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Abstract. We define a HOMFLY versions of the categories RepqL and RepqP of
quantum representations of a Levi and a parabolic subgroup L ⊆ P ⊆ GLm+n and
we construct central algebra and centered bimodule structures on these categories.
These structures serve as the algebraic ingredients for constructing a skein theory on
manifolds with surface and line defects. Finally, we recover the Turaev coproduct
on the HOMFLY skein algebra as a particular instance of this theory. In particular,
this coproduct is compatible with cutting/gluing surfaces.
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Introduction

To do

Overview of the main results. (Provisional) The HOMFLY category RepqGLt ([De07,
Bru17]) is a diagrammatic category whose objects are configurations of directed points and
whose morphisms are linear combinations of framed oriented tangles, modulo the HOMFLY
skein relations

− =
(
q − q−1

)
, = qt , = δ 1∅,

where qt is a formal parameter and 1∅ is the empty diagram. This category is a universal version
of the category of quantum representations of GLN in the sense that RepqGLN can be recovered
as a quotient of the specialization of (a certain completion of) RepqGLt at t = N . Our first
contribution is to define a HOMFLY version of the category RepqPt of quantum representations
of a parabolic subgroup P ⊆ GLm+n (see Section 2). We define it by considering a certain
subcategory of the rigid category underlying RepqLt = RepqGLt ⊠ RepqGLt, the HOMFLY
analogue of RepqL for the Levi subgroup L = GLm × GLn of GLm+n. Together with RepqPt,
we construct four functors

RepqPt

RepqGLt RepqGLt ⊠ RepqGLt
j∗

t

ι∗t

rest

π∗
t

,

interpolating the ordinary restriction functors between the corresponding categories of represen-
tations. In Section 3, we prove the following (see Theorem 3.4):

Theorem. The functor ι∗t ⊠ π∗
t lifts to a braided monoidal functor

RepqGLt ⊠ (RepqLt) → Z(RepqPt),

where (−) stands for the opposite braided category and Z(RepqPt) is the Drinfeld center of
RepqPt. In particular, RepqPt is a (RepqGLt,RepqLt)-central algebra. ■

In [BJ25], Brown and Jordan construct skein modules in 3-dimensional manifolds with sur-
face defects. Skein relations around the defects are induced by the algebraic data of a central
algebra. In Sections 4 and 5 we extend this framework by allowing a certain type of line defect
decorated with RepqLt. In particular, in Section 4, we construct planar theories on framed
surfaces with codimension 1 defects. The local model around these line defects is induced by
a (RepqPt,RepqLt)-centred bimodule structure on RepqLt (see Section 3.2). Incorporating the
central algebra structures, in Section 5 we generalise this to a 3-dimensional theory, with both
surface and line defects. Defects of codimension 1 are decorated with central algebras and defects
of codimension 2 with centred bimodules (see Theorem 5.4):

Theorem. There is a 2-dimensional stratified framed TQFT

Z : Bordbip,mkd
2 → Bimod

assigning RepqLt (resp. RepqPt) to an interval labelled with Lt (resp. Pt). To a bipartite framed
surface S, it assigns a bimodule functor whose components are vector spaces of stratified graphs
in S × I, modulo local relations. ■
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The HOMFLY skein algebra SkGLt(S) of a framed surface S is the algebra of endomorphisms
of the empty object in the skein category SkCatGLt(S). In [Tur91], Turaev showed the existence
of a coproduct

∆: SkGLt(S) → SkGLt(S) ⊗ SkGLt(S)
by extending Jaeger’s formula [Jae89] to arbitrary surfaces. In Section 6, we give a new definition
using the formalism of skein theory with defects. In particular, we show the following:

Theorem. Let S be a framed surface. Then, a stratification on S can be chosen so that the
vector space A(S)(∅) is isomorphic to SkLt(S) ∼= SkGLt(S)⊗SkGLt(S). Under this identification,
the algebra morphism SkGLt(S) → SkGLt(S) ⊗ SkGLt(S) induced by acting over Pt-region of the
empty diagram is Turaev’s coproduct.

A crucial consequence of this description is that the coproduct is compatible in a very non-
obvious way with gluing and cutting surfaces.

1 Background

1.1 Jaeger’s formula and Turaev’s coproduct. The HOMFLY polynomial is a two-
variable polynomial invariant of framed oriented links that encompasses both the Jones and
the Alexander polynomial. It can be defined in terms of skein relations:

Proposition 1.1. [FYH+85, PT87] There exists a unique invariant Ha,z of framed oriented
links with values in Z[a±, z±] satisfying the following properties:

(i) Ha,z

 −Ha,z

  = zHa,z

  ;

(ii) Ha,z


 = aHa,z

  ;

(iii) Ha,z

  = z−1(a− a−1).

This invariant is called the HOMFLY polynomial. ■

Given an integer N ∈ N, the specialisation of the HOMFLY polynomial at z = q − q−1 and
a = qN is a Laurent polynomial in one variable q, that we denote by PN (D), for any link
diagram D. Jaeger constructed in [Jae89] a recursive formula allowing to compute Pm+n(D) in
terms of Pm(D1) and Pn(D2), where D1 and D2 are certain subdiagrams of D. Concretely, a
link diagram is a 4-valent graph with two distinguished classes of vertices: positive and negative
crossings. Given a vertex v, we denote by a (resp. b) the upper (resp. lower) incoming edge,
and by c (resp. d) the upper (resp. lower) outcoming edge, as shown in the following pictures:

.

Definition 1.2. Let ED be the set of edges of D. An admissible labelling is a map f : ED →
{1, 2} such that, at any vertex v, either f(a) = f(c) and f(b) = f(d), or f(a) = f(d) > f(b) =
f(c). In the second case, we say that v is a cutting vertex for f .
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Given an admissible labelling f and a vertex v, we set

⟨v | f⟩ :=
{

sgn(v)(q − q−1), if v is a cutting vertex,
1, otherwise,

where sgn(v) is 1 if v is a positive crossing and −1 otherwise. We define the interaction of D
with f as

⟨D | f⟩ :=
∏
v

⟨v | f⟩ ,

where the product runs over the set of vertices of D.

Proposition 1.3. ([Jae89, Proposition 1]) Let m,n ∈ N. Then, for any link diagram D,

Pm+n(D) =
∑

f admissible
⟨D | f⟩ q−n·r(Df,1)qm·r(Df,2)Pm(Df,1)Pn(Df,2), (1.1)

where Df,i := f−1(i) and r(Df,i) is the rotation number of Df,i, for i ∈ {1, 2}. ■

Example 1.4. For the trivial knot, we have

Pm+n

  = q−nPm

 + qmPn

 
= q−n[m]q + qm[n]q = [m+ n]q.

♢

Extending Jaeger’s composition formula, Turaev constructed in [Tur91] a coproduct for the
HOMFLY skein algebra of an arbitrary framed surface S. Let us briefly recall this construction.

Definition 1.5. Let S be an oriented surface and k a commutative ring. We define the HOMFLY
skein algebra of S as the k-module SkGLt(S) spanned by isotopy classes of framed oriented links
in S × [0, 1] modulo the local relations

− =
(
q − q−1

)
, = qt and = qt − q−t

q − q−1 ,

with parameters q, qt ∈ k×. Multiplication is given by vertically stacking two copies of S× [0, 1]
and retracting S × [0, 2] to S × [0, 1].

Again, any framed oriented link in S × [0, 1] can be represented by a link diagram (with
blackboard framing) on S, and we can define admissible labellings as in the previous subsection.

Theorem 1.6. ([Tur91, Theorem 9.2]) Let D be a link diagram on a framed surface S. Then,
the formula

∆(D) =
∑

f admissible
⟨D|f⟩

((
q−t
)r(Df,1)

Df,1

)
⊗
((
qt
)r(Df,2)

Df,2

)
,

defines a coassociative coproduct on SkGLt(S). The pair (SkGLt(S),∆) is a bialgebra. ■
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1.2 A quick review of rigid categories. We recall in this section some facts about rigid
categories that will be useful throughout the paper. Recall that a monoidal category is a category
C endowed with a functor ⊗ : C × C → C which is associative and unital up to given natural
isomorphisms. Every monoidal category is equivalent to a strict monoidal one, so we will assume
that ⊗ is associative and unital on the nose.

Definition 1.7. A monoidal category C is right rigid if every object X has a right dual X∗, i.e.,
there are morphisms

evX : X ⊗X∗ → 1 and coevX : 1 → X∗ ⊗X

satisfying the usual zig-zags identities. Similarly, we say that C is left rigid if every object X
has a left dual ∗X and we say that it is rigid if it is both left and right rigid.

Duals are unique up to canonical isomorphism: if (X∗, evX , coevX) and (Y, ẽvX , c̃oevX) are
right duals of X, then

φ : Y coevX⊗idY−−−−−−−→ X∗ ⊗X ⊗ Y
idX∗ ⊗ẽvX−−−−−−→ X∗ (1.2)

is a isomorphism between them and the (co)evaluations are related by

ẽvX = evX ◦ (idX ⊗ φ), c̃oevX = (φ−1 ⊗ idX) ◦ coevX .

The same holds for left dualities. When the category C is rigid, we will always assume that
distinguished left a right duals {X∗, evX , coevX} and {∗X, ev′

X , coev′
X} has been fixed for every

object. We thus have left and right duality functors

∗(−), (−)∗ : Cop → C

that, in general, do not coincide.

If (F, J, J0) : C → D is a monoidal functor between rigid categories, then

evFX : F (X) ⊗ F (X∗)
JX,X∗
−−−−→ F (X ⊗X∗) F (evX)−−−−→ F (1) J0−→ 1

and
coevFX : 1

J−1
0−−→ F (1) F (coevX)−−−−−−→ F (X∗ ⊗X)

J−1
X∗,X−−−−→ F (X∗) ⊗ F (X)

exhibit F (X∗) as a right dual of F (X) (and the analogue is true for left duals). If F (X)∗ is the
distinguished dual of F (X) in D, the isomorphism

φX : F (X∗) → F (X)∗ (1.3)

from (1.2) is natural in X.

Definition 1.8. A pivotal category is a right rigid category C (with distinguished duality)
endowed with a monoidal natural isomorphism

ιX : X∗∗ → X.

A monoidal functor F : C → D between pivotal categories is pivotal if the isomorphism

ηX : F (X)∗∗ φ∗
X−−→ F (X∗)∗ φ−1

X∗−−−→ F (X∗∗)
F (ιCX)
−−−−→ F (X) (1.4)

coincides with the pivotal structure of D.

5



Using the pivotal structure, we can exhibit the distinguished right duality of C as a left duality.
Namely, the morphisms

ev′
X : X∗ ⊗X

idX∗ ⊗ι−1
X−−−−−−→ X∗ ⊗X∗∗ evX∗−−−→ 1

and
coev′

X : 1 coevX∗−−−−→ X∗∗ ⊗X∗ ιX⊗idX∗−−−−−−→ X ⊗X∗

satisfy the zig-zag identities. Therefore, for this choice of distinguished left duality, we get a
canonical monoidal isomorphism (−)∗ ∼= ∗(−).

Recall that a braided monoidal category C is a monoidal category endowed with a natural
isomorphism

cX⊗Y : X ⊗ Y → Y ⊗X

satisfying the well-known hexagon axioms.

Definition 1.9. A balanced category is a braided monoidal category C endowed with a natural
isomorphism

θX : X → X,

called twist, such that
θX⊗Y = cY,X ◦ cX,Y ◦ (θX ⊗ θY ).

We say that C is ribbon if it is rigid and, moreover,

θX∗ = θ∗
X ,

for all X ∈ C.

Proposition 1.10. [HPT16, Corollary A.3] Let C be a rigid braided category. Then, there is
a one-to-one correspondence between pivotal structures and twists on C. There are exactly two
ways of establishing this correspondence. ■

In particular, if C is a braided pivotal category, there are two choices of twists given by

θ
(1)
X = (idX ⊗ evX∗) ◦ (cX∗∗,X ⊗ idX∗) ◦ (idX∗∗ ⊗ coevX) ◦ ιX

and
θ

(2)
X = ι−1

X ◦ (evX ⊗ idX∗∗) ◦ (idX∗ ⊗ cX∗∗,X) ◦ (coevX∗ ⊗ idX).

Proposition 1.11. [HPT16, Proposition A.4] Let C be a braided pivotal category. Then, (C, θ(i))
is ribbon for either i = 1, 2 if, and only if, θ(1) = θ(2). ■

1.3 Graphical languages for monoidal categories. The definition of the HOMFLY cat-
egory RepqPt and its central algebra structure (cf. sections 2 and 3) will rely on the graphical
calculus for monoidal categories, that we briefly review here. See [Sel09] for an extended survey
and [HPT16, Section 2.1] for a nice overview.

⋆ Rigid categories. For a rigid monoidal category C, we consider directed “vertical” planar
graphs Γ embedded in R × [0, 1] with endpoints lying in R × {0, 1}. By vertical we mean that
edges never run horizontally. Local extrema (i.e. cups and caps) will be considered as vertices.
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The rest of vertices are coupons, with incident edges attached to either the top or the bottom
face. For instance,

is a planar graph of this type. We decorate edges of the graph with pairs (C, n), where C ∈ C
and n ∈ Z, according to the following rule: if an edge is directed upwards, then n will be even;
and n will be odd if it is oriented downwards. To make this consistent, n has to change at
local maxima and minima: turning counterclockwise increases n by 1, and turning clockwise
decreases n by 1. Interpreting (C, n) as C∗

×n
··· ∗ and (C,−n) by ∗

×n
··· ∗C, for every n ∈ N, the set

of edges incident to the bottom and top faces of a coupon determine two objects s, t ∈ C. The
coupon will thus be decorated with a morphism f : s → t. We consider two planar graphs to be
equivalent if they are related by a rectilinear isotopy of the plane: this is an isotopy of R× [0, 1]
that do not rotate coupons.

Definition 1.12. The category Rig(C) has:

• objects: finite sequences of pairs (C, n), with C ∈ C and n ∈ Z;

• morphisms: equivalence classes of decorated planar graphs as above, whose source and
target are determined by the decoration of the bottom and top endpoints, respectively.
Composition is given by vertically stacking diagrams.

This category has a monoidal structure given by concatenation of objects and horizontal stacking
of morphisms.

The category Rig(C) is the free rigid category on C: it comes equipped with a monoidal
evaluation functor

evC : Rig(C) → C

sending (C, n) to C∗
×n
··· ∗ and (C,−n) to ∗

×n
··· ∗C, for every n ∈ N. A coupon decorated with f

is mapped to f itself, and the image of cups and caps are the distinguished evaluation and
coevaluation morphisms of C.

⋆ Pivotal categories. As explained in the previous section, pivotal structures yields canonical
monoidal isomorphims (−)∗ ∼= ∗(−) and (−)∗∗ ∼= (−). Since multiple duals are canonically
identified, a graphical calculus for pivotal categories can be obtained by dropping the integer
labels from the graphical calculus for rigid categories. Namely, we consider the same class of
graphs as in the previous section, labelled as follows. Edges are coloured just with objects of C.
For every coupon, interpreting (C, ↑) as C and (C, ↓) as C∗, incident edges determine again two
objects s, t ∈ C. The coupon is thus labelled with a morphism f : s̃ → t̃, where s̃, t̃ are objects
canonically identified with s, t via the pivotal structure. Two graphs are equivalent if they are
related by a planar isotopy. In particular, we allow now isotopies rotating coupons by 2π. Note
that this yields a more general class of graphs as before, since, for instance,
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may be decorated by either a morphism of the form f : C → D or f : C → D∗∗ (among many
other possibilities).

As in the previous case, we get a category Piv(C) whose morphisms are planar graphs, together
with an evaluation functor

evC : Piv(C) → C,

which is the free pivotal category on C (the pivotal structure being trivial). For instance,

evC




=
(
ι−1
V ⊗ idW ⊗ idV

)
◦ (f ⊗ idV ∗) ◦

(
ι−1
U ⊗ coev′

V

)
,

where ι is the pivotal structure of C.

⋆ Braided pivotal categories. The graphical calculus for braided pivotal categories is sup-
ported by three-dimensional diagrams:

Definition 1.13. Let C be a braided pivotal category. The category BrPiv(C) has:

• objects: finite sequences of pairs (C, ε), with C ∈ C and ε ∈ {↑, ↓};

• morphisms: equivalence classes of directed graphs embedded in R2 × [0, 1] with endpoints
lying in R× {0} × {0, 1} whose vertices are coupons decorated following the same rules as
for pivotal categories.

The category BrPiv(C) is itself braided pivotal, with trivial pivotal structure and braiding
given by crossing strands. Graphs will be represented by diagrams obtained by projecting into
R × [0, 1] and keeping track of the relative position of the strands in crossings. For example,

is a diagram representing such a three-dimensional graph. Two graphs are equivalent if they are
related by regular isotopy, i.e., their diagrams can be obtained from each other by applying a
finite sequence of the Reidemeister moves II and III and a planar isotopy. In particular,

̸= . (1.5)

The two diagrams in (1.5) represent graphically the two families of twists turning BrPiv(C) into
a balanced category (cf. Proposition 1.10).

The category BrPiv(C) is the free braided category on C. Again, we have an evaluation functor

evC : BrPiv(C) → C

mapping a positive crossing to the braiding.
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Figure 1: Coloured ribbon graph. Figure 2: Ribbon diagram.

⋆ Ribbon categories. The inequality in (1.5) suggests that braided pivotal categories are still
not very natural from a topological point of view. Ribbon categories are defined to be the class
of braided pivotal categories in which the two terms coincide. The graphical calculus of ribbon
categories supported by so-called ribbon graphs.

A ribbon graph is a three-dimensional graph whose edges are thick ribbons. More precisely,
it is a compact oriented surface Ω embedded in R2 × [0, 1] which decomposes into the following
elementary pieces:

1. ribbons, i.e., homeomorphic copies of the square [0, 1] × [0, 1] whose core is directed;

2. annuli, i.e., homeomorphic copies of the cilinder S1 × [0, 1] whose core is also directed;

3. coupons, with distinguished top and bottom bases.

Ribbons can meet coupons just on their distinguished bases. On the other hand, the choice of
an orientation for Ω determines a “preferred side”. We demand the free bases of ribbons (those
not meeting any coupon) to meet the planes R2 ×{0} and R2 ×{1} orthogonally at R×{0}×{0}
and R× {0} × {1}, respectively, and in such a way that the preferred side of Ω is turned up. We
colour ribbons, coupons and annuli following the same rules as for pivotal categories.

Ribbon graphs will be considered up to isotopy: an isotopy of ribbon graphs is an isotopy of
R2 × [0, 1] which is the identity on R2 × {0, 1} and preserves the decomposition into ribbons,
annuli and coupons. By applying such an isotopy, any ribbon graph is equivalent to a graph
whose ribbons, coupons and annuli are everywhere parallel to the vertical plane. Such a graph
can be represented by a ribbon diagram, obtained by projecting ribbons and annuli onto their
cores and projecting the resulting graph into R × [0, 1] (see Figure 2). Two ribbon diagrams
represent the same ribbon graph if the can be obtained from each other by a finite sequence of
Reidemeister moves II and III, planar isotopy and movements of the form

↔ .

Definition 1.14. [Tur94, Section I.2] Let C be a ribbon category. The category Rib(C) has:

• objects: finite sequences of pairs (C, ε), with C ∈ C and ε ∈ {↑, ↓};

• morphisms: isotopy classes of directed ribbon graphs (defined below) embedded in R2 ×
[0, 1] and coloured with C in the usual way.

This is a ribbon category, with twist given by .

As in the previous cases, Rib(C) is the free ribbon category on C, and we have an evaluation
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functor
evC : Rib(C) → C,

known Reshetikhin–Turaev evaluation functor.

1.4 Skein categories. The graphical calculus for ribbon categories extend to arbitrary ori-
ented surfaces, yielding the notion of skein categoy. Skein categories are categorical invari-
ants of oriented surfaces generalising the notion of skein algebras. They were introduced in
[Wal06, JF19] and take a ribbon category C as algebraic ingredient:

Definition 1.15. ([Coo19, Definition 1.3]) Let S be an oriented surface. A C-coloured ribbon
graph in S is an embedding of a C-coloured ribbon graph into S × [0, 1] such that its free bases
are sent to S × {0, 1} and the rest lies in S × (0, 1).

Definition 1.16. ([Coo19, Definition 1.5]) Let k be a commutative ground ring. The category
Rib(C, S) of ribbon graphs in S has:

• objects: finite sets
{
x

(C1,ε1)
1 , . . . , x

(Cm,εm)
m

}
of disjoint framed points xi ∈ S coloured with

pairs (Ci, εi), where Ci ∈ C and εi ∈ {↑, ↓};

• morphisms from
{
x

(C1,ε1)
1 , . . . , x

(Cm,εm)
m

}
to
{
y

(D1,η1)
1 , . . . , y

(Dm,ηn)
n

}
are k-linear combi-

nations of isotopy classes of C-coloured ribbon graphs in S whose bottom and top are,
respectively,

{
x

(C1,ε1)
1 , . . . , x

(Cm,εm)
m

}
and

{
y

(D1,η1)
1 , . . . , y

(Dm,ηn)
n

}
.

Composition is given by vertically stacking two copies of S × [0, 1] and retracting S × [0, 2] to
S × [0, 1]. In particular, Rib(C,R2) = Rib(C).

Definition 1.17. ([Coo19, Definition 1.9]) Let C be a ribbon category and S an oriented surface.
The skein category SkCatC(S) is the quotient of Rib(C, S) by the following relations: a morphism∑
i λiΩi ∼ 0 if there exists an orientation preserving embedding ι : R2 × [0, 1] ↪→ S × [0, 1] such

that:

1. the intersection of each Ωi with the boundary of ι(R2 × [0, 1]) consist only of transverse
ribbons intersecting ι(R × {0} × {0}) and ι(R × {0} × {1});

2. the Ωi are equal outside ι(R2 × [0, 1]);

3. we have ∑
i

λievC
(
ι−1

(
Ωi ∩ ι(R2 × [0, 1])

))
= 0.

Note that skein categories are not monoidal in general. When S = C×I for some one-manifold
C, a tensor product can be defined by stacking two copies of C×I. The following follows directly
from the definition:

Proposition 1.18. Let C be a ribbon category. Then,

SkCatC(R2) ≃ C

as ribbon categories. ■

1.5 Parabolic restriction. Let k be a field of characteristic 0 and q ∈ k×. Fix N ∈ N and
assume that q is not a root of unity. The algebra Uq(glN ) is defined by generators ei, fi, dj , d−1

j ,
i = 1, . . . , N − 1, j = 1, 2, . . . , N , and relations

didj = djdi, did
−1
i = d−1

i di = 1,

10



diejd
−1
i = qδij−δi,j+1ej , difjd

−1
i = q−δi,j+δi,j+1fj ,

eifj − fjei = δij
did

−1
i+1 − d−1

i di+1

q − q−1 ,

eiej = ejei, fifj = fjfi, |i− j| ≥ 2,

e2
i ei±1 − (q + q−1)eiei±1ei + ei±1e

2
i = 0,

f2
i fi±1 − (q + q−1)fifi±1fi + fi±1f

2
i = 0.

This algebra becomes a Hopf algebra with the comultiplication ∆ : Uq(glN ) → Uq(glN )⊗Uq(glN )
defined on generators by

∆(ei) = d−1
i di+1 ⊗ ei + ei ⊗ 1, ∆(fi) = 1 ⊗ fi + fi ⊗ did

−1
i+1, ∆(d±1

i ) = d±1
i ⊗ d±1

i .

The counit ε : Uq(glN ) → k and the antipode S : Uq(glN ) → Uq(glN ) are given, respectively, by

ε(ei) = 0, ε(fi) = 0, ε(di) = 1

and
S(ei) = −did−1

i+1ei, S(fi) = −fid−1
i di+1, S(di) = d−1

i .

Definition 1.19. The natural representation ρ : Uq(glN ) → EndC(CN ) of Uq(glN ) is defined by

ρ(di) = qEi,i +
∑
i ̸=j

Ej,j , ρ(ei) = Ei,i+1, ρ(fi) = Ei+1,i,

where Ei,j is the N × N matrix with 1 in the (i, j)-position and 0 elsewhere. We denote this
representation by VN .

Fix m,n ∈ N and consider the subalgebra Uq(l) of Uq(glm+n) generated by {di, ej , fj | j ̸= m}.
We may identify Uq(l) ∼= Uq(glm) ⊗ Uq(gln) by mapping

di 7→ di, ej , fj 7→
{
ej ⊗ 1, fj ⊗ 1, for 0 ≤ j ≤ m− 1,
1 ⊗ ej−m, 1 ⊗ fj−m, for m+ 1 ≤ j ≤ m+ n− 1,

so that Uq(l) acts on Vm and Vn. Similarly, let Uq(p) be the subalgebra of Uq(glm+n) generated
by {di, ei, fj | j ̸= m}. Note that Uq(l) is a subalgebra of Uq(p), but also a quotient by the ideal
generated by em. Restricting along the inclusion and projection morphisms, we get functors

Rep Uq(p)

Rep Uq(glm+n) Rep Uq(l).

j∗

ι∗

resm,n

π∗ (1.6)

Note that resm,n(Vm+n) ≃ Vm ⊕ Vn in Rep Uq(l).

For any N ∈ N, the universal R-matrix of Uq(glN ) is an invertible element R lying in a
completion of Uq(glN ) ⊗ Uq(glN ). It induces a braiding on Rep Uq(glN ) given, in Sweedler
notation, by

cV,W (v, w) := R(2)w ⊗ R(1)v,

for v ∈ V and w ∈ W. Applied to the fundamental representation, the braiding yields an
automorphism βN : VN ⊗ VN → VN ⊗ VN that can be written explicitly as

βN = q
∑
i

(Ei,i ⊗ Ei,i) +
∑
i ̸=j

(Ei,i ⊗ Ei,j) +
(
q − q−1

)∑
i<j

(Ei,j ⊗ Ej,i). (1.7)

11



Taking N = m+ n and restricting to Uq(l), this isomorphism decomposes as

resm,n(βm+m) =


βm 0 0 0
0 0 σm,n 0
0 σn,m

(
q − q−1) Idm,n 0

0 0 0 βn

 : (Vm ⊕ Vn)⊗2 → (Vm ⊕ Vn)⊗2 (1.8)

in Rep Uq(l), hence the monoidal functor resm,n is not braided.

On th other hand, it is also well-known that the category Rep Uq(p) is not braided. Let
W ∈ Rep Uq(glm+n) and V ∈ Rep Uq(p). The universal R-matrix R of Uq(gln) lies in Uq(b+) ⊗
Uq(b−) ⊆ Uq(p) ⊗ Uq(b−), where b± are the positive and negative Borel subalgebras of glm+n.
Thus, R has a well-defined action on V ⊗ ι∗(W ) and composing with the flip of tensor factors
yields an isomorphism of V ⊗j∗(W ) → j∗(W )⊗V in Rep Uq(p) which is natural in V . Similarly,
if U ∈ Rep Uq(l), the R-matrix of Uq(l) acts on V ⊗π∗(U) providing an isomorphism V ⊗π∗(U) →
π∗(U) ⊗ V natural in V .

Definition 1.20. The restriction functors ι∗ : Rep Uq(glm+n) → Rep Uq(p) and π∗ : Rep Uq(l) →
Rep Uq(p) lift to a braided functor

ι∗ ⊠ π∗ : Rep Uq(glm+n)⊠ Rep Uq(l) → Z (Rep Uq(p)) ,

where Rep Uq(l) is the opposite of Rep Uq(l) as braided category and Z(Rep Uq(p)) is the
Drinfeld center of Rep Uq(p). We call this functor parabolic restriction.

1.6 Categories and bimodules. We recall in this section a few categorical notions that will
appear repeatedly in our constructions. We fix a ground ring k and we set Vect for the category
k-modules. A k-linear category is a category C enriched over Vect. The category Cat of small
k-linear categories and k-linear functors is symmetric monoidal:

Definition 1.21. Given C,D ∈ Cat, we define C ⊠D as the k-linear category whose

• objects are pairs (c, d) with c ∈ C, d ∈ D;

• morphisms are given by

HomC⊠D((c1, d1), (c2, d2)) := HomC(c1, c2)⊠k HomD(d1, d2).

Definition 1.22. Let F : C⊠Cop → D be a k-linear bifunctor and suppose that D is cocomplete.
The coend of F is the object

∫ c∈C
F (c, c) := colim

 ∏
f : c→c′

F (c, c′) ∏
c∈C

F (c, c)
F (f,c′)

F (c,f)

 ∈ D.

If D = Vect, this is explicitly given by∫ c∈C
F (c, c) =

⊕
c∈C

F (c, c) /∼ ,

where we mod out by the image of morphisms of the form

F (c, c′) F (f,c′)−F (c,f ′)−−−−−−−−−−→ F (c, c) ⊕ F (c′, c′).

Definition 1.23. The category Bimod has:

12



• objects: small k-linear categories;

• morphisms: a morphism from C to D is a functor of the form F : C ⊠Dop → Vect.

The composition of F : C ⊠Dop → Vectk and G : D ⊠ Eop → Vectk is given by the coend

(G ◦ F )(c, e) :=
∫ d∈D

F (c, d) ⊗k G(d, e).

The identity of C is the bimodule HomC(−,−). The tensor product of k-linear categories endows
Bimod with the structure of a symmetric monoidal category.

Remark 1.24. The category Cat embeds into Bimod. Indeed, given a k-linear functor F : C →
D, we get a bimodule

F ∗ : C ⊠Dop → Vect, c⊠ d 7→ HomD(d, F (c)).
♢

1.7 Stratified spaces. In sections 4 and 5, we define a skein theory on 3-manifolds with line
and surface defects. Here, we introduce the terminology and conventions for stratified spaces
that will be used later.

Definition 1.25. (i) A stratified space is a vector space X endowed with a continuous map
ϕ : X → P,

where P is a poset endowed with the topology whose open sets are generated by P>p := {x ∈
P | x > p}, for p ∈ P. For each p ∈ P, the subset Xp := ϕ−1(p) is a stratum.

(ii) A morphism of stratified spaces between (X,ϕ) and (Y, ψ) consists of a pair of continuous
maps f : X → Y , F : P → Q such that the diagram

X Y

P Q

ϕ

f

ψ

F

is commutative. We say that it is a stratified embedding if f and f |Xp are embeddings for every
p ∈ P.

(iii) A stratified isotopy between two stratified embeddings (f, F ), (g,G) : X → Y is a mor-
phism (h,H) : X × I → Y of stratified spaces such that h(−, 0) = f and h(−, 1) = g. Here,
the stratification on X × I is given by φ(x, t) = ϕ(x), where ϕ is the stratification on X. In
particular, a stratified isotopy of X is a continuous family of maps ft : X → X such that

X X

P
ϕ

ft

ϕ

commutes for every t ∈ [0, 1] and f0 = idX .

We will typically with stratified three-manifolds and we will say that Xp is a line defect when
dim(Xp) = 1 and that it is a surface defect when dim(Xp) = 2.

Definition 1.26. A bipartite surface is an oriented surface S endowed with a stratification
ϕ : S → (A ≥ B ≤ C)

such that SB = ϕ−1(B) is a smooth curve that forms the common boundary between the open
strata SA and SC .
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2 HOMFLY categories and ordinary restriction

Throughout the rest of the paper, we fix the ground ring to be

k = C
(
q)[q±t, δ

]/〈(
q − q−1) δ = qt − q−t〉 .

In this section, we recall the definition of the HOMFLY category RepqGLt ([Bru17, De07]) and
its two-coloured version, RepqLt. Next, we define a HOMFLY version of the category RepqPt
of quantum representations for a parabolic subgroup P ⊆ GLm+n.

2.1 The HOMFLY category RepqGLt. One of our main objects of study will be the
HOMFLY category RepqGLt, that we introduce following [Bru17]. Let T be the category
of 1-coloured framed oriented tangles, whose objects are finite words over {↑,↓} and whose
morphisms are k-linear combinations of isotopy classes of framed oriented tangles (i.e. ribbon
graphs without coupons) in R2×[0, 1]. This category has a ribbon structure. The tensor product
is given by concatenation of objects and by horizontally stacking morphisms. The right dual of
an object w = w1 · · ·wk is the object w∗ := w∗

k · · ·w∗
1, where (−)∗ interchanges ↑ and ↓. The

braiding, the evaluation and coevaluation, and the twist are represented by the diagrams

··· ···

··· ···

, ··· ··· ,

··· ···

,

···

···

,

where the directions are induced by the depicted words. Exchanging w and w∗ in the evaluation
and coevaluation maps, we can exhibit w∗ as a left dual of w, hence T has a strictly pivotal
structure.

Definition 2.1. The category RepqGLt is the quotient of T by the HOMFLY skein (2.1), the
twist (2.2) and the dimension (2.3) relations:

− =
(
q − q−1

)
, (2.1)

= qt , (2.2)

= δ 1∅, (2.3)

where 1∅ is the empty diagram.

This category inherits a ribbon structure from T and it has a nice presentation by generators
and relations:

Proposition 2.2. ([Bru17, Theorem 1.1]) RepqGLt is generated, as a k-linear strict monoidal
category, by the objects ↑ and ↓ and the morphisms

, , , ,

14



subject to the relations

=
(
q − q−1

)
+ , (2.4)

= , = , (2.5)

 −1

= . (2.6)

qt = δ 1∅. (2.7)

= , (2.8)

■

Remark 2.3. The HOMFLY category RepqGLt interpolates between the categories RepqGLN
of locally finite representations of Uq(glN ). More precisely, for any integer N ∈ N, consider the
evaluation map

φN : k → C(q), qt 7→ qN , δ 7→ qN − q−N

q − q−1 .

There exists a φN -linear ribbon functor

evG
N : RepqGLt → RepqGLN

sending the object ↑ to the natural representation VN . The category RepqGLN can be recovered
as the ind-completion of the quotient of RepqGLt by the ideal of negligible morphisms (see
[Bru17, Theorem 1.3] for a precise statement). ♢

2.2 The HOMFLY category RepqLt. Next, we describe diagrammatically the two-coloured
HOMFLY category RepqLt, interpolating the categories RepqL of locally finite representations
of Uq(l). In the same lines as for the construction of RepqGLt, let T (■,■,■) be the category
of three-coloured tangles with defects, whose

• objects are finite sequences of oriented points coloured with {■,■,■};

• morphisms are k⊗C(q) k-linear combinations of isotopy classes of coloured framed oriented
tangles tangles with 0-dimensional defects of the form

, , , .

This category is again ribbon, with ribbon structure defined as in the previous section.

Definition 2.4. The category RepqLt is the quotient of T (■,■,■) by

15



• the one-coloured skein, twist and dimension relations:

− =
(
q − q−1

)
, (2.9)

= qt■ , (2.10)

= δ■1∅, (2.11)

with all the strands coloured in the same colour ■ ∈ {■ = 1,■ = 2} and qt1 := qt ⊗ 1,
qt2 := 1 ⊗ qt, δ1 := δ ⊗ 1 and δ2 := 1 ⊗ δ;

• the two-coloured crossing relations:

= , = , (2.12)

• the relations

= + , (2.13)

= , = 0, = 0, = . (2.14)

Proposition 2.5. RepqLt inherits a ribbon structure from T (■,■,■). ■

Given relations (2.12), we no longer need to distinguish between positive and negative two-
coloured crossings. Furthermore, relations (2.13) and (2.14) imply that ↑ = ↑ ⊕ ↑. This identity
justifies the reference to RepqLt as “two-coloured”.

Lemma 2.6. The following relations hold in RepqLt:

− =
(
q − q−1

) +

 , (2.15)

= qt1 + qt2 , (2.16)

= δ1 + δ2. (2.17)

Proof. Applying (2.13), we can write

= + + + , (2.18)

and the same is true for the negative crossing. The first relation of the statement thus follows
from the green and red skein relations. Likewise, the blue twist and dimension relations are an
easy consequence of the green and red ones.
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Remark 2.7. Again, RepqLt is universal among the categories RepqL. Specialising t1 and t2 at
integers values m,n ∈ N, we get an evaluation morphism

φm,n : k ⊗C(q) k → C(q),

and there is a canonical evaluation functor

evL
m,n : RepqLt → Repq Uq(l)

mapping ↑ and ↑ to the natural representations of Uq(glm) and Uq(gln), respectively, and ↑ to
their direct sum. ♢

Proposition 2.8. There is a monoidal equivalence of categories

RepqLt ∼= RepqGLt ⊠ RepqGLt.

Proof. We define an equivalence Φ : RepqLt → RepqGLt⊠RepqGLt as follows. Since ↑ = ↑⊕↑ in
RepqLt, we just have to define Φ on green and red objects and extend by cocontinuity. Moreover,
relations (2.13) and (2.14) imply that any morphism between two configurations of green and
red points may be represented by a linear combination of ribbon diagrams containing no orange
component. For a word w over {↑,↓,↑,↓}, we set w1 and w2 for the subwords of green and
red symbols, respectively. Similarly, if f is a tangle diagram in RepqLt, let f1 (resp. f2) be the
tangle diagrams obtained by removing all the red (resp. green) strands in f . We define Φ by
w 7→ (w1,w2) on objects and by f 7→ f1 ⊗ f2 on generating morphisms. This functor is clearly
surjective on objects and fully-faithful (this follows easily from the fact that we do not distinguish
between a positive and a negative crossing when strands have different colours). Moreover, it
preserves the tensor product, so it yields an equivalence of monoidal categories. A quasi-inverse
is given by the functor Ψ : RepqGLt ⊠ RepqGLt → RepqLt defined by (w1,w2) 7→ w1w2 and
(f1,f2) 7→ f1f2.

Corollary 2.9. For any oriented surface S, we have an equivalence of (k⊗C(q)k)-linear categories

SkCatLt,t(S) ∼= SkCatGLt(S)⊠ SkCatGLt(S).

In particular, this induces an algebra isomorphism

SkLt,t(S) ∼= SkGLt(S) ⊗C(q) SkGLt(S).

Proof. Again, we define a functor RibRepqLt(S) → SkCatGLt(S) ⊠ SkCatGLt(S) by separating
the green and the red colour. It follows from the previous theorem that it is compatible with
skein relations, so it factors through the skein category, yielding the desired equivalence of
categories.

2.3 The restriction functor. The restriction functor

resm,n : RepqGLm+n → RepqL

admits also a HOMFLY version that we construct diagrammatically in this section. We first
define a coproduct ∆ : k → k ⊗C(q) k by setting

∆
(
qt
)

= qt1qt2 , ∆(δ) = δ1 q
t2 + q−t1 δ2 (2.19)

on generators and extending C(q)-linearly. Here, qt1 := qt ⊗ 1, qt2 := 1 ⊗ qt, δ1 := δ ⊗ 1 and
δ2 := 1 ⊗ δ.
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Lemma 2.10. The map ∆ : k → k ⊗C(q) k is well-defined and coassociative.

Proof. This is an easy computation. Firstly,

∆(qt − q−t) = qt1qt2 − q−t1q−t2

= (qt1 − q−t1)qt2 + q−t1(qt2 − q−t2)
= (q − q−1)(δ1q

t2 + q−t1δ2) = (q − q−1)∆(δ),

so the map is well-defined. For the coassociativity, we have

(1 ⊗ ∆) ◦ ∆(qt) = qt1qt2qt3 = (∆ ⊗ 1) ◦ ∆(qt),

and

(1 ⊗ ∆) ◦ ∆(δ) = δ1(qt2qt3) + q−t1(δ2q
t3 + q−t2δ3)

= (δ1q
t2 + q−t1δ2)qt3 + (q−t1q−t2)δ3 = (∆ ⊗ 1) ◦ ∆(δ).

Remark 2.11. Specialising formulas (2.19) at t = m + n, t1 = m and t2 = n, with m,n ∈ N,
we recover the identities

qm+n = qmqn, [m+ n]q = qn[m]q + q−m[n]q,

expressing the quantum dimension of the fundamental representation of Uq(glm+n) in terms of
the quantum dimensions of the fundamental representations of Uq(glm) and Uq(gln). Again, we
may think of ∆ as interpolating these formulas. ♢

We introduce the following notations:

:= +
(
q − q−1

)
, (2.20)

:= −
(
q − q−1

)
q−t2 , (2.21)

:= + q−t1 , (2.22)

:=

 −1

= + qt1 . (2.23)

Theorem 2.12. There exists a unique ∆-linear functor

rest : RepqGLt → RepqLt (2.24)

preserving the tensor product and such that

7→ , 7→ , 7→ , 7→ .
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Proof. Proposition 2.2 provides a presentation of RepqGLt by generators and relations. Since rest
is defined on generators, it will be unique if it is well defined. We check that it preserves relations
(2.4) - (2.8). For the skein relation (2.4) and the zigzags (2.5), this is an easy computation using
the corresponding green and red relations and (2.14). Applying the functor to the right-hand
side of (2.6), we have

rest

  = +
(
q − q−1

)
qt1 .

Composing with and applying the one-colour twist relations to the terms involving the

(co)evaluations appearing, we get the identity, so (2.6) is preserved. On the other hand,

qt1qt2 = qt1qt2 + qt1qt2 −
(
q − q−1

)
=
(
qt2δ1 + q−t1δ2

)
1∅,

so relation (2.7) is preserved. Finally, using the relations in Remark 2.14, one gets

evq,t


 = +

(
q − q−1

) +


+
(
q − q−1

)2
 +

 = evq,t


 ,

so the Reidemeister relation (2.8) is also preserved.

Along the same lines as Remarks 2.3 and 2.7, the functor 2.24 interpolates the restriction
functors resm,n : RepqGLm+n → RepqL. That is, the diagram

RepqGLt RepqLt

RepqGLm+n RepqL

rest

evG
m+n evL

m,n

resm,n

commutes for any m,n ∈ N.

Remark 2.13. The restriction functor rest is strictly monoidal, but it does not preserve the
distinguished dualities. The natural isomorphism from (1.3) is determined by

φ↑ = = + q−t1 .

Moreover, rest is not pivotal: the categories RepqGLt and RepqLt are endowed with trivial
pivotal structures, but the isomorphism

ηr↑ : ↑ = rest(↑)∗∗ (φr
↑ )∗

−−−−→ rest(↑∗)∗ (φr
↓)−1

−−−−→ rest(↑∗∗) rest(id↓)
−−−−−→ rest(↑) = ↑
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from (1.4) is represented by

ηr↑ = qt2 + q−t1 , (2.25)

which is not the identity of ↑ in RepqLt. Similarly, for the left dualities induced by the ribbon
structures of RepqGLt and RepqLt, we get an isomorphism

ηl↑ = q−t2 + qt1 . (2.26)

♢

Remark 2.14. Using (2.18) and the definition of the boxes, one easily checks that

= , = , = , = ,

but, for instance,

̸= , ̸= .

This is a diagrammatic counterpart of the fact that the R-matrix of Uq(glm+n) belong to (a
completion of) Uq(b+) ⊗ Uq(b−), where b± are the corresponding positive and negative. Con-
sequently, the restriction of the braiding of RepqGLm+n to RepqL is natural in the first factor
(resp. in the second) for morphisms of Uq(l)-modules commuting with the action of Uq(p) (resp.
Uq(p−)). ♢

2.4 The planar category RepqPt. Finally, we define a category RepqPt based on the graph-
ical calculus for rigid categories introduced in Section 1.3. The category RepqP of locally finite
Uq(p)-modules does not admit a pivotal structure compatible with those of RepqGLm+n and
RepqL. This is because the restriction of the pivotal structure of RepqGLm+n is not natural
for morphisms from RepqL. Hence, we define a universal version of RepqP using the graphical
calculus.

As in Section 1.3, we consider rectilinear isotopy classes of vertical planar graphs embedded
in R × [0, 1]. Edges are coloured with either ■, ■ or ■, with endpoints labelled by integers
following the same rules defined in that section. Vertices are coupons admitting the following
decorations:

, , , , n ∈ Z; (2.27)

, , , , m, n ∈ Z, m ̸= n; (2.28)

, , , , n ∈ Z≥1; (2.29)

, , , , n ∈ Z≤−1; (2.30)
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, ; (2.31)

, with m,n ∈ Z and all possible colourings and orientations. (2.32)

Let Rig(P) be the (k ⊗C(q) k)-linear category whose objects are sequences of oriented points
with integer values (compatible with orientations, cf. section 1.3) and coloured with ■, ■ and
■. The hom-spaces are spanned by rectilinear isotopy classes of planar graphs decorated as
above. For instance, the diagram

represents a morphism in Rig(P). Note that the decoration of the components of the graph is
uniquely determined by the source and the target.

We define a functor
evP : Rig(P) → RepqLt

as follows. On objects, it just forgets the integer labels and switch colours ■ ⇝ ■. On mor-
phisms, we interpret generators as follows:

• the morphisms in (2.27) represents the inclusion ■ ≡ Vm → V ≡ ■ and the projection
■ ≡ V → Vn ≡ ■, so the evaluation functor just forgets the integer labels and switches
colours ■ ⇝ ■; for instance,

7→ ;

• the morphisms in (2.28) represent the restriction of the pivotal structure of RepqLt, which
is trivial, so they are all sent to the corresponding identity;

• the morphisms in (2.29) represent the image of the pivotal structure of RepqGLt by the
restriction functor (see (1.4)), hence their images by the evaluation functor are

7→ ηr↑ = qt2 + q−t1 and 7→ (ηr↑)∗ = qt2 + q−t1 ,

and the two remaining morphisms are the inverses of these ones;
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• similarly, for n ∈ Z≤−1, we set

7→ ηl↑ = q−t2 + qt1 and 7→ (ηl↑)∗ = q−t2 + qt1 ,

and the two remaining morphisms in (2.30) are the inverses of these ones;

• the morphisms in (2.31) represent the natural isomorphism from (1.3) identifying the
duality induced by the restriction functor with the distinguished duality of RepqLt, so

7→ φr↑ = and 7→ (φr↑)−1 = ,

where φr is the isomorphism in (2.3);

• for crossings whose strands are both blue, we apply the same rules as for computing the
restriction functor (2.24), i.e.,

7→ +
(
q − q−1

)
,

7→ −
(
q − q−1

)
q−t2 ;

• for the rest of morphisms in (2.32), the evaluation functor just replaces the coupon by the
underlying crossing.

Lemma 2.15. The evaluation functor evP : Rig(P) → RepqLt is well-defined.

Proof. This is straightforward, since rectilinear isotopy is a relation holding in RepqLt.

Definition 2.16. We define the category RepqPt as the quotient of Rig(P) by the kernel of evP.

By construction, the evaluation functor induces a faithful functor

j∗
t : RepqPt → RepqLt ∼= RepqGLt ⊠ RepqGLt (2.33)

analogue the restriction functor j∗ : RepqP → RepqL.

Proposition 2.17. Let n,m ∈ N and φm,n : k ⊗C(q) k → C(q) the evaluation morphism defined
in Remark 2.7. Then, there exists a monoidal φm,n-linear functor

evP
m,n : RepqPt → RepqP

mapping
(↑, 2n) 7→ ι∗(Vm+n), (↑, 2n) 7→ π∗(Vm), (↑, 2n) 7→ π∗(Vn),

where ι∗ and π∗ are the restriction functors defined in section 1.5.
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Proof. The restriction functor j∗ : RepqP → RepqL is faithful so we may describe RepqP as a
subcategory of RepqL. By construction, the image of

RepqPt
j∗

t−→ RepqLt
evL

m,n−−−→ RepqL

lies in this subcategory, so it lifts to a monoidal functor evP
m,n as in the statement.

We get a commutative diagram of functors

RepqPt RepqLt

RepqP RepqL,

j∗
t

evP
m,n evL

m,n

j∗

hence we may interpret again the functor j∗
t as interpolating the functors j∗, for m,n ∈ N.

3 Universal parabolic restriction

In this section, we complete the picture by defining HOMFLY analogues of all the restriction
functors appearing in (1.6). These functors induce a (RepqGLt,RepqGLt ⊠ RepqGLt)-central
algebra structure on RepqPt, interpolating the one described in section 1.5.

3.1 Central algebra structure. We define functors

ι∗t : RepqGLt → RepqPt and π∗
t : RepqGLt ⊠ RepqGLt → RepqPt

analogue to the restriction functors RepqGLm+n
ι∗−→ RepqP and RepqL

π∗
−→ RepqP from section

1.5. Let us introduce first some terminology, that will be also useful later to extend the graphical
calculus for rigid categories to framed surfaces.

Let S be a framed surface, i.e., a surface S endowed with a trivialization f = (vp, wp)p∈S of
its tangent bundle. Let α : I → S be an immersed curve such that α̇(0) and α̇(1) are in the
direction of wα(0) and wα(1), respectively. Consider the map

ufα : I α̇−→ TS \ {0} f−→ S × (R2 \ {0}) proj.−−−→ R2 \ {0}
x

||x||−−→ S1.

Hence, ufα(0) = ±i and we can set

ufα(t) = exp
(

−iπ
(
θfα(t) ∓ 1

2

))
,

with θfα(0) = 0. The conditions imposed to α imply that θfα(1) ∈ Z.

Definition 3.1. The rotation number of α with respect to f is the integer

rotf (α) := θfα(1) ∈ Z.

For the rest of this subsection, we fix S = R × [0, 1] with its canonical framing. From a given
ribbon diagram Γ in R× [0, 1], we construct a decorated planar diagram Γ̂ as follows. Any open
strand of Γ defines an immersed curve α : I → R × [0, 1]. If α is oriented upwards at α(0), we
decorate this endpoint with nα(1) = 0; otherwise, we set nα(0) = 1. A decoration for α(1) is
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then uniquely determined by setting nα(1) = nα(0) + rotf (α). Next, if α is a closed strand (i.e. a
link component) with rotation number rα = rotf (α), we add

∣∣ rα
2
∣∣ dots at α(0). Finally, replace

every crossing by the corresponding coupon. For example:

Γ = ⇝ .

Precomposing and postcomposing again with the morphisms in (2.29)-(2.30), we can modify
the source and target of the planar graph obtained so that points oriented upwards (resp.
downwards) are all decorated by 0 (resp. −1). Let Γ̂ be the decorated planar graph thus
obtained. For instance, for the ribbon diagram depicted above, we get

Γ̂ = .

Roughly speaking, this procedure comes to forget the braided and the pivotal structure of
RepqGLt, so that the planar graph Γ̂ represents the same morphism as Γ but in the rigid
category underlying the ribbon category RepqGLt.

Recall that we have a restriction functor ι∗ : RepqGLm+n → RepqP. This functor is faithful,
but it does not preserve the distinguished dualities. We reflect this fact diagrammatically by
modifying the distinguished duality for ↑ as follows. Set

φ0 := and φ1 := .

Given a sequence ε = (ε1, . . . , εk) with εi ∈ {0, 1}, we define

φε := φε1 ⊗ · · · ⊗ φεk
. (3.1)

Finally, if D : ε1 → ε2 is a planar diagram between two such sequences, we define

ι∗t (D) := φε2 ◦D ◦ φ−1
ε1 .

This planar graph

Proposition 3.2. The assignment ↑ 7→ 0, ↓ 7→ 1, Γ 7→ ι∗t (Γ̂) yields a well-defined strict monoidal
functor

ι∗t : RepqGLt → RepqPt. (3.2)

Moreover, rest = j∗
t ◦ ι∗t , where j∗

t is the functor in 2.33.

Proof. First note that the isomorphisms ηr↑, ηl↑ and φr↑ commute with every endomorphism of ↑
in RepqLt. This implies that ι∗t (Γ̂1 ◦ Γ2) = ι∗t (Γ̂1) ◦ ι∗t (Γ̂2) for every pair of composable diagrams
Γ1,Γ2. Indeed, we can slide the dots appearing between Γ1 and Γ2 in ι∗t (Γ̂1)◦ ι∗t (Γ̂2) so that they
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lie all at the end of the corresponding strand. By replacing each pair dot - inverse dot appearing
this way by the identity, we get exactly ι∗t (Γ̂1 ◦ Γ2). For instance,

ι∗t (Γ̂1) ◦ ι∗t (Γ̂2) = = = = ι∗t (Γ̂1 ◦ Γ2).

Moreover, we trivially have that ι∗t (Γ̂1 ⊗ Γ2) = ι∗t (Γ̂1) ⊗ ι∗t (Γ̂2), hence the functor is strictly
monoidal.

On the other hand, it is straightforward to check that, if Γ is one of the generators of RepqGLt
(cf. Proposition 2.2), then j∗

t (Γ) ◦ ι∗t (Γ̂) = rest(Γ). The compatibility with the composition and
the tensor product implies then that the same is true for any diagram Γ. In particular, if Γ1
and Γ2 are two diagrams representing the same morphism in RepqGLt, then

j∗
t ◦ ι∗t (Γ̂1) = rest(Γ1) = rest(Γ2) = j∗

t ◦ ι∗t (Γ̂2).

Since j∗
t is faithful, we get that ι∗t (Γ̂1) = ι∗t (Γ̂2), which proves that the functor is well-defined.

Proposition 3.3. The assignment

(↑,∅) 7→ 0, (↓,∅) 7→ 1, Γ 7→ Γ̂,

(∅,↑) 7→ 0, (∅,↓) 7→ 1, Γ 7→ Γ̂,

yields a well defined strict monoidal functor

π∗
t : RepqGLt ⊠ RepqGLt → RepqPt. (3.3)

Proof. The assignment is functorial and strictly monoidal by the same arguments as in the
previous proof. The well-definiteness follows again from the fact that j∗

t is faithful. Indeed,
identifying RepqLt and RepqGLt ⊠ RepqGLt via the equivalence from Proposition 2.8, we have
that j∗

t ◦π∗
t = idRepqGLt⊠RepqGLt . Therefore, if Γ1 represent the same morphism Γ2 in RepqGLt⊠

RepqGLt, then the equality

j∗
t ◦ π∗

t (Γ1) = Γ1 = Γ2 = j∗
t ◦ π∗

t (Γ2)

implies that π∗
t (Γ1) = π∗

t (Γ2).

To sum up, we have four functors

RepqPt

RepqGLt RepqGLt ⊠ RepqGLt
j∗

t

ι∗t

rest

π∗
t

, (3.4)

such that the inner triangle is commutative, but not the outer one. This is a diagrammatic
version of the situation described in subsection 1.5. We will see now that the functors ι∗t and π∗

t
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induce a (RepqGLt,RepqGLt ⊠RepqGLt)-central algebra structure on RepqPt. By remark 2.14
and the relations defining RepqLt, the families of morphisms given by

, and ,

where the dotted strands can be replaced by any colour, are natural isomorphisms in RepqPt.
Hence, they define a canonical monoidal functor

Z : RepqPt → Z(RepqPt).

Let
F := ι∗t ⊠ π

∗
t : RepqGLt ⊠ (RepqGLt ⊠ RepqGLt) → RepqPt,

(u,v,w) 7→ uvw

(Γ1,Γ2,Γ3) 7→ ι∗t (Γ̂1)Γ̂2Γ̂3.

(3.5)

Theorem 3.4. F lifts to a braided monoidal functor

(Z ◦ F, J) : RepqGLt ⊠ (RepqGLt ⊠ RepqGLt) → Z(RepqPt),

where (−) stands for the opposite braided category. In particular, RepqPt is a (RepqGLt,RepqLt)-
central algebra.

Proof. The family of isomorphisms

: F (u1,v1,w1) ⊗ F (u2,v2,w2) → F (u1u2,v1v2,w1w2)

defines a monoidal structure on Z◦F . Checking that (Z◦F, J) is braided is an easy computation.

Note that, for an object uvw, the half braiding is given by

: − ⊗ uvw → uvw ⊗ −.

3.2 The centred bimodule RepqLt. We will now briefly describe additional structure in-
duced by the functors constructed in the previous section, which will serve as motivation for the
topological construction we will give later in this paper. In addition to the (RepqGLt,RepqLt)-
central structure on RepqPt defined in the previous section, we will also consider the following
three central algebras:

• RepqGLt is a (Vectk,RepqGLt)-central algebra via the central functor

Vectk ⊠ RepqGLt ≃ RepqGLt id−→ RepqGLt,
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• RepqLt is a (Vectk,RepqLt)-central algebra with central functor

Vectk ⊠ RepqLt ≃ RepqLt
id−→ RepqLt,

• and finally RepqLt is also a (RepqLt,RepqLt)-central algebra with central structure

RepqLt ⊠ RepqLt
id⊗id−−−→ RepqLt.

These four algebras define 1-morphisms in the Morita 4-category BrTens studied in [BJS21].
Composing RepqPt with RepqGLt, we get a central functor

Vectk ⊠ RepqLt → RepqGLt ⊠
RepqGLt

RepqPt ≃ RepqPt,

where the action of RepqPt is the one induced by the functor j∗
t . Similarly, composing the two

central structures on RepqLt, we get another central functor

Vectk ⊠ RepqLt → RepqLt ⊠RepqLt

RepqLt ≃ RepqLt,

where RepqLt acts on itself via the identity functor. On the other hand, note that RepqLt is a
(RepqPt,RepqLt)-bimodule via the functor

RepqPt ⊠ RepqLt
j∗⊗id−−−→ RepqLt

and it is straightforward to check that the braiding induces a (RepqPt,RepqLt)-centered structure
(see [BJS21, section 3] for the definitions). Centred structures are the 2-morphisms in BrTens,
so we have the following diagram in BrTens:

Vectk RepqGLt

RepqLt RepqLt.

RepqGLt

RepqLt RepqPtRepqLt

RepqLt

In the language of factorization algebras (see [BJS21, section 3] and the figures therein), this
structures are governed by embedding disks in the following stratified space:

Figure 3: Centered (RepqPt,RepqLt)-bimodule structure of RepqLt as a factorization algebra.
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Figure 4: Decorated planar graph on a framed surface (we omit the integer labels for simplicity).

4 Defect planar theories

The graphical calculus for rigid categories naturally generalizes to surfaces with a chosen fram-
ing, producing a 2-dimensional framed TFT constructed from a rigid monoidal category’s alge-
braic data. The (RepqLt,RepqPt)-module structure on RepqLt produces a morphism between
the theories associated with RepqLt and RepqPt, that we will describe through line defects on
surfaces.

4.1 One-coloured theories. We describe here the planar theory induced by RepqPt. A
similar description hold for the rigid category underlying RepqLt.

Definition 4.1. Let M be a d-dimensional oriented manifold, and let n ≥ d. An n-dimensional
framing of M is defined as a homotopy class of orientation-preserving isomorphisms f : TM ⊕
Rn−d → M × Rn between vector bundles over M . When n = d, we refer to this as a framing.

Note that if M = I or M = S1, each choice of orientation admits exactly one 2-framing. We
write I, S1 for the standard positive orientation and I, S1 for the negative one.

Definition 4.2. A marking on an oriented surface S is a (possibly empty) collection B of ori-
entation preserving embeddings C ↪→ ∂S, with C a 1-dimensional connected oriented manifold.
Every marking has a splitting B = B+ ⊔B− into positively and negatively oriented submanifolds.

Definition 4.3. A rectilinear embedding is an embedding M ↪→ N between framed manifolds
which preserves the framing up to rescaling in each direction.

Let (S, f,B) be a marked framed surface. We consider the following class of planar graphs Γ
embedded in S (see Figure 4):

• edges are coloured with ■, ■ or ■;

• the endpoints α(0) and α(1) of every edge α are attached to either a coupon or one of the
marked boundary components. Moreover, they are labelled with integers nα(0) and nα(1)
such that nα(1) = nα(0) + rotf (α);

• coupons are rectilinearly embedded in the surface and decorated with morphisms of RepqPt.

Set B+ = {Ci}i=1,...,m and B− = {C ′
j}j=1,...,n. The intersection of Γ with the marking deter-

mines a family of configurations of points (aC1 , . . . , aCm , bC′
1
, . . . , bC′

n
) that we refer as boundary

conditions. We denote by ZPt(S, f,B)(aC1 , . . . , aCm , bC′
1
, . . . , bC′

n
) the (k ⊗C(q) k)-linear space

generated by planar graphs with given boundary conditions, modulo the following relations:

• rectilinear isotopies: these are isotopies of the surface S fixing ∂S such that coupons remain
parallel to the framing throughout the isotopy;
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• framed skein relations: ∑i λi(φ,Γi) ∼ 0 if there exists a rectilinear embedding ι : [0, 1]2 ↪→
S such that ∑i λiι

−1 (Γ ∩ ι([0, 1])) = 0 in RepqPt.

As a particular case, we have:

Definition 4.4. Let (A, frad) be the annulus endowed with its radial framing. The cylinder
category Cyl(RepqPt) is the category with:

• objects: finite configurations of coloured directed points on the circle S1 decorated by
integers compatibly with the orientation;

• morphisms: (k⊗C(q) k)-linear combinations of planar diagrams on (A, frad), modulo recti-
linear isotopy and framed skein relations.

Composition is given by inserting one copy of A into another one.

We set
ZPt(I) = RepqPt and ZPt(S1) = Cyl(RepqPt),

and negatively oriented 1-manifolds are assigned the opposite categories. If C ∈ B+, then ZPt(C)
acts on ZPt(S, f,B) by gluing rectangles/cylinders. Namely, every configuration of points on C
determines an object b of ZPt(C). If Γ: a → b is a morphism in ZPt(C), then gluing C×I along
the marking induces a linear map

ZPt(S, f,B)(Γ) : ZPt(S, f,B)(−, b,−) → ZPt(S, f,B)(−, a,−).

The analogue holds for negative orientations, so we get a functor

ZPt(S, f,B) :

⊠
C∈B+

ZPt(C)

⊠
⊠
C∈B−

ZPt(C)


op

→ Vect.

Lemma 4.5. Let (S, f,B) be a marked framed surface surface with C,C ∈ B for some 1-
dimensional manifold C. Let (glC(S), glC(f), glC(B)) be the marked framed surface obtained by
gluing S along C. Then,

ZPt (glC(S), glC(f), glC(B)) (−,−) =
∫ c∈ZPt (C)

ZPt(S, f,B)(−, c, c,−).

Proof. The proof is the same as in [Wal06, Theorem 4.4.2].

We have now all the ingredients to define a framed TFT with target category Bimod. Let
Bordfr

1 (2) the category of two-dimensional framed cobordisms, whose objects are 1-dimensional
2-framed manifolds and whose morphisms are marked framed cobordisms. It follows straight-
forward that:

Theorem 4.6. The construction above defines a symmetric monoidal functor

ZPt : Bordfr
1 (2) → Bimod,

hence a 2-dimensional framed TFT. ■

Considering the category RepqLt just as a rigid monoidal category, we can define an associated
2-dimensional framed TFT that can be described in the same lines as ZPt . We denote it by
ZLt .
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Figure 5: Planar graph on a stratified square.

4.2 Planar model around the defect line. The (RepqLt, RepqPt)-bimodule structure of
RepqLt has a diagrammatic interpretation in terms of planar diagrams on a stratified square.
We ignore for now its (RepqLt,RepqPt)-centred structure, that will be described later in section
5.2 when we address three-dimensional theories on surfaces. Recall the functor j∗ : RepqPt →
RepqLt defined in (2.33). It induces two morphisms in Bimod, namely the bimodules

F1 := HomRepqLt(−, j∗(−)) : RepqPt ⊠ RepqL
op
t → Vect

and
F2 := HomRepqLt(j∗(−),−) : RepqLt ⊠ RepqP

op
t → Vect.

Let I∗ be the unit interval with a point marked in the middle and E = I × I∗ a square with
a horizontal line defect I ×

{
1
2

}
. We will call Lt-region (resp. Pt-region) the half-square under

(resp. above) the defect. The defect itself will be decorated by Lt as well and we will call it
Lt-line. We consider planar graphs Ω in E of the following form (see Figure 5):

• endpoints are attached to the top and bottom bases of the square;

• Ω is coloured by RepqPt (resp. by RepqLt) on the Pt-region (resp. on the Lt-region);

• edges can meet transversally the line defect at a coupon decorated with a morphism of
RepqLt in a compatible way: if the edges coming from the Lt-region (resp. the Pt-region)
are coloured with X1, . . . , Xm (resp. Y1, . . . , Yk), then the coupon is decorated with a
morphism f : X1 ⊗ · · · ⊗Xm → j∗(Y1) ⊗ · · · ⊗ j∗(Yk).

The assignment

7→ j∗(ΩPt) ◦ f ◦ ΩLt ∈ HomRepqLt(Y, j∗(X)),

extends to a linear map defined on the (k⊗C(q) k)-linear space spanned by diagrams with Y and
X fixed. Its kernel is given by generated by:

• planar skein relations induced by RepqLt and RepqPt on each side of the defect line;
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• relations of the form

= . (4.1)

Moding out by all of them, we get a diagrammatic description of F1, where the actions of
RepqPt and RepqLt are just given by stacking morphisms above and below. Note that, since
every stratified diagram Ω represents a morphism in RepqLt, (4.2) implies that it is equivalent
to another diagram Ω̃ where Ω̃Pt and f are just identities, that is:

= .

We will not represent the identity coupon in the pictures, so whenever a bunch of strands crosses
the Lt-line (changing their colour), they must be thought as attached to an identity coupon.
The bimodule F2 can be described equally by just exchanging the Pt and the Lt region in the
diagrams. Similarly, we have functors

G1 : Cyl(RepqPt)⊠ Cyl(RepqLt)op → Vect,

G2 : Cyl(RepqLt)⊠ Cyl(RepqPt)op → Vect,

mapping an object X ⊠ Y to the linear space spanned by planar diagrams with boundary
conditions (X,Y ) on a stratified cylinder S1 × I∗, modulo skein relations on each side of the
defect and the local relations depicted in (4.2) near the defect.

Lemma 4.7. In Bimod, we have

F2 ◦ F1 = idRepqLt and G2 ◦G1 = idCyl(RepqLt).

Proof. By definition,

(F2 ◦ F1)(X ⊠ Y ) =
∫ Z∈RepqPt

HomRepqLt(X, j∗(Z)) ⊗ HomRepqLt(j∗(Z), Y ),

and the canonical map f ⊗ g → g ◦ f yields an isomorphism between the coend on the right
hand side and HomRepqLt(X,Y ). The same holds for G2 ◦G1.

Remark 4.8. We can interpret the proof pictorially. The coend can be represented via diagrams
in a squared with two horizontal Lt-defects. The region between them is decorated by Pt, while
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the regions above and below are decorated by Lt. Applying relations (4.2), we have

= ≡ .

This suggests that it may be possible to modify stratifications making appear/disappear regions
decorated by Pt in the planar theory associated with Lt. As we will see, the GLt-skein algebra
acts on the planar theory associated with Pt, we may use this to induce an action of the GLt-
skein algebra on the Lt-theory, by making appear Pt-regions and acting on them. These ideas
will be made precise later on by describing topologically the central algebras and the centred
bimodule from sections 3.1 and 3.2. ♢

4.3 Planar defect theory. The planar theories ZPt and ZLt induced by the rigid categories
RepqPt and RepqLt, respectively, glue together via the bimodule structure, yielding a two-
dimensional theory on stratified surfaces. Recall that a bipartite surface is a surface S with a
stratification

ϕ : S → (A ≥ B ≤ C) .
We label ϕ−1(A) and ϕ−1(C) with Lt and Pt, respectively, and we call them the Lt-region and
the Pt-region. The 1-dimensional stratum ϕ−1(B) is decorated with Lt and we refer to it as the
Lt-line.

Definition 4.9. A compatible marking of (S, f, ϕ) is a marking B such that each of its com-
ponents is contained either in the Lt-region or the Pt-region. Therefore, we have a splitting
B = BLt ⊔ BPt .

Let (S, f, ϕ,B) be a bipartite framed surface with compatible marking. For each C ∈ B, we
set

Z(C) :=
{

ZLt(C), if C ∈ BLt ,

ZPt(C), if C ∈ BPt .

Take UC ∈ Z(C) for each C ∈ B and consider the (k ⊗C(q) k)-linear space spanned by planar
graphs as in section 4.1, with given boundary conditions, coloured with RepqLt (resp. RepqPt)
in the Lt-region (resp. the Pt-region) and meeting transversally the defect at coupons decorated
with morphisms from RepqLt as explained in section 4.2. We set Z(S, f, ϕ,B) ((UC)C∈B) for its
quotient by

• skein relations induced by RepqLt and RepqPt at the interior of the 2-dimensional regions;

• stratified skein relations around the Lt-line: these are the relations induced by the local
model described in the previous section.

The assignment

Z(S, f, ϕ,B) :
(
⊠

C∈B+
Z(C)

)
⊠

(
⊠

C̄∈B−

Z(C)
)op

→ Vect,

(UC)C∈B 7→ Z(S, f, ϕ,B) ((UC)C∈B)
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is well-defined and functorial, since all the relations from RepqLt and RepqPt hold. We shall
abbreviate by Z(S) whenever there is no risk of confusion.

Lemma 4.10 ([Wal06, Theorem 4.4.2]). Let (S, f, ϕ,B) be a bipartite framed surface with
compatible marking. Let glC(S) the surface obtained by gluing S along a boundary component
C, with C,C ∈ BPt (alternatively, in BLt). Then,

Z(glC(S))(−) =
∫ U∈Z(C)

Z(S)(−, U, U),

where the components decorated by U on the RHS are C and C. ■

Theorem 4.11. The assignment

Z : Bordbip,fr
1 (2) → Bimod

defines a symmetric monoidal functor from the category of 2-dimensional bipartite framed cobor-
disms, hence a 2-dimensional framed TFT.

Proof. By the previous lemma, the construction is compatible with gluing surfaces along bound-
ary components of a single color. For the general case, since we are working with compatible
markings, it suffices to observe that we may first glue along the subregion coloured by Pt, and
then along that coloured by Lt.

5 Defect three-dimensional theories

In this section, we extend the theories introduced in the above to three-dimensional theories. The
local models around the surface and defect lines are given by the algebraic structures described
in section 1.5.

5.1 Parabolic surface defects. Following [BJ25], we construct a local model for surface
defects using the central algebra structure on RepqPt constructed in section 3.1. Let S = [0, 1]2
endowed with its canonical framing and let I∗ be the unit interval marked at 1/2, so that
E∗ := [0, 1]2 × I∗ is a stratified cube with a framed defect wall [0, 1]2 × {1/2} . We consider the
following class of stratified ribbon graphs in E∗ (see Figure 6):

• endpoints are attached to one of the following regions:

E0 := [0, 1] × {0} × {0}, E1/2 := [0, 1] × {1/2} × {0, 1} or E1 := [0, 1] × {1} × {1};

• the defect wall cuts the ribbon graph Ω into three pieces:

1. ΩL := Ω ∩
(
[0, 1]2 ×

[
0, 1

2

))
represents a morphism of SkCatLt([0, 1]2);

2. ΩG := Ω ∩
(
[0, 1]2 ×

(
1
2 , 1
])

represents a morphism of SkCatGLt([0, 1]2);

3. ΩP := Ω ∩ ([0, 1] × {1/2}) is a planar graph as defined in section 2.4, with the only
difference that we allow endpoints to lie in the interior of S if they are attached to
either ΩG or ΩL;

• ΩG and ΩL meet transversally the defect at a coupon of ΩP compatible with the colour of
the strands.

33



If Ω is such a ribbon graph, we set

V := Ω ∩ E0, W := Ω ∩ E1, a := Ω ∩ [0, 1] × {1/2} ∩ {0}, b := Ω ∩ [0, 1] × {1/2} ∩ {1}

for the objects of RepqGLt, RepqLt and RepqPt determined by its endpoints. We say that Ω is
a stratified (a, b, V,W )-ribbon graph on the disk.

Fix a, b, V,W and consider the (k⊗C(q)k)-linear space spanned by stratified (a, b, V,W )-ribbon
graphs modulo local relations happening on either one side of the defect wall or the defect wall
itself. This means that ∑i λiΩi ∼ 0 if either ∑i λiΩG

i = 0 in SkCatGLt([0, 1]2), ∑i λiΩL
i = 0

in SkCatLt([0, 1]2) or ∑i λiΩP
i = 0 via the local relations introduced in section 2.4 applied to

the defect. We also mod out by framed stratified isotopy: that is, by isotopies of E∗ fixing
the boundary, preserving the interior of the defect and such that coupons in the defect remain
parallel to the framing throughout the isotopy. Let La,b,V,W be the resulting space. We define
next an evaluation morphism for stratified ribbon graphs. To a stratified (a, b, V,W )-ribbon
graph Ω as above, we associate a morphism in RepqPt in the following way:

• we modify ΩG as in the definition of the restriction functor (3.2), that is:

1. we label the initial point of any open strand α by nα(0) = 0 or nα(0) = 1 depending
on the orientation;

2. we label the endpoint by nα + rotfα;

3. we use the pivotal structure of RepqGLt (morphisms in (2.29) and (2.30)) to switch
the label of every endpoint to 0 or 1;

4. we replace the graph Ω̃G thus obtained by φ−1
ε2 ◦Ω̃G ◦φε1 , where φε is the isomorphism

in (3.1);

• we apply the same procedure to ΩL (here the pivotal structure is the trivial one);

• we switch the decoration of every endpoint of ΩP to either 0 or 1 by concatenating with
the pivotal structures of RepqGLt and RepqLt (morphisms in (2.28), (2.29) and (2.30));

• we project the resulting ribbon graph into the defect wall and replace all the crossings
appearing by the corresponding half-twist from Z(RepqPt) (cf. section 4.1).

Let Ω̂ be obtained by applying this procedure to Ω. Projecting E0 and E1 onto E1/2, we get
two configurations of labelled points Va and Wb. The planar graph Ω̂ represents thus a morphism
fΩ ∈ HomRepqPt(Va,Wb) (see Figure 6 for an example). We define the evaluation morphism by

eva,b,V,W : La,b,V,W → HomRepqPt(Va,Wb),
Ω 7→ fΩ,

(5.1)

on generators and extending linearly.

Lemma 5.1. The evaluation morphism eva,b,V,W is well-defined, i.e., fΩ does not depend on the
equivalence class of Ω in La,b,V,W .

Proof. We have to check that fΩ is invariant under skein and isotopy relations applied to Ω. For
skein relations, this is just the fact that the restriction functors ι∗t and π∗

t (cf. diagram (3.4))
are well-defined. For the topological relations, first note that stratified isotopy does not fix the
defect wall, so the position a strand intersect the defect may change. In particular, we may
move a crossing between two strands intersecting transversally the defect from one side to the
other by applying such an isotopy. For instance, the stratified ribbon graphs representd (as seen
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7→

Figure 6: On the left, a stratified ribbon graph on the disk; on the right, its evaluation in RepqPt.

from the front) by

and (5.2)

are isotopic, however their projections are

and ,

which are not related by isotopy in RepqPt. The naturality of the blue crossing (cf. Remark
2.14) guarantees that they have the same evaluation.

The previous observation implies that crossings can pass through the defect, hence we have
to prove that the evaluation is invariant under framed Reidemeister moves happening either in
one side of the defect or in the defect itself. For the Reidemeister moves II and III, it suffices to
note that crossings are sent to half-braidings in Z(RepqPt), hence they are invertible and satisfy
the corresponding Yang-Baxter equation. For the framed Reidemeister move I

↔ ,

this is a consequence of the restriction 2.24 being well-defined and the fact that all relations
holding in RepqPt come from relations in RepqLt.

5.2 Defect lines. We introduce finally defect lines decorated by RepqLt and we use the
(RepqLt,RepqPt)-centre structure to define a local model around them. Let E = I3 be the
cube, that we endow with the stratification defined by the following figure:
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Figure 7: We consider two horizontal defect walls decorated with RepqLt and RepqPt, and a vertical
wall decorated with RepqGLt. These walls meet at a 1-dimensional stratum decorated with
RepqLt. The region below the horizontal wall is the Lt-region, the one over the Lt-wall is the
Vectk-region and, finally, the region over the Pt-wall is the GLt-region.

We consider the following class of ribbon graphs Ω, that generalizes the ones introduced in
the previous section:

• the endpoints of Ω lie on the bold intervals and we suppose that they are all at different
depths, so that projecting them into the horizontal wall produces no intersections;

• each part of the graph is decorated accordingly to its region. In particular, the Vectk-
region is empty;

• every edge lies entirely in one of the strata and can be attached to a coupon lying in a
stratum whose dimension differ at most by one (that is, they can not go through the defect
line directly from one of the three-dimensional regions).

As usual, we consider these graphs up to framed stratified isotopies of the cube.

Fix a configuration of coloured oriented points P on the bold intervals and let E(P) be the
(k ⊗C(q) k)-linear space spanned by isotopy classes of ribbon graphs whose endpoints match
P. Projecting P into the horizontal walls, we get two configurations X and Y representing
objects of RepqLt and RepqPt, respectively. Let Ω ∈ E(P) be a ribbon graph, following the
definition of the evaluation morphism 5.1, we can project Ω into the horizontal defects, replace
the crossings appearing by the corresponding half braiding and introduce the pivotal structures,
so that we get a planar graph Ω̃ on a stratified square as in Figure 5, representing a morphism
fΩ ∈ HomRepqLt(Y, j∗(X)).

Lemma 5.2. The linear map defined by the assignment

E(P) → HomRepqLt(Y, j∗(X)),
Ω 7→ fΩ,

is well-defined, i.e., it does not depend on the isotopy class of Ω.

Proof. Extending the vertical wall up to the bottom of the cube, it cuts the ribbon graph Ω
into two subgraphs: Ω1, lying under the Lt-wall, and Ω2, lying under and over the Pt-wall. The
planar diagram Ω̃ can then be obtained by projecting Ω1 and Ω2 separately and gluing them
along the Lt-defect line. The projections Ω̃1 and Ω̃2 are obtained as in the definition of the
evaluation morphism (5.1), using the trivial (Vect,RepqLt)-central structure of RepqLt for Ω̃1

and the (RepqGLt,RepqLt)-central structure of RepqLt for Ω̃2. Hence, by the same arguments
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Figure 8: Schematic view of the section of a decorated cylinder. The horizontal line represents the defect
wall. The orange points are sections of the defect lines. The blue vertical lines represent the
GLt-wall.

as in Lemma 5.1, they do not depend on the isotopy class of Ω1 and Ω2. This shows that fΩ
is invariant under isotopies of the stratified cube happening entirely at one of the sides of the
vertical wall.

It remains to check that fΩ is also invariant under isotopies making a part of the diagram move
through the vertical wall. This is the diagrammatic counterpart of the fact that the bimodule
RepqLt is centered: the Lt-region can act on the defect line both through the Pt-wall and through
the Lt-wall, and we want to show that both actions in fact coincide. This follows from relation
(4.2) and the definition of the central structures. Indeed, when we project Ω into the defect, we
replace all the crossing appearing by the corresponding half-braidings. In particular, when one of
the strands involved comes from the Lt-region (this is the only case of interest), the half-braiding
is the braiding β of RepqLt (cf. section 3.1). Therefore, projecting into the Pt-wall makes appear
a coupon decorated with π∗(β), while applying an isotopy and projecting into the Lt-wall makes
appear a coupon decorated with β itself. Relation (4.2) and the fact that j∗ ◦ π∗ = idRepqLt

imply that both diagrams represent the same morphism in HomRepqLt(Y, j∗(X)).

5.3 Three-dimensional defect theory. We introduce finally the three-dimensional theory
with defects. Let (S, f, ϕ) be a bipartite framed surface. We label ϕ−1(A) and ϕ−1(B) by Lt
and ϕ−1(C) by Pt. The stratification ϕ induces an stratification of the cylinder S × I decorated
as follows (see Figure 8):

• the horizontal wall S ×
{

1
2

}
is decorated as (S, ϕ);

• the cylinder ϕ−1(C) ×
(

1
2 , 1
]

and the vertical walls ϕ−1(B) ×
(

1
2 , 1
]

are labelled with GLt;

• the cylinder ϕ−1(A) ×
(

1
2 , 1
]

is labelled with Vectk;

• the region S ×
[
0, 1

2

)
under the horizontal wall is entirely decorated with Lt.

Let B be a compatible marking of the surface. We consider isotopy classes of ribbon graphs
Ω on S (see Figure 9) such that:

• Ω does not intersect the Vectk-region and it is coloured accordingly with the labelling on
the other regions;

• the endpoints of Ω are attached to either S × {±1} or one of the components marked on
the boundary of the horizontal wall;

• every edge lies entirely in one of the strata and can be attached to a coupon rectilinearly
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Figure 9: Stratified ribbon graph on an annulus entirely labelled by Pt.

embedded in a stratum whose dimension differ at most by one (this means, again, that
cannot go directly from the GLt-region to the Lt-line).

Call SPt the region of S decorated with Pt and fix boundary conditions X ∈ SkCatGLt(SPt),
Y ∈ SkCatLt(S) and UC ∈ Z(C) for every C ∈ B. We set ES (X,Y, (UC)C∈B) for the linear space
spanned by ribbon graphs as above, modulo local relations induced by RepqGLt and RepqLt on
the three-dimensional regions, and by the local models described in sections 5.1 and 5.2 near
the defects. The assignment

A(S, f, ϕ,B) :
(
⊠
C∈B

Z(C)
)
⊠ SkCatGLt(SPt)⊠ SkCatLt(S)op → Vect,

((UC)C∈B, X, Y ) 7→ ES (X,Y, (UC)C∈B) ,

is functorial. The action on morphism is given by horizontally gluing cylinders along the com-
ponents marked on the defect wall, and by vertically stacking diagrams representing morphisms
in the skein categories.

Lemma 5.3. Let (S, f, ϕ,B) be a bipartite framed surface with compatible marking. Let glC(S)
the surface obtained by gluing S along a boundary component C, with C,C ∈ BPt (alternatively,
in BLt). Then,

A(glC(S))(−) =
∫ U∈Z(C)

A(S)(−, U, U),

where the components decorated with U on the RHS are C and C.

Proof. Again, this is essentially the proof of [Wal06, Theorem 4.4.2]. Gluing along C induces
morphisms

glU : A(S)(−, U, U) → A(glC(S))(−)

for every U ∈ Z(C). Moreover, if f : U → V is a morphism in Z(C), Ω is a stratified ribbon
graph representing an element of A(S)(−, U, V ) and f ⋆Ω (resp. Ω ⋆ f) are the graphs obtained
by gluing f to Ω along C (resp. C), then the graphs glU (f ⋆Ω) and glV (Ω ⋆ f) are related by an
isotopy supported on a tubular neighbourhood of ∂S. Therefore, they define the same element
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Figure 10: Applying isotopy and skein relations, we may always cut a graph along a planar component.

of A(glC(S))(−) and the diagram

A(S)(−, U, U)

A(S)(−, U, V ) A(glC(S))(−)

A(S)(−, V, V )

gla−⋆f

f⋆− glb

(5.3)

commutes. Let us show that A(glC(S))(−) is universal for this property.

Let E be a vector space together with linear maps

φU : A(S)(−, U, U) → E

making the equivalent diagrams commute. We have to show that there is a unique linear map

φ : A(glC(S))(−) → E

such that φa = φ ◦ gla for every U ∈ Z(C). Let Ω be a stratified ribbon graph in glC(S) × I
representing an element of Z(glC(S))(−). Applying isotopy and stratified skein relations, we
may locally project Ω onto the defect, so that we may suppose that there is a neighborhood of
C × I where Ω is represented by a planar graph contained in the defect (see Figure 10). Let
U be the intersection of Ω with C ×

{
1
2

}
, which determines an object of Z(C). Cutting along

C × I, we get a ribbon graph ΩU in S × I defining an element of A(S)(−, U, U). If φ exists,
then φ(Ω) = φU (ΩU ) so it is uniquely defined.

To prove the existence, suppose first that Ω̃ is another stratified ribbon graph representing the
same element of A(glC(S))(−) and related to Ω by an isotopy shifting a collar neighbourhood
through C × I. Then, cutting along C × I yields an ribbon graph Ω̃V in S × I and, since we
may suppose that it is planar around C × I, the commutativity of (5.3) implies that glU (ΩU ) =
glV (Ω̃V ). On the other hand, if Ω and Ω̃ are related by an isotopy of glC(S) supported in a
cube not intersecting C × I, then ΩU and Ω̃U are related by the same isotopy of S, so that they
represent the same element of A(S)(−, U, U) and φU (ΩU ) = φU (Ω̃U ). Therefore, φ is compatible
with isotopies.

Finally, if Ω and Ω̃ are related by a skein relation on a cube not intersecting C × I, then
ΩU and Ω̃U are related by the same relation and they represent the same element. If the skein
relation occurs in a cube intersecting S, we can apply an isotopy moving it off of C × I. We get
stratified ribbon graphs Ω′ and Ω̃′ related by a skein relation on a cube not intersecting C×I, so
glU ′(Ω′

U ′) = glU ′(Ω̃′
U ′). Moreover, the isotopy invariance of φ implies that glU (ΩU ) = glU ′(Ω′

U ′)
and glU (Ω̃) = glU ′(Ω̃U ′). This proves that φ is compatible with skein relations.
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⇝

Figure 11: Gluing stratified cylinders along the boundary modifies the stratification.

Theorem 5.4. The assignment

A : Bordbip,fr
1 (2) → Bimod

defines a symmetric monoidal functor from the category of 2-dimensional bipartite framed
cobordisms, hence a 2-dimensional framed TFT. It coincides with the planar theory Z on one-
dimensional manifolds.

Proof. As in Theorem 4.11, the compatibility with gluing/cutting surfaces follows from the
previous lemma and the fact that we are considering compatible markings.

6 The HOMFLY skein bialgebra

6.1 The coproduct map. Consider a bipartite framed surface (S, f, ϕ,B) with compatible
marking. As above, denote by SPt the region of S decorated with Pt. Applying the three-
dimensional TFT A, we get a functor

A(S) :
(
⊠
C∈B

Z(C)
)
⊠ SkCatGLt(SP

t )⊠ SkCatLt(S) → Vect.

Choose boundary conditions UC ∈ Z(S) for every component C ∈ B and fix the empty config-
urations ∅ ∈ SkCatGLt(SPt) and ∅ ∈ SkCatLt(S) on the top and bottom bases of S × I. By
construction, the vector space ES((UC)C∈B) obtained from A(S) comes with a left and a right
action of the skein algebras SkGLt(SPt) and SkLt(S), respectively. By choosing an appropriate
stratification ϕ, this vector space is indeed isomorphic to SkLt(S):

Proposition 6.1. Suppose that B ≠ ∅ and that ϕ consists of a family of cylinders inserted
along the marked components as in Figure 11. Then, there is a natural family of isomorphisms
of vector spaces

A(S)(−,∅,∅) ∼= ZLt(−).

Proof. Fix boundary conditions U and let Ω be a stratified ribbon graph representing an element
of A(S)(U,∅,∅). Since there is no strand attached to S × {±1}, the 3-dimensional stratified
skein relations allow to project Ω into the defect, so that it can be represented by a planar
graph on S ×

{
1
2

}
, coloured by RepqPt in the Pt-region and by RepqLt in the Lt-region. We

first proof that this graph can be written as a linear combination of diagrams where none of the
strands is coloured in ■. Indeed, suppose that α is a component coloured in blue. If α is an
open strand, then it is attached to one of the intervals/circles marked on the boundary, hence it
traverses the 1-dimensional Lt-defect. Crossing these defect lines, switches its colour to ■ near
its endpoints. We can then apply relation (2.13) inside the Lt-disks/cylinders and make one of
the inclusion/projections appearing on each term cross the defect (relation (4.2)) and slide along
α (by naturality, cf. Remark 2.14) to reach the opposite endpoint (see figure below). The part
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of α lying in the Pt region is now entirely coloured with ■ and ■:

(2.13)= +

(4.2)= +

(4.2)= + .

Similarly, if α is a closed strand, we can push it close to a marked component by applying and
isotopy. Then, relation (4.2) allows to project it partially into the Lt-region where we can apply
the same trick to write it as a combination of a green and a red component.

Let us call Ω̃ a diagram obtained by Ω by applying the previous transformations. Since it
is entirely coloured by ■, ■ and ■, it represents an element of ZLt(S)(U). This elements is
well-defined, since all the relations applied to switch ■ to ■ are local relations from RepqLt,
hence they hold in ZLt(S)(U). We get a linear map

A(S)(U,∅,∅) → ZLt(S)(U), Ω 7→ Ω̃.

An inverse of this map is constructed as follows. Given a planar diagram on Γ on S coloured
by RepqLt, we can apply isotopies and naturality to make all the “forbidden” morphisms slide
along open strands and lie arbitrarily closed to the marked components of the boundary, so that
they are all inside one of the embedded disks/cylinders defining an Lt-region. Note that this
can be done in a unique way so that the intersection of the strand with the Pt-region is coloured
in either ■ or ■. We get this way a well-defined graph Γ̂ on the stratified defect wall and it
is straightforward to see that Γ 7→ Γ̂ defines an inverse for of the linear map below. Naturality
follows from the fact that these maps do not modify diagrams in a tubular neighborhood of the
marked boundary components.

Therefore, the presence of regions coloured by RepqLt near the boundary of the defect wall
allows to apply relation (2.13) to components coloured with ■, yielding an identification ■ = ■.
In the case where there are strands crossing transversally the defect, this identification still
holds, but only on closed components:

Proposition 6.2. Let B and ϕ be as in the previous proposition and fix empty boundary
conditions on each of the components marked on the defect. Then,

A(S)(∅,−,−) ∼= pRes(S)(∅,−,−)
/

⟨■ = ■ on closed components on the defect wall⟩ .

Proof. The idea of the proof is the same as in the previous preposition: we can construct
linear maps between both spaces by pushing a part of the diagram near one the Lt-regions on
the boundary, then apply relation (4.2) to project into the Lt-region and make the “forbidden”
morphisms slide along closed components. This allows to decompose closed components coloured
with ■ into linear combinations of green and red diagrams, yielding the identification ■ = ■. On
open strands, this induces no new relations: since they are all attached to S×{±1}, “forbidden”
morphisms cannot slide along then, so making them appear just produce a different way of
writing the same morphism, but they induce no relation.
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Combining both propositions, we see that A(S)(∅) is isomorphic as a linear space to SkLt(S),
and by functoriality of A(S) we have now actions of both SkGLt(S) and SkLt(S):

Corollary 6.3. Let (S, f,B) be a marked framed surface with B ̸= ∅. Then, the SkGLt(S) −
SkLt(S)-bimodule A(S)(∅) is isomorphic to SkLt(S) as a linear space. In particular, SkLt(S)
becomes a left SkGLt(S)(S)-module under this identification. ■

We treat now the case of the torus S = T2. Let (T2, f, ϕ) be a framed torus endowed with a
stratification ϕ whose Ht-region consist of only a disk embedded in T2. By the same argument
as in the proof of Propositions 6.1 and 6.2,

A(T2, f, ϕ)(∅) ∼= SkLt(T2)

Moreover, the Pt-region is homeomorphic to a punctured torus, so we have an action

SkGLt(T2 \ D2) ⊗ SkLt(T2) → SkLt(T2)

of the GLt-skein algebra of this puncture torus.

Proposition 6.4. The action above descends to an action of the GLt-skein algebra of the torus.

Proof. A loop α around the puncture acts by multiplication by

π∗
t ◦ rest

 
on the Lt-disk hence the action descends to the quotient

SkGLt(T2 \ D2)
/〈

α =
〉

∼= SkGL≈(T2).

Let (S, f) be any framed surface and choose B ̸= ∅ if ∂S ̸= ∅. Let ϕ be a stratification of S
as in Propositions 6.1 and 6.4, so that SkGLt(S) acts on SkLt(S):

Proposition 6.5. The morphism SkGLt(S) → A(S)(∅,∅) defined by acting the empty stratified
diagram induces a C(q)-algebra homomorphim

∆̃f : SkGLt(S) → SkLt(S).

Proof. The fact that ∆̃f is an algebra homomorphism follows from the functoriality of A(S).

Composing ∆̃f with the isomorphism in Corollary 2.9, we obtain a C(q)-algebra morphism

∆f : SkGLt(S) → SkGLt(S) ⊗C(q) SkGLt(S) (6.1)

whose restriction to k ∼= k · 1∅ is (2.19). By construction, it can be computed on links by taking
a diagram on the surface where every crossing, cup and cap has been replaced by their image by
the restriction functor (2.24), and applying relations (2.20)-(2.3) and (2.13) to split the diagram
into two coloured diagrams, that we consider as lying in two different copies of SkGLt(S). Here by
cup and cap we mean a portion of the diagram where the rotation number increases or decreases
by 1.
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Proposition 6.6. The coproduct in (6.1) is coassociative.

Proof. The map

(∆f ⊗ id) ◦ ∆f : SkGLt(S) → SkGLt(S) ⊗C(q) SkGLt(S) ⊗C(q) SkGLt(S)

can be computed as follows. Given a link diagram Γ, we first compute ∆̃f (Γ) ∈ SkLt(S) as in
the previous paragraph. Then, we split the green part into two colours (green again for the
first copy of SkGLt(S) and violet for the second one) using the same rules: replacing all green
crossings, cups and caps by their images by the restriction functor (2.24) and applying relations
(2.20)-(2.3) and (2.13) with a proper choice of colours. Since applying ∆̃ does not produce new
crossings, we can do all this at once from the initial diagram using the following relations:

7→
∑
■,■,■

+
(
q − q−1

) + +

 , (6.2)

7→
∑
■,■,■

+
(
q − q−1

)q−t2q−t3 + q−t2 +

 ,
(6.3)

7→ + qt1 + qt1qt2 , (6.4)

7→ + q−t1 + q−t1q−t2 , (6.5)

where the sums are taken over all the possible combinations of colours for the involved strands
and

qt1 = qt ⊗ 1 ⊗ 1, qt2 = 1 ⊗ qt ⊗ 1, qt3 = 1 ⊗ 1 ⊗ qt,

in k ⊗C(q) k ⊗C(q) k. The same formulas compute (id ⊗ ∆f ) ◦ ∆f , hence the coproduct is coas-
soaciative.

Remark 6.7. The coproduct ∆f depends on the choice of the framing f . For instance, let
S = A be the annulus, which can be equipped with either a radial framing or the framing
induced by R2. Consider first the case where f is the radial framing. We have

= = +

= +

= + = + .
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On the other hand, if f is the framing induced by R2, the local relations projecting the link into
the defect make use of the pivotal structure of RepqGLt:

= = qt2 + q−t1 ,

where the last equality follows from the definition of the pivotal structure of RepqGLt by doing
the same manipulations as in the previous paragraph. ♢

6.2 The counit. Let RepqGLn be the C-linear category obtained by specialising

qt ⇝ qn, δ ⇝
qn − q−n

q − q−1

in Definition 2.1, with q ∈ C× and q2 ̸= 1. This is the category ȮS(q − q−1, qn) from [Bru17].
Let φn : k → C(q) be the evaluation morphism in Remark 2.3. Then, the evaluation functor
evG
q,n factors as

RepqGLt → RepqGLn → RepqGLn,

where the first arrow is a φn-linear functor and the second one is C-linear.

Definition 6.8. ([De07]) Let C be a ribbon category. A morphism f : X → Y is negligible if
TrC(f ◦ g) = 0 for all g : Y → X in C.

Theorem 6.9. ([De07, Bru17]) The functor RepqGLn → RepqGLn above induces a monoidal
equivalence

Φ : RepqGLn /N
≈−→ RepqGLn,

where N is the tensor ideal of RepqGLn consisting of negligible morphisms.

In particular, GL0 is the trivial group, so that representations are just vector spaces and we
have an embedding

RepqGL0 ↪→ Vect.

Moreover, if n = 0, then δ = 0 and the dimension relation

= 0

in RepqGL0 implies that the identity is a negligible morphism. Therefore, all nonempty

diagrams are zero in RepqGLn /N and we get a C(q)-linear functor

E : RepqGLt → RepqGL0 /N ↪→ Vect

annihilating all non-empty diagrams. If S is any oriented surface, this clearly extends to a
functor

ES : SkCatGLt(S) → Vect.
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Proposition 6.10. The linear map

ε : SkGLt(S) → C(q)

obtained by restricting ES to SkGLt(S) provides a counit for the Turaev coproduct (6.1).

Proof. Recall the local relations (2.20)-(2.3). Since ε annihilates non-empty diagrams and maps
qt to 1, the map (1 ⊗ ε) ◦ ∆f just switch ■ with ■. The same happens when ε is applied to the
second factor, so it is a counit for ∆f .
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