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Preface 

For almost 20 years Chih-Han Sah and I worked together on various as­
pects of Hilbert's Third Problem and in particular its relation to homo-
logical algebra and algebraic A*-theory. We often talked about writing a 
book on this subject and the development in this area since Han's book 
from 1979, but we always got sidetracked by some interesting problem 
and the plans never materialized. After Han's untimely death in 1997 
his large collection of mathematical books were donated by Analee Sah 
to the Nankai Institute of Mathematics in Tenjin and professor S.-S. 
Chern kindly asked me to visit this institute and to give a series of lec­
tures on the above topic. Professor Chern also suggested that I write 
up these lectures which I gave during my visit to Nankai University in 
the fall of 1998. These notes are far from the grand project which Han 
and I had talked about. But I hope they will give an impression of the 
great variety of mathematical ideas which are related to the seemingly 
elementary subject of scissors congruence. 

I am very grateful to professor Chern and director X. Zhou of the 
Nankai Institute for a wonderful stay in China. Also I would like to 
thank the audience to my lectures, especially J. Pan, W. Zhang and 
F. Fang for their interest and kindness. Furthermore I want to thank 
M. Bokstedt, J.-L. Cathelineau, J.-G. Grebet and F. Patras for valu­
able comments and corrections. Special thanks are due to Karina Tho-
rup Mikkelsen for typing the manuscript of these notes and to S. Have 
Hansen for helping with the drawings and other Latex problems. Fi­
nally I would like to acknowledge the support of the Danish Natural 
Science Research Council and Aarhus University. 

Aarhus, August, 2000, Johan Dupont 
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CHAPTER 1 

Introduction and History 

It is elementary and well-known that two polygons P and P' in the 
Euclidean plane have the same area if and only if they are scissors 
congruent (s.c), i.e. if they can be subdivided into finitely many pieces 
such that each piece in P is congruent to exactly one piece in P'. In 
this form the problem was explicitly stated and solved by W. Wallace 
(cf. [Wallace, 1807], [Jackson, 1912]) but I believe it was known to 
the ancient Greeks or Chinese. In fact it originates from an attempt to 
give an elementary definition of "area": Given a line segment of unit 
length " 1 " one wants the following. 

THEOREM 1.1. Any plane polygon P is s.c. to a rectangle with one 
side of length 1. Hence the length of the other side measures the area. 

Proof: By triangulation of P it is enough to take P a triangle. By the 
following figure it is s.c. to a parallelogram: 

Another figure shows a s.c. to a rectangle 

l 
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However using this step backwards we can adjust the distance between 
the "other " parallel sides until it is of unit length. 

0> 

^/V' 

Finally use the previous step to obtain the desired rectangle. • 
As for the corresponding problem in Euclidean 3-space, C. F. Gauss 

mentions in a letter [Gauss, 1844] that the proof that two pyramids 
with the same base and height have the same volume, uses "exhaustion", 
i.e. subdivisions of the polyhedra into infinitely many pieces, and he 
asked for a proof using only finitely many pieces. 

Two pyramids with the same base and height. 



Chapter 1. Introduction and History 3 

However Hilbert did not believe that this was possible and suggested 
as the 3rd problem on his famous list presented at the International Con­
gress in Paris 1900 the following: Find two polyhedra with the same 
volume and show that they are not s.c. This was in fact done already 
in the same year by M. Dehn (see [Dehn, 1901]) who showed that the 
regular cube and the regular thetrahedron of the same volume are not 
s.c. A somewhat incomplete proof along the same lines was already pub­
lished by R. Bricard [Bricard, 1896]. In modern formulation Dehn's 
proof is most elegantly given in terms of the Dehn invariant D which 

takes values in the tensor product of abelian groups IK <g) ( E / Z ) . This is 
z 

defined for a polyhedron P by the formula 

(1.2) D(P) = ^e{A)®{0(A)/*) 
A 

where A runs through the collection of all edges of P and where 1(A) is 
the length of A and 6(A) is the dihedral angle of P at A. 

9(A) 

Dehn did not know tensor products (introduced by H. Whitney in 
[Whitney, 1938]); he argued directly on the relations between the oc­
curring side lengths and dihedral angles. In terms of the Dehn invariant 
we can rephrase Dehn's theorem as follows: 

THEOREM 1.3. a) If P and P' art s.c. polyhedra in Euclidean 
3-space then D(P) = D(P'). 

b) / / C is a cube and T is a regular tetrahedron then D(C) = 0 
whereas D(T) ^ 0. 

Proof: a) can be proved directly (for a proof see e.g. [Boltianskii , 1978] 
or [Sah, 1979]). But it also follows from the results of chapter 5 below. 
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b) Since in C all dihedral angles are n/2 and thus a rational multiple 
of n it follows that D(C) = 0. As for the regular tetradron T elementary 
trigonometry yields that all dihedral angles are (p = Arc cos 1/3 , so that 

D{T) = U®<p/ir 

where l is the common length of the edges. Considering R a s a rational 
vector space we just have to show tha t (p/ir is irrational. For this we 
use the formula 

cos(A; + l)<p + cos(k — l)<p = 2 cos kip cos ip 

to show by induction on k > 1 tha t cos k<p = ak/Sk where a^ is an 
integer not divisible by 3. • 

It is now an obvious question if the s.c. class of a polyhedron 
is determined by its volume and Dehn invariant. This was answered 
affirmatively in 1965 by J. P. Sydler who proved the following (see 
[Sydler, 1965] or [Jessen, 1968]) : 

T H E O R E M 1.4. If two Euclidean polyhedra P and P' satisfy Vol(P) = 
Vol(P') and D(P) = D(P') then P and P' are s.c. 

We shall sketch a proof of this using homological algebra in chapter 
6. In fact, it is the main theme of these lectures to show the relationship 
between Hilbert's 3rd Problem and questions in modern homological 
algebra and topology. First let us formulate the problem more generally: 

For n > 1 let X = Xn = En, Sn, Un denote respectively Euclidean, 
spherical or hyperbolic n-space. Also let I{X) denote the group of 
isometries of A . A geometric n-simplex A C X is the geodesic convex 
hull A = |(ao, • • • , an)\ of n + 1 points a0, • • • , an € X in general position 
(i.e. not lying on a hyperplane). In the spherical case we assume that 
ao, • • • , an all lie in an open hemi-sphere. The points a0, • • • , an are the 
vertices of A. A polytope P C X is any finite union P = Uj=i Aj of 
simplices such tha t A8-nAj is a common face of lower dimension if i ^ j . 
If P, P\,P2 are polytopes such tha t P = Pi U P2 and Pi (~l P2 has no 
interior points then we will say tha t P decomposes into Pi and P2 and 
we shall write P = Pi II P2. 
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DEFINITION 1.5. Let G C I(X) be a subgroup. Two polytopes 
P,P' are called G-scissors congruent denoted P ~ P' if P = I1^=1P,, 

P ' = UJLjP/ and Pt = # ,p for some 51, • • • , gk G G. 

Generalized Hilber t ' s 3rd Problem. Find computable invariants 
which determine when two polytopes are G-s.c. 

We shall mainly take G = I(X) and just write ~ for ~ . In view 

of Sydler's theorem it is natural to ask the following question raised by 
B. Jessen [Jessen, 1973]; 
[Jessen, 1978]: 

Non-Euclidean Hilber t ' s 3rd Problem. Do volume and Dehn in­
variant determine the s.c. classes of polyhedra in spherical or hyperbolic 
3-space? 

Let us reformulate the general problem in algebraic terms 

DEFINITION 1.6. The scissors congruence group V(X,G) (for G = 
I(X) write V(X)) is the free abelian group on symbols [P] for all poly­
topes P in X, modulo the relations: 

i) [P] - [F] - [P") for P = P ' H P " , 
ii) [gP}-[P] for geG. 

Note that [P] = [P'] in V{X, G) if and only if P and P ' are stably G-
s.c, that is if there exist polytopes Q and Q' such that P I I Q ~ P ' IIQ' 

G 

with Q' — gQ for some g £ G. 

However if G acts transitively on X it is a theorem of V. B. Zylev 
[Zylev, 1965] (see e.g. [Sah, 1979] for a proof) that stably G-s.c. 
implies G-s.c. Hence the Generalized Hilbert's 3rd Problem can be 
reformulated as the problem of determining the s.c. groups V(X,G). 
We shall see that this is closely related to the problem of determining 
the homology of the group G: 
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Recall that for any group G and M a (left) G-module the group 
homology Hn(G,M) is the nth homology group of the chain complex 
C*(G, M) which in degree n has generators of the form 

[d\\---\9n}®x, gi,--- ,gn€C, x 6 M 

and where the boundary map d : Cn(G, M) -> Cn_i(G, M) is given by 

n - l 

d ( b i l •••9n]®x) =[92\ • • • \gn]<8>dTlx + ^(-^-Tidil • • -gi9i+i\ •••gn]®x 
t = l 

+ (-l)n[gi\---\gn-i]®x-

That is 
kev[d :Cn(G,M)^Cn^(G,M)] 

n l ^ ' > \m[d:Cn+1(G,M)^Cn(G,M)Y 

As an example of the relation between s.c. and homological algebra 
we shall prove the following result from [Dupont, 1982] (H*(G) — 
#*(G,Z)): 

THEOREM 1.7. There are exact sequences of abelian groups: 

a) 

0 -> #2(SO(3), E3) A V{E6)/Z(E6) 4 E ® E / Z -> 

ffi(SO(3),Rd)->0 

b) 

0 -»• if3(Sl(2,Q)- A V{n3) 4 E ® E / Z -)• if2(Sl(2,C))- -»• 0 

c) 

0 -> ff3(SU(2)) 4 V(S3)/Z 4 E ® E / Z -> ff2(SU(2)) -> 0 

Notation: In a) Z(E3) is the subgroup generated by all prisms (i.e. a 
product of a line segment and a plane polygon). In b) ~ indicates the 
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(-l)-eigenspace for the involution induced by complex conjugation. In 
c) Z C V{S3) is generated by [S3]. 

We remark that by theorem 1.1 the volume in the Euclidean case 
gives an isomorphism Z(E3) = K. Hence by theorem 1.7 Sydler's the­
orem is equivalent to i?2(SO(3), K3) = 0. We shall return to this in 
chapter 6. In the non-Euclidean cases b) and c) the volume gives rise to 
cohomology classes for the discrete groups underlying S1(2,C) respec­
tively SU(2). These are in fact equivalent to a secondary characteristic 
class defined by Cheeger-Chern-Simons (see [Chern-Simons , 1974] 
and [Cheeger-S imons , 1985]) for bundles with flat structure groups. 
We shall investigate this in chapter 10 and 12. Furthermore in chapter 
9 we shall see that the homology groups in b) and c) are computable in 
terms of algebraic K-theory of the field C of complex numbers, and we 
thereby reduce the non-Euclidean Hilbert's 3rd Problem to a well-known 
difficult Rigidity Problem. 

The last 3 chapters (13-15) continue the study in chapter 9 of the ho­
mology of the general linear group in terms of groups similar to scissors 
congruence groups but based on projective configurations. 

For further information on the history and background of Hilbert's 
3rd Problem we refer to the survey [Cartier, 1985] and the books 
[Boltianskii , 1978], [Hadwiger, 1957], [Sah, 1979]. 
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Scissors congruence group and homology 

In this chapter we shall investigate the s.c. group further, and in partic­
ular we shall give it a homological description in general. As before let 
X = Xn be either En, Sn or 7 T , and let I(X) denote the group of isome-
tries of X. Thus En is the affine real n-dimensional space over the vector 
space Rn and I(En) = E(n) is the Euclidean group E(n) = T(n) Xi O(n) 
where O(n) is the orthogonal group and T(n) = ( R n , + ) is the additive 
group of translations 

T(n) = {tv | v G R n ; tv(x) = x + v, x € R } . 

As usual 
Sn = {x£ R"+1 | x2

Q + if + . . . + x\ = 1} 

and I(Sn) = 0 ( n + 1). Similarly 

F = { i e R n + 1 \-xl + x\--- + x2
n = - 1 , so > 0} 

and I(7in) = 0 + ( l , n ) , the subgroup of 0 ( 1 , n) keeping %n invariant. 
Occasionally we shall need also the upper halfspace model or the disk 
model for the hyperbolic space. 

As before let G C I(X) be a subgroup and V(X, G) the G-s.c. group 
for X. The following is obvious from the definition: 

P R O P O S I T I O N 2 . 1 . a) Suppose H < G is an invariant subgroup. 
Then the canonical map V(X, H) —>• V(X, G) induces an isomor­
phism 

V{X,G)^H0{G/H,V(X,H)). 

b) In particular 

V(X,G)^H0(G,P(X)) 

where V{X) =V(X, {1}). 

9 
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As an example let us show the following theorem often attributed 
to C. L. Gerling (see however [Sah, 1979, Remark 4.2]): Let I+{X) C 
I{X) be the subgroup of orientation preserving isometries. 

THEOREM 2.2. The natural map 

V(X, I+(X)) -> V(X, I(X)) = V(X) 

is an isomorphism. 

Proof: Since I+(X) is a normal subgroup of index 2 we get 

P(X) = H0{Z/2,P(X,I+(X)) 

where the action by the generator g of Z/2 is induced by any reflection in 
a hyperplane. Since V(X, I+(X) is generated by n-simplices it suffices 
to show for an n-simplex A that 

(2.3) ff[A] = [A]. 

Let A = |(ao, • • •, an)\ and let {Uij}i<j be the collection of hyperplanes 
bisecting the dihedral angles at the codimensional 2 faces |(aot---, 
a-i,..., dj,..., an)\. By elementary geometry these hyperplanes inter­
sect in a single point c, the "inscribed sphere center". (Notice that this 
exists also in spherical and hyperbolic geometry.) Also let c, be the or­
thogonal projection of c onto the ith (n — l)-face of A. The reflection r tj 
in Uij clearly fixes c and interchanges c,- and Cj so that the two simplices 

ij = I V^' C * ' a 0 i • • • i ait . . . , fflj, . . . i an) I 

and 

Aji = \(c,Cj,a0,...,ai,...,aj,...,an)\ 

are congruent (see fig.) 
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Since 

(2.4) A = ]J(A,-jnAj,-) 

and 
g[Aij] = [Aji], i^j, 

we get in V(X,I+(X)) 

g[A] = J > [ A „ ] + g^]) = ]T([AJt] + [A,,]) = A 
i<j i<3 

so that Z/2 acts trivially on V{X, I+{X)). D 

COROLLARY 2.5. V(X) is 2-divisible. 

Proof: By (2.4) we have in V(X) 

i<3 i<j 

so that [A] is divisible by 2 in V{X). D 

Remark : As we shall see later, V{En),V(S2) and V(7i2) are vector 
spaces over K whereas V(S3) and V(7i3) are rational vector spaces. It 
is not known for V(Sn) and V(Hn), n > 3, if these groups are p-divisible 
for p ^ 2. 

Proposition 2.1 b) is just a reformulation in homological terms of 
the relation ii) in the definition of V(X,G). We shall now see that also 
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the relation i) is a homological one. In fact we shall interpret V(X) as 
a homology group. Let C*(X) be the chain complex where a generator 
or simplex in degree k is a (k + l)-tuple a — (ao, • • •, cik) of points in X. 
In the case of X — Sn we assume furthermore tha t all ( a o , . . . , ak) are 
contained in an open hemi-sphere. For k = n and a 0 , . . . , an in general 
position a defines a geometric n-simplex \a\ as the geodesic convex hull 
of the vertices, and a is called proper in this case. The boundary map 
in C*{X) is just given by 

k 

(2.6) d(aQ,...,ak) = ^ ( - l ) 8 ( a 0 , . • •, a,-,..., ak) 
i=0 

Now the idea is tha t for k = n + 1 the identity 

n+l 

(2.7) £(-l)«(ao,. . . 
, a^, . . . , an^.\j 

represents a subdivision in two different ways of the polytope which is 
the convex hull of ( a o , . . . , a n +i) - (See fig. for 3 cases in the plane.) 

aj a, a, 

It may happen that one of the vertices of a lies on a geodesic sub-
space spanned by some of the other. In tha t case some of the simplices in 
(2.7) are contained in a hyperplane and thus contributes zero in V(X). 
In general we define a filtration on C*(X) 

(2.8) 

o = a(x)-1 c cm{xf c • • • c c*(xy c • • • c a(x)n = c„(x) 
where a = (ao,..., ak) G C*(X)P if it is contained in a p-dimensional ge­
odesic subspace. This filtration is called the dimension or rank filtration 
and n-simplices of filtration n — 1 are called /?ai. 
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Now choose an orientation of X (usually the canonical one) and for 
a proper re-simplex a = ( a 0 , . . . , an) put eff = + 1 or - 1 depending on 
the orientation by the ordering of the vertices compared with the given 
orientation of X. Then there is an obvious map 

(2.9) <p : Cn{X) -+ P(X) 

defined for a = ( a 0 , . . . , an) by 

( \ _ J e° flal] if a is P r o P e r 

1 0 otherwise, 

T H E O R E M 2.10. <p : Cn(X) —> V(X) induces an isomorphism 

¥>* : Hn{C^X)/C^X)n-1) -g f(X) 

Sketch proof. Since for a G Cn(X) clearly da 6 Caf(X)n~1 we just have 

Hn{C*{X)/C*{X)n~l) = C „ ( X ) / [ C ^ X ) " - 1 + dCn+1(X)] . 

By definition 9? maps C r a (X) r a _ 1 to zero. To see that <p also maps bound­
aries to zero we use a topological argument: Let Ak C Kk+1 be the 
standard simplex Ak = | ( e o , . . . , e^)| where { e o , . . . , e^} is the canonical 
basis. Then any A;-simplex a = (ao , . . . , a / t ) gives rise to a continuous 
map / : Ak —>• |CT| C X . Explicitly in the Euclidean case 

/ ( t ) = a(t) = Y^ Uat for * = (t0,..., tk) G Ak 

whereas in the spherical respectively the hyperbolic cases 

f{t)= „ a(t) , = - respectively / ( t ) = ^ 
v / ( a ( 0 , a ( 0 > + V-<°(*),o(*)>_ 

where (x,x)E = eajQ + ^iH \-x\,e = ± 1 , in the surrounding E n + 1 . In 
particular for any (n+l)-s implex <r = ( a o , . . . , a n +i) we get a continuous 
map 

n+l 
/ : 3 A n + 1 -+ J J | ( a o , . . . , a , - , . . . , a n + 1 ) | C I 

j=o 

of degree zero. If r,- = ( a 0 , . . . , a8-,..., o n + i ) is proper then eT; = ( — 1)* 
or ( - 1 ) ! + 1 depending on / restricted to | ( e o , . . . , e ; , . . . , e n ) | being orien­
tation preserving or reversing. Now we subdivide each proper simplex 
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|r l̂ by the hyperplanes supporting the other ones and we thus get a 
subdivision of the image of / such that in the sum 

E (-i)^,N = <^) 
Ti proper 

each piece occurs with multiplicity zero. Hence <p(da) = 0. It follows 
that ip induces a well-defined map </?* which is clearly surjective. To 
show injectivity one can construct an inverse map using the simplicial 
approximation theorem. We refer to [Dupont, 1982] for details. For 
an alternative inductive argument see [Morelli, 1993]. • 

Notice that the map (p is equivariant with respect to the natural 
action of I(X) on V(X) and the "twisted" action on Cn(X) given by 

= det(g){ga0,...,gan), g <E I(X), 

where det(g) = +1 or — 1 depending on g being orientation preserving or 
orientation reversing. In general for M any /(X)-module let M* denote 
the module with the original action by g multiplied by det(#). With 
this notation we now conclude from proposition 2.1 and theorem 2.10: 

COROLLARY 2.11. Let G C I(X) be a subgroup and fix an orienta­
tion of X. Then there are natural isomorphisms 

v(x, G) s#0 (G, ffn(a(x)/a(x)n-l)f) 
^Hn{Ho(G,[C,(X)/C^X)n-1]i)) 

For later use, let us introduce the polytope module 

(2.12) Pt(X) = Hn{Cm{X)/C*(X)n-x) 

where g g I{X) acts by g(ao,.. .,an) = (gao,... ,gan). Hence as an 
/(X)-module 

(2.13) V{X) £ Pt(XY 

and we reformulate corollary 2.11 as 

(2.14) V{X, G) = HQ(G, P tpO' ) -

In the spherical case it is also useful to consider the chain complex 
C*(Sn) where we have dropped the restriction that the vertices (ao, . . . , «fc) 
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of a &:-simplex should lie on a hemi-sphere. Then we introduce the Stein­
berg module 

(2.15) St(5n) = Hn(C*{Sn)/C*(Sn)n-1) 

and in the Euclidean and hyperbolic cases we just put 

(2.16) St{En) = Pt(En) , St(ftn) = Pt(7T). 

In the next chapter we shall give a different description ot these I(X)-
modules. 

Note . Cohomological arguments in connection with s.c. appeared al­
ready in [Jessen-Karpf-Thorup, 1968]. A systematic use of group 
cohomology was made in [Sah, 1979] inspired by remarks of D. Sulli­
van. The interpretation of the s.c. group as a homology group (corollary 
2.11) comes from [Dupont, 1982], but the geometric content of theo­
rem 2.10 that V(X) is generated by simplices modulo the elementary 
subdivisions represented by (2.7) was known previously to B. Jessen and 
A. Thorup (unpublished note by Thorup). In fact they proved that it 
suffices to use only "simple subdivisions": 

\(a0,..., an)\ = | ( a 0 , . . . > " n - 1 ) ^ n + 1 ) | I I | ( ao , . . . 
) an-2i ani an+X)\ 

where an + 1 lies on the edge (an_i,a„). Note by the way that the s.c. 
group which was introduced by Jessen in 1941 (c.f. [Jessen, 1941]) is 
really the A'-group in the sense of algebraic A'-theory for the category 
of poly topes. 





CHAPTER 3 

Homology of flag complexes 

In this chapter we shall investigate the Steinberg and polytope modules 
further and in particular we shall establish some exact sequences relating 
these modules in different dimensions which are useful for inductive 
arguments later. First let us give another interpretation of the Steinberg 
module as the homology of a complex of flags of subspaces. The idea 
is that a geometric n-simplex in X is determined by its supporting 
hyperplanes (i.e. the subspaces spanned by its faces of codimension 
1) at least in the case of X = En or W1. By a subspace of X we 
mean a geodesic subspace U of a certain dimension p such tha t U is a 
model for the geometry in tha t dimension. In En a subspace is an affine 
subspace, in 7in respectively Sn it is a hyperbolic respectively spherical 
subspace. In our models for Hn and Sn these are just intersections with 
linear subspaces of the surrounding R n + 1 . Note in particular tha t a 0-
dimensional spherical subspace consists of 2 antipodal points. If A C X 
is any set, then by spanA we mean the smallest subspace (in the above 
sense) containing A. E.g. in the spherical case spanja} = { ± a } for 
a e Sn. 

Next recall tha t a simplicial set is a sequence of sets of simplices S — 
{Sp;p = 0 , 1 , 2 , . . . } together with face operators S{ : Sp -» Sp-i,i = 
0 , . . .,p, and degeneracy operators r]j : Sp —> 5 p +i , j = 0 , . . .,p, satisfy­
ing the identities. 

(3.1) EiEj = £3-iEi, i < j ; rurjj = %+ir?;, i < j , 

and 

{ r)j-i£i, i < j 

id, i = j , i = j + l 

TjjSi-i, i>j+l. 
17 
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Our main example is the following: 

DEFINITION 3.3. a) The Tits complex T(X) is the simplicial set 
where a p-simplex # is a flag <& = (UQ D • • • D Up) of proper (i.e. 
Ui =fi X, 0) subspaces with face and degeneracy operators given 
by 

ei{U0 D---DUp) = {U0D---DUiD...Up) 

Vj(U0 2---2Up) = {U0D---DUJDUjD---DUp) 

b) A flag # — (UQ D • • • D Up) is called strict if U{ has co-dimension 
i + 1, i — 0 , . . . , p, and p + 1 is called the length of # . 

For a simplicial set 5 the (reduced) integral homology groups are the 
homology groups of the (augmented) chain complex C*(S), where CP(S) 
is the free abelian group on Sp and the boundary d (and augmentation 
£ : Co(S) —> Z) is given by 

,oA) 0(<r) = £ ( - 1 ) ^ 0 7 ) , a&Cp(S) , p = l , 2 , . . . , 
v^-4i i=o 

e(a) = l , < T G C 0 ( 5 ) . 

With this notation we have: 

THEOREM 3.5. Let H*(T(X)) denote the reduced integral homology 
ofT{X). Then 

a) Hi(T(X)) = Oifn>landi^n-l 

b) There are natural isomorphisms 

St(X°) £ Z and St(Xn) =* #„_ i (T(X)) , n > 1. 

c) 7n b) St(Xn) is identified with the following subgroup o /©Z($) , 
where $ runs through all strict flags of length n: Here x = ^ $ j $ 
/ies in St(X) if and only if for all i = 0 , . . . , n — 1 and all fixed 
(UQ D • • • D Ui-i D t/j+i D • • • D Un-i) we have 

Ui 
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For the proof we consider for each subspace U C X the chain com­
plex C*(U) which in degree q is the free abelian group with generators 
all (q+ l)-tuples of points in U and with the boundary given by formula 
(2.6) (so that C*(U) = C*(U) in the Euclidean and hyperbolic case). 

L E M M A 3.6. HJC*{U)) = \ ' Q = ° 
0 otherwise. 

Proof: We augment C*(U) to Z by s : C0(U) -> Z given by e(a0) — 1 
and observe that the sequence 

• • • A cq(u) A • • • 4 Co{u) 4 z -> o 
is exact. In fact if we choose a base point «o 6 [/ we get a chain 
contraction sq : Cq(U) —> Cq+i(U) defined by 

sq(a0,...,aq) = (u0,ao,...,aq), q > 0, and s_ i ( l ) = (u0). 

Then it is easy to check tha t 

ds + sd = id 

which proves the exactness. • 

P r o o f of t h e o r e m 3.5 Consider the bicomplex (cf. Appendix A) 

(3.7) A p , , = © C*(UP), p>0, 
(U0D-DUP) 

augmented toC*(X)n~l by the obvious inclusion mapsC*([/o) C C*(X). 
Here the "vertical" differential is d" = (-l)pd in C*(UP) and the "hor­
izontal" differential is d' = X^=o(~~^Y£i*- Then the sequence 

o <- a w n _ i <- A0?* f Ai,, f • • • 
is exact. In fact we define sp : AP)* —> Ap+i,* for a simplex <r C Up by 

Sp(CT(i70D..gc/p)) = (-l)p+1o-(i/0D-gt/pD!7CT), P = - 1 , 0 , 1 , . . . , 

where L^ = span(cr), and it is straightforward to check tha t 

8's + sd' = id 

It follows that the homology of the total complex (A*, d' + d"), where 
Ak — © Ap<q, is given by 

p+g=fc 

H(A.) ~ H{C*(X)n~') 
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By the exact sequence 

o -> a(x)™-1 -»• cm{x) -> a p o / a w 1 -> o 
and lemma 3.6 we also have 

s^aw1-1) ^ /^apo/apo"-1). 
On the other hand lemma 3.6 also gives an exact sequence 

0 <- CP{T(X)) <- Ap,o f- APii t - APi2 I 

where 
CP(T(X)) © Z $ 

$=(L/ 0D-O(7p) 

is the p-th chain group for T(X) . Also d" clearly induces the boundary 
map on C*(T(X)) so that we obtain 

H{A*)9*H«{T(Z)). 

It follows that we have an isomorphism 

Hk{C*{X)/C*{X)n-1) * Hk_!{T(X)), ft > 1. 

Here the left hand side is clearly zero for k < n whereas the right hand 
side is zero for k > n since T(X) contains only degenerate simplices 
in these dimensions. This proves a) and b). For c) we observe that 
H*(T(X)) is computed by the chain complex C^(T(X)) with only non-
degenerate generators, i.e. in degree n - l w e have only strict flags, and 
hence 

Hn.x{T{X)) = ker(3 : C%_X(T{X)) -> C ^ 2 ( T ( X ) ) . 

But here d{x) = 0 if and only if £i{x) = 0, i — 0, • • • , n — 1, since £i(x) 

and £j(x) involve flags of different types for i ^ j . D 

Remark: The isomorphism in theorem 3.5 can be explicitly described 
as induced by the map 

h : Cn(X) ^ Cn-^TiX)) 

given by 

(3.8) M a 0 , . . . , a n ) = X>ign(7r ) ( [ /o T D..O K-i) 

where n runs through all permutations of {0 , . . . , n} and 

UJ = span{aw(j-+1),.. . , a w ( n )} . 
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Note that this map is equivariant with respect to the natural action by 
I(X). 

Example : 

Ui = span{a0 ,Oi,«2} 

h(a0, a j , a2) — (t/5 D a2) - (C/5 D a i ) + (C/j D a0) - (C/j D a2) + 

+ (C/2 D ai ) - (E/5 D a0) 

The corresponding theorem in the case of the polytope module for 
X = Sn is a little more complicated since the topology of the sphere 
interferes. Thus a geodesic subspace U C X of dimension p is a p-sphere 
and if we consider the chain complex C*(U) C C+(X) as in chapter 2 
where all vertices of a simplex in U lie on an open hemisphere then the 
analogue of lemma 3.6 is 

(3.9) Hg(C*(U)) = 
Z q = 0 or p 

0 otherwise. 

In fact, as mentioned in the proof of theorem 2.10 a simplex a — 
(ao,..., aq) in U gives rise to a singular ^-simplex fa : A9 -» U and 
one shows (cf. proposition A.21) tha t the inclusion C*{U) —¥ C* ing(f/) 
into the singular chain complex induces an isomorphism in homology. 
Let us write 0(U) = HP(U) = Z and call it the orientation module for 
U since an isometry g of U induces multiplication by ± 1 depending on 
g being orientation preserving or not. Thus 0(X) = Z* in our previous 
notation. Also we put O(0) = Z . Finally for U C X a p-dimensional 
subspace let f/1 denote the subspace perpendicular to U. We can now 
state the analogue of theorem 3.5 for the polytope module. We refer to 
[Dupont , 1982] for the proof. 
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T H E O R E M 3.10. Let X = 5 " , n > 0. Then 

i) H , ( C * ( X ) / a ( X ) n - 1 ) = 0 for q ± n. 
ii) There is a filtration of I(X)-modules 

0 C 0{X) = F_i C F 0 C • • • C Fp C • • • C Fn = P t ( X ) 

and natural isomorphisms 

Fp/Fp^ 9* 0 S t ( C / P ) ® 0 ( C / p l ) , p = 0 ,1 , 2 , . . . , n. 
UP 

where Up runs through all p-dimensional subspaces of X. 
iii) In particular 

P t ( X ) / F n _ ! £ S t ( X ) . 

R e m a r k : Geometrically F p is generated by chains of the form a join of 

a p-simplex in Up with a triangulation of the sphere Up , where Up and 

Up are perpendicular subspaces of dimension p respectively n — p — 1. 

The Steinberg and polytope modules give rise to some useful exact 
sequences relating these to the corresponding ones in lower dimensions. 
For the Steinberg modules we have in all 3 geometries: 

T H E O R E M 3 .11 . Let dim X = n. Then there is a natural exact 
sequence of 1(X) -modules 

o -> st(x> 4 0 st(t/"-1) A 0 st(cr-2) ->... 
fyn-l JJn-2 

• ••4 0st(E/°)4z-»o 
u° 

where Up runs though all p-dimensional subspaces of X. 

R e m a r k : Here d : St(Up) —>• ® [ / P - i S t ( [ / P _ 1 ) is induced by sending a 
strict flag (U0 D • • • D f/p_i) for Up to the flag (Ux D • • • D Up-\) for 
f/p-i = U0. Also St(C/°) = Z(t/°) and e is the augmentation e(U°) = 1. 
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Proof: First notice that by the proof of theorem 3.5 we have for U a 
7>dimensional subspace 

I U otherwise. 

It follows tha t the spectral sequence for the filtration FPC*(X) = C*(X)P 

has 

££„ = FpC,(X)/Fp-iC.(X) ~ @C*(Up)/C.(Up)p-1 

UP 

and hence 

EL = ®Hp+q(c*(un/c*(ur-1) = (®^ s t ( c / p ) ' q = I 
UP I ' q ^ 

It follows that Epq = EpI. But by lemma 3.6 this is zero except for 
p = q = 0 where it is Z. Hence we get an exact sequence 

0 - • Elo 4 £i_i,o ^ - ^ ^ o A Z ^ O 

which is just the required sequence. • 

For the polytope module in the spherical case we get in a similar 
way using theorem 3.10: 

THEOREM 3.12. Let X = Sn,n > 0. Then there is an exact se­
quence of I(X) -modules 

Tn-1\ ^ / T ^ vn-(TTn-2\ . o -> z< 4 Pt(x) 4 0 pt(t/n-1) 4 0 Pt(c/n-
[ / n - 1 [ / n - 2 

. . .4 0Pt(tf°)4z->o 

where Up runs through all p-dimensional subspaces of X. 

Remark 1: The inclusion i : Z* -> Pt(X) is just the natural map 

Z' ^ Hn{C*(Sn)) -> J rY n (C,(5") /a(5 n )"- 1 ) = Pt(Sn) . 

The generator on the left is sent to the polytope consisting of the whole 
sphere (suitably subdivided). 
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Remark 2: For X = S° the sequence reduces to the exact sequence of 
0(1) = {±l}-modules: 

0 -»• Z* -> Pt(5°) -+ Z -»• 0 

Finally there is in the spherical case an exact sequence combining 
the Steinberg and polytope modules. For U C X = Sn a subspace of 
dimension p < n and {±e} a pair of antipodal points perpendicular to 
U there is a suspension homomorphism 

Ev : Pt(C/)f -» Pt(VY, V = span(C/ U {±e}), 

given by the formula 

S[ / ( (a 0 , . . . , ap) ® a) = [(e, a 0 , . . . , ap) - (-e, a0,..., ap)] ® (e * a). 

Here we use the notation Pt(C/)' = Pt(U)<S>0(U) and for CT G 0(U) = Z* 
a generator we let e * <r be the generator of 0(V) determined by e and 
a. This suspension extends to a map 

Ev : Pt(UY <g> St(C/1) -> 0 Pt(F)f®St(yx) 
dim V = p + 1 

in a straightforward manner (notice that a strict flag occuring in St(J7x) 
ends with a pair of antipodal points perpendicular to U). In particular 
for U = 0 we have 

E : St(X) -»• 0 Pt(£/°) ® (C/01) 

and together with the map 

h : Pt(X) -> St (A") 

given by the formula in (3.8) we obtain the following theorem wich we 
state without proof: 
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THEOREM 3.13. For X = Sn,n > 0, there is an exact sequence of 
I(X) -modules 

0 -> St(X) 5 0 Pt([/°)i <g> St{U0±) 5 ... 
u° 

y 0 Pt(UPY <g> St(f/2'1) 5 ... 

... 5 0 Pt(C/"-1)i ® St{Un~1L) 5 Pt(A")* A St(X)' ->• 0. 
J/n-1 

Note: Exact sequences like the one in theorem 3.11 are called Lusztig 
exact sequences in analogy to those constructed in [Lusztig, 1974]. 
However, similar sequences were known by J. Karpf (unpublished Msc. 
thesis, Copenhagen University, 1969). 





CHAPTER 4 

Translational scissors congruences 

In the Euclidean case X = En, the group T(n) of translations is a 
normal subgroup of the group of all isometries with the orthogonal group 
0(n) as quotient group. Hence by proposition 2.1 

(4.1) V(En) = H0(P(n),V(En,T(n))). 

In this chapter we shall study V(En,T(n)) in more detail, and in par­
ticular we shall find necessary and sufficient conditions for translational 
s.c. (the Hadwiger invariants). More generally let us consider a field F 
cr characteristic 0 and V a vector space of dimension n over F. The 
group of translations of V is just the additive group of V acting on V 
by tv(x) = x + v, x,v G V. Again C*(V) denote the chain complex 
over Z of tuples of elements of V and in view of corollary 2.11 we want 
to calculate the translational scissors congruence group defined by 

(4.2) VT{V) = H n ( ^ l ^ ^ y ^P- = H0(V,C*(V)). 

Now C*(V) is just the homogeneous "bar complex" for the additive 
group of V. Let us recall a few facts about group homology : 

For (G, •) an arbitrary group and Z[G] the group ring the homoge­
neous bar complex is the complex C*(G) with generators in degree q 
any (g+ l)-tuple (a 0 , . . . ,a9) and with the usual boundary map 

i 

d(a0,...,aq) = ^ ( - l ) * ( a 0 , . . . , a i , . . . , a g ) 
t = i 

This is a complex of left Z[Cr]-modules by the action 

g(ao,...,aq) = (gaa,...,gaq), gtG, 

27 
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and it is a resolution of the trivial G-module Z via the augmentation 
e : CQ{G) —> Z, £(ao) = 1- Sometimes we shall use the inhomogeneous 
notation: Let B*(G) be the complex with generators in degree q of the 
form go\g\ | • • • | gq], gi 6 G, and boundary map given by 

q-l 

d(g0[gi I • • • | gq]) =gogi[g21 • • • I gg] + 5^(-i)'5o[ffi I • • • I gtgi+i I • • -gq] 
i=l 

+ {-l)qgo[gi\...gq-i]. 

Here the G-action is given by 

g{go[gi I • • • I gg]) = ggo[gi I • • • I gg-i] 

and the augmentation e to Z by e(<7o[-]) = 1- Actually C*(G) and B*(G) 
are isomorphic via the bijection (ao, • •., aq) <-)• go[gi \ • • • \ gq] where 

ao = go, « i = gogi, ••• ,aq = g0...gq. 

For a right G-module N the homology of G is by definition H*(G, N) = 
if (AT <8>z [<?]£»(<?)), so for M a left G module fl*(G, M) = #*(G, M ° P ) , 
where M ° p has the right G-action xg — g~1x, x £ M, g £ G. Equiva-
lently it is the homology of the complex B*G <g> M with B0G = Z and 
for q > 0 generated by symbols [gi \ • • • \ gq](B)x, g\,.. .,gq £ G, x £ M, 
and with boundary map 

^ (b i I • • • I 5?]) ®x) = (g2\---\gq]<S> g^x + 
9 - 1 

(4-3) +Sr(-iy[g1\---\glgl+1\--.\gq]®x 

+ (-l)?[5i | - - - | 5 9 - i ]®a ; -

Notice that 
M 

(4.4) ff0(G, M) = M/{x -gx\x £M,g£G} = G\M = —. 
G 

For M = Z the trivial G-module we write 

H*(G) = H*{G,Z) = H*(B.(G)) = H*(G\C*(G)) 

For G and G' two groups we shall need the Eilenberg-Zilber map of 
G X G'-modules: 

EZ : fl»(G) (8) 5,(G') 4 B » ( G x G') 



Chapter 4. Translational scissors congruences 29 

given by 
EZ{g[gi I • • • I gP] ® g'Wp+i I • • • I g'P+q}) 

= ]Tsign o(g,g')[hal | ••• | /typ+g)] 

where (/11 .. ./ip+g) = ((gul) .. .,(gp,l),(l,g'p+1),.. .(l,g'p+q)) and CT 
runs through all (p,q) shuffles of l , . . . , p + q. For M resp. M' G -
resp. G'-modules EZ induces an x-product 

x : tf,(G, M) ® ff„(G', M') ^4* tf*(G x G ' . M ® M'), 

and by the Eilenberg-Zilber and Kiinneth theorems we get an exact 
sequence 

0 -> H*(G, M) ® #*(G', M') 4 ff»(G x G', M x M') -> 

-»• [ T o r ( i f , ( G , M ) , ^ ( G ' , M ) ) ] _ 1 - ^ 0 

where the subscript —1 indicates that in degree k the indices add up to 

Ar-1 . 

Now suppose (A, +) is an abelian group. Then + :AxA—>-A is a 
homomorphism and we define the Pontrjagin product as the composite 

(4.6) A : Hi (A) ® Hj (A) 4 Hi+j (A X A) ±* ffi+j (A). 

This makes (ii/*(A), A) into a graded ring. 

PROPOSITION 4.7. Lei A 6e an abelian group. Then 

i) Ho(A) = Z one? i/iere is a natural isomorphism A = Hi(A). 
ii) 7/ A is torsion free then the A-product defines a natural isomor­

phism A|(A) £ A|(Fi(A)) ^ Hk(A), k = 0,1, 2 , . . . . 
iii) 7/A is a divisible group then A = A/T@T, where T is the torsion 

subgroup of A, and we have an isomorphism 

Hk(A) * A^(A/T) © Hk(T) 

Proof: i) The first statement is obvious from (4.4), and for the second 
we notice that 

HX(A) = B1 {A)/dB2{A) = Z[A]/{[a] + [b] - [a + b] | a, b e A}, 

so that the natural map A —> H\(A) sending a to [a] is an isomorphism. 



30 Scissors congruences, group homology and characteristic classes 

ii) Since both sides of the equation commutes with direct limits it 
is enough to consider A a finitely generated torsion free abelian group, 
that is, A = Z © • • • © Z in which case it follows from the Kiinneth 
isomorphism (4.5). 

iii) This similarly follows from (4.5) and the observation that 

4.{A/T) * AfaA/T) 

since A/T is a uniquely divisible group, i.e. a rational vector space. 

Remark: Notice that the isomorphism in ii) is explicitly given by 
sending u\ A • • • A Uk € A|(A) to 

(4.8) tii A • • • A uk = "^2 s i § n ° [u*i I ' " ' I u°k] 
a 

where a runs through all permutations of 1 , . . . , h. 

We now return to the computation ofVriV) for V an n-dimensional 
vector space over a field F of characteristic 0. First notice that by 
proposition 4.7 we have a natural isomorphism for U C V any linear 
subspace: 

(4.9) Afc(tf) = Hk(^P^ , * = 0 , 1 , - . . 

where we have used the isomorphism C*(U) = B(U) given by 

(x0,...,xk) f-> x0[ui I ••• I uk] 

with 

Xi = X0 + Ui, X2 = X0 + Ui + U2, • • • , Xk = X0 + Ui + U2 + hUk-

Geometrically the element given by (4.8) corresponds to the fc-fold cube 
[MI] A • • • A [uk] where [u^ - (0, Mt-) € Ci(U). 

For the computation of the homology group in (4.2) we now proceed 
as in chapter 3. We let T(V) be the simplicial set where a p-simplex $ is 
a flag # = (f/0 D • • • D Uv) of proper linear subspaces of V, i.e. different 
from 0 and V. Notice that for V = Kn there is a natural bijection 
TiV) = 7~(5"_1), in the notation of chapter 3, given by intersecting the 
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subspaces with Sn 1. We now consider the bicomplex APtQ for p,q > — 1 
given by 

A fv\c*lV)' _ P=~1 

[@<l>=(UoD-DUp) Up\C*(Up), p— 0 , 1 , 2 , . . . 

where C*(U),U C V, is the chain complex C*(U) augmented in the 
usual way to C-\{U) = Z . Also the boundary maps d' and d" are 
induced by the corresponding maps in the proof of theorem 3.5. Again 
the homology with respect to d' vanishes for p > 0 and we conclude 
tha t the total complex has homology 

Hk(A*) <* Hk+1 (V\a(V)/V\C*(V)n-x), k = - 1 , 0 , 1 , 2 , . . . 

Thus we get a spectral sequence converging to H(A*) with 

P'* \®UO2-DUPH*(UP) P = 0 , 1 , 2 , . . . 

where, by (4.9) above Hq(Up) = A Q ( E / P ) , g > 0, and zero for q — 0,-1. 
We therefore get 

F 2 ^ [ ^ ( T o a A ^ B ) ) <?>o 
M \ o ? = o , - i 

where AjjUji) denotes the local coefficient system on T(V) given by 

A^(fl)(t/o2-0[/p) = A^(£7P) 

and where the chain groups are augmented to C _ i ( T ( V ) , A Q ( B ) ) = 

A&(V). 

However, the spectral sequence degenerates from the i?2-level as we 
shall now see: Choose a positive integer a > 1 and let /xa : V —>• V 
be multiplication by a. The translation tv : V —> V by u € V clearly 
satisfies 

flaotv = tav O \La 

and it follows that [ia induces an endomorphism of the double complex 
A*,* and hence of the spectral sequence commuting with the differen­
tials. However it is easy to see tha t the induced map on E^q is just 
multiplication by aq and since dr : Ep^q —>• Ep_r.tq+r_l, it follows that 
dr = 0 for r > 2. We have thus proved 



32 Scissors congruences, group homology and characteristic classes 

THEOREM 4.10. a) H(V\Cit(V)/V\Cil,{V)n-1) and in particu­
lar VT{V) are vector spaces over Q. 

b) There is a splitting into eigenspaces for the endomorphism fia 

with eigenvalues aq, q = 1, 2 , . . . , n: 

n 

PT(y)^®t,-i(^),A^)), 
9 = 1 

and the splitting is independent of choice of integer a > 1. 
c) HP(T{V), A&(fl)) = 0 for p < n - q - 1, q > 0. 

Remark : The spectral sequence gives rise to a filtration FPVT(V), p = 
- 1 , 0 , 1 , . . . , n - 2, such that Fp /Fp_i 2 HP(T(V), A^(fl)) withp + g = 
n — 1 which corresponds to the a9-eigenspace for \ia. It follows that any 
element x € FpVriy) has a unique decomposition 

(4.11) X = Xq + Xq+i + ... 

such that Xi has "weight i", that is, is in the aJth eigenspace. We will 
now get a geometric interpretation for this filtration. 

Definition: 

a) A fc-fold prism x € VT{V) is an element of the form 

x = K I • • • I ^ J A K + I I • • • I u<1+,-3]A- • -A[vi1+...+ik_l+i | • • • | vn+...+ik] 

where i\ + • • • + ik = n and u i , . . . , « n € F . 
b) Let Zk(V) C "PT(^ ) be the subgroup generated by all fc-fold 

prisms. 

PROPOSITION 4.12. Zk{V) is the sum of eigenspaces of weight > k. 
That is, Zk(V) = Fn-k-iVT(V). 
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Proof: Every element has weight at least 1 so at least Zk(V) ^ Fn_k-i-
For the other inclusion it suffices by induction to prove that every el­
ement of weight > 2 lies in Ziiy)- For this consider the Alexander-
Whitney map 

A W : B » ( y ) - » B * ( V ) ® B * ( V ) 

k 

AW[ui | • • • | vk] = 5 ^ b i | • • • | VJ] <g> [uj+i | • • • | vk] 
3=0 

and notice tha t the composite 

m : B*{V) ^ B*(V) <8» Bm(V) E4 Bm{V X V) 4 B„(V) 

is chain homotopic to the map /f2. Since this chain homotopy is natural 
in V it preserves the "rank"-filtration and hence m and /x2 induces the 
same map on VT(V). We conclude tha t 

k 

(4.13) /i2[i>i | • • • | vk] = ^2[vi | • • • | Vj] A [uj+i | • • • | vk] 
3=0 

and hence 
(M2-2)K | - - - |« f c ]ez 2 (v ) . 

It follows that if x e T ' T ( V ) has weight <? > 1 then 

fi2(x) - 2x = (2q - 2)x £ Z2(V) 

so tha t x G Z 2 (V) . • 

The main result on the structure of VT(V) is the following reformula­
tion of a theorem of [ J e s s e n - T h o r u p , 1978] and [Sah, 1979] which we 
shall s ta te without proof (cf. [ D u p o n t , 1982] and [Morel l i , 1993]): 

T H E O R E M 4.14. For V a vector space of dimension n we have 

a) £ p (T(V) ,A^( f l ) ) = 0 / o r p + < / ^ „ - i , p > - i , g > 0. 

b) The natural map p : AQ(A) —> A^(fl) induces isomorphisms 

pm : £ „ _ , _ ! ( T ( V ) , A^(fl)) -+ Hn-^inV^AM) 

for q = 1 ,2 , . . . . 

Analogous to theorem 3.5 we now have: 
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COROLLARY 4.15. There is a natural isomorphism, 

n 

9=1 

where Vq(V) = Hp(T(V),AF(g)),p= n - q - 1 > 0 is the F-subspace 

Vi {V) = 

x$€ 0 ^9F(UP)^^2XUOD_DC.DUP = 0, i = 0,...,p 

andVn = AF{V). 

Remark: Notice that Aq
F(Up) is 1-dimensional so if we choose a volume 

function u$ G Aj.(C/*) for each strict flag $ (v^ G A^(F*) for the 
"empty" flag) then for x G VT(V) the component a;$ G A9(£/p)$ is 
determined by the corresponding Hadwiger invariant if$ defined as the 
composite 

VT(V) = 0 P ' ( 7 ) P-̂ >* Aq(Up)$ ^ F 
9 

Theorem 4.14 thus contains the statement that the Hadwiger invari­
ants determine the translational scissors congruence class. But it also 
expresses the relations between them. This will be useful in the next 
chapter. Geometrically the Hadwiger invariant H§ corresponding to the 
strict flag <J> = [UQ D • • • D Up) and volume function u$ is defined on a 
simplex a = (ao, . . . , an) G V\Cn(V) as follows: a is called incident with 
$, written <r||$ if for some permutation n, Uf = span{a„.(,-+1), • • •> a7r(n)} 
are parallel to Ui,i = 0,...,p. Then 

/ 4 1 6 \ H i \ = JE^signTr u*(aw(l-+1),...,off(n)) for <r || $ 
1 " j $ l j [O f o r c r ^ $ 

where u$(a^(i+i),..., av(n)) denotes the (signed) volume in Up corre­
sponding to u$. 

EXAMPLE 4.17. For x = [A] a simplex A = (a0 ,a i ,a2 , a3) in £ 3 

and g = l , the components x$ for each pair $ = (f/o D U\) of a plane 
and a line incident with A can be read off the following figure: 
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Finally let us s tate the following Lusztig exact sequences. The proof 
is similar to the one for the Steinberg modules in chapter 3 (for details 
see [Dupont , 1982]): 

T H E O R E M 4 .18. Let V be a vector space of dimension n over F. 
Then for q= 1, 2 , . . . , n there is an exact sequence 

o -»vq{v) A 0 vq{un~l) A • • • 4 0 vq{uq+1) -»• 
j y n - 1 ljq+l 

^ ® Aq
F(Uq)-> Aq

F(U) ^ 0 

where d : Vq(Ul) —»• Vg(U%~1) is induced by sending a strict flag (C/n D 
• • O Ui-q-i) in Ul to (Ui D • • • D C/i_9_i) in U1'1 = U0. 

R e m a r k 1: Similarly to the "suspension sequence" theorem 3.13 we 
have another exact sequence (see [Dupont , 1982]) 

(4.19) 

0 -> Vq(V) -»• 0 /\q
F{Uq) ® St(V/Uq) -»• 0 Aq

F(Uq+1) <g> St(V/E7»+1) -> 

->•••-• © A ^ - ^ - ^ O O - X ) 
J/n-1 

where for W an m-dimensional vector space St (W) = Hm^2(T(W), Z) . 
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R e m a r k 2: Notice that all these sequences are sequences of G1(V)-
modules. We shall use this in the next chapter. 



CHAPTER 5 

Euclidean scissors congruences 

Now let us return to the case X = En and G a subgroup of E(n), the 
group of Euclidean isometries, and we want to study the scissors con­
gruence group V(En,G). In particular in dimension 3 we shall establish 
the exact sequence a) in theorem 1.7. Let us assume that G contains 
T(n), the group of translations and let G = G/T(n) C O(n). Hence by 
proposition 2.1 

(5.1) V(En, G) = H0(G, PT(Rn)*) 

and by corollary 4.15 we have a natural isomorphism 
n 

TM^")' =0^' ^(^ r l) t• 
9 = l 

Notice that we have twisted the action on the right hand side of (5.1) 
in view of corollary 2.11. Hence by (5.1) 

n 

(5.2) V{En,G)^Q)H0(G,Vq(Rny) 
9 = 1 

COROLLARY 5.3. Suppose G contains —id. Then 

V(En,G)^ 0 H0(G,Vq(RnY) 
q=n (mod 2) 

Proof: Clearly - id acts as the identity on the Tits-complex T(Kn) 
and hence as (—l)9+n on X>?(R")*. Hence, if q ^ n mod 2, the group 
H0(G, Vq(RnY) is annihilated by 2 and is therefore 0 since it is a rational 
vector space. • 

Remark : In particular corollary 5.3 applies for the group generated by 
all "point reflections" (or "symmetries"), i.e. by isometries of the form 

37 



38 Scissors congruences, group homology and characteristic classes 

Sp,p£ En, given by 

Sp(x) = p- (x -p) =2p- x, x G K". 

For example in the case of n — 2 we then have 

V{En,G) 9* H0(G,V2(R2)) = A|(R2) 9* R 

and the isomorphism is induced by the area function. 

Before we proceed we need two simple but useful lemmas about 
group homology. The first generalizes the use of -id in the proof above 
and is referred to as the "Center kills lemma": 

LEMMA 5.4. Let M be a (left) R[G]-module (R any commutative 
ring) and let 7 G G be a central element such that for some r G R, jx = 
rx,Mx G M. Then (r - 1) annihilates Hm(G,M). 

Proof: For 7 G G any element there is an induced endomorphism 7* of 
H*(G, M) given by inner conjugation by 7 in G and the action on M. 
Explicitly in terms of the bar complex B*G ®R M, 

7*([5il •••!</<?] ® a;) = [7ffi7_1| • • • \l9ql~1} ® 1* 

and the chain homotopy to the identity is given by 
1 

*(fall • --Idq] ®X)= ]jP(-l)J[tfl| • • • N 7 _ 1 N ; + l 7 _ 1 | • ••\l9ql~1} ® *• 
t'=0 

Hence if 7 G G is a central element acting on M by multiplication by 
r G R then 

7*([01 I • • • I 9g] <8> x) = [gi I • • • I gq] ® rx 
induces both the identity and multiplication by r in homology. This 
proves the lemma. • 

The second lemma relates the homology of a group with that of a 
subgroup and is usually called "Shapiro's lemma": 

LEMMA 5.5. Let H C G be a subgroup and M a (left) R[G]-module 
(R a commutative ring). Then there is a natural isomorphism 

H*{H, M) * H*(G, R[G] (g) M) 
R[H] 

file:///l9ql~1}
file://��/l9ql~1}
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Proof: The inclusion H C G induces a commutative diagram of chain 
complexes with vertical isomorphisms: 

B*{H) ®R[H] M Bm(G) ®R[G]R[G] ®R[H] M - = ^ B*{G) ®R[H] M 

B*{H)®RM B*{G)®R{R[G}®R[H]M) 

[Here B*{H) and 5*(G) are considered as right modules via the inver­
sion map.] Since JB*(G) is a chain complex of free R[H]-modules the 
horizontal maps above induce a homology isomorphism by the compar­
ison theorem (See e.g. [MacLane, 1963, chapter III §6].) 

Remark : An explicit inverse is given on the chain level as follows: 
Choose representatives for the cosets G/H and for g G G let g E G 
denote the representatives of gH, that is, g\ = §2 & 9\ 92 € H. Now 
define p : B*(G) ®(i?[G] ®R[H] M) -»• B{H) ®R M by 

p{[gi I 921 • • • I gq}®g®x) = [g~lg\h I ̂ l92h I • V- iJ 
l9) x 

where Zj = g- •01 l9,3 1, 

Now let us return to the calculation of the scissors congruence group 
V{En) = V{En,E(n)). By corollary 5.3 

(5.6) V(En)^ 0 Jf0(O(n),X>«(Rn)*) 
q=n (mod 2) 

Here I o ( 0 ( n ) , F ( R " ) ' ) = H0{O(n), Ag(En)) 2 E and the isomor­
phism is given by the volume function. For the calculation of the other 
summands in (5.6) the Lusztig exact sequences in chapter 4 relate the 
homology of O(n) for the module 2>9(En)* to the homology for the mod­
ule A (̂E™)* via the homology groups for smaller orthogonal groups. 
Thus for the other terms in the sequence in theorem 4.18 we have 

LEMMA 5.7. For n> £> q 

H* O(n) H*(0(£),Vq(Rly)(g)H40{n - £ ) ,Z* 
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b) In particular this vanishes if £ ^ n (mod 2). 

Proof: 

a) As 0(n)-modules 

Z[0(n)] 0 D^R*)*®: 
Z[0(^)xO(n-/)] 

Hence a) follows from Shapiro's lemma (5.5) and the Kiinneth 
theorem (4.5). 

b) clearly follows from a) and the "center kills" lemma (5.4) applied 
to the element 7 6 Off) X 0 (n - f) given by 

7(2:1,. . . , xn) = (xi,..., xt, -xi+l,..., -xn) 

D 

Now let us apply this in low dimensions: 

EXAMPLE 5.8. n = 1,2. By (5.6) we obtain 

V{E2)^H0{O{2),A2
R{R2y)^R, 

and the isomorphisms are given by the "length" and "area" functions 
respectively. 

EXAMPLE 5.9. n = 3: 

V{E3) ^H0(O(3),Vl{R3Y) © ff0(O(3), Aj^R3)') 

^H0{O(3),V1(R3)t)®R 

where the projection onto the last summand is given by the volume 
function. Note also that by proposition 4.12 

V1(R3Y^VT(R3)/Z2{R3) 

where %2(1K3) is generated by products of 1- and 2- simplices, i.e. by 
prisms. Hence the sequence a) in theorem 1.7 follows from the following: 
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THEOREM 5.10. There is an exact sequence 

0 -»• ff2(0(3), (R3)f) -»• #o(0(3) ,^ (R 3 )*) -> R ® Z R / Z ^ 

^ / / 1 ( 0 ( 3 ) , ( E 3 ) i ) 

Furthermore the composite map 

D:V(E3) -»-fl'o(0(3),X»1(R3)*) -+R<8> 

is i/ie Dehn-invariant. 

Proof: We split the Lusztig sequence (4.18) into two exact sequences 

(5.11.a) 0-+V lnn>3\ 0 P ' ( [ / 2 ) ->K ->0 
u2 

(5.11.b) O - 4 A ' ^ 0 ( / 1 ^ R 3 - > O . 

u1 

Then by (5.11.a) and lemma 5.7 b) 

ffoWJ.X^R3)*) = ffi(0(3), #*) 

and 

7/0(0(3),/^) = 0. 

Also 

#,(0(3), ê 1 
C/i 

) ^ ^ ( 0 ( l ) , ( R 1 ) ' ) ( g ) H , ( 0 ( 2 ) , Z t ) 
z 

Iff. (0(2), Z*). 

By proposition 4.7, iii) 

#*(SO(2), Z)/Torsion £ A^ (SO (2)/Torsion ) ^ A^(R/Q) 

where we have identified a rotation of angle 9 with 9/2n G R/Z. Here 
the action of 0(2)/SO(2) = Z/2 is induced by 9 H* - 0 . In particular 

Hi 0(3), 
.ul 0 

t' = 1 
i = 0,2. 
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We now obtain the desired exact sequence from the exact sequence 
(5.11.b). We leave the identification of the Dehn-invariant as an exercise 
[note that there is a factor \ which however is immaterial for exactness.] 

• 

Thus we have established the exact sequence a) in theorem 1.7. 
Hence we have proved the following reformulation of Sydler's theorem 
(1.4): 

COROLLARY 5.12. D : V(E3)/Z(E3) -» R f g ^ R / Z is injective if 
and only if H2(0(S), (R3)') = 0. 

EXAMPLE 5.13. n = 4: 

V(E4)^H0(O(4),V2(R4Y)®H0(O(4),AU^y) 

^tfo(0(4),X>2(R4)')©R 

where again the projection onto the last summand is given by the volume 
function. For the calculation of the first summand we again consider 
the appropriate Lusztig sequence (4.18) and similarly to theorem 5.10 
we obtain an exact sequence 

(5.14) 

0 -» ff2(0(4), A2(R4)<) -> tf0(O(4),P2(R4)<) -»• A | ( R 2 ) ( g ) R / Z ^ 
z 

^ # i ( O ( 4 ) , ( R 4 ) * ) - + 0 

Also one checks that (except for a factor | ) the composite map 

D:V{E4) -> ff0(O(4),2>2(R4)*) -> A | ( R / Z ) ^ R(g>R/Z 

is the Dehn invariant, i.e. for P a 4-dimensional polytope, 

(5.15) D(P)=Y^ Area (A) <g> 9(A)/n 
A 

where A runs through all 2-dimensional faces of P with area Area(A) 
and dihedral angle 0(A). For the computation of the homology groups 
in (5.14) we note that by the Kunneth theorem, 

Ht(SO(4), A|(R4)) ^ ( S p i n ( 4 ) , A+ © A_) 

&Hi(S+,A+)®Hi(S-,A-), f o r t < 2 , 

where Spin (4) ^ S+ X 5_ with 5± ~ Spin (3) and A|(R3) = A+ © A_. 
Here A± = R3 and S± acts via the usual action of 0(3) on A± but 
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trivially on A T so tha t in particular Hi(S±, AT) = 0 since Spin(3) is a 
perfect group. Furthermore change of orientation interchanges S+ and 
S- (respectively A+ and A_). It follows that for i < 2 

ffi(0(4),A|(R4)<) = tft(SO(3),K3) = # t (0 (3 ) , (R 3 )< ) 

(since 0(3) £ S0(3) X {±1}) . If now we let Z(E4) C V{E4) be the 
subgroup generated by products of 1- and 2-simplices it is easy to see 
that Vol : Z(E4) -4- R is an isomorphism, and we conclude the following: 

COROLLARY 5.16. D : V{E4)/Z{E4) -» R ^ R / Z is injective if 
and only if H2{0{3), (R3) ') = 0. 

Thus we have proved the result of [ Je s sen , 1972] tha t Sydler's 
theorem is t rue in E4 if and only if it holds in E3. 

E X A M P L E 5.17. n = 5: As before 

^ ( ^ 5 ) ^ ^ o ( O ( 5 ) , X » 1 ( R 5 ) t ) 0 J f / o ( O ( 5 ) , 2 ) 3 ( R 5 ) i ) © R . 

Again the projection onto the last summand is just the volume function 
and one can show that the middle summand is detected by a Dehn-
invariant similarly as above. There is also a generalized Dehn invariant 
associated to the first factor but the kernel of this involves the compu­
tation of H4(SO(5), R5) which seems rather difficult. 

R e m a r k : It follows from the above calculations that (granted Sydler's 
theorem) there are isomorphisms 

^(E1) ^V(E2), V{E3)^V(E4) 

and in both cases the isomorphism is given by multiplication by the 
1-simplex A 1 of unit length. It is a question by B. Jessen if in general 
this gives an isomorphism V(E2m+1) -» V(E2m+2). More specifically 
he asked if a 6-dimensional polytope is scissors congruent to a product 
of a 1-simplex and a 5-dimensional polytope (cf. [Sah, 1979, chapter 
7]). Notice tha t in terms of the decomposition (5.6) the multiplication 
map with A 1 induces a well-defined map P ' ( R n ) * - • X>«+1(Rn+1)* for 
all n and q = 1 , . . . , n. A more general question is if this induces an 
isomorphism on the level of Ho(0(n), —). This is known to be true for 
q = n and q = n — 2 for all n (see [ D u p o n t , 1982]). 





CHAPTER 6 

Sydler's theorem and non-commutative 
differential forms 

We will now sketch a direct homological proof of the vanishing result 

# 2 ( S O ( 3 ) , R 3 ) = 0 

and thereby prove Sydler's theorem (1.4) and the corresponding result 
in E4 (cf. corollary 5.16). We refer to [Dupont -Sah , 1990] for the 
details. Another proof has been given by [Cathel ineau, 1998] . 

There are two main ingredients in our proof: One is the following 
general vanishing theorem for which we defer the proof to chapter 9 
(theorem 9.11). 

T H E O R E M 6.1 # ; ( 0 ( n ) , A^(Rn)) = 0 if i + j < n, j > 0. 

Note that this does not directly give the desired vanishing for n = 3 
and j = 1 since the coefficients are untwisted (so that in this case the 
homology vanishes trivially by "center kills"). Indeed we shall use the 
case n = 4 and j = 2 for our proof. 

The other ingredient is the calculation of the Hochschild homology of 
the real quaternions H considered as an algebra over Q together with the 
formulation of this homology in terms of non-commutative differential 
forms (due to M. Karoubi [Karoubi, 1986]). But first let us recall for 
A any commutative algebra over Q with a unit element the notion of 
Kahler differentials fi™, n = 0 , 1 , 2 , . . . : Let 1(A) C A <g) A (= A ® Q A) 
be the kernel of the multiplication map 

A® A ->• A 

45 
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and put £l\ = 1(A)/I(A)2, where 1(A)2 is the two sided ideal in A ® A 
generated by the image 1(A) <g> 7(A) ->- 7(A). Then Q°A = A and 
fi™ = A ^ ( f ^ ) , n = 1,2, •••. Furthermore for a £ A we let da £ Q,A 

denote the image of 1 ® a + a ® 1 £ A® A. In this notation we shall 
prove: 

T H E O R E M 6.2. a) 77i(SO(3),R3) ^ 0 ^ and in i/ie exaci se­
quence o/ theorem 1.7, a) the last map corresponds to the map 
J : R <g> R / Z - • fi^ #iven 6y 

J(£®6/TT) =£ — 
sin# 

b) 772(SO(3),R3) = 0. 

R e m a r k : The statement in a) determines the image of the Dehn-
invariant as the kernel of J and is a reformulation of a classical result 
of [ J e s sen , 1968]. 

In the following A is a general associative (but not necessarily com­
mutative) algebra over Q and all tensor products are over Q unless 
otherwise specified. Recall tha t the Hochschild homology 7777*(A) of 
A is the homology of the chain complex (A*, b) which in degree n is 
^®(n+i) = A® A® • • • ® A (n+ 1 factors) with boundary map 6 given 

by 

n - 1 

b(a0 <g> • • • <g> a n) = ^ ( - l ) J a 0 <g> • • • <g> a ;a i + i <g> • • • ® an + 
i=o 
+ ( - l )"a na 0 (g> • • • ® a n _ i . 

(6.3) 

Tha t is 

7777„(A) = 77n(A*,6). 

However A* is a simplicial abelian group with face operators 

si : A®( n + 1 ) -»• A®n 

given by 

, . f a o ® - - - ® a j a < + i ( 8 ) . . - ® a n , t = 0 , . . . , n - l , 
£i{ao (&>•••(&> an) = < 

\ana0® •••<%) a„_ i , i = n. 
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and we consider the set of non-commutative differential forms 

n-l 

Qn(A) = f | ker(£,•), Qo(A) = A. 

Then b | Sln(A) - (-l)nen and it follows (see e.g. [May, 1967, theorem 
22.1]) tha t 

(6.4) HHn{A)^Hn{Q*(A),b). 

Notice tha t fi*(A) is a graded algebra with the multiplication 

(a0 ® • • -(g) an)(b0® • • -®bm) = a 0 ® • • • <S> anb0 ® • • -<g)6m. 

Again for a G A we put da = l<S)a — a <g> 1 £ fii (-4) a n d it is easy to see 
tha t 

nn(A) 9* A ® (A/Q) ® • • • ® (A/Q) 

via the map 

w = a0dai.. .dan -< 1 a0 <8> «i <8> • • • <8> o n . 

We can then extend d : iln(A) —> Qn+i(A) for all n by 

d(aodai...dan) = daodai ...dan 

such tha t in general 

d(u • u') = (du)u' + {-l)de^u • du'. 

That is (fi*(A),d) is a differential graded algebra. In this notation 6 : 
fin(A) -)• fin_i(A) is given by 

b(uida) — (—l)n(au> - usa) 

and we put 

In(A) = ker(6 : Qn{A) -> fin_i(A)) 

£ n ( A ) = im(6 : Qn+i(A) -> fi„(A)) 

so that 

HHn(A)^In(A)/Bn(A). 

If A is commutative then HHi(A) = 7 i (A) /5 i (A) = f^ is the set of 
Kahler differentials defined above and the usual shuffle product defines 
a map 

y:OX->HHn{A). 
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For A = K a field we quote without proof the following well-known 
theorem of [Hochschi ld-Kostant -Rosenberg , 1962]. 

T H E O R E M 6.5. If K is a field of characteristic 0 then 

HHn(K) £ fi£, for all n, 

via the map j . 

COROLLARY 6.6. The inclusion of Q-algebras R C H induces an 
isomorphism 

Ql 2 HHn{R) ^ HHn(M) for all n. 

Proof: By the Kiinneth theorem 

HH*(R) 2 HHm{Eo) <g> HH*{R) 

where Mo = spanQ,{l, i, j , k} is the quaternion algebra over Q so tha t 
H = R <g) Ho . Hence is suffices to show that jy"#0(Ho) = Q and 
HHn(Eo) = 0 for n > 0. However EQ ® Ho = M 4 (Q) the full 4 x 4 
matrix algebra over Q and since Hochschild homology is a Morita in­
variant (see e.g. [Kassel, 1982]) we conclude again from the Kiinneth 
theorem tha t 

M , ( H o ) <S> HH*{Bo) = tf #* (M 4 (Q) ) * HH*(Q) = 

which implies the desired conclusion. • 

Next let us return to the calculation of H* (SO (3), 1R3) but reformu­
lated in terms of quaternions: As usual 

Spin(3) = Sp( l ) = {q € H | qq = 1} 

and the double covering p : Spin (3) —> SO(3) is given 

p(q)(v) = qvq, q £ Sp( l ) v G span{ i , j , k} C H 

Similarly (as mentioned in chapter 5 with different notation) Spin (4) = 
Si X S2 with Si = Sp( l ) , i = 1, 2, and a : Spin(4) -* SO(4) is given by 

o-(?i,?2)(u) -givq2 qi,q2 G Sp(l ) v € H. 

We extend this to o : Pin(4) —> 0 ( 4 ) , where Z / 2 interchanges the factors 
and acts on H by the quaternionic conjugation v >-> v. Now theorem 



Chapter 6. Sydler's theorem and non-commutative differential forms 49 

6.1 for n — 4 can be reformulated (using the Hochschild-Serre spectral 
sequence for the double covering a): 

(6.7) i^ (P in(4) ,A^(H)) = 0 for I = 0 , 1 , 2. 

Here A Q ( H ) = (H ® Hf)~ the (-l)-eigenspace for the involution r(ao <g) 
ai) = ai (g) ao via the map a0 A ai <-* i (ao (g) ai — «i <g> a 0 ) . This 
isomorphism is Pin(4)-equivariant if the action on H <g> M is defined by 

^(? i , ft)(«o ® «i) = 9iao<72 <S> 920191, 9i, 92 € Sp( l ) , 

and Z / 2 acts by ao <g ai i->- ao ® a i . Next the map 

£ o © ( - £ i ) : H ® H ^ H © H 

sending ao<8>ai to (aoai, — ai«o) is Pin(4)-invariant for the action above 
on the left and the action 

HQIIQ2){VI,V2) = (p(qi)(vi),p(q2)(v2)) 

and Z / 2 acts by (ui, v2) •-> (—«i, —«i). Also we let r act on the right by 
T(V\,V2) = (^2,^2) a n d denote the (±l)-eigenspaces for this involution 
by upper indices ± . Since HH0(W) = HH0(R) = R = H+ we get an 
exact sequence of Pin(4)-modules 

(6.8) 0 -> /1 (H)- -»• (H ® H)~ £ 0 ^ - £ l H - © H- -> 0 

where H _ = span{i, j , A;}. Here we have for 0 < I < 2 : 

ff*(Pin(4),ff- © E T ) = # € (Sp in(3) ,ET) =" J^(SO(3) , R 3 ) . 

Hence by (6.7) 

^ ( S O ( 3 ) , E 3 ) ^ ^ _ i ( P i n ( 4 ) , 7 1 ( H ) - ) £ = 1 , 2 , 

and therefore theorem 6.2 is equivalent to 

T H E O R E M 6.9. a) The natural map 

7i(H) -)• HHx(E) = HHi(K) = fi^ 

induces an isomorphism 

H0(Spm{4),h(E)-)^nx
R 

and Pin(4)/Spin(4) = Z / 2 acts trivially on this. 
b) ffi(Spin(4),/1(H)-) = 0. 
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Proof: (Sketch). First we extend the Spin(4)-action on ^ ( H ) C l g H 
to all of (f2*(H), 6) using the isomorphism 

fin(H) =* fii(H) ® (H/Q)®^-1). 

We thus define 

^(?i)92)(«o) = p{Q2){ao) for a0 € fi0(H), 

and 

o{q1,qi){uda2 .. .dan) = a(g l5 g2)Md(/o(gi)(a2)) .. .d{p{qi){an)), 

for n > 1. Similarly we extend the involution r by 

T(a0) = ao for ao 6 fio(ff), r(aodai) = —(dai)do 

and for n > 2 

r(wda2 .. .dan) = - ( - l )2("- 2 H n - 3 ) r (u ; )da n . . .da2. 

With these definitions r commutes with the Spin(4)-action and the 
boundary map so that in particular Qn,In{S) and Bn(M) split into 
(±l)-eigenspaces for r as Spin(4)-modules. The following lemma is 
straight forward. 

LEMMA 6.10. i) Spin(4) acts trivially on HH*(M){= fi|). 
ii) On HHn(E) the involution T is T — (—l)"id. 

iii) For S2 C Spin (4) acting on fin(H) we have 

fl„(s2ln.m)a!{* 'or" = ° 
10 jor n > 0 

With this we can now prove part a) of theorem 6.9: We consider the 
exact sequences of Spin(4)-modules 

(6.11) 0 ->Bi(H)_ -> / i (H) - -> Hffi(H) - -»• 0 

(6.12) 0 ^7 2 (H)" -> n2(H)~ A fli(H)~ ->• 0 

Here (6.11) gives the exact sequence 

-)• ff0(Spin(4),Bi(H)-) -^ff0(Spin(4),/i(BO-) -»• 

-> ff0(Spin(4),ffffi(H)_) -»• 0 

where the last term is isomorphic to fi^ by lemma 6.10, i). But the 
first term is 0 by the sequence (6.12) together with lemma 6.10, iii) for 
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n — 2. This proves a.) except for the identification of the map J which 
follows by direct checking of the maps involved. For the proof of part 
b) we again obtain from (6.11) the exact sequence 

(6.13) ff1(Spin(4),J31-) -+ ff1(Spin(4),/f) -» ^ ( S p i n ^ . M f ) 

where the last term vanishes by lemma 6.10, i) since Spin(4) is a perfect 
group. It remains to prove that the first term in (6.13) vanishes. Now 
(6.12) yields the exact sequence 

(6.14) ffi(Spin(4),fiJ) hA ff!(Spin(4), B r ) ~> #o(Spin(4) , /2~) 

where the last term is zero since by lemma 6.10, ii) Ĵ ~ = B^, hence 

Ho (Spin (4), fig) h H0 (Spin (4), 72") 

is surjective with the first group equal to zero by lemma 6.10, iii). 
It follows tha t the first term (and hence all terms) of the sequence 
(6.13) vanishes if just bx = 0 in the sequence (6.14). This is shown 
in [ D u p o n t - S a h , 1990], and thus we end our outline of the proof of 
theorem 6.9 and equivalently of theorem 6.2. • 

Thus except for the proof of theorem 6.1 we have ended the proof of 
Sydler's theorem and this also ends our treatment of Euclidean scissors 
congruences. 





CHAPTER 7 

Spherical scissors congruences 

We next turn to the study of scissors congruence in spherical space, 
that is, we want to calculate the scissors congruence group V(Sn),n = 
0 , 1 , 2 , . . . . Recall from chapter 2 (corollary 2.11) that 

V(Sn) =* H0(O(n + l ) , P t ( S n ) ' ) 

Let us first calculate this in low dimensions to illustrate the homological 
approach: 

E X A M P L E 7 .1 . n = 0 : P t (5 0 )* is clearly a free 0 ( l ) -module with 
one generator (1) so that 

V(S°) = Z and fl,-(O(l),Pt(S0)*) = 0 for * > 0. 

Note that theorem 3.12 in this case reduces to the sequence 

0 -> Z -»• Pt(S°Y -> Z* -> 0 

which gives the exact sequence at iif"o-level: 

0 - ) - Z ^ P ( 5 0 ) - > Z / 2 - > 0 . 

Here the generator in the first group goes to (1) — (—1) = 2(1) in 

v(s0) = H0{o(i),pt(sy). 
E X A M P L E 7.2. n = 1: Theorem 3.12 provides the following short 

exact sequences 

(7.3,i) 

(7.3,ii) 

0 ->Z ->• P t ^ 1 ) * -> Ko ->• 0 

0 ^ A ' o 0Pt(t/°) 
.u° 

53 
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with 

Hi 0 ( 2 ) , ©pt([/°) 
-U° 

J ^ Hi(0{l) x 0(1), Pt(50) ' ® Z') 

T T / ^ / ^ ™̂  1 Z/2, for i even 
= iJ,-(0(l),Z*) = < ' 

0, for i odd . 

By (7.3,ii) 

Hl{O{2),K0) ^ Hi+1(0(2),Zt)/Hi+1(0(l),1t), i = 0 , 1 , 2 , . . . , 

and (7.3,i) gives the exact sequence 

• • • - • Hi+1(O(2),K0) -)• ^ ( 0 ( 2 ) , Z) -+ #,-(0(2) , P t ^ 1 ) ' ) -> 

-» #,-(0(2) , K0) -> ff,_i(0(2), Z) -> . . . 

In particular using the Hochschild-Serre spectral sequence for the ex­
tension 1 -> SO(2) -> 0 (2 ) -)• {±1} -»• 0 one has 

Hi(O(2),K0) 
ffi(0(2),Z*) = R / Z f o r i = 0 

0 for 1. 

Hence i / 0 (O(2) ,Z) = Z injects in P(S'1) with quotient R / Z so indeed 
73(5'1) = R given by the "length" function. Notice tha t Z C ^ ( S 1 ) is 
generated by [51] . Notice also tha t by the above calculation the map 

Z / 2 ^ ffi(0(2), Z) -)• H i ( 0 ( 2 ) , Pt(5 J)*) 

is surjective so the latter group has at most order 2. 

For the calculation of V{Sn) in higher dimensions let us first show 
the general result of C.-H. Sah [Sah, 1981] that T(S2m) £ V{S2m-1) 
for TO = 1, 2 , . . . . To prove this we consider first the suspension map 
considered in chapter 3 and which clearly induces a map 

S : P ( 5 n-l\ V(Sn), n = l , 2 , 

For this we have 
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THEOREM 7.4. a) There is an exact sequence 

-»• # i ( 0 ( n + 1),Pt(5*)') 4 # i ( 0 ( n + 1),St(5n)') -»• T^S""1) 4 7>(Sn) 

^ f f o ( 0 ( n + l ) , S t ( S n ) ' ) - > 0 

b) /n particular 

^:V{S2m~l)->V{S2m), m = l , 2 , . . . . 

is surjective with kernel consisting of elements of order at most 
2. 

Proof: a) Let us split up the suspension sequence (theorem 3.13) into 
exact sequences 

(7.5,i) 0 -> K0 -)• Pt(Sn)< -4 St(Sn) ' -*• 0 

(7.5,ii) 

0 Pt(«7"-2)i ® St(C/"-21) 4 0 Pt([/n-1)< ® St(t/n-11) -»• K0 -»• 0 
y n - 2 [/"-1 

where 

Hj0(n+l),@Pt{Un-')t®St{Un-eLU 

=• tf* (0 (n - £ + 1) x 0(£), Pt(Sn-eY <8> S t ( 5 ^ 1 ) ) , £ = 1 , 2 . 

By (7.5,i) we get the exact sequence 

4 Hi(0(n + 1), St(SnY) -)• if0(O(n + 1), A'o) -» ^ ( 5 n ) -»• 

- > # o ( 0 ( n + l ) , S t ( 5 n ) ' ) - X ) 

so it suffices to identify H0(O(n + l), K0) with V{Sn~l). For this (7.5,ii) 
yields the exact sequence 

(7.6) 

V{Sn^) ® tf0(O(2), S t ^ 1 ) ) 4 V{Sn-x) -» #o(0(n + 1), A'0) -> 0 

But by theorem 3.11 we have the exact sequence of 0(2)-modules 

0 ->• StiS1) -> 0 S t ( f / ° ) -> Z -»• 0 
I/O 
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with 

tf*(O(2),0St([/0)) - ff*(0(l) x 0 ( 1 ) , Z) 
u° 

which is a 2-torsion group in all dimensions bigger than 0. Since the 
inclusion 0 (1 ) X 0(1) —>• 0(2) induces an isomorphism in homology in 
dimension 0, and is surjective in dimension 1 it follows that 

Ho(O(2),St{S1)) = 0. 

Hence the first group in the sequence (7.6) is zero which shows the 
required isomorphism and ends the proof of the first part . 

b) By "center kills" for - id G 0 ( n + 1) all H0{O(n + 1), St(Sn)*) 
is annihilated by 2 for n odd. But by Gerling's theorem (corollary 2.5) 
V{Sn) is 2-divisible, hence by the sequence in part a) it follows that 
H0{O{n + 1), St(Sn)<) must be zero. • 

Notice that E = 2c : ViS71'1) -» V(Sn), where for P an (n - 1)-
dimensional polytope 

c[P] = [en+1*P], 

the cone on P with cone point en+i = (0, . . . , 1 ) . We then conclude 
Sah's Cone Theorem: 

COROLLARY 7.7. The cone map c : T>(S2m-1) ->• V{S2m),m = 
1 ,2 , . . . , is an isomorphism. 

Proof: Since S(x) = 2c(x) = c(2x) for all x <E P(S , 2 r n _ 1 ) and since E 
is surjective also c is surjective. Now suppose c{x) = 0. Then since 
V(S2m~1) is 2-divisible by Gerling's theorem x — 2y for some y € 
PiS2"1-1) and 

0 = c(x) = 2c(y) = E(y) 

so tha t y has order 2, tha t is, x = 0. • 

R e m a r k : [Sah, 1981] actually produced an inverse by the "Gauss-
Bonnet" map e : V(Sn) —̂  V(Sn~1) given for a spherical simplex A by 
the "alternating angle sum" 

e (A) = £ ( - l ) d i m i ? [ 0 ( F , A ) ] 
F 
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where F runs through all non-empty faces of A (including A). Here 
9(F, A) is defined by choosing an interior point x G F and taking the 
(n — l)-dimensional spherical polytope formed by the closure of the set 
of all interior unit tangent vectors in A with origin at x. 

EXAMPLE 7.8. V(S2). By corollary 7.7 and example 7.2 we get an 
isomorphism V(S2) = V(S1) = K given by the area function. 

For V(S3) we now turn to the proof of the exact sequence c) in the­
orem 1.7. We use the same strategy as in example 7.2. In higher dimen­
sions the exact sequence in theorem 3.12 gives rise to a "hyperhomology" 
spectral sequence (cf. Appendix A) converging to H*(0(n + 1), Z*) with 
E^n+1 = Hp(0(n + 1), Z) and for q < n : 

/ r i *N 

0 P t ( t / 9 ) Elq = Hp[0(n+l) 
ui 

(7.9) 
=* Hp(0(q + 1) X 0 (n - q),Pt(SqY ® Z*) 

^ 0 Hi(0(g + l ) , P t ( 5 9 ) t ) ® ^ ( 0 ( n - 9 ) , Z i 

i+j=p 

0 0 To r^COCg+l J .P^^ . ^COCn-gJ .Z* ) ) 
i+j=p-l 

by Shapiro's lemma and the Kiinneth theorem. We note the following 
easy facts: 

PROPOSITION 7.10. a) Er
pq = 0 outside 0 < q < n + 1. 

b) Ifq^n mod 2 tfien 2££ , = 0. 
c) 

' Z / 2 g = 0 
P(5 n ) g = ra 
0 otherwise. 

EL = < 

d) ££ 0 *ff p (O(ra) ,Z ' ) . 

Proof: a) is obvious. 

b) follows from (7.9) and "center kills" for the element ( - idn_g) 
O(ra-g) . 
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c) By (7.9) we get for 0 < q < n : 

El
0q = V(Sq)/2V(Sq) = 0 

by Gerling's theorem. Since EQU+1 = It,El — V(Sn) and since d1 : 
Z —y V(Sn) sends the generator to [Sn] with non-zero volume we get 

£o,n+i = 0, Eln = V{Sn)/Z. 

d) follows from (7.9) and example 7.1. 

EXAMPLE 7.11. n = 3. The I^-term is as follows: 

4 
3 
2 
1 
0 

Z 
V(S3) 

0 
0 

Z/2 
0 

2-torsion 

^ . i 

2-torsion 
1 

2-torsion 
F 1 

2-torsion 
2 

2-torsion 
3 

where 

(7.12,i) El1 = H1(0(2) xO(2) ,Pt(5 1 )*®Z ; ) 

£ ^(S 1 ) ® # i (0 (2 ) , Z<) © # i (0 (2 ) , P t ^ 1 ) ' ) ® Z/2 

(7.12,ii) f^.i = ff2(0(2) x 0(2), Pt(51) t ® Z<). 

In (7.12,i) the first term is isomorphic to E ® (E/Z) and the second 
term has at most order 2 by example 7.2. Furthermore d? : V(Sn)/2* —>• 
R(g> (E/Z) is identified with the Dehn-invariant. Similarly one shows in 
(7.12,ii) that E\tl is annihilating by 2. Hence we conclude the following: 

PROPOSITION 7.13. There is an exact sequence 

# 3 (0(4) , Z<) -* V{S3)/Z 4 E ® E / Z ->• ff2(0(4), Z*) 

where the kernel of the first map is annihilated by 8 and the cokernel of 
the last map is annihilated by 4-

Remark: Since the double covering group Pin (4) of 0(4) has the form 
Pin(4) = (Si x S2) xi (Z/2) with 5,- £ Sp(l) £ SU(2) as explained in 
chapter 6, one conclude that 

Hi(0(4), Z*) £ tf;(SU(2), Z) © 2-torsion, for i < 3. 
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Hence we have established the exact sequence c) in theorem 1.7 except 
for the kernel of the beginning map and the cokernel of the end map, 
which may a priori be groups annihilated by 8 respectively 4. One can 
get rid of these 2-torsion groups by a closer analysis of the above spectral 
sequence using the group Pin(4) all the way through. Alternatively one 
can use a different description of V(Sn)/T,V(Sn~l) as we shall now 
indicate. 

As in chapter 3 we let C*(5n) denote the chain complex of all tuples 
of points in Sn. Then one can prove the following: 

THEOREM 7.14. For n > 0 there is a natural isomorphism 

P ( S n ) / £ P ( 5 n - 1 ) S* Hn(SO(n+l)\C*(Sn)). 

Proof: By Gerling's theorem V(Sn) = V(Sn,SO{n + 1)) and as in the 
proof of theorem 7.4 we obtain an exact sequence 

V{Sn-1) = #„(S(0(n) x 0 ( l ) ) 1 Pt (5 n - 1 ) ) 4 H0(SO(n + 1), Pt(5n)) 

A tf0(SO(n + l ) ,S t (S n ) ) ->-0 , 

where S(0(n) x 0(1)) = SO(n + 1) n (0(n) x 0(1)). That is, 

P (5 n ) /S7 ' (5 n - 1 ) ^ H0(SO(n + l),Hn(C(Sn)/Cm(Sn)n-1)) 

/ q(5") /C.CST-1 ' 
n V S 0 ( n + l ) / S0(n + 1) 

and we claim that the map 

/ q(5") \ / q(S") /c,^")"-1 

n\S0{n + l)J n\S0(n + l)/ S0(n + 1) 

* v(sn)/i:v{sn-1) 
is an isomorphism. An inverse is provided by the composite map in the 
diagram 

ff0(o(n +1), st(SY) -*~ H. (%^/S^rf. 
A 

h 

V(Sn)/XV(Sn-') Hn ( | ^ 
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where the right hand vertical map is induced by sending a chain c to c—c1 

with c' the mirror image of c. We refer to [ D u p o n t - P a r r y - S a h , 1988, 
§5] for the details. • 

R e m a r k 1. The hyperhomology spectral sequence for Spin (4) = 
S\ x 5*2 acting on C*(S3) gives similarly to proposition 7.13 the following 
exact sequence (see again [ D u p o n t - P a r r y - S a h , 1988, §5] for details): 

(7.15) 

0 -> Q / Z ->• ff3(SU(2)) -»• V{S3)/i:V(S2) ^ - R / Z ® R / Z -> 

-» ff2(SU(2)) -+ 0 

where Q / Z is the 3rd homology group of the subgroup of U( l ) C Sp(l) = 
SU(2) consisting of the roots of unity. Comparing this with the sequence 
in proposition 7.13 gives the exactness at the beginning and end of the 
sequence c) in theorem 1.7. 

R e m a r k 2 . A lune in Sn of angle 0 6 [0, 27r] is a polytope of the form 

L(9) = closure {x € Sn | (x\, X2) — ( r cosu , rs in u), r > 0, 0 < w < 0} 

i.e. the join of an arc of length 9 with Sn~2. L(9) is called a rational lune 
if 0/2TT is rational. Clearly V61(L(0))/Vol(Sn) = 0/2TT SO in particular 
for L{9) a rational lune [1(0)] represents 0/2TT E Q C V{Sn). Note 
tha t L(2n/q) is a fundamental domain for the cyclic group of order 
q generated by the rotation of angle 27r/g in the (x\, X2)-plane. It is 
shown in [ D u p o n t - S a h , 1982] that any spherical polytope which is 
the fundamental domain for a finite subgroup G of 0 ( n + 1) is scissors 
congruent to a rational lune i.e. to L(27r/ |G|). 

R e m a r k 3 . In the spectral sequence (7.9) there is an edge homomor-
phism 

a : Hn(0(n+ l),Z*) -> E ~ n C E2
0>n = V(Sn)/Z. 

To describe this explicitly on the chain level we consider both the bar 
complex B*(0(n+1)) and the chain complex C*(Sn) as chain complexes 
of Z[0(ra + l)]-modules augmented to the trivial 0 ( n + l)-rnodule Z and 
since C*(Sn) is (n - l)-connected we can extend the identity Z —> Z to 
a chain map of 0 ( n + l)-modules 

a : B,-(0(n + 1)) -> Ci{Sn) for i ^ n. 
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After tensoring with the 0(n + l)-module Z' we get the desired map on 
the chain level 

B„(0(n + 1)) 
®Z[0(TJ+1)]

 Z* ~ *~ Cn{Sn) 0Z[O(n+l)] Z ' 

For the case of the spectral sequence associated to the sequence in the­
orem 3.11 

Elq - Hp{0{q + 1) X 0(n - q),St(SqY ® Z*) => / / p + 9 (0 (n + 1), Z*) 

the corresponding edge map 

a : i7„(0(n + 1), l}) -+ ££„ = V{Sn)lY.V{Sn-1) 

^frnf [a(5n)/a(5n)n_1] ® z* 
\ 7,[0(n+l)] 

is given on the chain level by choosing x0 G 5 n and putting 

^[ffil ---Ififn] = (^cfi'i^o, 51^2^0,. ..,ffi...fif„a;o). 

We shall return to this in chapter 10. 





CHAPTER 8 

Hyperbolic scissors congruence 

We now turn to the case of hyperbolic geometry. In particular in this 
chapter we shall obtain the exact sequence in theorem 1.7, b). It is con­
venient to use various models for the hyperbolic n-space Hn depending 
on the situation and we shall once and for all refer to [ Ive r sen , 1992] 
for the identification between them. In chapter 2 we considered the 
"quadric" model but we shall also make use of the "disk" model 

Dn = {x = (xu...,xn) | \x\ < 1} 

or the "upper half space" model 

K+ = {x = (x!,...,xn) I xn > 0} 

which are the Riemannian spaces with the metric given by 

ds2 =4{l-\x\2)-l^dxf fori?", 
i 

ds2 =(l/x2
n)J2dxl forR^.. 

i 

For the study of polytopes it is necessary to know the geodesic sub-
spaces in each model: In the "quadric" they are just the non-empty 
intersections with linear subspaces. In the "disk" or "upper half space" 
they are the non-empty intersections with spheres or hyperplanes in­
tersecting the "boundary" at 90°. The set of boundary points dHn is 
in the case of Dn visibly the (n — l)-sphere S 7 1 - 1 and in the case of 
R+, dHn — (IK™-1 x 0) U {00}, and points on the boundary are usually 
called "ideal points". We shall also use the notation H = Hn U dlin. 

Also let us denote the group of isometries for 7in by G(n). As 
mentioned in chapter 2, G(n) = 0 1 ( l , n ) . 

63 



64 Scissors congruences, group homology and characteristic classes 

Let us now try to compute the scissors congruence groups VCHn). 
For n — 1,1-L1 and El are isometric via the exponential map; hence 
V{Hl) = K and again the isomorphism is given by the "length" function. 
For n > 1 we could of course proceed as in the previous chapter and try 
to calculate the hyperhomology spectral sequence for the Lusztig exact 
sequence in theorem 3.11. However it is convenient to make use of the 
geometry of the boundary d%n as follows: 

First notice that it makes good sense to consider polytopes where 
some of the vertices are allowed to be ideal points and we get in this way 
a scissors congruence group V(Hn). Note however that Zylev's theorem 
(cf. the remarks following definition 1.6) tha t stable scissors congruence 
implies scissors congruence, does not hold in this case: 

E X A M P L E 8 .1 . In the upper half plane model for Ti2 consider the 
triangle A bounded by two vertical lines going to the vertex oo and a 
half circle perpendicular to the boundary (see figure). If we bisect the 
strip between the lines and draw the half circles intersecting each piece 
at the same angles as in A we obtain a scissors congruence 

A U A ~ A H P 
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where P is a polygon with only finite vertices. Hence in the scissors 
congruence group [A] = [P] but since A has one ideal vertex A and P 
cannot be scissors congruent. 

We would also like to define a scissors congruence group V(d7in) 
where only ideal vertices are allowed; but here it is less clear how to 
define scissors congruence since cutting with a hyperplane invariably 
introduces finite vertices. However notice that theorem 2.10 remains 
valid also for X = W1 so that (given an orientation of W1 - e.g. the 
canonical one) we get an isomorphism 

(8.2) V{Un) *± H0{G(n),Hn(C*{iin)/C*('Hn)n-1)t) 

where C*(Hn) denotes the chain complex of all tuples of points in %n 

with the rank filtration C^{T-in)p,p — 0,1, 2 , . . . . We can therefore simply 
define 

(8.3) V(dUn) = H0{G{n),Hn{C4d'Hn)/C*{d'Hn)n-ly) 

where C*(d'Hn) are defined in the obvious way but only allowing points 
on dTT. 

Explicitly V{dTin) is the abelian group with generators (ao,..., an) 

with a,- G dW1, and relations: 

(8.4,i) (ao, • • •, an) = 0 if {ao, . . . , an} lies on a hyperplane, 
n+l 

(8.4,ii) ^ ( - l ) ' ( o o , . . . , a j , . . . , a n ) = 0 for a 0 , . . . , an+i <E dUn 

(8.4,iii) (ga0,...,gan) =det(g)(a0,...,an) geG(n). 

We now have the following: 

THEOREM 8.5. a) The inclusion Tin C %n induces an isomor­
phism Ln : V{Un) -£ V{Un) forn> 1. 

b) There is an exact sequence 

ff!(0(n), St(5n _ 1) ' ) -)• V{dUn) -)• V{Un) -+ H0(O(n), St(5n"1) ') -> 0 

c) In particular for n oddV(d'Hn) —> V(Hn) is surjective with kernel 
consisting of elements of order at most 2. 

d) Also for n > 0 even there is an isomorphism 

r(nn)/im{V(dnn) ->• V(Un)) £ 7 ' (5 n - 1 ) /S7 ' (5 n - 2 ) . 
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Sketch proof, c) and d) clearly follows from b) together with "center 
kills" and theorem 7.4. Let us sketch the proof of a) - the proof of b) is 
similar. Similarly to the isomorphism in theorem 3.5 

(8.6) V{nn)^H0(G(n),St{nnY), St('Hn) = Hn_1(T('Hn),Z) 

we have 

(8.7) V{Un) * H0(G(n),StCHny), St(7T) = Kn-x{T{Un),%), 

where ideal points are allowed in the Tits complex for T{7in). Also for 
p € dW1 we have a Tits complex T(Hn,p) of flags ending in p, and we 
consider 

StCHn,p) = Hn-2(TCHn,p),Z) 

as a Gp-module, where Gp C G{n) is the isotropy subgroup at p. Then 
one shows that there is an exact sequence of G(?i)-modules 

0 -> St(7T) - • St(Un) ->• 0 S t ( ?T ,p ) -*0 
pedUn 

from which we obtain the exact sequence 

Hi G{n), 

(8.8) 

0 st(iin,p) 
pedHn 

V{Hn) ^ V{Hn) 

- > # o \G(n), ©St(#\p) 
pedH 

Here by Shapiro's lemma 

Hi(G00,St(iin,oo) Hi[G(n), 0 S t ( # » 
pedHn 

and in the upper half space model there is a 1-1 correspondence between 
the geodesic subspaces through oo and the afflne subspaces of the bound-

on— l ary JK"~\ Hence St(%ra,oo) ^ S t ^ 7 1 - 1 ) and via this isomorphism G^ 
acts as the group of similarities 

Goo = Sim(ra-l) = T ( n - l ) K S i m 0 ( n - l ) , Sim0(n-1) = 0 ( n - l ) x R * 

Hence a) follows from the sequence (8.8) and the following claim: 

(8.9) H4S\m(n),St(EnY) = 0 for n > 0. 
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To show (8.9) one uses the Hochschild-Serre spectral sequence of the 
extension 

1 —>• T{n) —> Sim(n) —> Sim0(n) —> 1 

with E 2 - term H*{SimQ(n), H*{T(n),St(En)Y). However by the argu­
ment of chapter 4, H„,(T(n), S t (£ m ) ) ' ) consists of rational vector spaces 
on which the dilatation fia by a positive integer a acts by multiplication 
by aq for q > 0. Hence by "center kills" the E2-term vanishes which 
proves (8.9), and ends the proof of a). The proof of b) is similar (but 
easier) and we refer to [Dupont -Sah , 1982] for the details. • 

Now let us return to V{Wl) in low dimensions: 

E X A M P L E 8.10. n = 2: By theorem 8.5 we have V{U2) ~ V{H2) 
and there is an exact sequence 

(8.11) 

ffi(0(2),St(51)i) -»• V(dU2) -»• V{U2) -> V{Sl)/T,V{S°) -»• 0. 

Now in the upper half plane model dU2 = K U {oo} and G(2) = 
PS1(2,R) tx (Z /2) , where g £ PS1(2,R) acts by 

g{z) = {az + b)/(cz+d) for z E R U J o o } , » = ( ° d ) ' 

and Z / 2 by multiplication by ± 1 . Since V(dfL2) is generated by all 
triples of points on d%2 and since PS1(2,R) acts transitively on such 
triples it follows from (8.4) that V(dU2) ^ Z . By example 7.2 the first 
term in (8.11) has order at most 2 and V{Sl)/T,V{S°) = R / Z T T ; hence 
we obtain tha t 

0 -»• Z -> P (? i 2 ) -»• R /ZTT -»• 0 

is exact. From this it clearly follows that the "Area"-function provides 
an isomorphism V{U2) = R. 

For n = 3 theorem 8.5 gives tha t V(n3) = V{H3) and the inclusion 
dfL3 C "W3 induces a surjection V(d?i3) —>• Vifi.3) with kernel consisting 
of elements of order 2. As we shall see later V(d7i3) is actually torsion 
free so that indeed V{dli3) = VCH3) = V(n3). In the upper half 
space model we identify the boundary with the Riemann sphere d7i3 = 
C U {oo} and G(3) = PS1(2, C) K Z / 2 acts by 

. . az + b ( a b \ O W o _. 
9{z) = ^Td ^s=[c cjesi(2,c) 
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and the generator of Z / 2 acts by z \—> — z. Now it is convenient to 
consider coinvariance with respect to the subgroup PS1(2, C), tha t is, we 
define an abelian group VQ with generators (a0) • • •, ^3), (a; G CU {00}) 
modulo the relations 

(8.12,i) («0) • • • i (13) = 0 if a,- = a,j for some i 7̂  j . 

(8.12,ii) 
4 

2_]( —l'(oo). • •, «i, • • •, 04) = 0 for all 5-tuples of distinct a, 's. 
i=0 

(8.12,iii) (aQ,...,a3) = (gao,...,ga3) for fl G PS1(2, C). 

Now, up to the action of PS1(2,C), each (ao, ...,a4) is determined by 
the cross-ratio 

.. a0 - a2 a\ - a3 

z = {a0 : • • • : a4\ — € C - {0 ,1} . 
a0 - a3 ax - a2 

Indeed, for this z, 

(ao, • • .,03) = 5(00,0 ,1 ,2) for some 5 e PS1(2, C). 

With this motivation we introduce 

Definit ion: Let F be any field. Then VF is the abelian group with 
generators {z}, z £ F — {0,1} and defining "five-term" relations: 

(8.13) 

W - {z2} + {Z2/Z1} - {(1 - *2) / ( l - zx)} + {(1 - z^)/(l - z^)} = 0 

Zl,Z2 G C - { 0 , 1 } , Z I ^ 2 2 . 

R e m a r k : This relation is just a reformulation of (8.12,ii). When F is 
algebraically closed one deduces the following relations for z G F — {0,1} 
(cf. [Dupont-Sah, 1982, lemma 5.11]) 

(8.13,ii) W + -U-1} = 0 
(8.13,iii) {z} + {l-z} = 0. 

We can then introduce the symbols {0} = {1} = {00} = 0 and (8.13), 
i)-iii) remain valid for Z{ G F U {00}. 

When F is algebraically closed one can prove a useful generalization 
of (8.13) known as "Rogers' identity" which we shall now describe: Let 
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/ , g G F(t), the field of rational functions and write 

f(t) =aYl(ai - i )d ( i ) , g(t) ^b]\{fi3 - t)^ 
* j 

where d(i),e(j) G Z and a; G F distinct and (3j G F distinct. Put 

r*9 = Y,d{i)e<j){<*7lfr}Z'PF 

where the sum extends over i, j with a;, /3j £ F — {0} and the expression 
is 0 if f,g G F . We refer to [Dupont-Sah, 1982] for the proof of the 
following: 

THEOREM 8.14. Let F be algebraically closed and let f G F(t). 
Then the following holds in Vp: 

r * ( i - / ) = {/(o)}-{/(oo)}. 

Remark : For f(t) — c(a — t)/(/3-t) one checks that (8.14) is equivalent 
to (8.13) with z\ = c, Z2 = ca//3. 

COROLLARY 8.15 ("The distribution identity"). LetF be algebraic­
ally closed of characteristic 0. Let n G N and £ G F a primitive root of 
unity. Then for z G F arbitrary the following holds in Vp-

ra-l 

Proo/: For f(t) = (1 - P ) / ( l - z") = (jj^o (0 - *)) / ( I " ^ ) w e h a v e 

1 - fit) = (in - z")/( l - zn) = \j\(zC - t) j / (*" - 1), 

and (8.15) follows from (8.14), since 

{/(0)} - {/(oo)} = {(1 - / ) - ' } - {~} = {*"}. 

• 

From this one deduces (cf. [Suslin, 1986], [Suslin, 1991]) 
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T H E O R E M 8.16. For F algebraically closed of characteristic zero VF 

is uniquely divisible. 

Sketch proof. That VF is divisible is obvious from corollary 8.15. 
To prove unique divisibility one must prove that for n G N, and £ a 
primitive n ' th root of 1, 

n - l 

{w}/n = ^{Cjwl'n} 
3=0 

is well-defined, i.e. respects the relation (8.13). In general this is 
rather complicated and uses more algebraic geometry. We refer to 
[Suslin, 1986] for the details. For n = 2 however the proof is rather 
simple: We must show tha t {z}/2 = {z2} -f {—zi } satisfy the identity 

{z1}/2-{z2}/2 + {z2/z1}/2-{(z2-l)/(zl-l)}/2 + 

( 8 ' 1 ? ) + { ( z 2 - 1 - l ) / ( * 1 - 1 - l ) } / 2 = 0 

for z\,z2 € F — {0,1}, z\ / z2. For this we write Z{ = wf, i — 1, 2, and 
consider 

,,,x (t-ai)(t-a2) w2 l + w2 

f(t) = -wl———— - , a i = — , a 2 = - . 
(t - l)(t + a2) wi 1-wi 

Direct computation shows tha t 1 — f(t) has simple zeroes at ±(wl — 

l)z/(w\ — 1)2 and simple poles at 1 and — a2. Using the fact that 

{ — 1} = 2({i} + {—i}) = 0 in VF we conclude from theorem 8.14: 

W -{-w1} = {{z-1 - l)/{z?)}/2 -{(z2- l)/(z, - l)}/2 -

- W M - {-(Wl - l)/(w2 - 1)} - { - > - * + l)/{w-1 - 1)}. 

Now replacing z\,z2 by — w2, w\ in (8.13) and adding the result to the 
above equation gives (8.17). • 

COROLLARY 8.18. There are canonical isomorphisms of rational vec­
tor spaces 

v(ns) =* v{n3) = v(dn3) =* v^ 
where VQ is the (—l)-eigenspace for {z} i->- {z}. 
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Proof: Comparing (8.4) and (8.12) we get 

V(dH3) = Vc/ span{{*} + {z}, {r} | z e C, r € R } . 

However 

W = 2f{r^} + {-rl}' 

so that the last group equals Vc/span{{z} + {2} | 2 G C} = "P^ since 
Vc is 2-divisible. This proves the last isomorphism in (8.18). Since 
V(d7i3) —>• V(rl.3) is surjective with kernel annihilated by 2 and since 
V(dH3) is torsion free the middle isomorphism is proved. • 

For Vc there is an exact sequence similar to b) in theorem 1.7. This 
is a reformulation of a result of D. Wigner and S. Bloch (unpublished, 
cf. [Bloch, 1978]): 

T H E O R E M 8.19. Let F be algebraically closed of characteristic 0. 
Then there is an exact sequence 

0 -> Q / Z -» ff3(Sl(2, F) ) 4 ? F A Al(Fx/fiF) -»• ff2(Sl(2, F) ) -> 0. 

ffere Q / Z = H3(HF,^) where /ip C F x is ifte group of roots of unity 

and the first and last map is induced by £ i->- I ^ ._} I. T/ie map 

a is given by o-([gi\g2\g3]) = {00 : 5100 : gig2oo : fifi#2#30o} G 7>c-
Also A is ^iuen fry X(z) = 2 A (1 - z) an<i £/ie /asi map sends a A 6 to 
[a\b]-[b\a],a,b£ F x C S 1 ( 2 , F ) . 

Proo/: We consider the action by G = SI (2, F ) on F 1 (F) = F U {00} as 
before which induces an action on the chain complex C* = C*(Pl(F)) 
of (k + l)-tuples in degree k, ( a 0 , . . . , afc), o-i G F 1 (F ) , of distinct points. 
Since F is infinite it is easy to see similarly to lemma 3.6 that the chain 
complex is acyclic, and since ( J / { ± 1 } is exactly 3-transitive on P1(F) 
we have that Ck is induced from {±1} C G, for k > 2. Hence for k > 2 
we have 

'Z[Gk-\ » = 0, 

ffi(G, Cfc) = <{ Z/2[G f c-2] , i odd 

0 i even > 0. 
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Furthermore for k = 0 and 1 the isotropy subgroup is 

a b 
B = 

T = 

0 a'1 

a 0 

a / 0 > for k = 0, 

a^o\ for k = 1. 
0 a - 1 

Hence, by Shapiro's lemma, "center kills" and proposition 4.7, 

ffi(G,C0) = ff,-(G,Ci) 2 H , ( F X , Z ) = A J
Z ( F X / ^ F ) © ff;(/XF, 

The hyperhomology spectral sequence (Appendix A) 

p,g 
Hp(G,Cq) => Hp+q(G) 

thus has the following ii^-term 

4 
3 
2 
1 
0 

HO{G,CA) 

H0(G,C3) 
Z 
z 
z 
0 

2-torsion 
Z/2 
F x 

F x 

1 

0 
0 

A 2 ( F * / / * F ) 

A 2(FX / / ,F) 
2 

2-torsion 
Z/2 

A 3 ( F x / / i F ) © Q / Z 
A 3 ( F X / M F ) © Q / Z 

3 

with generator for q = 0,1,2 being respectively (oo), (oo, 0) and (oo, 0 

Since w = I . ) induces z i->- — z_1 in F x and interchanges 

and 0 it is easy to compute d1 and we get for E2: 

3 
2 
1 
0 

Vc 

0 
0 

z 
0 

2-torsion 
0 
0 
0 
1 

0 
0 

A2(Fx / /xF) 
A 2 (F X / M F ) 

2 

Q/Z 
Q/Z 

3 

Here we claim that F ^ = 0, i.e. tha t the natural map 

A 2 ( F X / M F ) = E\x -* E% -> H3(G,Z)/(Q/Z) 
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vanishes. To see this we split the chain complex C* into exact sequences, 

0 -> Zi -> C, -»• Z 0 -> 0 

etc., and the map above is the composite 

# ! , ! = H2{G,d) -> H2{G,Z0)
 d^ H3(G,Z)/H3{G,C0) 

But the first map sends the generator (oo,0) to (0) — (oo) in ZQ and 
the element w above acts as (—1) on this but induces the identity on 
H2(T) = A2(_Fx//x). Hence the image is annihilated by 2 and is there­
fore 0. 

The exact sequence in theorem 8.19 now easily follows from the 
above E2-term. It is straight forward but somewhat tedious to iden­
tify the maps in the sequence (actually strictly speaking A should be 
multiplied by 2) and we just refer to [Dupont -Sah , 1982] for the de­
tails. • 

R e m a r k 1. We now obtain the exact sequence b) in theorem 1.7 
simply by taking the (—1)- eigenspace for complex conjugation in all 
terms of the exact sequence in theorem 8.19 for F = C Thus we have 
a natural identification 

R ® ( R / Z ) 2 A 2 (C X )~ 

via the map r 0 6/2n •->• — er A e'e, and it remains to check that the 
Dehn-invariant is given by 2A~. This can be done by comparing the 
spectral sequences for the Lusztig exact sequences for both fin, T-Ln and 
dUn. Alternatively first notice tha t via V{dUz) = V^ the symbol 
{z} = [(oo,0,l, .z)] represents the totally asymptotic 3-simplex with 
dihedral angles a, /3,7 at 3 pairs of "opposite" edges such tha t a = 
Arg z,/3 = Arg( l — z) and a + /3 + 7 = n. By an easy calculation 
\~{z} eM.® (R /Z) is then given by 

D{oo, 0 , 1 , z) = 2\~{z) = z A (1 - z) - z A (1 - z) 

In fact, as observed by W. Thurston (unpublished) the formula (1.2) for 
the Dehn-invariant makes sense also for a polyhedron with ideal vertices 
if just we delete a horoball around each of these and if for A an edge with 
such a vertex the length £(A) is measured only up to the horosphere. 
The indeterminacy in this definition vanishes since the sum of angles at 
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edges ending at an ideal vertex is a multiple of n. With this definition 
one then checks the formula above for D(oo, 0 , 1 , z). Again we refer to 
[ D u p o n t - S a h , 1982] for the details. 

R e m a r k 2. Similarly to the spherical case the hyperhomology spectral 
sequence for the Lusztig exact sequence for 7in (theorem 3.11) has the 
form 

and in particular we get an edge homomorphism 

a : Hn(G(n)X) -> E%n C £ 0 \ n = V(Un) 

and again this is described on the chain level by the same formula as for a 
in Remark 3 following theorem 7.14. For n — 3 it agrees in VQ = V(l-L3) 
with the component a~ of the map a in theorem 8.19. However the 
component a+ is not in any obvious way related to "oriented" hyperbolic 
scissors congruence since by Gerling's theorem (theorem 2.2) V{%n) = 
V(Hn, S 0 1 ( l , n ) ) . As we shall see in the next chapter V£ is rather 
closely related to V(S3). In this connection observe tha t if a polytope 
P C 7in is the fundamental domain for a discrete co-compact group T C 
S 0 1 ( 1 , n) then Mr = T\fLn is an oriented manifold and the fundamental 
class defines a canonical element [Mr] G Hn(Mr) = Hn(T) and hence 
by the inclusion T C S O a ( l , n) , [Mr] G Hn(SOl(l,n)). It is straight 
forward to check tha t a[MT] = [P] G V(Un). That is, for n = 3, we 
have a'[Mr] = [P] G V{U3). But it is not clear how to find cr+[Mr] in 
terms of P C Uz. 

R e m a r k 3 . In contrast to corollary 7.7 there is no easy way to 
relate V(K2m~l) and V{U2m). A substitute is theorem 8.5,d) which 
reduces the calculation of V(7i2m) to im(V(d'H2m) ->• V(n2m)). The 
first question here is to determine this latter group for m = 2. 

As a last remark let us note the following consequences of theorems 
8.16 and 8.19 (cf. [Suslin, 1991], [Sah, 1989]): 

COROLLARY 8.20. a) For F algebraically closed H2(S\(2,F)) is 
a rational vector space and f f3(Sl(2,F)) is the direct sum of a 
rational vector space and Q / Z = H^PLF)-

b) 7?('H3) is a uniquely divisible group, i.e. a rational vector space. 
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Remark: We shall show that also V(S3) is a Q-vector space in the 
next chapter (corollary 9.19). 





C H A P T E R 9 

Homology of Lie groups made discrete 

At this point it must now be clear tha t there are needed some homology 
calculations of the isometry groups for the 3 geometries and related Lie 
groups considered as discrete groups. This subject was first considered 
in connection with the theory of characteristic classes for foliations (see 
e.g. [Kamber-Tondeur , 1968], [Cheeger-S imons , 1985]). It has 
also been investigated for the case of classical algebraic groups in con­
nection with algebraic A'-theory in particular by A. Suslin. We shall 
skip many proofs, which are rather long. However some of the meth­
ods are closely related to the ideas used in the previous chapters. An 
example of this is the following stability theorem of [Sah, 1986]: 

T H E O R E M 9 .1 . Consider the unitary group G(p,q) = \J(p,q,¥) £ 
Gl(p + q, F), F = R , C or i , of matrices preserving a Hermitian form 
of signature (p, q). The map induced by the inclusion 

is an isomorphism for i < q and a surjection for i = q. 

For the proof let us assume for convenience tha t F = K and p = 0, 
tha t is, we shall show tha t 

Hi(0(n))->Hi(0(n + l)) 

is an isomorphism for i < n and a surjection for i = n. As in chapter 
7 let us consider the chain complex C*(Sn) of 0 ( n + l)-modules. The 
main step in the proof of theorem 9.1 is the following lemma; 

L E M M A 9.2. ff;(0(n + l)\C*(Sn)) = 0 for 0 < i < n. 

77 
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Proof: As before consider the rank filtration C*(Sn)p C C*(Sn) and 
observe that the natural inclusion i : ,S'n_1 C Sn gives an identification 

(9.3) 0 (n ) \C , (S n _ 1 ) = 0(n + l ) \C(S n ) n _ 1 -

Furthermore the cone construction with the canonical basis vector en+i = 
(0 , . . . , 1) E S™ defines a chain homotopy s between z* and the zero map 

s(a0,..., an) = (en+i, a 0 , . . . , a^), a 0 , . . . , an E Sn~ . 

Hence by (9.3) 

Hi(O(n+l),C*(Sn)) = 0 f o r i < n - l , 

and the pair ( 5 n , 5 n _ 1 ) gives an exact sequence 

0 ( n + l ) / " V O ( n + l ) / 0(n + l) 

However as in the proof of theorem 7.14 

fir, 
, 0 ( n + l ) / 0 (n + l) 

H0(O(n + 1)/ SO(n + 1), P(5 n ) /E7 ' (S n - 1 ) ) 

and hence this is annihilated by 2 since the action is the untwisted one. 
However V(Sn) is 2-divisible, hence the above group vanishes which 
proves the lemma by the above exact sequence. • 

Proof of theorem 9.1. Since C*(Sn) is acyclic by lemma 3.6 we get 
a hyperhomology spectral sequence 

E\A = Hp(0(n+l),Cq{Sn)) =» Hp+q(0(n + l ) ,Z) . 

Let us prove the theorem by induction and observe that it is true for 
n = 1. In the above spectral sequence we then have by Shapiro's lemma 
and the induction hypothesis that 

E™-£(qS+l)®Hv(0(nV for?<n-p, P < n, 

and for q = n - p the coefficient group is either Hp(0(n)) or Hp(0(p)) 
mapping surjectively to Hp(0(n)). Hence by the argument of lemma 
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9.2 

£2 f t f p (0 (n ) ) g = 0, 
p,q [0 Q<q<n-p. 

(A careful inspection of the coefficients is needed for q = n — p cf. 
[Sah, 1986]). From this it follows tha t # , - (0(n + 1)) ^ Ht(0{n)) for 
i < n and Hn(0(n + l)) is a quotient of Hn(0(n)). This establishes the 
induction and ends the proof of the theorem. • 

For D a division ring with infinite center (e.g. D = R , C or H) one 
can use the same kind of arguments as in the proof of theorem 9.1 but for 
the action of Gl(n + 1, D) on Dn+1 — {0} and one obtains the following 
result due to A. Suslin (see [Sah, 1986, appendix B] for details of the 
proof): 

T H E O R E M 9.4. Let D be a division ring with an infinite center. 
Then 

a) Hi{G\{n, D)) -> Ht(G\(n + 1, D)) is bijective for i < n. 
b) The inclusion Gl(l,D) X ••• x G1(1,D) —>• Gl(n,D) induces a 

surjection 

ffi(Gl(l, D)) (8) • • • <g> # i ( G l ( l , £>)) ^ 

Hn(Gl(n,D)) 

im(Hn(G\(n -l),D)-> Hn(Gl(n, D)) 

R e m a r k 1. For D = F an algebraically closed field Gl(ra,F) = 
Sl(n, F) x Fx. Hence a) is true also for Gl(n) replaced by Sl(n) in this 
case. Furthermore it follows from b) in the same case that for n > 2 the 

map Sl(n - 1) X Gl(l) —>• Sl(n) sending (g, A) (->• ( . ) induces 

a surjection on Hn. We shall return to this in chapter 13. 

R e m a r k 2. For D = F an infinite field [Suslin, 1984] identi­
fied the quotient Hn(Gl(n,F)) /im{Hn(Gl(n - 1,F) -» Hn(Gl{n,F))) 
with a direct summand K^(F), the "Milnor K-group", or the "de­
composable part" of the algebraic A"-group of D. Quillen Kn{F) = 
nn{BGl(oo, F)+),n > 0. Notice tha t K^F) ^ Fx = H^GlfaF)) 
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for all n > 1. Also for F algebraically closed it follows by the Hurevicz 
theorem together with theorems 9.4 and 8.19 that for n > 2: 

(9.5) 

K2(F) = I<M(F) = ff2(Sl(n,F)) * A | ( F * ) / { * A (1 - z) \ z G F - {0}} 

Similarly (cf. chapter 15 or [Sah, 1986, appendix B]), again for F 
algebraically closed, 

(9.6) K3(F)^H3(S\(n,F)) = H3(S\(2, F ) ) © A ' 3
M ( F ) , for n > 3, 

so that there is a natural identification of #3(S1(2, F) ) with A' 3 (F) i n d e c ' , 
the "indecomposable part" of K3(F). As we shall see these results are 
particularly important for the study of scissors congruences in spherical 
and hyperbolic 3-space. 

For the Euclidean group E(n) = T(n) XI O(n) the statement analo­
gous to theorem 9.1 is the following 

T H E O R E M 9.7. The inclusion map 0(n) C E(n) induces injective 
maps 

Ht(0(n)) -»• Ht(E(n)) 

for all i. 

This map is surjective, hence bijective for i < n. 

For the proof we again analyze the spectral sequence for the action of 
E(n) on the acyclic complex C»(F n ) of all (fc + l)-tuples ("fc-simplices") 
(ao, • • •, o-k) °f points in En and we notice that the isotropy subgroup of 
a point is just 0{n). Theorem 9.7 therefore follows in the same way as 
for the proof of theorem 9.1 just we prove the following: 

L E M M A 9.8. E(n)\C*(En) is n-acyclic. 

Proof: For this let us consider the subcomplex Cftn(En) of "generic" 
simplices (ao, . . . ,afc) with vertices in general position , i.e. for every 
p < n there is no subset ( a l 0 , . . . , a lp) contained in a (p- l)-dimensional 
affine subspace. Then the lemma clearly follows from the following to 
properties of the natural map 

U : Hk(E(n)\Crn(En)) -»• Hk{E(n)\C*(En)) : 
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(9.9,i) i* is the zero map for 0 < k < n, 

(9.9,ii) i* is a surjection in all dimensions. 

To see this recall tha t the identity: C*(En) —> C*{En) is chain homo-
topic to the "barycentric subdivision" sd : C*(En) —)• C*(En) defined 
inductively on a simplex a — ( a 0 , . . . , a^) by 

(9.10) sd(a) = ca * {sd(da)) 

where ca is the barycenter of a and 

ca * (b0,...,bi) = (ca,b0,...,bi). 

Now, if a is a generic simplex of dimension < n then in (9.10) we let ca 

denote the circumcenter of a i.e. the unique point in span(<r) having 
equal distance from all the vertices a o , . . .,«&• With this construction 
i : Cfen(En) -> Ck{En) is chain homotopic in dimensions k ^ n to 
sd : C f n ( £ n ) -»• C f c (£ n ) where 

s < %) = Yl ±(C*<»--->C*J 

However in this sum the terms where <7fc-i = {ai,aj),Gk = (a;) cancel 
with the terms where Ck-i — (aii a j ) ; °~k = (°j) since they are congruent 
by the reflection in the hyperplane bisecting (a,-, a,j) and since they occur 
with opposite signs. This proves (9.9,i). For (9.9,ii) we have a similar 
construction of a subdivision operator sd : C*(En) —> C*en(En) by the 
formula (9.10) but this time we choose as ca some point in general 
position to previous choices of cT for r C o~. • 

As an application we can now prove the vanishing result needed in 
the proof of Sydler's theorem (theorem 6.1): 

T H E O R E M 9 .11 . Hp{0{n), A^(Rn)) = 0 ifp + q < n, q > 0. 

Proof: The Hochschild-Serre spectral sequence for the extension 

0 -4 T{n) ->• E{n) ->• 0(n) -> 1 

has 
Elq = Hp(0(n),Hq(R

n)) => Hp+q(E(n)), 

and by proposition 4.7, ii), we have Hq(R
n) =* A^(Kn) for g > 1. As in 

chapter 4 the dilatation /i a : R n —>• R n by a € N gives an endomorphism 
commuting with the differentials dr : Er

pq —>• Ep_r +r_1. Again fia 



82 Scissors congruences, group homology and characteristic classes 

induces multiplication by aq on AfJR™) so tha t dr = 0 for r > 2. Hence 
for p + q = k<nwe conclude from theorem 9.7: 

k 

Hk(0(n)) = Hk(E(n))^Hk(0(n))(B^Hn^q(0(n),A}}(R
n)) 

9 = 1 

from which the theorem clearly follows. • 

For the group O 1 (1, n) of isometries of hyperbolic space we have the 
following result of [ B o k s t e d t - B r u n - D u p o n t , 1998] similar to theo­
rem 9.7: 

T H E O R E M 9.12. The inclusion map 0 ( n ) C 0 1 ( 1 , n) induces an 
isomorphism Hi(0(n)) —> i f , - (0 1 ( l , n)) for i < n and a surjection for 
i = n. 

The proof of this theorem follows the same strategy as the proof of 
theorem 9.7 and similarly we must prove 

L E M M A 9.13. 0 1 ( l , n ) \ C * ( 7 / n ) is n-acyclic. 

However for the proof of this we encounter the difficulty that a 
simplex ( a o , . . . , a-k) in %fc with the vertices in general position need not 
in general have a circumcenter as seen in the figure below of a triangle 
in Ti2 where two of the bisecting normals do not intersect. 

On the other hand if we subdivide the simplices the geometry gets 
closer to the Euclidean one which makes the existence of circumcenters 
likely for the smaller simplices. However the usual barycentric subdi­
vision does not work since it creates "long and thin" simplices. The 
solution is to use the so-called "edgewise subdivision" of the standard 
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affine simplex A and use the usual parametrisation of a hyperbolic 
simplex a = ( a o , . . . , ak) as in chapter 2: 

•k(*) = / / ^ ^ T ~ ' °(*) = a(t0,...,tk) = V f i f l „ 

t e Afc g Rk+1, 

to t ransport the subdivision to Ttn C IRn+1. Now lemma 9.13 follows 
similarly to the proof of lemma 9.8 from: 

L E M M A 9.14. There is a Ol{l,n)-equivariant chain map Sd-^n : 
C*(7in) —> C*(?{n) chain homotopic to the identity such that for any 
generic k-simplex o~,k < n, there is an integer M such that every sim­
plex in (Sd^n)m(a ' ) , for m > M, possesses a (unique) circumcenter in 
span a. 

We refer to [ B o k s t e d t - B r u n - D u p o n t , 1998, theorem 3.3.1] for 
the proof of this lemma. Let us just give the description of "edgewise 
subdivision" Sd : C*(En) —>• C*{En). Then for any affine simplex r = 
(xo, • • •, xk) in En,k < n, it turns out tha t each simplex in Sd(r) is 
contained in \T\ SO tha t we can define for a a hyperbolic simplex as 
above 

Sd«n(<7) = (£)„(Sd(Ag)) 

where we have used the following notation: For {e,} the standard basis 
of Rn 

Ao = (0, ei , ei + e 2 , . . . , ei + \- ek) = (d0, ...,dk) 

is the "standard" fc-simplex in Em. Hence with fa as defined above we 
put 

fa l^UdA = fa{t0,.. .tk) t=(t0,...,tk) eAk, 

and 

(f'<7)*(x0,...,xk) = {f,
a(xo),...J'a{xk)), Xie |Ag|. 

For the construction of Sd we identify as in chapter 4, C*(En) with the 
bar complex B*(V), V = R n , via the identification 

(x0,...,xk) e C * ( £ " ) <->«0[«i|...|ttfc] G B,(V) 
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where 

X0 = U0, X1=U0 + U\,..., Xk = U0 + U\ H \~Uk. 

In particular the standard fc-simplex above is just 

AQ = 0[ei |e2 | ...\ek], 

tha t is as a set 

Ag = { ( « i , s 2 ) . . . , s j k , 0 , 0 , . . . , 0 ) | 1 > si > s2 > • • • > sk > 0}. 

As usual, we shall identify a simplex uo[^i|u2| • • • \vk] with the affine map 
AQ —y V sending 0 to VQ and e; to u;, i = 1, 2 , . . . , k. 

D E F I N I T I O N 9.15. The edgewise subdivision is the chain map Sd : 
5*(V) —>• -B*(V) given by the composite 

Sd : B,(V) %' B.(V) AJ B*{V) ^ B , ( V x F ) (±1* B , ( F ) 

with the following notation: ( | )* and (+)* are induced by the homo-
morphism 

V A-V respectively V X V ^ V 
1 / N 

1 ) 1 4 - 1 ) (l7, Wj !->• U + W, 

AW is the Alexander-Whitney map (cf. [MacLane, 1963, chap. VIII 
§9 exercise 1] 

k 

AW(v0[vi\ . . . | ] ) = ^ " o b i l . ..|up]<8) {v0-\ | -Up)K+i | ...\vk] 
p=0 

and EZ is the Eilenberg-Zilber shuffle map (cf. chapter 4): 

EZ{v0[vi\ ...\vp}®w0[wi\ ...\wq]) = ^ s i g n o - ( U 0 , W O ) K T I | ...\uak] 
a 

where a runs through all (p, (^-shuffles (cf. MacLane up cit.) and where 
Ui = (u;,0) for i — 1 , . . .,p and «,- = (0, w,-) for i = p-\-1,.. .,p + q = k. 

Remark: As noted in chapter 4, EZ (VQ[VI\ ... \vp] (g> wo[wi| • • • \wq]) is 

represented geometrically by a triangulation of the (p, g)-prism 

v0[vi\ .. .\vp] X w0[wi\ .. .\wq] C V x V. 
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Hence, in the notation of that chapter 

^ o M • • -\vp]Awo[wl\ • • -\wq] =de f { + )*EZ(v0[v1\ . . . \vp]®W0[wi \ . . .\wg]) 

corresponds to a triangulation of the polytope 

M u i l •• -\vp] + -u?o[wi| • • -\wq] C V 

(the "Minkowski sum") . In particular 

k 

/\o AW{v0[vi\ ...\vk}) = ^ u 0 ( u i | ...\vp] A (v0-\ \-vp)[vp+i\ .. .\vk] 
p=0 

corresponds to (a triangulation of) a decomposition of the simplex 
2uo[2ui| . . . \2vk] into prisms (cf. proof of proposition 4.12 and the figure 
below). It follows tha t 

Sd(u0[ui| ...\vk]) -

(9.16) A 1 

p-0 

is a triangulation of UQ[UI| . . . \vk]. 

0 e, 2c, 

AoAW(Al) 

If we now identify the chain complex of affine simplices C * ( A Q ) of 
AQ with the corresponding subcomplex of B*(V), then we obtain the 
following lemma, which follows easily from the above discussion (cf. 
proof of proposition 4.12). 

L E M M A 9.17. i) Sd defines a chain map 

Sd:a(AS)->G.(AS) 
ii) Sd is natural with respect to affine maps 

1 . 

2 r i 1 -

.1 
A ^ K + - • + vp) 2 « P + I I -

,1 
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iii) There is a natural chain homotopy of Sd to the identity, again 
natural with respect to affine maps. 

iv) All simplices in Sd(Ag) are isometric to ^ A Q by a permutation 
of the basis vectors {e t} followed by a translation by a vector of 
the form \(e^ -\ he;,)-

The last statement in this lemma makes it possible to control in a 
uniform way the "shape" of the simplices occurring in the corresponding 
subdivision Sd^n(<r) of a hyperbolic simplex. For details we refer to 
[ B o k s t e d t - B r u n - D u p o n t , 1998] (where however Sd is defined in a 
different but equivalent way). This ends our outline of the proof of 
theorem 9.12. For our applications to scissors congruences let us state 
the following. 

COROLLARY 9.18. a) The inclusion 0 (3 ) C 0 1 ( 1 , 3 ) induces an 

isomorphism # ^ ( 0 ( 3 ) ) —> # ^ ( 0 (1,3)) for k < 3. 
b) The inclusion SU(2) C S1(2,C) induces an isomorphism 

# f c ( S U ( 2 ) ) 4 # f c ( S l ( 2 , C ) ) + , k<3, 

where + indicates the invariant part for the involution induced by 

complex conjugation. 

Proof: a) By theorem 9.12 the only problem is the injectivity for k = 3. 
But by the diagram induced by inclusion maps 

tf3(0(3)) # 3 ( 0 ( 1 , 3 ) ) 

y 

# 3 ( 0 ( 4 ) ) # 3 ( 0 ( 1 , 4 ) ) 

it suffices to show that i : SO(3) —»• SO(4) induces an injection. But 
writing S0(4) = (Si X 5 2 ) / { ± l } as in chapter 7, we get a splitting of i 
by the projection onto the first factor. 

b) By the Hochschild-Serre spectral sequence we now get an isomor­

phism 

# * ( P i n ( 3 ) ) ^ # f c (P in ( l ,3 ) ) for k < 3. 
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Now the result follows from the isomorphisms Pin(3) = {±1} x SU(2) 
and Pin(l,3) = S1(2,C) X { l , r } where r is the involution on S1(2,C) 
given by r(g) — (g*)-1, together with corollary 8.20. Notice that the 

involution r is conjugate (using the matrix I I) to the involu­

tion g i-)- g so in homology these involutions have the same invariant 
parts. • 

COROLLARY 9.19. a) i?2(SU(2)) is a rational vector space and 
i?3(SU(2)) is a direct sum of a rational vector space and 

b) V(S3) is a rational vector space. 

Proof: a) clearly follows from corollary 8.20. b) now follows from the 
exact sequence theorem 1.7, c) together with a) and the fact that Q/Z C 
H3(S\J(2)) is mapped by a to the group of rational lunes in V(S3)/1< 
(cf. remark 2 following theorem 7.14). • 

In view of corollary 9.18 and the similarity of the sequences in theo­
rems 1.7, c) and 8.19 it is natural to expect some relation between V(S3) 
and V^, the invariant part of V<c by complex conjugation. We shall 
briefly describe this relation referring to [Dupont-Parry-Sah, 1988, 
§5] for details. First observe that the Hopf map of S3 C C2 to the 
Riemann sphere FX(C) = S2 is U(2)-equivariant. By comparing the 
spectral sequences for U(2) and SO (4) we get the horizontal map in the 
following diagram to be an isomorphism, 

H3(U(2)\C*(S3)) ^^#3(SO(4)\a(S3)) * V(S3)/ZT(S2) 

Hopf map _ — ~~ 
- t - ' ' * 

#3(si(2,c)\t%(s2)) = :Pc 

thus defining the map £. Note that we have used theorem 7.14. Further­
more consider the subgroup 73(S'1) *V(S1) C V(S3) generated by all or­
thogonal joins of arcs on 5 1 , i.e. simplices of the form (0,0,(11,0,2,0,3) with 
span{ao)fli} orthogonal to span{a2,a3}. Then using corollary 9.18 one 
proves the following (cf. [Dupont-Parry-Sah, 1988, theorem 5.15]: 
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T H E O R E M 9.20. There is an exact sequence 

0 - • ^ ( S 1 ) * V(Sl) -» V(S3) -4 V£ ^ A | ( E X ) ->• 0 

where A R ( { Z } ) = \z\A | 1 — z \. 

We shall return to this relation between V(S3) and VQ in chapter 
11. 

As in corollary 9.19 we are interested in the structure of the homol­
ogy groups, e.g. if they have torsion or are divisible. In this context we 
should mention the following conjecture of E. Friedlander and J . Milnor 
(cf. [Milnor, 1983]; see also [Roger, 1975]): Recall tha t for an arbi­
trary group G the homology H*(G) which we have considered above is 
in a natural way identified with the singular homology of its classify­
ing space. For G a Lie group let us denote the classifying space of the 
underlying discrete group by BG to distinguish it from the classifying 
space BG in the topological sense. Thus H*(BG , Z) = H*(G, Z) in the 
above notation. We can now state: 

T h e Friedlander-Milnor Conjec ture ( F M C ) . The canonical map 
BG8 —> BG induces an isomorphism of homology with mod p coeffi­
cients p > 0. 

The point of this conjecture is tha t the homology of BG is rather 
well understood for most Lie groups in particular for the classical ones 
and hence makes it possible to calculate H*(G, li/p),p > 0. By the 
Hochschild-Serre spectral sequence it is easy to see tha t the FMC is 
true for a Lie group G if it is true for its connected component Go-
Similarly FMC is true for a connected Lie group G if and only if it is 
true for its universal covering group. 

E X A M P L E 9 .21 . G = R. By proposition 4.7, #* (R) = A Q ( R ) 

is a rational vector space hence by the universal coefficient theorem 
i f* (R,Z/p) = 0. On the other hand the classifying space in the con­
tinuous topology BR is contractible since R is contractible; hence also 
H*(BR,lt/p) = 0 and we have thus proved FMC in this case. 
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By induction it is now straightforward to establish FMC for all solv­
able Lie groups and in fact reduce the problem to' semi-simple groups. 
For the classical groups let us quote without proof the following deep 
result of [Suslin, 1986], [Susl in, 1991]: 

T H E O R E M 9.22. FMC is true for Gl(n, F) and Sl(n, F),F = R,Q 
in the stable range given in theorem 9.4, i-e. for H{ with i < n. 

COROLLARY 9 .23. i / 3 (Sl (n ,C)) = H3(nc)®Q-vector space for n > 

2. Here H 3 ( M C ) = ® / Z -

Proof: We have noted the last statement before in theorem 8.19. For the 
first statement observe that by (9.6) we can take n > 3 and we observe 
that £ S l ( n , C ) for n > 2 is 3-connected with H4(BSl(n,C)) ^ Z . In 
fact the generator is dual to the second Chern class C2 for complex vector 
bundles. Hence by theorem 9.22, also if;(Sl(n, C), Z /p ) = 0 for i < 3 
and # 4 ( S l ( n , C ) , Z / p ) * Z/p. But since H3(pc) C #3(Sl(rc,C)) already 
gives rise to a copy of Z/p in H4 there can be no other torsion factors 
in H3(Sl(n, C)). Since H3(S\(n,C)) is p-divisible by the exact sequence 
for the coefficient sequence Z —> Z —> 1i/p, the result now follows. • 

R e m a r k 1 [Susl in, 1983] has also proved that if F C C is an alge­
braically closed subfield then the inclusion S l (n ,F) —y Sl(n,C) induces 
an isomorphism of homology groups with finite coefficients in the stable 
range. Hence corollary 9.23 is valid also for C replaced by F. 

R e m a r k 2. FMC is also known in the stable range for other families 
of classical groups e.g. the orthogonal groups 0 ( n , n) (see [Sah, 1989]) . 
However except in dimensions < 2 (where it is verified for almost all sim­
ple groups, c.f. [Sah, 1989]) little is known for compact simple groups. 
Corollary 9.19 shows FMC for SU(2) in dimensions < 3 and hence by 
theorem 9.1 in the same dimensions for the families Spin(n), SU(n) and 
Sp(n) (if we use the coincidences of groups of low dimensions in these 
families). Finally note tha t by theorem 9.12 FMC is true for O(n) in 
the stable range i < n if and only if it is true for 0 1 ( 1 , n) in the same 
range and one could hope gradually to reduce it in the same manner to 
the known case of 0(n, n). 
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Remark 3. For the purpose of calculating scissors congruence groups 
FMC gives however, even if true, no information about possible Q-vector 
spaces in H*(G) and these can be quite large as seen already in example 
9.21. 



CHAPTER 10 

Invariants 

Historically the notion of scissors congruences occurred in connection 
with the concept of "volume", but in the above homological treat­
ment of the hyperbolic and spherical case the volume occurred very 
rarely. The reason is that basically the problem of scissors congru­
ence is an algebraic one whereas "volume" in the non-Euclidean case is 
given by transcendental functions. This was observed by B. Jessen (cf. 
[ J e s sen , 1973] , [Jessen, 1978]) who stated the non-Euclidean Hilbert's 
3rd Problem (see chapter 1) but nevertheless found a positive answer 
unlikely. We shall return to this in the next chapter. In this chapter 
we shall relate "volume" in 3-dimensional non-Euclidean geometry to 
the invariants for flat Sl(2, C)-bundles introduced in differential geom­
etry, the Cheeger-Chern-Simons classes (cf. [ C h e r n - S i m o n s , 1974], 
[ C h e e g e r - S i m o n s , 1985]). We shall also give formulas for these in 
terms of the dilogarithmic function . Also we shall see tha t we get 
some further invariants for s.c. if we twist the Cheeger-Chern-Simons 
invariants with a field automorphism of C. 

First let us summarise our results so far about 3-dimensional non-
Euclidean scissors congruences in the following 2 exact sequences (the­
orem 1.7 and corollary 9.18) 

(10.1,-) 

0->H3{Sl(2,Q)- 4 P ( W 3 ) 4 R 8 R / Z 4 tf2(Sl(2,C))- -» 0 

(io.i,+) 
0 -Kff3(Sl(2, C)) + 4 P(S3)/Z %R® R / Z - » #2(S1(2, C) ) + -+ 0 

Also let us recall from corollary 9.23 that the only torsion occurring 
in the homology groups in (10.1,±) is a copy of Q / Z = H3(fic) C 

91 
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//3(S1(2, C)) + , and everything else are rational vector spaces. We shall 
indicate a proof of the following: 

T H E O R E M 10.2. The second Cheeger-Chern-Simons class Ci for flat 
S1(2,C) bundles is the homomorphism C2 '• #3(S1(2,C)) ~~> C /Z given 
by 

<C2, z) = ^ (vol 5 a oa(z+) + %- Vol«3 o<r(2_)j . 

Remark: Note the 1/2 in the hyperbolic case. We shall explain this 
below. 

First let us discuss the Cheeger-Chern-Simons classes more generally 
for flat Gl(n, C)-bundles. We shall restrict to this case although much of 
the discussion is valid for other Lie groups. Let E —> M be a principal 
Gl(n,C)-bundle with a flat connection A. Then by classical Chern-
Weil theory (see e.g. [Dupont , 1978]) the A;-th Chern class Ck(E) G 
H2k(M,Z) goes to zero in H2k(M,C) since it is represented by the k-
th Chern polynomial G'k in the curvature form of A. Hence by the 
Bockstein exact sequence 

• ff^-^Af.C/Z) 4 H2k(M,Z)^ H2k(M,C) - • . . . 

it follows that Ck(E) is in the image of the Bockstein homomorphism (3. 
The fc-th Cheeger-Chern-Simons class which were originally defined in 
[Chern-Simons , 1974] or [Cheeger-S imons , 1985], gives a canoni­
cal choice 

ck(A) eff2*-1(M,c/z) 
such tha t -f3(Ck{A)) = Ck{E) (cf. chapter 12 below). Since a flat 
bundle is determined by the holonomy representation of the fundamen­
tal group into Gl(n,C)s, it follows that the classifying space for such 
bundles is B G\(n,<C)s. In this way we obtain a universal class 

Ck € H2k-X(B Gl(n, C)s, C /Z) £ / / ^ ^ ( G l ^ , C), C / Z ) 

^ H o m ( f f 2 J f e _ 1 ( G l ( n ) q ) , C / Z ) ) 

Here for G any group and M a trivial G-module 

H*(G, M) =f f (Hom z [ G ] (5*(G) , M)) 

=H(Homz(B*(G),M)) 
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with (B*{G),do) the bar resolution as in chapter 4. 

Now let G be a Lie group (e.g. G = Gl(n,C)) acting on a manifold 
V (on the left) and suppose that V is (q- l)-connected for some integer 
q. Then the chain complex C* i n s(V) of smooth singular simplices in V 
is in a natural way a chain complex of (left) G-modules, and since it is 
(q — l)-acyclic we can find a chain transformation a of G-modules up to 
level q: 

B0(G) 

C^(V) 

Bi(G) 

Cfns(V) 

Bq(G) 

-Crs(V) 

(cf. [MacLane, 1963, chap. Ill thm. 6.1]). Furthermore, any two 
such chain transformations are chain homotopic up to level q—1. Given 
a as above we define for each G-invariant complex value p-form w o n V 
with p < q a cochain 5(w) 6 Hom(5 p (G) , C) by the integral 

(10.3) 3(")(\9i -\9p]= [ 
l-lflp] 

The following proposition is a straightforward application of Stokes' 
theorem: 

P R O P O S I T I O N 10.4. Suppose u> is closed and for p = q that it has 

integral periods, i.e. fzu G Z for z € Ctmg(V) a cycle. Then 

i) The cochain #(u;) is a cocycle for p < q and a cocycle mod Z for 
p = q. Furthermore it is a coboundary if u> = du' for to' another 
G- invariant form. 

ii) The cohomology class of ${OJ) in Hq(G,C) for p < q, respectively 
Hq(G, C /Z) for p = q, is independent of choice of a. 

iii) If furthermore Hq(V, Z) = Z and u respects the generator, then 

- W ( w ) D e Hq+1 (G, Z) = Hq+1 (BG5 
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is the obstruction (q+l)-cocycle to the existence of a lift ip in the 
diagram 

EGxGV 
i> ,* 

BGS BG 

where EG —¥ BG is the universal G-bundle. 
iv) (Naturality) Suppose <p : G' —)• G is a Lie group homomor-

phism and $ : V —> V a cp-equivariant differentiate map (i.e. 
$ ( # V ) = tp(g')$(v') for g' e G', v' e V); then 

3(®*u) = <p*2(u). 

D 

Now return to G = Gl(n, C) and let us take 

V = Gl(n,C)/G\(k-l,C) 

which is (2k - 2)-connected and has H2k-1{V,Ti) = Z . Here V is the 
complexification of the compact homogeneous space U ( n ) / U(A; — 1) and 
hence the generator of the (2k — l ) th cohomology group can be rep­
resented in the de Rham cohomology by a complex valued G-invariant 
form u>k- Thus proposition 10.4 yields a cochain 3(uk) with values in 
C/Z and satisfying 

(10.5) -P([3(uk)]) = ck 

where Ck £ H2j(BGl(n, C)s, Z) is the pull-back of the universal kth 
Chern class. In view of (10.5) it is not surprising that in fact 

(10.6) [3(uk)] = CkeH2k-1(BG\(n,C)s,C/Z). 

For a proof of this, which uses the de Rham theory of differential forms 
on simplicial manifolds, we refer to [ D u p o n t - K a m b e r , 1990, thm. 
5.3]. 

Remark: The formula (10.3) for J(w) involves a choice of the transfor­
mation a. In the case of V = G/K a symmetric space of non-compact 
type, i.e. G semi- simple with maximal compact subgroup K, a canon­
ical choice for a (with q = oo) is provided by letting o~[gi\ .. .\gp] be 
the so-called geodesic simplex A(gi,...,gp) defined inductively as the 
geodesic cone on giA(g2,.. -,gp) with cone point o = {K} (see e.g. 
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[ D u p o n t , 1976]). Note tha t a different choice of cone point will give 
a different but cohomologous cocycle. We shall use this construction in 
the case of G = SI (2, C) acting on U3. 

P r o o f of t h e o r e m 10.2 . As for the real part R e C 2 it suffices to 
check the value on 

ff3(SU(2)) = H3(S1(2,C)) + 

In this case the formula 

(ReC2,z) = ^Vo\s3(a(z)) 

clearly follows from the definition in proposition 10.4 since for G = 
SU(2) acting on S3 in the usual way 

(10.7) R e C 2 = d{u2 | s s ) and u2 | s s = vs?,/ Vol(53) = VSZ/2-K2, 

where vsa denotes the volume form on S3 (cf. Remark 3 at the end of 
chapter 7). To determine the imaginary part we take as model for the 
hyperbolic space H3 the upper half space in the 3-dimensional subspace 
of the quaternions H spanned by 1, i,j : 

y3 — {x = xi + x2i + x3j | xi,x2, x3 e R , x3> 0}, 

and S1(2,C) acts on H3 by the usual formula 

g(x) = (ax + b)(cx + d ) _ 1 for g = 

where C C % is spanned by 1 and i. In particular the map q : Sl(2, <£) —>• 
H3 given by 

q(g) = g{j) = (aj + b)(cj + d)-1 

gives an equivariant map (with respect to the left action) inducing a dif-
feomorphism Sl(2, C) /SU(2) ss V?. Now the formula for the imaginary 
part 

< I m C 2 ^ ) = i^(Vol 7 / 3 ( (7( 2 r ) ) 

clearly follows from the following lemma which is checked by direct 
calculation (cf. [Dupont , 1987, lemma 3.4]). 

L E M M A 10.8. Let v-^s, be the volume form on %3 then Im(u;2) and 
(l/4w2)q*v^3 are cohomologous in the complex of real left invariant 
forms on SI (2, C). 

• 

:i 
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In chapter 8 we made the identification 

v(n3) = v(dn3) =* Pc 
and in these terms a : if3(Sl(2,C)) —>• VQ was induced by 

^([5l|fl2|fl3]) = {2} 

where z is the cross ratio for the simplex (00, #100, <7i<72°o, <7i<72<73°o) in 
d7i3. By taking o = 00 in the construction of geodesic simplices (cf. 
remark following proposition 10.4) we see from lemma 10.8 that Im C 2 

is represented by the cocycle 

(Im C2, bi l^l tfs]) = Vol(00, pioo, 3i#2°o, gig2gz00)/4TT2 

Now for a hyperbolic simplex with vertices (00,0,1,2) it is a classical 
calculation tha t 

Vol(oo, 0 , 1 , «) = !>(*) 

where V is the Bloch-Wigner function defined for all z € C - {0,1} by 
the formula 

fz loefl - t) 
(10.9) X>(2) = a r g ( l - z ) l o g | z | - I m / - ^ >-dt. 

Jo t 
(cf. [Bloch, 1978].) In this formula the integral is carried out along 
a path starting with the interval [0, | ] , and the arg and log functions 
are branches along the same arc. Then the indeterminacy of the first 
term cancels with the one of the second, so tha t V(z) is well-defined. 
We note tha t 

fMHJt = Lil(j) = ^ , |,|S1 
J° l n = l n 

is the dilogarithmic function introduced by Euler (cf. [Lewin, 1981].) 
We have thus proved 

T H E O R E M 10.10. I m C 2 G #3(S1(2,C),1R) is represented by the co-
cycle 

(Im C 2 , [51I52I53]) = 2?({oo : gx00 : gig2oc : gig2gsoc})/4ir2 

We want to extend this formula to be valid also for the real part . 
This we do in terms of the exact sequence in theorem 8.19 for F — C 
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by defining for z £ C - {0,1} the following expression p(z) 6 A | ( C ) 
analogous to (10.9): 

(10.11) 

. . log z log(l - z) 1 
p{z) = -^-r A &\ , ' + 1 A 2n i 2ni (2TTi)2 

Mi - 0 + l o ^ ]dt 

Here again the indeterminacy of the first term cancels out with that of 
the second if the integral and the branches of the logarithms are taken 
along the same paths. We can now state (cf. [Dupont , 1987]): 

THEOREM 10.12. \) p defines a well-defined map VQ —)• A | (C) . 
ii) The following diagram with exact rows commute: 

0 

# 3 ( S 1 ( 2 , Q ) 

2C2 

— C/Q 

A!(C*) 

lAid 4(C)-^A|(Cx 

where a and A are given as in theorem 8.19 and e(v) = exp(2niv) 
for v G C. 

Proof: We shall not give all details of this; but first we notice tha t 
theorem 10.10 shows tha t poa and (lAid)o(2C2) agree on #3(S1(2, C))~ . 
In fact the inclusion R -» A | ( C ) ~ sending r 4 1 Air is split by the map 
p~ given by p~ (u Av) = ^{uv — vu) and one checks that 

p- op{z) = -(2ni)-2{V(z) - V{1 - z)) = V{z)/2n2. 

Hence by theorem 10.10 

p-op(a(z)) = V{a{z))/2ir2 = 2(lmC2,z) for z £ H 3 (S1(2 ,Q) . 

To show tha t poa and (1 A id) o (2C2) agree on # 3 (SI (2, <Q)+ we next 

reduce the problem to S1(2,E) by the following 

L E M M A 10.13. The inclusion S1(2,E) C S1(2,C) induces a surjec-

tion 

ff3(Sl(2,R))- H3(Sl(2,C)) + 

Remark: This map is also injective cf. [Sah, 1989]. 
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Proof: By theorem 8.19 and a similar sequence for S1(2,R) acting on 
P1 (R) we get the following commutative diagram with exact rows: 

-»• ff3(SI(2, R)) VR - ^ A|(RX) #2(S1(2, R)) -> 

-> ff3(Sl(2, C))+ 7 £ — Al(Cx)+ ff2(Sl(2, C))+ - • 

In this diagram 

A | ( e ) + = Al(RX)©Al(U(l)) 

and similarly A+ splits into 

A+ = AR © Au(!) 

where ATJ^) is given by 

, , . z 1 - z 
Au(i)W = ^ A ^ - ^ . 

To show the surjectivity of the vertical map on the left it suffices to 
show that ATJ(I) induces an isomorphism 

V$IT>* ^ A|(U(1)) 

This is simply done by constructing the inverse v : For eta,etl3 G U(l) 
with 0 < a,/? < 27T, 

v{eia A eif)) = {z} 

where z € C is the intersection of the two lines through 0 respectively 
1 and making the angle a respectively (3 with the real line (see fig.). 

X z 

o l 

For a = /3±7r, we put of course u(eta Aet/3) — 0. Clearly v is alternating 
since in VQ 

u(eip Aeia) = {l-z} = -{z}. 
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It remains to show that v is bi-additive in a and /?. This requires 
another application of the identity in theorem 8.14 for a suitable rational 
function. We refer to [Dupont-Parry-Sah, 1988] for the details. • 

To finish the proof of theorem 10.12 we give a formula for Pi = 
C<2|i?3(Sl(2,E)) in terms of P R and the following function: 

k ' 6 2 J0 l l - t ( J 
2 °° n i 

^ ~ T + o(log«)0og(l-a;)) E 
n=0 

for 0 < x < 1 and L(0) = -—-, L(l) — 0. Without the constant 
term this function is called Rogers' L-function. It is a classical fact 
that this function satisfies the following identities (cf. [Coxeter, 1935], 
[Lewin, 1981]). 

(10.14,i) L(x) + L(l-x) = -— = L(0) 

(10.14,ii) L(x) - L(y) + L(±)-L ( y ^ £ ) + L ( ^ £ ) = 0 

for 0 < y < x < 1. Then we extend L to K+ by 

L(x) = -L(l/x), x > 1, 

and use (10.14,i) to define L(x) for x < 0. It is now clear from definition 
(8.13) that L induces a well-defined homomorphism L : P R —> R/Z(7r2) 
and we now have the following real version of theorem 10.12: 

THEOREM 10.15. The map (l/47T2)Loa : #3(S1(2,R)) - • R/Z(l/4) 
represents the reduction mod 1/4 o/ i/*e Cheeger-Chern-Simons class 
Pi associated to the first Pontrjagin polynomial. 

With this theorem it is rather straightforward to deduce theorem 
10.12 in view of lemma 10.13. We refer to [Dupont, 1987] for the 
details of the proof. The main idea is to lift Pi to the universal covering 
S1(2,R)~ where this class can be represented by a real valued cochain 
via proposition 10.4 and where we again integrate the volume form over 
some simplices in S1(2,E)~ considered as a cylinder over the hyperbolic 
plane. 



100 Scissors congruences, group homology and characteristic classes 

R e m a r k 1. We must reduce mod 1/4 in theorem 10.15 since a : 
# 3(S1(2,R)) ->• P R factors through # 3 (PS1(2 ,R)) and 

ker (if3(Sl(2, R)) -» #3(PS1(2, R))) = Z / 4 . 

It should however be noted that in fact L gives an explicit cochain 
representing Pi G tf3(Sl(2,R)~,R), where Pi is the unique lift of A 
corresponding to a continuous cochain on Sl(2,R)~. For a discussion 
of this see [ D u p o n t - S a h , 1994], which also contains a homological 
proof of some interesting identities involving the function L which has 
occurred in connection with conformal field theory. 

R e m a r k 2 . Theorem 10.12 only gives a formula for C2 with C/Q 
coefficients. However for the restriction Pi to S1(2,R) theorem 10.15 
gives an explicit lift with R / Z ( | ) coefficients (cf. also remark 1 above). 
A similar direct lift for C2 has been given by [ N e u m a n n - Y a n g , 1999] . 

R e m a r k 3 . Theorem 10.12 is the analogue of the tautological formula 
f o r C i G ^ ( G U l . Q . C / Z ) 

CiG/H-S-iogG/), fleGi(i,q=c 
Z7T 

The formula for I m C 2 in theorem 10.10 is due to Bloch and Wigner 
(unpublished cf. [Bloch, 1978]). Similar formulas for I m C 3 has been 
obtained by [ G o n c h a r o v , 1995] and [ H a i n - Y a n g , 1996] . 

Returning to the general Cheeger-Chern-Simons class as defined by 
(10.6) 

Ck = [3(oJk)} G H2k-\G\(n, C), C / Z ) = Hom(ff2fc_i, (Gl(n, C)), C / Z ) 

we notice that it is given by integrating the form u>k over some simplices. 
In general this gives transcendental functions in the variables of the ver­
tices similarly to the dilogarithmic function considered above. However 
i/*(Gl(ra, C)) is a purely algebraic object on which a 6 Gal (C/Q) , the 
group of field automorphisms, acts by 

a*[di\ • •-\gq] = [<*gi\ • • .\agq], gi G G l ( n , C ) . 
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Hence we get a priori new invariants by composing C'k with a (cf. 
[Cheeger, 1974]). That is, we define C% the twisted Cheeger-Chern-
Simons invariant by 

<C'fe.[Si|---l52fc-i]> = (Ck,[agi\...\ag2k-i}), gt G Gl(n,C). 

This procedure has been used very successfully by A. Borel in his famous 
calculation [Borel, 1977] of H*($l(K,oo),Q) for K C C an algebraic 
number field, where 

Sl(oo,A')= l™ S\(n,K) 
n-»oo 

under the natural inclusions Sl(n,A') C Sl(ra + 1,K). Borel actually 
only needed the Galois-twisted r£, a G Gal(C/Q), where r^ is the Borel 
regulator given by 

(10.16) rk = ImCfc G fl"2fe_1(Gl(n,q,R). 

Notice that since K/Q is assumed to be a finite extension there is 
some other finite extension L D K containing all the fields a(K),a G 
Gal(C/Q). Hence the restriction of C% and r£ only depends on the 
image of a in the finite group Gal(L/<Q>). For k\ < k2 < • • • < k[ and 
£*!,..., at G Gal(L/Q) we therefore obtain the product of the cohomol-
ogy classes 

C.'fc? = rfci ® • •' ® rh € ^2 ( f c l +-+ f c i )- ,(Sl(n, X), R®') 

(R8 ' = R ® z - 8 z R ) . 
In particular for the algebraic closure Q of the rationals, i.e. Q = 
lim-t K, with [K : Q] < oo the above set of invariants gives a homomor-
phism, the regulator map: 

r:ff„(Sl(oo,Q))->lim J ] Hom(Z[Gal(A7Q)'],R®') 
(10.17) K iM<-<h 

r =( r K' (* ) )» *eff„(Si(°o,Q)). 

We can now state the following consequence of Borel's theorem (the 
original is much more precise): 

THEOREM 10.18. The regulator map r induces an injective map on 
ff„(Sl(oo,Q),Q). 
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R e m a r k : Since by Suslin's result (theorem 9.22 and the following re­
mark 1) the torsion is determined by the topological classifying space 
B Sl(oo, C), we therefore have complete invariants to detect /Z*(Sl(oo, Q)) 

Let us mention an application of Borel's theorem 10.18 to hyperbolic 
geometry. As in remark 2 at the end of chapter 8 an oriented compact 
hyperbolic manifold has the form M = T\Hn for a co-compact discrete 
subgroup r C SO(l , n), and thus determines a fundamental class [M] € 
Hn(SO(l,n)). Also it is a well-known consequence of the Weil rigidity 
theorem tha t T can be chosen algebraic, i.e. inside S O ( l , n , Q n R ) (cf. 
[Raghunatan, 1972, chap. VI, prop. 6.6]). By the inclusion 

SO(l , n, Q n E ) C Sl(n + 1, Q n R) C Sl(n + 1, Q) 

we can evaluate our characteristic classes on [M] and in particular the 
image of [M] in Hn(S\(oo, Q), Q) is determined by the regulators 

r K ' ( M ) = <rK'l[JW]>€R®' 
for 2(fci + • • • + k[) — I = n. Notice that for n = Ak — 1 we have 
r2k{M) = 0 and it is shown in [ D u p o n t - K a m b e r , 1993, cor. 5.7] (cf. 
[Yoshida, 1985], [Neumann-Zagier , 1985]) tha t 

n(M) = {-l)kXk(C2k,[M]) m o d Q 

where TJ(M) is the Atiyah-Patodi-Singer r]-invariant and 

Xk = 22k(22k-1-l)Bk/(2k)l 

with Bk the fcth Bernoulli number (cf. [Hirzebruch, 1966, chap. I, 
sect. 1.5]). Hence we obtain the following curious result: 

COROLLARY 10.19. / / two compact oriented hyperbolic manifolds 
M\ and M? of dimension n = 4k — 1 have equal regulators, i.e. if 

rti::a
k;{Ml) = rti:^{M2) 

for all ki > 1 and cti £ Gal(C/Q) then 

n(Mi) = r)(M2) mod Q. 

Remark: Notice that if Mj, j = 1, 2, are defined over a number field K 
such that one of the Galois transformations cc; satisfies ati(K f l R ) C R 
then rj*1 Zk

l{Mj) = 0. Hence the condition is trivially fulfilled unless all 
ai are not of this type. 
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Let us also mention without proof another remarkable geometric 
result on the Cheeger-Chern-Simons classes, the Block conjecture proved 
by [Rezn ikov , 1995]: 

T H E O R E M 10.20. If V — 7Ti(X), X a smooth complex projective 

variety and <p : T —t Sl(n, C) a representation, then tp*Ck = 0 in 

For 3-dimensional scissors congruences Borel's theorem is particu­
larly useful in degrees ^ 3: Here there is only one regulator namely 
r2 since n = 0 when restricted to SI (by definition). In this case we 
conclude from theorem 10.18 and corollary 9.23 (or rather the corre­
sponding result of Suslin for Q instead of C): 

COROLLARY 10 .21. i) ff2(Sl(2,Q)) = 0. 
ii) A complete set of invariants for i f3(Sl(2,Q)) is given by the 

twisted Borel regulators {r2;a € Gal(Q/<Q>)} together with the 

Cheeger-Chern-Simons invariant R e C 2 . 

Proof: Since by (9.5) and corollary 8.20, #2(S1(2, Q)) = # 2(Sl(oo, Q)) is 
a Q-vector space and since r2 is a 3-dimensional class i) clearly follows. 
Similarly by (9.6) and i) above ff3(Sl(2,Q)) = ff3(Sl(oo,Q)) and by 
corollary 8.20 and theorem 10.18 it remains to show that the torsion 
group H^{^n) — Q / Z is detected by R e C 2 . But this clearly follows 
from the formula in theorem 10.2 since the image by a of 1/q S Q / Z 
corresponds to the rational lune L(2n/q) (cf. remarks 2 and 3 at the 
end of chapter 7). D 

Let us summarize the consequences for scissors congruences: Sup­
pose that Pi, P2 are two spherical respectively two hyperbolic polyhedra 
such that D(P\) — _D(P2). Then by the sequences (10.1,±) we obtain a 
unique "difference element" d(P1,P2) € jy 3(Sl(2,C))± such that 

a(d(P1,P2)) = [P1]-[P2] 

in V(S3)/Z respectively V(7i3). Hence we have the following: 

COROLLARY 10.22. Let Pi and P2 be two spherical respectively two 
hyperbolic polyhedra with all vertices defined over Q, the field of algebraic 
numbers. Then Pi and P2 are scissors congruent if and only if 
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i) D(PT) = D(P2) 
ii) Vol(F1) = Vol(F2) 

iii) r£ (d (P i ,P 2 ) ) = 0 V « e G a l ( Q / Q ) , a # id . 

R e m a r k 1. We have excluded a = id in (iii) since it is listed separately 
in (ii). Note that even in the spherical case only hyperbolic volumes 
enters in (iii). In fact by theorem 10.2, r^ is given by 

f2 (*) = A Vo1^3 °<K(«**)-) z e #3(si(2, c)) 

where 

a»2 = {a*z)+ + (<**-z)-

is the decomposition in the ±l-eigenspaces in (10.1,±). The spherical 
volume function is only used to distinguish the rational lunes. 

R e m a r k 2. As mentioned above a 3-dimensional compact hyperbolic 
manifold has a presentation as T\H3 for F C S1(2,C) a lattice defined 
over an algebraic number field. Hence the fundamental domain for such 
a lattice is an example of a polyhedron with zero Dehn invariant for 
which corollary 10.22 applies. We shall give more examples in the next 
chapter. 

Returning to the Galois action we note tha t this does not make sense 
in general for a polyhedron. This is the reason why we had to express the 
Galois action in corollary 10.22 using the "difference element". However 
the Galois action clearly makes sense in Vc by 

a*{z} = {az} for ^ G C - { 0 , 1 } , a e Gal (C/Q) . 

But unless a commutes with complex conjugation it does not necessarily 
keep the (±l)-eigenspaces invariant. We shall see examples of that in 
the next chapter. Here we just notice that we get an extension of 2 C " 
to Vc by defining for a <G Gal(C/Q) 

(10.23) pa(z) = p(a(z)), zec-{0,1}. 

Similarly we have Va : Vc —>• E defined by 

Va(z) = V(a(z)), z e C - { 0 , 1 } , 

and we conclude: 
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T H E O R E M 10.24. a) Let zu ..., zt e Q - {0 ,1 ) . Then the rela­
tion 

£{*.•} = ° 
i 

holds in VQ, i.e. is a consequence of the relation (8.13), if and 
only if 

(i) £ A { * } = 0 
i 

(ii) ^V(azi) = 0 V a e G a l ( Q / Q ) . 
i 

b) Furthermore if all Z{ are real algebraic numbers then the relation 

Y^i{zi} — 0 holds in T\ if and only if (i) and (ii) hold together 

with 

(iii) ^ L ( z ; ) = 0 mod n2. 

R e m a r k 1. We use here tha t if3(Sl(2, R)) -» H3(S1(2, Q ) is injective 
cf. [Sah, 1989] . Again (iii) is only needed to determine the Q / Z com­
ponent. Also in the real case there is another version with L lifted to R 
in (iii) (cf. remark 1 following theorem 10.15). 

R e m a r k 2 . If in theorem 10.24 all Z{ and all their Galois conjugates 
azi are real then (ii) is clearly fulfilled. Hence already (i) implies tha t 
^2{zi} — 0 holds in T\ modulo the torsion group. In particular we 
immediately get in this case 

2^L(2,-) = 0 mod QTT2. 

E X A M P L E 10.25. Let a = \(\/b - 1), then we claim tha t 

{CT20} = 2{o10} + 15{a4} in VR mod torsion . 

By the remark 2 above it suffices to show tha t 

A(a20) = 2A(a10) + 15A(a4) in A | ( R X ) . 

For this one first shows by iterated use of the equation a2 + a — 1 = 0 
tha t 

A ( - a 1 0 ) = 15A( -a 2 ) . 
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Hence 

A(CT20) = 20a A (1 - cr10) + 20a A (1 + a1 0) = 2A(a10) + 30A(-a 2 ) 

= 2A(cr10) + 15A(a4) 

since A(cr2) = 2a A (1 — a2) — 2a A a = 0. In particular we have proved 

15L{a4) + 2L(aw) - L{a20) = 0 mod QTT2. 

It is a classical result of [Coxeter , 1935] tha t this multiple of w2 is 

15 
^r = — 1 | . The above identity in Vc c a n a l s ° D e proved using 

Rogers' identities (theorem 8.14). 

R e m a r k 3 . One could hope that the invariants pa in (10.23) would 
detect all of Vc- However as we shall see in chapter 12 the set of these 
invariants does not give more information than the set of 2) a ' s . Hence 
the question is really if the natural map i?3(Sl(2, Q)) —> H3(Sl(2,Cj) is 
an isomorphism. This map is known to be injective; the surjectivity is 
often called the "Rigidity Conjecture" (cf. [Sah, 1989]). 
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Simplices in spherical and hyperbolic 3-space 

As mentioned in the previous chapter it does not make sense in general 
to take the Galois transformed of a spherical or hyperbolic polytope. On 
the other hand a Galois transformation r £ Gal(C/Q) clearly induces 
an automorphism r, of if*(SI(2, Q) or Vc- In this chapter we shall 
consider a simplex in spherical or hyperbolic space and in favourable 
cases r applied to the coordinates of the vertices will result in another 
simplex in one of these geometries - but not necessarily in the same 
geometry as that of the given simplex. 

In order to ensure that this Galois action is compatible with the 
induced action on the appropriate homology group we consider the ge­
ometry of the complex sphere 

S£ = {z ZC+1 \ z2
0 + z2 + • • • + z2

n = 1} 

with the action of the orthogonal groups 0(n+ 1,C), and we observe 
that 

Sn = S£nRn+1, Un = S £ n ( R + © i R n ) . 
Similarly to the construction in chapter 3 we again have a Tits-complex 
T(SQ) of non-degenerate subspaces. That is, we require the subspaces 
to be of the form U = Sfc (~1 V, V Q C™+1 a linear subspace which is 
non-degenerate for the quadratic form. Again with 

St(5g) = Hn_1(T(5g),Z) 

we get a Lusztig exact sequence 

(11.1) 0-» St(S£)-)• 0 S t ^ " - 1 ) -» • 0 S t ( E / ° ) - ) - Z - > O . 
JJn-l JJO 

We now simply define 

P(5g) = i f 0 (O(n+l ,C) ,S t (5£) i ) 

107 
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and similarly to the computation in example 7.11 we obtain in the case 
n — 3 the following exact sequences 

0 ^ Q / Z ^ f f 3 ( O ( 4 , C ) , Z ' ) -+V{Sl) - 4 C X 0 C X ^ 
( 1 1 ' ' - > i f 2 ( O ( 4 , C ) , Z i ) ^ 0 . 

Again since Spin(4, q ^ Sl(2, C)xSl(2, C) and the Z/2factor in Pin(4, C) 
acts by permuting the factors we get by Kiinneth's theorem 

^•(0(4,C),Z t ) = ^(Sl(2,C)) , i < 3 . 

Now using the isomorphisms (theorem 7.4,a) and (2.14)) 

V{S3)/EV(S2) ^ #o(0(4),St(S3)<) 

and comparing with our sequences (10.1,±) we get the following commu­
tative diagram with exact rows and with injective maps in the columns: 

(11.3) 0 -»• Q/Z ff3(Sl(2, C))+ —^ V{S3)/EV{S2) 

V 

0 -+ Q/Z - ff3(Sl(2, Q ) — P(5g) 

0 H3(S1(2, C))" — V{U3) 

Thus a Galois transformation r induces an endomorphism of the groups 
in the middle line of the diagram (11.3). Notice that the group Q/Z = 
fj,C is the multiplicative group of unities but the induced action by r is 
given by r2 . Notice also that the inclusions on the right side of the dia­
gram are induced by the inclusions R4 C C4 respectively K © iK3 C C4 

or the other real subspaces obtained from these by the action of the 
group 0(4, C). The Galois transformation r can of course map an ele­
ment in the image from V(S3) into another such element or map it into 
an element in the image from Vffl3) or vice versa. But it may very well 
happen that the Galois transformed of a spherical or hyperbolic polyhe­
dron is neither in the image from the top or the bottom in the diagram 
above. We shall study this more closely in the case of simplices using 
their Gram matrices. Let us briefly review this parametrisation of the 
set of simplices in spherical and hyperbolic geometry of any dimension 
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n > 1. There is a similar construction in the Euclidean geometry, but 
we shall not discuss that case. 

For e = ± 1 our model for the spherical respectively hyperbolic ge­

ometry is the conic surface in K n + 1 

5 " = { i € Kn+1 | (x, x)e = e, and x0 > 0 if e = - 1 } 

where (•, -)e is the symmetric bilinear form 

(x, y)e = ex0y0 + xxy\ H V xnyn, x, y £ Rn+1. 

In the spherical case the vertices of a simplex A is a set ( u 0 , . . . , vn) of 
n + 1 E-linearly independent unit vectors. We can then define, in a 
unique way, a dual simplex A* with vertices (UQ, •. .,un) according to 
the following rules 

(11.4) (m, VJ)+ = 0, i # j , (ui, vt)+ < 0, (ui, Ui)+ = 1. 

The spherical simplex A is then given by the set 

A = {v e M" + 1 | (v, v)+ = 1, (v, «,-)+ < 0, t = 0 , . . . , n } . 

The (n + 1) x (n + 1) matrix G(A) = ((«,-, %)+) is called the Gram 
matrix associated to the spherical n-simplex A, and it has the following 
properties: 

(11.5) A = (A*)* and G(A*) = « ^ , ^ > + ) . 
(11.6) G(A) is a real symmetric (n + 1) x (n + l)-matr ix. 
(11.7) G(A) has diagonal entries equal to 1. 
(11.8) For 0 < i ^ j < n + 1 the {i,j)-th entry of G(A) is equal 

to — cos 6{j where 6ij = the interior dihedral angle between the 
codimensional 1 faces opposite (U,-,UJ). 

(11.9) Permutation of the vertices of A corresponds to simultaneous' 
column and row permutations of G(A) . 

(11.10) The n X n principal minors of G(A) are positive definite. 

(11.11,+) d e t G ( A ) > 0 . 

In the case of A a hyperbolic n-simplex the vertices (v0,.. .,vn) 
satisfies 

(11.12) (vi,Vj)- = - 1 and u i0 = - ( u , - , e 0 ) _ > 0. 
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Again the dual simplex A* with vertices (u0,.. .,un) is given by (11.4) 
with (—,—)+ replaced by (—,—)_ and again 

A = {v <ERn+1 \(v,v)_ = -1, ( u , u ; ) _ < o , i = 0,...,n} 

Also the Gram matrix G(A) = ((«,-, «j)_) has the properties (11.5)-
(11.10) whereas (11.11,+) is replaced by 

(11.11,-) d e t G ( A ) < 0 . 

Note however that A* in this case is not a hyperbolic simplex since the 
vertices ut- satisfy («,-,«,-)_ = 1 and thus are "ultra infinite". 

P R O P O S I T I O N 11.13, + . Suppose G = (g^) is a real (rc+1) X (ra + 1)-
matrix satisfying (11.6), (11.7), (11.10) and (11.11,+). Then there is 
a spherical n-simplex A, unique up to isometry with G(A) = G. 

Proof: The matrix G defines an inner product on an abstract M-vector 
space of dimension n + 1 with basis {uo,..., un}. By change of basis 
this is isomorphic to R n + 1 with the inner product (•, - ) + since G is 
positive definite. Now the vertices (v0,..., vn) of A are determined by 
the condition (11.4). • 

R e m a r k : Given a spherical simplex A with vertices (vo, • • •, vn) we can 
decompose the n-sphere into 2 n + 1 simplices with vertices 

(s0v0,eiv1,.. .envn) where e; = ± 1 . 

The corresponding Gram matrix for each of these is obtained from G(A) 
through simultaneous multiplication of the ith column and ith row by 
Si. Notice tha t for A- = |(u0, • • . , -V{,.. .,vn)\ the union A II A- form 
a suspension (cf. chapter 3) of the (n — l)-simplex in the orthogo­
nal complement of span{u2} whose dual {n — l)-simplex has vertices 
(u0,...,Ui,...,Un). 

In the hyperbolic case we have: 

P R O P O S I T I O N 11.13, - . Suppose G — (gij) is a real (n + 1) x (n + 1)-
matrix satisfying (11.6), (11.7), (11.10) and (11.11,—). Then there is a 
set of signs (SQ, ... ,en)>£j — i l ; unique up to simultaneous multiplica­
tion by dbl, and a hyperbolic n-simplex A, unique up to isometry, such 
that G(A) = (eigijEj). 
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Proof: We proceed exactly as in the proof of proposition 11.13,+. How­
ever in order to ensure condition (11.12) we may have to replace U{ by 
—U{ thus multiplying the ith row and ith column of the Gram matrix 
by - 1 . • 

R e m a r k 1. In view of proposition 11.13, — and the remark following 
proposition 11.13,+ we will say tha t two symmetric matrices G = (gij) 
and G' = (glj) are "equivalent modulo (even) sign changes" if for some 
vector (e0,...,en),£i = ±l,(IYi=o£i = !)> 

9i3=£i9ij£i V i>i-
We have thus shown that the equivalence class modulo even sign changes 
of a real (n + 1) x (n + l )-matr ix G satisfying (11.6), (11.7), (11.10) and 
(11.11,+) determines a well-defined element [A] € P (S n ) / £7>(S ' 1 - 1 ) 
and an odd sign change replaces [A] by —[A]. If G satisfies (11.6), (11.7), 
(11.10) and (11.11, — ) there is a unique hyperbolic simplex A given as 
in proposition 11.13, — and we associate to G the element e[A] € V(7in) 
where £ - II; £ i -

R e m a r k 2. If we allow the hyperbolic simplex A to have some (or all) 
vertices on the boundary dW1 then the associated Gram matrix satisfies 
conditions (11.5)-(11.9), (11.11, — ) and the following condition in place 
of (11.10): 

(11 .10 , - ) 

All (n + 1) x (n + 1) principal minors are positive definite, and all 

n X n principal minors have non-negative determinant. 

Again proposition 11.13, — holds in %n if we replace condition (11.10) 
with (11 .10 , - ) . 

In the following we assume n = 3. Returning to our diagram (11.3) 
it follows from the remark 1 above that up to even sign changes a 4 X 4 
real matrix G satisfying (11.6), (11.7),(11.10) and (11.11,+) or (11.11,-) 
determines in both cases a well-defined element e[A] € V{S^),s = ± 1 , 
where A is a spherical or hyperbolic 3-simplex. Hence if r 6 Gal(C/Q) 
is afield automorphism then er*[A] G V{SQ) is also well-defined, but the 
corresponding matrix TG need not be the Gram matrix of a spherical 
or hyperbolic simplex. On the other hand if it is a Gram matrix, i.e. 
satisfies our conditions above then the associated element in V(S^) is 
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clearly er*[A]. Notice that the Galois action is compatible with the sign 
changes. Let us summarize our discussion in the following: 

T H E O R E M 11.14. a) LetG be a realAxA-matrix andr G Gal(C/Q) , 
and suppose that both G and TG are spherical or hyperbolic Gram ma­
trices, i.e. satisfy (11.6), (11.7), (11.10) and detG / 0. If e[A] and 
eT[AT] denote the corresponding elements in V(S^) given by the propo­
sitions (11.13,±), then 

r , ( e [ A ] ) = e T [ A T ] . 

b) In particular, suppose for z G H3(S\(2,C))± that the image o{z) G 
P ( 5 3 ) / E 7 ' ( 5 2 ) (respectively V{U3)) is of the form 

i 

with each A{ given as in a) . Then 

*M*)) = J>n^] 
i 

where each term is an element in V(S3)/Y1V(S2) orV(H3). 

• 

Remark: Note that in b) each simplex AJ may be spherical or hy­
perbolic (depending on the sign of the corresponding Gram matrix) 
independently of the type of A;. 

D E F I N I T I O N 11.15. A (spherical or hyperbolic) n-simplex A is called 
rational if all its dihedral angles Oij are in Qn. 

Remark: Notice that if 6 G Qn then cos# = (C + C _ 1 ) /2 for ( an mth 
root of unity for some m. Hence for any r G Gal(C/Q) , 

r (cose) = ( r ( C ) + r ( C ) - 1 ) / 2 , 

where r(() is again an m-th root of unity. Hence if G is the Gram 
matrix of a rational simplex A then TG again satisfies (11.6), (11.7) 
and de t ( rG) ^ 0. Hence we only have to check (11.10) in order for TG 
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to be another Gram matrix. In that case the corresponding simplex AT 

is again rational and AT is spherical or hyperbolic depending on the 
sign of de t ( rG) . In the 3-dimensiona.l case notice also that a rational 
simplex A has zero Dehn-invariant so that [A] defines an element in 
H3(Sl(2,C))±. In particular we shall study the following case: 

D E F I N I T I O N 11.16. An orthoscheme A = A(a,/3,y) is a (spherical 
or hyperbolic) 3-simplex with 3 perpendicular faces such that the Gram 
matrix has the form 

G ( a , / 3 , 7 ) 

1 
a 
0 
0 

—a 
1 

-b 
0 

0 
-b 

1 
—c 

0 
0 

—c 
1 

where a — cos a, b = cos/3, c = cos7, 0 < a, 7 < n/2, 0 < (3 < 
7T. 

The matrix (11.16) satisfies (11.10) if and only if 

cos2 (3 < sin2 a, sin2 7, tha t is , 0 < a, 7 < n/2 < a + (3, (3 + 7 . 

Also 

det G(a, j3,7) = sin2 a • sin2 7 - cos2 (3. 

Thus, G(a,{3,y) is the Gram matrix of a spherical orthoscheme if and 
only if 

(11.17,+) cos2 f3 < sin2 a • sin2 7 

whereas it is the Gram matrix of a hyperbolic orthoscheme if and only 
if 

(11.17,-) sin a • sin 7 < cos (3 < sin a, sin 7 . 
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It is easy to see that every simplex can be decomposed into orthoschemes 
[project one vertex perpendicularly onto the opposite face and its edges]. 

In particular this reduces the calculation of the volume of a simplex to 
tha t of an orthoscheme. Already Lobachevsky and Schlafli calculated 
the volume of an orthoscheme in terms of certain analytic functions of 
a, /3,7 (cf. [Coxeter , 1935]). However notice the following particularly 
simple case: 

E X A M P L E 11.18. The spherical orthoscheme A ( f , / 3 , | ) , 0 < ft < 
w. Taking the double we clearly get a cone on a triangle with angles 
( | , f, f3). Hence the union of 4 copies is s.c. to the lune L(f3), so by the 
unique divisibility of V(S3), A ( | , (3, | ) is s.c. to Z,(/3/4). In particular 

Volss ( A ( | , / 3 - | ) ) = \vo\s3(L(f3)) = I • A • Vol5s(53) 

= - A 2n2 = ^ 
4 ' 2TT ' 4 ' 

Note also that the Dehn-invariant is given by 

and that this is zero if and only if /3 is a rational multiple of n. 

In this context let us mention the following question raised by J. 
Cheeger and J. Simons (1973, cf. [Cheeger-S imons , 1985]): 

Rat ional S implex P r o b l e m . Is the volume of a rational spheri­
cal simplex a rational multiple of n2? 

Clearly each of the simplices A (§,/?, f ) in example 11.18 for (3 £ Qw 
has volume in Qn2 simply because it is s.c. to a rational lune. And so are 
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all other rational simplices for which the volume is known to be a ratio­
nal multiple of n2 (cf. [ D u p o n t - S a h , 1999, remark following lemma 
4.2]). On the other hand rational orthoschemes (i.e. orthoschemes 
A(a,/3,j) with a,/3,y G Qir) are very often not s.c. to rational lunes 
as we shall now see (cf. [ D u p o n t - S a h , 1999]): 

T H E O R E M 11.19. Let G = G(a,f3,j) be the Gram matrix of a ra­
tional orthoscheme A of spherical or hyperbolic type. 

a) For T £ Gal (C/Q) , the Gram matrix r(G) determines again a 
rational simplex AT of spherical or hyperbolic type. 

b) In particular for A spherical it is scissors congruent to a rational 
lune if and only if 

det ( r (G)) > 0 Vr e Gal(Q[e i a , eif3\ e*'7]/Q) 

c) Suppose p, q are distinct prime numbers with 1/6 > A/q + 1/p. 
Then there is a spherical orthoscheme A = A(a,/?,<*) with eta 

and e1^ of order 2p respectively 2q and a Galois automorphism 
r such that AT is hyperbolic. In particular A is not scissors 
congruent to a lune. 

Proof: a) Notice tha t the matrix G = G(a,j3,j) in definition 11.16 has 
positive definite minors corresponding to the (2,2) and (3,3) entries, and 
that this property is preserved by the Galois action. It follows that the 
real symmetric matrix TG cannot have signature (2,2) and therefore 
determines a spherical or hyperbolic simplex depending on the sign of 
de t ( rG) . 

b) By a) and theorem 11.14 the spherical simplex A defines an 
element z € # 3(S1(2,Q))+ such that 

a(rz) = [AT] e V{S3)/E{V{S2)), Vr e Ga l (Q/Q) . 

Hence all the Borel regulators {r^} vanish on z, so tha t z 6 Q / Z = 
H3(HQ), and hence A is s.c. to a rational lune by corollary 10.21. 

c) First let us note that the second statement follows from the first. 
In fact, since Volws(AT) / 0 it follows that [AT] € V{n3) has infinite 
order and hence the same is true for [A] e V(S3)/E(V(S2)). 
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As for the construction of A = A(a,j3,a) we just have to satisfy 
(11.17,+), tha t is, the inequality 

cos2 j3 < sin4 a; equivalently , 0 < | cos f3\ < sin2 a. 

Since q > 3 and } ) > 5 w e can choose (3 and a so that 7r/3 < [3 < 2n/3 
and 7r/4 < a < 37r/4, tha t is, 

0 < | cos/31 < - < sin2 a. 

In order to find r we observe that since p and q are distinct odd primes, 
the corresponding cyclotomic fields of 2pth and 2qth roots of unity are 
linearly disjoint. Thus, we can find Galois automorphisms carrying 
exp(ia) and exp(i/3) independently to arbitrary 2pth and 2<jrth roots of 
unity expia' and expi/3'. Tha t is, we must find a' and f3' satisfying the 
following inequalities: 

sin4 a' < cos2 f3' < sin2 a'. 

We begin by taking 0 < a' < 7r/6 SO tha t 0 < sin a' < 1/2. We then 
have 

s in(a ' /2) - sin2 a' = sin(tt ' /2) • [1 - 2 cos(a ' /2) • sin a'] > 0. 

In other words it is enough to find a' and j3' so as to satisfy 

0 < a'/2 < |?r/2 - I3'\ < a' < TT/6. 

By our assumption p/6 — Ap/q > 1 and thus we can find an integer t 
so tha t Ap/q < t < p /6 . We take a' = tn/p so that a' < 7r/6 holds. 
Between a' and a ' / 2 we have an angular interval tir/2p > 27r/g. Since 
the primitive 2q-i\x of unity together with - 1 are uniformly distributed 
around the unit circle with successive angular gaps of 27r/g, we may 
invoke Dirichlet's Box Principle to find (3 so that \n/2 — (3\ falls strictly 
between « ' / 2 and a'. The strictness is a consequence of the fact that p 
and q are distinct primes. We note also that j3' could not be equal to TT so 
that exp if3' is a primitive 2qth root of unity. The Galois automorphism 
r taking exp ia and exp i(3 to exp ia! and exp i(3' is now of the desired 
form. • 

Remark: There are also other examples of spherical orthoschemes 
with a hyperbolic Galois conjugate apart from the infinite family con­
structed in theorem 11.19 c) above. Thus the spherical orthoscheme 
A(37r/5,7r/3,37r/5) has the hyperbolic conjugate A(7r/5, TT/3, TT/5) which 
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is the fundamental domain for the hyperbolic Coxeter group correspond­
ing to the diagram (cf. Bourbaki, Groupes et algebre de Lie, chapter 
V, p. 133) 

5 3 5 • • • • 

As a consequence of the above theorem we get the following relation 
between the Non-Euclidean Hilbert's 3rd Problem (cf. chapter 1) and 
the Rational Simplex Problem mentioned above: 

COROLLARY 11.20. Suppose that the s.c. classes of 3-dimensional 
spherical polyhedra are determined by the volume and Dehn invariant. 
Then the volume of a rational spherical orthoscheme A is an irrational 
multiple of n2 if and only if it has a hyperbolic Galois conjugate. In 
particular this holds for the infinitely many simplices in theorem 11.19, 
c). 

• 

Remark: In other words, each of these orthoschemes with a hyperbolic 
Galois conjugate provides a negative answer to either the Rational Sim­
plex Problem or the Non-Euclidean Hilbert's 3rd Problem. In any case 
let A be one of these simplices and let L = L(6) be the lune with the 
same volume. Then A and L are not s.c. and thus provides a spherical 
analogue to the question asked by Hilbert in the Euclidean case. For the 
construction of a similar pair of hyperbolic polyhedra which are not s.c. 
but have the same volume we refer to [Dupont-Sah, 1999, theorem 
1.3]. 
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Rigidity of Cheeger-Chern-Simons invariants 

In chapter 10 we showed tha t the s.c. classes of polyhedra defined 
over the field of algebraic numbers are determined by the volume, the 
Dehn invariant and the twisted Borel regulators {r^ | a 6 G a l ( Q / Q ) } . 
Now these are only the imaginary parts of the twisted Cheeger-Chern-
Simons invariants {C^} and one could hope tha t the real part would give 
some further information on the s.c. classes of all polyhedra, especially 
since we are twisting with the larger group Gal (C/Q) . However in this 
chapter we shall show tha t this is not the case. In general, similarly to 
the definition in (10.17) we consider the tensor product 

C%;;% = C%1 ® • • • ® C£' e H2^+-+k'^'(G\(n,C), (C/Q)®') 

where k\ <.•••< ki and « i , • • • , a/ 6 Gal (C/Q) . Note that we only need 
to take coefficients in C/Q since the torsion is determined by Suslin's 
theorem 9.22. With this notation we shall show the following. 

T H E O R E M 12 .1 . For k > 1, the twisted Cheeger-Chern-Simons in­
variants CI : tf2fc-i(Gl(rc,C)) - • C /Q , a € Gal (C/Q) , satisfy: 

i) For all Z G #*(Gl(n ,C)) there exists Z' e #*(Gl (n ,Q) ) such 
that 

ctirk;tz) = cz:a
kl

i{z>) 
for all on and all k{ > 1. 

ii) If a, (3 e Gal(C/Q) have the same restriction to Q then C% = Cf. 
iii) IfZx,Z2 € #*(Sl(n,C)) satisfy 

for all twisted Borel regulators r^1'"^1 (cf. 10.17), then also 

119 
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for all ai and all ki > 1. 

The proof of this theorem uses some of the same ideas used by 
[Reznikov, 1995] in his proof of the Bloch conjecture (theorem 10.20). 
The main ingredient is the rigidity property for the Cheeger-Chern-
Simons classes. For this let us first recall the original construction of 
these: 

Let E —>• M be a principal Gl(n, C)-bundle with a flat connection A 
and let Z C M a (2k — l)-cycle. Since the odd-dimensional homology 
of B Gl(n, C) vanishes one can choose an embedding of bundles 

E C E 

M C M 

(i.e. E is the restriction of E to M) such tha t Z — dX for some chain 
X C M. Also choose A a connection on E extending A. Then by 
definition the evaluation of Ck(A) on Z = dX is given by 

(12.2) {Ck(A),Z)= [ Ck(FA) 

where F j is the curvature form of A and Ck is the fcth Chern polynomial. 
It is straight forward to show tha t the reduction mod Z of the expres­
sion in (12.2) is independent of the various choices. With this definition 
it is now easy to prove the following (cf. [Cheeger-S imons , 1985]): 

T H E O R E M 12.3 (Rigidity). Let E -» M be a principal Gl (n ,C)-
bundle and let {At | 0 < t < 1} be a smooth family of flat connections. 
If k > 1 then 

(Ck(A1),Z) = (Ck(A0),Z) 

for Z any 2k — l-cycle in M. 

Proof: For this put / = [0,1] and apply (12.2) to M = Mx I, E= ExI 
and M replaced by M X {0 ,1} . Then the family {At} of flat connections 
on E defines a connection A in E with curvature form 

dA 
Fi = dA + AAA = dtA — 
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so in particular Fk- = 0 for k > 1. Taking X = Z X I in (12.2) we get 

(CjtCAi), Z) - (C fc(A0), Z) =(Ck(A),dX) 

= [ Ck(FA) = 0 
Jx 

D 

In the following we put G = Gl(n,C) and we shall reformulate 
theorem 12.3 in terms of the homomorphism 

Ck : H2k-i{G)-> C/Z 

where 
H*(G) = H{B*{G)) 

is given by the bar complex as in chapter 4. A chain in Bq{G) is a finite 

sum 
JV 

(12.4) z = J2vv[9i\---\g"ql i , e z , j f e G , 

and Z is a q-cycle if 9 Z = 0, that is 

AT 9 

(i2.5) ££(-I)W.MI---I#] = 0 

i / = l t'=0 

where gj, i = 0 , . . . , q, are the usual boundary operators 
for i = 0 

^•[»l|---lfl ,g]= * 

O2I - - - |ffg], 

[g1\...\gigi+1\...gq], for 0 < i < q, 

[gi\ ••• |ffg-i] , forz = g. 

Given a cycle Z the finite set of group elements {<?f } generates a 
subgroup F C G which we consider as an abstract discrete group. Then 
the expression (12.4) clearly defines a cycle Zr € Bq(T) such tha t the 
inclusion /o : T 4 G takes Zr to Z . Now / 0 determines a flat connection 
A on the associated Gl(n, C)-bundle over BT and clearly 

(12.6) Ck(Z) = (Ck(A),Zr). 

On the other hand /o is a point in the representation variety defined by 

R{T) = H o m ( r , G ) 
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This is well-known to be an affine algebraic variety defined over Q (cf. 
[Raghunatan, 1972, chapter VI]). An arc ft,t G [0,1], in R(T) deter­
mines similarly a family of flat connections. Hence by theorem 12.3 we 
get for each z G i?2fc-i(F), k > 1, tha t the function on R(T) defined by 

(12.7) f^ck{U{z)) 

is constant on each arcwise connected component of -R(r). In particular 
since 

i?(r) = JR(r)0u---u JR(r)m 
is a finite union of irreducible components over Q and since each R(T)i 
is arcwise connected by a theorem of Lefschetz (cf. [Lefschetz, 1953, 
p.97] or [Mumford, 1976, I, Corollary 4.16]), we conclude the follow­
ing: 

COROLLARY 12.8. For z G H2k-i(T),k > 1, the function on R(T) 
defined by (12.7) is constant on each irreducible component R(F)i. • 

P r o o f of t h e o r e m 12 .1 . i) Continuing the notation above let us 
assume /o G _R(r)0. Then by Hilbert's Null-Stellen Satz there is an 
algebraic point / ' G i?(r)0Q. Consider the associated cycle 

Z'= fi(Zr) e Bq(GQ) 

We shall show that if 2(A?i + \- ki) — I — q, k{ > 1, and aii,...,a.\ G 
Gal(C/Q) then 

(12.9) c^(z') = ca
ki\;%(z). 

The diagonal A : T — ^ r x - - - x r ( / factors) has an induced map in 
homology with rational coefficients such that 

A*([^r]) = Yl Zii ® """ ® zu ZH e ^*(r' Q)-
Hence by definition 

C£:'*7 (z) = E d * ^ ^ ^ ) ® • • • ® Ckl (a,-,./„.(*,)) • 
and similarly for C^.'.^'iZ') with /o replaced by / ' . But since / ' , / o G 
i ? ( r ) 0 also <*;(/') and a ; ( / 0 ) both lie in the same irreducible component 
of R(T) so by corollary 12.8 

Cki ( " i . /o . (zi)) =Ckt (ai(f0)*(zi) 

=Cki(ai(f'Uzi)) = Ck(aiJi(zi)) 
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which proves (12.9). 

ii) clearly follows from i). 

iii) also clearly follows from i) together with Borel's theorem 10.18. 

• 
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Projective configurations and homology of the 
projective linear group 

For the study of the structure of the scissors congruence groups in spher­
ical and hyperbolic 3-space a basic ingredient was the exact sequence in 
theorem 8.19 relating the homology of SI(2, F), F a field of characteris­
tic 0, with the group VF generated by cross-ratios of four points on the 
projective line P1(F). In the remaining chapters we shall outline a sim­
ilar program for studying the homology of the projective linear group 
PGl(n + 1, F) in terms of configurations of points in projective n-space 
Pn(F). This goes back several years to unpublished work together with 
C.-H. Sah (cf. [Sah, 1989, problem 4.12]) but it was never completed. 
In the meantime it has been bypassed by the work of A. Goncharov (cf. 
[Goncharov, 1995]) and others (see e.g. [Beil inson et . al, 1991], 
[Cathel ineau, 1993], [Cathel ineau, 1995]). 

In the following chapters the field F is assumed algebraically closed 
for convenience and we put G = PGl(n + 1),F) which clearly acts on 
the projective n-space Pn = Pn{F) = P(Fn+1). For a linear sub-
space V C Fn+1, P(V) C Pn denotes the corresponding projective sub-
space, and -P({0}) = 0. Also for convenience we consider all chain com­
plexes with Q coefficients. Furthermore we change the notation slightly 
and let C*(Pn) denote the alternating chain complex of formal Q-linear 
combinations of projective configurations , i.e. (q + l)-tuples of points 
( a o , . . . , aq), a,- 6 Pn, with the identifications for any permutation TT: 

(13.1) ( a ^ o ) , . . . , <!„(,)) = sign TT (a0,...,aq). 
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In particular (a0,.. .,aq) = 0 if a; = a3 for some i / j . The boundary 
map is given by the usual formula 

i 

(13.2) d{a0,...,aq) = ^ ( - l ) ' ( o 0 ) • •., a,-, • • •, a , ) . 

Also let e : Co(-Pn) —̂  Q be the augmentation and let C*{Pn) denote 
the augmented complex with Q in degree - 1 . Again C*(Pn) is an 
acyclic chain complex of Q[G]-modules and we shall study the associated 
hyperhomology spectral sequences (cf. appendix A). However we shall 
organize the analysis of this in a convenient way taking into account the 
geometry of Pn. 

In general for N* any chain complex of (left) Z[G]-modules we con­
sider the hyperhomology 

(13.3) Hk(G, Nm) = Hk(G\(B*(G) ® NJ) 

where we are taking the homology of the total complex and where B*(G) 
is the bar complex as defined in chapter 4. If N{ = 0 for i ^ 0 then 
clearly 

(13.4) H{G,N*) = H*{G,N0). 

For a chain complex iV* and / 6 Z let N{[1] = iVj_/ with the boundary 
map multiplied by ( — 1)'. Then from (13.4) and the exact sequence 

o -> Q [ - I ] -> d ( p n ) -> a ( p n ) -»• o 

we get a natural isomorphism 

(13.5) Hk(G, C*{Pn)) £ fffc(G, Q) , for all fc. 

We next define a filtration of C*(Pn) by Q[G] modules 

(13.6) C*{Pn) = Jn ,* D J n _ 1 ; * > ' 0 ^ 3 3"-i,* = 0 

as follows. A configuration ( a o , . . . , ag), a{ G P n , is called decompos­
able at level p if there is a direct decomposition of Fn+1 into non-zero 
summands 

(13.7) Fn+1 = V0 © • • • © K - p 

such that e^ <E P(V0) U • • • U P ( K - P ) for all j - 0 , . . . , q. If p = 0 then 
the P(Vj) 's are just single points in which case the configuration either 
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has repetitions i.e. represents 0 in Cq(P
n), or q < n and (ao , . . . , aq) is 

an independent set of points. We now let 

be the subcomplex generated by configurations which are decomposable 
at level p. In particular 

(13.8) Clndep(Pn) = J 0 a ( F n ) 

is generated by the independent configurations. We also have the corre­
sponding augmented complexes 3"P)*, Cj" e p(P") , with Q in degree —1. 
Finally for V C F n + 1 a linear subspace we put 

(13.9) ^ ( V ) = C , ( P ( V ) ) n ^ 

and similarly for the augmented complexes. 

The filtration 'Jp is clearly stable under the action by PGl(ra + 1, F) 
and therefore gives a corresponding filtration on C*(Pn) ®z[G] B*(G). 
Hence by (13.5) we obtain a spectral sequence 

(13.10) Er
p^Hp+q(G,Q) 

with 

(13.11) Ep<q — Hp+q{G,'Jp,*/'Jp-i,*). 

Now if a configuration is decomposable at level p but not at level p — 
1, then, in the decomposition (13.7) above the subspaces V; of dimension 
bigger than 1 are unique up to permutation (being spanned by a subset 
of the configuration). Let us arrange these Vi, V2, • • •, Vjt according to 
non-decreasing dimension 2 < ni + 1 < «2 + 1 < • • • < nk + 1, and let VQ 
denote a complement to V\ © V2 © • • • © Vk containing the 1-dimensional 
summands. Then our configuration a has the form 

a — ( a o , . . . , aqo, • • •, aqo+qi,..., aqo-\—\-qk) 
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with (ao, • • -,090) independent in P(Vo) and (a9i+i 
posable in P(Vi+i), i = 0 , . . . , k — 1. It follows that 

(13.12) 

, • • • , •*?,•+1, indecom-

Jp,*l J p— 1,* — ( I ) 

vrie-ffiVfeCF"+1 

6 i n d e p ( F ( y o ) ) 

® (^. . (Vi) /^-! ,*) ® • • • ® (3"nfc,*(^)/^_1,,)j W 

where the sum is taken over all direct sums as above and where 

V0 = Fn+1/{V1®---®Vk) 

has dimension n0 + l > 0 (so that Clndep(P(Vb)) = Q[ - l ] for n0 = - 1 ) . 
In particular for the decomposition 

pn-n0 __ pm+1 g\ . . . n\ pnk + l 

the stabilizer for the action by Gl(n + 1, JP) is the semi-direct product 
of the subgroup of matrices of the form 

/ ffo 0 \ 
• 9i 

\ 0 

gi eGl(nt- + l ,F ) ,* = 0,. . . ,A, 

9k ) 

with the group of permutations of the blocks of equal rank. As before, 
using the "center kills" and Shapiro's lemma (lemmas 5.4 and 5.5) we 
can now summarize our discussion in the following 

THEOREM 13.13. For G = PGl (n+l ,F ) there is a spectral sequence 
Er

v q converging to H*(G, Q) such that E*, = H{G, CTdep{Pn)) and for 
P > 0 , 

El* ~ 0 [H(G(n0),CindeP(F'1 ' ')) ® 

®H(G(n1),C.(P"1)/3 : 'n i_i, ,)®.. .<8)H(G(n f e),a(Pn*)/^n | t_i i , 

where the sum is taken over all no,.. .,nk satisfying 

— l<n0,l<ni<---<nk, no + • • • + n^ + k = n, no + k = n — p. 

Here G(ni) = PGl(nt- + 1, F) , i — 0 , . . . , k, and ® indicates taking 
coinvariants for the induced action by the group permuting the factors 



Chapter 13. Projective configurations and homology ... 129 

G(rii) of equal rank (multiplied by the sign of the corresponding per­
mutation of the standard basis). 

By theorem 13.13 we are left with 3 problems: 

(13.14.1) Compute f f ( G , d n d e p ( F n ) ) . 
(13.14.ii) Describe H(G,C»(Pn)/5 ,

n_i,»). 
13.14.iii) Determine the differentials in the spectral sequence. 

For the remainder of this chapter we shall deal with problem (13.14.1) 
and defer the other two problems to the next chapters. A direct ap­
proach is the usual hyperhomology spectral sequence 

"E:*=>H{G,Cindep{Pn)) 

with 

(13.15) "Elq = Hq(Hp(G,CTdep(Pn)))-

Here 

"Elq = Hv{G,C^{Pn)) 

(13.16) =(Hp(G(el,...,eq+l)®Q(e1,...,eq+1), q<n 

(0 q> n 

where G(e i , . . . , eq+1) C G = PGl(n + l, F) denotes the stabilizer of the 
standard independent configuration ( e i , . . . , e?+i). 

Again using "center kills" we get for q < n 

"Et,q = H(((F*y+1 xG\(n- q,F))/F*) (g) Altg+1 

Z[6,+ i] 

where &q+i is the symmetric group acting by permuting the (q + 1) 
factors of F x and where Altg+i is the usual sign representation. As 
before [ip Q Fx is the group of roots of unity and since F is algebraically 
closed F v = Fx /[IF is a uniquely divisible group, i.e. a rational vector 
space. Let us summarize 

PROPOSITION 13.17. The spectral sequence 

"E^^H4G,C'mdep(Pn)) 

http://13.14.ii
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has "Elq = 0 for q > n? and for q < n 

"Elq = H4((FX)i+1xG\(n-q,F))/F*) (g) A.lt,+1 

Z[6,+ i] 

V((F V )«+ 1 ) <g>z[s,+l] Alt ,+ 1) 0 tf*(PGl(n - g, F)), g < n 

i A * ( ( ( F v ) « + 1 / F v ) ) 0 z [ e ; i + i ] A l W 1 ) g = n. 

Furthermore "d1 : "F* „ —)• "El x is the symmetrization of the map 
induced by the inclusion 

(Fx)q+1 x Gl(n - q, F) ->• ( F x ) 9 X Gl(n - g + 1, F) 

(A0 , . . . , A9,£f) i->- ( A 0 , . . . , A,_i, ( 0
9 

Remark: The last statement is straight forward from the formula 
(13.2) for the differential. Thus to calculate the "F2-term we need 
some representation theory of the symmetric group. 

EXAMPLE 13.18. "E2
pn = 0 for all p. In fact proposition 13.17 gives 

a diagram 

"El<n - A*((FV)»+7FV) <8)z[6n+i] Altn+1 

w^,»- i = A*((FV)"+VFV) 0 z [ 6 n ] AltB 

in which the symmetric group in the second line acts only on the first n 
coordinates and "d1 is just the symmetrization of the identity. It follows 
that "d1 is injective, hence E"2

 n = 0. 

EXAMPLE 13.19. " F ^ + l n _ 1 . First notice that 

'X+l ,n-l = A " + 1 ( n ( g ) A l t n 

Z[6„] 

and similarly to example 13.18 it follows that the kernel of 
//ji . //pi . iipi 

u • ^ n + l . j i - l — ' -c'n+l,n-2 

is contained in 

( F v ) A ( n _ 1 ) A A2(FV) ^ S'n-1(FV) ® A2(FV) 
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where S denotes the /-th symmetric power. It follows using the diagram 
in example 13.18 that 

^+llB_1 c [S"-HF V )®A 2 (F V ) ] /V(X+I ,J 

is the kernel of the composite map in the diagram 

S " - 1 ^ ) <g> A2(FV) - ^ — A^ttF^r+i/FV) <g>z[Sn] Altn 

A»+i(( i^)»+VFv)<8) z [ 6„+ jAltB + 1 

where the vertical map is the natural projection. 

On the other hand it is straightforward using the exact sequence 

0 -» F v -> ( F v f + 1 -» ( F v ) " + 1 / F v -> 0 

and the fact that 

Afc(Fv)"+1 0 Altn+1^ 
Z[6„+i] 

0, for k < n - 1 

5 n ( F v ) for k = n 

s 5
n + 1 (Fv) © A2 (F v) <g> Sn~l (F v ) , for Jb = n + 1 

to show that there is a natural exact sequence 

0 -»• F v ® 5"(FV) -» 5 n + 1 ( F v ) 0 A 2 ( F v ) ® S n _ 1 (F v ) -»• 

- ^A r i + 1 ( (F v ) n + 1 /F v ) 0 A l t n + 1 - > 0 . 

Comparing this with the above we find that 

*£+!,„_! C im [r? : F v <g> Sn(F^ -+ A2(FV) ® S * " 1 ^ ) ) ] 
= T(2,n-l)(- jpV-j 

where 77 is the map given by 

rj(a0 <8> (<xi o • • • o a n ) ) = 2 J ( « o A a,-) <g) (ax o • • • o a,- o • • • o ar, 
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and where J1 '2 '"-1) denotes the Schur functor associated with the par­
tition (2 ,7 i - 1) (cf. [Akin-Buchsbaum-Weyman, 1982]). Since 
E*l — 0 for q > n we have thus proved the following: 

COROLLARY 13.20. There is a natural projection 

Pn : H2n (G,Cinde»(P")) - * % , „ _ ! 

C T<2 'n-1 '(FV) C A2(FV) ® 5 n - 1 ( F v ) 

where J ,(2,r i-1) is the Shur functor associated with the partition (2, n—1). 

There is an alternative inductive approach to the computation of 
H(G,Clndep(Pn)) which we shall now describe. For {z_ p , . . .,a,-_i} an 
independent set of points in Pn let 

c^(Pn){x_p_x_l} c c^(Pn) 

be the subcomplex generated by (q + l)-tuples (a,Q,.. .,aq) such that 
{x-p,..., x_i, ao, • •., aq} is an independent set. Also let the associated 
augmented complex be denoted by C*n ep'(Pn){x_pt...lX_1}- Notice that 
there is a natural projection map 

(13.21) 

TT : C?d°v(Pn){x_p_x_l} -+ C:n d eP(F(F"+Vspan{x_p , . . . , * _ ! » ) . 

We now have the following. 

PROPOSITION 13.22. i) There is an exact sequence of G-modules 
(G = PGl(n+l,F)) 

0 ->• Cindep(F") - S 0 C,rdep(Fn){._1}[l] -^> ... 

. . . _ , 0 ^ i n d e p ^ ^ x_i}[p]±>.^ 

• • • -> 0 ci"^^)^.,,^,...,..,}!" +1] -> o 
{a;_n_i,. . . ,a;_l} 
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ii) The projection ix in (13.21) induces an isomorphism 

ff(G',©C'indep(P"){,_p,...,,_l}/ 

A,( (^V)P) 0 H (PGl(n - p + 1), Cfdep(Pn-P)) , P^n 

A-i(FZ;;,FV)[-ll P = » + l. 

Proof: i) The boundary map 6P is given by 
i 

bp(a0, . . . , ag){a;_p ) . . . ) a ;_1} = 2 _ ^ ( - l ) ! ( a 0 , . . . , a,', . . . , a9){a i , i ;_p, . . . ,a;_1} 

«'=0 

for p = 0,1, 2 , . . . and it is easy to see that b o b = 0. Also we have 
contracting homotopies sp, p = 0 , 1 , . . . , defined by so = 0 and for p ^ 1, 

p 

•Spia0i • • • i aq){x-p,...,x-i} — / j\xii a 0 ; • • • ) aq){x-p,...,x_i,...,x-i} 
i=\ 

It is easily checked that 

6p_i osp + sp+l obp = (p+q + 1) id, p = 0 , 1 , . . . , 

which shows that the sequence is exact. 

ii) As usual this follows using Shapiro's lemma and the "center kills" 
lemma (lemmas 5.4 and 5.5). • 

Remark: Note that by the exact sequence 

0 -*• C™dep{Pn) -> C*{Pn) -» C*(Fn)/C;ndep(F*) -> 0 

we get a natural isomorphism 

Hi(G,Ctn d e p(Pn)) =* Hl+1{G,C*{Pn)/C™Aep{Pn)). 





C H A P T E R 14 

Homology of indecomposable configurations 

We next turn to problem (13.14.ii), tha t is, we want to study the hyper-
homology H(G,C*(P™)/5 n_i ,*) for the group G = PGI(n + l , F ) acting 
on the alternating chain complex of projective configuration modulo all 
decomposable configurations. 

Again in this chapter all chain complexes have rational coefficients 
unless otherwise specified. 

L E M M A 14 .1 . A configuration is indecomposable if and only if its 
isotropy subgroup of PGl(n + 1, F) is finite. 

Proof: The isotropy group of a decomposable configuration clearly con­
tains (Fx)2/Fx = Fx which is infinite. Let us show the converse. It 
is clearly enough to show that if a projective transformation g keeps an 
indecomposable configuration o pointwise fixed then g = id. Since a 
is indecomposable it must contain an independent set of n + 1 points 
which, by a change of basis, we can assume to be the standard basis 
{ e i , . . . , e n + i } of Fn+1. It follows tha t g is given by a diagonal matrix 
and in particular keeps Pn~l = s p a n { e i , . . . , en} invariant. Let o' be 
the projection of a — {en+\} on Pn~1. Then we have two cases: 1) a' is 
indecomposable in P71"1, or 2) a' is decomposable in Pn~x. In case 1) 
we may assume by induction that g fixes every point of Pn~x and since 
a is indecomposable it must contain a point in Pn — [Pn~l U {en+i}) 
which is also fixed. Hence g = id in this case. In case 2) we have a 
non-trivial decomposition Fn = Vi © • • •© Vr, r > 1, such tha t a' is con­
tained in U;=i P{Vi)i a n d s u c n tha t a\ = P(Vi) fl a' is indecomposable 
in P(Vi). Again by induction we may assume g\P(Vi) = id, i = 1 , . . . , r . 
Now for each i the original configuration a must contain some point 
outside P(V{) and projecting to a point of o'{, since otherwise a would 
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be contained in P(Vi © • • • © Vz © • • • © Vr © span{e,-}) U P(Vi). Since g 
fixes these points it now follows that g = id on all of Pn. • 

It follows that with rational coefficients the hyperhomology spectral 
sequence for C*(Pn)/'Jn-it* collapses and we obtain the following: 

COROLLARY 14.2. With rational coefficients there is a natural iso­
morphism 

H(c,a(Fn)/3-n_1,,) = //(a) 
where C* = G\C4Pn)/?n-h*. • 

Let us put for short 

(14.3) V: = V?(F) = H(C*) = H(G\C*(Pn)/'Jn-^). 

EXAMPLE 14.4. For n — 1 we clearly have (cf. chapter 8) 

' o , for i < 2, 
V}(F) = 

VF for i = 3. 

Notice that in degree 3 any configuration is a cycle so that, up to the 
action by PG1(2, F) the generators are in standard form given by 

{z} = (ei, e2, e r + e2, zex + e2), z e F - {0,1}. 

EXAMPLE 14.5. In "PJn+i w e n a v e a s i m i l a r family of cycles: A 
2(n + l)-gon is a configuration (ao, •. .,a2n_(-i) such that a2i+i n e s o n 

the line through a-n and a2i+2, i — 0 , . . . ,n, (cf. figure below). Up to 
the action by PGl(n + 1, F) it has the standard form 

{z} - (ei, e2, ex + e2, e3, ei + e2 + e 3 , . . . , en+l, ei + e2 H h en + 1 , 

zei + e2 + --- + en + i) 2 e F - {0,1} 

n=2 n=3 
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That a 2{n + l)-gon is a cycle (rationally) follows easily from the fol­
lowing lemma whose proof we leave as a simple exercise in projective 
geometry. 

L E M M A 14.6. Let U C Pn be a hyperplane and (a0, a\) and (a0, a'j) 

two pairs of distinct points outside U. Then there is a projective trans­
formation g £ PGl(n + 1,F) with gao — a'Q,ga\ = a'x and fixing every 
point of U, if and only if the lines through (ao, ffli) respectively (a^a^) 
intersect U in the same point • 

P R O P O S I T I O N 14.7. Let C* = G ^ O ^ P " ) / ^ - ! , * . 

i) If a configuration a has all but at most 2 points lying on a hyper­
plane then 2a = 0 in C*. In particular Vf = 0 for i < n + 1. 

ii) If a £ C*2n+i is a 2{n + l)-gon then 2a is a cycle. 

Proof: i) If a has at most one point outside a hyperplane then it is de­
composable. If a = ( a 0 , . . . , a 9 ) with a 2 , . . .,aq € U, U a hyperplane and 
a0 •£ a\ outside U then by lemma 14.6 we can find g € G interchanging 
ao and a\\ hence 

a = ( a 0 , . . . , aq) ~ {au a0, a 2 , . . . , aq) = -a. 

ii) follows since any face of a 2(n + l)-gon has the form considered 
in i). • 

Remark: We would have liked to prove that i) "P™ = 0 for i < 2n, and 
ii) 7"2n+i ' s generated by 2(n + l)-gons. However we have only been 
able to show the first statement for n < 3 and the second for n < 2 (cf. 
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corollary 14.15 below). This is contained in a general result, which we 
show below (theorem 14.9). 

DEFINITION 14.8. a) A configuration a in C*{Pn) is called a k-
wedge, fc = 1 , . . . , n — 1, if there are projective subspaces U and 
V of dimension n — 1 respectively k, such that i) a C U UV and 
ii) #anUnV = k. 

b) A configuration a in Czn+i(Pn) is called a corner if there are 3 
hyperplanes Ui,U2, U3 such that i) a C U\ U U2 U C/3, ii) #<r D 
f/i n L72 n U3 = n - 2, and Hi) #<r n t/; n t/j = n - 1 for i ^ j . 

Remark: The following figures are examples of corner configurations 
for n = 2 and 3. Notice that for n = 2 a corner with at least 3 points 
outside a line is necessarily a 6-gon. 

n-2 n=3 

Notice that the above configuration for n = 3 is not a cycle. 

We can now state the following general results. 

THEOREM 14.9. Let C* = G^C^P")/^-!,* and V%_= Hk(C*). 
For r = 0,1, 2 , . . . , there are explicit chain maps fr : C* -» C* satisfying 
the following: 

i) / ° = id and fr\Ci = fr~l\Ci fori^n + r-1. 
ii) f is chain homotopic to f r - l 1,2,.. 

iii) If c G Vn+ri r < n — 1, then f(c) is a linear combination of 
r-wedge configurations. 

iv) If c € V2n, n > 1, i/ien /"(c) is also a linear combination of 
(n — 1)-wedge configurations. 

v) If c G "P^n+i then fn+1 (c) is a linear combination of (n — 1)-wedge 
or corner configurations. 
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Proof: (Sketch). As a s tar t let us define / and its chain homotopy s 
to the identity. Let us define fl((j) for a = ( a 0 , . . . , aq), q > n + 1, a 
configuration of points a; G Pn which we shall assume in general position 
for convenience. Let I = ( i o , . . . , in+i) be a sequence of n + 2 distinct 
numbers from {0, . . . , g } and put / ' = { i o , . . . , i „ - i } , / " = {in,«n+i} 
. Let a1 — a1 (I) be the intersection point between the hyperplane 
span{a; | i 6 / ' } and the line {a; | i G / " } . Furthermore given j € I put 

a1J = al/{I,j) = \ 

With this notation we define 

tl(a) = J2(aliao,-
I 

and 

Then 

(14.10) dot1 (a) + tlo 8(a) = Nqa - g1{a) 

where Nq > 0 is the number of sequences / as above. We now define 
for a G Cq 

and 

From the identity (14.10) we now conclude 

dos1 +S1 od = \d-f1 

and hence also 

d-dofl = doslod = d-fxod. 

It follows tha t f1 is a chain map chain homotopic to the identity and 
furthermore iii) for r = 1 clearly follows from the above construction. 

v = 0,...,q, 

..,aq) 

. .,a„ 
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For general r > 1 we similarly first construct maps gr and t,r, r = 
1 ,2 , . . . , such tha t for a £ Cq 

(14.11) dof(a) + trod(a) = N^gr-\a)-gr(a), r = l , 2 , . . . . 

for suitable positive integers N*. Then the chain maps f and chain 
homotopies sr, r = 1 ,2 , . . . , are defined successively using (14.11) such 
tha t 

(14.12) fr(a) — -jrrgr(a) — some function of da. 
g 

For the definition of gr{cr) for a = (ao, • •-,aq),q ~> n + r , we again 
assume (ao,..., aq) in general position for convenience. Again let I = 
(io,. • •, in+r) be a sequence of n + r + 1 distinct numbers from { 0 , . . .,q} 
and let J = ( j i , . . . , jr) a subsequence of I satisfying 

(14.13,i) j k £ {«o, ...,in+k}, k = l,...,r. 

Furthermore suppose we have a partition I — I' U I" satisfying 

(14.13,ii) i0 , . . . , i n - i e / ' , in,...,in+k £ I", if fc < min(n - 1, r ) , 

(14.13,iii) i2n+s-i £ / ' if an only if j s 6 / ' , s = 1 , . . . , r - n. 

(In our case (14.13,iii) is only used for s = 1,2.) With this notation we 
define inductively for r = 1, 2 , . . . 

< = < ( / ' , J", J ) 

= < _ 1 ( / ' - { i r } , / " - { * , • } , < / - { > } ) , foiv^jr, u = 0,...,q, 

and 

^ = < ( / ' , / " , J ) = 

span {a; | i £ / ' , i 7̂  j i , • • •, j r - i } H span {a,- | i £ 7", i^ji,..., jr-i} . 

Notice for the definition of a^r tha t {a,- \ i £ I,j ^ ji, • • • , j r - i } consists 
of n+2 points so tha t the intersection point exists and is unique. Finally 
gr is defined by 

(14.14) gr(a) = £ (ar
0,.. .,ar

q). 

(i'J",J) 

The maps tr are defined in a similar way. We shall omit the details as 
well as the checking of formula (14.11). For the proof of the statements 
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iii)-v) in the theorem we first observe that by (14.12) the maps f and gr 

have the same image when restricted to the set of cycles in C*. Hence by 
(14.14) it suffices to check that the configurations a'r = (CLQ, . . . , aC) have 
the desired properties. Thus for iii) we just observe that the subspaces 

U' = span{a 8 0 , . . .a i n_, }, U" = s p a n { a i n , . . . , aln+r} 

have dimensions n — 1 respectively r and satisfies 

i) < G U' U U" for all u = 0 , . . . , n + r, 
ii) ar

jl,...,a
r
jreU'nU", 

so tha t ar is an r-wedge as claimed. 

For the statement iv) we have two cases: 1) j \ £ I', 2) j i G / " . In 
the case 1) j i G / ' , we put 

U' = span ({aio,..., ain^, a 2 n } - {ak }) , U" = s p a n { a i n , . . . ai2n_x} 

and observe tha t 

i) a1} eU'U U" for all u = 0 , . . . , 2n, 
ii) al,...,al€U'nU" 

so tha t again <r is an (ra — l)-wedge in this case. In case 2) j i G / " , we 
similarly get an (n — l)-wedge lying on U' U U" with 

U' = s p a n { a i o , . . . , a i „_ 1 } , U" = span ({o, - n , . . . , a,-2„} - {a^ } ) . 

Finally for statement v) we have 4 cases: 

ia)ii,J2e/', lb) j!er,h el", 

2a) he i", j2er, 2b) juj2£i" 

In the cases la) and 2b) the configuration an+1 is again an (n — 1)-
wedge, whereas in the cases lb) and 2a) it is a corner. Let us just show 
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this in the case lb) j \ £ I',J2 G / " . Then we put 

U' = s p a n ({aio,.. .aln_x,al2n} - {an}) 

U" =sp&n{ain,...,ai3n_1}, 

U% =spa,n({ain,...,at2n_1,at2n+1} - {a j 2}) . 

Then the configuration an+1 satisfies 

i) < + 1 G U' U U[ U U%, i/ = 0 , . . . , 2 n + l , 

ii) o? + 1 , . . . l a2; 1
l € i / 'n t / {n^' . 

iii) Also a™+1 e f / ' f l [/(', a^+\ € f/' n t/£, and af+1 = a, G U[ n Z7" 

for S o m e Z G { « « , - • • , * 2 n - l , « 2 n + l } - { j 2 , • • • , J n + l } -

This shows tha t an+1 is a corner configuration as claimed. • 

COROLLARY 14.15. i) V™ = 0 for q < In if n < 3 and for 
q < n + 3 if n > 3. 

ii) T3^ and "Pf are generated by the configurations {z}, z £ F — {0,1}, 
defined in example 14-5. 

iii) "Pf is generated by the cycles 

{/4(CT) I a = ( a 0 , . . . , 07) any configuration } 

where fA is the chain map in theorem 14-9. In particular every 
cycle is a linear combination of 2-wedge or corner configurations. 

Proof: i) If a G Cn+r(P
n) is an r-wedge with r < min(3, n— 1) it is easy 

to see tha t a has at most 2 points outside a hyperplane hence represents 
zero on Cn+r by proposition 14.7,i). Similarly for a G C2„(-Pn) an 
(n — l)-wedge for n < 3. Thus i) follows from theorem 14.9 iii) and iv). 
ii) Since, as noted in the remark following definition 14.8, a corner 
configuration in P 2 is either a 1-wedge or a 6-gon, each term in / 3 ( c ) is 
a cycle by proposition 14.7,ii). Hence the statement for V\ follows from 
theorem 14.9,v). Similarly for P3 the chain map / 4 is zero in degrees 
< 6 and hence maps to the cycles in degree 7. Statement iii) is now 
obvious from theorem 14.9,v). • 

R e m a r k : As in the case of scissors congruence groups V™ can also be 
expressed in terms of the homology of a Tits complex T(Pn). In this 
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case a subspace is just a union U = P{V\) U • • • U P(Vk) C Pn such that 
Vi (J • • • © Vk C Fn+1 is a direct sum of proper linear subspaces (that is 
V{ 7̂  0, F n + 1 ) , and a flag is just a decreasing sequence of such subspaces 
ordered by inclusion. Then by the usual bicomplex argument we get a 
natural isomorphism 

(14.16) 7 > £ ^ H J b _ i ( G ) a ( T ( P n ) ) ) 

where Ck(T(Pn)) denotes the augmented chain complex for T(Pn)- We 
shall however not pursue this point of view. 





CHAPTER 15 

T h e case of PG1(3, F) 

As for the problem (13.14.iii), i.e. the problem of determining the differ­
entials in the spectral sequence, we shall restrict to the cases n = 1, 2. In 
particular for the case n = 2 we shall relate the homology of PG1(3, F) 
with the homology groups V% of configurations in the projective plane. 
Again all chain complexes and all homology groups have rational coef­
ficients. 

For 7i = 1 we just recapture the results of chapter 8. In fact, for 
the action of G = PG1(2,F) on the projective line P1 the filtration 
3PC*{P^) has only two terms 

C'^iP1) = 'JoC^P1) C 'JtC^P1) = C*{Pl) 

and by corollary 14.2, 

H,-(GIJ1/JO) = (?; 1 _ ! = ° ' 1 , 2 , 

[V£ = VF, % - 3. 

Furthermore by proposition 13.22 we have 

10 i odd . 

The spectral sequence then reduces to the exact sequence for the pair 
(3^1, 'Jo), i.e. for k = 1, 2 , . . . we have the exact sequences 

(15.1) 

0 -> if2fc+1(PGl(2, F)) -> V'k+1 H> A " ( F V ) -> H2k(PG\(2, F)) >1 d1 .2k/T?V\ 

V\k -> 0. 
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Since V\ = 0 this agrees with the exact sequence in theorem 8.19, and 
in particular the differential d1 on V\ is given by 

(15.2) dl({z}) = 2zA{l-z), zeF-{0,1}. 

We next turn to n — 2, i.e. in the following G = PG1(3, F) acts 
on the projective plane P2. Also let us write Ci" ep = C*n e p (F 2 ) . We 
then have the following result relating H*(G) and the groups V* in low 
dimensions: 

THEOREM 15.3. Let G = PG1(3, F). 

i) The row and column in the diagram below are exact sequences 

S2(A2FV) 

\ 
H 5 ( G , d " " r ) -~'Hs(G) — Vl — H4(G,C:nd«p) — Ht(G) - ~ 0 

ffs(G) 

ff3(PSl(2,F)) 

ii) H2(G)*±H2(PSl(2,F)). 
iii) A2 is given by 

\2{z} = (0,6z®{z}), zeF-{0,l} 

iv) 6* | Vl agrees with d1 in (15.1) and 6* | Fv <g) P3 is given by 

K(w A {z}) = wAzA(l-z), z,we F - {0,1}. 
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Proof: i) The filtration rJpCk{P2) has 3 terms 

C'indep(F2) = Jo C J i C J 2 = C*(F2) 

But in the spectral sequence in theorem 13.13, E\ ^ contains the factor 

H"(G(0),Cindep(F°)) = 0 

so that F | _ = 0. It follows that the spectral sequence reduces to the 
exact sequence for the pair (ff̂ i 3"i) such that 

(15.4) H{G,?X) £ H(G,'J0) = H(G,Gln d e p) . 

This clearly gives the exact sequence 

(15.5) • • • -» Hi(G, Glndep) -»• fff (G) -»• F 2 3- H,_i (G, Gindep) -> . . . 

For the computation of H(G, G*n ep) we use proposition 13.22 and note 
that 
(15.6) 

H (G,®Cindep{P2){x_l}^J ^ A* (F v) ® H(PGl(2,F),Gin d e p(F1)) 

= A*(FV)®F,J[-1] 

by the last remark in chapter 13. Also note that 

H (G, ®C^(P2){x_^x_l}) ^ A * ( ( ^ V ) 2 ) ® H(PG1(1), Gindep(F0)) 

Finally a straightforward calculation gives 

(15.7) 

' I i = 0, 

Hi(G,©Q{a;_3,,_2,a;_l}) - A ' ( ( F J / F V ) = \ 

where S2 denotes the symmetric square. 

0 i= 1, 

A4'(FV), i = 2,3, 

U2(A2(^V)) , < = 4, 

It follows that the exact sequence in proposition 13.22, i) for n = 2 
gives rise to the following exact sequence: 

(15.8) -> H t(G,C:n d e p) -+ [A*(FV) ® F*1]. -+ ^ ^ ^ -+ 
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Since Vf = 0 for i ^ 4 we obtain the horizontal exact sequence in 
theorem 15.3 from the sequence (15.5) which also gives 

(15.9) Hi(G, C;ndep) -j Hi(G) for i ^ 3. 

The exact sequence (15.8) in low dimensions together with (15.7) clearly 
reduces to the vertical exact sequence in theorem 15.3 except for i ^ 3 
where we obtain the sequence 

h. . . 

- 0 . A: 
H n ^H3(G,CTdep) 

H3(G) 

-Vk± -A2(FV) — H, 2(G,dndep' 

H2(G) 

Comparing this with the sequence (15.1) we get the lower part of the 
vertical sequence in theorem 15.3 i) as well as the isomorphism in the­
orem 15.3 ii). 

The identification of the maps A2 and 6* is straight forward from 
the definition. • 

Remark 1: The results on Hi and H3 are special cases of the stability 
results of [Suslin, 1984] (cf. also [Sah, 1986],[Sah, 1989]). 

Remark 2: In the diagram in theorem 15.3 the composed map 

5 2 (A 2 (F v ) ) -^ / f 4 (G) 

is induced by the natural inclusion ( F x ) 4 / F x —» G. In general let 
if* (PGl (n + 1 , F ))d e c denote the image of the map induced by the 
inclusion (F*)n+1/F* —>• PGl(ra + l, F). Then we extract from theorem 
15.3 together with (15.1) the following exact sequence 

(15.10) 

Similarly let 

ff4(PSl(2,F)) if4(PSl(3,F)) 
if4(PSl(2,F))dec f/4(PSl(3,F))dec 

{z®{z}\zeF-{0,1}} 

A =ker(H4(G,Cin d e p) -> H4(G)) n 

nim(52(A2(F4)) -»• H4(G,Clndep)). 
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Then we extract from theorem 15.3 another exact sequence 

(15.11) 

HB{G, C i n d e p ) -> ff5(PGl(3, F)) ->• ker(P5
2 4 F v ® Pg1) -»• A - • 0. 

It is instructive to compare the exact sequences (15.10) and (15.11) with 
the hyperhomology spectral sequence for C*(P2). 

Let us end with a few remarks on the homology calculations in the 
general case of G = PGl(n + 1,F). Our discussion above for n = 2 
suggests that we star t with the exact sequence in proposition 13.22. In 
fact, if we replace the 0-th term in the exact sequence by C*n e p ( P n ) we 
get a resolution of the complex Q[—1], and together with the last remark 
of chapter 13 we obtain a hyperhomology spectral sequence in the 4th 
quadrant of the following form (actually rather in the 2nd quadrant for 
the transposed indices): 

(15.12) £?,*;_„ =>ff,_„(PGl(n + l , F ) ) , 0 < p < n + l , p < / , 

where 
(15.13) 

E*-P = 

J A ' ( ( s V)P) ® H(PG\(n -p+l,F),C*(Pn-r)/C?dep)[p] p < n, 

\*'«ffiV^> [„ + !], p = B + 1 . 
In 15.13 the complex C * ( F " - p ) / C i n d e p is filtered by the filtration $k, k = 
1, 2 , . . . , n — p, defined in chapter 13 and hence the corresponding spec­
tral sequence eventually reduces the calculations to the groups "P™ stud­
ied in chapter 14. Notice tha t the vanishing results in corollary 14.15 
shows tha t in (15.13) we have Ef = 0 at least for / < n. Hopefully 
Ef = 0 for I +p < 2n, but this we can only prove for n < 3. In any 
case the line / -f- p = 2n + 1 is particularly interesting since i?2n-p+i - P 

involves V™,^_ ^+1 where the 2(n —p+l)-gons from example 14.5 occur. 





APPENDIX A 

Spectral sequences and bicomplexes 

We collect a few facts about spectral sequences, which we are using. As 
a general reference see [ M a c L a n e , 1963 , chapter XI]. 

Let R be a commutative ring with unit and (C*,5)(* > 0) a chain 
complex of /^-modules. Suppose we have given a filtration Fp = FPC* 
of chain complexes 

0 C F0C* C FiC* C • • • C FPC* C • • • C C*. 

We shall always assume that this filtration is finite in each degree. Then 
there is an associated spectral sequence {Epq}, r = 0 ,1 , 2 , . . . , oo, tha t 
is, a sequence of bigraded chain complexes with differentials 

(A- 1 ) ^ '• Ep,q - » -E 'p- r^+r- l 

such tha t 

Here p, q > 0, and if for each k there exists a t such that FtCi = C,- for 
i ^ k then dr

p = 0 for r > t and p + q ^ k, so tha t 

(A.2) F ^ 1 = F<+2 = • • • = EZ 

In fact 

(A.3) Ev^ = FpCp+q/Fp-iCp+q 

and dr is induced by d restricted to the submodule consisting of elements 
z with dz G F p _ r . In particular 

(A.4) Elq = Hv+q{Fp/Fp^) 

and cf1 : F * —> F ^ j is the boundary map in the exact sequence 

0 -»• F p _ x / F p _ 2 -)• F p / F p _ 2 ->• F p / F p _ ! -+ 0 
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Furthermore Er converges to H(C*) denoted Ep => H{C*), tha t is, 
there is an induced filtration 

(A.5) FP(H(Cm)) = im(ff (Fp,,) -> H(C*)) 

such tha t 

0 C F0H* C • • • C FpH* C • • • C # ( C , ) 

and there is a canonical isomorphism 

(A-6) -Ep^ - FpHp+q/Fp-iHp+q 

A particular case is the spectral sequence for a bicomplex ("dou­
ble complex"). Thus let Cp<q,p,q > 0, be a bigraded i2-module with 
boundary maps 

(A.7) o : CPtq —> Cp-i^q o : GPi9 —> CP)9_i 

such tha t 

(A.8) d'd' = 0, d"d" = 0, d'd" + d"d' = 0. 

Then the total complex C* with 

(A.9) Cn= 0 CP), and 5 = 5' + 9" 
p+q=n 

is a chain complex with two filtrations 

(A.10) ^ n = y7^,n-i -TqCn = ^y Cn-ktk 

with associated spectral sequences {'££ ,'cT} and {"££ , "eT} both 
converging to H(C*). Here 

(A.ll) '££, = tfg(Cp,*, 9"), " 4 P = ffp(C»,„ 9') 

and 

(A.12) ' 4 , = Hp(Hq(C^, d"),d'), «Elp = Hg(Hp(C*,,, d'),d"). 

Remark: In (A. l l ) and (A.12) we have transposed the indices of the 
"second" spectral sequence in order to have the notation agreeing with 
the spectral sequence above for a filtration. In applications however, e.g. 
for the "hyperhomology" spectral sequence (cf. (A. 26-28) below) we 
shall keep the indices of the bicomplex in the notation for the spectral 
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sequence and just remember to change the direction of the differentials 
and the filtration accordingly. 

In applications very often one of the spectral sequences collapses 
from the E2-tevm (i.e. dr = 0 for r > 2) so that this determines H(C*). 
For example 

P R O P O S I T I O N A. 13. Suppose that for each q = 0 , 1 , 2 , . . . , we have 
ffP(C*,g) = 0 for p > 0. Let C_i , , = coker[d' : Chq -> Co,,]. Then 
the "edge map" e induced by the projection Cn —> Co,n —> C-i ,n is a 
homology isomorphism 

ciHiCJ^HiC-^d") 

Proof: By (A. 12) 

9 'p \Hq(C^) i fp = 0 

and so UE*= "Er
an for r > 2. Hence 

y?K y ^ — 

Hn{C*) = £ ^ 0 — -^n(C-l,*) 

and it is straight forward to check that the isomorphism is induced by 
e above. • 

Very often bicomplexes are used in connection with the "comparison 
theorem" to show tha t certain maps are homology isomorphisms. First 
let us state it for filtrations: 

P R O P O S I T I O N AAA. LetC*,C* be two chain complexes with filtra­
tions F of C* and F of C» as above (i.e. finite in each degree). Let 
f : C* —̂  C* be a chain map such that fFp C Fp,p = 0 , 1 , 2 , . . . . 
Suppose further that for some t > 1 the induced map of spectral se­
quences /* : Eptq —> E* is an isomorphism for all p, q. Then also 
/* : H(C*) —> H(C*) is an isomorphism. 

Proof: It follows by induction that all fs : £J* —» E^q,s > t, are iso­
morphisms. Hence also / ° ° : El^ -» ES° is an isomorphism. Therefore 
by (A. 6) we have isomorphisms 

/* : FpH(C*)/Fp-yH(C+) 4 F p i f ( C 0 / F P - i # (<?*) for all p = 0 , 1 , 2 , . . . 
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Now by induction on p and the "five-lemma" /* : FpH(C*) —> FPH(C*) 
are isomorphisms for all p. Hence the proposition follows since the 
filtration is finite in each degree. • 

COROLLARY A .15 . Let {Cp,q},{CP:q},p,q > 0 be two bicomplexes 
and f : C*)Jk —> (7*,* a map of bicomplexes, i.e. f commutes with d' and 
d". Suppose that for some t > 1 the induced map of spectral sequences 
/* : '£"* —> LEl is an isomorphism. Then also /* : H{C*) —>• H(C*) 
is an isomorphism. 

COROLLARY A.16. Let f : C*,* -> C*,* be a map of bicomplexes as 

above. Suppose that for each q > 0, Hp(C*iq) — 0 and Hp(C*<q) = 0 for 
all p > 0. Let e : C* —> C_i,* and e : C* —> C_i,* be the edge maps as 
in proposition A. 13. Suppose further that for each p > 0 the map 

(A.17) U : H(CPi„ d") -> H(CP<„, 8") 

is an isomorphism. Then there is a commutative diagram of isomor­
phisms 

/ . 
H{C„) 

•ff(C-i,* 
/. 

H(C*) 

H(C-lt.) 

Proof: This follows from corollary A. 15 with t = 1 together with propo­
sition A. 13. 

R e m a r k 1: If CPi* = 0 and Cp,, = 0 for p > 1 then the above corollary 
is just the "five lemma" for the long exact sequences associated to the 
diagram with exact rows 

0 C - i , * 

/ 

C - i , * 

Co,* -« Ci,* 

Co,* •* C^* 

0 

R e m a r k 2: We will sometimes use spectral sequences and bicomplexes 
with different gradings. The above theorems are then still valid when 
suitable adapted. 
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Now let us apply the above for the calculation of the chain complex 
C\(X) considered in chapter 2. In general for X any set let C*(X) 
denote the chain-complex where a A;-simplex, k = 0 , 1 , 2 , . . . , is any 
(k + l)-tuple (ao, • • •, a A;), a; € X and the boundary map is given by 

k 

(A.18) d(a0,...,ak) = J ^ ( - l ) ' ( a 0 , . •., a,-, • • •, afc). 
t'=0 

Recall tha t by lemma 3.6 we have 

P R O P O S I T I O N A.19 . For X any set the complex C*(X) is acyclic. 

Now let X be any Riemannian manifold and suppose that there is a 
8 £ R_j_ U {oo} such that every point p e l has a normal neighborhood 
Up which is geodesically convex (See e.g. [Helgason, 1962, chapter I, 
§9]). That is, for each p £ X the exponential map exp is a diffeo-
morphism from the open ball of radius 8 in TpX to Up, and whenever 
q, q' € Up there is a unique geodesic from q to q' contained in Up. In 
particular 8 exists if X is compact (e.g. 8 — w/2 for X = Sn). Also 
if X is a complete simply connected manifold of non-positive sectional 
curvature then we can take 8 = oo (e.g. for X — En or W1). Now let 
Cl{X) denote the subcomplex of C*(X) of simplices (ao,. • -,a/c) such 
tha t all ao,.. .,ak are contained in a normal neighborhood of radius 8. 
In particular C£°(X) = C*(X). There is a natural map ofC*{X) to 
the singular complex C* i n g(X), where a fc-simplex is a continuous map 
/ : Ak —> X with the usual boundary map. Thus let i(a0,..., a^) = / 
be the map constructed inductively as the geodesic cone on the face 
i{a,i,..., Ofc) with cone point ao- Then 

(A.20) i:Cl(X)^Cr*(X) 

is clearly a chain map (we have used a different but equivalent construc­
tion in the classical geometries above, cf. proof of theorem 2.10). 

P R O P O S I T I O N A . 2 1 . The map i induces an isomorphism 

i, : H(Ct(X)) * H(C?nz(X)) = H,(X,Z) 
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Proof: Let U = {U3,j G J } be the covering of X by all normal neigh­
borhoods of radius S. Consider the two bicomplexes 

AP« = © Cs
q(Ujon---nujp) 

(jo, •••dp) 

AP,I= 0 C?n*(Ujon---nujp) 
(J0,-,Jp) 

where we take the direct sum over all (p + l)-tuples of elements of J. 
In both bicomplexes d" = (—l)pd where d is the internal differential in 
Cl respectively C*'ng and 

fc=o 

where e^*, k = 0 , . . . ,p , are induced by the inclusions 

Ujo n • • -n ujp A J7io n - n ^ n - • -n tfjp. 

Now each C*(C/jon- • -nUjp) = C*{Uk f> • -rW i p) is either 0 (if t/ io f> • •("! 
Ujp = 0) or acyclic (if U]on- • -nUjp / 0) by proposition A.19. The same 

is t rue for C* ins(i7j0 D- • -nUjp) since f/j0 D- • -r\Ujp is geodesically convex 
and hence contractible if it is non-empty. It follows that i : APtQ —>• APiq 

induces an isomorphism 

(A.22) u:H(APt*,d")^H(Ap,*,d"), p = 0,l,2,... 

Now put 

where the latter denotes the subcomplex of C* Ing(X) generated by sim-
plices contained in a neighborhood from U. Then there are natural 
maps 

d' : A0,* -> A_i,* and d': A0,* -4 A_i t* 

extending the bicomplexes to p > —1, and also i : A*i>k -* A*,* extends 
in this range. By corollary A.16 and (A.22) above it suffices to show 
that 

(A.23) . Hp(A^q) = 0 and Hp(A^q) = 0 Vp > - 1 , q > 0. 

In fact, then we conclude that 

U : H(Ct(X)) -> H(C^(U)) 
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is an isomorphism, and the latter is isomorphic to H(Clms(X)) by the 
excision theorem for singular homology (see e.g. [Span ie r , 1966, chap­
ter 4, §4]). To prove (A.23) let us do it for A*,*; the proof for A*,* is 
similar. We define a chain homotopy 

Sp '• Aptg —> Ap_)_li? p = —1, 0, 1, . . . 

as follows: For a = (a,Q,...,aq) G Cq{X) choose Uja G U such that 

a.i G UJcr, i = 0 , l , . . . , q, and define sp restricted to C^(Uj0 D • • • fl Ujp) 

by 

SpWn-h) = °i*h...h e ci{uja n • • • n ujp), P= - l , o, l , . . . 
Then one checks tha t 

d'sp + Sp-xd' = id, p= - 1 , 0 , 1 , . . . 

which proves tha t Hp(A*>q) = 0,Vp > — 1, V<? > 0. This ends the proof. 
D 

Another useful application of bicomplexes is the hyperhomology spec­
tral sequence for a chain complex (N*,d) of (left) i2[(2]-modules for G 
a group and R a commutative ring with unit. Assume for convenience 
that N{ = 0 for i < 0. As in (13.3) we define the hyperhomology by 

(A.24) Hn(G, N*) = Hn{G\(B*(G) ®R Nm)) 

i.e. the homology of the total complex of the bicomplex 

(A.25) Ap,q = G\{Bp(G)®RNq), 

where ( .B*(G) ,<9G) is the bar complex defined in chapter 4. Then the 
"second" spectral sequence in (A.11-12) gives (with transposed indices) 
a spectral sequence 

(A.26) Er
M = -Er

qtP^Hp+q(G,N,) 

where 

(A.27) Elq = Hp(G,Nq) 

and 

(A.28) Elq = Hq(Hp(G,N*),d*) 
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COROLLARY A.29. Suppose the complex N* is acyclic with H0(N*) = 
M. Then there is a natural isomorphism 

Hn(G,NJ*iHn(G,M) 

In particular the hyperhomology spectral sequence (A.26) converges to 
H*{G,M). 

Proof: The bicomplex A*?* in (A.25) has for all p, 

„,A s\G\(Bp{G)®M) 9 = 0 

Then the statement of the corollary follows from proposition A.13. • 
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