Quarto-quartic birational maps of \(\mathbb{P}_3(\mathbb{C}) \)

Julie Déserti* and Frédéric Han†

Université Paris Diderot
Sorbonne Paris Cité, Institut de Mathématiques
de Jussieu-Paris Rive Gauche
UMR 7586, CNRS, Sorbonne Universités
UPMC Univ Paris 06, F-75013 Paris, France
*deserti@math.univ-paris-diderot.fr
†frederic.han@imj-prg.fr

Received 16 February 2016
Accepted 31 March 2017
Published 18 May 2017

We construct a determinantal family of quarto-quartic transformations of a complex projective space of dimension 3 from trigonal curves of degree 8 and genus 5. Moreover, we show that the variety of \((4, 4)\)-birational maps of \(\mathbb{P}_3(\mathbb{C}) \) has at least four irreducible components and describe three of them.

Keywords: Birational transformation; determinantal; ACM; quarto-quartic.

Mathematics Subject Classification 2010: 14E05, 14E07

1. Introduction

Let \(\mathbb{P}_3 \) and \(\mathbb{P}_3' \) be two complex projective spaces of dimension 3. Denote by \(\text{Bir}_d(\mathbb{P}_3, \mathbb{P}_3') \) the set of birational maps from \(\mathbb{P}_3 \) to \(\mathbb{P}_3' \) defined by a linear system of degree \(d \) with base locus of codimension at least 2. A rational map \(\phi : \mathbb{P}_3 \dashrightarrow \mathbb{P}_3' \) is said to have bidegree \((d_1, d_2)\) if it is an element of \(\text{Bir}_{d_1}(\mathbb{P}_3, \mathbb{P}_3') \) such that its inverse is in \(\text{Bir}_{d_2}(\mathbb{P}_3', \mathbb{P}_3) \). Let \(\text{Bir}_{d_1,d_2}(\mathbb{P}_3, \mathbb{P}_3') \) be the quasi projective variety \([13]\) of birational maps from \(\mathbb{P}_3 \) to \(\mathbb{P}_3' \) of bidegree \((d_1, d_2)\). It is obvious that a general surface in a linear system of degree \(d \) defining an element of \(\text{Bir}_d(\mathbb{P}_3, \mathbb{P}_3') \) must be rational, but it should have a strong impact for \(d > 3 \). Our first motivations to study \(\text{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3') \) were to understand some typical differences between \(d \leq 3 \) and \(d > 3 \).

For \(d \leq 3 \), a large amount of examples was already known a long time ago \([11]\) and recent works such as \([15]\) or \([4]\) were more involved with classification problems. But for \(d > 3 \), only few examples are known. Basically, for \(d > 3 \), the classical examples are built by lifting a birational transformation of a projective space of lower
degree.

*Corresponding author.
We find. Again, it is different in Bir

the quartic surfaces containing

\[\Gamma \]

dimension [5 § 7.2.3]. In particular, for \(d \geq 2 \), monoidal linear systems give the de Jonquières family \(J_{d,d} \) (see [13, 14]). Another classical family (denoted by \(R_{d,d} \)) can be constructed with surfaces of degree \(d \) with a line of multiplicity \(d - 1 \). As expected from the components of Bir\(_{3,3}(\mathbb{P}_3, \mathbb{P}_3') \), we show that the closure of \(R_{4,4} \) is an irreducible component of Bir\(_{4,4}(\mathbb{P}_3, \mathbb{P}_3') \) (Proposition 3.13). A first surprise arises from normality properties. Indeed, in Bir\(_3(\mathbb{P}_3, \mathbb{P}_3') \), linear systems without a normal surface were exceptional and similar to elements of Bir\(_{3,3} \), but it turns out that any element of Bir\(_{4,4}(\mathbb{P}_3, \mathbb{P}_3') \) with a linear system containing a normal surface must be in \(J_{4,4} \) (Lemma 3.19). So, the closure of \(J_{4,4} \) is an irreducible component of Bir\(_{4,4}(\mathbb{P}_3, \mathbb{P}_3') \) (Corollary 3.18) and most of the work occurs with nonnormal surfaces. On the other hand, \(J_{3,3} \) is not an irreducible component of Bir\(_{3,3}(\mathbb{P}_3, \mathbb{P}_3') \) because it is in the boundary of the classical cubo-cubic determinantal family [3 § 4.2.2]. The classical cubo-cubic transformations [5 § 7.2.2] are built from Arithmetically Cohen Macaulay curves of degree 6 and genus 3. This family is so particular [12, § 4.2.2] that it was unexpected to find in Bir\(_{4,4}(\mathbb{P}_3, \mathbb{P}_3') \) another ACM family. Hence, most of the present work is about the construction of the ACM family \(\mathcal{D}_{4,4} \) and its geometric properties. We first define elements of \(\mathcal{D}_{4,4} \) via a direct construction of the resolution of their base ideal. This resolution is nongeneric among the maps of the following type:

\[\mathcal{O}_{\mathbb{P}_3}^2(-H) \oplus \mathcal{O}_{\mathbb{P}_3}(-2H) \longrightarrow \mathcal{O}_{\mathbb{P}_3}^3 \]

and we provide an explicit construction in Sec. 4.3. Then, from Corollary 4.14 and Proposition 4.20, we get the following geometric description of \(\mathcal{D}_{4,4} \).

Theorem A. Let \(\Gamma \) be a trigonal curve of genus 5, and let \(\Gamma' \) be its embedding in \(\mathbb{P}_3 \) by a general linear system \(|\mathcal{O}_\Gamma(H)| \) of degree 8. Then,

- the quartic surfaces containing \(\Gamma' \) and singular along its unique 5-secant line give an element \(\phi_{\Gamma'} \) of \(\mathcal{D}_{4,4} \);
- the inverse of \(\phi_{\Gamma'} \) is obtained by the same construction with the same trigonal curve \(\Gamma' \), but embedded in \(\mathbb{P}_3' \) with \(|\omega_{\Gamma'}^2(-H)| \).

We also geometrically describe the \(P \)-locus of \(\phi_{\Gamma'} \) (see Sec. 4.4). Finally, we exhibit another family \(\mathcal{C}_{4,4} \) constructed with linear systems of quartic surfaces with a double conic. While studying components of Bir\(_{4,4}(\mathbb{P}_3, \mathbb{P}_3') \), it turns out that the following invariant allows one to distinguish all the components of Bir\(_{4,4}(\mathbb{P}_3, \mathbb{P}_3') \) we find. Again, it is different in Bir\(_3(\mathbb{P}_3, \mathbb{P}_3') \) where this invariant is not meaningful because in most examples it is 1 [4, Proposition 2.6].

Definition 1.1 ([11 Chap. IX]). Let \(\phi \) be an element of Bir\(_3(\mathbb{P}_3, \mathbb{P}_3') \), and let \(H \) (respectively \(H' \)) be a general hyperplane of \(\mathbb{P}_3 \) (respectively \(\mathbb{P}_3' \)). The genus of \(\phi \) is the geometric genus of the curve \(H \cap \phi^{-1}(H') \).

Theorem B. The quasi projective variety Bir\(_{4,4}(\mathbb{P}_3, \mathbb{P}_3') \) has at least four irreducible components. Three of them are the closure of the families \(\mathcal{D}_{4,4}, J_{4,4} \) and \(R_{4,4} \). The
family $C_{4,4}$ is in another irreducible component. Furthermore, we have
$$\dim(R_{4,4}) = 37, \quad \dim(C_{4,4}) = 37, \quad \dim(D_{4,4}) = 46, \quad \dim(J_{4,4}) = 54,$$
$$g(\phi_{R_{4,4}}) = 0, \quad g(\phi_{C_{4,4}}) = 1, \quad g(\phi_{J_{4,4}}) = 2, \quad g(\phi_{T_{4,4}}) = 3,$$
where $g(\phi_X)$ denotes the genus of an element ϕ_X general in the family X.

2. Definitions and First Properties
Let $\phi : \mathbb{P}_3 \dasharrow \mathbb{P}_3'$ be a rational map given, for some choice of coordinates, by
$$(z_0 : z_1 : z_2 : z_3) \dasharrow (\phi_0(z_0, z_1, z_2, z_3) : \phi_1(z_0, z_1, z_2, z_3) : \phi_2(z_0, z_1, z_2, z_3) : \phi_3(z_0, z_1, z_2, z_3)),$$
where the ϕ_i’s are homogeneous polynomials of the same degree d without common factors. The **indeterminacy set** of ϕ is the set of the common zeros of the ϕ_i’s. Denote by J_{ϕ} the ideal generated by the ϕ_i’s. Let F_{ϕ} be the scheme defined by J_{ϕ}; it is called **base locus** or **base scheme** of ϕ. If $\dim F_{\phi} = 1$, then define F^1_{ϕ} as the maximal subscheme of F_{ϕ} of dimension 1 without isolated point and without embedded point. The **P-locus** of ϕ is the union of irreducible hypersurfaces that are blown down to subvarieties of codimension at least 2 (see [5 § 7.1.4]).

Lemma 2.1. Let $\phi : \mathbb{P}_3 \dasharrow \mathbb{P}_3'$ be a $(4, d)$-birational map. Let H' be a general hyperplane of \mathbb{P}_3'. Let γ be the reduced scheme with support the singular locus of $\phi^{-1}(H')$ and consider the secant variety
$$\text{Sec}(\gamma) = \bigcup_{p \neq q \in \gamma} \delta_{p,q} \subset \mathbb{P}_3,$$
where $\delta_{p,q}$ denotes the line through p and q. Then, the codimension of $\text{Sec}(\gamma)$ in \mathbb{P}_3 is strictly positive.

Proof. Let p, q be two distinct points of γ. The line $\delta_{p,q}$ passing through p and q intersects F^1_{ϕ} with length at least 4 since we have the inclusion of ideals $J_{F^1_{\phi}} \subset J^2_{\gamma}$; the line $\delta_{p,q}$ is thus blown down by $|J^2_{\gamma}(4H)|$.

But ϕ is dominant, so a general point of \mathbb{P}_3 is not in the P-locus of ϕ. Hence, $\text{codim}_{\mathbb{P}_3}(\text{Sec}(\gamma)) > 0$. \[\square\]

Corollary 2.2. Let $\phi : \mathbb{P}_3 \dasharrow \mathbb{P}_3'$ be a $(4, d)$-birational map. Let H' be a general hyperplane of \mathbb{P}_3'. Let γ be the reduced scheme defined by the singular locus of $\phi^{-1}(H')$. If $\dim \gamma = 1$, then the one-dimensional part of γ is either a line, or a conic (possibly degenerated), or 3 lines through a fixed point.

Proof. A general hyperplane section of the quartic surface $\phi^{-1}(H')$ is an irreducible reduced plane quartic curve. So, it has at most 3 singular points hence
Let H be an hyperplane. We obtain by pull back from $\text{Bir}_{p,q}(\mathbb{P}_3, \mathbb{P}_3')$ the following two maps and we can globalize over S the previous definitions of the base scheme and its singular locus.

— Let F_S be the subscheme of $S \times \mathbb{P}_3$ defined by the vanishing of the tautological map

\[H^0(\mathcal{O}_{\mathbb{P}_3}(1)) \otimes \mathcal{O}_{S \times \mathbb{P}_3}(-1,0) \longrightarrow \mathcal{O}_{S \times \mathbb{P}_3}(0,0). \]

— Let F'_S be the subscheme of $S \times \mathbb{P}_3$ defined by the vanishing of the Jacobian map

\[H^0(\mathcal{O}_{\mathbb{P}_3}(1)) \otimes (H^0(\mathcal{O}_{\mathbb{P}_3}(1)))^\vee \otimes \mathcal{O}_{S \times \mathbb{P}_3}(-1,0) \longrightarrow \mathcal{O}_{S \times \mathbb{P}_3}(0,p-1). \]

— For an hyperplane H of \mathbb{P}_3, we define the restrictions to H as the following intersections in $S \times \mathbb{P}_3$:

\[F_S \cdot H = F_S \cap (S \times H), \quad F'_S \cdot H = F'_S \cap (S \times H). \]

Unfortunately, we have not studied families with 3 lines through a point because we first missed such examples.

Example 2.3 (Loria, 1890, see for instance [11, Chap. XIV §8]). Let l_0, l_1, l_2 be lines in \mathbb{P}_3 of ideal (z_1, z_2), (z_2, z_0), (z_0, z_1) and O_1, O_2, O_3 be three general points in the plane $z_3 = 0$. For $1 \leq j \leq 3$, let q_j be the quadric cone containing the lines l_0, l_1, l_2 and the two points of O_1, O_2, O_3 distinct from O_j. Then, the following quartics

\[(q_1 q_2, q_2 q_3, q_0 q_1, z_0 z_1, z_2 z_3) \]

gives a quarto-quartic birational transformation; the general element of this linear system is a Steiner quartic.

2.1. Families in Bir$_{p,q}(\mathbb{P}_3, \mathbb{P}_3')$ and semicontinuity

Definition 2.4. Let p, q be integers such that Bir$_{p,q}(\mathbb{P}_3, \mathbb{P}_3')$ is not empty, and let S be a reduced subscheme of Bir$_{p,q}(\mathbb{P}_3, \mathbb{P}_3')$. From the natural embedding of

\[\text{Bir}_{p,q}(\mathbb{P}_3, \mathbb{P}_3') \subset \mathbb{P}(\text{Hom}(H^0(\mathcal{O}_{\mathbb{P}_3'}(1)), H^0(\mathcal{O}_{\mathbb{P}_3}(p)))), \]

we obtain by pull back from S to $S \times \mathbb{P}_3$ the tautological sequence

\[H^0(\mathcal{O}_{\mathbb{P}_3'}(1)) \otimes \mathcal{O}_{S \times \mathbb{P}_3}(-1,0) \longrightarrow H^0(\mathcal{O}_{\mathbb{P}_3}(p)) \otimes \mathcal{O}_{S \times \mathbb{P}_3}. \]

It gives the following two maps and we can globalize over S the previous definitions of the base scheme and its singular locus.

— Let F_S be the subscheme of $S \times \mathbb{P}_3$ defined by the vanishing of the tautological map

\[H^0(\mathcal{O}_{\mathbb{P}_3'}(1)) \otimes \mathcal{O}_{S \times \mathbb{P}_3}(-1,0) \longrightarrow \mathcal{O}_{S \times \mathbb{P}_3}(0,0). \]

— Let F'_S be the subscheme of $S \times \mathbb{P}_3$ defined by the vanishing of the Jacobian map

\[H^0(\mathcal{O}_{\mathbb{P}_3'}(1)) \otimes (H^0(\mathcal{O}_{\mathbb{P}_3}(1)))^\vee \otimes \mathcal{O}_{S \times \mathbb{P}_3}(-1,0) \longrightarrow \mathcal{O}_{S \times \mathbb{P}_3}(0,p-1). \]

— For an hyperplane H of \mathbb{P}_3, we define the restrictions to H as the following intersections in $S \times \mathbb{P}_3$:

\[F_S \cdot H = F_S \cap (S \times H), \quad F'_S \cdot H = F'_S \cap (S \times H). \]

We don’t expect that this example is related to one of the four components described in Theorem B; it seems to us that it should give one more component of Bir$_{4,4}(\mathbb{P}_3, \mathbb{P}_3')$.

1750037-4
Corollary 2.5. The morphisms $F_S \to S$ and $F_S^p \to S$ are projective morphisms, moreover all the fibers of $F_S \to S$ have the same dimension.

- If $q < p^2$, we have for all ϕ in S, $\dim F_\phi = 1$ (see Notation 3.4).
- If $q = p^2$, we have for all ϕ in S, $\dim F_\phi = 0$.

Let us recall the following application of the semicontinuity of the dimension of the fibers of a coherent sheaf.

Lemma 2.6. Let $f : X \to Y$ be a finite morphism of Noetherian schemes over \mathbb{C}. The map

$$Y \to \mathbb{Z}, \quad y \mapsto \deg(X_y)$$

is upper semicontinuous.

Proof. Let $C(y)$ be the residual field of Y at y. Remark that the degree of X_y is the dimension of the complex vector space $f_*(\mathcal{O}_X) \otimes C(y)$ because f is finite. By [9, Theorem III-8.8], the sheaf $f_*(\mathcal{O}_X)$ is coherent on Y, so we conclude by semicontinuity of the dimension of the fibers of a coherent sheaf (see [9, Example III, 12.7.2]).

Corollary 2.7. With the previous notation, the following functions are upper semicontinuous:

1. $\alpha : S \to \mathbb{Z}, \quad \phi \mapsto \deg(F_\phi)$.
2. $\beta : S \to \mathbb{Z}, \quad \phi \mapsto \dim(F_\phi^p)$.
3. $\eta : \beta^{-1}(\{1\}) \to \mathbb{Z}, \quad \phi \mapsto \deg(F_\phi^p)$.

Proof. The semicontinuity of β is from Chevalley’s theorem (see [8, 13.1.5]) because $F_\phi^p \to S$ is proper. Let us prove the semicontinuity of α by showing that for any n in \mathbb{Z} the set $\alpha^{-1}([-\infty, n])$ is open. If it is not empty, then consider an arbitrary element ψ such that $\alpha(\psi) \leq n$. We can chose a hyperplane H of \mathbb{P}_3 such that $F_\psi \cap H$ is artinian of length $\alpha(\psi) = \deg(F_\psi^p)$. By Corollary 2.6, the projective morphism $\pi_S : F_S \cdot H \to S$ is generically finite. According to Chevalley’s theorem, the set

$$U = \{ \phi \in S, \dim(\pi_S^{-1}(\{\phi\})) \leq 0 \}$$

is an open set of S containing ψ. Hence, over U, we have a finite morphism $\pi_U : F_U \cdot H \to U$. Applying Lemma 2.6 to π_U, we have an open set U' such that

$$\forall \phi \in U', \quad \alpha(\phi) = \deg(F_\phi) \leq \length(F_\phi \cap H) \leq \length(F_\psi \cap H) = \alpha(\psi) \leq n.$$

So, for any element ψ of $\alpha^{-1}([-\infty, n])$, there is an open set U' of S such that

$$\psi \in U', \quad U' \subset \alpha^{-1}([-\infty, n]).$$

In conclusion, $\alpha^{-1}([-\infty, n])$ is open and α is upper semicontinuous on S. The proof is the same for η because it is also a projective morphism such that all its fibers are one-dimensional.
Let us also recall the following:

Lemma 2.8. Let $\pi : X \to Y$ be a projective morphism of noetherian schemes, and Ω_π be the sheaf of relative differentials, then for all $n \in \mathbb{N}$, the set
\[\{ x \in X, \text{rank}(\Omega_\pi)_x \geq n \} \]
is closed in X, so its image by π is closed in Y.

Proof. From [9, Remark II, 8.9.1], the sheaf Ω_π is coherent on X. As a result, the rank of its fiber is upper semicontinuous by [9, Example III, 12.7.2] and $\{ x \in X, \text{rank}(\Omega_\pi)_x \geq n \}$ is closed in X. But, π is projective, hence the image of this closed set is closed in Y.

3. Two Classical Families in $\text{Bir}_{d,d}(\mathbb{P}_3, \mathbb{P}_3')$

It is a classical construction to obtain birational transformations over projective spaces from a factorization through the blow up of a linear space and a birational transformation between projective spaces of lower dimension [5, Definition 7.2.9]. The following one is a typical example of this construction.

3.1. The Monoidal de Jonquières family $\mathcal{J}_{d,d}$

Many equivalent properties are detailed in [13] or [14] so let us choose the following definition.

Definition 3.1. Let d be a nonzero integer, and let p be a point of \mathbb{P}_3. Choose coordinates such that the ideal of p in \mathbb{P}_3 is $I_p = (z_0, z_1, z_2)$. Consider $S_d = z_3P_{d-1} + P_d$ and $S_{d-1} = z_3Q_{d-2} + Q_{d-1}$ with P_i, Q_i in $\mathbb{C}[z_0, z_1, z_2]$ homogeneous of degree i such that $\gcd(S_{d-1}, S_d) = 1$ and $P_{d-1}Q_{d-1} \neq P_dQ_d - 2$. The rational map $\phi : \mathbb{P}_3 \dasharrow \mathbb{P}_3'$ defined by an isomorphism $\mathbb{P}_3' \simeq [\phi(dH)]^\vee$ with
\[\mathcal{J}_\phi = S_{d-1} : S_d \]
is birational of bidegree (d, d). The base scheme F_ϕ is defined by the monoidal complete intersection (S_{d-1}, S_d) with an immersed point at p. Denote by $\mathcal{J}_{d,d}$ the corresponding family of $\text{Bir}_{d,d}(\mathbb{P}_3, \mathbb{P}_3')$.

Remark 3.2. With the notation of Definition 3.1 we can find coordinates on \mathbb{P}_3' such that the map ϕ can be written as
\[\begin{pmatrix} z_0 : z_1 : z_2 : \frac{P_{d-1}z_3 + P_d}{Q_{d-2}z_3 + Q_{d-1}} \end{pmatrix}, \]
it is then clear that the inverse of ϕ
\[\begin{pmatrix} z_0 : z_1 : z_2 : \frac{Q_{d-1}z_3 - P_d}{Q_{d-2}z_3 + P_{d-1}} \end{pmatrix} \]
is also a monoidal de Jonquières element of $\text{Bir}_{d,d}(\mathbb{P}_3', \mathbb{P}_3')$.

1750037-6
Corollary 3.3 ([13]). The family $J_{d,d} \subset \text{Bir}_{d,d}(\mathbb{P}_3, \mathbb{P}_3^d)$ is irreducible of dimension $2d^2 + 2d + 14$.

Proof. The choice of S_{d-1} up to factor is $(\frac{d}{d-2}) + (\frac{d+1}{d-1}) - 1$ dimensional. The choice of S_d up to factor with $S_d \notin S_{d-1}. C[z_0, z_1, z_2]$ has dimension $(\frac{d+2}{d}) + (\frac{d+1}{d-1}) - 3 - 1$. With the choices of an automorphism of \mathbb{P}_3 and of a point $p \in \mathbb{P}_3$, we have $\text{dim} \ J_{d,d} = (\frac{d}{d-2}) + 2(\frac{d+1}{d-1}) + (\frac{d+2}{d}) + 13$. □

Let us recall that $J_{3,3}$ is not an irreducible component of $\text{Bir}_{3,3}(\mathbb{P}_3, \mathbb{P}_4^3)$ (see [11 §4.2.2]), so the next Lemma is quite unexpected.

Notation 3.4. Let $\phi : \mathbb{P}_3 \dashrightarrow \mathbb{P}_3^d$ be a birational transformation of bidegree (p, q). For a general line l' in \mathbb{P}_3^d, we will denote by

1. $\phi^{-1}(l')$ the complete intersection in \mathbb{P}_3 of degree p^2 defined by l'.
2. $C_1 = \phi^{-1}_*(l') \subset \mathbb{P}_3$ the closure of the image by ϕ^{-1} of points of l' where ϕ^{-1} is regular. As a result C_1 is an irreducible curve of degree q and geometric genus 0.
3. C_2 the residual scheme of C_1 in $\phi^{-1}(l')$. (Note that F_1^1 and C_2 are set theoretically identical, but in general F_1^1 is just a subscheme of C_2.)

Furthermore, for any scheme Z, we denote by \mathcal{I}_Z its ideal.

Lemma 3.5. Let $\phi : \mathbb{P}_3 \dashrightarrow \mathbb{P}_3^d$ be a $(4,4)$-birational map. Let H' be a general hyperplane of \mathbb{P}_3^d and denote by S the surface $\phi^{-1}(H')$. If S is normal, then C_1 is a plane rational quartic and ϕ belongs to $J_{4,4}$.

Proof. The curves C_1 and C_2 are geometrically linked by quartic surfaces, so the dualizing sheaf of $C_1 \cup C_2$ is $\omega_{C_1 \cup C_2} = \mathcal{O}_{C_1 \cup C_2}(4H)$ and we have the liaison exact sequence

$$0 \rightarrow \mathcal{I}_{C_1 \cup C_2}(4H) \rightarrow \mathcal{I}_{C_2}(4H) \rightarrow \mathcal{H}(\mathcal{O}_{C_1}, \mathcal{O}_{C_1 \cup C_2}(4H)) \rightarrow 0.$$

The surface S is normal and contains F_1^1. Hence, F_1^1 is generically locally complete intersection. So, we have the scheme equality $F_1^1 = C_2$. Thus, $h^0(\mathcal{I}_{C_2}(4H)) = h^0(\mathcal{I}_{\phi}(4H)) \geq 4$. Therefore, from the liaison exact sequence, the dualizing sheaf $\omega_{C_1} = \mathcal{H}(\mathcal{O}_{C_1}, \mathcal{O}_{C_1 \cup C_2}(4H))$ has at least two independent sections. In other words the arithmetic genus of C_1 is greater or equal to 2. By Castelnuovo inequality (cf. [10 Theorem 3.3]), the arithmetic genus of a nondegenerate locally Cohen-Macaulay space curve of degree 4 is at most 1. Hence, C_1 is a plane rational quartic. By liaison, C_2 is a complete intersection $(3, 4)$. Moreover, it gives the equality $\mathcal{H}(\mathcal{O}_{C_1}, \mathcal{O}_{C_1 \cup C_2}(4H)) = \mathcal{O}_{C_1}(H)$, so the restriction of ϕ to C_1 is a pencil of sections of $\mathcal{O}_{C_1}(H)$. But, ϕ sends C_1 birationally to a line of \mathbb{P}_3, hence this pencil must be the lines through a triple point p of the plane curve C_1. As S has a finite singular locus, the point p is independent of the choice of l' and it is a triple point for all the quartics in the linear system $|\mathcal{I}_{\phi}(4H)|$. In conclusion, F_1^1 is a monoidal complete intersection $(3, 4)$ with p as immersed point. Besides, ϕ belongs to $J_{4,4}$.
because the irreducibility of $S = S_d$ implies $\gcd(S_{d-1}, S_d) = 1$ and $P_{d-1}Q_{d-1} \neq Q_{d-2}P_d$.

Corollary 3.6. The closure of $\mathcal{J}_{3,4}$ is an irreducible component of $\operatorname{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3)$.

3.2. The ruled family $\mathcal{R}_{d,d}$

In this paragraph, we will prove the following direct application of Lemma 3.10:

Proposition 3.7. Consider a line δ in \mathbb{P}_3 and an integer d with $d \geq 2$. Let $\Delta_1, \ldots, \Delta_{d-1}$ be $d - 1$ general disjoint lines that intersect δ in length one, and let p_1, \ldots, p_{d-1} be $(d - 1)$ general points in \mathbb{P}_3. Then the linear system $|\mathbb{J}^d_{\delta} \cap \mathcal{I}_{\Delta_1} \cap \ldots \cap \mathcal{I}_{\Delta_{d-1}} \cap \mathcal{I}_{p_1} \cap \ldots \cap \mathcal{I}_{p_{d-1}}(d \cdot H)|$ gives a birational map

$$
\mathbb{P}_3 \dasharrow |\mathbb{J}^d_{\delta} \cap \mathcal{I}_{\Delta_1} \cap \ldots \cap \mathcal{I}_{\Delta_{d-1}} \cap \mathcal{I}_{p_1} \cap \ldots \cap \mathcal{I}_{p_{d-1}}(d \cdot H)|^\vee.
$$

Moreover, the base scheme is defined by the ideal $|\mathbb{J}^d_{\delta} \cap \mathcal{I}_{\Delta_1} \cap \ldots \cap \mathcal{I}_{\Delta_{d-1}} \cap \mathcal{I}_{p_1} \cap \ldots \cap \mathcal{I}_{p_{d-1}}(d \cdot H)|$ and has degree $(d+2)(d-1)/2$.

Definition 3.8. Birational maps of Proposition 3.7 composed with an isomorphism

$$
|\mathbb{J}^d_{\delta} \cap \mathcal{I}_{\Delta_1} \cap \ldots \cap \mathcal{I}_{\Delta_{d-1}} \cap \mathcal{I}_{p_1} \cap \ldots \cap \mathcal{I}_{p_{d-1}}(d \cdot H)|^\vee \simeq \mathbb{P}_3'
$$

form the family $\mathcal{R}_{d,d} \subset \operatorname{Bir}_{d,d}(\mathbb{P}_3, \mathbb{P}_3')$.

Remark 3.9. Note that surfaces of degree d in such linear systems have a line of multiplicity $d - 1$, so they are ruled. For $d > 3$, there may exist ruled surfaces of degree d without a line of multiplicity $d - 1$. Nevertheless, we keep the terminology “ruled” for $\mathcal{R}_{d,d}$ to emphasize the analogy with the traditional naming convention when $d = 3$.

Lemma 3.10. With notation of Proposition 3.7, the image of \mathbb{P}_3 by the linear system

$$
|\mathbb{J}^d_{\delta} \cap \mathcal{I}_{\Delta_1} \cap \ldots \cap \mathcal{I}_{\Delta_{d-1}}(d \cdot H)|
$$

is a nondegenerate three-dimensional variety X_d of degree d of \mathbb{P}_{d+1}.

Remark 3.11. Let us note that X_d is of minimal degree.

Proof of Lemma 3.10. Let us choose coordinates such that the ideal of δ in \mathbb{P}_3 is $\mathcal{I}_\delta = (z_0, z_1)$. Let \mathcal{I}_{Δ_j} be (ℓ_j, ℓ'_j) with

- $\gcd(\ell_j, \ell'_j) = 1$ for $1 \leq k, j < d$;
- $\gcd(\ell_j, \ell_k) = 1$, $\gcd(\ell'_j, \ell'_k) = 1$ for $1 \leq k, j < d$, $k \neq j$;
- $\ell_j \in \mathcal{I}_\delta$, $\gcd(\ell_j, z_0) = 1$;
- $\ell'_j \notin \mathcal{I}_\delta$.

1750037-8
Set \(F_0 = \mathcal{I}_d^d \cap \mathcal{I}_{\Delta_1} \cap \cdots \cap \mathcal{I}_{\Delta_{d-1}} \). The ideal \(F_0 \) is defined by the \((d - 1) \times (d - 1)\) minors of the matrix

\[
M = \begin{pmatrix}
z_0 \ell_1 & z_0 \ell_2 & \ldots & z_0 \ell_{d-1} \\
\ell_1 & 0 & \ldots & 0 \\
0 & \ell_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \ell_{d-1}
\end{pmatrix}.
\]

Let \(\tilde{P}_3 \subset P_1 \times P_3 \) be the blow up of \(P_3 \) at \(\delta \). Denote by \(s \) (respectively \(H \)) the hyperplane class of \(P_1 \) (respectively \(P_3 \)) and by \(M \) the strict transform of the entries of \(M \). The resolution of the ideal of the proper transform of \(\cup_{i=1}^{d-1} \Delta_i \) is

\[
0 \to \mathcal{O}_{\tilde{P}_3}^{d-1}(-s) \xrightarrow{\widetilde{M}} \mathcal{O}_{\tilde{P}_3}(H) \oplus \mathcal{O}_{\tilde{P}_3}^{d-1} \to \mathcal{I}_Z((d - 1)s + H) \to 0. \tag{3.1}
\]

This surjection gives a rational map

\[
\tilde{P}_3 \dashrightarrow X_d \subset \text{Proj} \left(\text{Sym} \left(\mathcal{O}_{\tilde{P}_3}^{d-1} \oplus \mathcal{O}_{\tilde{P}_3}(H) \right) \right) \subset \tilde{P}_3 \times P_{d+2}
\]

with \(P_{d+2} = \left[\mathcal{I}_Z((d - 1)s + H) \right]^{\vee} \). Denote by \(H' \) the hyperplane class of \(P_{d+2} \), so the class of \(X_d \) in \(\text{Proj} \left(\text{Sym} \left(\mathcal{O}_{\tilde{P}_3}^{d-1} \oplus \mathcal{O}_{\tilde{P}_3}(H) \right) \right) \) is \((H' + s)^{d-1}\) with the relation

\[
H^d = H'^{d-1} \cdot H \quad \text{[7, Example 8.3.4].}
\]

Since we have the equality

\[
(H' + s)^{d-1} : H^{d-3} = d,
\]

the image of \(\tilde{P}_3 \) by \(\left[\mathcal{I}_Z((d - 1)s + H) \right] \) is of degree \(d \) in \(P_{d+2} \). Moreover, from resolution \(\textbf{[3.7]} \), it is not in a hyperplane of \(P_{d+2} \). \(\square \)

Proof of Proposition 3.7 With notation of Lemma 3.11, choose \(d - 1 \) points \((p_i)_{1 \leq i \leq d}\) in general position in \(X_d \). They span in \(P_{d+2} \) a projective space \(\pi_{d-2} \) of dimension \(d - 2 \). The projection from \(\pi_{d-2} \) restricts to a birational map from \(X_d \) to a three-dimensional projective space. To see that the intersection \(\pi_{d-2} \cap X_d \) is the reduced scheme defined by the \((p_i)_{1 \leq i \leq d}\), let us consider an additional general point \(p_d \) of \(X_d \) and denote by \(\pi_{d-1} \) the projective space spanned by the \((p_i)_{1 \leq i \leq d}\). The threefold \(X_d \) is nondegenerate of degree \(d \) in \(P_{d+2} \), so \(X_d \cap \pi_{d-1} \) is the intersection of \(X_d \) by a general linear space of codimension three, hence it is just the \(d \) points \((p_i)_{1 \leq i \leq d}\). In conclusion, \(\pi_{d-2} \cap X_d \) is the reduced scheme defined by the \((p_i)_{1 \leq i \leq d}\). Moreover, we can assume that these points are in the locus where \(P_3 \dashrightarrow X_d \) is an isomorphism. As a result, the base scheme in \(P_3 \) of the composition \(P_3 \dashrightarrow X_d \) with the linear projection from \(\pi_{d-2} \) is defined by the ideal \(\mathcal{I}_d^d \cap \mathcal{I}_{\Delta_1} \cap \cdots \cap \mathcal{I}_{\Delta_{d-1}} \cap \mathcal{I}_{p_1} \cap \cdots \cap \mathcal{I}_{p_{d-1}} \), it thus has degree \(\frac{d(d-1)}{2} + (d - 1) \). \(\square \)
Corollary 3.12. The family $\mathcal{R}_{4,4} \subset \text{Bir}_{4,4}(\mathbb{P}^3, \mathbb{P}^3)$ is irreducible of dimension

$$4 + 3(d - 1) + 3(d - 1) + 15 = 6d + 13.$$

Proposition 3.13. The closure of $\mathcal{R}_{4,4}$ is an irreducible component of $\text{Bir}_{4,4}(\mathbb{P}^3, \mathbb{P}^3)$.

Proof. Let \mathcal{B} be an irreducible component of $\text{Bir}_{4,4}(\mathbb{P}^3, \mathbb{P}^3)$ containing $\mathcal{R}_{4,4}$. Let ϕ be a general element of \mathcal{B}, and let ψ be a general element of $\mathcal{R}_{4,4}$. According to Proposition 3.7, the scheme F_{ψ} has degree 9 and ψ is in \mathcal{B}, thus by Corollary 2.4, the set $\alpha^{-1}([-\infty, 9])$ is nonempty and open in \mathcal{B} so the general element ϕ satisfies $\deg(F_{\phi}) \leq 9$. With Notation 3.4, we have $\deg C_2 = 12$, so F_{ϕ} has a component that is not locally complete intersection. Let H be a general hyperplane of \mathbb{P}^3, and let S be the set of points p such that $F_{\phi} \cap H$ is not locally complete intersection at p. Denote by Z (respectively Y) the union of the irreducible components of $F_{\phi} \cap H$ (respectively $C_2 \cap H$) supported on points p of S. We can now bound the degree of Z. By Corollary 2.3 and Chevalley’s semicontinuity theorem, there is an open subset U of $\alpha^{-1}([-\infty, 9])$ (hence of \mathcal{B}) such that $\psi \in U$ and $\pi_U : F_U \cdot H \to U$ is finite (with notation of Definition 2.1). By Lemma 2.8 the set

$$\Sigma = \{(u, p) \in F_U \cdot H \subset U \times H, \text{rank}(\Omega_{\pi_U})_{(u, p)} \geq 2\}$$

is closed in $F_U \cdot H$. As a consequence $\pi_U : \Sigma \to U$ is also finite. Moreover, it is onto because $U \subset \alpha^{-1}([-\infty, 9])$, so any element of U must have a base scheme that is not locally complete intersection. But, the base scheme of ψ has three smooth points so the degree of the fiber Σ_ψ is at most $9 - 3 = 6$. Lemma 2.4 implies the inequality $\deg(\Sigma_{\phi}) \leq 6$ for the general element ϕ of U, hence of \mathcal{B}. But, $Z \subset \Sigma_{\phi}$ hence $\deg(Z) \leq 6$ and $\deg(Y) - \deg(Z) = \deg(C_2) - \deg(F_{\phi}) \geq 3$. The cardinal of S is at most 2 because $\deg(Z) \leq 6$ and schemes of length at most 2 are locally complete intersection. We thus have the following possibilities:

- if $S = \{p_1, p_2\}$, $p_1 \neq p_2$, then $\mathcal{Z} = \mathcal{Z}_{p_1} \cap \mathcal{Z}_{p_2}$ because $\deg(Z) \leq 6$. Therefore, each component of Y has length 4 and $\deg(Y) - \deg(Z) = 8 - 6$ cannot be 3.
- if $S = \{p\}$ with $\mathcal{Z} = (x, y)$, then we have the following analytic classification of all non locally complete intersection ideals of $\mathbb{C}[x, y]$ of colength at most 6 (see [3] §4.2)

<table>
<thead>
<tr>
<th>Length (Z)</th>
<th>Ideal of Z</th>
<th>Length of a general complete intersection Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n + 1$</td>
<td>(y^2, xy, x^n), $2 \leq n \leq 5$</td>
<td>$n + 2$</td>
</tr>
<tr>
<td>$n + 2$</td>
<td>$(y^2 + x^{n-1}, x^2y, x^n)$, $3 \leq n \leq 4$</td>
<td>$n + 3$</td>
</tr>
<tr>
<td>$n + 2$</td>
<td>(y^2, x^2y, x^n), $3 \leq n \leq 4$</td>
<td>$2n$</td>
</tr>
<tr>
<td>6</td>
<td>$(y(x + x), x^2y, x^4)$</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>(x^3, x^2y, xy^2, y^3)</td>
<td>9</td>
</tr>
</tbody>
</table>
Hence, F_ϕ has a triple line Δ and a smooth curve of degree 3 denoted by K. Any bisecant line to K that intersects Δ must be in all the quartics defining F_ϕ. As a result, K is a union of 3 disjoint lines that intersect Δ, and ϕ belongs to $R_{4,4}$.

4. The Determinantal Family $\mathcal{D}_{4,4}$

Notation 4.1. Let P_1, P_3, P_3' be three complex projective spaces of dimension 1, 3, 3; denote by s, H, H' their hyperplane class and by L, A, A' the following vector spaces:

$$L = H^0(O_{P_1}(s)), \quad A = H^0(O_{P_3}(H)), \quad A' = H^0(O_{P_3'}(H')).$$

4.1. Construction via \tilde{P}_3

4.1.1. Description via \tilde{P}_3

Let X be a complete intersection in $P_1 \times P_3 \times P_3'$ given by the vanishing of a general section of the bundle

$$O_{P_1 \times P_3 \times P_3'}(s + H) \oplus O_{P_1 \times P_3 \times P_3'}(s + H') \oplus O_{P_1 \times P_3 \times P_3'}(H + H') \oplus O_{P_1 \times P_3 \times P_3'}(s + H + H').$$

Lemma 4.2. The projections from X to P_3 and P_3' are birational.

Proof. It is an immediate computation from the class of

$$X \sim (s + H) \cdot (s + H') \cdot (H + H') \cdot (s + H + H'),$$

so $X \cdot H^3 = s \cdot H^3 \cdot H'^3 = X \cdot H^3$.

Notation 4.3. Let n_0 (respectively n_1) be a nonzero section of $O_{P_1 \times P_3 \times P_3'}(s + H)$ (respectively $O_{P_1 \times P_3 \times P_3'}(s + H')$) vanishing on X. The section n_0 defines in $P_1 \times P_3$ a divisor \tilde{P}_3 isomorphic to the blow up of P_3 along a line Δ.

Lemma 4.4. The complete intersection X is the blow up of \tilde{P}_3 along the curve Γ of ideal $1_{\Gamma|\tilde{P}_3}$ with resolution defined by a general map G

$$0 \to O_{\tilde{P}_3}(-s) \oplus O_{\tilde{P}_3}(-H) \oplus O_{\tilde{P}_3}(-s - H) \xrightarrow{G} A' \otimes O_{\tilde{P}_3} \to I_{\Gamma|\tilde{P}_3}(2s + 2H) \to 0.$$

(4.1)

Moreover,

- the curve Γ is smooth irreducible of genus 5 and $|O_{\Gamma}(s)|$ is a g_1^1,
- the sheaf $O_{\Gamma}(H)$ has degree 8.
Proof. The resolution of $\mathcal{J}_{\Gamma|\tilde{P}_3}(2s+2H)$ claimed in (4.1) is just the direct image by the first projection of the resolution of $\mathcal{O}_{X}(H')$ as $\mathcal{O}_{\tilde{P}_3 \times P'_3}$-module. So, the map \tilde{G} is general. Since the bundle $A' \otimes (\mathcal{O}_{\tilde{P}_3}(s) \oplus \mathcal{O}_{\tilde{P}_3}(H) \oplus \mathcal{O}_{\tilde{P}_3}(s+H))$ is globally generated, the curve Γ is smooth because it is the degeneracy locus of the general map \tilde{G} (2 § 4.1, see [16, Theorem 1]). Moreover, the resolution (4.1) gives the vanishing $h^1(\mathcal{J}_{\Gamma|\tilde{P}_3}) = 0$. As a consequence $h^0(\mathcal{O}_{\Gamma'}) = 1$ and Γ is connected and smooth, so irreducible. The dualizing sheaf of \tilde{P}_3 is $\omega_{\tilde{P}_3} = \mathcal{O}_{\tilde{P}_3}(-s-3H)$, so $\operatorname{Ext}^1(\mathcal{J}_{\Gamma|\tilde{P}_3}(2s+2H), \mathcal{O}_{\tilde{P}_3}(s-H)) = \omega_{\Gamma'}$. Besides the functor $\mathcal{H}om(\cdot, \omega_{\tilde{P}_3})$ applied to sequence (4.1) gives the following exact sequence:

$$0 \to \mathcal{O}_{\tilde{P}_3}(-s-3H) \to A' \otimes \mathcal{O}_{\tilde{P}_3}(s-H) \to \mathcal{O}_{\tilde{P}_3}(2s-H) \oplus \mathcal{O}_{\tilde{P}_3}(s) \oplus \mathcal{O}_{\tilde{P}_3}(2s) \to \omega_{\Gamma'} \to 0. \quad (4.2)$$

As a result $h^0(\omega_{\Gamma'}) = 5$ and Γ has genus 5. The class of Γ is obtained from the degeneracy locus formula for \tilde{G} by computing the coefficient of t^2 in the series $\frac{1}{(1-s-t)(1-H+t)(1-(s+H)t)}$. Therefore, in the Chow ring of \tilde{P}_3, one has

$$\Gamma \sim 5s \cdot H + 3H^2.$$

Hence, $\Gamma \cdot H$ has degree 8, $\Gamma \cdot s$ has degree 3 and $|\mathcal{O}_{\Gamma'}|$ is a g^1_3.

4.1.2. Description in \mathbb{P}_3

Let G be the composition $\tilde{G} \circ \begin{pmatrix} (E_\Delta) & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (E_\Delta) \end{pmatrix}$, where (E_Δ) is an equation of the exceptional divisor E_Δ of \tilde{P}_3.

Proposition 4.5. Let \mathcal{J}_Γ be the ideal of the projection Γ of Γ in \mathbb{P}_3, and let \mathcal{J}_Δ be the ideal of the line Δ defined in Notation 4.2 Then,

- the line Δ is 5-secant to Γ,
- one has the following exact sequence:

$$0 \to \mathcal{O}_{\tilde{P}_3}(-H) \oplus \mathcal{O}_{\tilde{P}_3}(-2H) \overset{G}{\to} A' \otimes \mathcal{O}_{\tilde{P}_3} \to (\mathcal{J}_\Delta^2 \cap \mathcal{J}_\Gamma)(4H) \to 0, \quad (4.3)$$

- the linear system $|(\mathcal{J}_\Delta^2 \cap \mathcal{J}_\Gamma)(4H)|$ gives a birational map from \mathbb{P}_3 to \mathbb{P}_3' that factors through X.

1750037-12
Proof. The intersection of $\Delta \cap \Gamma$ is computed in \mathbb{P}_3 from Lemma 4.4, by $\Gamma \cdot E_\Delta = \Gamma \cdot H - \Gamma \cdot s = 8 - 3$. From Lemma 4.4, one gets the commutative diagram

$$
\begin{array}{c}
0 \\
\downarrow \\
0 \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
0
\end{array}
\begin{array}{c}
0 \\
\rightarrow \\
0
\end{array}
\begin{array}{c}
\mathcal{O}_{\mathbb{P}_3}^2(-H) \oplus \mathcal{O}_{\mathbb{P}_3}(-2H) \\
G \\
A' \otimes \mathcal{O}_{\mathbb{P}_3} \\
coker(G) \\
0
\end{array}
\begin{array}{c}
\mathcal{O}_{\mathbb{P}_3}(-s) \oplus \mathcal{O}_{\mathbb{P}_3}(-H) \oplus \mathcal{O}_{\mathbb{P}_3}(-s-H) \\
\mathcal{G} \\
A' \otimes \mathcal{O}_{\mathbb{P}_3} \\
\mathcal{I}_{\Gamma^1|\mathbb{P}_3}(2s+2H) \\
0
\end{array}
\begin{array}{c}
\mathcal{O}_{E_\Delta}(-s) \oplus \mathcal{O}_{E_\Delta}(-s-H) \\
0
\end{array}
$$

so, $coker(G)$ is in the extension

$$
0 \rightarrow \mathcal{O}_{E_\Delta}(-s) \oplus \mathcal{O}_{E_\Delta}(-s-H) \rightarrow coker(G) \rightarrow \mathcal{I}_{\Gamma^1|\mathbb{P}_3}(2s+2H) \rightarrow 0
$$

and we have the isomorphism $\rho_*(coker(G)) = \rho_*(\mathcal{I}_{\Gamma^1|\mathbb{P}_3}(2s+2H))$, where ρ is the projection from $\tilde{\mathbb{P}}_3$ to \mathbb{P}_3. This gives the resolution (4.3) after applying ρ to the exact sequence

$$
0 \rightarrow \mathcal{I}_{\Gamma^1|\mathbb{P}_3}(2s+2H) \rightarrow \mathcal{O}_{\mathbb{P}_3}(4H) \rightarrow \mathcal{O}_{2E_\Delta \cup \Gamma}(4H) \rightarrow 0.
$$

In the next section, we will prove that any trigonal curve of genus 5 embedded in \mathbb{P}_3 by a general line bundle of degree 8 is the curve Γ for some choice of $X \subset \mathbb{P}_1 \times \mathbb{P}_3 \times \mathbb{P}_3'$.

Remark 4.6. The inverse of this rational map is obtained by the same construction from n_1 and \mathbb{P}_3' (Notation 4.3). Hence, the inverse map is also given by quartic polynomials.

So, let us introduce the following:

Definition 4.7. The birational maps constructed in Proposition 4.5 will be called determinantal quarto-quartic birational maps. They form an irreducible family denoted by $\mathcal{D}_{4,4}$.

Proposition 4.8. The family $\mathcal{D}_{4,4} \subset \text{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3')$ is irreducible of dimension 46.

Remark 4.9. In Corollary 4.15, we will prove that this family turns out to be an irreducible component of $\text{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3')$.

1750037-13
Proof of Proposition 4.8. First, let us detail the choices made to get \(X \). The choice of a complete intersection of this type is equivalent to the choices of

(i) \(\mathfrak{m}_0 \in \mathcal{P}(H^0(\mathcal{O}_{\mathbb{P}_1 \times \mathbb{P}_3}(s + H))) \),
(ii) \(\mathfrak{m}_1 \in \mathcal{P}(H^0(\mathcal{O}_{\mathbb{P}_1 \times \mathbb{P}_3 \times \mathbb{P}_3'}(s + H')))) \),
(iii) \(\mathfrak{m}_2 \in \mathcal{P}(H^0(\mathcal{O}_{\mathbb{P}_1 \times \mathbb{P}_3 \times \mathbb{P}_3'}(H + H')))) \),
(iv) \(\mathfrak{m}_3 \in \mathcal{P}(H^0(\mathcal{O}_{\mathbb{P}_1 \times \mathbb{P}_3 \times \mathbb{P}_3'}(s + H + H'))/(\mathfrak{m}_0 \cdot A' + \mathfrak{m}_1 \cdot A + \mathfrak{m}_2 \cdot L)) \).

So, the choice of \(X \) is made in an irreducible variety of dimension \(7 + 7 + 15 + 21 = 50 \). Let \(I_2 \subset \mathbb{P}_3 \times \mathbb{P}_3' \) be the divisor defined by \(\mathfrak{m}_2 \). Pushing down \(\mathcal{O}_X(s) \) to \(I_2 \), one gets the following resolution of the ideal \(\mathcal{G}_X \) of the graph of the birational transformation constructed from \(X \):

\[
0 \rightarrow L^\vee \otimes \mathcal{O}_{I_2} \xrightarrow{\begin{pmatrix} n_0 \\ n_1 \\ n_3 \end{pmatrix}} \mathcal{O}_{I_2}(H) \oplus \mathcal{O}_{I_2}(H') \oplus \mathcal{O}_{I_2}(H + H') \rightarrow \mathcal{G}_X(2H + 2H') \rightarrow 0
\]

so \(\dim(D_{4,4}) = 50 - \dim(GL(L^\vee)) = 46 \). □

In Sec. 4.3, we provide an explicit construction of this map and its inverse and give more geometric properties.

4.2. Trigonal curves of genus 5

In the previous section, we obtained a trigonal curve of genus 5 naturally embedded in \(\tilde{\mathbb{P}}_3 \). To understand how this construction is general, we start in this section with an abstract trigonal curve of genus 5, then we choose some line bundle and explain how to obtain the previous construction. Notation of the various line bundles introduced here will turn out to be compatible with notation in the previous section.

4.2.1. Model in \(\tilde{\mathbb{P}}_2 \)

The following result is detailed in [1, Chap. 5]. Let \(\Gamma \) be any trigonal curve of genus 5, let \(\mathcal{L} \) be its canonical bundle, and denote by \(\mathcal{O}_\Gamma(s) \) the line bundle of degree 3 generated by two sections. Without any extra choice, we have the following embedding of \(\Gamma \):

— The linear system \(|\omega_\Gamma(-s)| \) sends \(\Gamma \) to a plane curve of degree 5. This plane curve has a unique singular point \(p_0 \) (a node or an ordinary cusp).
— Let \(\tilde{\mathbb{P}}_2 \) be the blow up of this plane at \(p_0 \), denote by \(E_0 \) the exceptional divisor and by \(h \) the hyperplane class of this plane:

\[
|\mathcal{O}_{\tilde{\mathbb{P}}_2}(h)| : \tilde{\mathbb{P}}_2 \rightarrow \mathbb{P}_2 = |\omega_\Gamma(-s)|^\vee.
\]
4.2.2. Embeddings of degree 8 in \mathbb{P}_3

With notation of Sec. 4.2.1 let $\mathcal{O}_\Gamma(H)$ be a general line bundle of degree 8 on Γ. One has $h^0(\mathcal{O}_\Gamma(H - s)) = 1$. The vanishing locus of this section defines in Γ a unique effective divisor D'_5 of degree 5 such that $\mathcal{O}_\Gamma(H) = \mathcal{O}(D'_5 + s)$. Moreover, $h^0(\mathcal{O}_\Gamma(2h - D'_5))$ is also 1, so there is a unique effective divisor D_5 on Γ such that $\mathcal{O}_\Gamma(2h) = \mathcal{O}_\Gamma(D_5 + D'_5)$. Note that both D_5 and D'_5 have degree 5. So, the picture in \mathbb{P}_2 looks like this. The curve Γ is sent via $|\mathcal{O}_\Gamma(h)|$ to a quintic curve singular at p_0. This curve contains two divisors D_5, D'_5 of degree 5 such that $D_5 + D'_5$ is the complete intersection of the plane quintic with a conic. From the general assumptions on H (hence on D'_5), the conic is smooth, it does not contain the point p_0 and both D_5 and D'_5 are supported by five distinct points. Let p_1, p_2, \ldots, p_5 be the five points of D_5, and let S_3 be the blow up of \mathbb{P}_2 at the six points p_0, p_1, \ldots, p_5. Let $(E_i)_{0 \leq i \leq 5}$ be the corresponding exceptional divisors. Remark that $\mathcal{O}_\Gamma(H)$ is the restriction to Γ of $\mathcal{O}_{S_3}(3h - \sum_{i=0}^{5} E_i)$; the linear system $|\mathcal{O}_\Gamma(H)|$ embeds Γ on the cubic surface S_3 in \mathbb{P}_3. Denote by $\overline{\Gamma}$ this curve of degree 8 in \mathbb{P}_3 and keep the notation H for the class $3h - \sum_{i=0}^{5} E_i$ on S_3. We can summarize these data in the following diagram:

\[\Gamma \rightarrow |\mathcal{O}_\Gamma(H)| \sim \overline{\Gamma} \subset S_3 \subset \mathbb{P}_3\]

\[\mathbb{P}_1 \leftarrow \overline{\mathbb{P}_2} = \mathbb{P}_2(p_0) \rightarrow \mathbb{P}_2(p_0, p_1, \ldots, p_5) \]

\[|\mathcal{O}_\Gamma(h)|^4 = \mathbb{P}_2\]

Remark 4.10. Any irreducible smooth curve of degree 8 and genus 5 in \mathbb{P}_3 with a 5-secant line Δ is trigonal.

Proof. Indeed, the planes containing Δ give a base point free linear system of degree 3.

Notation 4.11. Let Δ be the line of S_3 equivalent to $2h - \sum_{i=1}^{5} E_i$. One has $\Delta \cap \overline{\Gamma} = D'_5$ and Δ is the unique line 5-secant to $\overline{\Gamma}$. Denote by $\overline{\mathbb{P}_3}$ the blow up of \mathbb{P}_3 in Δ and by $\mathcal{I}_{\Gamma|\overline{\mathbb{P}_3}}$ the ideal of the proper transform of $\overline{\Gamma}$.

Keeping notation s, H for the pull back of the hyperplane classes of \mathbb{P}_1 and \mathbb{P}_3 on $\overline{\mathbb{P}_3}$, one gets the following:

Lemma 4.12. We have an exact sequence

$$0 \rightarrow \mathcal{O}_{\mathbb{P}_4}(s) \rightarrow \mathcal{I}_{\Gamma|\overline{\mathbb{P}_3}}(2s + 2H) \rightarrow \mathcal{O}_{S_3}(H - E_0) \rightarrow 0.$$

Hence, $h^0(\mathcal{I}_{\Gamma|\overline{\mathbb{P}_3}}(2s + 2H)) = 4$ and the sheaf $\mathcal{I}_{\Gamma|\overline{\mathbb{P}_3}}(2s + 2H)$ is globally generated.
J. Déserti & F. Han

Proof. As \(\Delta \subset S_3 \), the ideal of \(S_3 \) in \(\mathbb{P}_3 \) is \(I_{S_3|\mathbb{P}_3} = \mathcal{O}_{\mathbb{P}_3} (-s - 2H) \). The class of \(\mathbb{T} \) in \(S_3 \) is \(5h - 2E_0 - \sum_{i=1}^5 E_i \) and \(s \sim H - \Delta - h - E_0 \); the ideal of \(\mathbb{T} \) in \(S_3 \) is thus \(I_{\mathbb{T}|S_3} = \mathcal{O}_{S_3} (-H - 2s - E_0) \). Hence, the following exact sequence of ideals

\[
0 \rightarrow I_{S_3|\mathbb{P}_3} \rightarrow I_{\mathbb{T}|\mathbb{P}_3} \rightarrow I_{\mathbb{T}|S_3} \rightarrow 0
\]

twisted by \(2s + 2H \) gives the exact sequence of the statement. To conclude, just remark that \(h^4(\mathcal{O}_{\mathbb{P}_3}(s)) = 0 \) and that both \(\mathcal{O}_{\mathbb{P}_3}(s) \) and \(\mathcal{O}_{S_3}(H - E_0) \) have two sections and are globally generated.

Proposition 4.13. Let \(A' \) be the four-dimensional vector space \(H^0(I_{\mathbb{T}|\mathbb{P}_3}(2s+2H)) \); let us consider \(\mathcal{N} \) defined by the following exact sequence:

\[
0 \rightarrow \mathcal{N} \rightarrow A' \otimes \mathcal{O}_{\mathbb{P}_3} \rightarrow I_{\mathbb{T}|\mathbb{P}_3}(2s + 2H) \rightarrow 0.
\]

We have

\[
\mathcal{N} \cong \mathcal{O}_{\mathbb{P}_3} (-s) \oplus \mathcal{O}_{\mathbb{P}_3} (-H) \oplus \mathcal{O}_{\mathbb{P}_3} (-s - H).
\]

Proof. First, remark that \(\mathcal{N} \) is locally free. Indeed, the sheaf \(I_{\mathbb{T}|\mathbb{P}_3} \) is the ideal of a one-dimensional scheme of \(\mathbb{P}_3 \) without embedded nor isolated points. As a consequence, for all closed point \(x \) of \(\mathbb{P}_3 \), we have the vanishing of the following localizations:

\[
\forall i \geq 2, \quad \mathcal{E}xt^i(I_{\mathbb{T}|\mathbb{P}_3,x}, \mathcal{O}_{\mathbb{P}_3,x}) = 0
\]

and \(\mathcal{N} \) is locally free. Now, construct an injection from \(\mathcal{O}_{\mathbb{P}_3} (-s) \oplus \mathcal{O}_{\mathbb{P}_3} (-H) \oplus \mathcal{O}_{\mathbb{P}_3} (-s - H) \) to \(\mathcal{N} \).

\begin{itemize}
 \item Since \(h^0(I_{\mathbb{T}|\mathbb{P}_3}(3s + 2H)) = h^0(\mathcal{O}_{\mathbb{P}_3} (3s) + h^0(\mathcal{O}_{S_3} (2H - E_0 - \Delta)) = 7 \) and \(h^0(A' \otimes \mathcal{O}_{\mathbb{P}_3} (s)) = 8 \), we have \(h^0(N(s)) \geq 1 \).
 \item \(h^0(N(H)) \geq 2 \) because \(h^0(I_{\mathbb{T}|\mathbb{P}_3}(2s + 3H)) = h^0(\mathcal{O}_{\mathbb{P}_3} (s + H)) + h^0(\mathcal{O}_{S_3} (2H - E_0)) = 14 \) and \(h^0(A' \otimes \mathcal{O}_{\mathbb{P}_3}(H)) = 16 \).
 \item As \(h^0(I_{\mathbb{T}|\mathbb{P}_3}(3s + 3H)) = h^0(\mathcal{O}_{\mathbb{P}_3} (2s + H)) + h^0(\mathcal{O}_{S_3} (3H - E_0 - \Delta)) = 21 \) and \(h^0(A' \otimes \mathcal{O}_{\mathbb{P}_3}(s + H)) = 28 \), we have \(h^0(N(s + H)) \geq 7 \).
\end{itemize}

We are thus able to find a nonzero section \(\sigma_0 \) of \(N(s) \), then a section \(\sigma_1 \) of \(N(H) \) independent with \(E_\Delta \cdot \sigma_0 \) (with notation of Sec. 4.4.2), then a section \(\sigma_2 \) of \(N(s + H) \) not in \(A \otimes \sigma_0 \otimes L \otimes \sigma_1 \) (Notation 4.4). As a result \(\sigma_0, \sigma_1 \) and \(\sigma_2 \) give an injection of \(\mathcal{O}_{\mathbb{P}_3} (-s) \oplus \mathcal{O}_{\mathbb{P}_3} (-H) \oplus \mathcal{O}_{\mathbb{P}_3} (-s - H) \) into \(\mathcal{N} \). Moreover, these two vector bundles have the same first Chern class, so it is an isomorphism.
Corollary 4.14. Let Γ be a trigonal curve of genus 5 embedded in \mathbb{P}_3 by a general linear system of degree 8. The quartics containing Γ and singular along its unique 5-secant line give an element of $D_{4,4}$.

Corollary 4.15. The closure of $D_{4,4}$ is an irreducible component of $\text{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3')$.

Proof. From Corollary 4.14, the family $D_{4,4}$ is already irreducible. Choose an irreducible component B of $\text{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3')$ containing $D_{4,4}$. Let ϕ be a general element of B, and let ψ be a general element of $D_{4,4}$. With notation of Sec. 2, the degree of the one-dimensional scheme F_ϕ is 11 and ψ is in B. So, by Corollary 2.7, the degree of the one-dimensional scheme F_ϕ is at most 11 because ϕ is general in B. For a general hyperplane H' of \mathbb{P}_3, the quartic surface $\phi^{-1}(H')$ is thus not normal. Indeed, we proved in Lemma 4.8 that if $\phi^{-1}(H')$ is normal, then the schemes F_ϕ^1 and C_2 are equal and $\deg F_\phi = 12$. With Definition 2.4, we have $\dim(F_\phi^1) = 1$, hence $\deg(F_\phi^1) \geq 1$. But, with notation of Corollary 2.7, we have $\beta(\phi) = 1, \beta(\psi) = 1$ and $\eta(\psi) = 1$. As a consequence by semicontinuity of η, we have $\deg(F_\phi^1) = 1$ for the general element ϕ of B. There is thus a line Δ in \mathbb{P}_3 such that $\phi^{-1}(H')$ is singular on Δ. Denote again by $\overline{\mathbb{P}_3}$ the blow up of \mathbb{P}_3 in Δ, then ϕ factors through a rational map $\hat{\phi} : \overline{\mathbb{P}_3} \to \mathbb{P}_3'$ via a linear subsystem W_0 of $|O_{\overline{\mathbb{P}_3}}(2s + 2H)|$. Now, adapt Notation 3.4 to geometric liaison in $\overline{\mathbb{P}_3}$ instead of \mathbb{P}_3.

Let t' be a general line of \mathbb{P}_3', set $C_1 = \phi^{-1}(t')$, and let \tilde{C}_2 be the residual of \tilde{C}_1 in the complete intersection $\phi^{-1}(t')$. The curves \tilde{C}_1 and \tilde{C}_2 are geometrically linked by two hypersurfaces of class $2s + 2H$. The liaison exact sequence gives

$$0 \longrightarrow I_{\tilde{C}_1} \cdot I_{\tilde{C}_2} (2s + 2H) \longrightarrow I_{\tilde{C}_2} (2s + 2H) \longrightarrow \omega_{\tilde{C}_1} (H - s) \longrightarrow 0.$$

By Lemma 2.8, the curves C_1, \tilde{C}_1 and \tilde{C}_2 are smooth because it is already true for ψ. Thus \tilde{C}_2 is the base scheme of $\hat{\phi}$ and all the elements of W_0 vanish on \tilde{C}_2. Hence, $h^0(I_{\tilde{C}_2} (2s + 2H)) \geq 4$, so we have $h^0(\omega_{\tilde{C}_1} (H - s)) \geq 2$ on the smooth rational curve \tilde{C}_1. Hence, $\mathcal{O}_{\tilde{C}_1} (H - s)$ has degree at least 3. The class of \tilde{C}_1 in the Chow ring of $\overline{\mathbb{P}_3}$ is thus $\tilde{C}_1 \sim (4 - a) \cdot H^2 + aH \cdot s$ with $a \geq 3$. But, $\tilde{C}_1 \cdot s = 4 - a \geq 1$ because C_1 is irreducible of degree 4 and not in a plane containing Δ. So $a = 3$ and the class of \tilde{C}_2 is $3H^2 + 5H \cdot s$. As a consequence, $|\mathcal{O}_{\tilde{C}_2}(s)|$ is a g_1^1. The restrictions to \tilde{C}_1 and \tilde{C}_2 of the exact sequences

$$0 \longrightarrow \omega_{\tilde{C}_3} \longrightarrow \omega_{\tilde{C}_1 \cup \tilde{C}_2} \longrightarrow \omega_{\tilde{C}_1 \cup \tilde{C}_2} \otimes \mathcal{O}_{\tilde{C}_1} \longrightarrow 0,$$

$i \in \{1, 2\}$

show that $\tilde{C}_1 \cap \tilde{C}_2$ has length 9 and that \tilde{C}_2 has genus 5. As a result, the base locus of $\hat{\phi}$ is a trigonal curve of genus 5, so ϕ belongs to $D_{4,4}$ by Corollary 4.14. \hfill \Box
4.3. Explicit construction of the birational map and its inverse

In the next paragraphs, we want to expose properties similar to the usual properties of the classical cubo-cubic transformation such as explicit computation of the inverse and isomorphism between the base loci [5, §7.2.2].

4.3.1. Explicit construction of $\tau : \mathbb{P}_3 \dashrightarrow \mathbb{P}'_3$

In the proof of Proposition 4.8, we detailed the choices needed to construct the complete intersection $X \subset \mathbb{P}_1 \times \mathbb{P}_3 \times \mathbb{P}'_3$. Let us replace them by the choice of some linear maps.

Definition 4.16. With Notation 4.1, choose general linear maps N_0, N_1, M, T between the following vector spaces:

- $N_0 : L^\vee \rightarrow A$,
- $N_1 : L^\vee \rightarrow A'$,
- $M : A^\vee \rightarrow A'$,
- $T : L^\vee \rightarrow \text{Hom}(A^\vee, A')$.

For any $\lambda \in L^\vee$, the image of λ by T will be denoted by T_λ.

The duality bracket between a vector space and its dual will be denoted by $\langle \cdot, \cdot \rangle$.

Now, consider the quartic map

$$\tau : A^\vee \rightarrow A'^\vee$$

$$z \mapsto a'(g_0 \wedge g_1 \wedge g_2)$$

and also the rational map $\overline{\tau} : \mathbb{P}_3 \dashrightarrow \mathbb{P}'_3$ induced by τ.

Example 4.17. Take basis for L, A, A' and choose the identity matrix for M. With

\[
N_0 = N_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad U_0 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad U_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix},
\]

define $T : (\lambda_0, \lambda_1) \mapsto \lambda_0 U_0 + \lambda_1 U_1$. Then, we have

\[
G = \begin{pmatrix} -z_1 & z_0 & -z_2^2 + z_0 z_3 \\ z_0 & z_1 & z_0^2 - z_1 z_2 \\ 0 & z_2 & z_0 z_1 - z_1 z_3 \\ 0 & z_3 & -z_0 z_1 + z_0 z_2 \end{pmatrix}.
\]
Denote by $\Delta_k(G)$ the determinant of the matrix G with its kth line removed. The map ϖ defined by

$$(z_0 : z_1 : z_2 : z_3) \mapsto (\Delta_1(G) : -\Delta_2(G) : \Delta_3(G) : -\Delta_4(G))$$

is birational (see Sec. 4.3.2) and is in the closure of $D_{4,4}$.

4.3.2. **Explicit construction of ϖ^{-1}**

For any y in A' denote by g_0', g_1', g_2', the following are the elements of A.

$$g_0' = -N_0 \circ B \circ t'N_1(y), \quad g_1' = t'M(y), \quad g_2' = t'(T_{B \circ N_1(y)})'(y).$$

Now, consider the quartic map

$$\tau' : A' \rightarrow A$$

$$y \mapsto \alpha(g_0' \wedge g_1' \wedge g_2')$$

and also the rational map $\varpi' : \mathbb{P}_3' \dashrightarrow \mathbb{P}_3$ induced by τ'.

Lemma 4.18. For $z \in A'$ and $y \in A'$, we have

$$y \wedge \tau(z) = 0 \iff \forall i \in \{0, 1, 2\}, \quad \langle y, g_i \rangle = 0 \iff z \wedge \tau'(y) = 0.$$

Proof. By definition of α and α', we have

$$y \wedge \tau(z) = 0 \iff \forall i \in \{0, 1, 2\} \langle y, g_i \rangle = 0,$$

$$z \wedge \tau'(y) = 0 \iff \forall i \in \{0, 1, 2\} \langle z, g_i' \rangle = 0.$$

Now, remark that $\langle y, g_0 \rangle = 0 \iff \langle t'N_1(y), B \circ t'N_0(z) \rangle = 0 \iff \langle g_0', z \rangle = 0$. Note that it is also equivalent to the proportionality of $t'N_1(y)$ and $t'N_0(z)$. Furthermore, remind that T is general in $\text{Hom}(L', \text{Hom}(A', A'))$, so it is injective. Thus, we have $\langle y, g_0 \rangle = 0$ if and only if $T_{B \circ N_1(y)}$ and $T_{B \circ N_0(z)}$ are proportional in $\text{Hom}(A', A')$. Therefore, we have

$$\begin{cases}
\langle y, g_0 \rangle = 0 \iff T_{B \circ N_1(y)} \wedge T_{B \circ N_0(z)} = 0 \\
\langle y, g_2 \rangle = 0 \iff \langle y, T_{B \circ N_1(y)}(z) \rangle = 0 \iff \langle g_0', z \rangle = 0 \\
\langle y, g_2 \rangle = 0 \iff \langle y, T_{B \circ N_1(y)}(z) \rangle = 0 \iff \langle g_2', z \rangle = 0.
\end{cases}$$

We achieve the proof because $\langle y, g_1 \rangle = \langle g_1', z \rangle$.

Corollary 4.19. For $(\lambda, z) \in L' \times A'$, consider the elements of A' given by

$$\tilde{g}_0 = N_1(\lambda), \quad \tilde{g}_1 = M(z), \quad \tilde{g}_2 = T_\lambda(z).$$

Thus, $\varpi' \circ \tau = \text{id}_{\mathbb{P}_3}$, and τ is the element of $D_{4,4}$ constructed with

$$\tilde{G}_{(\lambda, z)} = (\tilde{g}_0, \tilde{g}_1, \tilde{g}_2) \quad \text{and} \quad G_z = (g_0, g_1, g_2).$$

Proof. Lemma 4.18 directly implies that $\varpi' \circ \tau$ is the identity map of \mathbb{P}_3. Remind that for $(\lambda, z) \in L' \times A'$, the corresponding point of $\mathbb{P}_1 \times \mathbb{P}_3$ is in \mathbb{P}_3 if and only if $\langle \lambda, t'N_0(z) \rangle = 0$. But, it is equivalent to the proportionality of λ and $B \circ t'N_0(z)$. So, for all $y \in A'$ and $\langle \lambda, z \rangle \in \mathbb{P}_3$, we have $y \wedge \tau(z) = 0$ if and only if $\langle y, \tilde{g}_i \rangle = 0$ for any $i \in \{0, 1, 2\}$. Thus, τ is the element of $D_{4,4}$ constructed from \tilde{G}.

1750037-19
4.3.3. The isomorphism between Γ and Γ'

Proposition 4.20. Let $\varpi: \mathbb{P}_3 \rightarrow \mathbb{P}_3'$ be a element of \mathcal{D}_A. Let Γ (respectively Γ') be the trigonal curve of genus 5 defining ϖ (respectively ϖ^{-1}). Then, Γ' is isomorphic to Γ and the embedding of Γ in \mathbb{P}_3' is given by

$$\mathcal{O}_\Gamma(H') = \omega_{\Gamma'}^\otimes(-H).$$

We will prove this result after the construction in Lemma 4.23 of two exact sequences over $\tilde{\mathbb{P}}_2$.

Notation 4.21. In the context of Sec. 4.2.1, we have

$$\tilde{\mathbb{P}}_2 \subset \mathbb{P}_1 \times \mathbb{P}_2, \quad U = H^0(\mathcal{O}_{\tilde{\mathbb{P}}_2}(h)), \quad L = H^0(\mathcal{O}_{\mathbb{P}_1}(s)).$$

The equation of $\tilde{\mathbb{P}}_2$ in $\mathbb{P}_1 \times \mathbb{P}_2$ gives a linear map

$$N_2: L^\vee \rightarrow U.$$

Let $\mathcal{O}_{\tilde{\mathbb{P}}_2}(-s) \xrightarrow{\Lambda} L^\vee \otimes \mathcal{O}_{\tilde{\mathbb{P}}_2}$ be the pull back of the tautological injection on \mathbb{P}_1, and let Q, Q' be the cokernels of $N_0 \circ \Lambda$ and $N_1 \circ \Lambda$. Hence, we have the exact sequences defining π and π',

$$0 \rightarrow \mathcal{O}_{\tilde{\mathbb{P}}_2}(-s) \xrightarrow{N_0 \circ \Lambda} A \otimes \mathcal{O}_{\tilde{\mathbb{P}}_2} \xrightarrow{\pi} Q \rightarrow 0,$$

$$0 \rightarrow \mathcal{O}_{\tilde{\mathbb{P}}_2}(-s) \xrightarrow{N_1 \circ \Lambda} A' \otimes \mathcal{O}_{\tilde{\mathbb{P}}_2} \xrightarrow{\pi'} Q' \rightarrow 0.$$

Remark 4.22. Both Q and Q' are isomorphic to $\mathcal{O}_{\tilde{\mathbb{P}}_2}^2 \oplus \mathcal{O}_{\tilde{\mathbb{P}}_2}(s)$, but we prefer not to choose one of these isomorphisms to avoid confusions.

— Choose a linear map $\gamma: U^\vee \rightarrow \mathbb{C}$ such that the map

$$U^\vee \rightarrow \mathbb{C} \oplus L,$$

$$u \rightarrow (\gamma(u), N_2(u))$$

has rank 3.

— Define

$$\tilde{R}: U^\vee \rightarrow \text{Hom}(A^\vee, A')$$

$$u \rightarrow \tilde{R}_u = \gamma(u) \cdot M + T_{B \circ N_2(u)}$$

and denote by \tilde{R}_u the image of u by \tilde{R}.

— Set $R = \pi' \circ \tilde{R} \circ \pi$.

We have the commutative diagram

$$\begin{array}{ccc}
A^\vee(-h) & \xrightarrow{\pi} & A' \otimes \mathcal{O}_{\tilde{\mathbb{P}}_2} \\
\downarrow{\gamma} & & \downarrow{\pi'} \\
Q^\vee(-h) & \xrightarrow{R} & Q'
\end{array}$$
Lemma 4.23. We have the following exact sequences of \(\mathcal{O}_{\tilde{\mathbb{P}}_2} \)-modules:
\[
0 \rightarrow Q^\vee (-h) \xrightarrow{R} Q' \rightarrow \mathcal{O}_\Gamma (H') \rightarrow 0, \\
0 \rightarrow Q'^\vee (-h) \xrightarrow{R'} Q \rightarrow \mathcal{O}_\Gamma (H) \rightarrow 0.
\]

Proof. Remark first that the class in \(\text{Pic}(\tilde{\mathbb{P}}_2) \) of the determinant of \(R \) is \(2s + 3h \) and that it is also the class of \(\Gamma \) in \(\tilde{\mathbb{P}}_2 \). Nevertheless, we need to explicitly relate points \(p \) of \(\tilde{\mathbb{P}}_2 \) such that \(R_p \) is not injective to points \(p \) of \(\mathbb{P}_3 \) such that \(\tilde{G}_p \) is not injective. So, consider \((\lambda, u) \) in \(L^\vee \times U^\vee \) such that the corresponding point \((X, \pi)\) of \(\mathbb{P}_1 \times \mathbb{P}_2 \) is in \(\tilde{\mathbb{P}}_2 \). In other words, we have
\[
(\lambda, 'N_2(u)) = 0.
\]
The map \(R_{(X, \pi)} \) is not injective if and only if there exists \(z \) in the image of \('N_2(X, \pi) \) such that \(\tilde{R}_u(z) \) and \(N_1(\lambda) \) are proportional. Therefore,
\[
(R_{(X, \pi)} \text{ not injective}) \iff (\exists z \in A^\vee - \{0\}, \langle z, N_0(\lambda) \rangle = 0 \text{ and } \tilde{R}_u(z) \wedge N_1(\lambda) = 0).
\]
By definition \(\tilde{R}_u(z) = \gamma(u) \cdot M(z) + T_\lambda(z) \), so \(\tilde{R}_u(z) \wedge N_1(\lambda) = 0 \) implies that \(N_1(\lambda), M(z), T_\lambda(z) \) are linearly dependent elements of \(A' \). Now, remind that \(\langle z, N_0(\lambda) \rangle = 0 \) is just the equation of \(\mathbb{P}_3 \) in \(\mathbb{P}_1 \times \mathbb{P}_3 \), so we have
\[
((X, \pi) \in \tilde{\mathbb{P}}_2 \text{ and } R_{(X, \pi)} \text{ not injective}) \Rightarrow (\exists \pi \in \mathbb{P}_3 \text{ such that } (X, \pi) \in \tilde{\mathbb{P}}_2 \text{ and } \tilde{G}_{(X, \pi)} \text{ not injective}).
\]
Conversely, if \((X, \pi) \in \tilde{\mathbb{P}}_2 \) and \(N_1(\lambda), M(z), T_\lambda(z) \) are linearly dependent, then there exists by definition of \(\gamma \) an element \(u \in U^\vee - \{0\} \) such that \((\gamma(u) \cdot M(z) + T_\lambda(z)) \wedge N_1(\lambda) = 0 \) and \((\lambda, 'N_2(u)) = 0 \). As a result,
\[
((X, \pi) \in \tilde{\mathbb{P}}_2 \text{ and } \tilde{G}_{(X, \pi)} \text{ not injective}) \Rightarrow (\exists \pi \in \mathbb{P}_2 \text{ such that } (X, \pi) \in \tilde{\mathbb{P}}_2 \text{ and } R_{(X, \pi)} \text{ not injective}).
\]
These two implications show that the cokernel of \('R \) is \(\mathcal{O}_\Gamma (H) \). The statement follows by exchanging \(\mathbb{P}_3 \) and \(\mathbb{P}_4 \).

Proof of Proposition 4.20: Lemma 4.23 implies
\[
\mathcal{O}_\Gamma (H') = \text{Ext}^1(\mathcal{O}_\Gamma (H), \mathcal{O}_{\tilde{\mathbb{P}}_2} (-h)) = \omega_\Gamma \otimes \mathcal{O}_{\tilde{\mathbb{P}}_2} (s + h) = \omega_\Gamma ^{-2} (-H).
\]

4.4. Geometric description of the P-locus

4.4.1. The ruled surface \(S_9 \)

Remind from Sec. 4.3.1 that \(\pi : \mathbb{P}_3' \dashrightarrow \mathbb{P}_3 \) factors through \(X \rightarrow \mathbb{P}_3 \). Therefore, if \(N_\Gamma \) denotes the normal bundle of \(\Gamma \) in \(\mathbb{P}_3 \), Sequence 4.1 shows that \(\pi \) contracts
the ruled surface $\tilde{S}_9 = \text{Proj}(\text{Sym}(N_3^3(2s + 2H)))$ to Γ. Moreover, the exact sequence of Lemma 4.12 restricted to Γ gives

$$0 \rightarrow \mathcal{O}_\Gamma(s) \rightarrow N_3^3(2s + 2H) \rightarrow \mathcal{O}_\Gamma(H - E_0) \rightarrow 0.$$

Sections of $\mathcal{O}_\Gamma(s)$ are thus hyperplane sections of $\text{Proj}(\text{Sym}(N_3^3(2s + 2H)))$ and each of them contains three rules of this surface. So, the projection of this surface in \mathbb{P}_3^9 is the union of the “triangles” with vertices given by the g_i^1. In a symmetric way, the P-locus of \mathcal{T} contains a ruled surface $S_9 \subset \mathbb{P}_3$. The basis of S_9 is isomorphic to Γ and its rules are the lines of \mathbb{P}_3 that cut an element of the g_i^3 in length 2. In other words, S_9 is the union of the bisecant lines of the intersection of $\Gamma \subset \mathbb{P}_3$ with any plane containing the 5-secant Δ. The smooth model \tilde{S}_9 of S_9 is an extension of $\mathcal{O}_\Gamma(H' - E_0)$ by $\mathcal{O}_\Gamma(s)$; hence S_9 has degree 9 and $\mathcal{T}(S_9)$ is the curve Γ embedded in \mathbb{P}_3^9 by $\mathcal{O}_\Gamma(H') = \omega^2_{\mathcal{T}}(-H)$ (Proposition 4.20). It is easy to explain geometrically why S_9 is contracted by \mathcal{T}. Indeed, by the previous description, the rules of Γ intersect the scheme defined by the ideal $\mathcal{I}_9^\Delta \cap \mathcal{T}(4H)$.

4.4.2. The cubic surface S_3

It is interesting to understand geometrically why the cubic surface S_3 defined in Sec. 4.2.2 is also contracted by \mathcal{T} because it cannot be explained anymore by 4-secant lines. This time, consider the planes of \mathbb{P}_3 containing the line $E_0 \subset S_3$. The general element of the linear system $|\mathcal{O}_{S_3}(H - E_0)|$ gives a conic of \mathbb{P}_3 intersecting Δ in a point and Γ in six points. Any of these conics thus cuts the scheme defined by $g_3^2 \cap \mathcal{T}$ in length at least 8. So, these conics are contracted by $|\mathcal{I}_9^{\Delta(4H)}|$ and $\mathcal{T}(S_3)$ is the line 5-secant to the image of Γ in \mathbb{P}_3^9. We have achieved the description of the P-locus of \mathcal{T} with the following:

Corollary 4.24. The jacobian of \mathcal{T} is the product of equations of S_9 and S_3.

Proof. Indeed, the jacobian of \mathcal{T} has degree 12 and vanishes on S_9 and S_3.

5. On the components of $\text{Bir}_{4,4}(\mathbb{P}_3^9, \mathbb{P}_3^9)$

In the previous sections, we found elements ϕ of $\text{Bir}_{4,4}(\mathbb{P}_3^9, \mathbb{P}_3^9)$ such that for a general hyperplane H' of \mathbb{P}_3^9, the quartic surface $\phi^{-1}(H')$ has the following properties:

- $\phi \in \mathcal{D}_{4,4} \iff \phi^{-1}(H')$ is normal (Lemma 4.11) \iff the genus of ϕ is 3.
- If ϕ belongs to $\mathcal{D}_{4,4}$, then $\phi^{-1}(H')$ has a double line; furthermore $\phi^{-1}(H')$ has a double line if and only if the genus of ϕ is 2.
- The singular locus of $\phi^{-1}(H')$ cannot contain two disjoint lines or a reduced cubic curve (Corollary 4.12).
- If ϕ is in $\mathcal{R}_{4,4}$, then $\phi^{-1}(H')$ has a triple line and the genus of ϕ is 0.

So, it remains to provide a genus one example or to know if $\phi^{-1}(H')$ can be singular along a conic. This is achieved with the following example.
5.1. The family $C_{4,4}$

Proposition 5.1. Let p be a point of \mathbb{P}_3. Choose some coordinates such that the ideal of p in \mathbb{P}_3 is $J_p = (z_0, z_1, z_2)$. Take Q_1, Q_2, f general in the following spaces:

$$Q_1 \in H^0(J_p(2H)), \ Q_2 \in H^0(J''_p(2H)), \ f \in H^0(\mathcal{O}_{\mathbb{P}_3}(H))$$

and a general point p_1 of \mathbb{P}_3. Then,

- The ideal
 $$J = (f, Q_1)^2 \cap (Q_1, Q_2) \cap J''_p \cap J_{p_1}$$
 gives a three-dimensional linear system $|J(4H)|$.

- Any isomorphism $|J(4H)|^\vee \cong \mathbb{P}_3$ defines a $(4,4)$-birational map ϕ from \mathbb{P}_3 into \mathbb{P}_3, such that $\phi^{-1}(H')$ is a quartic with a double conic.

- The base scheme F_ϕ of ϕ has degree 10. The subscheme F^1_ϕ is the union of a multiple structure on a conic and a quartic curve singular at p.

Proof. First, consider the ideal

$$\mathcal{G} = (f, Q_1)^2 \cap (Q_1, Q_2) \cap J''_p.$$

In other words, we have

$$\mathcal{G} = (f^2 Q_2, Q_1, fQ_1 z_0, fQ_1 z_1, fQ_1 z_2).$$

From the inclusion $H^0(J''_p(2H)) \subset \mathbb{C}[z_0, z_1, z_2]$, we consider Q_2 as a homogeneous polynomial of degree 2 in three variables. Therefore, the image of the rational map

$$|J(4H)| : \mathbb{P}_3 \dasharrow \mathbb{P}_4$$

$$(z_0 : z_1 : z_2 : z_3) \mapsto (Z_0 : Z_1 : Z_2 : Z_3 : Z_4) = (fQ_1 z_0 : fQ_1 z_1 : fQ_1 z_2 : f^2 Q_2 : Q_1)$

is the quadric of \mathbb{P}_4 of equation $Q_2(Z_0, Z_1, Z_2) - Z_3 Z_4$ because we have by homogeneity of Q_2

$$Q_2(fQ_1 z_0, fQ_1 z_1, fQ_1 z_2) = (fQ_1)^2 Q_2(z_0, z_1, z_2).$$

We have $I = \mathcal{G} \cap J_{p_1}$ where J_{p_1} is the ideal of a general point p_1 of \mathbb{P}_3. Hence, the map ϕ factors through the projection from a point of a quadric of \mathbb{P}_4, so it is birational with base scheme defined by I. Let us compute the degree of ϕ^{-1}. Let H' be a general hyperplane of \mathbb{P}_3, then $\phi^{-1}(H')$ is a quartic with a double conic. With Notation 4.3 the curve C_2 is the union of a component supported on the conic of ideal (f, Q_1) and the singular quartic curve of ideal (Q_1, Q_2). The multiple structure defined by C_2 on the conic has degree 8, as a result $\deg C_2 = 12$ and $\deg C_1 = 4$, then $\phi \in \text{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3^*)$. On the other hand, the multiple structure defined by I on the conic has degree 6, so $\deg F_\phi = 10$.

Definition 5.2. Birational maps described in Proposition 5.1 form the family $C_{4,4}$.

Corollary 5.3. The family $C_{4,4} \subset \text{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3^*)$ is irreducible of dimension 37.
J. Déserti & F. Han

Proof. The ideal I is determined by the singular quartic curve and the conic, but these two curves must be on a unique quadric defined by Q_1. Thus, to construct I, we need a general quadric, then a singular biquadratic on this quadric, a general plane and the isolated point p_1. It gives an irreducible parameter space of dimension $9 + 7 + 3 + 3$ to obtain I, so

$$\dim(C_{4,4}) = 22 + \dim(\text{PGL}_4) = 37.$$

Proof of Theorem From Proposition 3.13, Corollaries 3.6, 4.15 and 5.3 one has

— the closure of $J_{4,4}$ is an irreducible component of $\text{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3')$,

— the closure of $R_{4,4}$ is an irreducible component of $\text{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3')$,

— the closure of $D_{4,4}$ is an irreducible component of $\text{Bir}_{4,4}(\mathbb{P}_3, \mathbb{P}_3')$,

— the family $C_{4,4}$ is irreducible.

Note that our definitions of $R_{4,4}$, $D_{4,4}$, $C_{4,4}$ contain general position assumptions, so we were able to compute degrees and dimensions for any element of these families (Propositions 3.7, 4.5 and 5.1). With notation of Definition 2.4, we have: if ϕ is any element of $J_{4,4}$, then by Definition 3.1 $\deg F^1_{\phi} = 12$, but this degree is 10 for an element of $C_{4,4}$. So $C_{4,4}$ is not in the closure of $J_{4,4}$ by Corollary 2.7. Moreover, $\dim F^\sigma_{\phi} = 0$, but it is 1 for any element of $C_{4,4}$, hence by Corollary 2.7 $J_{4,4}$ is not in the closure of $C_{4,4}$.

— If ϕ is any element of $D_{4,4}$, then $\deg F_{\phi} = 11$, $\dim F^\sigma_{\phi} = 1$ and $\deg F^\sigma_{\phi} = 1$.

— If ϕ is any element of $C_{4,4}$, then $\deg F_{\phi} = 10$, $\dim F^\sigma_{\phi} = 1$ and $\deg F^\sigma_{\phi} = 2$.

— If ϕ is any element of $R_{4,4}$, then $\deg F_{\phi} = 9$, $\dim F^\sigma_{\phi} = 1$ and $\deg F^\sigma_{\phi} = 3$.

By Corollary 2.7, since the map α and η cannot decrease by specialization, one gets that none of the family $R_{4,4}$, $C_{4,4}$, $D_{4,4}$, $J_{4,4}$ is in the closure of another one. Let H (respectively H') be a general plane of \mathbb{P}_3 (respectively, \mathbb{P}_3'). The quartic surface $\phi^{-1}(H')$ has the following property.

<table>
<thead>
<tr>
<th>ϕ general in $\phi^{-1}(H')$</th>
<th>$R_{4,4}$ has a triple line</th>
<th>$C_{4,4}$ has a double conic</th>
<th>$D_{4,4}$ has a double line</th>
<th>$J_{4,4}$ is normal</th>
</tr>
</thead>
</table>

It gives the genus of $H \cap \phi^{-1}(H')$.

Acknowledgment

The authors would like to thank the referee for his helpful comments.

References

Quarto-quartic birational maps of $\mathbb{P}_3(\mathbb{C})$

