HOMPFLY categories, defect skein theory and Turaev coproduct
(DRAFT)

Juan-Ramon Gémez-Garcia

Abstract. We define a HOMFLY versions of the categories Rep,L. and Rep,P of
quantum representations of a Levi and a parabolic subgroup L C P C GL,,, 4, and
we construct central algebra and centered bimodule structures on these categories.
These structures serve as the algebraic ingredients for constructing a skein theory on
manifolds with surface and line defects. Finally, we recover the Turaev coproduct
on the HOMFLY skein algebra as a particular instance of this theory. In particular,
this coproduct is compatible with cutting/gluing surfaces.
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INTRODUCTION

To do

Overview of the main results. (Provisional) The HOMFLY category Rep,GL; ([De07,
Brul7]) is a diagrammatic category whose objects are configurations of directed points and
whose morphisms are linear combinations of framed oriented tangles, modulo the HOMFLY
skein relations

YN -] ] ol O

where ¢! is a formal parameter and 14 is the empty diagram. This category is a universal version
of the category of quantum representations of GLy in the sense that Rep,GLy can be recovered
as a quotient of the specialization of (a certain completion of) Rep,GL; at ¢ = N. Our first
contribution is to define a HOMFLY version of the category Rep,P: of quantum representations
of a parabolic subgroup P C GL,,4, (see Section 2). We define it by considering a certain
subcategory of the rigid category underlying Rep,L: = Rep,GL: X Rep,GL¢, the HOMFLY
analogue of RepqL for the Levi subgroup L = GL,, x GL, of GLy,4+,. Together with Requt,
we construct four functors

Rep, Py m

. M
Jt

Rep,GLy = Rep,GL¢ X Rep,GLy

interpolating the ordinary restriction functors between the corresponding categories of represen-
tations. In Section 3, we prove the following (see Theorem 3.4):

Theorem. The functor ¢f X 7} lifts to a braided monoidal functor

Rep,GL; X (Rep,L:) — Z(Rep,P:),

where (—) stands for the opposite braided category and Z(Rep,P;) is the Drinfeld center of
Rep,P;. In particular, Rep,P; is a (Rep,GL;, Rep,L;)-central algebra. |

In [BJ25], Brown and Jordan construct skein modules in 3-dimensional manifolds with sur-
face defects. Skein relations around the defects are induced by the algebraic data of a central
algebra. In Sections 4 and 5 we extend this framework by allowing a certain type of line defect
decorated with Rep,L;. In particular, in Section 4, we construct planar theories on framed
surfaces with codimension 1 defects. The local model around these line defects is induced by
a (Rep,Py, Rep,L)-centred bimodule structure on Rep,L; (see Section 3.2). Incorporating the
central algebra structures, in Section 5 we generalise this to a 3-dimensional theory, with both
surface and line defects. Defects of codimension 1 are decorated with central algebras and defects
of codimension 2 with centred bimodules (see Theorem 5.4):

Theorem. There is a 2-dimensional stratified framed TQFT
Z: Bordy™™ ¢ _ Bivop

assigning Rep,L; (resp. Rep,P;) to an interval labelled with L; (resp. P;). To a bipartite framed
surface S, it assigns a bimodule functor whose components are vector spaces of stratified graphs
in S x I, modulo local relations. |



The HOMFLY skein algebra Skqar, (S) of a framed surface S is the algebra of endomorphisms
of the empty object in the skein category SkCatgr,, (S). In [Tur91], Turaev showed the existence

of a coproduct
A SkGLt(S) — Skar, (S)® Skar, (5)
by extending Jaeger’s formula [Jae89] to arbitrary surfaces. In Section 6, we give a new definition

using the formalism of skein theory with defects. In particular, we show the following;:

Theorem. Let S be a framed surface. Then, a stratification on S can be chosen so that the
vector space A(S)(@) is isomorphic to Skr,, (S) = Skar, (S) ®Skar, (S). Under this identification,
the algebra morphism Skqr, (S) — Skar, (S) ® Skar, (S) induced by acting over Py-region of the
empty diagram is Turaev’s coproduct.

A crucial consequence of this description is that the coproduct is compatible in a very non-
obvious way with gluing and cutting surfaces.

1 BACKGROUND

1.1 Jaeger’s formula and Turaev’s coproduct. The HOMFLY polynomial is a two-
variable polynomial invariant of framed oriented links that encompasses both the Jones and
the Alexander polynomial. It can be defined in terms of skein relations:

Proposition 1.1. [FYH+80 PT87] There exists a unique invariant H, . of framed oriented
links with values in Z[a*, 2] satisfying the following properties:

e (S) () -1 )
(i) H,. \P :aHa,z(D;
(i) Ho.: Q ) = 2 Ya—a™).

This invariant is called the HOMFLY polynomial. |

Given an integer N € N, the specialisation of the HOMFLY polynomial at z = ¢ — ¢!

and
a = ¢~ is a Laurent polynomial in one variable ¢, that we denote by Py (D), for any link
diagram D. Jaeger constructed in [Jae89] a recursive formula allowing to compute P4, (D) in
terms of Pp,(D;) and P,(D3), where D and Dj are certain subdiagrams of D. Concretely, a
link diagram is a 4-valent graph with two distinguished classes of vertices: positive and negative
crossings. Given a vertex v, we denote by a (resp. b) the upper (resp. lower) incoming edge,

and by c (resp. d) the upper (resp. lower) outcoming edge, as shown in the following pictures:

d c c d

N /
\ /

a b b a

Definition 1.2. Let Ep be the set of edges of D. An admissible labelling is a map f : Ep —

{1,2} such that, at any vertex v, either f(a) = f(c) and f(b) = f(d), or f(a) = f(d) > f(b) =
f(c). In the second case, we say that v is a cutting vertex for f.

3



Given an admissible labelling f and a vertex v, we set

Wl f) = sgn(v)(q — ¢~ 1), if v is a cutting vertex,
)1, otherwise,

where sgn(v) is 1 if v is a positive crossing and —1 otherwise. We define the interaction of D
with f as
(DI f)=1[wlf),

v

where the product runs over the set of vertices of D.

Proposition 1.3. ([Jae89, Proposition 1]) Let m,n € N. Then, for any link diagram D,

Poin(D)= > (D] g " PrgnPr2) b (Dy ) Pu(Dya), (1.1)
f admissible

where Dy; == f~1(i) and r(Dy;) is the rotation number of Dy, for i € {1,2}. [ |

Example 1.4. For the trivial knot, we have

(O)+(O) (O]

=q "[mlg +q"[nlq = [m +nly.

O

Extending Jaeger’s composition formula, Turaev constructed in [Tur91] a coproduct for the
HOMFLY skein algebra of an arbitrary framed surface S. Let us briefly recall this construction.

Definition 1.5. Let S be an oriented surface and k a commutative ring. We define the HOMFLY
skein algebra of S as the k-module Skgr, (S) spanned by isotopy classes of framed oriented links
in S x [0, 1] modulo the local relations

KK el O

with parameters ¢, q' € k*. Multiplication is given by vertically stacking two copies of S x [0, 1]
and retracting S x [0,2] to S x [0, 1].

Again, any framed oriented link in S x [0,1] can be represented by a link diagram (with
blackboard framing) on S, and we can define admissible labellings as in the previous subsection.

Theorem 1.6. ([Tur91, Theorem 9.2]) Let D be a link diagram on a framed surface S. Then,
the formula

aoy = > ()" p) e () bra).

f admissible

defines a coassociative coproduct on Skar,(S). The pair (Skar,(S), A) is a bialgebra. [ |



1.2 A quick review of rigid categories. We recall in this section some facts about rigid
categories that will be useful throughout the paper. Recall that a monoidal category is a category
C endowed with a functor ® : C x C — C which is associative and unital up to given natural
isomorphisms. Every monoidal category is equivalent to a strict monoidal one, so we will assume
that ® is associative and unital on the nose.

Definition 1.7. A monoidal category C is right rigid if every object X has a right dual X*, i.e.,
there are morphisms

evy : X®X" =1 and coevy :1 - X*®@ X

satisfying the usual zig-zags identities. Similarly, we say that C is left rigid if every object X
has a left dual *X and we say that it is rigid if it is both left and right rigid.

Duals are unique up to canonical isomorphism: if (X*, evx,coevy) and (Y,evy,coevy) are
right duals of X, then

idX* ®é‘\'/X

g Y LOXOY, xr o X oY X" (1.2)

is a isomorphism between them and the (co)evaluations are related by
evy =evxo (idy ® ¢), coevx = ((p_l ®idx) o coevx.

The same holds for left dualities. When the category C is rigid, we will always assume that
distinguished left a right duals {X*,evx,coevy} and {*X, ev’y, coev’y } has been fixed for every
object. We thus have left and right duality functors

() () eT e
that, in general, do not coincide.
If (F,J,Jy) : C — D is a monoidal functor between rigid categories, then

F(evx) Jo

J *
evl : F(X) @ F(X*) 255 F(X @ X¥) F(1) %1

and
1 —1

Jo Jl
coevl : 1 20 p(1) BN, pxr g x) XX p(X) @ F(X)

exhibit F'(X*) as a right dual of F/(X) (and the analogue is true for left duals). If F'(X)* is the
distinguished dual of F(X) in D, the isomorphism

ox : F(X*) = F(X)* (1.3)

from (1.2) is natural in X.

Definition 1.8. A pivotal category is a right rigid category C (with distinguished duality)
endowed with a monoidal natural isomorphism

Lx X7 - X.
A monoidal functor F': C — D between pivotal categories is pivotal if the isomorphism

1 c
P x* F(L )
Pxr PR,

nx : F(X)™ 25 pxe) F(X*™) F(X) (1.4)

coincides with the pivotal structure of D.



Using the pivotal structure, we can exhibit the distinguished right duality of C as a left duality.
Namely, the morphisms

ldx* ®L_1 eV v *x
evy 1 X* @ X s X X 251
and y
COeV x * Lx Rid x =
coevly 1 1 —25 X* @ X* 25 X @ X+

satisfy the zig-zag identities. Therefore, for this choice of distinguished left duality, we get a
canonical monoidal isomorphism (—)* = *(—).

Recall that a braided monoidal category C is a monoidal category endowed with a natural
isomorphism
cxey X QY 2 Y X

satisfying the well-known hexagon axioms.

Definition 1.9. A balanced category is a braided monoidal category C endowed with a natural
isomorphism
Ox : X - X R
called twist, such that
Oxgy = cy,x ocxy o (Ox ® by).

We say that C is ribbon if it is rigid and, moreover,
GX* = 0;@

for all X €C.

Proposition 1.10. [HPT16, Corollary A.3] Let C be a rigid braided category. Then, there is
a one-to-one correspondence between pivotal structures and twists on C. There are exactly two
ways of establishing this correspondence. |

In particular, if C is a braided pivotal category, there are two choices of twists given by
Qgp = (idX X evX*) o (CX**,X X idx*) o (idx** ® COGVX) olLx

and

9&?) = L)_(l o (evy ®idy«)o (idx+ ® cx+= x) o (coevx+ ®idx).

Proposition 1.11. [HPT16, Proposition A.4] Let C be a braided pivotal category. Then, (C, (")
is ribbon for either i = 1,2 if, and only if, #(t) = 2. [ ]

1.3 Graphical languages for monoidal categories. The definition of the HOMFLY cat-
egory Rep, P and its central algebra structure (cf. sections 2 and 3) will rely on the graphical
calculus for monoidal categories, that we briefly review here. See [Sel09] for an extended survey
and [HPT16, Section 2.1] for a nice overview.

* Rigid categories. For a rigid monoidal category C, we consider directed “vertical” planar
graphs I" embedded in R x [0, 1] with endpoints lying in R x {0, 1}. By vertical we mean that
edges never run horizontally. Local extrema (i.e. cups and caps) will be considered as vertices.




The rest of vertices are coupons, with incident edges attached to either the top or the bottom

face. For instance,

rY

is a planar graph of this type. We decorate edges of the graph with pairs (C,n), where C € C
and n € Z, according to the following rule: if an edge is directed upwards, then n will be even;
and n will be odd if it is oriented downwards. To make this consistent, n has to change at
local maxima and minima: turning counterclockwise increases n by 1, and turning clockwise

decreases n by 1. Interpreting (C,n) as C*"* and (C,—n) by *%'T'L*C, for every n € N; the set
of edges incident to the bottom and top faces of a coupon determine two objects s,t € C. The
coupon will thus be decorated with a morphism f : s — t. We consider two planar graphs to be
equivalent if they are related by a rectilinear isotopy of the plane: this is an isotopy of R x [0, 1]
that do not rotate coupons.

Definition 1.12. The category Rig(C) has:
o objects: finite sequences of pairs (C,n), with C' € C and n € Z;

e morphisms: equivalence classes of decorated planar graphs as above, whose source and
target are determined by the decoration of the bottom and top endpoints, respectively.
Composition is given by vertically stacking diagrams.

This category has a monoidal structure given by concatenation of objects and horizontal stacking
of morphisms.

The category Rig(C) is the free rigid category on C: it comes equipped with a monoidal
evaluation functor

eve : Rig(C) — C

Xn Xn
sending (C,n) to C** and (C,—n) to * " *C, for every n € N. A coupon decorated with f
is mapped to f itself, and the image of cups and caps are the distinguished evaluation and
coevaluation morphisms of C.

* Pivotal categories. As explained in the previous section, pivotal structures yields canonical
monoidal isomorphims (—)* = *(—) and (—)* = (—). Since multiple duals are canonically
identified, a graphical calculus for pivotal categories can be obtained by dropping the integer
labels from the graphical calculus for rigid categories. Namely, we consider the same class of
graphs as in the previous section, labelled as follows. Edges are coloured just with objects of C.
For every coupon, interpreting (C, 1) as C and (C,]) as C*, incident edges determine again two
objects s,t € C. The coupon is thus labelled with a morphism f : § — ¢, where 3, are objects
canonically identified with s, ¢ via the pivotal structure. Two graphs are equivalent if they are
related by a planar isotopy. In particular, we allow now isotopies rotating coupons by 2w. Note
that this yields a more general class of graphs as before, since, for instance,

+D
o




may be decorated by either a morphism of the form f: C — D or f: C — D** (among many
other possibilities).

As in the previous case, we get a category Piv(C) whose morphisms are planar graphs, together
with an evaluation functor
eve @ Piv(C) — C,

which is the free pivotal category on C (the pivotal structure being trivial). For instance,

‘/+** T V
eve |f:U*‘®V—>V®W‘| = (L‘_/l ®idw ® idv) o(f®idy+)o (Ll}l & coev’v) ,
U

where ¢ is the pivotal structure of C.

*x Braided pivotal categories. The graphical calculus for braided pivotal categories is sup-
ported by three-dimensional diagrams:

Definition 1.13. Let C be a braided pivotal category. The category BrPiv(C) has:
 objects: finite sequences of pairs (C,¢), with C € C and € € {1,1};

 morphisms: equivalence classes of directed graphs embedded in R? x [0, 1] with endpoints
lying in R x {0} x {0, 1} whose vertices are coupons decorated following the same rules as
for pivotal categories.

The category BrPiv(C) is itself braided pivotal, with trivial pivotal structure and braiding
given by crossing strands. Graphs will be represented by diagrams obtained by projecting into
R x [0, 1] and keeping track of the relative position of the strands in crossings. For example,

N

/’\
Q/
f 7
is a diagram representing such a three-dimensional graph. Two graphs are equivalent if they are

related by regular isotopy, i.e., their diagrams can be obtained from each other by applying a
finite sequence of the Reidemeister moves II and III and a planar isotopy. In particular,

Qj ” \P (1.5)

|

The two diagrams in (1.5) represent graphically the two families of twists turning BrPiv(C) into
a balanced category (cf. Proposition 1.10).

The category BrPiv(C) is the free braided category on C. Again, we have an evaluation functor
eve : BrPiv(C) — C

mapping a positive crossing to the braiding.
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F1GURE 1: Coloured ribbon graph. FIGURE 2: Ribbon diagram.

* Ribbon categories. The inequality in (1.5) suggests that braided pivotal categories are still
not very natural from a topological point of view. Ribbon categories are defined to be the class
of braided pivotal categories in which the two terms coincide. The graphical calculus of ribbon
categories supported by so-called ribbon graphs.

A ribbon graph is a three-dimensional graph whose edges are thick ribbons. More precisely,
it is a compact oriented surface €2 embedded in R? x [0, 1] which decomposes into the following
elementary pieces:

1. ribbons, i.e., homeomorphic copies of the square [0, 1] x [0, 1] whose core is directed,;
2. annuli, i.e., homeomorphic copies of the cilinder S' x [0, 1] whose core is also directed;
3. coupons, with distinguished top and bottom bases.

Ribbons can meet coupons just on their distinguished bases. On the other hand, the choice of
an orientation for {2 determines a “preferred side”. We demand the free bases of ribbons (those
not meeting any coupon) to meet the planes R? x {0} and R? x {1} orthogonally at R x {0} x {0}
and R x {0} x {1}, respectively, and in such a way that the preferred side of Q is turned up. We
colour ribbons, coupons and annuli following the same rules as for pivotal categories.

Ribbon graphs will be considered up to isotopy: an isotopy of ribbon graphs is an isotopy of
R? x [0, 1] which is the identity on R? x {0,1} and preserves the decomposition into ribbons,
annuli and coupons. By applying such an isotopy, any ribbon graph is equivalent to a graph
whose ribbons, coupons and annuli are everywhere parallel to the vertical plane. Such a graph
can be represented by a ribbon diagram, obtained by projecting ribbons and annuli onto their
cores and projecting the resulting graph into R x [0,1] (see Figure 2). Two ribbon diagrams
represent the same ribbon graph if the can be obtained from each other by a finite sequence of
Reidemeister moves II and III, planar isotopy and movements of the form

q - o

|

Definition 1.14. [Tur94, Section 1.2] Let C be a ribbon category. The category Rib(C) has:
o objects: finite sequences of pairs (C,¢), with C € C and € € {1,1};

« morphisms: isotopy classes of directed ribbon graphs (defined below) embedded in R? x
[0,1] and coloured with C in the usual way.

This is a ribbon category, with twist given by (J‘ .

As in the previous cases, Rib(C) is the free ribbon category on C, and we have an evaluation

9



functor

eve : Rib(C) — C,

known Reshetikhin—Turaev evaluation functor.

1.4 Skein categories. The graphical calculus for ribbon categories extend to arbitrary ori-
ented surfaces, yielding the notion of skein categoy. Skein categories are categorical invari-
ants of oriented surfaces generalising the notion of skein algebras. They were introduced in
[Wal06, JE19] and take a ribbon category C as algebraic ingredient:

Definition 1.15. ([Cool9, Definition 1.3]) Let S be an oriented surface. A C-coloured ribbon
graph in S is an embedding of a C-coloured ribbon graph into S x [0, 1] such that its free bases
are sent to S x {0,1} and the rest lies in S x (0, 1).

Definition 1.16. ([Cool9, Definition 1.5]) Let k be a commutative ground ring. The category
Rib(C, S) of ribbon graphs in S has:

o objects: finite sets {xgcl’el), . ,x%?m’gm)} of disjoint framed points z; € S coloured with
pairs (C, &), where C; € C and ¢; € {1,!};

o morphisms from {xgcl’gl), .. ,a:%?’"’sm)} to {yEDl’m), .. ,yﬁLDm’””)} are k-linear combi-
nations of isotopy classes of C-coloured ribbon graphs in S whose bottom and top are,
respectively, {xgcl’sl), . ,xggm’EM)} and {yng’m), . .,y,(le’n”)}.

Composition is given by vertically stacking two copies of S x [0, 1] and retracting S x [0, 2] to
S x [0,1]. In particular, Rib(C, R?) = Rib(C).

Definition 1.17. ([Coo19, Definition 1.9]) Let C be a ribbon category and S an oriented surface.
The skein category SkCatc(S) is the quotient of Rib(C, S) by the following relations: a morphism
S0 Aif2; ~ 0 if there exists an orientation preserving embedding ¢ : R? x [0,1] < S x [0, 1] such
that:

1. the intersection of each €; with the boundary of +(R? x [0,1]) consist only of transverse
ribbons intersecting ¢(R x {0} x {0}) and ¢«(R x {0} x {1});

2. the Q; are equal outside ¢(R? x [0, 1]);

3. we have

Zz\ievc (L_l (QZ N ¢(R? x [0, 1]))) =0.

Note that skein categories are not monoidal in general. When S = C x I for some one-manifold
C, a tensor product can be defined by stacking two copies of C' x I. The following follows directly
from the definition:

Proposition 1.18. Let C be a ribbon category. Then,
SkCate(R?) ~ C

as ribbon categories. |

1.5 Parabolic restriction. Let k be a field of characteristic 0 and ¢ € k*. Fix N € N and

assume that ¢ is not a root of unity. The algebra U,(gly) is defined by generators e;, f;, d;, dj_l,
1=1,...,N—1,5=1,2,..., N, and relations

10



diejd;1 = q6ij_6i’j+l€j, dlf]d;l = q_5i,j+5i,j+1 fj7
didi ) — di 'di
eifi — fiei = 0jj—+F i :
iJj — Ij€i = 0ij 1
eiej = ejei,  fifj = fifi, i—Jjl>2,
efeir1 — (q+q Heieirie; + ejxre; =0,
fifisr — @+ a ) fifisrfi + fiza f7 =0.

This algebra becomes a Hopf algebra with the comultiplication A : Uy(gly) — Uq(gly) @Uq(gly)
defined on generators by

Ale)=dildip1®ei+e @1, A(fi)=1® f; + i@ didl, A(dF) =dF' @ d.
The counit € : Uy(gly) — k and the antipode S : Uy(gly) — Uy(gly) are given, respectively, by
e(e;)) =0, e(fi)=0, e(d;)=1

and
S(ei) = ~didi}yei,  S(fi) = —fid; ' dis1,  S(di) =d;7"

Definition 1.19. The natural representation p : Uy(gly) — Endc(CV) of U,(gly) is defined by
p(di) = qE;; + ;Ej,j; plei) = Eiit1, p(fi) = Eiv1,

i#j

where E; ; is the N x N matrix with 1 in the (i, j)-position and 0 elsewhere. We denote this
representation by V.

Fix m,n € N and consider the subalgebra Uy () of Uy(gl,,..,,) generated by {d;, e;, f; | j # m}.
We may identify U,(I) = U,(gl,,) ® Uy(gl,,) by mapping

ej®1,f;®1, for0<j<m-—1,

d; — d;, ej, fj — .
1®ejm,1® fjm, form+1<j<m+n—1,

so that Uy(l) acts on V,,, and V,,. Similarly, let U,(p) be the subalgebra of U,(gl,,,) generated
by {d;,e;, fj | j # m}. Note that Uy([) is a subalgebra of U,(p), but also a quotient by the ideal
generated by e,,. Restricting along the inclusion and projection morphisms, we get functors

Rep Uq(p) J"
/ N (1.6)
Rep Uy (glnsn) mn Rep U, (1).

Note that resy, n(Vintn) =~ Vin @ Vi, in Rep Uy(l).

For any N € N, the universal R-matrix of U,(gly) is an invertible element R lying in a
completion of Uy(gly) ® Uy(gly). It induces a braiding on Rep Uy(gly) given, in Sweedler
notation, by

cvw (v, w) = Ryw @ Rayv,
for v € V and w € W. Applied to the fundamental representation, the braiding yields an
automorphism Sy : Vy ® Vy — Vy ® Vi that can be written explicitly as

By =q) (Bii ® Eiy)+ > (B ® Eij) + (q - q_l) > (Ei; © Ejy). (1.7)
i i#j 1<j

11



Taking N = m + n and restricting to Uy ([), this isomorphism decomposes as

Bm | 0O 0 0
0 0 T 0

resm,n(ﬁm—i—m) - 0 On,m (q — qily) Idm nl O : (Vm ® Vn)®2 - (Vm D Vn)®2 (18)
0 0 0 Bn

in Rep Uy ([), hence the monoidal functor res,, ,, is not braided.

On th other hand, it is also well-known that the category Rep U,(p) is not braided. Let
W € Rep Uy(9l,,4,,) and V € Rep Uy(p). The universal R-matrix R of Uy(gl,) lies in Uy(by) ®
Uqg(b—) C Uy(p) ® Uy(b—), where by are the positive and negative Borel subalgebras of gl ..
Thus, R has a well-defined action on V ® ¢*(W) and composing with the flip of tensor factors
yields an isomorphism of V @ j*(W) — j*(W)®V in Rep Uy(p) which is natural in V. Similarly,
if U € Rep U,(I), the R-matrix of U,([) acts on V@7n*(U) providing an isomorphism V@7m*(U) —
7 (U) ® V natural in V.

Definition 1.20. The restriction functors ¢* : Rep Ug(gl,,4.,,) = Rep Uy(p) and 7* : Rep Uy () —
Rep Uy (p) lift to a braided functor

X7 Rep Ug(glnyn) XM Rep Uy(l) = Z (Rep Uy(p)) ,
where Rep U,([) is the opposite of Rep U,(I) as braided category and Z(Rep Uy(p)) is the

Drinfeld center of Rep Uy(p). We call this functor parabolic restriction.

1.6 Categories and bimodules. We recall in this section a few categorical notions that will
appear repeatedly in our constructions. We fix a ground ring k and we set VECT for the category
k-modules. A k-linear category is a category C enriched over VECT. The category CAT of small
k-linear categories and k-linear functors is symmetric monoidal:

Definition 1.21. Given C,D € CAT, we define C KD as the k-linear category whose
 objects are pairs (c,d) with ¢ € C,d € D;

e morphisms are given by

Homcgp((cl, dl), (CQ, dg)) = Homc(cl, 02) @k HOHID(dl, dg).

Definition 1.22. Let F': CXC° — D be a k-linear bifunctor and suppose that D is cocomplete.
The coend of F' is the object

ceC F(f,c
/ F(c,c) = colim( [T F(e,d) —— TI F(c,0) ) eD.

fre=d Fef) cec

If D = VECT, this is explicitly given by
ceC
/ F(e,e) = @ Fle0) /o,
ceC
where we mod out by the image of morphisms of the form

F(C, C/) F(f,C/)—F(C,f/)

F(c,e) @ F(d,d).
Definition 1.23. The category BIMOD has:
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e objects: small k-linear categories;

e morphisms: a morphism from C to D is a functor of the form F' : C X D°? — VECT.
The composition of F': C X D? — VECTy and G : DK E°P — VECT}, is given by the coend
deD
(GoF)(c,e) = / Fle,d) ®5 G(d, ).

The identity of C is the bimodule Home(—, —). The tensor product of k-linear categories endows
BiMoOD with the structure of a symmetric monoidal category.

Remark 1.24. The category CAT embeds into Bimod. Indeed, given a k-linear functor F': C —
D, we get a bimodule
F*: CRD® —» VECcT, cXd+— Homp(d, F(c)).
O

1.7 Stratified spaces. In sections 4 and 5, we define a skein theory on 3-manifolds with line

and surface defects. Here, we introduce the terminology and conventions for stratified spaces

that will be used later.

Definition 1.25. (i) A stratified space is a vector space X endowed with a continuous map
¢: X — P,

where P is a poset endowed with the topology whose open sets are generated by P, = {z €
P | z > p}, for p € P. For each p € P, the subset X, := ¢~ 1(p) is a stratum.

(ii) A morphism of stratified spaces between (X, ¢) and (Y, ) consists of a pair of continuous
maps f: X - Y, F: P — (@ such that the diagram

x 1.y

T

) N Q
is commutative. We say that it is a stratified embedding if f and f|x, are embeddings for every
peP.

(iii) A stratified isotopy between two stratified embeddings (f, F'),(¢9,G): X — Y is a mor-
phism (h,H): X x I — Y of stratified spaces such that h(—,0) = f and h(—,1) = g. Here,
the stratification on X x I is given by ¢(z,t) = ¢(x), where ¢ is the stratification on X. In
particular, a stratified isotopy of X is a continuous family of maps f;: X — X such that

x T x
N
P
commutes for every t € [0,1] and fy = idx.

We will typically with stratified three-manifolds and we will say that X, is a line defect when
dim(X,) = 1 and that it is a surface defect when dim(X,) = 2.

Definition 1.26. A bipartite surface is an oriented surface S endowed with a stratification
$p:S—-(A>B<O)
such that S = ¢~1(B) is a smooth curve that forms the common boundary between the open

strata S4 and S¢.
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2 HOMFLY CATEGORIES AND ORDINARY RESTRICTION

Throughout the rest of the paper, we fix the ground ring to be

k=C@la™8] [(g—g)o=q —q)

In this section, we recall the definition of the HOMFLY category Rep,GL; ([Brul7, De07]) and
its two-coloured version, Rep,L;. Next, we define a HOMFLY version of the category Rep,P;
of quantum representations for a parabolic subgroup P C GL,,4p,.

2.1 The HOMFLY category Rep,GL;. One of our main objects of study will be the
HOMFLY category Rep,GL;, that we introduce following [Brul7]. Let T be the category
of 1-coloured framed oriented tangles, whose objects are finite words over {1,]} and whose
morphisms are k-linear combinations of isotopy classes of framed oriented tangles (i.e. ribbon
graphs without coupons) in R? x [0, 1]. This category has a ribbon structure. The tensor product
is given by concatenation of objects and by horizontally stacking morphisms. The right dual of
an object w = wy - --wy, is the object w* := wj ---wj, where (—)* interchanges 1" and |. The
braiding, the evaluation and coevaluation, and the twist are represented by the diagrams

where the directions are induced by the depicted words. Exchanging w and w* in the evaluation
and coevaluation maps, we can exhibit w* as a left dual of w, hence T has a strictly pivotal
structure.

Definition 2.1. The category Rep,GL; is the quotient of 7 by the HOMFLY skein (2.1), the
twist (2.2) and the dimension relations:

(2:3)
KXol
\

P =q T (2.2)
Q =1y, (2.3)

This category inherits a ribbon structure from 7 and it has a nice presentation by generators
and relations:

where 14 is the empty diagram.

Proposition 2.2. ([Brul7, Theorem 1.1]) Rep,GL; is generated, as a k-linear strict monoidal
category, by the objects 1 and | and the morphisms

K Ao



subject to the relations

q =6 1g. (2.7)
AN
\(\/ _ \\) (2.8)
\\ AN
[ |

Remark 2.3. The HOMFLY category Rep,GL: interpolates between the categories Rep,GLy
of locally finite representations of U,(gly). More precisely, for any integer N € N, consider the

evaluation map

N — g N

@Nk%C(Q)v thqNa 0 q_q_l .
There exists a ppy-linear ribbon functor
ev% : Rep,GL; — Rep,GLy

sending the object 1 to the natural representation V. The category Rep,GLx can be recovered
as the ind-completion of the quotient of Rep,GL: by the ideal of negligible morphisms (see
[Brul7, Theorem 1.3] for a precise statement). O

2.2 The HOMFLY category Rep, L. Next, we describe diagrammatically the two-coloured
HOMFLY category RepyLt, interpolating the categories Rep,L of locally finite representations
of Uy(l). In the same lines as for the construction of Rep,GL;, let 7 (%, H, M) be the category
of three-coloured tangles with defects, whose

o objects are finite sequences of oriented points coloured with {#, H H};

 morphisms are k ®¢(q) k-linear combinations of isotopy classes of coloured framed oriented
tangles tangles with 0-dimensional defects of the form

This category is again ribbon, with ribbon structure defined as in the previous section.

Definition 2.4. The category Rep L is the quotient of 7 (%, H, H) by

15



o the one-coloured skein, twist and dimension relations:

KWl

P =gm 1 (2.10)
O = omly, (2.11)

with all the strands coloured in the same colour B € {ll = 1,8 = 2} and ¢" = ¢! ® 1,
?=1®q¢", 61:=0®1and 5 = 1® J;

e the two-coloured crossing relations:

KX KK

e the relations

= [ + ] , (2.13)
| ! ! |
Proposition 2.5. Rep,L; inherits a ribbon structure from T (&, H, H). [ |

Given relations (2.12), we no longer need to distinguish between positive and negative two-
coloured crossings. Furthermore, relations (2.13) and (2.14) imply that 1 = 17 @®1. This identity
justifies the reference to Rep L as “two-coloured”.

Lemma 2.6. The following relations hold in Rep,Ly:
- (a-a )(]]+]]) (2.15)
=" I +q” ] : (2.16)

= 01 + 09. (2.17)

Proof. Applying (2.13), we can write

=M+ X+ X+ X (2.18)

and the same is true for the negative crossing. The first relation of the statement thus follows
from the green and red skein relations. Likewise, the blue twist and dimension relations are an
easy consequence of the green and red ones. O

16



Remark 2.7. Again, Rep,L; is universal among the categories Rep,L. Specialising ¢; and t at
integers values m,n € N, we get an evaluation morphism

Pmn k ®<C(q) k — (C(q),
and there is a canonical evaluation functor
L .
eV - Rep, Ly — Rep, Uy(l)
mapping 1 and 1 to the natural representations of Uy(gl,,) and Ugy(gl,), respectively, and | to

their direct sum. O

Proposition 2.8. There is a monoidal equivalence of categories

Rep,L+ = Rep, GL; X Rep, GL;.

Proof. We define an equivalence ® : Rep,L+ — Rep,GL:XRep,GLy as follows. Since T = 1®7 in
Rep,Lt, we just have to define ® on green and red objects and extend by cocontinuity. Moreover,
relations (2.13) and (2.14) imply that any morphism between two configurations of green and
red points may be represented by a linear combination of ribbon diagrams containing no orange
component. For a word w over {1,/,71,l}, we set wy and wy for the subwords of green and
red symbols, respectively. Similarly, if f is a tangle diagram in Rep Ly, let f1 (resp. f2) be the
tangle diagrams obtained by removing all the red (resp. green) strands in f. We define ® by
w +— (w1, wsz) on objects and by f +— f1 ® f2 on generating morphisms. This functor is clearly
surjective on objects and fully-faithful (this follows easily from the fact that we do not distinguish
between a positive and a negative crossing when strands have different colours). Moreover, it
preserves the tensor product, so it yields an equivalence of monoidal categories. A quasi-inverse
is given by the functor ¥ : Rep,GL; X Rep,GL; — Rep,L; defined by (w1, w2) — wiws and
(f1, F2) = F1fo o

Corollary 2.9. For any oriented surface S, we have an equivalence of (k®c (4 k)-linear categories
SkCatr, ,(S) = SkCatqr, (S) X SkCatgr, (5).
In particular, this induces an algebra isomorphism

SkLt,t(S) = S'kGLt (S) ®(C(q) SkGLt (S)

Proof. Again, we define a functor Ribgep,1,(S) — SkCatgr, (5) B SkCatcr, (S) by separating
the green and the red colour. It follows from the previous theorem that it is compatible with
skein relations, so it factors through the skein category, yielding the desired equivalence of
categories. [
2.3 The restriction functor. The restriction functor

resmn: RepyGLyyn — Rep L

admits also a HOMFLY version that we construct diagrammatically in this section. We first
define a coproduct A : k — k ®¢(q) k by setting

A <qt) =g, AGB) =61 ¢ +q " 5, (2.19)

on generators and extending C(q)-linearly. Here, ¢* == ¢* ® 1, ¢"> == 1® ¢!, 61 == § ® 1 and
(52 =1 &® (S
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Lemma 2.10. The map A : k — k ®c(q) k is well-defined and coassociative.

Proof. This is an easy computation. Firstly,
Alg'—q7") =q"q"? — ¢ g™
= (" —¢ ") +a " (¢" —q7")
= (¢—q "(01q"” + ¢ ") = (¢ — ¢ HA(®9),
so the map is well-defined. For the coassociativity, we have
(1@ A)oA(g") = ¢"¢"¢" = (A1) 0 A(g"),
and

(1@ A) o A(6) = 01(q"q") + ¢ (524" + ¢~ "283)

- (51qt2 + q_tlég)qt3 + (q_th_t2)53 =(A®1)oA(d).

O

Remark 2.11. Specialising formulas (2.19) at t = m + n, t; = m and t2 = n, with m,n € N,

we recover the identities

m—+n m_n

""" =q"q", [m +nlq = q"[m]y + ¢ "0y,

expressing the quantum dimension of the fundamental representation of Ug(gl,, ) in terms of
the quantum dimensions of the fundamental representations of U,(gl,,) and U,(gl,,). Again, we

may think of A as interpolating these formulas.

We introduce the following notations:

(X = A+l ]

Theorem 2.12. There exists a unique A-linear functor
resy : Repq GL; — Repth

preserving the tensor product and such that

Mot KK AN AU
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Proof. Proposition 2.2 provides a presentation of Rep,GL; by generators and relations. Since res;
is defined on generators, it will be unique if it is well defined. We check that it preserves relations
(2.4) - (2.8). For the skein relation (2.4) and the zigzags (2.5), this is an easy computation using
the corresponding green and red relations and (2.14). Applying the functor to the right-hand
side of (2.6), we have

Composing with l:\Z and applying the one-colour twist relations to the terms involving the

(co)evaluations appearing, we get the identity, so (2.6) is preserved. On the other hand,

"¢ L] = q"q" 8 q"q" 8 ¢—q") O: = (461 +¢7"65) 15,

so relation (2.7) is preserved. Finally, using the relations in Remark 2.14, one gets

evas (/ +(g—a7") /// \\\
AN

e (1) e XD

so the Reidemeister relation (2.8) is also preserved. O

Along the same lines as Remarks 2.3 and 2.7, the functor 2.24 interpolates the restriction
functors resy, ,, : RequLmﬂL — Rep, L. That is, the diagram

Rep,GL; LN Rep,L;
ev'rGrH»nJ/ J{ev}n,n
resm,n
Rep,GLn4n Rep,L

commutes for any m,n € N.

Remark 2.13. The restriction functor res; is strictly monoidal, but it does not preserve the
distinguished dualities. The natural isomorphism from (1.3) is determined by

or=1=]+q"]|.
Moreover, res; is not pivotal: the categories Rep,GL; and Rep,L: are endowed with trivial
pivotal structures, but the isomorphism

nr o T = resy (1) & res; (1%)* —>(¢ Y res; (1) Tese(idy),

res (1) =
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from (1.4) is represented by
= q" l +q " ] : (2.25)

which is not the identity of T in Rep,L. Similarly, for the left dualities induced by the ribbon
structures of Rep,GL; and Rep L, we get an isomorphism

nh=q " I +qh ] : (2.26)

O

Remark 2.14. Using (2.18) and the definition of the boxes, one easily checks that

: / J /
X/ 7~
but, for instance,
XJ* X X A
A
This is a diagrammatic counterpart of the fact that the R-matrix of Uy(gl,,,,) belong to (a
completion of) U,(bT) ® U,(b~), where b® are the corresponding positive and negative. Con-

sequently, the restriction of the braiding of Rep,GLy,4, to Rep,L is natural in the first factor
(resp. in the second) for morphisms of U,(I)-modules commuting with the action of Uy (p) (resp.

Uq(p™))- 0

2.4 The planar category Rep,P;. Finally, we define a category Rep,P; based on the graph-
ical calculus for rigid categories introduced in Section 1.3. The category Rep P of locally finite
U,(p)-modules does not admit a pivotal structure compatible with those of Rep,GLy4n and
Rep,L. This is because the restriction of the pivotal structure of Rep,GLy,+p is not natural
for morphisms from Rep,L. Hence, we define a universal version of Rep,P using the graphical
calculus.

As in Section 1.3, we consider rectilinear isotopy classes of vertical planar graphs embedded
in R x [0,1]. Edges are coloured with either l, l or M, with endpoints labelled by integers
following the same rules defined in that section. Vertices are coupons admitting the following

decorations:
2n m—1 2n 2n—1
T , , , , mEL (2.27)

2n 2n —1 2n 2n—1
2n 2m —1 2n 2m —1
T ) l , T , l , m,n €Z, m#n,; (2.28)
2m 2n—1 2m 2n—1
2n—2 2n 2n—1 2n —3
- , T—}— , l - R l‘f‘ , neE ZZl; (229)
2n 2n —2 2n —3 2n —1
2n+ 2 2n 2n+1 2n+3
T+ , T— , l—k R T— , n EZS,“ (230)
2n 2n + 2 2n+3 2n+1
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1 1

: ; (2.31)
1 1
m n m n
\ / \ /
X , /\/ with m,n € Z and all possible colourings and orientations. (2.32)
n/ \m n/ \m

Let Rig(P) be the (k ®c(q) k)-linear category whose objects are sequences of oriented points
with integer values (compatible with orientations, cf. section 1.3) and coloured with H, B and
B. The hom-spaces are spanned by rectilinear isotopy classes of planar graphs decorated as
above. For instance, the diagram

4 0 1
A
K - Y
P
~
[ A
2 4 1

represents a morphism in Rig(P). Note that the decoration of the components of the graph is
uniquely determined by the source and the target.

We define a functor
evP : Rig(P) — Rep, Ly

as follows. On objects, it just forgets the integer labels and switch colours B ~» . On mor-
phisms, we interpret generators as follows:

o the morphisms in (2.27) represents the inclusion M = V,,, — V = B and the projection
B =V — V, = Nl so the evaluation functor just forgets the integer labels and switches

colours B ~~ [; for instance,
2n

2n

e the morphisms in (2.28) represent the restriction of the pivotal structure of Rep,L;, which
is trivial, so they are all sent to the corresponding identity;

e the morphisms in (2.29) represent the image of the pivotal structure of Rep,GL; by the
restriction functor (see (1.4)), hence their images by the evaluation functor are

2n — 2 2n — 1
- oy = q" I +q l and - — (%)* = ¢' [ +q " ] ;
2n 2n —3

and the two remaining morphisms are the inverses of these ones;
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« similarly, for n € Z<_;, we set

2n + 2 2n+1
=g | +q" | and l+ = ) =g |+t ]
2n 2n + 3

and the two remaining morphisms in (2.30) are the inverses of these ones;

o the morphisms in (2.31) represent the natural isomorphism from (1.3) identifying the
duality induced by the restriction functor with the distinguished duality of Rep L, so

1 1
= oh = and = (o}
1 1
where ¢" is the isomorphism in (2.3);

o for crossings whose strands are both blue, we apply the same rules as for computing the
restriction functor (2.24), i.e.,

m\ f’fl »

/X\ — +(a-q )H
m ln L \__
IX\ = —(q—q )q ? P

o for the rest of morphisms in (2.32), the evaluation functor just replaces the coupon by the
underlying crossing.

Lemma 2.15. The evaluation functor ev’ : Rig(P) — Rep,L; is well-defined.
Proof. This is straightforward, since rectilinear isotopy is a relation holding in Rep,L;. O
Definition 2.16. We define the category Rep,P; as the quotient of Rig(P) by the kernel of evl.
By construction, the evaluation functor induces a faithful functor
Ji : Rep,Py — Rep,L; = Rep,GL; X Rep,GL¢ (2.33)

analogue the restriction functor j*: Rep,P — Rep,L.

Proposition 2.17. Let n,m € N and ¢y n: k ®c(q) k — C(q) the evaluation morphism defined
in Remark 2.7. Then, there exists a monoidal p, ,-linear functor

evﬁb’n: Rep, Pt — Rep,P

mapping
(,2n) = 5 (Vingn), (1,2n) = 75 (Vin), (1,2n) = 7%(Va),

where * and 7* are the restriction functors defined in section 1.5.
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Proof. The restriction functor j*: Rep,P — Rep,L is faithful so we may describe Rep,P as a
subcategory of Rep,L. By construction, the image of

-k L
Rep,Pr 25 RepyLi — Rep,L

P

lies in this subcategory, so it lifts to a monoidal functor ev,,

» as in the statement. O
We get a commutative diagram of functors

Rep, Py SN Rep, Ly

P L
o] Josn

Rep,P ]—*> Rep,L,

hence we may interpret again the functor j; as interpolating the functors j*, for m,n € N.

3 UNIVERSAL PARABOLIC RESTRICTION

In this section, we complete the picture by defining HOMFLY analogues of all the restriction
functors appearing in (1.6). These functors induce a (Rep,GL;, Rep,GL; X Rep,GL;)-central
algebra structure on Rep,P;, interpolating the one described in section 1.5.

3.1 Central algebra structure. We define functors

t¢ : Rep,GL; — Rep,Py and m; : Rep,GL; ¥ Rep,GL; — Rep, Py

analogue to the restriction functors Rep,GLy+n N Rep,P and Rep,L -, Rep, P from section
1.5. Let us introduce first some terminology, that will be also useful later to extend the graphical
calculus for rigid categories to framed surfaces.

Let S be a framed surface, i.e., a surface S endowed with a trivialization f = (vp,wp),cg of
its tangent bundle. Let a : I — S be an immersed curve such that &(0) and &(1) are in the
direction of w,(g) and we,1), respectively. Consider the map

o TS TS\ {0} L 8 x (B2 {0}) 29 R2\ {0} T, st
Hence, u/,(0) = +i and we can set
ul(t) =exp (~im (407 ) )
with 0/(0) = 0. The conditions imposed to « imply that /(1) € Z.
Definition 3.1. The rotation number of o with respect to f is the integer
rot! (o) == 04(1) € Z.

For the rest of this subsection, we fix S = R x [0, 1] with its canonical framing. From a given
ribbon diagram I" in R x [0, 1], we construct a decorated planar diagram T as follows. Any open
strand of I" defines an immersed curve a: I — R x [0, 1]. If « is oriented upwards at «(0), we
decorate this endpoint with n,) = 0; otherwise, we set n,) = 1. A decoration for a(1) is
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then uniquely determined by setting n,1) = nq () + rot/ (a). Next, if a is a closed strand (i.e. a
link component) with rotation number r, = rot/(c), we add |%| dots at «(0). Finally, replace
every crossing by the corresponding coupon. For example:

Precomposing and postcomposing again with the morphisms in (2.29)-(2.30), we can modify
the source and target of the planar graph obtained so that points oriented upwards (resp.
downwards) are all decorated by 0 (resp. —1). Let I' be the decorated planar graph thus
obtained. For instance, for the ribbon diagram depicted above, we get

0 1

=
Il

0 1

Roughly speaking, this procedure comes to forget the braided and the pivotal structure of
Rep,GL¢, so that the planar graph I' represents the same morphism as I' but in the rigid
category underlying the ribbon category Rep,GL:.

Recall that we have a restriction functor :*: Rep,GLy+, — Rep,P. This functor is faithful,
but it does not preserve the distinguished dualities. We reflect this fact diagrammatically by
modifying the distinguished duality for 1 as follows. Set

1
Yo = and Y1 =
1
Given a sequence ¢ = (e1,...,&) with &; € {0,1}, we define
Pe = Pe; Q- Q Qg (3'1)

Finally, if D : &1 — €9 is a planar diagram between two such sequences, we define
i -1
i (D) = e, 0 Do .

This planar graph

~

Proposition 3.2. The assignment 7+ 0, | — 1, ' — (f(T") yields a well-defined strict monoidal

functor
ti + Rep,GLy — Rep,P;. (3.2)

Moreover, res; = jf o (f, where j; is the functor in 2.33.

Proof. First note that the isomorphisms s an and ¢} commute with every endomorphism of 1
in Rep, L. This implies that ¢} (Fl/o\Fg) = ¥(T'1) 04} (T'y) for every pair of composable diagrams
I';,Ts. Indeed, we can slide the dots appearing between I'; and I's in ¢} (1) 04} (') so that they
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lie all at the end of the corresponding strand. By replacing each pair dot - inverse dot appearing
this way by the identity, we get exactly ¢;(I'; o I'y). For instance,

= :LI(F10F2).

Moreover, we trivially have that L}"(I‘@g) = }(T1) ® f(T'y), hence the functor is strictly
monoidal.

On the other hand, it is straightforward to check that, if I' is one of the generators of Rep,GL¢

~

(cf. Proposition 2.2), then j;(I') o ¢ (I') = res¢(I"). The compatibility with the composition and
the tensor product implies then that the same is true for any diagram I'. In particular, if I’y
and I'y are two diagrams representing the same morphism in Rep,GL¢, then

Ji 017 (Th) = resy(Ty) = resy(Ta) = j; 0 17 (D).

Since j; is faithful, we get that .7 (T';) = ¥ (T's), which proves that the functor is well-defined. [

Proposition 3.3. The assignment
(t,@)—0, {,©)—1, I'—T,
(2,1) =0, (2,)—1, TwT,
vields a well defined strict monoidal functor

m; . Rep,GL; X Rep,GL; — Rep,P;. (3.3)

Proof. The assignment is functorial and strictly monoidal by the same arguments as in the
previous proof. The well-definiteness follows again from the fact that j; is faithful. Indeed,
identifying Rep,L; and Rep,GL: X Rep,GL; via the equivalence from Proposition 2.8, we have
that jfom; = idRequLthequLt. Therefore, if I'y represent the same morphism I's in Rep,GL; X
Rep,GLy¢, then the equality

ji omi (L) =T =Ty = ji o (I')
implies that 7} (I'1) = 7/ (I'2). O
To sum up, we have four functors

Rep, Py Tt
% , (3.4)

3
Jt
rest

RequLt RequLt X RequLt

such that the inner triangle is commutative, but not the outer one. This is a diagrammatic
version of the situation described in subsection 1.5. We will see now that the functors ¢f and 7}



induce a (Rep,GL¢, Rep,GL; X Rep,GL;)-central algebra structure on Rep,P;. By remark 2.14
and the relations defining Rep,L¢, the families of morphisms given by

where the dotted strands can be replaced by any colour, are natural isomorphisms in Rep,P:.
Hence, they define a canonical monoidal functor

Z : Rep,Py — Z(Rep,Pt).

Let
F =1 X7y : Rep,GL; X (Rep,GL; X Rep,GL;) —  Rep,Py,
(u,v,w) > uvw (3.5)
(I'1, T2, 1) = (T)ToT 3.

Theorem 3.4. F' lifts to a braided monoidal functor

(ZoF,J): Rep,GL; K (Rep,GL; X Rep,GL;) — Z(Rep,Py),

where (—) stands for the opposite braided category. In particular, Rep, Py is a (Rep,GLt, Rep,Lt)-
central algebra.

Proof. The family of isomorphisms

: F(ug, v, w1) @ Fug, v, w2) — F(ujusz, v1ve, wiws)

Uy v w1 U2 V1 w2

defines a monoidal structure on ZoF'. Checking that (ZoF, J) is braided is an easy computation.
O

Note that, for an object uwvw, the half braiding is given by

R urvw — uvw K —.

3.2 The centred bimodule Rep,L;. We will now briefly describe additional structure in-
duced by the functors constructed in the previous section, which will serve as motivation for the
topological construction we will give later in this paper. In addition to the (Rep,GL¢, Rep,Ly)-
central structure on Rep,P; defined in the previous section, we will also consider the following
three central algebras:

* Rep,GL: is a (VECTY, RequLt)—central algebra via the central functor
VECTi K Rep,GL; = Rep,GL; “% Rep,GL,
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e Rep,L; is a (VECT, Rep,L¢)-central algebra with central functor
VECTk M Rep, Lt ~ Rep, Ly i, Rep, L,

« and finally Rep,L; is also a (Repth, Repth)—central algebra with central structure
Rep,Ls B Rep,L¢ 224 Rep, L.

These four algebras define 1-morphisms in the Morita 4-category BRTENS studied in [BJS21].
Composing Rep,P; with Rep,GL¢, we get a central functor

VECTk X Rep, L — RequLt Rep?GLt Rep,P: ~ Rep,P1,

where the action of Rep,P; is the one induced by the functor j;. Similarly, composing the two
central structures on Rep L, we get another central functor

VECTk X Rep, Ly — Rep, Ly RGELt Rep, Lt ~ Rep, Ly,

where Rep,L: acts on itself via the identity functor. On the other hand, note that Rep,L; is a
(Rep,Pt, Rep,Lt)-bimodule via the functor

Rep,P; ¥ Rep,L; 2% Rep,L;

and it is straightforward to check that the braiding induces a (Rep, Py, Rep,L)-centered structure
(see [BJS21, section 3| for the definitions). Centred structures are the 2-morphisms in BRTENS,
so we have the following diagram in BRTENS:

Rep GLt

VECT;, ——— Rep,GL;

Z
RepthJ( Repth Requt

In the language of factorization algebras (see [BJS21, section 3] and the figures therein), this
structures are governed by embedding disks in the following stratified space:

Vecty
L. QL
‘ L; 2 @Iy
L, b

F1GURE 3: Centered (Requt, Repth)—bimodule structure of Rep,L; as a factorization algebra.
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FIGURE 4: Decorated planar graph on a framed surface (we omit the integer labels for simplicity).

4 DEFECT PLANAR THEORIES

The graphical calculus for rigid categories naturally generalizes to surfaces with a chosen fram-
ing, producing a 2-dimensional framed TFT constructed from a rigid monoidal category’s alge-
braic data. The (Repth, Requt)—module structure on Rep,L; produces a morphism between
the theories associated with Rep,L: and Rep, P, that we will describe through line defects on
surfaces.

4.1 One-coloured theories. We describe here the planar theory induced by Rep,P:. A
similar description hold for the rigid category underlying Rep,L;.

Definition 4.1. Let M be a d-dimensional oriented manifold, and let n > d. An n-dimensional
framing of M is defined as a homotopy class of orientation-preserving isomorphisms f : TM @
R % — M x R™ between vector bundles over M. When n = d, we refer to this as a framing.

Note that if M = I or M = S!, each choice of orientation admits exactly one 2-framing. We
write I, S! for the standard positive orientation and I, S! for the negative one.

Definition 4.2. A marking on an oriented surface S is a (possibly empty) collection B of ori-
entation preserving embeddings C' < 95, with C' a 1-dimensional connected oriented manifold.
Every marking has a splitting B = B LIB_ into positively and negatively oriented submanifolds.

Definition 4.3. A rectilinear embedding is an embedding M <— N between framed manifolds
which preserves the framing up to rescaling in each direction.

Let (S, f,B) be a marked framed surface. We consider the following class of planar graphs T’
embedded in S (see Figure 4):

e edges are coloured with ll, l or H;

o the endpoints «(0) and «(1) of every edge « are attached to either a coupon or one of the
marked boundary components. Moreover, they are labelled with integers n,) and nq(1)

such that ny(1) = na() + rot! (a);
o coupons are rectilinearly embedded in the surface and decorated with morphisms of Rep,P;.
Set By = {Ci}i=1,...m and B_ = {Cj’-}jzlymn. The intersection of I' with the marking deter-
mines a family of configurations of points (acy,...,ac,,, bers - ,bcr) that we refer as boundary
conditions. We denote by ZF¢(S, f, B)(ac,, . . 3 AC s ber s - ,bcr) the (k ®c(q) k)-linear space

generated by planar graphs with given boundary conditions, modulo the following relations:

 rectilinear isotopies: these are isotopies of the surface S fixing 0.5 such that coupons remain
parallel to the framing throughout the isotopy;
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o framed skein relations: 3, A\i(¢, ;) ~ 0 if there exists a rectilinear embedding ¢ : [0, 1] <
S such that >>; Aie ™" (I'N¢([0,1])) = 0 in Rep,P;.

As a particular case, we have:

Definition 4.4. Let (A, fiaq) be the annulus endowed with its radial framing. The cylinder
category Cyl(Rep,P:) is the category with:

« objects: finite configurations of coloured directed points on the circle S' decorated by
integers compatibly with the orientation;

o morphisms: (k ®c(q) k)-linear combinations of planar diagrams on (A, fraq), modulo recti-
linear isotopy and framed skein relations.

Composition is given by inserting one copy of A into another one.

We set
ZP(I) =Rep,P; and Z(S') = Cyl(Rep,Py),

and negatively oriented 1-manifolds are assigned the opposite categories. If C' € By, then ZFt(C)
acts on ZP¢(S, f, B) by gluing rectangles/cylinders. Namely, every configuration of points on C
determines an object b of Z¥¢(C). If T': @ — b is a morphism in Z¥¢(C), then gluing C x I along
the marking induces a linear map

Zpt(sv f7 B)(P) ZPt(Sa f7B)(_7b7_) — ZPt(S7 f?B)(_7a7 _)'

The analogue holds for negative orientations, so we get a functor

op

ZP (S, f,B) : (& th(C)) =| X 27(©)| - Veer

CeBy CeB_

Lemma 4.5. Let (S, f,B) be a marked framed surface surface with C,C € B for some 1-
dimensional manifold C. Let (glo(S), glo(f), glo(B)) be the marked framed surface obtained by
gluing S along C'. Then,

P ceZPt(C) P
™ (gle(S), gle(f),gle(B) () = [ ZP(S L B) (= eve, ).
Proof. The proof is the same as in [Wal06, Theorem 4.4.2]. O

We have now all the ingredients to define a framed TFT with target category BiMOD. Let
Bordﬁr(2) the category of two-dimensional framed cobordisms, whose objects are 1-dimensional
2-framed manifolds and whose morphisms are marked framed cobordisms. It follows straight-
forward that:

Theorem 4.6. The construction above defines a symmetric monoidal functor
zPt: Bord"(2) — Bmvob,

hence a 2-dimensional framed TFT. [ ]

Considering the category Rep,L; just as a rigid monoidal category, we can define an associated

2-dimensional framed TFT that can be described in the same lines as ZF*. We denote it by
Zle,
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FIGURE 5: Planar graph on a stratified square.

4.2 Planar model around the defect line. The (Repth, Requt)—bimodule structure of
Rep,L: has a diagrammatic interpretation in terms of planar diagrams on a stratified square.
We ignore for now its (Repth, Requt)—centred structure, that will be described later in section
5.2 when we address three-dimensional theories on surfaces. Recall the functor j*: Rep,P; —
Rep, L defined in (2.33). It induces two morphisms in BIMOD, namely the bimodules

Fy = HomRepth(—,j*(—)): Requt X RepqL?p — VECT

and
Fy = Hompgep, 1, (77 (=), =) : Rep Ly X Rep,P;” — VECT.

Let I* be the unit interval with a point marked in the middle and E = I x I* a square with

a horizontal line defect I x {%} We will call Li-region (resp. Pj-region) the half-square under
(resp. above) the defect. The defect itself will be decorated by L; as well and we will call it

Ly-line. We consider planar graphs €2 in F of the following form (see Figure 5):
e endpoints are attached to the top and bottom bases of the square;
e Qs coloured by Rep,P; (resp. by Rep,L;) on the P;-region (resp. on the L;-region);

e edges can meet transversally the line defect at a coupon decorated with a morphism of
Rep,L; in a compatible way: if the edges coming from the L;-region (resp. the P-region)
are coloured with Xi,...,X,, (resp. Yi,...,Y%), then the coupon is decorated with a
morphism f: X1 ® - @ X, = 7 (V1) ® - ® 7% (Y%)-

The assignment

= j*(QPt) © f o QLt S HomRepth (Y7j*(X))7

extends to a linear map defined on the (k Qc(q) k)-linear space spanned by diagrams with Y and
X fixed. Its kernel is given by generated by:

« planar skein relations induced by Rep,L: and Rep,P; on each side of the defect line;
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o relations of the form

(4.1)

Moding out by all of them, we get a diagrammatic description of Fj, where the actions of
Rep,P: and Rep,L; are just given by stacking morphisms above and below. Note that, since
every stratified diagram () represents a morphism in Rep,L¢, (4.2) implies that it is equivalent

to another diagram Q where ﬁpt and f are just identities, that is:

We will not represent the identity coupon in the pictures, so whenever a bunch of strands crosses
the Ly-line (changing their colour), they must be thought as attached to an identity coupon.
The bimodule F5 can be described equally by just exchanging the P; and the L; region in the
diagrams. Similarly, we have functors

G1: Cyl(Rep,Pt) X Cyl(Rep,Lt)°* — VECT,

Ga: Cyl(Rep,L¢) X Cyl(Rep,Pt)°? — VECT,

mapping an object X XY to the linear space spanned by planar diagrams with boundary
conditions (X,Y) on a stratified cylinder S' x I'*, modulo skein relations on each side of the
defect and the local relations depicted in (4.2) near the defect.

Lemma 4.7. In BIMOD, we have
F2 o F1 = deepth and G2 o G1 = ijyl(Repth)'
Proof. By definition,
ZGRequt ) .
(Foo PY(X®Y) = [* " Homnap,1, (X.5°(2)) @ Homnep,1, (7 (2).Y),

and the canonical map f ® g — g o f yields an isomorphism between the coend on the right
hand side and HomRepth (X,Y). The same holds for G5 o G. O

Remark 4.8. We can interpret the proof pictorially. The coend can be represented via diagrams
in a squared with two horizontal L;-defects. The region between them is decorated by P, while
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the regions above and below are decorated by L;. Applying relations (4.2), we have

()
Il I =

This suggests that it may be possible to modify stratifications making appear/disappear regions
decorated by Py in the planar theory associated with L;. As we will see, the GL;-skein algebra
acts on the planar theory associated with Py, we may use this to induce an action of the GL;-
skein algebra on the Li-theory, by making appear P;-regions and acting on them. These ideas
will be made precise later on by describing topologically the central algebras and the centred
bimodule from sections 3.1 and 3.2. O

4.3 Planar defect theory. The planar theories ZF* and Z™ induced by the rigid categories
Rep,P: and Rep,L:, respectively, glue together via the bimodule structure, yielding a two-
dimensional theory on stratified surfaces. Recall that a bipartite surface is a surface S with a
stratification

$:S—(A>B<C0).

We label ¢~1(A) and ¢~ 1(C) with L; and Py, respectively, and we call them the L;-region and
the P;-region. The 1-dimensional stratum ¢~!(B) is decorated with L; and we refer to it as the
Lt—line.

Definition 4.9. A compatible marking of (S, f,¢) is a marking B such that each of its com-
ponents is contained either in the L;-region or the P;-region. Therefore, we have a splitting
B = BLt (] Bpt.

Let (S, f, ¢, B) be a bipartite framed surface with compatible marking. For each C' € B, we
set
zZ(o), ifCeB
Z(C) — p( )’ 1 € br,,
Zh(C), if C € Bp,.

Take Uc € Z(C) for each C' € B and consider the (k ®¢(q) k)-linear space spanned by planar
graphs as in section 4.1, with given boundary conditions, coloured with Rep,L; (resp. Requt)
in the Lj-region (resp. the P;-region) and meeting transversally the defect at coupons decorated
with morphisms from Rep,L; as explained in section 4.2. We set Z(S, f, ¢, B) ((Uc)ces) for its
quotient by

» skein relations induced by Rep,L: and Rep,P; at the interior of the 2-dimensional regions;

o stratified skein relations around the L;-line: these are the relations induced by the local
model described in the previous section.

The assignment

Z(S,f,0,B): <CI§;+ Z(C)) X (C% Z(C’))Op — VECT,
(Uc)ces = Z2(S, f,9,B) (Uc)ces)
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is well-defined and functorial, since all the relations from Rep,L; and Rep,P; hold. We shall
abbreviate by Z(S) whenever there is no risk of confusion.

Lemma 4.10 ([Wal06, Theorem 4.4.2]). Let (S, f,¢,B) be a bipartite framed surface with
compatible marking. Let gl~(S) the surface obtained by gluing S along a boundary component
C, with C,C € Bp, (alternatively, in Br,). Then,

UeZ(C)
2@ = [ 2S00,
where the components decorated by U on the RHS are C' and C. |

Theorem 4.11. The assignment
Z: Bord!™"(2) — Bimop

defines a symmetric monoidal functor from the category of 2-dimensional bipartite framed cobor-
disms, hence a 2-dimensional framed TF'T.

Proof. By the previous lemma, the construction is compatible with gluing surfaces along bound-
ary components of a single color. For the general case, since we are working with compatible
markings, it suffices to observe that we may first glue along the subregion coloured by Py, and
then along that coloured by L;. O

5 DEFECT THREE-DIMENSIONAL THEORIES

In this section, we extend the theories introduced in the above to three-dimensional theories. The
local models around the surface and defect lines are given by the algebraic structures described
in section 1.5.

5.1 Parabolic surface defects. Following [BJ25], we construct a local model for surface
defects using the central algebra structure on Rep,P; constructed in section 3.1. Let S = [0, 1)?
endowed with its canonical framing and let I* be the unit interval marked at 1/2, so that
E* :=10,1]% x I* is a stratified cube with a framed defect wall [0,1]? x {1/2}. We consider the
following class of stratified ribbon graphs in E* (see Figure 6):

e endpoints are attached to one of the following regions:

Eo=[0,1] x {0} x {0},  Eyjp=1[0,1] x {1/2} x {0,1} or By :=1[0,1] x {1} x {1};

o the defect wall cuts the ribbon graph 2 into three pieces:

1. Qb =Qn ([0, 1]? x {O, %)) represents a morphism of SkCatr, ([0, 1]?);

2. 0% =Qn ([O, 1]? x (%, 1D represents a morphism of SkCatgr, ([0, 1]?);

3. QF .= QN ([0,1] x {1/2}) is a planar graph as defined in section 2.4, with the only
difference that we allow endpoints to lie in the interior of S if they are attached to
either QC or QF;

e QC and QF meet transversally the defect at a coupon of QF compatible with the colour of
the strands.
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If © is such a ribbon graph, we set
V=QnE), W=QnE;, a=0n]0,1]x{1/2}n{0}, b=0n]0,1] x {1/2} N {1}

for the objects of Rep,GL¢, Rep L and Rep, P determined by its endpoints. We say that € is
a stratified (a,b,V,W)-ribbon graph on the disk.

Fix a,b,V, W and consider the (k®c(q k)-linear space spanned by stratified (a, b, V, W)-ribbon
graphs modulo local relations happening on either one side of the defect wall or the defect wall
itself. This means that 3; \;Q; ~ 0 if either 3, QY = 0 in SkCatqr, ([0, 1]?), 3; MQF = 0
in SkCatr, ([0, 1]%) or 3; MY = 0 via the local relations introduced in section 2.4 applied to
the defect. We also mod out by framed stratified isotopy: that is, by isotopies of E* fixing
the boundary, preserving the interior of the defect and such that coupons in the defect remain
parallel to the framing throughout the isotopy. Let L, v.w be the resulting space. We define
next an evaluation morphism for stratified ribbon graphs. To a stratified (a,b,V, W)-ribbon
graph (2 as above, we associate a morphism in Rep,P¢ in the following way:

« we modify Q¢ as in the definition of the restriction functor (3.2), that is:

1. we label the initial point of any open strand a by ny ) = 0 or ng) = 1 depending
on the orientation;

2. we label the endpoint by na + rotf o

3. we use the pivotal structure of Rep,GL; (morphisms in (2.29) and (2.30)) to switch
the label of every endpoint to 0 or 1;

4. we replace the graph QC thus obtained by <p5_21 0QC 0e,, Where . is the isomorphism
in (3.1);

« we apply the same procedure to Q- (here the pivotal structure is the trivial one);

« we switch the decoration of every endpoint of QF to either 0 or 1 by concatenating with
the pivotal structures of Rep,GL; and Rep,L; (morphisms in (2.28), (2.29) and (2.30));

e we project the resulting ribbon graph into the defect wall and replace all the crossings
appearing by the corresponding half-twist from Z(Rep,P¢) (cf. section 4.1).

Let Q) be obtained by applying this procedure to 2. Projecting Ep and Ey onto E /9, we get

two configurations of labelled points V, and W3. The planar graph Q represents thus a morphism
fo € Homgep, p,(Va, Wp) (see Figure 6 for an example). We define the evaluation morphism by

evapv,w : Lopvw — Homgep p,(Va, Wh),

QO N o (5.1)

on generators and extending linearly.

Lemma 5.1. The evaluation morphism eve, v.w is well-defined, i.e., fo does not depend on the
equivalence class of Q in L, pv,w .

Proof. We have to check that fq is invariant under skein and isotopy relations applied to 2. For
skein relations, this is just the fact that the restriction functors ¢; and 7 (cf. diagram (3.4))
are well-defined. For the topological relations, first note that stratified isotopy does not fix the
defect wall, so the position a strand intersect the defect may change. In particular, we may
move a crossing between two strands intersecting transversally the defect from one side to the
other by applying such an isotopy. For instance, the stratified ribbon graphs representd (as seen
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FIGURE 6: On the left, a stratified ribbon graph on the disk; on the right, its evaluation in Rep,P;.

from the front) by

and (5.2)

are isotopic, however their projections are

and

which are not related by isotopy in Rep,P¢. The naturality of the blue crossing (cf. Remark
2.14) guarantees that they have the same evaluation.

The previous observation implies that crossings can pass through the defect, hence we have
to prove that the evaluation is invariant under framed Reidemeister moves happening either in
one side of the defect or in the defect itself. For the Reidemeister moves II and III, it suffices to
note that crossings are sent to half-braidings in Z(Rep,P¢), hence they are invertible and satisfy
the corresponding Yang-Baxter equation. For the framed Reidemeister move I

this is a consequence of the restriction 2.24 being well-defined and the fact that all relations
holding in Rep, Pt come from relations in Rep,L;. O

5.2 Defect lines. We introduce finally defect lines decorated by Rep,L: and we use the
(Repth,Requt)—centre structure to define a local model around them. Let E = I3 be the
cube, that we endow with the stratification defined by the following figure:
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/IVectk—region GL;-region

GL;-wall

L¢-region

FIGURE 7: We consider two horizontal defect walls decorated with Rep,L: and Rep,P:, and a vertical
wall decorated with Rep,GL¢. These walls meet at a 1-dimensional stratum decorated with
Rep,L:. The region below the horizontal wall is the L;-region, the one over the Li-wall is the
VECTg-region and, finally, the region over the P;-wall is the GL;-region.

We consider the following class of ribbon graphs €2, that generalizes the ones introduced in
the previous section:

e the endpoints of € lie on the bold intervals and we suppose that they are all at different
depths, so that projecting them into the horizontal wall produces no intersections;

e each part of the graph is decorated accordingly to its region. In particular, the VECTy-
region is empty;

e every edge lies entirely in one of the strata and can be attached to a coupon lying in a
stratum whose dimension differ at most by one (that is, they can not go through the defect
line directly from one of the three-dimensional regions).

As usual, we consider these graphs up to framed stratified isotopies of the cube.

Fix a configuration of coloured oriented points P on the bold intervals and let E(P) be the
(k ®c(q) k)-linear space spanned by isotopy classes of ribbon graphs whose endpoints match
P. Projecting P into the horizontal walls, we get two configurations X and Y representing
objects of Rep,L: and Rep, P, respectively. Let Q) € E(P) be a ribbon graph, following the
definition of the evaluation morphism 5.1, we can project €2 into the horizontal defects, replace
the crossings appearing by the corresponding half braiding and introduce the pivotal structures,
so that we get a planar graph Q on a stratified square as in Figure 5, representing a morphism

fa € HomRepth (Y, 5% (X))
Lemma 5.2. The linear map defined by the assignment

E(P) — HOmRepth(Y,j*(X)),
Q - fa,

is well-defined, i.e., it does not depend on the isotopy class of €.

Proof. Extending the vertical wall up to the bottom of the cube, it cuts the ribbon graph
into two subgraphs: €, lying under the L;-wall, and 9, lying under and over the P;-wall. The
planar diagram Q can then be obtained by projecting £2; and )9 separately and gluing them
along the Li-defect line. The projections Q; and Qs are obtained as in the definition of the
evaluation morphism (5.1), using the trivial (VECT, Repth)—central structure of Rep,L; for 0

and the (Rep,GLy, Repth)—central structure of Rep,L; for Q. Hence, by the same arguments
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GL, GL;

Vecty GL; Vecty
| Ly P L,
Lt Lt
L;

FIGURE 8: Schematic view of the section of a decorated cylinder. The horizontal line represents the defect
wall. The orange points are sections of the defect lines. The blue vertical lines represent the
GL;-wall.

as in Lemma 5.1, they do not depend on the isotopy class of 2; and €23. This shows that fq
is invariant under isotopies of the stratified cube happening entirely at one of the sides of the
vertical wall.

It remains to check that fq is also invariant under isotopies making a part of the diagram move
through the vertical wall. This is the diagrammatic counterpart of the fact that the bimodule
Rep, L+ is centered: the Li-region can act on the defect line both through the P;-wall and through
the L;-wall, and we want to show that both actions in fact coincide. This follows from relation
(4.2) and the definition of the central structures. Indeed, when we project €2 into the defect, we
replace all the crossing appearing by the corresponding half-braidings. In particular, when one of
the strands involved comes from the L;-region (this is the only case of interest), the half-braiding
is the braiding 5 of Rep Lt (cf. section 3.1). Therefore, projecting into the P;-wall makes appear
a coupon decorated with 7*(/3), while applying an isotopy and projecting into the L;-wall makes
appear a coupon decorated with § itself. Relation (4.2) and the fact that j* o 7* = idRep, L,
imply that both diagrams represent the same morphism in Homgep, 1., (Y, j*(X)). O

5.3 Three-dimensional defect theory. We introduce finally the three-dimensional theory
with defects. Let (S, f,¢) be a bipartite framed surface. We label ¢~1(A) and ¢~ (B) by L;
and ¢~1(C) by P;. The stratification ¢ induces an stratification of the cylinder S x I decorated
as follows (see Figure 8):

o the horizontal wall S x {%} is decorated as (S, ¢);
1
2

+ the cylinder ¢~1(C) x (3,1] and the vertical walls ¢~1(B) x (},1] are labelled with GL;

« the cylinder ¢~ 1(A) x (%, 1} is labelled with VECTy;
e the region S x [0, %) under the horizontal wall is entirely decorated with Ly.

Let B be a compatible marking of the surface. We consider isotopy classes of ribbon graphs
Qon S (see Figure 9) such that:

e ) does not intersect the VECTy-region and it is coloured accordingly with the labelling on
the other regions;

o the endpoints of Q are attached to either S x {£1} or one of the components marked on
the boundary of the horizontal wall;

e every edge lies entirely in one of the strata and can be attached to a coupon rectilinearly
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FI1GURE 9: Stratified ribbon graph on an annulus entirely labelled by P;.

embedded in a stratum whose dimension differ at most by one (this means, again, that
cannot go directly from the GL;-region to the L¢-line).

Call S** the region of S decorated with P; and fix boundary conditions X € SkCatqr, (ST*),
Y € SkCatr,(S) and Ug € Z(C) for every C € B. We set E° (XY, (Uc)cep) for the linear space
spanned by ribbon graphs as above, modulo local relations induced by Rep,GL; and Rep,L: on
the three-dimensional regions, and by the local models described in sections 5.1 and 5.2 near
the defects. The assignment

A(S, f,6,B): <CI§BZ(C’)>&SkCatGLt(SPt)&SkCatLt(S)OP 5 VEcr,
((Uc)cen, X,Y) — ES(X,Y,(Uc)cen)

is functorial. The action on morphism is given by horizontally gluing cylinders along the com-
ponents marked on the defect wall, and by vertically stacking diagrams representing morphisms
in the skein categories.

Lemma 5.3. Let (S, f, ¢, B) be a bipartite framed surface with compatible marking. Let gl~(S)
the surface obtained by gluing S along a boundary component C, with C,C € Bp, (alternatively,
in Br,). Then,

Uez(C)
AN = [ AU,

where the components decorated with U on the RHS are C and C.

Proof. Again, this is essentially the proof of [Wal06, Theorem 4.4.2]. Gluing along C' induces
morphisms

gly = A(S)(= U, U) — Algle(5)) (=)

for every U € Z(C'). Moreover, if f: U — V is a morphism in Z(C), € is a stratified ribbon
graph representing an element of A(S)(—,U, V) and f € (resp. Qx f) are the graphs obtained
by gluing f to Q along C (resp. C), then the graphs gl (f «Q) and gly, (Q* f) are related by an
isotopy supported on a tubular neighbourhood of 3S. Therefore, they define the same element
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FI1GURE 10: Applying isotopy and skein relations, we may always cut a graph along a planar component.

of A(glo(S))(—) and the diagram

\
A(S) (= U, V) Agle(9)(-) (5.3)

A(S)(=,V,

<

)

commutes. Let us show that A(gl-(S))(—) is universal for this property.

Let E be a vector space together with linear maps
v AS)(-,U,U) - E

making the equivalent diagrams commute. We have to show that there is a unique linear map

v Algle(9)(=) = E

such that ¢, = ¢ ogl, for every U € Z(C). Let Q be a stratified ribbon graph in gl (S) x I
representing an element of Z(gl-(S))(—). Applying isotopy and stratified skein relations, we
may locally project £ onto the defect, so that we may suppose that there is a neighborhood of
C x I where € is represented by a planar graph contained in the defect (see Figure 10). Let
U be the intersection of 2 with C x {2}, which determines an object of Z(C). Cutting along
C x I, we get a ribbon graph Qg in S X I defining an element of A(S)(—,U,U). If ¢ exists,
then ¢(2) = ¢y (Qu) so it is uniquely defined.

To prove the existence, suppose first that Q) is another stratified ribbon graph representing the
same element of A(gl~(S5))(—) and related to Q by an isotopy shifting a collar neighbourhood
through C' x I. Then, cutting along C x I yields an ribbon graph Qv in S x I and, since we
may suppose that it is planar around C' x I, the commutativity of (5.3) implies that gl () =
glV(Qv) On the other hand, if € and Q are related by an isotopy of glo(S) supported in a
cube not intersecting C x I, then 0y and Qu are related by the same isotopy of S, so that they
represent the same element of A(S)(—, U, U) and oy () = pu(Q). Therefore, ¢ is compatible
with isotopies.

Finally, if Q and Q are related by a skein relation on a cube not intersecting C' x I, then
Qu and Q are related by the same relation and they represent the same element. If the skein
relation occurs in a cube intersecting S, we can apply an isotopy moving it off of C' x I. We get
stratified ribbon graphs Q) and ' related by a skein relation on a cube not intersecting C' x I, so
glU/(QU,) = glU/(QU,) Moreover, the isotopy invariance of ¢ implies that gli; () = gl (/)
and gl;; (Q) = gl (). This proves that ¢ is compatible with skein relations. O
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F1GURE 11: Gluing stratified cylinders along the boundary modifies the stratification.

Theorem 5.4. The assignment
A: Bord?P(2) — Bivop

defines a symmetric monoidal functor from the category of 2-dimensional bipartite framed
cobordisms, hence a 2-dimensional framed TF'T. It coincides with the planar theory Z on one-
dimensional manifolds.

Proof. As in Theorem 4.11, the compatibility with gluing/cutting surfaces follows from the
previous lemma and the fact that we are considering compatible markings. O

6 THE HOMFLY SKEIN BIALGEBRA

6.1 The coproduct map. Consider a bipartite framed surface (S, f, ¢, B) with compatible
marking. As above, denote by ST¢ the region of S decorated with P;. Applying the three-
dimensional TFT A, we get a functor

A(S): (& Z(C)) X SkCatqr, (S} ) X SkCatr, (S) — VECT.
ceB

Choose boundary conditions Uc € Z(S) for every component C' € B and fix the empty config-
urations @ € SkCatqr, (ST*) and @ € SkCatr, (S) on the top and bottom bases of S x I. By
construction, the vector space E°((Ug)cep) obtained from A(S) comes with a left and a right
action of the skein algebras Skgr, (S¥*) and Skp,(S), respectively. By choosing an appropriate
stratification ¢, this vector space is indeed isomorphic to Sk, (S):

Proposition 6.1. Suppose that B # @ and that ¢ consists of a family of cylinders inserted
along the marked components as in Figure 11. Then, there is a natural family of isomorphisms
of vector spaces

A(S)(~,2,2) = 2" ().

Proof. Fix boundary conditions U and let {2 be a stratified ribbon graph representing an element
of A(S)(U,@,). Since there is no strand attached to S x {£1}, the 3-dimensional stratified
skein relations allow to project €2 into the defect, so that it can be represented by a planar
graph on S x {%}, coloured by Rep,P; in the P-region and by Rep,L; in the L;-region. We
first proof that this graph can be written as a linear combination of diagrams where none of the
strands is coloured in M. Indeed, suppose that « is a component coloured in blue. If « is an
open strand, then it is attached to one of the intervals/circles marked on the boundary, hence it
traverses the 1-dimensional L;-defect. Crossing these defect lines, switches its colour to B near
its endpoints. We can then apply relation (2.13) inside the L¢-disks/cylinders and make one of
the inclusion/projections appearing on each term cross the defect (relation (4.2)) and slide along
a (by naturality, cf. Remark 2.14) to reach the opposite endpoint (see figure below). The part
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of a lying in the P; region is now entirely coloured with l and H:

(2.13)
= ) ¥ B =) -

Similarly, if « is a closed strand, we can push it close to a marked component by applying and
isotopy. Then, relation (4.2) allows to project it partially into the L;-region where we can apply
the same trick to write it as a combination of a green and a red component.

Let us call  a diagram obtained by €2 by applying the previous transformations. Since it
is entirely coloured by M, M and M, it represents an element of Z“(S)(U). This elements is
well-defined, since all the relations applied to switch B to M are local relations from Rep,Lt,
hence they hold in Z%(S)(U). We get a linear map

AU, 2,2) — Z4(S)(U), Qs Q.

An inverse of this map is constructed as follows. Given a planar diagram on I'" on S coloured
by Rep,Lt, we can apply isotopies and naturality to make all the “forbidden” morphisms slide
along open strands and lie arbitrarily closed to the marked components of the boundary, so that
they are all inside one of the embedded disks/cylinders defining an L-region. Note that this
can be done in a unique way so that the intersection of the strand with the P;-region is coloured
in either M or M. We get this way a well-defined graph [ on the stratified defect wall and it
is straightforward to see that I' — [ defines an inverse for of the linear map below. Naturality
follows from the fact that these maps do not modify diagrams in a tubular neighborhood of the
marked boundary components. O

Therefore, the presence of regions coloured by Rep,L: near the boundary of the defect wall
allows to apply relation (2.13) to components coloured with B, yielding an identification B =
In the case where there are strands crossing transversally the defect, this identification still
holds, but only on closed components:

Proposition 6.2. Let B and ¢ be as in the previous proposition and fix empty boundary
conditions on each of the components marked on the defect. Then,

A(S)(2, -, —) = PRes(5)(2, —, ) /(l = W on closed components on the defect wall) -

Proof. The idea of the proof is the same as in the previous preposition: we can construct
linear maps between both spaces by pushing a part of the diagram near one the L;-regions on
the boundary, then apply relation (4.2) to project into the L;-region and make the “forbidden”
morphisms slide along closed components. This allows to decompose closed components coloured
with B into linear combinations of green and red diagrams, yielding the identification B = E. On
open strands, this induces no new relations: since they are all attached to S x {£1}, “forbidden”
morphisms cannot slide along then, so making them appear just produce a different way of
writing the same morphism, but they induce no relation. O
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Combining both propositions, we see that A(S)(@) is isomorphic as a linear space to Skg, (.5),
and by functoriality of A(S) we have now actions of both Skqr, (S) and Sky, (S):

Corollary 6.3. Let (S, f,B) be a marked framed surface with B # &. Then, the Skqr, (S) —
Skr,, (S)-bimodule A(S)(@) is isomorphic to Skr,(S) as a linear space. In particular, Skr,(S)
becomes a left Skqr, (S)(S)-module under this identification. [ |

We treat now the case of the torus S = T2. Let (T2, f,¢) be a framed torus endowed with a
stratification ¢ whose Hi-region consist of only a disk embedded in T?. By the same argument
as in the proof of Propositions 6.1 and 6.2,

A(T?, f,6)(2) = Sku, (T?)
Moreover, the P-region is homeomorphic to a punctured torus, so we have an action
Skar, (T? \ D?) ® Sk, (T?) — Sk, (T?)

of the GL;-skein algebra of this puncture torus.
Proposition 6.4. The action above descends to an action of the GL;-skein algebra of the torus.

Proof. A loop « around the puncture acts by multiplication by

e

on the L;-disk hence the action descends to the quotient

Skar, (T2 \ D?) /<a - Q> =~ Skar. (T?).

Let (S, f) be any framed surface and choose B # @ if 0S # @. Let ¢ be a stratification of S
as in Propositions 6.1 and 6.4, so that Skqr, (S) acts on Skg, (S):

O]

Proposition 6.5. The morphism Skqr, (S) — A(S)(9, @) defined by acting the empty stratified
diagram induces a C(q)-algebra homomorphim

Af : SkGLt(S) — SkLt(S)
Proof. The fact that A ¢ is an algebra homomorphism follows from the functoriality of A(S). O

Composing A ¢ with the isomorphism in Corollary 2.9, we obtain a C(g)-algebra morphism
Ag: Skar, (S) — Skar, (S) ®c(q) Skar, (5) (6.1)

whose restriction to k =2 k- 14 is (2.19). By construction, it can be computed on links by taking
a diagram on the surface where every crossing, cup and cap has been replaced by their image by
the restriction functor (2.24), and applying relations (2.20)-(2.3) and (2.13) to split the diagram
into two coloured diagrams, that we consider as lying in two different copies of Skqr, (S). Here by

cup and cap we mean a portion of the diagram where the rotation number increases or decreases
by 1.
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Proposition 6.6. The coproduct in (6.1) is coassociative.

Proof. The map
(Ap®id)o Ayt Skar,(S) — Skar,(S) ®c(q) SkaL, (S) ®c(q) Skar, (5)

can be computed as follows. Given a link diagram T, we first compute A #(I") € Skr,(S) as in
the previous paragraph. Then, we split the green part into two colours (green again for the
first copy of Skar, (S) and violet for the second one) using the same rules: replacing all green
crossings, cups and caps by their images by the restriction functor (2.24) and applying relations

(2.20)-(2.3) and (2.13) with a proper choice of colours. Since applying A does not produce new
crossings, we can do all this at once from the initial diagram using the following relations:

o - X e ([H]) e

| N K|
(] = > X+ (q_q_1> g 7wt 4 >/\)
(6.3)
(6.4

+ ¢"q” L

YN (6.5)

/\ 4 qfthftg ,

4 q7t1 N
where the sums are taken over all the possible combinations of colours for the involved strands
and
th 1 to t ts __ t
' =q¢ ®1®1, ?=1®q¢ &1, =11,

in k ®c(q) k ®c(q) k- The same formulas compute (id @ Ay) o Ay, hence the coproduct is coas-
soaciative. 0

Remark 6.7. The coproduct Ay depends on the choice of the framing f. For instance, let
S = A be the annulus, which can be equipped with either a radial framing or the framing
induced by R2. Consider first the case where f is the radial framing. We have

/

B
O
Fp
A
EE!

/
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On the other hand, if f is the framing induced by R?, the local relations projecting the link into
the defect make use of the pivotal structure of Rep,GLy:

——— . ——— ———
Il = 3@ = ¢" .JD. + " m

where the last equality follows from the definition of the pivotal structure of Rep,GL; by doing
the same manipulations as in the previous paragraph. O

6.2 The counit. Let Rep,GL;, be the C-linear category obtained by specialising
n__ ,—n
¢ -, e L4
q—q

in Definition 2.1, with ¢ € C* and ¢% # 1. This is the category OS(q¢ — ¢~ ', ¢") from [Brul7].
Let ¢, : k — C(g) be the evaluation morphism in Remark 2.3. Then, the evaluation functor
evgn factors as

Rep,GL: — Rep,GL, — Rep,GLy,

where the first arrow is a ¢,-linear functor and the second one is C-linear.

Definition 6.8. ([De07]) Let C be a ribbon category. A morphism f : X — Y is negligible if
Tre(fog)=0forallg:Y — X in C.

Theorem 6.9. ([De07, Brul7]) The functor Rep,GL,, — Rep,GLy above induces a monoidal
equivalence

o : Rep,GLn /v = Rep,GLn,

where N is the tensor ideal of Rep,GL,, consisting of negligible morphisms.

In particular, GLg is the trivial group, so that representations are just vector spaces and we
have an embedding
RequLo — VECT.

Moreover, if n = 0, then § = 0 and the dimension relation

Q:o

in Rep,GLo implies that the identity T is a negligible morphism. Therefore, all nonempty
diagrams are zero in Rep,GLyn /A7 and we get a C(g)-linear functor
€ : Rep,GL; — Rep,GLo /nr — VecT

annihilating all non-empty diagrams. If S is any oriented surface, this clearly extends to a
functor
£Y: SkCatqr,(S) — VECT.
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Proposition 6.10. The linear map

e: Skar,(S) — C(q)

obtained by restricting £ to Skgr,(S) provides a counit for the Turaev coproduct (6.1).

Proof. Recall the local relations (2.20)-(2.3). Since ¢ annihilates non-empty diagrams and maps
q' to 1, the map (1®¢)o Ay just switch B with l. The same happens when ¢ is applied to the

second factor, so it is a counit for Ay. ]
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