a functor µ :G→K

De�nition

A sheaf of sets (resp. of F-vector spaces) on G is an object of Ĝ (resp.
ĜF).

a

aIf the category G is equipped with the trivial Grothendieck topology, every
presheaf on G is a sheaf according to the general de�nition [1, Def. 2.1].

In other words, F consists of

1 sets F(o) (called values) for each element o ∈V ∪E =ObG;
2 maps F(t,e) :F(e)→F(te) and F(h,e) :F(e)→F(he) (called
restriction maps), for each e ∈E .
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Grothendieck's operations

Let ϕ :G→K be a functor.

Given a B on K, the sheaf ϕ∗B:=B◦ϕ :Gop →Sets is called its pullback.
It maps g ∈ObG to B(ϕ(g)).

The morphism ϕ∗ : K̂→ Ĝ has a left adjoint ϕ! : Ĝ→ K̂, which means that,
for all A∈ Ĝ and B∈ K̂

Hom
K̂
(ϕ!A,B)∼=Hom

Ĝ
(A,ϕ∗B).

Similarly, there is a right adjoint ϕ∗ to ϕ∗. Therefore, ϕ∗ commutes with
limits and colimits (e.g. ϕ∗(A×B)=ϕ∗A×ϕ∗B, etc.); ϕ! commutes with
colimits (a.k.a. inductive limits) and ϕ∗ with limits (a.k.a. projective
limits). These are general properties of adjoints.2

2The general construction of these functors is the subject of [1, Sec. I.5] (in french);
the particular case of graphs is treated in [2, Sec. 1.4].
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What is ϕ! : Ĝ→ K̂ in the case of graphs?

Let ϕ :G→K be a morphism of digraphs. For any A∈ Ĝ, we take

(ϕ!A)(k)=
⊕

g∈ϕ−1(k)
A(g).

Given a nonidentity arrow f : vk → ek in K, the map ϕ!A(f ) is the only one
that makes the diagram

A(eg )
⊕

e∈ϕ−1(ek )A(e)

A(eg ) A(vg )
⊕

v∈ϕ−1(vk )A(v)

← →ιeg

←→ ←→ ϕ!A(f )

←→Aξ ←→ιvg

(2)

Here ξ : vg → eg is an arrow G such that f =ϕ(ξ) i.e. a tail map (resp.
head map) if f is a tail (resp. head) map.
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Remarks on ϕ!

If ϕ is clear from context, we write AG instead of ϕ!A.

When ι :G ′ →G is an inclusion, then FG ′ is just the sheaf whose values are
F on G ′ and 0 elsewhere.

If ϕ :G →K is a morphism of digraphs and A∈ K̂, then

AG :=ϕ!ϕ
∗A=A⊗FG .

The tensor product is computed object-wise. If K ′ →G is another
morphism, then

FK ⊗FK ′ ' FK×GK ′ .

If L→G is an arbitrary morphism of digraphs, then

ϕ∗FL = FK×GL
.
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If µ :G ′ →G ′′ is a morphism of graphs �over G � i.e. there is a commutative
triangle

G ′ G ′′

G

← →µ

←

→ϕ
←→

ψ
,

then there is an induced morphism µ∗ : FG ′ → FG ′′ in Ĝ, which includes the
category of digraphs over G as a subcategory of sheaves over G . This

functor is not full.
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Homology

Let G = (V ,E ,h,t) be a digraph and F a sheaf on it. Set

F(E ) := ⊕
e∈E

F(e), F(V )= ⊕
v∈V

F(v).

Let dh :F(E )→F(V ) map φ ∈F(e) to F(h,e)(φ) ∈F(he). A map dt is
de�ned similarly. Set d = dh−dt .

De�nition

The zeroth and �rst homology groups of F are respectively

H0(F) := coker(d)=F(V )/imd , H1(F) := ker(d).

The Betti numbers are their dimensions, hi (F)= dimHi (F).

When F= F, the constant sheaf with value F, then d is the usual incidence
matrix, and Hi (G ) :=Hi (F) is the usual homology of W seen as a directed
CW-complex.
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Euler characteristic

χ(F) := h0(F)−h1(F)= dimF(V )−dimF(E ).
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Algebraic graph theory

Given a sheaf F on a digraph G , suppose that for each g ∈ObG, F(g) is
equipped with an inner product. Then there are adjoint operators d∗

h , d
∗
t

and d∗ = d∗
h −d∗

t from F(V ) to F(E ). The laplacians of F are

∆0 = dd∗ :F(V )→F(V ), ∆1 = d∗d :F(E )→F(E ).

When F is of characteristic zero, then the ∆i are positive semi-de�nite
operators.

When F= F, with the standard inner products, the laplacians above are the
usual laplacians of the graph.

Moreover, one can de�ne the �degree� operator D0 = dhd
∗
h +dtd

∗
t and the

�adjacency� operator A0 = dhd
∗
t +dtd

∗
h in such a way that ∆0 =D0−A0, etc.

What are the spectral properties of these matrices?
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Theorem

To each short exact sequence 0→F1 →F2 →F3 → 0 (i.e. such that the

kernel of each arrow is the image of the preceding one), there is a long

exact sequence of homology groups

0→H1(F1)→H1(F2)→H1(F3)→H0(F1)→H0(F2)→H0(F3)→ 0.

De�nition

A sequence x0, ...,xn of real numbers is triangular if for all i , 0< i < n,

xi ≤ xi−1+xi+1.

If A
f→B

g→C satis�es im f = kerg , then

dimB = dim(kerg)+dim(img)= dim(im f )+dim(img)≤ dimA+dimC .

Hence the Betti numbers of a long exact sequence form a triangular
sequence.
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Quasi-Betti numbers

De�nition

Let G be a digraph, and α0,α1 be two functions from ObĜ to [0,∞). We
say that (α0,α1) is a quasi-Betti number pair if

1 For each A∈ Ĝ, α0(A)−α1(A)=χ(A).
2 For any A,B∈ Ĝ and i ∈ {1,2},

αi (A⊕B)=αi (A)+αi (B).

3 For any short exact sequence of sheaves on G , 0→F1 →F2 →F3 → 0,
the sequence of integers

0,α1(F1),α1(F2),α1(F3),α0(F1),α0(F2),α0(F3),0

is triangular.

We say that α1 is a ��rst quasi-Betti number�.
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Hanna Neumann's conjecture

The conjecture is a statement about the rank of the intersection K ∩L of
two �nitely generated subgroups K and L of a free group. (The rank is the
smallest cardinality of a generating set.)

In 1954, Howson proved that the intersection of two �nitely generated
subgroups is always �nitely generated. Hanna Neuman proved that

rank(K ∩L)−1≤ 2(rankK −1)(rankL−1),

and she also conjectured that one can remove the factor 2 in the bound:

rank(K ∩L)−1≤ (rankK −1)(rankL−1).

Later Walter Neumann proposed an stronger conjectural inequality, known
as the SHNC.
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SHNC: graph-theoretic version

A bicolored digraph is a directed graph G such that each edge is labeled 1
or 2; equivalently, it is a digraph morphism ν :G →B2, where B2 is the
graph with one vertex and two loops. It is an étale bigraph if ν is étale: an
injection of incoming (resp. outgoing) edges of v into incoming (resp.
outgoing) edges of ν(v).

The SHNC is equivalent to

ρ(K ×B2
L)≤ ρ(K )ρ(L)

for all étale bigraphs K and L, where ρ denotes the reduced cyclicity of a
graph,

ρ(G )= ∑
X∈conn(G)

max(0,h1(X )−1).

The sum runs over the connected components of G , and h1 is its usual
homology as a CW-complex (number of independent cycles).
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De�nition

Let F be a sheaf on a digraph G , and U a subspace of F(V ). The
head/tail neighborhood of U is

Γht(U)= ⊕
e∈E

{w ∈F(e) |dh(w),dt(w) ∈U }.

The excess of F at U is

ex(F,U)= dimΓht(U)−dimU ,

and its maximum over all subspaces of F(V ) is the maximum excess of
F.

The excess is a supermodular function

ex(U)+ex(V )≤ ex(U +V )+ex(U ∩V ),

hence the spaces that maximize it form a lattice.

The key fact is m.e.(F)= ρ(G ).
June 3, 2020 31 / 49



Ideas for the proof: contagious vanishing

Theorem

If α1 is any �rst quasi-Betti number for sheaves of F-vector spaces on a

graph G, and if α1(F)= 0 for such certain sheaf F, then for any subgraph

G ′ of G it holds that α1(FG ′)= 0.

Proof.

Consider the short exact sequence

0→FG ′ →F→F/FG ′ → 0.

The triangularity of the sequence 0,α1(FG ′),α1(F), ... implies the
result.
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Ideas for the proof: contagious vanishing (continued)

To establish the SHNC in its graph-theoretic form, one proves �rst that the
maximum excess is a �rst quasi-Betti number. Then one considers certain
exact sequences

0→F1 →F2 →F3 → 0

where F1 is a so-called ρ-kernel. It is proved then that the maximum
excess of a generic ρ-kernels vanish, which in turn implies that
m.e.(F2)≤m.e.(F3).

For any subgraph G ′ ⊂G , one can prove that tensoring with the sheaf FG ′

is an exact functor i.e. there are also short exact sequences

0→F1⊗FG ′ →F2⊗FG ′ →F3⊗FG ′ → 0.

In view of the last theorem and the remarks above, one gets the stronger
statement m.e.((F2)G ′)≤m.e.((F3)G ′)�recall that F1⊗FG ′ = (F1)G ′ .
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The maximum excess is a �rst quasi-Betti number?

To prove this, Friedman shows that the maximum excess of a sheaf F on
G can be computed as a twisted cohomology of the sheaf ϕ∗F provided
one has a �su�ciently good� covering map ϕ :G ′ →G .
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Twisted cohomology

Let F′ be a �eld extension of F, and ψ :EG → F′ a function. By a twisting of F∈ Ĝ
by ψ, we mean a sheaf of F′-vector spaces Fψ such that Fψ(g)=F(g)⊗F F

′, for
each object g , and Fψ(h,e)=F(h,e), Fψ(t,e)=ψ(e)F(t,e).

In particular, ψ can be seen as |EG | indeterminates, in which case F′ is taken to
be F(ψ), the �eld of rational functions in the ψ(e). The di�erential d = dFψ is a
morphism of �nite dimensional vector spaces over F(ψ).

De�nition

The i-th twisted homology group is H twist
i (F), for i = 0,1, is respectively the

cokernel and kernel of dFψ .

There is an analogous short/long exact sequences theorem, hence the Betti
numbers htwistsi also give a triangular sequence.

htwist
1

(F)= ρ(G ). In turn, htwist
0

(F)= htwist
1

(F)+χ(F)= ρ(G )+χ(G ) is the number
of acyclic components of G .

June 3, 2020 35 / 49



The fundamental theorem

Theorem

For any sheaf F on a digraph G , let µ :G ′′ →G be a covering map where

the Abelian girth is at least

2(dimF(V )+dimF(E ))+1.

Then

htwist
1

(µ∗F)=m.e.(µ∗F).

Recall that if 0→F1 →F2 →F3 → 0, the same is true for
0→µ∗F1 →µ∗F2 →µ∗F3 → 0.

Friedman also proves that m.e.(µ∗F)=m.e.(F)deg(µ) using Galois theory
of graphs.

Since htwist
1

is a �rst Betti number, one gets a triangular sequence involving
the µ∗Fi , and normalization by deg(µ) shows that the same holds for the
maximum excess of the Fi s.
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Sheaves on topological spaces

Given a topological space (X ,τ), let O(X ) be the category whose objects
are τ and whose arrows are inclusions.

A sheaf on X is a functor F :O(X )op →Sets such that:

1 for any open covering {Ui }i of an open set U, if f ,g ∈F(U) are such
that f |Ui

= g |Ui
for each Ui , then f = g , and

2 for any open covering {Ui }i of an open set U, if {fi ∈F(Ui }i is given
such that fi |Ui∩Uj

= fj |Ui∩Uj
for every pair (i , j), then there is f ∈F(U)

such that f |Ui
= fi for each i .

A subsheaf of a sheaf F is a subfunctor of F that is itself a sheaf.

The full subcategory of �O(X ) made of sheaves is denoted Sh(X ) or �O(X ).
It has a terminal object, 1, that associates to every open U the singleton
{∗} and to every inclusion the identity map. Remark that 1 is a
representable functor, 1=hX .
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Inclusion of O(X ) in Sh(X )

From Sh(X ) one can recover the lattice O(X ) of open subsets of X as the
lattice of subsheaves of the terminal sheaf 1.

Indeed, any open set U determines, by the Yoneda embedding, a subfunctor
hU of 1, and it is easy to verify that it is a sheaf. Conversely, if F,→ 1 is a
monomorphism, then F=hW , where W =⋃

{U ∈O(X ) |F(U)= {∗} }, which
is clearly an open set that is mapped by F to {∗} by de�nition of a sheaf.

Thus we can recover X itself provided that each point is determined by its
open neighborhoods. For instance, if X is Hausdor�. (The precise
condition is being sober.)
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Graphs as usual topological spaces

Let G be a graph without self loops. Then TopG = {subgraphs of G }
de�nes a topology on VG tEG .

An open set is called irreducible if it cannot be written as a union of its
proper open subsets. The irreducible opens of (VG tEG ,TopG ) are the
vertexes {v } and the sets {te,e,he}.

If every open can be written as a union of irreducible opens, a sheaf in the
usual sense is determined by its values on these irreducibles. So we recover
the de�nition above.

But here is the problem: if G is a category with one vertex v and one loop
e, then the resulting topological space has trivial H1. This is because one
only gets one arrow from {v } to {v ,e,v } = {v ,e}. This is always the case in
topological spaces, because opens form a poset.
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Beyond topology

As we saw, a sober topological space X can be recovered from the category
Sh(X ). Based on this result, Grothendieck and his school introduced a vast
generalization of point-set topology. The idea is to introduce a notion of topology
on an arbitrary category C (nowadays known as Grothendieck topologies) and to
give a general de�nition of sheaf in that setting. Of course, the de�nitions must
coincide with the former ones when C=O(X ).

In the topological case, a possible Grothendieck topology associates to every open
U of X the set J(U) of all the open coverings of U. Remark that:

1 Every open cover {Ui } of U can be pulled-back under an inclusion ι :V →U
to get an open cover {V ∩Ui }i of V ;

2 If each open set of an open cover {Ui }i of U is covered by opens {V i
j }j

(relative to U), then {V i
j }i ,j is an open covering of U;

3 For every U, the set {U} is an open covering.

Remark that for an irreducible open U, J(U)= {U}.
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Sieves

Given a category C and an object U, a sieve on U is a subfunctor S of hU . It
generalizes the concept of open covering: given an open covering {Ui } of an open
U, the associated sieve S:O(X )op →Sets satis�es S(V )= {∗} i� V ⊂Ui for some
i . (Remark that the sieve determines a subcategory of C.)

De�nition ([1, Ex. II, Def. 1.1] or [5, De�nition 00Z4])

A topology on C associates to every U ∈ObC a set J(U) of sieves on U such
that:

1 For every morphism f :hU →hV and every element S∈ J(U), the pullback
S′×hU

hV belongs to J(V );

2 For all U ∈ObC and all sieves S,S′ on U, if S∈ J(U) and for all
(f :V →U) ∈S(V ) the pullback S′×hU

hV ∈ J(V ), then S ′ ∈ J(U);a

3 For every U ∈ObC, the maximal sieve hU belongs to J(U).

aThe morphism f̃ :hV →hU is the image of f under the Yoneda embedding.

In particular, J(U)= {hU } de�nes a topology called chaotic or grossière.
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Sheaves and topoi

De�nition ([1, Ex. 2, Def. 2.1] or [5, De�nition 00Z8])

Let (C,J) be a Grothendieck topology. A presheaf F is separable (resp. a
sheaf) if for every object U of C and every sieve S∈ J(U), the map

Hom
Ĉ
(hU ,F)→Hom

Ĉ
(S,F)

given by precomposition with S,→hU is an injection (resp. bijection).

If J is the grossière topology, then every presheaf is a sheaf.

De�nition ([1, Ex. 4, Def. 1.1])

A category T is called a topos if it is equivalent to the category of sheaves
on a Grothendieck topology (C,J).
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Back to graphs

The sheaves on G according to Friedman's de�nition are precisely the
sheaves on G equipped with the grossière topology.

Then every object of G is gross or irreducible. The sieve associated to a
vertex {v }, seen as a subcategory of G, only contains {v }, but the sieve he

associated to an edge e also contains the head and tail of e

So one might say that irreducible opens are either a vertex or an edge with
its endpoints (which could also be a loop). A general subgraph is a colimit
of representable sheaves hX .
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Homology

It is certainly very di�cult to say what is homology or cohomology, since it
appears under many di�erent �avors in many di�erent contexts.

A traditional algebraic viewpoint, also introduced by Grothendieck in [3],
regards (co)homology as a measure of the inexactness of a functor.
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Exactness

A category is abelian if the usual operations common to the categories of
abelian groups and modules have a meaning (addition of morphisms,
kernels, cokernels, etc.). A functor between abelian categories is exact if it
maps short exact sequences to exact sequences. Many functors are not

exact. For instance, if 0→G1 →G2 →G3 → 0 is an short exact sequence of
abelian groups and G is an arbitrary abelian group, one only has

0→Hom(G3,G )→Hom(G2,G )→Hom(G1,G ).

The derived functors of Hom(−,G ), called {Exti (−,G )}i≥1, allow us to
continue such exact sequence, in principle inde�nitely to the right

0→Hom(G3,G )→Hom(G2,G )→Hom(G1,G )→Ext1(G3,G )→
Ext1(G2,G )→Ext1(G1,G )→Ext2(G3,G )→··· (3)
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Friedman's homology

The category ĜF of sheaves of F-vector spaces on G is abelian; as we saw,
the abelian operations are performed �object-wise�.

Friedman's homology of a sheaf F in ĜF is

Hi (G,F) := (Exti (F,F))∗,

where ∗ denotes duality.

An injective resolution of F gives the explicit formulae that we used above.
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