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1. Euclidean Scissors Congruence

Two finite Euclidean polyhedra P , Q in En are said to be equidecomposable if each
polyhedron can be dissected (along finitely many flat planes) into subpolyhedra which can
be reassembled (by orientation-preserving isometries of En) to form the other polyhedron.

Equidecomposability is an equivalence relation on isometry classes of finite Euclidean
polyhedra in each dimension. The goal of the theory of scissors congruence is to find
computable algebraic invariants of isometry types of polyhedra, so that two polyhedra
have equal invariants if and only if they are equidecomposable.

1.1. Dimension 2.

Theorem 1.1 (Bolyai–Gerwien). Two finite Euclidean planar polygons are equidecompos-
able if and only if they have the same area.

Proof. We shall show that any triangle T is equidecomposable with a rectangle R with the
same area where R has one side of length 1. This will prove the theorem as follows: if P is
a planar polygon we decompose P into triangles T1, · · · , Tn. Each Tj is equidecomposable
to a rectangle Rj with one side of length 1. Stack the Rj to make a rectangle R with one
side of length 1 and the other side of length equal to area(P ).

Let T be a triangle. First we show that T is equidecomposable with a parallelogram Q.
This may be accomplished by first subdividing T into 4 congruent triangles all similar to
T and then rotating the ‘top’ triangle to form Q.

Next we show that any two parallelograms with equal base and the same area (i.e.
the parallelograms differ by a shear parallel to the base) are equidecomposable. If the
parallelograms Q,Q′ are close, their symmetric difference is two isometric triangles, one in
Q − Q′ and one in Q′ − Q. This proves the claim, since any shear-equivalent Q,Q′ may
be joined by a sequence of intermediate Q ∼ Q1 ∼ Q2 ∼ · · · ∼ Qn ∼ Q′ where each Qi is
close enough to Qi+1 to apply the symmetric difference trick.

Now, any Q is shear equivalent to Q′ with one edge of length 1. But then Q′ is shear
equivalent to the desired rectangle R. �

1.2. Zylev’s Theorem. Equidecomposability classes of Euclidean polyhedra in each di-
mension n form an abelian semigroup, with disjoint union as the group operation (which
we denote +). The Euclidean scissors congruence group P(En) is the Grothendieck group
of this semigroup. In other words, two polyhedra P , Q are equivalent in P(En) if and only
if there is a third polyhedron R so that P +R ∼ Q+R.

Zylev’s theorem says that the natural map from the semigroup to P(En) is injective.
Before we prove this theorem we prove a simple lemma.

Lemma 1.2. Let P , Q be polyhedra in En with vol(P ) < vol(Q). Then P is equide-
compsable with a subpolyhedron Q′ of Q.
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Proof. Consider the lattice decomposition of En into cubes of edge length ε. Since vol(P ) <
vol(Q) there is an ε and an integer N so that P is contained in the interior of N disjoint
cubes, and the interior of Q contains N disjoint cubes. The lemma follows. �

Theorem 1.3 (Zylev). For any n, two Euclidean polyhedra P , Q in En satisfy P ∼ Q if
and only if P +R ∼ Q+R.

Proof. We need to show P + R ∼ Q + R implies P ∼ Q. We have a (discontinuous)
piecewise isometry φ : P +R→ Q+R, defined on a subset of full measure (i.e. away from
a finite union of hyperplanes).

By writing P +R = P +R1 +R2 where 2 vol(R2) < vol(P ) and induction, we may reduce
to the case where 2 vol(R) < vol(P ) = vol(Q). Let S = φ−1(Q)∩P . Then vol(S) > vol(R)
so by Lemma 1.2 we can find a subpolyhedron A ⊂ S and a piecewise isometry α : A→ R.
Let B = φ(A) ⊂ Q.

Let P ′ = (P − A) + R. This is an honest polyhedron because A is a subpolyhedron of
P . Evidently P ∼ P ′ by the map which is the identity on P − A and α on A, so it will
suffice to prove that P ′ ∼ Q.

But φ(P ′) = (Q − B) + R and (Q − B) + R ∼ Q by the map which is the identity on
Q−B and φ ◦ α−1 on R. So P ∼ P ′ ∼ Q and we are done. �

Remark 1.4. Lemma 1.2 (and hence also Zylev’s theorem) is true but harder to prove in
spherical or hyperbolic space.

1.3. The Dehn invariant. Let P be a polyhedron in E3. The Dehn invariant is defined
by

D(P ) :=
∑
e

`(e)⊗ α(e) ∈ R⊗Z R/πZ

where the sum is taken over edges e of P , and where `(e) is the length of e and α(e) is
the dihedral angle. This map is evidently additive on disjoint union and invariant under
isometry.

Theorem 1.5 (Dehn). The function D is constant on scissors congruence classes. It
therefore extends to a homomorphism D : P(E3)→ R⊗Z R/πZ.

Proof. It suffices to show D(P ) = D(A) + D(B) when A,B may be obtained from P by
a single straight cut. The cut creates new edges in A and B when it slices through a face
of P , but these appear in pairs with dihedral angles summing to π. Likewise, a cut that
slices through an edge of P will produce two new edges whose dihedral angles sum to a
corresponding dihedral angle in P . The proof follows. �

As a consequence, one may exhibit (following Dehn) pairs of 3d Euclidean polyhedra
with the same volume which are not equidecomposable. For example, take P the unit cube
and Q the unit volume regular tetrahedron. Evidently D(P ) = 0 whereas D(Q) = 6`⊗ α
for some real ` and for α = cos−1(1/3).

One may show that α is not a rational multiple of π and therefore 6`⊗ α 6= 0.

1.4. Prisms. A prism in En is the Minkowski sum of a polyhedron P in En−1 with an
interval. Any 3-dimensional prism is equidecomposable to a cube, by mirroring the proof
of the Bolyai–Gerwien Theorem (first we show P is scissors congruent to a parallelepiped
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by taking the Minkowski sum of an equidecomposition of its base with the same inter-
val; then we argue, analogously to the 2d case, that shear equivalent parallelepipeds are
equidecomposable).

Sum with an orthogonal unit interval therefore determines an injection p : P(E2) →
P(E3) whose image is the span of prisms. The image is in the kernel of D, and volume
gives an isomorphism to R. Let P1(E3) denote the quotient group P(E3)/pP(E2); this is
the group of “polyhedra modulo prisms”.

If P is a polyhedron and µ ∈ R+ let µ · P denote the dilation of P by a factor µ. This
operation definitely does not make P(E3) into a real vector space; it multiplies volumes by
µ3. However, it does make P1(E3) into a real vector space:

Lemma 1.6. For µ, λ ∈ R+ and a polyhedron P we have µ · P + λ · P = (µ + λ) · P in
P1(E3).

Proof. It suffices to prove it for tetrahedra. Let P be a tetrahedron and let e be an edge
with vertices x, y. We disjointly embed µ · P in (µ+ λ) · P so that vertices corresponding
to x agree, and embed λ · P in (µ+ λ) · P so that vertices corresponding to y agree. Then
(µ+ λ) · P − µ · P − λ · P is a prism. �

With respect to the real vector space structure on P1(E3) the map D : P1(E3) →
R⊗ R/πZ is real linear.

1.5. Statement of the Dehn–Sydler–Jessen Theorem. Sydler’s Theorem is the state-
ment that D : P1(E3) → R ⊗ R/πZ is injective. Jessen computed its cokernel. The
combination of these results is the Dehn–Sydler–Jessen Theorem:

Theorem 1.7 (Dehn–Sydler–Jessen). The following sequence is exact:

0→ P(E2)
p−→ P(E3)

D−→ R⊗Z R/πZ
J−→ Ω1

R/Z → 0

where we shall define Ω1
R/Z and the map J shortly. We have already shown p is injective

and Dp = 0, so the theorem reduces to showing

0→ P1(E3)
D−→ R⊗Z R/πZ

J−→ Ω1
R/Z → 0

is exact. We refer to this reduced sequence as the DSJ complex in the sequel. The actual
proof of the theorem is rather involved and will take the next several sections; in this
section we define the terms and the maps, prove that it really is a chain complex, and
prove the surjectivity of J .

The group Ω1
R/Z is the group of Kähler differentials of R over Z. It is generated (as a

real vector space) by expressions of the form dr for r ∈ R modulo relations
(1) d(rs) = rd(s) + sd(r) for r, s ∈ R;
(2) d(r + s) = dr + ds for r, s ∈ R; and
(3) dr = 0 for r ∈ Q.
The map J is defined on generators by

J(`⊗ α) = `
d sinα

cosα
whenever α is not a rational multiple of π. One verifies that J(n` ⊗ α) = J(` ⊗ nα) for
any integer n.



NOTES ON SCISSORS CONGRUENCE 5

Remark 1.8. Morally, J wants to be the map J(`⊗ α) = ` dα.

Lemma 1.9. J is surjective and JD = 0

Proof. First we show JD = 0. Schläffli’s differential formula says that for any smooth
variation of a Euclidean polyhedron one has the formula

∑
e `(e)dα(e) = 0. Once one

knows this theorem is true, one may deduce that there is an algebraic proof of it via
trigonometry; and this algebraic proof together with the definition of J and the defining
properties of Kähler differentials implies that JD = 0.

To show that J is surjective: note that we may surject onto any element of the form sdr
when |r| < 1 is irrational by choosing r = sin(α) and suitable `. When |r| > 1 we use the
relation d(r · r−1) = r−1dr + rdr−1 so that dr−1 = −r−2dr. �

1.6. Orthoschemes. Let x := x1, x2, · · · , xn be a vector of positive real numbers. Asso-
ciated to this sequence is an n-simplex in En whose 0th vertex is at the origin, and whose
ith vertex has coordinates x1, x2, · · · , xi, 0, 0, · · · , 0. The isometry type of this simplex is
called the orthoscheme associated to x.

By abuse of notation we let x2 denote the vector x2
1, x

2
2, · · · , x2

n. Note that the distance
between vertex i and vertex j of ∆(x) is

∑j
k=i+1 x

2
k, and this set of pairwise distances

(evidently) characterizes the orthoscheme associated to x up to isometry.
It follows that the ith face of this orthoscheme is itself an orthoscheme, associated to

the vector y for which

y2 = (x2
1, x

2
2, · · · , x2

i−1, x
2
i + x2

i+1, x̂
2
i+1, x

2
i+2, · · · , x2

n)

Let O(a, b, c) be the 3d orthoscheme associated to the vector a, b, c. Then three of the
dihedral angles of O are π/2 (those associated to the edges 02, 12, 13) and the other three
edges 01, 03, 23 have acute dihedral angles α, β, γ respectively.

Let ei be the positive unit normal to face i. The Gram matrix G has ij entry the dot
product ei · ej which is equal to 1 if i = j and − cos(angle(ij)) otherwise. Thus:

G =


1 − cos(α) 0 − cos(β)

− cos(α) 1 0 0
0 0 1 − cos(γ)

− cos(β) 0 − cos(γ) 1


which has determinant sin2(α) sin2(γ)−cos2(β). On the other hand, since the ei are linearly
dependent, this determinant must be zero. Hence we obtain the identity

sin2(α) sin2(γ) = cos2(β) = sin2(β∨)

where β∨ := π/2− β.
Evidently tan(α) = c/b and tan(γ) = a/b. Scaling the orthoscheme does not affect the

dihedral angles. We call an orthoscheme normalized if it is scaled so that a = cot(α). For
a normalized orthoscheme, c = cot(γ) and b = ac. The edge 03 satisfies

length2(03) = a2 + b2 + c2 = (1 + cot2(α))(1 + cot2(γ))− 1 = cot2(β∨)

Hence the Dehn invariant of the normalized orthoscheme O(cot(α), cot(α) cot(γ), cot(γ))
is

D(O(cot(α), cot(α) cot(γ), cot(γ))) = cot(α)⊗ α− cot(β∨)⊗ β∨ + cot(γ)⊗ γ
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In the remainder of this section we state three orthoscheme identities and prove two of
them.

1.6.1. Sydler’s Lemma. For x ∈ (0, 1) define α(x) to be the unique acute angle with
sin2(α(x)) = x, and define t1(x) := cot(α(x)) ⊗ α(x). For x, y ∈ (0, 1) let ∆(x, y) de-
note the normalized orthoscheme with α = α(x) and γ = α(y). By the calculation above,
we have the formula

D(∆(x, y)) = t1(x)− t1(xy) + t1(y)

In other words, D(∆(·, ·)) is a 2-coboundary on the multiplicative semigroup (0, 1). Since
the coboundary of a coboundary is zero, it follows that for any x, y, z ∈ (0, 1) we have an
identity

D(∆(y, z))−D(∆(xy, z)) +D(∆(x, yz))−D(∆(x, y)) = 0

Theorem 1.7 says that the Dehn invariant is injective on polyhedra modulo prisms; thus
an identity between the Dehn invariants of four orthoschemes should imply an identity of
the associated scissors congruence classes modulo prisms. This is Sydler’s Lemma:

Theorem 1.10 (Sydler’s Lemma). For any x, y, z ∈ (0, 1) we have an equality

∆(y, z) + ∆(x, yz) ∼ ∆(xy, z) + ∆(x, y) mod prisms

We defer the proof for now.

1.6.2. Schläffli Identity. For positive x, y, z we let S(x, y, z) denote the “Schläffli simplex”
in R3 (not an orthoscheme) which is the convex hull of the origin 0 and the vectors
p := (

√
yz, 0, 0), q := (0,

√
xz, 0), r := (0, 0,

√
xy). If we let s denote the foot of the

perpendicular from r to the edge pq then ps0r and qs0r are (unnormalized) orthoschemes

qs0r = O

(
x
√
z√

x+ y
,

√
xyz

√
x+ y

,
√
xy

)
, ps0r = O

(
y
√
z√

x+ y
,

√
xyz

√
x+ y

,
√
xy

)
An orthoscheme O(a, b, c) is normalized when b = ac; thus these orthoschemes have been
scaled from normalization by factors of λ1 := x and λ2 := y. Suppose the dihedral angles
of qs0r along qs and 0r are α and γ. Then

cot(α) :=

√
z√

x+ y
so sin2(α) =

x+ y

x+ y + z
and cot(γ) :=

√
y
√
x

so sin2(γ) =
x

x+ y

We may therefore write these two orthoschemes as

qs0r = x∆

(
x+ y

x+ y + z
,

x

x+ y

)
, ps0r = y∆

(
x+ y

x+ y + z
,

y

x+ y

)
Interchanging the roles of y and z gives another decomposition of S(x, y, z) into or-
thoschemes, which is the Schläffli Identity:

Lemma 1.11 (Schläffli Identity).

x∆

(
x+ y

x+ y + z
,

x

x+ y

)
+ y∆

(
x+ y

x+ y + z
,

y

x+ y

)
∼ x∆

(
x+ z

x+ y + z
,

x

x+ z

)
+ z∆

(
x+ z

x+ y + z
,

z

x+ z

)
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1.6.3. Brick Identity. A brick is a right-angled parallelepiped. Any brick may be decom-
posed along the long diagonal into six orthoschemes, coming in three isometric pairs. If
the side lengths of the brick are a, b, c, the orthoschemes are O(a, b, c) and its cyclic per-
mutations. Now,

O(a, b, c) =
ac

b
O

(
b

c
,
b2

ac
,
b

a

)
=
ac

b
∆

(
c2

1− a2
,

a2

1− c2

)
Lemma 1.12 (Brick Identity). For any positive a, b, c with a2 + b2 + c2 = 1 we have

ac

b
∆

(
c2

1− a2
,

a2

1− c2

)
+
ba

c
∆

(
a2

1− b2
,

b2

1− a2

)
+
cb

a
∆

(
b2

1− c2
,

c2

1− b2

)
∼ 0 mod prisms

1.7. Homological algebra. We have proved that the (3 term) DSJ complex really is a
chain complex; Theorem 1.7 will be proved if we can show that the DSJ complex is exact.
This will be accomplished by exhibiting a quasi-isomorphism to another chain complex —
the Cathelineau complex — whose homology is more easily calculated. This quasimorphism
goes via an intermediate complex (with maps both to the DSJ complex and the Cathelineau
complex) that we introduce now.

The relevant fragment of the intermediate complex for now is the part in degrees ≤ 3
and is defined as

R[(R+)3]3 ⊕ R[(R+)2]3 → R[(R+)2]2 ⊕ R[R+]2 → R[R+]1 → Ω1
R/Z → 0

where for a set X and an index i (the degree), the expression R[X]i means the R-vector
space generated by symbols [x]i. Let’s denote this intermediate complex C.

The differential δ in degree 0 is the zero map, in degree 1 is δ1[x]1 := dx/x, and in degree
2 is

δ2[x, y]2 := [x]1 + [y]1 − [xy]1, δ2[x]2 := x[x]1 + (1− x)[1− x]1

The definition of δ3 is rather elaborate; first of all

δ3[x, y, z]3 = [y, z]2 − [xy, z]2 + [x, yz]2 − [x, y]2

whereas the component of δ3[x, y]3 in R[(R+)]2 is

[x]2 − [y]2 + (1− x)

[
(1− y)

(1− x)

]
2

− y
[
x

y

]
2

and the component of δ3[x, y]3 in R[(R+)2]2 is

(y−x)

[
y,

(y − x)

y

]
2

+x

[
y,
x

y

]
2

− (y−x)

[
(1− x),

(y − x)

(1− x)

]
2

− (1− y)

[
(1− x),

(1− y)

(1− x)

]
2

Lemma 1.13. With these definitions, C is a chain complex.

Proof. This is a computation. First of all,

δ2[x, y]2 =
dx

x
+
dy

y
− d(xy)

xy
= 0 and δ2[x]2 = dx+ d(1− x) = d1 = 0
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Secondly, δ2[x, y, z]3 = 0 because δ on [x, y, z]3 and its image are two successive terms of
the bar complex of the group R+. Finally,

δ2

[
[x]2 − [y]2 + (1− x)

[
(1− y)

(1− x)

]
2

− y
[
x

y

]
2

]
= x[x]1+(1−x)[1−x]1−y[y]1−(1−y)[1−y]1

+ (1− y)

[
(1− y)

(1− x)

]
1

+ (y − x)

[
(y − x)

(1− x)

]
1

− x
[
x

y

]
1

− (y − x)

[
(y − x)

y

]
1

whereas

δ2(1− y)

[
(1− x),

(1− y)

(1− x)

]
2

= (1− y)[1− x]1 + (1− y)

[
(1− y)

(1− x)

]
1

− (1− y)[1− y]1

δ2(y − x)

[
(1− x),

(y − x)

(1− x)

]
2

= (y − x)[1− x]1 + (y − x)

[
(y − x)

(1− x)

]
1

− (y − x)[y − x]1

δ2(y − x)

[
y,

(y − x)

y

]
2

= (y − x)[y]1 + (y − x)

[
(y − x)

y

]
1

− (y − x)[y − x]1

δ2x

[
y,
x

y

]
2

= x[y]1 + x

[
x

y

]
1

− x[x]1

and therefore δ2[x, y]3 = 0. �

The most important reason to introduce this complex is the following:

Theorem 1.14 (Exactness). The complex C is exact in degrees ≤ 2.

This will follow from the comparison of C with the Cathelineau complex, but for now
we defer the proof.

The complex C maps to the DSJ complex by a chain map t. Define t0 = id/2 on Ω1
R/Z,

define t3 = 0, and define1

t1[x]1 = cot(α(x))⊗ α(x), t2[x, y]2 = ∆(x, y), t2[x]2 = 0

where sin2 α(x) := x and ∆(x, y) is the normalized orthoscheme with α = α(x) and
γ = α(y) as in § 1.6. Note that t1[x]1 = t1(x) with the notation from § 1.6.

Lemma 1.15. The map t is a chain map.

Proof. We must show Jt1 = t0δ1, Dt2 = t1δ2 and 0 = t2δ3. We check this on generators.

Jt1[x]1 = J cot(α(x))⊗ α(x) =
cot(α(x))d sin(α(x))

cos(α(x))
=
d sin2(α(x))

2 sin2(α(x))
=
dx

2x
= t0δ1[x]1

Likewise,
Dt2[x, y]2 = D∆(x, y) = t1[x]1 − t1[xy]1 + t1[y] = t1δ2[x, y]2

as we calculated in § 1.6. Furthermore

sin2(α(1− x)) = 1− x = cos2(α(x)) = sin2(α(x)∨)

1for 0 ≤ x, y ≤ 1
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where the notation α∨ := π/2− α. Thus α(1− x) = α(x)∨ and therefore

t1δ2[x]2 = sin2(α(x)) cot(α(x))⊗ α(x) + sin2(α(x)∨) cot(α(x)∨)⊗ α(x)∨

= sin(α(x)) cos(α(x))⊗ (α(x) + α(x)∨) = 0 = Dt2[x, y]2

The equation t2δ3[x, y, z]3 = 0 is equivalent to Sydler’s Lemma 1.10, and t2δ3[x, y]3 = 0 is
equivalent to the Schläffli identity Lemma 1.11 (after substituting (y − x), (1 − y) and x
for x, y and z). �

We may now prove Theorem 1.7 assuming Theorem 1.14.

Proof. The first step is to show that there exists a function h : (0, 1) → P1(R3) satisfying
the following properties:

(1) h(a) + h(b)− h(ab) = ∆(a, b);
(2) if a+ b = 1 then ah(a) + bh(b) = 0.

We may extend h to R[R+]1 = C1 by h(1/a) = −h(a) and R-linearity, and then the defining
properties of h say exactly that for this extension, hδ = t2 on C2. By Theorem 1.14 the
map δ is injective on C2/δC3 so if we write (arbitrarily) C1 = A⊕B where A = δC2 and
δ : B → Ω1

R/Z is an isomorphism we may define h to be 0 on B, and use the isomorphism
δ−1 : A → C2/δC3 to define h = t2δ

−1 on A. The fact that t is a chain map (which
implicitly uses Sydler’s Lemma and the Schläffli identity) implies that t2 is well-defined on
C2/δC3. So this defines h with the desired properties (note the definition depends on a
splitting of C1 as A⊕B which is not canonical).

The next step is to use h to define a function φ : R ⊗ R/πZ → P1(R3) which is a left-
inverse to D. Obviously the existence of φ will prove that D is injective. Let’s suppose we
can find φ satisfying h = φt1 on C1. Then t2 = hδ = φt1δ = φDt2 so φD is a left-identity
for t2. This means that D is injective on the image of t2 which is all of P1(R3) because
P1(R3) is generated by normalized orthoschemes, which are in the image of R[(R+)2)]2.

So we are reduced to finding φ satisfying h = φt1. We can try to define φ by the
formula φ(1 ⊗ α) = tan(α)h(sin2(α)). To see that this is well-defined we first check that
φ(1⊗ α∨) = −φ(1⊗ α). This is true because

tan(α∨)h(sin2(α∨)) + tan(α)h(sin2(α)) =
cos2(α)h(cos2(α)) + sin2(α)h(sin2(α))

sin(α) cos(α)
= 0

by the second property of h.
Next we must check that φ(1⊗ θ) + φ(1⊗ θ′) = φ(1⊗ (θ+ θ′)). First, note that for any

a, b, c with a2 + b2 + c2 = 1 we have by the first property of h and the Brick identity

(∗) ac

b

[
h

(
c2

1− a2

)
+ h

(
a2

1− c2

)
− h

(
a2c2

(1− a2)(1− c2)

)]
+ cyclic permutations = 0

By the second property of h we have identities of the form

c2

1− a2
h

(
c2

1− a2

)
+

b2

1− a2
h

(
b2

1− a2

)
= 0 and cyclic permutations
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which after multiplying by (1− a2)a/bc is of the form

ac

b
h

(
c2

1− a2

)
+
ba

c
h

(
b2

1− a2

)
= 0 and cyclic permutations

Using this, we may cancel six terms in (∗) in pairs and obtain the identity

(∗∗) ac

b
h

(
a2c2

(1− a2)(1− c2)

)
+ cyclic permutations = 0

Let’s define θ and θ′ by

sin2(θ) :=
a2c2

(1− a2)(1− c2)
and sin2(θ′) :=

b2a2

(1− b2)(1− a2)

Then tan(θ) = ac/b and tan(θ′) = ba/c, and furthermore

b2c2

(1− b2)(1− c2)
= sin2(θ) sin2(θ′)

(1− a2)2

a4

= sin2(θ) sin2(θ′)
(1− tan(θ) tan(θ′))2

(tan(θ) tan(θ′))2
= sin2(π − θ − θ′)

and therefore equation (∗∗) is precisely equal to the desired identity φ(1⊗ θ) +φ(1⊗ θ′) =
φ(1⊗ (θ + θ′)) and φ is well-defined.

(Still need to show kernel of J is image of D). �

1.8. Sydler’s Lemma. We now present the proof of Sydler’s Lemma (i.e. Theorem 1.10).
This is a rather terrifying exercise in solid Euclidean geometry; we follow Jessen [4] and
Schwartz [6] very closely, though we slightly modify their notation to emphasize a (combi-
natorial) symmetry.

The decomposition involves six auxiliary pyramids that Schwartz calls pseudoprisms.
A pseudoprism has the following form: let XY Z be an isosceles triangle in a horizontal
plane π, with the apex at Z. Let V and W lie vertically above Y and Z respectively,
where |V Y | = 2|WZ|. If U is the midpoint of XV and U ′ is the midpoint of V Y then the
tetrahedron WUU ′V may be rotated through angle π about the edge WU so that vertex
V is rotated to X, and the pseudoprism may thereby be decomposed into a prism. See
Figure 1.

X

YZ

W

U

U ′

V

Figure 1. A pseudoprism is equidecomposable with a prism.
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We aim to show the identity T (a, b) + T (ab, c) ∼ T (a, c) + T (ac, b) modulo prisms. This
is accomplished by exhibiting two decompositions of a common polyhedron P as follows:

P = T (a, b) + T (ab, c) + ACDIH + CDIHD′ + IHD′LK

and
P = T (a, c) + T (ac, b) + AC ′D′I ′H + C ′D′I ′HD + I ′HDL′K

The six pyramids ACDIH, · · · , I ′HDL′K are all pseudoprisms, and therefore equivalent
to prisms. These decompositions are ‘algebraic’ in the sense that (depending on a, b, c)
the polyhedra might overlap each other and some of them should be thought of as having
negative orientation.

A

B

C

D
C ′

D′

H

I

I ′

K

L

L′

Figure 2. The location of vertices. H is the center of a sphere S containing
a great circle through ALKL′. Red dots are the orthogonal projections of
IHI ′LKL′ to the plane π containing BCDC ′D′. The points CDC ′D′ lie on
a circle which is the intersection of π with the sphere S centered at H.
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There are 12 important vertices in the construction; see Figure 2. Four of them (ABHK)
play the same role in both decompositions. The other eight (CDIL, C ′D′I ′L′) are in-
terchanged in pairs by a combinatorial involution represented by the ‘dash’ superscript,
corresponding to the algebraic involution interchanging the roles of b and c.

The four orthoschemes are T (a, b) := ABCD, T (ab, c) := ADKL′, T (a, c) := ABC ′D′

and T (ab, c) := AD′KL. The polyhedron P has nine faces ABDL′, ABD′L, ALKL′,
BDD′, L′DK, LKD′, DD′H, DKH, D′KH and is invariant under the combinatorial
involution. Thus one needs only to verify the decomposition in one case or the other.

The vertices BCDC ′D′ are all in a plane π, which we may take to be the x–y plane.
BCD′ and BDC ′ are collinear, DC is perpendicular to BD′ and D′C ′ is perpendicular to
BC ′.

The vertices AIHI ′LKL′ are in another plane. H is the midpoint of AK, I is the
midpoint of AL, and I ′ is the midpoint of AM . The vertex H is the center of a sphere S
which contains ACDC ′D′LKL′.

For each vertex not in the x–y plane, let p(·) denote its vertical projection. Then
p(A) = B, p(I ′) is the midpoint of both C ′D and Bp(L′), and p(I) is the midpoint of both
CD′ and Bp(L). Finally, p(H) is the center of a circle containing CDC ′D′, and is the
midpoint of p(A)p(K) = Bp(K).

It is straightforward to verify that the pieces in the decomposition are orthoschemes and
pseudoprisms with the desired geometry. One may verify the decomposition formally by
comparing boundaries of the terms. To actually ‘see’ the decomposition is more challenging.
Figure 3 shows the first decomposition, for a particular choice of a, b, c for which this
decomposition may be realized by embedded disjoint polyhedra, and is possible to verify
visually from the Figure.

The second decomposition (for the same choice of a, b, c) has some polyhedra negatively
oriented and is harder to grasp visually; compare Figure 4.

A

B

C

D

D′

I

H
K

L

L′

Figure 3. The orthoschemes T (a, b) := ABCD (in blue) and T (ab, c) :=
ADKL′ (in green) and three pseudoprisms ACDIH, CDIHD′ and
IHD′LK (in red).

1.9. The Cathelineau complex.
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A

B

D
C ′

D′

H

I ′

K

L

L′

Figure 4. The orthoschemes T (a, c) := ABC ′D′ (in blue) and T (ab, c) :=
AD′KL (in green) and three pseudoprisms AC ′D′I ′H, C ′D′I ′HD and
I ′HDL′K (in red).

Definition 1.16 (The vector space β). Let β denote the real vector space generated by
symbols [a] for a ∈ R− {0, 1} subject to the following relations:

(1) [a] = [1− a];
(2) [1/a] = −[a]/a;
(3) the entropy equation

[a]− [b] + (1− a)

[
(1− b)
(1− a)

]
− b
[a
b

]
= 0

With this definition, we may now define the Cathelineau complex:

Definition 1.17 (Cathelineau complex). The Cathelineau complex is the complex

0→ β
D−→ R⊗Z R∗

L−→ Ω1
R/Q → 0

whereD([a]) = a⊗a+(1−a)⊗(1−a) and L is the ‘logarithmic derivative’ L(a⊗b) = a(db/b).

Lemma 1.18. The map D is well-defined.

Proof. We must show that it vanishes on the defining relations of β. Evidently
D([a]) = a⊗ a+ (1− a)⊗ (1− a) = D([1− a])

and
D([1/a]) = 1/a⊗ 1/a+ (a− 1)/a⊗ (a− 1)/a

= −1/a⊗ a+ (1− a)/a⊗ a− (1− a)/a⊗ (1− a) = D(−[a]/a)

where we used the relations x⊗y = x⊗(−y) and x⊗y/z = x⊗y−x⊗z in R⊗R∗. Finally,
D vanishes on the left-hand side of the entropy equation by a brute force calculation2. This
calculation is essentially the same as the proof the δ2 = 0 on R[(R+)2]3 that we gave in
Lemma 1.13, except that because the target group is R ⊗ R∗ rather than R[R+] we may
assume multiplicativity in the R∗ factor, and there is no need for a term analogous to the
component of δ3[x, y]3 in R[(R+)2]2. �

2there is a scissors congruence proof of this fact
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Analogous to Lemma 1.9 we have

Lemma 1.19. L is surjective and LD = 0.

Proof. For any t⊗ t we have L(t⊗ t) = dt so L is surjective. Furthermore, for any [a] we
have

LD([a]) = L(a⊗ a+ (1− a)⊗ (1− a)) = da+ d(1− a) = d1 = 0

�

2. Hyperbolic Scissors Congruence

2.1. Group homology. Let G be a group and M a (left) Z[G]-module (hereafter we just
say ‘a G-module’). Tensoring a G-module with Z (thought of as a trivial G module) defines
a functor from G-modules to abelian groups which is right-exact. The left derived functors
are the homology of G.

Explicitly: let C∗ be a free resolution of Z by G-modules

· · · → C3 → C2 → C1 → C0 → Z→ 0

One standard choice for C∗ is the bar complex, which is generated in degree n by expressions
[g1|g2| · · · |gn] with boundary operator

∂[g1|g2| · · · |gn] = g1[g2| · · · |gn] +
∑
i

(−1)i[g1| · · · |gigi+1| · · · |gn]± [g1|g2| · · · |gn−1]

Then H∗(G,M) is the homology of the complex

· · · → C3 ⊗M → C2 ⊗M → C1 ⊗M → C0 ⊗M → 0

and H∗(G,M) is the homology of the complex

0→ HomG(C0,M)→ HomG(C1,M)→ HomG(C2,M)→ · · ·

2.2. (X, G) Scissors Congruence. Fix a space X with a G-action. Let χ : G → ±1 be
a character. Define Pχ(X, G) (or just P if χ is understood) to be the free abelian group
generated by ordered (n+ 1)-tuples X := (x0, x1, · · · , xn) modulo relations

(1) if X lie in a proper hyperplane, X = 0;
(2) X = χ(g)gX for any g ∈ G;
(3) for any (n+ 2)-tuple (x0, x1, · · · , xn+1) we have the identity∑

i

(−1)i(x0, · · · , x̂i, · · · , xn+1) = 0

If H is any subgroup of G then P(X, H) is a G-module in the obvious way. Thus one
has H0(G,P(X, 1)) = P(X, G).
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2.3. The Steinberg Complex. Fix a field F and a dimension n. Let Pn be n-dimensional
projective space over F . A flag is a strictly increasing sequence of linear subspaces L0 ⊂
L1 ⊂ L2 ⊂ · · · ⊂ Lk of Pn, where Lk is strictly proper. Define Tn to be the simplicial
complex with one k-simplex for each flag as above. Because Lk is strictly proper for each
flag, the dimension of Tn is (n− 1).

Theorem 2.1 (Solomon–Tits). The space Tn is homotopic to a wedge of (n− 1)-spheres

Proof. In fact, one may give a more precise description of the abelian group Hn−1(Tn) as
follows. An ordered (n+ 1)-tuple of points X := (x0, x1, · · · , xn) ∈ Pn and a permutation
σ ∈ Sn+1 determines a maximal flag

F (X, σ) := 〈xσ(0)〉 ⊂ 〈xσ(0), xσ(1)〉 ⊂ · · · 〈xσ(0), xσ(1), · · · , xσ(n−1)〉
and therefore an (n− 1)-simplex in Tn. The chain

A(X) :=
∑
σ

(−1)|σ|F (X, σ)

(called the apartment associated to X) is evidently a simplicial sphere, combinatorially
isomorphic to the boundary of the abstract ‘simplex’ with vertices x0, x1, · · · , xn.

Now, for any two maximal flags F1, F2 in general position, there is some (unique) X so
that F1 = F (X, id) and F2 = F (X, τ) where τ ∈ Sn+1 is the ‘opposite’ element; i.e. the
permutation taking i to n− i for all i. The apartment A(X) minus F2 may be canonically
contracted using the standard geodesic combing of Sn+1 − τ associated to the standard
generating set. If F ′2 is another flag in general position with respect to F1, and F1 =
F (X ′, id), F ′2 = F (X ′, τ) for some X ′, the contraction of A(X ′) − F ′2 agrees with the
contraction of A(X) − F2 on the overlap (if any). Thus if we fix a flag F , the complex
Tn minus all simplices F ′ where F ′ is in general position relative to F , is contractible;
and Tn is therefore homotopic to a wedge of spheres A(X) for X ranging over all ordered
(n+ 1)-tuples of points for which F = F (X, id). �

The group PGL(n, F ) acts on Tn and therefore also on Hn−1(Tn); this is called the
Steinberg Representation, denoted hereafter by St. The character of this representation
is (up to sign) the Lefschetz number associated to the action on (reduced) homology (i.e.
the alternating sum of the traces on each individual homology group). This may be also
be computed as the alternating sum of the traces on the chain groups (at least when
these groups are finitely generated). This may be computed by enumerating the conjugacy
classes of parabolic subgroups P (which are exactly those that stabilize some flag F ), and
inducing the character of the trivial representation of P up to PGL(n, F ). In other words,

χSt =
∑
P

(−1)|P |IndPGL(n,F )
P 1P

2.4. Steinberg module for X. Let’s fix an n-dimensional space X with a G-action, and
lets suppose we are given the notion of a linear subspace of X spanned by a finite set of
elements. For example, if X is spherical, Euclidean or hyperbolic space of dimension n,
such linear subspaces are simply the totally geodesic subspaces.

For such an X we may define a Steinberg module StX as the homology of the complex
TX of proper flags in X where the flag associated to an ordered (n + 1)-tuple of points
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X := (x0, · · · , xn) is the flag of linear subspaces spanned by x, · · · , xi for i < n. Exactly
as in the proof of the Solomon–Tits theorem, the complex TX is homotopic to a wedge of
spheres of dimension (n− 1) and its homology in dimension (n− 1) is StX.

Lemma 2.2. As a G module StX is isomorphic to P(Xn, 1). Consequently StX = P(Xn, 1)
and P(Xn, G) = H0(G, StX).

Proof. Both StX and P(Xn, 1) are generated by nondegenerate ordered (n + 1)-tuples X:
such symbols generate P(Xn, 1) by definition, whereas to eachX is associated an apartment
A(X) and its homology [A(X)] ∈ Hn−1(TX) = St.

P(Xn, 1) is the quotient of the group of nondegenerate (n+ 1)-tuples by the (n+ 2)-term
relation

∑
i(−1)i(x0, · · · , x̂i, · · · , xn+1) = 0 for any (n + 2)-tuple. We must show that the

(n + 2)-term relation holds in StX, and that all relations in StX are consequences of this
one.

Let’s consider the chain complex C∗ that computes StX. Let’s let C̄∗ denote the complex
whose m chains are arbitrary ordered (m + 1)-tuples of elements of X. This complex
is evidently contractible, so its homology is trivial. The complex C∗ is a quotient of the
subcomplex of C̄∗ in degree < n by the degenerate simplices (those that generate degenerate
flags). Thus StX = Hn−1(C∗) is the cokernel of C̄n+1 → C̄n modulo degenerate flags. But
this is precisely a presentation of P(Xn, 1). �

2.5. Hyperbolic Geometry. Let Hn denote hyperbolic space of dimension n. There are
three natural scissors congruence groups associated to Hn:

(1) P(Hn), the group of (ordinary, finite) hyperbolic polyhedra mod isometry and sub-
division;

(2) P(H̄n), the group of semi-ideal hyperbolic polyhedra (those in which some or all
vertices are allowed to lie at infinity) mod isometry and subdivision; and

(3) P(∂Hn), the group of ideal hyperbolic polyhedra (those in which all vertices are
required to lie at infinity) mod isometry and subdivision.

A totally geodesic subspace of Hn extends in an obvious way to a ‘subspace’ of H̄n. Con-
versely, any (k + 1)-tuple of points in H̄n determines such a subspace, except when k = 0
and the point lies in ∂Hn. We therefore have Tits complexes TH, TH̄ and T∂H, and there
are natural inclusions of the first and third complex into the second.

Let G denote the isometry group of Hn. Each of the scissors congruence groups may
be computed as H0 of G with coefficients in the respective Steinberg modules. There are
therefore natural maps P(Hn)→ P(H̄n) and P(∂Hn)→ P(H̄n).

Theorem 2.3 (Dupont). For any n ≥ 2 the map P(Hn) → P(H̄n) is an isomorphism.
For any odd n > 2 the map P(∂Hn) → P(H̄n) is an isomorphism mod 2-torsion, and
(unconditionally) an isomorphism when n = 3.

The proof depends on some standard facts in homological algebra we now state. First of
all, if H is a subgroup of G andM is an H-module, there is the so-called induced G-module
IndGHM which is just Z[G]⊗Z[H] M . If gj is a set of (left) coset representatives of H in G,
we may think of IndGHM as an abelian group as ⊕iMi where each Mi is isomorphic to M ,
and g ∈ G acts on m ∈ Mi by gm = hm ∈ Mj where ggi = gjh for some unique coset
representative gj and h ∈ H. The first fact we need is known as Shapiro’s Lemma:



NOTES ON SCISSORS CONGRUENCE 17

Lemma 2.4 (Shapiro’s Lemma). For any H subgroup of G and any H-module M ,

Hi(H,M) = Hi(G, IndGHM)

We only need this lemma in dimensions i = 0, 1 where it follows immediately from a
simple calculation.

The second fact we need is known as Center Kills:

Lemma 2.5 (Center Kills). If z is in the center of G, and for some ring R the element z
acts on an R[G]-module M as multiplication by λ ∈ R then (λ− 1) annihilates H∗(G,M).

This lemma follows from the elementary fact that for any x ∈ G, the ‘conjugation’ action
of x on chains

x · [g1| · · · |gn]m→ [gx1 |gx2 | · · · |gxn]xm

is the identity on homology. One may see this by an explicit chain homotopy from this
map to the identity map, given by

[g1| · · · |gn]m→
∑
i

(−1)i[g1| · · · |gi|x−1|gxi+1| · · · |gxn]m

whence the conjugation action of z acts on H∗(G,M) both as multiplication by λ and as
the identity.

Let us now prove Theorem 2.3

Proof. First we show that P(Hn) → P(H̄n) is an isomorphism. The map TnH → TH̄n is
an inclusion of chain complexes, and the cokernel is the chain complex ⊕pTH̄n

p
where for

p ∈ ∂Hn, the complex TH̄n
p
is spanned by flags F beginning with the singleton p.

For each p ∈ ∂Hn let Rn−1
p := ∂Hn−p (here we are thinking of Hn in the upper half-space

model with p at vertical infinity). Let F be any flag in H̄n
p . Then every subspace Fi of F

except the first is spanned by points at infinity; thus there is an isomorphism of complexes
(of degree −1)

⊕pTH̄n
p

= ⊕pTRn−1
p

The stabilizer Gp of p acts on Rn−1
p as the group of Euclidean similarities (i.e. isometries

together with dilations). Furthermore, as a G-module, the homology of ⊕pTRn−1
p

is just
IndGGp

StRn−1
p

. It follows that we have the following fragment of a long exact sequence

→ H1(Gp, StRn−1
p

)→ P(Hn)→ P(H̄n)→ H0(Gp, StRn−1
p

)→ 0

The conclusion follows from the fact (due to Dupont) that H∗(Gp, StRn−1
p

) vanishes in every
dimension, for n ≥ 2. This follows from the argument of Center Kills together with the
fact that the Euclidean scissors congruence groups P(En−1) decompose into a direct sum
of R-vector spaces on which a dilation by a factor λ acts as multiplication by λk, for some
integer k between 1 and (n− 1).

(In low dimensions this is clear: area gives an isomorphism P(E2) = R by Bolyai–
Gerwein, and λ multiplies areas by λ2; likewise, λ acts on prisms in P(E3) as multiplication
by λ3 and on P1(E3) as multiplication by λ by Lemma 1.6).

Now let’s consider P(∂Hn)→ P(H̄n). As before we have an inclusion of Tits complexes,
and the cokernel is ⊕pTH̄n

p
where now we take the sum over p ∈ Hn. For each p the
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complex TH̄n
p
is isomorphic to TRPn−1

p
where RPn−1

p is the projectivization of the tangent
space TpHn. As before the homology of ⊕pTH̄n

p
as a G-module is just IndGGp

StRPn−1
p

and we
get an analogous long exact sequence

→ H1(Gp, StRPn−1
p

)→ P(∂Hn)→ P(H̄n)→ H0(Gp, StRPn−1
p

)→ 0

For p finite the group Gp is just O(n), and its action on RPn−1
p is the standard action.

When n is odd the (central) antipodal map −1 ∈ O(n) acts on an (n − 1)-sphere in an
orientation-reversing way; by Center Kills it follows that H∗(Gp, StRPn−1

p
) is 2-torsion. In

dimension 3 one knows that P(∂H3) and P(H̄3) are divisible and the theorem follows. �

Remark 2.6. The surjectivity of P(H3)→ P(H̄3) and P(∂H3)→ P(H̄3) is equivalent to the
vanishing of H0(Gp, StR2

p
) and H0(Gp, StRP2

p
) for p ideal and finite respectively. We may

give an elementary proof of this fact (which is really just a reformulation of Center Kills
in geometric terms) at least modulo torsion for the second map, as follows.

First we show surjectivity for the first map. This is equivalent to the fact that any 3d
semi-ideal polyhedron P is (stably) scissors congruent to a finite polyhedron. Let’s prove
this when P is a simplex with a single ideal vertex p (that we may place at vertical infinity).
The intersection of P with a fixed horosphere π centered at p is a 2d Euclidean triangle
Pπ. If we act on P by a dilation (in the upper half-space model) by a factor of 2 we get
a congruent polyhedron P ′ whose intersection with the same horosphere π is a Euclidean
triangle P ′π which is congruent to four isometric copies of Pπ. Thus P ′ minus four translates
of P is an algebraic sum of finite polyhedra, i.e. 3P is in the image of P(H3). Dilating by
a factor of 3 shows that 8P is in the image of P(H3), and since 3 and 8 are coprime, it
follows that P itself is in the image of P(H3). By subdivision and induction, surjectivity
is proved.

Next we show surjectivity for the second map (mod torsion). This is equivalent to
the fact that any 3d semi-ideal polyhedron P is (stably) scissors congruent to an ideal
polyhedron. Let’s prove this when P is a simplex with a single finite vertex p. Call
the other (ideal) vertices x0, x1, x2 and let −x0,−x1,−x2 be the vertices on ∂H3 so that
xi, p,−xi are collinear for each i.

Consider the six ideal simplices (xi, xi+1, xi+2,−xi), (xi,−xi+1,−xi+2,−xi), indices taken
mod 3. The union of these ideal simplices is equal to the ideal octagon spanned by all the
±xi, except that it overlaps with degree three the two semi-ideal simplices (x0, x1, x2, p)
and (−x0,−x1,−x2, p). These latter two simplices are both isometric to P (the first one
is P ). It follows that 4P is equal to an algebraic sum of ideal polyhedra, so that 4P is in
the image of P(∂H3). By subdivision and induction, surjectivity is proved, mod torsion.

2.6. Ideal scissors congruence. We now focus attention on P(∂H3). We make use of the
standard identification ∂H3 = CP1 in such a way that the group of (orientation-preserving)
isometries is PSL(2,C). The generators of P(∂H3) are ideal hyperbolic simplices; each
such simplex may be moved by an isometry to have (ordered) vertices at 0, 1,∞, z where
z ∈ C− {0, 1}, so P(∂H3) is generated by symbols [z].
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Permuting the vertices gives the relations [1−z] = [1/z] = −[z]. Five ideal vertices span
five different ideal simplices; thus there is the following 5-term relation:

[a]− [b] +

[
b

a

]
−
[

1− b
1− a

]
+

[
1− b−1

1− a−1

]
= 0

Finally, the condition that simplices should be nondegenerate imposes [z̄] = −[z]. This
gives a presentation of P(∂H3).

2.6.1. Cross-ratios. There is a natural interpretation of the arguments of the 5-term rela-
tion in terms of cross-ratios. Recall that for a non-degenerate 4-tuple a, b, c, d ∈ CP1 the
cross-ratio (a, b; c, d) is the expression

(a, b; c, d) =
(a− b)(c− d)

(a− d)(c− b)
∈ C− {0, 1}

(Note that there are several different conventions for the definition of cross-ratio; we adhere
to this convention in what follows). The cross-ratio is invariant under the diagonal action
of PSL(2,C) on the arguments. Note that (a, 0, 1,∞) = a, and that under the permutation
action of S4 on the arguments the value factors through S4 → S3 acting by permutations
on

λ,
1

λ
, 1− λ, 1

1− λ
,
λ− 1

λ
,

λ

λ− 1
In other words, cross-ratio invariant under permutations of the arguments by elements of
the Klein 4-group.

If we fix 5 points z0, z1, · · · , z4 in CP1, the 5 term relation has the form∑
(−1)i [(z0 · · · ẑi · · · z4)] = 0

2.6.2. Volume and Dehn invariant. One has two natural (additive) invariants on P(∂H3),
namely volume, and the Dehn invariant. The Dehn invariant is defined as usual on P(H3);
to extend it to P(H̄3) and then to restrict it to P(∂H3) we must make use of an observation
of Thurston.

If P is a semi-ideal hyperbolic polyhedron, and p ∈ P is an ideal vertex, then a horosphere
centered at p intersects P in a Euclidean polygon, whose angles therefore sum to an integer
multiple of π. Thus one may renormalize the lengths of the edges e of P by (arbitrarily)
cutting off a horoball neighborhood of each ideal vertex, and letting `e denote the length
of the resulting (finite) segments. The expression D(P ) :=

∑
e `e ⊗ αe is independent of

the choice; this is the Dehn invariant, and it defines a homomorphism from P(∂H3) to
R⊗ R/πZ just as in Euclidean 3-space. In terms of generators [z] one has the formula

D([z]) = −2 (log |z| ⊗ arg(1− z)− log |1− z| ⊗ arg(z))

Volume is the other natural (additive) invariant. Let’s compute this invariant on [z].
Schläffli’s formula says that for a family of (combinatorially equivalent) finite 3d hyperbolic
polyhedra one has

dVol =
−1

2

∑
e

`edαe

For semi-ideal polyhedra one has a similar formula using renormalized lengths `e associated
to any horoball truncation.
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Thus

dVol([z]) = log |z|d arg(1− z)− log |1− z|d arg z

= d(log |z| arg(1− z))− arg(1− z)d log |z|+ log |1− z|d arg(z)

Integrating this expression, and using the fact that Vol goes to 0 as z → 0,

Vol([z]) = log |z| arg(1− z)− Im
[∫ z

0

log(1− z)

z
dz

]
This is a real-analytic function of z ∈ C−{0, 1} called the Bloch–Wigner Dilogarithm, and
in the sequel we denote it L2(z).

2.7. Dilogarithms. Apart from the factor of log |z| arg(1 − z), the Bloch–Wigner Dilog-
arithm L2(z) is the imaginary part of the (ordinary) Dilogarithm

Li2(z) := −
∫ z

0

log(1− z)

z
dz

which is multivalued on C− {0, 1}.
More generally one has the k-polylogarithms for integers k ≥ 1:

Lik(z) :=
∑
n≥1

zn

nk

Note Li1(z) = − log(1− z) and Lik(1) = ζ(k) where ζ is the Riemann zeta function. The
series for Li2(1) converges very slowly; however Euler discovered the functional equation

Li2(z) + Li2(1− z) = Li2(1)− log z log (1− z)

from which one may compute Li2(1) numerically from the (rapidly converging) series for
Li2(1/2).

Abel generalized Euler’s formula to a 5-term relation for Li2 whose imaginary part gives
the 5-term relation for volumes of ideal hyperbolic simplices.

2.8. The Bloch Group. Omitting the last defining relation for P(∂H3) gives the Bloch
Group.

Definition 2.7 (Bloch Group). Let F be any field. Define B2(F ) to be the free abelian
group generated by symbols [a] for a ∈ F subject to the 5-term relation

[a]− [b] +

[
b

a

]
+

[
1− a
1− b

]
−
[

1− a−1

1− b−1

]
Lemma 2.8. If we define 〈a〉 := [a] + [1/a] then one has

〈a〉 − 〈b〉+ 〈b/a〉 = 0

and 〈a〉 is 2-torsion for any a.

Proof. The proof follows from the 5-term relation. It follows that 〈·〉 is multiplicative.
Since also 〈a〉 = 〈a−1〉 by definition it follows that 〈a〉 is 2-torsion. �

Lemma 2.9. The element [a] + [1− a] is independent of a.
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Proof. Substitute a, b → 1 − b, 1 − a and collect terms from two copies of the 5-term
relation. �

The element CF := [a] + [1− a] satisfies

3CF = [a] + [1− a] +

[
1

a

]
+

[
1− 1

a

]
+

[
a

a− 1

]
+

[
1

1− a

]
= 〈a〉+ 〈1− a〉+ 〈1− a−1〉 = 〈−a(1− a)2

a
〉 = 〈−1〉

In a field in which x2 + 1 = 0 and x2 − x+ 1 = 0 have solutions CF = 0 but (for instance)
in B2(R) the element CF is 6-torsion.

2.9. The Bloch Complex. There is a coproduct ∆ : B2(F ) → Λ2F ∗ defined by ∆[z] =
z ∧ (1 − z). We shall see that this vanishes on the 5-term relation, and is therefore well-
defined.

This fits into a (right-exact) complex

B2(F )
∆−→ Λ2F ∗ → KM

2 (F )→ 0

where KM
2 (F ) is the Milnor K2 of F , which for now we can take to be the cokernel of ∆

by definition.
There is a commutative diagram

B2(C)
∆−−−→ Λ2C∗y y

P(∂H3)
D−−−→ R⊗ R/πZ

The first vertical map is the obvious one, where one thinks of P(∂H3) as the quotient
of the Bloch group by [z̄] = −[z]. The second vertical map comes from the (R-linear)
isomorphism C∗ = R+ ⊕ R/2πZ which exhibits

Λ2C∗ = Λ2R+ ⊕ R+ ⊗ R/πZ⊕ Λ2R/πZ
where R+⊗R/πZ may be singled out as the −1 eigenspace for complex conjugation. Here
the first factor R+ may be thought of multiplicatively; taking the logarithm of this factor
gives the map R+ ⊗ R/πZ → R ⊗ R/πZ. Another way to say all this is that the second
horizontal row is the −1 eigenspace of complex conjugation on the first horizontal row.

2.9.1. ∆ is well-defined. It remains to show that ∆ is well-defined. I.e.:

Lemma 2.10. ∆ vanishes on the 5-term relation.

We give two proofs of this fact. The first is purely computational.

Proof. In terms of the cross-ratio we want to show for any z0, · · · , z4 that

∆
(∑

(−1)i [(z0 · · · ẑi · · · z4)]
)

= 0

Now, one may check that

∆[(a, b; c, d)] =
(a− b)(c− d)

(a− d)(c− b)
∧ (a− c)(b− d)

(a− d)(b− c)
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using the fact that (a, c; b, d) = 1 − (a, b; c, d). The wedge product here is with respect to
F ∗ thought of as a multiplicative group; thus if we define

A(x0, x1, x2) :=
∑
i

(xi − xi+1) ∧ (xi+1 − xi+2)

indices taken mod 3, then we have the identity
∆[(a, b; c, d)] = A(a, b, c)− A(a, b, d) + A(a, c, d)− A(b, c, d)

And the desired relation follows from this. �

Morally speaking, ∆[·] is the ‘coboundary’ of A, and ∆ of the 5-term relation is the
coboundary of this coboundary, which is why it is 0.

The next proof hints at a deeper connection to Cluster Algebras, that we shall develop
in the next subsection.

Proof. Consider a sequence fn defined by fn+2 := (1 + fn+1)/fn. Then one may check
that whatever f1 and f2 are, f5 = (1 + f1)/f2 and f6 = f1, so that the sequence is always
periodic of period 5. Now,

∆(
∑

[−fi]) =
∑

(−fi) ∧ (1 + fi) =
∑

fi ∧ fi−1fi+1 = (
∏

fi) ∧ (
∏

fi) = 0

By a calculation one may check that this identity is equivalent to the vanishing of ∆ on
the 5-term relation. �

2.10. Cluster Algebras. A quiver Q is a finite directed graph. We label the vertices by
variables which for the moment we take to lie in F ∗ for some field F . We assume there are
no loops, and at most one edge (of either orientation) between any two vertices.

Associated to Q is an elementWQ in Λ2F ∗ which is the sum of terms a∧b for all oriented
edges in Q from a vertex labeled a to a vertex labeled b.

There is an operation on quivers called mutation, defined as follows.
(1) Choose a vertex v (by abuse of notation let’s also refer to the label as v) and reverse

the orientation of all arrows with an endpoint at v.
(2) Add all new composable edges (i.e. if there are oriented edges from x to y and from

y to z add an oriented edge from x to z if none exists).
(3) Cancel pairs of edges with the same endpoints and opposite orientations.
(4) Change the label on vertex v to (

∏
x→v x +

∏
v→y y)/v (here

∏
x→v x means the

product, over all incoming edges in Q to v, of the label of the initial vertex).

Proposition 2.11. (1) any sequence of mutations on Q will produce quivers in which
vertices are labeled by rational functions of the original vertex variables in such a
way that only monomials arise in the denominators; and

(2) the set of possible (labeled) quivers obtained from Q by repeated mutation is finite
if and only if one of them is a simply laced Dynkin diagram.

The collection of labeled quivers obtainable from some quiver by repeated mutation form
the vertices of a directed graph in which directed edges correspond to mutation. Let Q
and Q′ be two elements obtained by mutation at a vertex v of Q. One may easily compute

WQ′ −WQ = ∆

(∏
x→v x∏
v→x x

)



NOTES ON SCISSORS CONGRUENCE 23

It follows that for Qi the terms in a cycle of mutations one has
∑
WQi

= 0.
The second proof of Lemma 2.10 encodes this identity for a 5-term cycle in the A2 cluster

algebra, starting at Q a single directed edge from f1 to f2.

2.11. Rogers Identity. Rogers Identity is concerned with the relationship between the
Bloch group of C and the Bloch group of C(z). For each point p ∈ CP1 we let vp be the
discrete valuation on C(z) associated to p; i.e. vp(f) is the order of vanishing of f at p if
f(p) is finite, or the negative of the order of vanishing of 1/f if p is a pole of f .

Theorem 2.12 (Rogers Identity). for f(z) ∈ C(z) with f(∞) finite there is the following
identity in B2(C(z)):

[f(z)]− [f(∞)] =
∑

a6=b∈CP1

va(f)vb(1− f)

[
z − a
b− a

]
Example 2.13. Let f(z) be the cross-ratio

f(z) := (z, x1;x2, x3) =
(z − x1)(x2 − x3)

(z − x3)(x2 − x1)

Remember that 1− (z, x1;x2, x3) = (z, x2;x1, x3) and that the only zero of (z, x1;x2, x3) is
x1 and the only pole is x3. Thus this identity reduces to

[(z, x1;x2, x3)]− [(∞, x1;x2, x3)] =

[
z − x1

x2 − x1

]
−
[
z − x1

x3 − x1

]
−
[
z − x3

x2 − x3

]
= [(z, x1;x2,∞)]− [(z, x1;x3,∞)]− [(z, x3;x2,∞)]

which specializes to the 5 term relation associated to a 5-tuple of points in the projective
line over C(z).

The coproduct maps B2(C(z)) to Λ2C(z)∗, which may be composed with the natural map
to Λ2(C(z)∗/C∗) = Λ2Div0(CP1). We remark that Rogers Identity is essentially equivalent
to the exactness of the sequence

0→ B2(C)→ B2(C(z))→ Λ2Div0(CP1)→ 0

For any constant a ∈ C − {0, 1}, both a and 1 − a represent 0 in Div0(CP1), so B2(C) is
in the kernel of the map to Λ2Div0(CP1). This map is surjective, since[

z − a
b− a

]
→ z − a

b− a
∧ z − b
b− a

= ([a]− [∞]) ∧ ([b]− [∞])

and Div(CP0) is generated by expressions of the form [a]− [∞]. Conversely, any expression∑
[fi(z)] in B2(C(z)) may be expressed, via Rogers Identity, as a sum of terms of the

form [(z − a)/(b − a)] over the zeros and poles a, b of the fi and 1 − fi respectively. Any
cancellation of the image of this sum in Λ2Div0(CP1) arises from cancellation of suitable
zeros and poles of the fi(z), which in turn may be realized by instances of the 5-term
relation as in Example 2.13 modulo constant functions (i.e. elements of B2(C)).

We now give the proof of Rogers Identity.
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Proof. The proof is by induction on the degree of f ∈ C(z), by which we mean the sum of
the degrees of the numerator and denominator when f is expressed as a ratio of coprime
polynomials.

Suppose we write f(z) = r1(z)/r2(z). Since the rj are coprime, we can find distinct
points x1, x2, x3 ∈ C so that

r1(x1) = 0, r2(x2) = 0, (r1 − r2)(x3) = 0

Let ϕ(z) := (z, x1;x3, x2) so that ϕ(0) = x1, ϕ(1) = x3 and ϕ(∞) = x2, and recall that
we have already proved Rogers Identity for functions of the form ϕ (this is Example 2.13).
By the 5-term relation

[f(z)]− [ϕ(z)] = −
[
ϕ(z)

f(z)

]
−
[

1− f(z)

1− ϕ(z)

]
+

[
1− f(z)−1

1− ϕ(z)−1

]
and one may check that each term on the right has smaller degree than f . Collecting terms
and some bookkeeping proves the theorem. �

A Corollary of Rogers Identity is that the kernel of ∆ : B2(C(z))→ Λ2C(z)∗ is contained
in B2(C). The proof only used the fact that C is algebraically closed, to find suitable points
x1, x2, x3 for any f(z) = r1(z)/r2(z). Generalizing this fact is:

Theorem 2.14 (Suslin). For any field F , if x ∈ B2(F (z)) is in the kernel of ∆ then
x ∈ B2(F ) modulo torsion.

Another Corollary of Rogers Identity is the fact that B2(C) is divisible:

Corollary 2.15. B2(C) is divisible. In fact for any z

[zn] = n

(
n∑
j=1

[zζj]

)
where ζ = e2πi/n.

Proof. By Rogers Identity we may write [(1− zn)/(1− z)] as a sum of linear terms. Thus
the desired identity holds in B2(C(z)) and therefore also in B2(C) for any specific z not
equal to 0 or an nth root of unity. �

In fact, Suslin shows:

Theorem 2.16 (Suslin). B2(C) is uniquely divisible.

Suslin proves this by defining a map ‘division by n’ which takes [a] ∈ B2(C) to
∑

αn=a[α].
The difficulty is to show that this is well-defined (i.e. that the image of the 5-term relation
is zero). This can be done by an explicit calculation when n = 2.

2.12. Symplectic Form on M0,n. Let M0,n denote the moduli space of n ordered distinct
points in CP1 modulo the action of PSL(2,C). We define a natural symplectic form on
this space. Let U denote the space of 2× n complex matrices(

x1 x2 · · · xn
y1 y2 · · · yn

)
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whose 2 × 2 minors ∆ij := xiyj − xjyi are all nonzero (these ∆ij are Plücker coordinates
on U). The group GL(2,C) acts on U (by matrix multiplication on the left) and there is a
commuting action of (C∗)n−1 which scales the columns. The quotient of this pair of actions
is M0,n; the image of a matrix is the projective equivalence class of the sequence of points
(x1/y1, · · · , xn/yn).

Now consider an n-gon whose vertices are labeled by vectors vi := ( xiyi ). To each cyclically
oriented triple of indices ijk we associate the expression

ωijk :=
d∆ij

∆ij

∧ d∆jk

∆jk

+ cyclic permutations

Associated to a triangulation τ of the n-gon we define ωτ to be the sum over all (oriented)
triangles ijk in τ of ωijk.

Theorem 2.17. The form ωτ is independent of the triangulation.

Remark 2.18. One should compare with Wolpert’s Formula for the Weil–Petersson sym-
plectic form on the moduli space of Riemann surfaces of fixed genus.

Proof. First of all, for any field F we defined KM
2 (F ) to be the cokernel of ∆ : B2(F ) →

Λ2F ∗. There is a map Λ2F ∗ → Ω2
F/Q defined by

x ∧ y → dx

x
∧ dy
y

This vanishes on the image of ∆ since

x ∧ (1− x)→ dx

x
∧ d(1− x)

1− x
= 0

Now, define for each triple ijk the expression

Wijk = ∆ij ∧∆jk + ∆jk ∧∆ki + ∆ki ∧∆ij

This is an element of Λ2C(U)∗ where C(U) is the function field of U . Define likewise Wτ

to be the sum of Wijk over the triangles in some triangulation of the n-gon.
The map Λ2C(U)∗ → Ω2

C(U)/Q above takesWτ to ωτ so to show it is well-defined it suffices
to show that any two triangulations give elements Wτ , Wτ ′ that differ by an element in the
image of B2(C(U)).

As is well-known any two triangulations of a polygon differ by a sequence of 2–2 ‘flips’,
a move that switches the diagonal in some 4-gon ijkl and changes Wτ by an expression of
the form

Wijl +Wjkl −Wijk −Wikl
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On the other hand if vi, vj, vk, vl are the projective coordinates associated to the indices
i, j, k, l then

∆[(vi, vj; vk, vl)] =
(vi − vj)(vk − vl)
(vi − vl)(vk − vj)

∧ (vi − vk)(vj − vl)
(vi − vl)(vj − vk)

=
∆ij∆kl

∆il∆kj

∧ ∆ik∆jl

∆il∆jk

= ∆ij ∧∆ik + ∆ij ∧∆jl + ∆kl ∧∆ik + ∆kl ∧∆jl

−∆il ∧∆ik −∆il ∧∆jl −∆kj ∧∆ik −∆kj ∧∆jl

−∆ij ∧∆il −∆ij ∧∆jk −∆kl ∧∆il −∆kl ∧∆jk

= Wijl +Wjkl −Wijk −Wikl

This proves the theorem. �

Remark 2.19. Associated to a triangulation τ of an n-gon we get an oriented graph Γ, by
inscribing an oriented triangle σ′ in each simplex σ of τ so that the vertices of σ′ are the
midpoints of σ. Each edge ij of the triangulation gets a Plücker coordinate ∆ij and these
label the vertices of Γ. Thinking of this as a quiver Q we get an elementWQ ∈ Λ2F ∗ where
F is the field containing the vertex labels, and WQ = Wτ . Internal mutations correspond
in this language to 2–2 flips. We have already seen that the differenceWQ′−WQ of 2-forms
associated to quivers differing by a mutation is the image under ∆ of a suitable product of
monomials in the vertex labels. This gives a calculation-free proof of Theorem 2.17.

2.13. Milnor K-theory. For F any field we may define Milnor K-theory to be the graded
ring KM

∗ (F ) which is the quotient of the tensor algebra T (F ∗) by the ideal generated by
Steinberg elements x⊗ (1− x). Thus KM

∗ (F ) = ⊕∞i=0K
M
i (F ).

Example 2.20 (Low Degree). Milnor K-theory agrees with ordinary (algebraic) K theory
in degrees 0 and 1. Thus

(1) KM
0 (F ) = Z because finite dimensional projective modules over a field are just

vector spaces, which are classified by their dimension;
(2) KM

1 (F ) = F ∗ because determinants of invertible matrices over F are just elements
of F ∗.

In degree 2 we have KM
2 (F ) = ⊗2F ∗/〈x ⊗ (1 − x)〉. We claim this is isomorphic to

Λ2F ∗/x∧ (1−x), thus justifying our identifying KM
2 (F ) with the cokernel of ∆ : B2(F )→

Λ2F ∗ earlier. This isomorphism is a special case of Lemma 2.21 which we now prove.

Lemma 2.21 (Graded Commutative). KM
∗ (F ) is graded commutative. That is, for any

A,B we have
AB = (−1)deg(A)deg(B)BA

Proof. By induction it suffices to show that {A,B} = −{B,A}. First we compute

{A,−A} = {A, 1− A
1− A−1

} = {A, 1− A} − {A, 1− A−1} = {A−1, 1− A−1} = 0

Next we compute

{A,B}+ {B,A}+ {A,−A}+ {B,−B} = {A,−AB}+ {B,−AB} = {AB,−AB} = 0

�
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2.13.1. The residue map. For any field F with a discrete valuation V and residue field
F̄ there is a residue map resV : KM

n (F ) → KM
n−1(F̄ ) defined as follows. Let π be a

uniformizer in F ∗ (i.e. an element with V (π) = 1). Then every element of F ∗ can be
written uniquely as πk ·u for k ∈ Z where u is a unit in the valuation ring (i.e. the subring
where V ≥ 0). Every {πk1u1, · · · , πknun} ∈ KM

n (F ) may be written (by expanding tensor
products multiplicatively) as a sum of terms of two kinds:

(1) degree 0 in π: those of the form {u1, · · · , un} all units; these map by resV to 0; and
(2) degree 1 in π: those of the form {π, u2, · · · , un}; these map by resV to {ū2, · · · , ūn}

in KM
n−1(F̄ ).

Example 2.22. Let F = C(X), the field of rational functions on a curve X, and let V =
Vp = ordp for some p ∈ X. Then resp : KM

1 (C(X))→ KM
0 (C) is just ordp.

The residue maps Vp at different p ∈ X are related by the following theorem. First note
that for any element {f1, f2, · · · , fn} ∈ KM

n (C(X)) that resp = 0 for all but finitely many
p. It follows that the infinite sum

∑
p resp makes sense, and in fact:

Theorem 2.23 (Reciprocity). For any curve X, the map

KM
n (C(X))

∑
p resp
−−−−→ KM

n−1(C)

is the zero map.
Example 2.24. KM

1 (C) = C∗. For any {f, g} ∈ KM
2 (C(X)) and any p ∈ X we can write

f = πk1u1, g = πk2u2. Then
{f, g} = k1{π, u2} − k2{π, u1}+ {u1, u2}+ {πk1 , πk2}

Thus resp{f, g} = u2(p)k1/u1(p)k2 . If we define the Weil symbol

(f, g)p := (−1)ordp(f)ordp(g) g
ordp(f)

f ordp(g)
(p)

then
∏

p∈X(f, g)p = 1. This is known as the Weil reciprocity law. It is easy to prove on
X = CP1; in general, it may be proved by ‘push down’ (i.e. a suitable transfer map) to
CP1 under some X → CP1.

Theorem 2.23 for F = C(X) and n = 3 is known as the Suslin Reciprocity Law. We
prove it in the special case F = C(t) (i.e. X = CP1). The group KM

3 (C(t)) is generated
by things of the form {f, g, h} which may be expressed as a sum of expressions of the form
{x − a, x − b, x − c}, {x − a, x − b, u}, {xa, u1, u2} and {u1, u2, u3}. Proving the theorem
for each of these expressions is easy; e.g.∑
p

resp({x−a, x−b, x−c}) = {a−b, a−c}+{a−c, b−c}+{b−c, b−a} = {a− b
a− c

,
b− c
a− c

}

which is equal to 0 by the Steinberg relation.
For any curve X we may form the following commutative diagram

B2(C(X))⊗ C(X)∗ −−−→ Λ3C(X)∗∑
p resp

y ∑
p resp

y
B2(C) −−−→ Λ2C∗
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where the top horizontal map takes [f ]⊗ g → f ∧ (1− f)∧ g. Suslin Reciprocity says that
the right vertical map lies in the kernel of the map to KM

2 (C) there is a lift h : Λ3C(X)∗ →
B2(C). Goncharov conjectured that there is a lift which makes this diagram commute.
This was proved by Rudenko. There is no known explicit formula for h in general, except
when X = CP1, in which case one may take

h(f1 ∧ f2 ∧ f3) =
∑
a,b,c

Va(f1)Vb(f2)Vc(f3)[(a, b; c,∞)]

2.14. Cho–Kim formula. Every finite 3-dimensional hyperbolic polyhedron is equal to
an algebraic sum of ideal simplices; nevertheless it is challenging to give a direct formula
for the volume of a finite hyperbolic 3-simplex T . One such formula is due to Cho–Kim.

Label the vertices of T from 1 to 4, let αij be the dihedral angles and `ij the edge lengths.
Define an auxiliary function CK(t) by

CK(t) =
(t− eP1)(t− eP2)(t− eP3)(t− eP4)

(t− 1)(t− eH1)(t− eH2)(t− eH3)

where Pi is the perimeter of face i, and the Hi are the lengths of Hamiltonian cycles in the
1-skeleton.

The function CK(t) takes the value 1 at 0 and ∞, and at two other complex numbers
z1, z2. Then

Vol(T ) =
∑
α

L2

(
α

z1

)
− L2

(
α

z2

)
where the sum is taken over all α equal to a zero or pole of CK(t) (i.e. α = ePi , α = 1 or
α = eHi).

Let h be Rudenko’s function proving Goncharov’s conjecture for CP1. Then

h(CK(t) ∧ (t, z1; 1, z2) ∧ t)

is an explicit sum of ideal simplices algebraically realizing T in P(H̄3).
The Dehn invariant of T is

∑
e`ij ∧ eiαij by definition. On the other hand, it is also

equal to
∑

p resp(CK(t) ∧ (t, z1; 1, z2) ∧ t). Equating these two quantities gives a rather
unexpected linear algebraic relation between the edge lengths and dihedral angles of T .

3. Hopf Algebras and Motivic Cohomology

3.1. Spherical Scissors Congruence. There are actually two different natural defini-
tions of spherical scissors congruence. One, that we may call ‘geometric spherical scissors
congruence’ and denote P(Sn)g is generated by isometry classes of spherical simplices con-
tained in an open half space, with relations the usual cut and paste along hyperplanes.

The other, that we may call ‘algebraic spherical scissors congruence’ and denote P(Sn)a
is generated in dimension n by ordered (n+ 1) tuples of points (x0, · · · , xn) with relations

(1) (nondegeneracy): if the xi lie in a hyperplane, (x0, · · · , xn) = 0;
(2) (boundary): for any (n+ 2)-tuple of points

∑
(−1)i(x0, · · · , x̂i, · · · , xn+1) = 0; and

(3) (group): for any g ∈ O(n+ 1) we have (gx0, · · · , gxn) = (−1)sign(det(g))(x0, · · · , xn).
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In P(Sn)a the boundary relation and nondegeneracy imply

(x0, x1, · · · , xn) = (−x0, x1, · · · , xn)

ands by induction
(x0, x1, · · · , xn) = (−x0,−x1, · · · ,−xn)

But if n is even, the antipodal map x → −x has determinant −1 so the group relation
implies that P(S2n)a is 2-torsion, and in fact one may show that P(S2n)a = 0.

Algebraic spherical scissors congruence is more natural from the point of view of homo-
logical algebra, since one evidently has

P(Sn)a = H0(O(n+ 1), StRPn)

For this reason one might want to refer to P(S2n)a as elliptic scissors congruence (where
elliptic geometry refers specifically to the geometry of O(n+ 1) acting on RPn).

There is a natural map P(Sn)g → P(Sn)a which is evidently surjective. Dupont–Sah
show

Theorem 3.1 (Dupont–Sah; AG sequence). For any n there is an exact sequence

0→ P(Sn−1)g → P(Sn)g → P(Sn)a → 0

where P(Sn−1)g → P(Sn)g is obtained by coning a spherical simplex contained in the equator
of Sn to the north pole.

In particular, one obtains a coning isomorphism P(S2n−1)g → P(S2n)g for each n. The
inverse is more or less explicit, and related to Gauss–Bonnet.

Remark 3.2. Product with an orthogonal interval defines a map P(En−1)→ P(En). Jessen
showed this is an isomorphism P(E3) → P(E4), and one may ask whether P(E2n−1) →
P(E2n) is an isomorphism for all n (this is open even for n = 3).

Because of Theorem 3.1 all the interesting information in geometric spherical scissors
congruence is already contained in algebraic spherical scissors congruence; so from now on
we restrict attention exclusively to the algebraic kind, and drop the subscript. Furthermore,
we ignore torsion by tensoring everything over Q.

Spherical scissors congruence plays a distinguished role compared to the hyperbolic and
Euclidean variants because of the following structure theorem, due to Sah:

Theorem 3.3 (Sah; Hopf algebra). There is a natural structure of a commutative graded
Hopf algebra on ⊕n≥0P(S2n−1) where P(S−1) := Q.

We denote this Hopf algebra by S∗ with Sn := P(S2n−1).

Proof. We must define three (graded) operations on S∗ — a product, a coproduct and an
antipode — satisfying suitable compatibility conditions.

The product m : S∗ × S∗ → S∗ is orthogonal join: given spherical simplices A ⊂ S2n−1

and B ⊂ S2m−1 their join A ∗ B ⊂ S2n+2m−1 is obtained by realizing S2n−1 and S2m−1 as
the intersection of S2n+2m−1 ⊂ R2n+2m with orthogonal coordinate subspaces R2n and R2m,
and taking the union of all geodesic segments joining A to B. This is commutative and
associative, and the unit is the element 1 ∈ S0.
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The coproduct ∆ : Sn → ⊕ni=0Si ⊗ Sn−i is the Dehn invariant: for P ∈ P(S2n−1) the
component ∆i(P ) ∈ Si ⊗ Sn−i is

∆i(P ) =
∑
F

F ⊗ linkP (F )

where the sum is taken over the (2i − 1)-dimensional faces F of P , and linkP (F ) means
the intersection of an orthogonal linking sphere to F with P . We sometimes write ∆(P ) =
1 ⊗ P + P ⊗ 1 + ∆′(P ) and refer to ∆′ as the ‘restricted coproduct’. This coproduct is
cocommutative and coassociative (i.e. composing ∆⊗ 1 with ∆ is the same as composing
1⊗∆ with ∆). One must also check the product and coproduct are compatible; i.e.

S∗ ⊗ S∗
∆◦m−−−→ S∗ ⊗ S∗

∆⊗∆

y m⊗m
x

S∗ ⊗ S∗ ⊗ S∗ ⊗ S∗
1⊗σ⊗1−−−−→ S∗ ⊗ S∗ ⊗ S∗ ⊗ S∗

Finally, the antipode A : S∗ → S∗ takes a spherical simplex to its polar dual (each vertex
determines a dual hypersphere, and the polar dual is cut out by these hyperspheres). This
satisfies that m ◦ A⊗ 1 ◦∆ is projection to the ground field S0 = Q. �

Associated to S∗ is the cobar complex:

S∗
∆′−→ S∗ ⊗ S∗

∆⊗1−1⊗∆−−−−−−→ S∗ ⊗ S∗ ⊗ S∗ → · · ·
where the nth differential is

∑
i(−1)i1 ⊗ · · ·∆ · · · ⊗ 1. The homology consists of a collec-

tion of graded Q-vector spaces, and we denote the nth graded piece of the i-dimensional
homology by H i(S∗)n.

The Dehn invariant makes the direct sums ⊕P(E2n−1) and ⊕P(H2n−1) into Hopf comod-
ules ME

∗ and MH
∗ over S∗, and there are associated cobar complexes

M∗
∆′−→M∗ ⊗ S∗

∆⊗1−1⊗∆−−−−−−→M∗ ⊗ S∗ ⊗ S∗ → · · ·
with homology H i(ME

∗ )n and H i(MH
∗ )n.

Conjecture 3.4 (Goncharov). Let H i
M(C,Q(n)) denote motivic cohomology. Then

(1) H i(S∗)n = H i
M(C,Q(n))+ where + denotes the +1 eigenspace of complex conjuga-

tion;
(2) H i(MH

∗ )n = H i
M(C,Q(n))− where − denotes the −1 eigenspace of complex conju-

gation; and
(3) H i(ME

∗ )n = Ωi
R/Q, the Kähler differentials of R over Q.

3.2. Complexified Scissors Congruence. Let Q be a smooth quadric in CP2n−1. Any
two such are projectively equivalent. A quadric in CP2n−1 contains two families of CPn−1s,
parameterized by special Fano varieties. An orientation α is a choice of one of these two
families.

Example 3.5. When n = 1 a smooth quadric in CP1 is a pair of points and an orientation
is a choice of one of these points.

When n = 2 a smooth quadric in CP3 is isomorphic to CP1 ×CP1 and an orientation is
a choice of the family CP1 × 1 or 1× CP1.
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In coordinates, if Q is given by the vanishing of a quadratic form
∑
aijxixj an orientation

is a choice of a square root of det(aij).
Definition 3.6 (Complexified Scissors Congruence). Complexified Scissors Congruence
is a graded Q-vector space G∗ where G0 = Q, and where Gn is generated by tuples
(Q,α,H1, · · · , H2n) where

(1) Q is a smooth quadric in CP2n−1 and α is an orientation on Q;
(2) the Hi are hyperplanes in CP2n−1 in general position;

subject to relations
(1) (orientation:) (Q, ᾱ,H1, · · · , H2n) = −(Q,α,H1, · · · , H2n);
(2) (group:) for g ∈ PGL we have (gQ, gα, gH1, · · · , gH2n) = (Q,α,H1, · · · , H2n); and
(3) (boundary:):

∑
(−1)i(Q,α,H0, · · · , Ĥi, · · · , H2n) = 0.

Example 3.7. G1 = C∗ modulo (multiplicative) torsion (thought of as a vector space over
Q). To see this observe that any oriented quadric Q consists of an ordered pair of points
Q1, Q2 ∈ CP1, the hyperplanes H1, H2 are two more distinct points, and the cross ra-
tio (Q1, H1;Q2, H2) is a complete invariant. This invariant is well-defined, since for any
H1, H2, H3 we have

(Q1, H1;Q2, H2)− (Q1;H1;Q2, H3) + (Q1, H2;Q2, H3) = 0

Theorem 3.8. G2
∼= B2(C).

We give only the barest outline of a proof.

Proof. The first step is to show that G2 is generated by ideal simplices; i.e. those with
vertices on Q. There are at least two plausible ways to do this; the first is via a com-
plexification of the Cho–Kim formula and Rudenko’s h function; the second is to modify
Dupont’s homological argument in the proof of Theorem 2.3.

If this is accomplished, we can use the product structure Q = CP1 × CP1 to write the
four vertices of an ideal simplex as (x1, y1), · · · , (x4, y4), and then we define the image
in the Bloch group to be [(x1, x2;x3, x4)] − [(y1, y2; y3, y4)]. It is then a long but routine
calculation to verify that the resulting map is an isomorphism. �

Generalizing Sah’s theorem one has:
Theorem 3.9 (Hopf algebra). There is a natural structure of a commutative graded Hopf
algebra on G∗.
Proof. We simply define the product, coproduct and antipode, leaving the verification of
its properties to the reader.

The product is defined as follows. Given (Q,H1, · · · , H2n) and (Q′, H ′1, · · · , H ′2m) we let
q be a quadratic form on C2n for which the projectivization of its zero locus is Q, and
likewise let hi be the subspace whose projectivization is Hi; and define analogously q′ on
C2m and subspaces h′j. Then on C2n+2m we can take the quadratic form q ⊕ q′ and the
subspaces hi ⊕ C2m and C2n ⊕ h′j and then projectivize the result.

The coproduct is defined by analogy with the Dehn invariant as follows. Given S :=
(Q,H1, · · · , H2n) we enumerate the subsets I ⊂ {1, · · · , 2n} and define HI := ∩i∈IHi. The
‘faces’ are terms

SI := (HI ∩Q,HI ∩Hj for j /∈ I)
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thought of as a quadric and a collection of hyperplanes in the projective space HI . The
‘angles’ are terms

SI := (H⊥I ∩Q,H⊥I ∩Hi for j ∈ I)

all in the projective space H⊥I . Then

∆(S) =
∑
I

SI ⊗ SI

Finally the antipode takes (Q,H1, · · · , Hn) to (Q, (∩k 6=1Hk)
⊥, · · · , (∩k 6=nHk)

⊥). �

3.3. Orthoschemes. We may usefully define orthoschemes in complexified scissors con-
gruence as follows. An orthoscheme is an expression (Q,H1, · · · , Hn) for which Hi ⊥ Hj

for |i− j| > 1. Let On−1 denote the space of (generic) orthoschemes in CPn−1. Following
Coxeter we may then prove:

Theorem 3.10. There is a natural bijection ort between M0,n+2 and (generic) projective
orthoschemes On−1 in CPn−1 such that

M0,n+2
ort−−−→ On−1

forget i+ 2

y ith face

y
M0,n+1

ort−−−→ On−2

Proof. Associated to (x0, · · · , xn+1) in M0,n+2 we take lines `0, · · · , `n+1 in C2. Let σ :
⊕i`i → C2 be sum of vectors, and let E be the kernel; i.e. E is the space of tuples
(v0, · · · , vn+1) such that vi ∈ `i and

∑
vi = 0. Thus each e ∈ E defines an oriented

polygon, and we may define a quadratic form q on E to be the (algebraic complex) ‘area’
enclosed by e.

Associated to 0 < i < j < n+ 1 we get two subsets of indices

I := {0, · · · , i, j, · · · , n+ 1}, J := {i, · · · , j}

Define EI ⊂ E to be the subspace for which vk 6= 0 only when k ∈ I and EJ similarly.
Then EI and EJ are orthogonal with respect to q.

Now, define ort to be the map

ort : (x0, · · · , xn+1)→ (Q,E⊥012, E
⊥
123, · · · , E⊥n−1,n,n+1)

where Q is the projectivization of q = 0 in P(E) and each E⊥i,i+1,i+2 is the projectivization
of the corresponding hyperplane in E. These hyperplanes are orthogonal when their indices
are not adjacent, and the map ort has the desired functorial properties. �

3.4. Volumes and periods. There are several natural Hopf algebras that are conjectured
to be isomorphic to G∗, including:

(1) the Hopf algebra of framed mixed Tate motives;
(2) the Hopf algebra of framed mixed Tate structures of ‘geometric origin’;
(3) the Hopf algebra of multiple polylogarithms; and
(4) the Hopf algebra of pairs of simplices.
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Before discussing this, let’s consider what can be said about the image of G∗ under certain
natural maps.

Complexified scissors congruence makes sense over any field; we denote the resulting
Hopf algebra by G∗(F ). For simplicity let’s discuss complexified scissors congruence over
Q̄. Volume is well-defined as a real-valued function on hyperbolic scissors congruence
classes. We would like to complexify this function, and somehow obtain

Gn(Q̄)
vol−→ C

This is problematic even for n = 2, where we are asking for a complexification of the Bloch–
Wigner Dilogarithm L2. Any natural complexification will have nontrivial monodromy
around 0 and 1, and will therefore be multi-valued. Neumann [5] showed how to define an
‘extended’ Bloch group B̃2, generated by symbols [z̃] for z̃ a point in the universal abelian
cover of C− {0, 1}, and one may define in a natural way a Chern–Simons invariant on B̃2

which may be thought of as ‘imaginary volume’ and takes values in R/4π2Z.
One natural ring where one might try to define the image of a suitable complexified

volume function is the ring of motivic periods:

Definition 3.11 (Motivic Period Ring). The ring PM of motivic periods is generated by
symbols [X,D1, D2, γ, ω] where

(1) X is a projective algebraic variety defined over Q̄;
(2) D1 and D2 are divisors;
(3) γ is a cycle in Hn(X,D2;Q); and
(4) ω is a class in algebraic de Rham cohomology Hn(X,D1);

which determine the formal ‘period’ which is the expression
∫
γ
ω, quotiented by natural

relations corresponding to
(1) change of variables;
(2) linearity; and
(3) Stokes theorem.

Addition and multiplication of periods are associated in an obvious way to disjoint union
and the Künneth formula, so PM is a ring which comes with a natural evaluation map to
C (the numerical value of the integral corresponding to the expression

∫
γ
ω).

One almost has a map Ψ : G∗(Q̄)→ PM which associates to (Q,H1, · · · , H2n) in CP2n−1

a cycle γ ∈ H2n−1(CP2n−1,∪Hi) and a volume form ω ∈ H2n−1(CP2n−1 − Q) invariant
under projective transformations preserving Q. To write down a formula for ω we choose
a quadratic form q :=

∑
qijxixj whose projectivized zero set is Q, and define

ω := ±in
√

det q ·
∑

(−1)ixidx0 ∧ · · · d̂xi · · · ∧ dx2n−1

qn

Note that the orientation on Q corresponds to the choice of a square root of det q, which
is necessary to define ω. Since there is no natural choice for the cycle γ the image is only
well-defined in the image PM/(2πi)PM.

Conjecture 3.12. The map Ψ : G∗(Q̄)→ PM/(2πi)PM is injective, and the image is equal
to the periods of mixed Tate motives of geometric origin.
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3.5. Mixed Hodge Structures. Cohomology groups of algebraic varieties over C carry
a Mixed Hodge Structure. This is a subtle package of linear algebra that generalizes the
usual package known as a Hodge structure, which arises for smooth projective varieties.

Definition 3.13 (Pure Hodge Structure). A pure Hodge structure of weight n consists of
an abelian group HZ and a decomposition H := HZ⊗ZC = ⊕p+q=nHp,q for which complex
conjugation takes Hp,q to Hq,p.

One may equivalently recover the Hodge structure from a finite decreasing filtration of
H by complex subspaces F pH satisfying

F pH ∩ F qH = 0 and F pH ⊕ F qH = H whenever p+ q = n+ 1

Then we may obtain a pure Hodge structure from such a filtration by Hp,q = F pH ∩F qH.
Conversely, for any pure Hodge structure we may obtain such a filtration by F pH =
⊕i≥pH i,n−i.

Example 3.14. If X is a compact Kähler manifold (for example if X is a smooth projective
complex variety) then HZ := Hn(X;Z) admits a canonical pure Hodge structure, given by
identifying H := Hn(X;C) with de Rham cohomology, and decomposing forms into their
(p, q)-parts.

Definition 3.15 (Mixed Hodge Structure). Amixed Hodge structure is a triple (HZ,W∗, F
∗)

consisting of the following:
(1) a (finitely generated) abelian groupHZ, and associated vector spacesHQ := HZ⊗ZQ

and HC := HZ ⊗Z C;
(2) a finite increasing (weight) filtration 0 = W−1 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ W2n = HQ;
(3) a finite decreasing (Hodge) filtration HC = F 0 ⊃ F 1 ⊃ F 2 ⊃ · · ·

so that the induced filtration F ∗ on the graded pieces grWk H := Wk⊗C/Wk−1⊗C are pure
Hodge structures of weight k.

The induced filtration is defined in the obvious way, i.e.

F pgrWk H := (F p ∩Wk ⊗ C +Wk−1 ⊗ C)/Wk−1 ⊗ C

Theorem 3.16 (Deligne). The singular cohomology (in any dimension) of a complex al-
gebraic variety has a canonical mixed Hodge structure.

Mixed Hodge structures are compatible with the Künneth isomorphism and product in
cohomology. They form an abelian category. A certain subclass of Mixed Hodge structures
are of particular importance.

Definition 3.17 (Mixed Tate structure). A Mixed Hodge Structure is Mixed Tate (or
Hodge–Tate) if

(1) grWi H = 0 if i is odd; and
(2) the pure Hodge structure on grW2kH is concentrated in Hk,k.

A mixed Tate stucture is n-framed by a choice of vn ∈ grW2nH and g0 ∈ (grW0 H)∗.
Two n-framed mixed Tate structure are equivalent if . . . . Denote the set of equivalence

classes of n-framed mixed Tate structures by Hn, and let H∗ := ⊕∞n=0Hn.
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Theorem 3.18 (Hopf algebra). H∗ has the natural structure of a graded commutative
Hopf algebra.

Proof. See [1] for details. �
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