Examen - 26/05/2014

2 heures. Les téléphones, les calculatrices et tous les documents sont interdits. Le soin apporté à la rédaction sera un élément important de la notation. Chacun des cinq exercices contribuera approximativement à 5 points de la note sur 20.

Exercice 1 : Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction deux fois dérivable à dérivée seconde continue. On pose pour $(x, y) \in \mathbb{R}^2$

$$F(x,y) = f(\cos(x) + \cos(y)) \tag{1}$$

- 1. Calculer $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$ en fonction de f et f'.
- 2. Calculer $\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$ en fonction de f, f' et f''.
- 3. En déduire que $\Delta F=0$ si et seulement si pour tout $(u,v)\in [-1,1]^2$ on a :

$$(u+v)f'(u+v) = (2-u^2-v^2)f''(u+v).$$

Indication : on pourra poser $u = \cos(x)$ et $v = \cos(y)$.

- 4. En déduire que si $\Delta F = 0$ alors f'(t) = f''(t) = 0 pour tout $t \in]-2,2[$.
- 5. Conclure qu'une fonction F de la forme (1) vérifie $\Delta F = 0$ si et seulement si elle est constante.

Exercice 2 : Soit \vec{V} le champ de vecteur dans \mathbb{R}^3 d'équation

$$\vec{V}(x, y, z) = (z, x, y).$$

- 1. Calculer rot \vec{V} et div \vec{V} .
- 2. Existe-t-il un une fonction f telle que $f=\operatorname{grad} \vec{V}$, un champ \vec{W} tel que $\vec{V}=\operatorname{rot} \vec{W}$? (On ne demande pas de les calculer).
- 3. Calculer la circulation I du champ \vec{V} le long du cercle d'équation $x^2 + y^2 = 1, z = 1$.
- 4. Calculer le flux J du champ constant égal à (1,1,1) à travers le paraboloïde $S=\{(x,y,z),z=x^2+y^2,z\leq 1\}$ avec un vecteur normal dirigé vers le haut.
- 5. Expliquer la relation observée entre I et J à l'aide d'un théorème du cours.

Exercice 3 : Soit R un nombre réel strictement positif. On considère l'ensemble D défini par

$$D = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 \le R^2, (x-R)^2 + y^2 \le R^2\}.$$

- 1. Dessiner D.
- 2. Calculer l'aire de D notée A.
- 3. Soit I_1 l'arc de cercle paramétré par $\gamma_1(t) = (R\cos(t), R\sin(t))$ pour $t \in [-\pi/3, \pi/3]$ et I_2 l'arc paramétré par $\gamma_2(t) = (R R\cos(t), R\sin(t))$ pour $t \in [-\pi/3, \pi/3]$. Dessiner les arcs orientés I_1 et I_2 .
- 4. Calculer les intégrales $A_1 = \int_{I_1} x dy$ et $A_2 = \int_{I_2} x dy$.
- 5. Expliquer la relation observée entre A_1, A_2 et A à l'aide d'un théorème du cours.

Exercice 4 : Soit C la courbe d'équation polaire $r = \frac{1}{2 + \cos(\theta)}$ avec $\theta \in [0, 2\pi]$.

- 1. Montrer que C admet l'équation cartésienne $4(x^2+y^2)=(1-x)^2$.
- 2. Nommer et dessiner C.
- 3. Déterminer les points singuliers de C.
- 4. Sachant que l'aire d'une ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ est πab , donner l'aire de la surface entourée par C.
- 5. En déduire la valeur de l'intégrale $\int_0^{2\pi} \frac{d\theta}{(2+\cos(\theta))^2}$.