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0 Introduction 

In the last fifteen years two seemingly unrelated problems, one in computer science 
and the other in measure theory, were solved by amazingly similar techniques from 
representation theory and from analytic number theory. One problern is the ex­
plicit construction of expanding graphs ( «expanders» ). These are highly connected 
sparse graphs whose existence can be easily demonstrated but whose explicit con­
struction tums out to be a difficult task. Since expanders serve as basic building 
blocks for various distributed networks, an explicit construction is highly desir­
able. The other problern is one posed by Ruziewicz about seventy years ago and 
studied by Banach [Ba]. lt asks whether the Lebesgue measure is the only finitely 
additive measure of total measure one, defined on the Lebesgue subsets of the 
n-dimensional sphere and invariant under all rotations. 

The two problems seem, at first glance, totally unrelated. lt is therefore some­
what surprising that both problems were solved using similar methods: initially, 
Kazhdan's property (T) from representation theory of semi-simple Lie groups was 
applied in both cases to achieve partial results, and later on, both problems were 
solved using the (proved) Ramanujan conjecture from the theory of automorphic 
forms. The fact that representation theory and automorphic forms have anything 
to do with these problems is a surprise and a hint as well that the two questions 
are strongly related. 

The main goal of these notes is to present the two problems and their solu­
tions from a unified point of view. We will explore how both solutions are just 
two different aspects of the same phenomenon: for some group G, the trivial one­
dimensional representation is isolated from some subdass of irreducible unitary 
representations of G. Kazhdan's property (T) is precisely a property of the above. 
The Ramanujan conjecture also has such an interpretation, from which the two 
solutions can be deduced. In fact, the highlight of these notes is a single arithmetic 
group r embedded naturally in a direct product G = G 1 X Gz where G 1 is a real 
Lie group and Gz a p-adic Lie group. The Ramanujan conjecture, in its represen­
tation theoretic formulation, controls the G-irreducible representations appearing 
in L2(r\G). Using this result for the projection of r into G1 = 50(3) yields an 
affirmative solution to the Banach-Ruziewicz problern (for the sphere 52 - but 
also more- see Chapter 7). Projecting r to the second factor Gz = PGLz(Op) 
and applying the same result, one obtains expanding graphs (as quotient graphs of 
the tree associated with PGLz(Op) modulo the action of congruence subgroups 
ofr). 

There are very few new results in these notes. The main intention is to 
reproduce the existing solutions of the two problems in a way which stresses their 
unity. We also elaborate on the connection between the above two problems and 
other topics, e.g., eigenvalues of the Laplacian of Riemannian manifolds, Selberg's 
Theorem )q 2:: ?6 for arithmetic hyperbolic surfaces, the combinatorics of some 
finite simple groups, numerical analysis on the sphere and more. 



X 0 INTRODUCTION 

Here is a brief chapter-by-chapter description of the contents; a more detailed 
one may be found at the beginning of each chapter. 

In Chapter I we survey and illustrate the importance of expanders and prove 
their existence via counting arguments. In the second chapter we present the 
Hausdorff-Banach-Tarski paradox, which is a motivation for the Ruziewicz prob­
lern (and also plays a role in its solution) and show that the Ruziewicz problern for 
n = I has a negative answer. In Chapter 3, after introducing property (T) for Lie 
groups and their lattices, we apply it to solve affirmatively the Ruziewicz problern 
for n ;::: 4. In addition, we use it to give an explicit construction of expanders 
which, however, are not as good as the ones whose existence is established by 
counting arguments. In the next chapter we connect our material with eigenvalues 
of the Laplacian operator of Riemannian manifolds and of graphs. We also bring 
to the fore Selberg's Theorem, which can be used to give interesting explicit ex­
panders. The problern of expanders is translated into a problern about eigenvalues, 
and the important notion of Ramanujan graphs is introduced. 

Chapter 5 is an introduction to the representation theory of PGLz over the 
reals and the p-adics. This is a fairly well-known topic, but we stress the unified 
treatment of both cases as weil as the close connection with the eigenvalues of 
the corresponding Laplacians. We also present the tree associated with PGL2 (0p) 
analogous to the hyperbolic upper half-plane associated with PGLz(IR). The ma­
terial of this chapter is a necessary background for the sequel. We continue in 
Chapter 6, where we quote the works of Deligne and Jacquet-Langlands. The 
next chapter merges all the ingredients to completely solve Ruziewicz's problem, 
as well as to construct Ramanujan graphs. We also present there some of the 
remarkable properties of these graphs. 

The next two chapters, Chapters 8 and 9, bring some miscellaneous topics 
related to the above: Chapter 8 contains applications to finite simple groups as weil 
as some other methods to construct Ramanujan graphs (but of unbounded degree) 
and Ramanujan diagrams, while Chapter 9 brings a pseudo-random method to 
distribute points on the sphere, which is an application of the above methods 
and uses the same group r from Chapter 7. This method is of importance for 
numerical analysis on the sphere and elsewhere. Only the cases of 52 and 5 3 have 
satisfactory results, while the higher-dimensional cases (which can be thought as 
«quantified» Ruziewicz problems) arestill open. This problern and many more are 
described in Chapter I 0. 

The Appendix, by Jonathan Rogawski, gives more details and elaborates on 
the material described in Chapters 5 and 6. While in the body of the book we 
emphasise the representation theoretic formulation of the Ramanujan (-Petersson) 
conjecture, the Appendix explains its classical form and the connection to modular 
forms. Rogawski also explains the Jacquet-Langlands theory and gives indications 
of how that conjecture was proved by Deligne and how the Jacquet-Langlands 
theory enables us to apply it for quatemion algebras. 
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These notes discuss essentially the same problems as those in the book of 
P. Samak [Sa2]. Still, the perspectives are very different, and this inftuenced our 
decision to keep the books separate. The reader is bigbly encouraged, bowever, to 
consult that book, as weH as the two excellent exposition papers on these subjects 
by F. Bien [Bi] and Y. Colin de Verdiere [CV2]. This book is not self-contained, 
but we bope it is accessible to second year graduate students. The cboice of wbat 
to prove and wbat just to survey was very subjective. Generally speaking, I tried 
to write it in a form of something I wisb bad existed wben, eigbt years ago, I 
made my first steps into these subjects without specific background in any of 
them. I bope these notes will pave a more convenient road for those to follow into 
this exciting cross-section of analytic number theory, Lie groups, combinatorics, 
measure tbeory and differential geometry. 

This monograpb startedout as notes prepared for the CBMS-NSF conference 
under the same title beld at the University of Oklahoma during May 1989. It is 
based in part on notes from a Hebrew University seminar be1d in 1985/6, and 
courses given by the author at Yale University in 1988/9 and Columbia University 
in tbe fall of 1989. We are grateful to the participants of tbe seminars and courses 
for valuable discussions, remarks and encouragement. Special thanks to E. Sbamir, 
H. Furstenburg, G. Kalai, N. Alon, S. Gelbart, M. Magidor, G.D. Mostow, W. Feit, 
R. Howe, I. Piatetski-Sbapiro, Z. Rudnick, S. Mozes, Y. Peres, J. Rogawski, H. 
Bass and J .Dodziuk. 

Many thanks to W. M. Kantor, A. Magid, S. Mozes, S. Adams, P. de la Harpe, 
A. Valette, M. Picardello, F. Williams, B. Mobar, D. Rockmore and B. Weiss for 
valuable advice and criticism on some parts of these notes. 

Above all, I bave the pleasure of thanking Andy Magid, Mosbe Morgenstern 
and Peter Samak. From Peter I leamt mucb of tbe relevant background, Andy 
with bis enthusiasm encouraged me to ernhark on this long voyage, while Mosbe 
is responsible for my reacbing a safe baven. 

Jerusalem, December 1993 A.L. 



1 Expanding Graphs 

1.0 Introduction 

The central theme of this chapter and of much of this book is expanders. Expanders 
aresparse graphs with strong connectivity properties. More precisely, a k-regular 
graph X with n vertices is called a c-expander (0 < c E IR) if for every subset A 

of X, I8AI;::: c(1 -1~\)IAI where 8A = {y EX I d(y,A) = 1} is the boundary 
of A. A family of expanders is a family of k-regular graphs (for a fixed k and n 
going to infinity) which are all c-expanders for the same c. 

Expander graphs play an important role in computer science, especially as 
basic building blocks for various communication networks (but not only). It is 
not difficu1t to show by counting arguments that families of expanders do exist 
(1.2.1). But for applications, an explicit construction is desirable. This is a much 
more difficult problern which will be addressed in later chapters. 

1.1 Expanders and their applications 

This section will be devoted to the definition and basic properties of expanders. We 
will work only with k-regular graphs (i.e., graphs with the same valency at each 
vertex). This is because they are anyway those which appear in all our examples 
and applications. The definitions and basic results here can be easily extended to 
general graphs (at least for those with bounded degree). 

Definition 1.1.1. Afinite regular graph X= X(V,E) with a set V ofn vertices 
and of degree k (so the set of edges E contains k2n edges) is called an (n, k, c)­
expander if for every subset A of V, 

I8AI ;::: c ( 1 - I~ I) lAI (1.1.1) 

where 8A = {y E V I d(y,A) = 1} is the «boundary» of A and d is the distance 
function on X. 

Remarks 1.1.2. (i) Every finite connected k-regular graph is an expander for some 
c > 0 in a trivial way. The notion is of interest only when one considers an infinite 
family of graphs. In applications, one usually wants a family of ( n, k, c )-expanders 
where n is going to infinity and k and c are fixed. Usually (but not always) one 
prefers k to be as small as possible, and it is always desirable that c will be as 
large as possible. 

(ii) There are also some other definitions of expanders in the literature. All 
are essentially equivalent up to some change in the constants. The basic idea is 
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always that every set in some class of subsets is guaranteed to expand by some 
fixed amount. A quite common definition is the following: 

Let c' > 0. An ( n, k, c')-expander X is a bi-partite k -regular graph with two 
parts I and 0 where the edges go from I to 0, III = 101 = n and for any Ac I 
with lAI ::; ~ we have läAI 2': (1 + c')IAI. 

Given an expander X = X(V, E) in the sense of (1.1.1), we may get an 
expander in the sense of (1.1.2(ii)) by taking its double cover, i.e., taking I and 0 
tobe two disjoint copies of V and connecting an input in I to its «twin» in 0 and 
to the twins of all its neighbors in X. Conversely, given an expander in the sense 
of (l.l.2(ii)), one gets an expander in the sense of (1.1.1) by identifying I and 0 
(using P. Hall Marriage Lemma). In both directions we might have to change the 
constants c and c'. 

In analogue to the Cheeger constant of a Riemannian manifold (see [Ch]), it 
is natural to define: 

Definition 1.1.3. Let X= X(V, E) be afinite graph. Define the Cheeger constant 
of X, denoted h(X), by: 

h(X) = inf IE (A, B) I 
A,B~V min(IAI, IBI) 

where the infimum runs over all the possibilities of a disjoint partition V = A U B 
and E (A, B) is the set of edges connecting vertices in A to vertices in B. 

The following Proposition follows from the definitions. The proof is left to 
the reader. 

Proposition 1.1.4. Let X be a k-regular graph with n vertices. Then 

(i) If Xis an (n, k,c)-expander, then h(X) 2': ~ 

(ii) X is an (n, k, ~ )-expander. D 

So, talking about a fixed k and varied n, to get a family of (n, k, c)-expanders 
for some c > 0, is equivalent to having a family of k -regular graphs whose Cheeger 
constant is bounded away from 0. 

In describing the broad spectrum of applications of expanders, we cannot do 
better than quoting M. Klawe's introduction of [Kl2]: 

«The study of the complexity of graphs with special connectivity proper­
fies originated in switching theory, motivated by problems of designing 
networks able to connect many disjoint sets of users, while only using 
a small number of switches. An example of this type of graph is a su­
perconcentrator, which is an acyclic directed graph with n inputs and n 
outputs such that given any pair of subsets A and B of the same size, 
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of inputs and outputs respectively, there exists a set of disjoint paths 
joining the inputs in A to the outputs in B. Some other examples are 
concentrators, nonblocking connectors and generalized connectors ( see 
[Cl], [P2] for more details). There is a Zarge body of work searching 
for optimal constructions of these graphs (Pinsker [Pi], Bassalygo and 
Pinsker [BP], Cantor [Ca], Ofman [Of], Masson and Jordan [MJ], Pip­
penger [ P 1], [ P2], C hung [ C 1]). So far all optimal explicit constructions 
depend on expanding graphs of some sort. 

«Superconcentrators have also proved to be useful in theoretical 
computer science. By showing that the computation graphs of straight 
line programs for problemssuch as polynomial multiplication, the Fou­
rier transform and matrix inversion must be superconcentrators, it has 
been possible to establish nonlinear lower time bounds and time-space 
trade-offs for these problems assuming certain models of computation 
(Valiant [Va], Abelson [Ab], Ja' Ja' [Ja], Tompa [To]). 

«These space-time tradeoffs are obtained viaagame known as peb­
bling, which is played on acyclic directed graphs and mirnies the storage 
of temporary results during a straight-line computation. In considering 
the problern of pebbling an arbitrary acyclic directed graph, expanding 
graphs have been used in several instances to construct graphs which 
are (in some sense) kardest to pebble, hence establishing lower bounds 
in space-time trade-offs (Lengauer and Tarjan [LT], Paul and Tarjan 
[PT], Paul, Tarjan and Celoni [PTC], Pippenger [P3]). 

«Expanding graphs have also been used to construct sparse graphs 
with dense long paths (Erdos, Graham and Szemeredi [EGS]). Interestin 
sparse graphs with dense long paths stem from studying the complexity 
of Boolean functions, and more recently from problems of designing 
fault-tolerant microelectronic chips. Paul and Reischuk strengthened this 
result by constructing (still using expanding graphs) sparse graphs of 
bounded in-degree with dense long paths, which is of interest since 
computation graphs have bounded in-degree. 

«Perhaps the most practical applications of expanding graphs oc­
cur in the two most recent results. Ajtai, Komlos and Szemeredi [AKS] 
have announced the construction of an oblivious sorting network using 
O{nlogn) comparators, and having depth O{logn). Again, expanding 
graphs form the basic components, and of course, the explicit construc­
tion of the sorting network depends on the explicit construction of ex­
panding graphs. The problern of constructing such a sorting network 
has been open for twenty years, which perhaps illustrates best the unex­
pected power of expanding graphs. Finally, expanding graphs have been 
used by Karp and Pippenger [KP] to design an algorithm which can be 
applied to virtually all the well-known Monte-Cario algorithms to re­
duce the number of uses of a randomization resource (i.e., coin-flips or 

3 
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calls to a random number generator) while still maintaining polynomial 
running time.» 

To the above quite impressive Iist, we can add some more recent papers on 
applications to sorting in rounds (Alon [A2], Pippenger [P4]), routing networks 
(Leighton-Maggs [LM], Upfal [Up]) and other papers such as [FFP], [BGG] and 
the references therein. 

In a completely different direction, Friedman and Pippenger [FP] proved the 
following interesting result: 

Theorem 1.1.5. lf X is a non-empty graph such that for every A <;;:; V(X) with 
lAI ::::; 2f-2, !äA! 2: d!A!, then X contains every tree with f vertices and maximum 
degree at most d. 

For the readers who are not familiar with the above-mentioned topics, we will 
sketch in more detail one example, which is probably the best known application. 
This is the superconcentrator. (Here we follow [Pl], [GG], [Cl] and [Bs]). 

Definition 1.1.6. An (n, f)-superconcentrator is a directed acyclic graph with n 
inputs, and n outputs, having at most fn edges, suchthat for any choice ofr inputs 
and r outputs there is a collection of r disjoint paths starfing with the input set 
and ending in the output set. f is called the density of the superconcentrator. 

To construct a superconcentrator, one first builds a bounded concentrator. 

Definition 1.1.7. For a ::; () < 1, an (n, B, k, a)-bounded concentrator is a bi­
partite graph X with n inputs, Bn outputs and at most kn edges, such that every 
input subset A with !Al ::::; an maps to an output set ä(A) at least as /arge. (Note 
that by P. Hall Marriage Lemma [Or] there is also a perfect matehing between A 
and a subset of its neighbors). 

Superconcentrators are obtained from bounded concentrators in a recursive 
construction which goes like this: Connect input i directly to output i for 1 ::; i ::::; n 
using n edges. Given an input subset and an equinumerous output subset, use 
these direct lines if possible to connect inputs to outputs by paths of length one. 
After that, there remain fewer than n/2 unmatched inputs to be connected to a 
set of unmatched outputs. Use an (n, 0, k, ~ )-bounded concentrator to concentrate 
the unmatched inputs into a new «input space» of size On. Similarly concentrate 
the unmatched outputs into an «Output space» of size On. Then use a size On 
superconcentrator to match the unmatched. Start the recursive definition by using, 
say, a complete n2 edge graph as a superconcentrator when n is small. 

(n,O, k, ~)-bounded concentrators are obtained from expanders as follows: 
Let r be a positive integer and assume we have an ( m, k, c )-expander where 

c 2: (r- 1~(:2 + 1 )' Then we build an (n = m(r + 1)/r, 0 = rj(r + 1), k' = 
(k + l)rj(r+ 1), a = ~)-bounded concentrator by breaking first the input set into 
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a «big part» of size m and a «small part» of size mjr. Use a (m, k, c)-(bi-partite) 
expander to connect the big part of the input set to the output set (which has size 
m). Divide the output set into mjr clumps of size r and connect each of the inputs 
in the small set to all of the members of one of the output clumps, each input to 
a different clump. This is indeed a bounded concentrator: Let s be the number of 
inputs in a given subset with s S m(r+ 1)/2r. We need to show that these connect 
to a total of at least s outputs. If at least sjr of these appear in the small set, then 
we are done because r · sjr ~ s. Otherwise, there will be at least q = s(r- 1)/r 
of these in the large input set. Since these feed the expander, we will succeed if 
the expansion factor is at least r / (r - 1 ); namely, if 1 + c( 1 - f!i) ~ r~ 1 • But 

1 + c(1- f!i) = 1 + c(l- s(~;:;;l)) ~ 1 + c(1 - r~;:z 1 ), and the last is large enough 
2r2 

when c ~ (r-l)(r2+1). 

Working all the constants in the constructions, one gets: 

Theorem 1.1.8. (Gaber-Galil [GG]) Assuming we can construct for every n an 
(n, k, 1/(r-1))-expander, then we can construct afamily of(n, l = (2k+3)r+ 1)­
superconcentrators for infinitely many values of n. 

In the next section we will discuss the question of existence of expanders. 
Their existence will be proved easily, but for «real world» applications such as 
superconcentrators, one needs explicit constructions. This is a much barder task 
to be discussed in later chapters. 

1.2 Existence of expanders 

The existence of expanders is a relatively easy question. By counting arguments 
below we will see that (at least when k and n are large enough) «most» k-regular 
graphs are expanders. When one wants to checkthat a family of k-regular graphs 
is a family of expanders (with some c > 0), it is enough to check condition (1.1.1) 
only for sets of size s ~ (since k is fixed). This is of no real help in practice 
since there are still too many subsets of size s ~. lt helps, however, a little bit 
with the counting arguments: 

Proposition 1.2.1. Let k ~ 5 be an integer and c = 1· Then some k-regular 
graphs on n vertices satisfy I8(A)I ~ ciAI for subsets A of size S ~- For n Zarge, 
most k-regular graphs on n vertices satisfy this. In particular, they are expanders 
(see Remark 1.1.2 (ii)). 

Remarks. (i) We will bring a simple proof following [Sa2]. More precise results 
can be obtained; see for example Pinsker [Pi], Pippenger [Pl] and Chung [Cl]. 

(ii) The proposition says that most k -regular graphs are expanders. There 
is, however, some ambiguity in this statement around the term «most». Here one 
should specify the way he counts the k -regular graphs. The most natural way 



6 I ExPANDING GRAPHS 

would be «up to isomorphism», but there is no good model for that. A useful 

model for random k-regular graphs was proposed by Bollobas (see [B4]). But we 
will not go into details here. The way we prove our Proposition is sufficiently 
convincing that indeed most k-regular graphs are expanders in any reasonable 
sense of the word «most». 

Proof It will be most convenient to prove it for bi-partite expanders as defined in 
Remark 1.1.2 (ii). 

Let I = 0 = { 1, 2, ... , n} and construct the bi-partite graph X by taking 
permutations 1fJ, ... , 1fk of { 1, ... , n} and joining each i E I with 1r1 (i), ... , 
1fk (i) E 0. This yields a bi-partite k regular graph. (In fact, it follows from 
König's Theorem (cf. [Or]) that every k-regular bi-partite graph is obtained this 
way.) What we claim is that for most choices of 1r = ( 1r1, ... , 1r k) the graph so 
obtained is a c-expander for c = 1· There are (n!)k such k-tuples. A k-tuple 

1r = ( 1fJ, ... , 1fk) is called bad if the associated graph is not an 1-expander, i.e., 

if for some A CI with lAI S:: ~ there is a subset B C 0 with IBI = [~lAI] for 
which 1fj(A) C B for every j = 1, ... , k. 

LetA be given of ordert and B of order m = ~t. The number ofbad 1r's corre­

sponding to A and B is (m(m-1) · · · (m-t+ 1)(n-t)!)k = ((~~~)/' )k. Hence the 

total number of bad choices, say ß, is bounded by: ß ::; ~ (7) (~) ( (~~~w) k = 
t:s; 2 

I: R(t). By checking R(t)jR(t + 1) we see that fort< ~ this is at least 1, and 
t:s;I 
so at this range R(t) gets its maximum for t = 1. For ~ s t s ~. G) (~) s zZn 

d m'(n-t)' . · · h n n · · 
an (~-t)! · gets Its max1mum elt er at t = 3 or at t = 2 . Now, 1t Is easy to 

checkthat (n/2)[R(1) +R(~) +R(~)]/(n!)k tends to 0 when n is going to oo.D 

Though existence is easy, explicit construction tums out to be very difficult. 
There are up to date only two methods of explicit constructions offamilies of ex­
panders: The firstwas Margulis [M1] who constructed expanders with the help of 
Kazhdan property (T) from representation theory of semi-simple Lie groups. (See 
Chapter 3, and for some variants of his construction see [GG], [JM] and [AM]). 
Secondly, Lubotzky-Phillips-Sarnak [LPS1], [LPS2] and Margulis [M6] used Ra­
manujan conjecture (as proved by Eiehier [Ei] and Deligne [Dll], [Dl2]) forthat 
purpose. (A variant of it, which uses Selberg's Theorem instead, is presented in 
Chapter 4; see also [Bu 3] and [Br 1].) Seemore in Chapters 4 and 7. 



2 The Banach-Ruziewicz Problem 

2.0 lntroduction 

The second central problern of this book is presented in this chapter. This is the 
Banach-Ruziewicz problern (known also as the Ruziewicz problem), which asks 
whether the Lebesgue measure >. is the only finitely additive measure defined on 
the Lebesgue subsets of the n-dimensional sphere sn, invariant under the group 
of rotations O(n + 1) and with total measure one. 

Assuming «countable additive» instead of finitely additive implies the unique­
ness (2.2.9). The interest in finitely additive invariant measures was motivated by 
the Hausdorff-Banach-Tarski paradox claiming that for n 2: 2, sn can be decom­
posed into finitely many pieces, from which one can reconstruct two copies of 
sn by using only rotations from O(n + 1). This is impossible for SI, essentially 
because SI is an amenable group and hence there is an invariant mean on L 00 (SI ) . 
Moreover, there are many invariant means on L 00 ( S I), which implies a negative 
solution to the Ruziewicz problem. The negative solution for n = 1 was proved by 
Banach in 1921. The problern for n ~ 2 was open up to recent years, when it was 
solved affirmatively using Kazhdan property (T) and Ramanujan conjecture. The 
affirmative part and its ramifications will occupy a significant part of these notes. 
Meanwhile in this chapter, we describe the background of the problem, including 
the Hausdorff-Banach-Tarski paradox. This paradox is not only a motivation, but 
it also plays a role in the affirmative solution for n 2: 2. We also present the 
negative solution in case n = 1. 

2.1 The Hausdorff-Banach-Tarski paradox 

Definition 2.1.1. Let G be a group acting on a set X, and A, B subsets ofX. A and 
B are said to be (G)-equidecomposable if A and B can each be partitioned into 

n 
the samefinite number ofrespectively G-congruent pieces. Formally, A = .U Ai 

I=I 
n 

and B = .u Bi where Ai n Aj =Bin Bj = cp for 1 :::;: i < j :::;: n and there are 
l=I 

gi, ... ,gn E G such thatfor each 1:::;: i:::;: n, gi(Ai) =Bi. 

We will denote it A "' B and write A < B if A "' C for some subset C 

of B. A realization h of A "' B is a bijection h : A ---t B such that there 
n n 

exist decompositions as above A = . U Ai, B = . U Bi and gi, ... , gn E G with 
I=I I=I 

h(ai) = gi(ai) for every ai E Ai and every i = 1, ... , n. It is easy to see that if 
h : A ---t B is a realization of A rv B and S ~ A, then S rv h(S). We will freely 
use this fact. 
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Proposition 2.1.2. (Banach-Schröder-Bernstein Theorem) Suppose G acts on 
X and A,B ~X. lf A<B and B <A. then A ""B. 

~ ~ 

Proof The fact that A ;'5 B and B ;'5 A implies the existence of bijections f : A ---7 

B1 and g: A1 ---7 B where A ""B1 ~ B and B ""A1 ~ A. Let Co = A \A1 and by 

induction define Cn+I tobe g-1 f(Cn). Let C = U Cn. Then g(A\C) = B\f(C). 
n=l 

Thus A\C"" B\f(C). But we also have C ""f(C), so A ""B. D 

Corollary 2.1.3. The following two conditions are equivalent: 

(i) There are two proper disjoint subsets A and B of X suchthat A ""X"" B. 
(ii) There are two proper disjoint subsets A and B such that A U B = X and 

A""X""B. 

Proof Wehave to show only (i) ---7 (ii): But, X"" B ~ X\A ~X, so by (2.1.2) 
X\A ""X, and we are done. D 

Definition 2.1.4. Let G be a group acting on a set X. X is said tobe G-paradoxical 
if one ( and hence both) of the conditions of (2 .1.3) is satisfied. In simple words this 
says that X can be decomposed into finitely many pieces from which two copies 
of X can be rebuilt. 

Remark 2.1.5. Let A be a subset of X. Assurne A is a pairwise disjoint union of 
n n 

subsets Ai, A = U Ai and there exist gi E G, i = 1, ... , n suchthat U gi(Ai) = 
l=l l=l 

X. Then A"" X. 

Proof By making the Ai's smaller we can ensure the gi(Ai) are disjoint, and 
therefore X is equidecomposable with some subset of A, and hence by (2.1.2) 
also with A. D 

Example 2.1.6. (i) A free group F of rank 2 is F -paradoxical, where F acts on 
itself by left multiplication. 

(ii) If F acts on a set X freely (i.e., every 1 -1- g E F has no fixed points), 
then X is F -paradoxical. 

Proof (i) Say F = F ( a, b) and let A + (resp: A-) be the set of all reduced words 
beginning with a (resp: a- 1 ). Similarly, define B+ and B-, and Iet A = A + U A­
and B = B+ U B-. Now A ""F ""B as F = A+ UaA- = B+ U bB-. 

(ii) Let M be a set of representatives for the F -orbits in X (the axiom of 
choice is used here). ForT E {A+,A-,B+,B-}, Iet Xy = T(M) = {tm I t E 
T, m E M}. Then it is easy to checkthat XA+, XA-, XB+, X8 - are disjoint (recall 
F acts fixed point free!) and X = XA+ U aXA- = XB+ U bX8 -. D 



2.1 THE HAUSDORFF-BANACH-TARSKI PARADOX 9 

Proposition 2.1.7. The group 50(3) of orthogonal 3 x 3 real matrices of deter­
minant 1 contains a free non-abelian group and in particular a free group on two 
generators. 

Remark. This proposition is well known and can be proved in many ways (see 
for example [Wa, Theorem 2.1] or [Ti]). The following proof is pretty special, but 
as we need this specific group later on, we bring it here, following [GVP, Chap. 
IX, §1] and [LPS4]. For the proof we will need the following classical Jacobi 
Theorem. 

Theorem 2.1.8. Let n be a posztlve integer. Then the number of solutions 
(XI, X2, X3, X4) E Z4 with xi +X~+ X~+ X~= n is r4(n) = 8 L d. In particular, 

dln 
4f'd 

ifn = p is a prime then r4(p) = 8(p + 1). 

An analytic proof of Theorem 2.1.8 can be found in [HW, Theorem 386]. 

We bring here an algebraic proof due to Hurwitz. We thank W. Feit for calling 
our attention to [Hu]. We give the proof only for the case n = p is an odd prime, 
leaving the reader the task of deducing the general case from it (see also [HW, 
Chap. XX]). 

Let H(Z) be the ring of Hurwitz integral quaternions, i.e., {aof + a1i + 
a2j + a3k I a; E Z,i = 0, ... ,3} where f = !(1 + i + j + k), i2 = f = 
k2 = -1, ij = -ji = k, etc. (We prefer to work with the «maximal ordeD> 
H(Z) and not with H(Z), as below, since H(Z) is an Euclidean domain while 
H(Z) is not - see [He, §7.4] or [Di].) H(Z) is a principal ideal domain ([He, 
§7.4]) with a unit group U consisting of 24 elements. Two elements o:, ß E H(Z) 
generate the same left ideal if and only if o: = eß for some e E U. We want 
to count the number of elements of norm p which is thus equal to 24 times the 
number of proper left ideals containing pH(Z) properly. Now, since p is odd, 
H(Z)/pH(Z) = H(ZjpZ) ~ M2(1Fp). the 2 x 2 matrix algebra over the field 1Fp. 
Thus, we should count the number of proper left ideals of M2 ( IF p). These will 
be principal left ideals generated by the non-investible non-zero elements. Their 
number is: p4 - [(p2 - 1)(p2 - p)] - 1 = (p + 1)(p2 - 1). The group GL2(1Fp) 
acts on them by left multiplication, and elements are on the same orbit iff they 
generate the same left ideal. These elements are of determinant 0 and are therefore 

conjugate to either ( ~ ~) for some 0 :f=. a E 1Fp or ( ~ ~). In either case the 

stabilizer under the GL2(1Fp)-left multiplication is of order p(p- 1), and hence 
every orbit is of size #GL2(1Fp)/ p(p- 1) = p2 - 1. There are, therefore, p + 1 
left ideals and 24(p + 1) elements of norm p in H(Z). lt is simple to checkthat 
8(p + 1) of them have integral entries while the rest do not. D 

Now let p be a prime congruent to 1 mod4. Let H(Z) denote the integral 
quaternions H(Z) = {o: = ao + a1i + a2j + a3k I aj E Z}, i2 = f = k2 = -1, 
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ij = -ji = k, etc. Set ä = ao- a1i- a2j- a3k and Iet N(o:) be the integer 
o:ä = Eaf. The units of the ring H(Z) are ±1, ±i, ±j, ±k. Let S' be the set 
of all o: with N(o:) = p. Since p = 1(4), only one of the a;'s will be odd. By 
(2.1.8), IS'I = 8(p + 1). The units act on this set, and each solution has exactly 
one associate c:o:, c: a unit, with c:o: = 1 (mod 2) and ao > 0. Let S be the 
set of these p + 1 representatives. This set splits into distinct conjugate pairs 
{ O:J, ä1, ... , o:5 , äs} where s = !(P + 1). By a reduced word of length m in the 
elements of S we mean a word of length m in which no expression of the form 
O:jÖ:j or Ö:jO:j appears. 

Lemma 2.1.9. ([GVP] or [LPS2]) Every o: E H(E.) with N(o:) = pk can be 
expressed uniquely in the form o: = c:p' Rm ( O:J, ... , ä 5 ) where c: is a unit, 2r + m = 
k and Rm is a reduced word in the o:;'s of length m. 

Proof To obtain the existence of such an expression we use the results of Hurwitz 
[Hu] and Dickson [Di] which show that for odd quatemions (i.e., those of odd 
norm) one has a theory of g.c.d. and the usual factorization (on the left and right) 
(see also [He]). Since o: is odd and a quatemion is prime iff its norm is prime, 
we may write o: = 'Yß with N('Y) = pk-! and N(ß) = p. By the choice of S we 
can find a unit c: such that o: = "(C:Sk with sk E S. Now repeat this for "fc, etc. 
We eventually get o: = cSJ · ... · Sk with Sj E S. After performing cancellations 
(recall that o:;ä; = N(o:;) = p) we arrive at o: = c:p'Rm for some r and m. This 
proves the existence of such a decomposition. 

We show the uniqueness by a counting argument (another way could be to 
use carefully the uniqueness of factorization of quatemions). First, the number of 
reduced words Rm ( o:1, ... , ä 5 ) is (p + 1 )pm-l form ~ 1 and is 1 if m = 0. Hence 
the number of expressions c:p'Rm(o:,, ... , ä 5 ) with 2r + m = k is: 

8( I: (p+1)pk-2r-!+8(k))=tpj 
0'5_r<k/2 j=O 

where 8 ( k) = { 0
1 if kk is even . Hence the number of such expressions is: 

if is odd. 

This is by (2.1.8) the number of o: E H(E.) with N(o:) = pk. It follows that each 
such expression represents a distinct element. 0 

Corollary 2.1.10. lf o: = 1 (mod 2) and N(o:) = pk, then o: = ±p'Rm(o:!, ... , 
ä 5 ) with 2r + m = k and this representation is unique. D 
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Consider now H(Z[~]), i.e., all o: = ao + a1i + a2j + a3k suchthat ai (i = 
0, 1, 2, 3) are p'-integral rational numbers, namely: only powers of p can appear 
in their denominators. Let A'(2) be the set of all o: E H(Z[~]) such that o: = 
1 (mod 2) and N(o:) =,I for some CE 7L. A'(2) is closed under mu1tiplication, 
and if we identify o: and ß in A'(2) whenever ±pio: = ß for some i E Z, then the 
classes so obtained form a group with [o:ß] = [o:][ß] and [o:][ä] = [1]. Ca11 this 
group A(2). 

Corollary 2.1.11. A(2) is a free group on the s = ~ generators 

[o:I], [o:2], · · · , [o:s]· 

Proof Every o: E A' ( 2) is equivalent to one in H ( Z), and Corollary 2.1.1 0 ensures 
the unique representation of such as a word in [o:1], ... , [o:8 ], which exactly means 
that the group is free. D 

We now look at the natural embedding 

1 { ( a + bi a: H(Z[p])----> H(lffi) ~ -c + di c + di) I } a-bi a,b,c,dE!ffi 

. . a ( a + bi c + di ) o: = a + bz + c; + d k ----+ d. b. . -c + 1 a- 1 

It is Straightforward to check that a induces a well-defined homomorphism 
u : A(2) ----> H(lffi)* /Z(H(Iffi)*), where H(lffi)* denotes the group of invertib1e real 
quatemions. This gives the promised embedding of a free group on s generators, 
andin particular of 2 generators, in 50(3), since 50(3) ~ H(~)* /Z(H(~)*). 

To see this reca11 that a can be extended to give an isomorphism H(C) ~ 

M(r) h' h' . 1' '1 b b' . dk ( a+bi c+di) 2 10 ,w 1c IsgivenexpiCity y:o:=a+ t+c;+ f---> -c+di a-bi 

and u is indeed an embedding into 5U(2)/{±1} ~ 50(3). Another way to 
see the isomorphism H(lffi)* /Z(H(~)*) ~ 50(3) is by considering the action 
by conjugation of H(lffi)* on the «imaginary quatemions», i.e., on { o: = bi + 
c j + d k I b, c, d E lffi}. This space with the quaternionie norm is isomorphic to 
the three-dimensiona1 Euclidean space and the conjugation action preserves this 
norm. This defines a map from H(lffi)* into 0(3). As H(lffi)* is connected the 
image is in 50(3), and the keme1 is Z(H(Iffi)*) as can be easily checked. Since 
dim(H(Iffi)* /Z(H(Iffi)*)) = dimS0(3) = 3, this is an isomorphism. Proposition 
2.1. 7 is now proved. 

Corollary 2.1.12. There is a countable subset D of 52 - the two-dimensional 
sphere- suchthat 52\D is F-paradoxicalfor some subgroup F of50(3) (keeping 
52\D invariant). 
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Proof Let F be a free subgroup of 50(3) of rank 2. Every non-trivial element of 
50(3) has exactly two fixed points in 5 2 . Let D = {x E 5 2 131 =1- r E f,')'(X) = 
x}. Example 2.1.6(ii) implies that 5 2 \D is f-paradoxical and therefore 50(3)­
paradoxical. 0 

Proposition 2.1.13. If D is a countable subset of 5 2 , then 5 2 and 52\D are 
50(3)-equidecomposable. 

Proof Let f be a line through the origin that misses the countable set D. Let () be 
an angle suchthat for every integer n:?: 0, pn(D)nD = <jJ where pn is the rotation 

- 00 

around C of angle ne. Such() does exist since Dis countable. Let D = U pn(D). 
n=O 

Then 52 =Du (5 2\D) "'p(D) u (5 2\D) = 52\D. 0 

Corollary 2.1.14. 5 2 is 50(3)-paradoxical. 

This last statement is (one form of) the Hausdorff-Banach-Tarski paradox. 

Corollary 2.1.14 can be extended quite easily to 5n for every n, by induc­
tion on n: Assurne 5n-I = A u B is a paradoxical decomposition of 5n-I, 
i.e., A and B are disjoint and each one is equidecomposable to 5n-I. Define 

A* = {(xJ, ... ,Xn,Xn+d E 5n I (XJ, ... ,Xn)/ ~ E A} and B* in a similar 

way. Then it is easy to see that Sn\ { (0, ... , 0, ± 1)} = A * u B* is a paradox­
ical decomposition. In a similar way to the proof of (2.1.13) we deduce that 
5n\ { (0, ... , 0, ±1)} is equidecomposable to 5n. Hence we have 

Corollary 2.1.15. 5n is 50(n + 1)-paradoxical for every n:?: 2. 

In fact, for odd n :?: 3 the last corollary follows also from the following 
Theorem of Deligne and Sullivan and Example 2.1.6(ii). This Theorem gives 
more information on the existence of «minimal decompositions», but we shall not 
go into details here (see [DS], [Wa], [Bo2] and the references therein). 

Theorem 2.1.16. ([DS]) For odd n:?: 3, 50(n + 1) has afree subgroup ofrank 
2 which acts freely on 5n. 

For our discussion later on we will need a stronger form of the Hausdorff­
Banach-Tarski paradox: 

Theorem 2.1.17./fn:?: 2, then any two subsets of5n, each ofwhich has non-empty 
interior, are 50(n + 1 )-equidecomposable. In particular, 5n is equidecomposable 

with every subset of it whose interior is not trivial. 
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For proving this we need to extend slightly the notion of equidecomposable: 
we say for positive integers n and m and two subsets A and B of X that nA is 
equidecomposable with mB if one can decompose A in n ways and rebuild m 
copies of B (using translations by the action of G). We write nA rv mB. So «X 
is paradoxical» just means that X "' 2X. Moreover, the cancellation law works 
here, i.e., if nA "'nB then A"' B. To see this look at the bi-partite graph whose 
set of inputs is A and outputs B, where every point of A is connected with the n 
points associated to it by the maps establishing the relation nA "' nB. 

More precisely: when decomposing A in n (different) ways and rebuilding n 
copies of B, we associate every a E A with 'Pt(a), ... ,<pn(a) E B, where every 
b E B is obtained this way n times. So every a E A is connected by n edges 
of n different colors to points in B. It is possible, however, that a point b E B 
would receive two or more edges of the same color, but the total nurober of 
edges targeting at bis exactly n. Now, by theinfinite version of König's Theorem 
(cf. [Or]), such a graph has a perfect matching. Namely, there is a one-to-one 
correspondence '1/J : A -+ B such that for every a E A, 'lf;(a) = <p;(a) for some 
i E {1, ... 'n}. Let A; = {a E A I '1/J(a) = <p;(a)}. Then A; rv <p;(A;) = '1/J(A;) 

n n 
and hence the disjoint unions A = .u A; "' .u '1/J(A;) = B arealso equivalent. 

l=l l=l 

Now to prove Theorem 2.1.17, it suffices to prove its second part, i.e., that 
sn is equidecomposable with any subset A with a non-trivial interior. Since 
sufficiently many copies of A cover X = sn we know that X < kA, while 

~ 

X "' 2X "' kX by Corollary 2.1.15. So, kA ~ kX "' X< kA and hence 
~ 

kA"' kX by (2.1.2) (which can be easily seen to hold also with the slightly more 
general notion of equidecomposability). Thus A"' X and the theorem is proven. 
D 

We conclude this section by mentioning that 5 1 is not 50(2)-paradoxical. 
This will be shown in the next section. 

2.2 Invariant Measures 

An immediate corollary of the Hausdorff-Banach-Tarski paradox (2.1.17) is: 

Proposition 2.2.1. lf n ;::: 2, there is no finitely additive, rotation invariant measure 
of total measure 1 defined for all subsets of sn. 

In general, the existence of a paradox eliminates the existence of an invariant 
measure defined for all subsets. lt is interesting to mention Tarski's Theorem (cf. 
[Wa, Ch. 9]) which gives the converse: 
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Theorem 2.2.2. (Tarski) Suppose G acts on X. Then there is a finitely additive, 

G-invariant measure fL : P(X) ---+ [0, 1] with f.l(X) = 1 if and only if X is not 
G-paradoxical. (P(X) denotes the set of all subsets of X.) 

Contrary to (2.2.1), for 5 1 there is such an invariant measure. This is exactly 

the amenability of S 1 as a discrete group. We shall begin with a less standard 

definition of amenability, which is known to be equivalent to it by F!Z!lner Theorem. 

Definition 2.2.3. A locally compact group G is called amenable if it satisfies the 

following condition: 

(F) Given c > 0 and a compact set K C G, there is a Bore/set U ~ G 

of positive finite (left Haar) measure .A(U) suchthat .A(h) .A(xUßU) < c for all 

x E K. (Here AßB means (A \B) U (B\A) ). 

In particular, a discrete group is amenable if for every c > 0 and every finite 

subset K there exists a non-empty finite set U suchthat 
1
&

1
1KUßUI < c (where 

lAI stands for the number of elements in A). 

To state this in a more geometric-combinatorial way: Recall that if G is a 

discrete group and K a subset, the Cayley graph X ( G; K) of G with respect to K 
is defined as a graph whose vertices are the elements of G and every such g E G 
is connected with gk E G for every k E K. The condition of G being amenable 

is precisely that for every c > 0 and every such K, the graph X(G;K) has a finite 

subset U of vertices whose boundary au satisfies I8UI < ciUI. Moreover, if G 

is finitely generated, it is not difficult to see that once this happens to one set of 
generators K0 , it happens to every finite subset K. 

The reader should also notice that the condition of amenability is precisely 

the opposite to the «expander» property discussed in Chapter 1. This is a first hint 

to the connection between the two topics. 

lt is easy to see that if every finite1y generated subgroup of a discrete group G 

is amenable, then G is amenable. Finitely generated abelian groups are amenable, 

and therefore every abelian group is amenable; in particular, S 1 is amenable as a 

discrete group. (lndeed, it is amenable also as a topological group, just as every 

compact group is, since we can take U tobe G). Moreover, extensions of amenable 

by amenable are amenable so solvable groups are also amenable. 

Definition 2.2.4. Let G be a locally compact group and L 00 ( G) the ( equivalence 
classes of) essentially bounded real-valued measurable functions (i.e., bounded 

outside a set ofzero Haar measure). An invariant mean on Gis a linear functional 

m : L 00 ( G) ---+ IR. satisfying: 

(i) m(f) ?. 0 if f ?. 0. 

(ii) m(xc) = 1 where Xe is the constant function 1 on G. 

(iii) m(g· f) = m(f) for every g E G and f E L00 (G) where (g· f)(x) = f(g- 1x). 
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Note that for a discrete group G, L 00 ( G) is the space of all bounded functions 
on G. If such an m exists, then by defining, for a subset A of G, a measure 
!-l(A) = m(xA), we obtain a finitely additive G-invariant measure defined on all 
subsets of G. 

Proposition 2.2.5. If a locally compact group is amenable (i.e., satisfies condition 
(F) of 2.2.3), then it has an invariant mean. 

Remark. The two properties are really equivalent (see [Gl]). In fact, it is more 
common to define an amenable group as one having an invariant mean, but for 
our needs the one direction suffices. 

Proof Let H be the linear subspace of X = L 00 ( G) spanned by the functions of 
the form g · f- f where g E G and f E X. Clearly v E X* is G-invariant if it 
annihilates H. 

Lemma 2.2.6. lf h E H then llhlloo ?: 0 where llhlloo = ess suph(t) = inf{ a I 
XEG 

h(t) ::::; a outside a null set}. 

n 
Proof LethE H. h is of the form h = 'L,(kdi- /i) where K = {k1, ... , kn} 

i=1 

is some finite subset of G. Let U be as in (2.2.3) with respect to K- 1 = { kj 1} 

and E > 0. Let T(x) = J h(ux)d.>..(u). If llhlloo = -8 where 8 > 0, then IT(x)l?: 
u 

8 · .>..(U). On the other hand 

T(x) = t 1 (/i(ki 1ux)- [i(ux))d.>..(u) 
i=1 u 

= t( { _1 [i(ux)d.>..(u)- jfi(ux)d.>..(u)) . 
. 1 Jk u 
!= I u 

Since .>..(kj1UflU) < c.A(U), we have: 

8>-.(U)::::; IT(x)l::::; n · E • .>..(U) · max{ll [i IIL= }. 

As n and h are fixed and we can choose E arbitrarily small, we come to a 
contradiction. D 

Remark 2.2.7. For the proof of (2.2.6) we could use x = e. The fact that x can 
be chosen arbitrarily can be used to prove the following stronger version, which 
is needed later. 
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If h E H and A is a G 0-dense subset ( or if A is a Lebesgue measurab1e 
subset of measure 1) of G = 5 1, then llhlloo 2: 0. 

To see this, note that in our case S 1 is amenab1e as a discrete group. We can 
therefore choose U in the proof of (2.2.6) to be a finite set. Then continue the 
proof word by word just choosing x suchthat Ux and K- 1 Ux are all in A, which 
is possib1e since the intersection of finitely many G0 dense subsets is non-empty. 

To complete the proof of (2.2.5): Take the subspace Y = HEB ~XG and define 
a linear functional v: Y ____, ~ by v(h + Cxc) = C. By (2.2.6), 

II h + Cxc lloo= esssup (h + Cx ) 2: C = v(h + CXc). 
lEG G 

Thus, the Hahn-Banach Theorem (cf. [Ru2, Ch. 3]) ensures that we may extend 
v to a linear functional m on X satisfying lm(f) I ::; II f lloo· This is the invariant 
mean we have looked for. D 

Corollary 2.2.8. There is afinitely additive, rotationally invariant measure oftotal 
measure 1 defined for all subsets of S 1. S 1 is, therefore, not paradoxical. 

Before tuming to the Ruziewicz problem, we recall the following standard: 

Proposition 2.2.9. The Lebesgue measure .X is the unique rotation invariant count­
ably additive measure defined on the set of all Lebesgue measurable subsets of sn 
such that .X(Sn) = 1. 

Proof This follows from the standard procedure of its construction: .X is determined 
uniquely on open balls in sn since it is determined by covering properties of balls. 
By countably additivity it is determined on the a-algebra generated by the closed 
and open subsets, i.e., the Borel sets. Then the Lebesgue measurable sets are 
obtained by completing the measure, i.e., by «adding» to the a-algebra all subsets 
of zero measure sets. The monotonity of a measure implies that .X is still unique. 
D 

Ruziewicz posed the question whether .X is still unique among the finitely 
additive invariant measures of sn. 

For the case n = 1, Banach [Ba] answered in negative, essentially proving 
along the way our (2.2.5) above. In fact, the construction in (2.2.5) is flexible 
enough to allow: 

Proposition 2.2.10. Let A be a G0-dense subset of 5 1 suchthat .X(A) = 0. Then 
there exists a finitely additive invariant measure m defined on all subsets of S 1 

such that m(A) = 1. 
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Proof We look again at the proof of (2.2.5) this time for the discrete group G = S 1 . 

So ess sup is simply sup. Take now Y =HEB ~Xe EB ~XA· This is indeed a direct 
sum, for if XA E H EB ~XG then XA = h + axc, so h = XA - axc is constant on 
A. The same applies to -h and hence h = 0 on A by (2.2.7}, and it is equal -a on 
N, which is also a contradiction to (2.2.7). Define now v(h+axc +ßxA) = a+ß. 
Then: II h + axc + ßxA II :2: sup lh + axc + ßxA I :2: a + ß again by (2.2.7). As in 

xEA 
the proof of (2.2.5), we can use Hahn-Banach Theorem to get m with m(xA) = 1. 

D 

The last Proposition shows the existence of a finitely additive measure which 
is totally different from >. - the Lebesgue measure. A measure 1-L is said to be 
absolutely continuous with respect to >. if !-L(A) = 0 whenever >.(A) = 0. If 1-L is 
such an invariant measure, then by the standard procedure to define an integral 
out of a measure 1-L gives rise to an invariant mean on L 00 ( G), and vice versa: 
any invariant mean on L 00 ( G) defines an absolutely continuous finitely additive 
invariant measure on the Lebesgue subsets of S 1• The next proposition establishes, 
therefore, that >. is not unique even among the absolutely continuous measures. 

Proposition 2.2.11. There exists an invariant mean I on L 00 ( S 1) (S 1 with the 
usual topology) which is different than the Haar integral. 

Proof Again the proof is similar to that of (2.2.5) and (2.2.10). This time take 
A to be an open dense subset of measure >.(A) < 1, and B = S 1 \A. Extend the 
functionalv : HEB ~Xe EB ~X8 --+ ~. v(h + axc + ßx8 ) = a to a functional I on 
L 00 (G) satisfying I(x8 ) = 0 =1- J 1d>. = 1- m(A). D 

B 

Finally, we show, already at this point, that the Situation in sn for n :::::: 2 is 
less flexible: 

Proposition 2.2.12. Let v be a rotation invariant, finitely additive measure defined 
on Lebesgue subsets of sn, n :2: 2. Then v is absolutely continuous with respect 
to >.- the Lebesgue measure. 

Proof Let E be a subset of sn with >.(E) = 0. Wehave to show that v(E) = 0. 
Note first that if Di is a sequence of open discs in sn such that diameter(Di) --+ 0, 
then v(Di) --+ 0, because mi, the number of disjoint translations of Di in sn, 
is going to infinity. Now by the Hausdorff-Banach-Tarski paradox (2.1.17), sn is 
equidecomposable to Di and E is therefore equidecomposable to a subset Ei of 
Di. Now, every subset of a zero measure set is measurable and hence Ei is also 
measurable since the pieces of it, which are translations of pieces of E, are all 
Lebesgue measurable. Thus v(E) = v(Ei) ::; v(Di) and therefore v(E) = 0. D 

Later on we will show, as promised, that for n :2: 2, v = >., i.e., there are 
no «exotic» measures, but this will require much more work. 
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2.3 Notes 

1. The Hausdorff-Banach-Tarski paradox is much more general than the case of 
sn presented here. But it is based essentially on the same ingredients. A very 
detailed treatment is given in S. Wagon's book [Wa], where one can learn 
more about the history and the various contributors to the subject. As this 
subject is treated very intensively in the literature, we have not made any 
attempt to cover it here. We merely brought, in the shortest self-contained 
way we could (except of (2.1.7)), the case of sn, which is the only case we 
need. 

2. A similar remark applies to invariant measures: Banach [Ba] proved (2.2.8). 
It was Von-Neumann who defined amenable groups and realized their impor­
tance. Our treatment is closer to [Rul]. We were also benefited from Sarnak 
[Sa2]. The standard reference on amenable groups is Greenleaf [Gl] and more 
recent ones are [P] and [Pie]. Wagon [Wa] also contains a lot of information, 
especially in connection to paradoxes. 



3 Kazhdan Property (T) and its Applications 

3 .0 Introduction 

Let G be a locally compact group. The set of equivalence classes of unitary 
(irreducible) representations is endowed with a topology, called the Fell topology. 
G is said to have property (T) if the trivial one-dimensional representation Po of G 
is isolated, in this topology, from all the other irreducible unitary representations 
of G. lf r is a lattice in G, i.e., a discrete subgroup of finite co-volume, then r 
has property (T) if and only if G does. Simple Lie groups of rank 2:: 2, as well 
as their lattices, do have this property. 

In this chapter we present this property and the results just mentioned. We 
then apply them to our problems: First, in §3.3 we show how one can use a 
discrete group r with property (T) to make explicit constructions of expanders. In 
fact, fixing a finite set 5 of generators of r, the Cayley graphs X(r /N; 5), when 
N runs over the finite index normal subgroups of r, form a farnily of expanders. 

Secondly, it is shown that .A, the Lebesgue measure on 5n, is the unique 
finitely additive invariant measure on 5n(i.e., an affirmative answer to Ruziewicz 
prob lern) if there is a countable group r in 50( n + l), such that all irreducible 
r-subrepresentations of LÖ(5n) = {f E L2 (5n) I J fd.A = 0} are bounded away 
from the trivial representation. This happens, in particular, if 50(n + 1) contains 
a countable dense subgroup r with property (T). lndeed, for n 2:: 4, 50(n + I) 
contains such a subgroup, and hence the Ruziewicz problern is answered affirma­
tively in this chapter for n 2:: 4. For n = 2, 3 the answer is also affirmative, but for 
this we will have to wait until chapter 7. Herewe prove that 50(3) and 50(4) 
do not contain a dense countable group with property (T). Hence a different tool 
is needed. 

3.1 Kazhdan property (T) for semi-simple groups 

Webegin this section by introducing the Fell topology ([Fe]) on the unitary dual. 

Definition 3.1.1. Let G be a locally compact ( separable) group and p : G ----> U ( H) 
a continuous unitary representation ofG on a (separable) Hilbert space. G (resp: 
G) denotes the set of equivalent classes of the unitary (resp: irreducible unitary) 
representations of G. 
(a) For every vector v EH with II v II= 1 we associate a coefficient of p. This is 
the function on G : g ~---+ (v, p(g)v) where ( , ) is the scalar product in the Hilbert 
space H. 
(b) For two representations tJ and p, we say that p is weakly contained in IJ, 

denoted p cx: tJ, if every coefficient of p is a Iimit, uniformly on compact sets of 
G, of coefficients of tJ. 



20 3 KAZHDAN PROPERTY (T) AND ITS APPLICATION 

(c) We define open neighborhoods of a representation (H, p) in Gas follows: Let 

K be a compact subset of G, E > 0 and v E H of norm one. Let: 

W(K,c,v) = { (H',a) E G ::Jv' EH' of norm one suchthat } 
l(v,p(g)v)- (v',a(g)v')l < E, 'Vg E K · 

This determines a topology on G (and G) (see [HV], [Zil], [Fe], [M7] for details). 

We spell out the above definition for the special case p = p0 , the one­

dimensional trivial representation: 

Proposition 3.1.2. Po oc a if and only if for every E > 0 and every compact subset 

K of G, there exists v E H(a) suchthat II V II= 1 and l(v, a(g)v)- 11 < E, or 

equivalently II a(g)v- V II < Vfi for every g E K. In this situation we say, for 

obvious reasons, that a has «almost invariant vectors». 

Definition 3.1.3. G is called a Kazhdan group or is said to have property T if p0 is 

an isolated point in G with the Fell topology. This means that some neighborhood 

of PO contains only PO· In other words: G is a Kazhdan group if there exist 

an E > 0 and a compact subset K of G such that for every nontrivial irreducible 

representation (H, p) of G and every vector v E H of norm one, II p( k )v- v II > E 

for some k in K. 

An equivalent formulation is as follows (see [HV], [Zil], [Ka] or [Wanl, 1.5] 

for details about this point as well as any other unexplained points in this section): 

G has property T if and only if every unitary representation which has al­

most invariant vectors contains also a nonzero invariant vector, or equivalently if 

any unitary representation of G which weakly contains the trivial representation 

contains a nonzero invariant vector. 

Example 3.1.4. (A) If G is a compact group, then G is Kazhdan. lndeed, Iet (H, p) 

be a representation of G containing almost invariant vectors. Let v be a vector in 

Hofnorm one suchthat II p(g)v -v II< ~· Then v = fc p(g)vdg isaG-invariant 

vector and it is nonzero since II v - v II < ~. 
(B) Let G = ~ (or Z), then the left regular representation L : G ----> U(L 2(G)) 

defined by L(g)f(x) = f(g- 1x) weakly contains Po but does not contain Po· 

lndeed, for every compact (and therefore bounded) subset K of ~ and every 

E > 0 we can take a sufficiently large interval I of length e, say, such that 

>.( (K + I)ll.I) < c>.(I) where >. is the Lebesgue measure. This shows that 1/ v'ex1 

is E-invariant under K. On the other hand, there is no invariant function since 

the constant function is not in L 2 ( G). (It will be in L 2 ( G) if and only if G is a 

compact group). It is clear that the same argument works for any amenable group. 

We thus have proved the «only if» part of the following: 
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Theorem 3.1.5. (Hulanicki [Hul]) A group G is amenable if and only ifthe (left) 
regular representation of G weakly contains the trivial representation Po· 

For future use, notice that the «if» part amounts to prove that if there are 
«almost invariant functions» then there are also almost «invariant subsets» (see 
also the proofs of (3.3.7) and (4.2.4)). 

Proof of 3.15. Let G be a locally compact group with Haar measure .>.. We say that 
G satisfies Property (f) if for every compact subset K ~ G and every c: > 0 there 
exists a Borel subset U ~ G with 0 < .>.(U) < oo suchthat .>.(kULlU) < c:.>.(U) 
for every k E K. G is said to have property (F*) if for every compact K, c: > 0 
and 8 > 0 there exists a Borel U and a subset N ~ K with >-.(N) < 8 suchthat 
>-.(kULlU) < c:>-.(U) for every k E K \ N. 

Theorem 3.1.5 is contained in the following: 

Claim. Let G be a locally compact group. Then the following three conditions are 
equivalent. 

(i) G has property (F), i.e., G is amenable. 

(ii) G has property (F*). 

(iii) The trivial representation Po is weakly contained in the left regular represen­
tation LG ofG on L2(G). 

Proof (i) implies (üi) is the easy part of Theorem 3.1.5, which was proved in 
Example 3.1.4(B). (i) implies (ii) is clear. We will prove now that (iii) implies (ii) 
and then that (ii) implies (i). 

Wehave to prove that if Po cx: LG then G has property (f*). Therefore, Iet 

K be a compact subset of G, c: > 0 and 8 > 0. Let c:o = 4~~1~) and f a function 

in L2(G) with JG 1/12 d.>. = 1 and fG lkf- fl 2 dg < c:o for every k E K. Let 
F = j2 then FE L1(G) and 

llkF -FIIu = ~ lkP- PI d>-. = ~ l(kff- PI d.>. = 

[ [ [ 

(c:o)2llkf + /IIL2 ~ (c:o) 2 (llk/IIL2 + II/IIL2) = 2(c:o) 2 . 

We thus have a function F in L 1 ( G) with J F d>-. = 1 which is almost invariant. 

For 0 < a E IR define the subset Ua of G tobe Ua = {x E G IIF(x)l ~ a}. 
Then fG F d>-. = f000 .>.(Ua) da. 

(This follows from Fubini Theorem but is best illustrated by Figure 1). 
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fcF. dg fooo >.(Ua)da 
Fig. 1 

Similarly llkF -FIIv = fc lkF -FI d>.= f0
00 >.(kllaö.Ua) da (see Figure 2). 

F kF 
Fig. 2 

Thus: 

roo I I roo 
lo >.(kllaö.Ua) da< 2cJ = 2cJ · lo >.(Ua) da. 

By integration on K, 

L fooo >.(kllaö.Ua) da dk < 2(co)h(K) = c6, 

i.e., f0
00 JK >.(kllaö.Ua) dk da ~ c · 6 f0

00 >.(Ua) da. Thus, there exists a E ~ 
suchthat l >.(kllaö.Ua) dk ~ c. 6>-.(Ua). 

It follows that the measure of those k E K for which >.(kllaö.Ua) > c>.(Ua) is 
less than or equal to 6. This proves that G has property (F*). 

It remains to prove that (F*) implies (F). We remark first that for discrete 
groups they are clearly equivalent since we can take 6 < Jh. 

To prove (F*) ::::} (F): Let K ~ G be compact with >.(K) > 0. Let A = 
KU K · K. Then for every k E K, >.( kA n A) ~ >.( kK) = >.(K). Let 6 = !>.(K). 
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Then for every N CA suchthat .X(A \ N) < 8 and for every k E K 

28 :<::; .X(K) :<::; .X(kAnA) :<::; .X(kNnN)+.X(A\N)+.X(k(A\N)) < .X(kNnN)+28o 

Hence, .X(kN n N) > 0, and so k E NN-1 and therefore K s;;; NN-10 

Now, use property (f*) for ~. 8 and A. So, there is U with 0 < .X(U) < oo 
and N c A suchthat .X(A \ N) < 8 and .X(kUllU) < p(U) for every n E No 
So, for n1, n2 E N we have: 

.X(n1n21UllU) :<::; .X(n21UllU) + .X(Ulln!1U) 

= .X(n2UllU) + .X(n1 UllU) < c:.X(U) 

and thus .X(kUllU) < c:.X(U) for every k E K s;;; NN-10 D 

From the above one can also deduce: 

Corollary 3.1.6. lf G is amenable and has property T, then G is compacto 

Proof The regular representation contains the trivial representation if and only if 
G is compact. D 

A quotient of a Kazhdan group is also Kazhdano One therefore deduces that 
the commutator quotient G/[G, GJ ofa Kazhdan group Gis compact and G /[G, GJ 
is finite if G is discreteo Thus 

Proposition 3.1. 7. A non-abelian free group F is neither Kazhdan nor amenable 0 

Proof lt is not Kazhdan by the aboveo lt is not amenable either by checking 
directly or by recalling from (20106) that F is paradoxical and therefore does not 
have an invariant meano D 

Kazhdan introduced in [Ka] property (T) as a tool for studying discrete 
subgroups of Lie groups of finite co-volumeo Recall that we say that a discrete 
subgroup of G is a lattice if G ;r carries a G-invariant finite measureo The fol­
lowing proposition summarizes the connection between the Fell topologies of the 
unitary dual of r and of G 0 

Proposition 3.1.8. (a) Let G be a locally compact group and Ha closed subgroupo 
Then the restriction map G ~ fi given by p ~---> p !H is a continuous mapo 

G - -
Moreover, the induction map 1r ~---> lnd( 1r) is a continuous map from H to G 0 

H 

(b) lff is a lattice in G, then: (i) Gis amenable if and only iff is amenable, 
and (ii) G has property (T) if and only if r haso 
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We omit the proof which can be found in [Fe] and the above-mentioned ref­

erenceso Notice that part (a) says that if 1r1 <X 1r where 1r1 and 1r are representations 
G G 

of H, then Ind(1r') <X Ind(1r)o This with the aid of (3ol.5) suffices to prove that if 
H H 

r is amenable then G is amenableo 

An immediate corollary is: 

Proposition 3o1.9. G = SL2(~) is neither amenable nor has property (T)o 

Proof As it is well known (see also (3o2ol)), SL2(Z) is a lattice in G and it has a 

free subgroup F of finite index (for example, the group generated by ( ~ ~) and 

( ~ ~) )o Thus F is also a lattice in G 0 So (3ol.7) and (301.8) prove (301.9)0 0 

It is more difficult to prove that some groups do have property (T)o Before 

doing this we shall extend slightly the definition: 

Definition 3.1.10. lf R is a subset ofG, we say that G has property (T: R) if po 

is isolated in R U {Po} 0 

Proposition 3.1.11. Let H = ~2 ~ SL2(~), ioeo, the semi-direct product with the 
standard action of SL2(iffi) on lffi20 Let R = {p E Hl Pi!Rz is nontrivial}. Then H 
has property (T : R). 

Proof Let p be an irreducible unitary representation of Ho The restriction of p 

to ~2 is a unitary representation of the abelian group ~2 and thus a direct sum 

(or integral) of one-dimensional characters of ~2 0 Let x be a character appearing 

there and Iet M be its stabilizer in SL2 (~) that acts also on ~2 the group of 
H 

characterso By Mackey's Theorem (cfo [Zil, 703011]) p = Ind (xa) where a is 
[R2 >4M 

some irreducible representation of M and xa is the representation of ~2 ~ M 
defined by (xa)(r,m) = x(r)a(m)o Now, if in addition p is in R, then X is 

nontrivial and thus M is a proper subgroup of SL2 (in fact M is conjugate to 

N = { ( ~ ~ ) } since all nontrivial characters of ~2 are conjugate under the 

SL2 (~) action)o M1 = ~2 ~ M is nilpotent and, therefore, amenableo By 301.5 

this means that Po <X LM,, where LM, is the left regular representation of M1, and 

thus 
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(The last isomorphism follows from the identification, for any representation 

(W,1r), L2 (G) 0 W -0L2 (G, W) given by: 

O(f 0 v)(g) = [(g)(1r(g)v) 

where L2(G, W) = {f: G --4 W I k II f(g) II dg < oo}.) 

Thus (3.1.8) (and the remark afterward) implies that 

Now, if Po oc p then Po oc LH, which is a contradiction to (3.1.5) and (3.1.9). 
Thus p does not weakly contain the trivial representation, which implies that Po 
is bounded away from R in the Fell topology. D 

Theorem 3.1.12. SL3 (IR) has property (T). 

Lemma 3.1.13. Let E = SL2(1R) and N = { ( ~ ~) I t E IR}· lf p is a unitary 

representation of E, then every vector fixed by p(N) is also fixed by p(E). 

Proof Suppose p(n)v = v for every n E N. Look at the function on E, f(g) = 

(p(g)v, v). We claim that this is a constant function on E. This will prove the 
lemma, since then f(g) = f(e) = (v, v) and so p(g)v = v. To see that f is 
constant, we argue in several steps: 

Step 1. {(n1gn2) = f(g) for every n1, n2 E N. Indeed, f(nign2) = 
(p(n1gn2)v, v) = (p(ni)p(g)p(n2)v, v) = (p(ni)p(g)v, v) = 
(p(g)v, p(ni)-1v) = (p(g)v, v) = f(g). 

Step 2. ldentify E /N with IR2 \ { 0}. This can be done since the action of E on 
IR2 \ { 0} is transitive with N being the stabilizer of (Ö). So f, which is 
constant on the double cosets N\E /N, can be thought of as a function on 

IR2 \ { 0} constant on N orbits. N acts like ( ~ ~ ) (~) = r;ty). So the 

orbits of N in IR2 \ {0} are the lines parallel to the x-axis and each point 
on the x-axis. Since f is constant on all the lines parallel to the x-axis 
and it is continuous, it is also constant on the x-axis. Restating this by 

means of the group elements, we have that if p E P = { ( ~ ~) E E } 

then f(p) = f(e), i.e., the vector v is also invariant under P. 

Step 3. If PI, P2 E P then f(pigp2) = f(g) for every g E E. This is proved 
exactly like Step 1, using the fact, established in Step 2, that P fixes v. 
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Step 4. Now identify E /P with the projective line P 1 (IR) = IR U { oo} via the 

action of E by ( ~ ~) (z) = ~;tS. So f is defined on P 1(1R) and 

constant on the P orbits. There are only two orbits: IR and the point 
oo. Again, by continuity, f is constant on the entire projective line and 
therefore constant on E. 

This proves that v is fixed by E and the Lemma is proved. D 

Lemma 3.1.14. L" J = { ( ~ ! :) s, t E Ul} ~ G = SL,(Ul). Fo' ony 

unitary representation of G, each vector which is left fixed under J is left fixed 
under G. 

Proof Let E 1 = { A = 0 0 n det(A) = l} 1 a,b,c,dEIR and 
0 

and E, = {A= 0 0 n a,b,c,d E Ul and det(A) =I}. a 
c 

1t is not difficult to see that E 1 and Ez generate a dense subgroup of G. Let 
N =Ei nJ for i = 1, 2. From Lemma 3.1.13 we deduce that a fixed vector of N 
is a fixed vector of Ei. We conclude that if v is fixed by J, it is fixed by both E1 

and Ez and hence by G. D 

~:: :fw::,:~ :·~:~ {(ff"~ fE:} :~'~R:L::): 
IR2 ~ SLz(IR). By definition, p restricted to H also contains weakly the trivial rep­
resentation. From (3.1.11) it follows that p IH (strongly) contains representations 
which are not in R = {p E HIPIII\lz is nontrivial}. Namely, it contains a vector 
invariant under IR2 ~ J. By (3.1.14) this vector is also invariant under G. This 
proves that G is a Kazhdan group. D 

Going over the proof one sees that there is nothing special about IR, and the 
proof works equally weil for every locally compact non-discrete field (the non­
discreteness is needed to apply the continuity arguments in Lemma 3.1.13, and 
indeed SL3(Q) does not have property (T) since it is not a finitely generated 
group, while every countable Kazhdan group is finitely generated - see [Ka], 
[Wan1], [Zi1] or [HV]). Moreover the theorem is not limited to SL3 but is true in 
a much greater generality. Recall that if G is an algebraic group defined over a field 
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K then the K-rank of G is the dimension of the maximal K -split tori in G, e.g., K­

rank (SLn) = n -1 for every field K, and IR-rank (SO(n, 1)) = 1. Over different 
fields ~ it might have different rank:s, for example C-rank (SO(n, I)) = [n!l], 

or IR-rank (SO(n)) = 0, C-rank: (SO(n)) = [~] and Op-rank (SO(n)) depends 
on p but of course always at most equal to the C-rank. 

Theorem 3.1.15. Let F be a local field and G the group of F -points of a simple 
algebraic group G defined over F, ofF-rank 2: 2. Then G is a Kazhdan group. 

~ 

The proof requires some background in algebraic groups. The reader is re­
ferred to the above-mentioned references. He or she is encouraged to work out 
the case G = SLn(IR), n 2: 3. In later sections we make use only of the cases 
G = SL 2 (1R) t>< IR2 or SL3(1R) which we have proved in detail, orG = SO(n, 2) 
(n 2: 3) and/or G = SOn(Os)(= SO(n, O)(Os) = SO(n, Os)) (n 2: 5) which 
we have not proved. But a similar proof can be given for them using detailed 
information on their structure. 

3.2 Lattices and arithmetic subgroups 

In this section we describe a method to construct lattices in semi-simple Lie groups. 
This will be done by arithmetic means. By a remarkable theorem of Margulis (cf. 
[M7], [Zil]), this is essentially the only method for groups of rank ;::: 2. The 
method of construction for some groups (e.g., G = SO(n, 2)) is as important for 
us, for the application in §3.4, as the fact that such lattices exist. The reason is 
that the construction is made in a natural way, as lattices in G x SO(n + 2), and 
then one takes projection into G. The fact that we can also take projection into 
the other factor SO(n + 2) is the key point for solving the Ruziewicz problern for 
sn+l. 

Later on we will also need lattices in p-adic Lie groups. So we now give a 
very general Statement, but we will actually use only very specific examples. 

Let S 1 be a finite set of primes in 7l. and S = S 1 U { oo}. For every p E S, 
we denote by Op the field of p-adic numbers where 0 00 = IR. Let 7l.s be the 
ring of 5-integers, i.e., the subring of Q consisting of allrational numbers whose 
denominators have all prime factors lying in S. 7l.s is diagonally embedded in 
TI Op and is a discrete co-compact subring. Now Iet G be a connected semi-

pES ~ 

simple algebraic 0-group. 

Theorem 3.2.1. r = G(7l.s) is a lattice in G = TI G(Op)· 
~ ~s~ 

This theorem is due to Borel [Bol], generalizing a previous result of him 
with Harish-Chandra [BHC] for the case S = { oo }. 
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Example 3.2.2. (A) r = 5Ln(Z) is a lattice in G = 5Ln(IR). This is the case 
G = 5Ln and 5 = { oo} in the theorem. But it is a classical result. The case of 
~ 

r = 5L2(Z) can be proved directly by considering the symmetric space H = {x+ 
iy I x,y E IR,y > 0} of 5L2(1R) that is naturally identified with 5L2(1R)/50(2) via 
the action of 5L2(1R) on H by Möbius transformations. This action is transitive, 
and 50(2) is the stabilizer of the point i. A fundamental domain for r is the set 
F = {z E 1H1 IlRe zl :::; ! and lzl 2:: 1}. F has a finite area with respect to the 

hyperbolic measure dfy' which is the G-invariant measure of H induced by a 

Haar measure of G. 

(B) Let G = 5 O(n) = {A I Ais an n x n matrix with AtA = I and 
~ ~ 

detA = 1} and take 5 = {5,oo}. Then Zs = Z(!J and r = G(Z[!]) is a lattice 
in G(Os) x 50(n). 

~ 

(C) Let f be the quadratic form 

f(xo, ... , Xn) = xö + xf + ... + x~-2- v'2x~_ 1 - hx~ 

and ~ = ~ (f) the group of ( n + 1) x ( n + 1) matrices preserving this form. 

Let k = Q(J2) and 0 = Z(J2], the ring of algebraic integers in k. Let a 
be the non-trivial element of the Galois group Gal( k /0); u f is the form u f = 
xö + xf + ... + x~_2 + v'2x~_2 + v'lx~ and u ~ is the algebraic group preserving 

(T f. Then r = G(O) is a lattice in G(IR) X (T G(IR) ~ 50(n- 1, 2) X 50(n + 1). 
~ ~ ~ 

This is also a special case of Theorem 3.2.1, but some explanation is in order. 
The group G, to begin with, is defined over k, but G xu G is defined over Q. 

~ ~ ~ 

This is just the procedure called «restriction of scalars» described, for example, in 
[Zi1, 6.1.3]. lt is also exp1ained there that r = G(O) corresponds to (G xu G)(Z), 

~ ~ ~ 

and so it is a lattice. Also, we know that over IR, f is equivalent to the quadratic 
n-2 n 

form I: Xf - x~_ 1 - x~ while u f is positive definite and equivalent to I: Xf. 
i=O i=O 

50( n - 1, 2) denotes the group of real matrices preserving the first one, and 
50{ n + 1) of those preserving the second. For more information and examples of 
arithmetic groups defined using number fields, the reader is referred to Mostow 
[Mo]. 

(D) Let D = D( a, ß) be a quatemion algebra defined over 0, i.e., for a ring 
"" ~ 

R, D(R) = {x = ao + a1i + a2j + a3k I ai E R} where a and ß are rational 
~ 

numbers and i2 = -a,p = -ß, k2 = -aß,ij = -ji = k. The norm of x 
is N(x) = aö + aaf + ßa~ + aßa~. Let ~ = !2* /Z be the algebraic group of 

the invertible elements of !2 modulo its center. Then r = ~(Z[~]) is a lattice in 
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~(IR) x ~(Op). As it is weil known (cf. [Re]), J;? splits for almost every prime, i.e., 

D(Op) ~ M2(0p), and soG = PGL2(0p). For example, if a = ß = 1 then Dis 
"' "' "' 
the standard Hamiltonian quatemion algebra. This one splits for every p f= 2, oo, 
and r = ~(Z[b]) is in fact the group presented in the proof of Proposition 

2.1.7. More precisely, r is embedded diagonally in PGL2(0p) X 50(3) (since 
G(IR) ~ 50(3)), and the free group in (2.1.7) is the congruence subgroup mod2 
"' 
in r projected to 50(3). r is a lattice in PGL2(0p) X 50(3) by (3.2.1), and since 
50(3) is compact, its projection to PGL2(0p) is a lattice there. We will come 
back to this lattice in Chapter 7. 

Looking again into property (T), it is not difficult to prove that a direct 
product of finitely many Kazhdan groups is also Kazhdan. Each one of the groups 
~(Op) in Theorem 3.2.1 has property (T) if it is either compact or has Op-rank 

:2:: 2. We can therefore deduce from (3.2.1), (3.1.8b) and (3.1.15): 

Proposition 3.2.3./ff = G(Zs) as before andfor every p E 5 (including p = oo) 
"' 

Op-rank(~(Op)) f=. 1, then r has property (T). 

Proof The only thing we should add isthat Op-rank(~(Op)) = 0 if and only if 

~ ( Op) is compact. This is a standard result for IR and due to Bruhat and Tits in 

the other cases (cf. [Pr1]). D 

E:xample 3.2.4. We will go over the examples presented in (3.2.2) and check 
whether they are Kazhdan: 

(A) 5Ln(Z) is Kazhdan if and only if n 2': 3 (or n = 1). This follows from 
(3.1.15) and (3.1.9). 

(B) The Os-rank of ~ O(n) is [~] (since x2 = -1 has a solution in Os). 

While the IR-rank of 50(n) is 0, so 50(n, Z[!]) has property (T) if n :2:: 5. 
(Waming: lf n = 4, 50(4, Os) has rank 2, but it is. notasimple algebraic group; 
in fact, it is a product of two rank one groups and does not have property (T).) 

.)!... p+q 
(C) The group 50(p, q) preserving the form 2..,; xr - L xr has IR-rank 

i=l i=p+l 
min(p,q), so 50(n+1) = 50(n+1,0) has rank zero while 50(n-1,2) has rank 
2 (unless n ::::; 3 where for n = 3, 50(2, 2) is locally isomorphic to P5L2(1R) x 
P8L2(IR); for n = 2, 50(1, 2) ~ P8L2(IR); and for n = 1, 50(n-1, 2) ~ 50(2) 
is compact). So r = G(ü) has property (T) if and only if n f= 2, 3. 

"' 
(D) ~(Op) is either compact or isomorphic to PGL2(0p). Thus r = ~(Z[b]) 

has property (T) if and only if I;? is ramified at both oo and p, in which case r is 

a finite group. 
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Before continuing our discussion in the next sections on applications of prop­
erty (T) to our problems, we make the following technical remark regarding 
finitely generated groups. 

Remark 3.2.5. If r is a finitely generated discrete group with property (T), then 
there exist a compact (i.e., finite) subset K and an e > 0 suchthat for every not 
trivial irreducible unitary representation (H, p) and for every v EH there exists 
k E K suchthat II p(k)v- v II> e II v II· This is by (3.!'.3). Once this is known 
to be true for one finite subset K, we claim that the same conclusion holds with 
every finite set S of generators of r. Indeed, if S is such a generating set, then 
every w E K is a word of length at most, say f, in the elements of S. If (H, p) 
is a representation and v EH which satisfies II p(s)v- v II< e II v II for every 
s E S, then II p(k)v- v II< fe II v II for every k E K. This shows that S also 
does not have almost invariant vectors, if K does not. 

3.3 Explicit construction of expanders using property (T) 
We are now ready to apply property (T) to get explicit examples of expanders. 
This application is due to Margulis [Ml] and was a breakthrough since it was 
the first explicit construction of expanders. Yet we first present a variant of it as 
presented in [AM]. Margulis' examples are presented in (3.3.5). 

Proposition 3.3.1. Let r be afinitely generated Kazhdan group (e.g.: r = SLn(ll.), 
n ~ 3). Let ::E be afamily offinite indexnormal subgroups ojr and S afixedfinite 
symmetric (i.e., s-t = S) set of generatorsfor r. Then the family of X(r /N, S), 
the Cayley graphs of the finite groups r /N, for N E ::E, with respect to S (con­
sidered as a set of generators of r /N) is a family of ( n, k, c )-expanders for some 
c > 0, k = ISI and n =Ir/NI. 

The Cayley graph of a group G with respect to a subset S is the graph whose 
vertices are the elements of G, and a E G is connected to as E G for every s E S. 

Proof Let N E ::E and H = L 2(r /N) the vector space of the complex valued 
functions on the finite set V = r /N, with the norm II f 11 2= L: lf(x) 12 . Let 

xEV 

Ho = {f E H I L: f(x) = 0}. Then r acts on H by ('yf)(x) = f(x-y), and 
xEV 

H = Ho EB Cxv as r-module. The action of r on V is transitive, so the only 
r -invariant functions on V are the constants Cxv. Thus Ho does not contain the 
trivial representation and therefore, since r is Kazhdan, Ho does not have almost 
invariant functions. This implies, in particular, that there are no almost invariant 
subsets, which is exactly the property of being an expander. To be more precise, 
there exists an e > 0, dependent only on r and S but not on N, suchthat for 
every f E Ho, II -yf- f II> e II f II· for some 'Y ES (see (3.1.3) and (3.2.5)). 
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Let A be a subset of V of size a and B its complement of size b = n - a. Let 

f(x) = { b ~f X E A 
-a tf x E B. 

Then f E Ho and 
II f 11 2= ab2 + ba2 = nab 

while for every 'Y ES, II 'Yf- f 11 2= (b+a) 21f,y(A,B)I where Ey(A,B) = {x E 
V I x E A and X"f E B or x E B and X"( E A }. To summarize, there exists 'Y E S 
such that: 

läAI2: !IE (A B)l = II 'Y/- f 112 2: c211 f 112 = c2ab = c2. (1-~ )lAI. 
2 1 ' 2n2 2n2 2n 2 n 

Thus X (r /N, V) are expanders with c 2: ~. 

Example 3.3.2. Let r n = SL(n, ~), n 2: 3, and let 

1 

An= 0 1 ,Bn= 

0 
0 

( 

1 

O(n-2)x2 

02x(n-2)] 

In-2 ( -l)n-1 

1 
0 1 

0 1 

1 
0 

D 

Then, it is well known that Sn = {An, Bn} generates r n· Fix n, and let SLn(P) be 
the group of n x n matrices of determinant 1 over the finite field of p elements. 
Then using the finiteindexnormal subgroups rn(P) = Ker(SLn(~)---+ SLn(p)), 
we deduce that X(SLn(p), Sn) = X(n, p) is a family of expanders when n is fixed 
and p runs over a11 prime numbers. 

We will see later on, in Chapter 4, that the same conclusion holds also for 
n = 2 but foradifferent reason (as SL2(:l.) does not have property (T)). On the 
other band: 

Proposition 3.3.3. ([LW]) Fora fixed prime p and n going to infinity, X(n, p) is 
not a family of expanders. 

Proof (Y. Luz) SLn(P) acts transitively on the nonzero vectors of IFP. Ifthe X(n, p) 
would be expanders, then their quotient graphs Z(n, p) would be expanders, where 
the vertices of Z(n,p) are IFp\{0} and a E Z(n,p) is adjacent to Ai!=(a) and 

Bi!=(a). Let Yn ~ Z(n,p) be the subset {ei, ... ,e[n/2]} where {ei} is the standard 

basis of IFP; then Ai!=(Yn) = Yn while IBi!=(Yn)ö.Ynl ~ ~IYnl· Hence Z(n,p) and 
X(n, p) arenot expanders. D 

A second proof based on Proposition 3.3.7 below is given in [LW]. 

1t is not known, however, whether there exists a different set of generators 
9ln for SLn(P) (p fixed) for which X(SLn(p),91n) form a family of expanders 
(see § 10.3). 
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Remark 3.3.4. The proof of (3.3.1) shows that the assumption of N E :;e being 
normal was superftuous. N can be arbitrary finite index subgroup, in which case 
we take what is sometimes called the Schreier graph X(r /N, S), i.e., the graph 
whose vertices are the left cosets of r modulo N and two cosets aN and bN are 
connected by s ES if saN = bN. 

The proof of (3.3.1) also shows that we actually do not need the full power of 
property (T). We only need the non-trivial representations occurring in L2(r /N) 
to be bounded away from the trivial representation of r, in the unitary dual of 
r. In (3.1.11) we showed that the representations of G = ~2 ><1 SL2 (~) that do 
not contain ~2-invariant vectors are bounded away from the trivial representation. 
The group r = 7L2 )<I SL2(7L) is a lattice in G, and hence if R = {p E r I p 
does not have 7L2-invariant vector} then r has property (T: R). This was the way 
Margulis gave the first examples of expanders, which are actually simpler than 
those given in (3.3.1): 

Proposition 3.3.5. Let m be a positive integer and Vm = 7Ljm7L x 7Ljm7L. De­
fine a graph on the set Vm by connecting every (a, b) E Vm to u 1 (a, b) = 
(a + l,b),u2(a,b) = (a,b + I),u3(a,b) = (a,a + b) and u4(a,b) = (-b,a). 
Then {Vm} is afamily of expanders. 

Proof First, it is easy to see { u1, ... , u4} as elements of r = 7L2 ><1 SL2 (7L) 
generate r. Secondly, r acts in a natural way Oll Vm by affine transformations 
and hence also on L 2 (Vm), and the only &:'2 -invariant functions are the constant 
functions since 7L2 acts transitively via u1 and u2. The preceding remark implies 
now that Vm are indeed expanders. D 

Margulis presented these graphs without estimating the constant c since this 
c is dependent, as we saw, on the c in property (T), and the last is known to 
exist but with no estimate. Gaber and Galil [GG] changed slightly the generators 
and gave a very nice direct proof including an estimation of the constant c. We 
will not bring it here since by now there are better estimates, but the reader is 
encouraged to look at their paper. They also describe in detail how expanders 
lead to superconcentrators. Several authors (e.g., [An], [Cl], [JM], [AM], [AGM]) 
elaborated on their work, either by changing the generators, or improving the 

proof or the construction to get better and better expanders and superconcentrators. 
We mention here only one negative result of Klawe [Kl1,2] which can be well 

understood from our perspective: 

Proposition 3.3.6. Given fixed k and c, if for every m we choose a set S = 
{ UJ,m, ... , uk,m} of affine transformations of Wm = 7Ljm7L, then the graphs 
determined by them arenot (m, k,c)-expanders for all but finitely many values 
ofm. 
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Proof LetAmbe the group of affine transformations of ZjmZ, i.e., transformations 
of the form: x ~--+ ax + b where (a, m) = 1 and a, b E Z/mZ. This is a metabelian 
group, i.e., A~ = {1 }. Thus the group generated by at,m, ... , ak,m is a quotient, 
through a homomorphism 'Pm. of F, the free metabelian group on k generators 
F = F k /Ff:, where F k is the free group on k generators. The graph Wm is therefore 
a Schreier graph of F with respect to Nm where Nm = {g E F I 'Pm (g)( 1) = 1}. 
The group F is solvable and hence amenable. The next general proposition form 
[LW] will finish the proof. 

Proposition 3.3. 7. Let r be an amenable group generared by a finite set S. Let SE 
be an infinite family of finite index subgroups. Then {X (r /N, S) I N E SE} is not 
a family of expanders. 

Proof By (2.2.3) there is a finite subset A ~ r such that IA6sAI < ciAI for 
every s ES us- 1. For NE SE, set a function cp: G jN ___, N, by: cp(X) = IAnXI 
where X= xN is a coset of N. 

Then: 

L I(A n X)6(sA n X) I+ I(A n X)6(s- 1 An X) I 
XEG/H 

:::; IA6sAI + IA6s- 1 Al :::; 2ciAI. 

The Lt-norm of cp is: 2:: cp(X) = lAI. So: lscp- 'PIL, :::; 2ci'PIL,· Thus cp is 
XEG/H 

an «almost invariant function» in the L 1 -norm. 

We have to show that there exists «an almost invariant» subset. For j E 
{1,2,3, ... } define Bj ={XE G/H I cp(X) 2: j}. Then it is easy to checkthat 

00 

cp = 2:: XB where x8 is the characteristic function of B j. Also we check that: 
j=l I I 

00 

L IBj6SBjl = L lcp(X)- cp(s- 1X)I + lcp(X)- cp(sX)I:::; 2ciAI. (1) 
j=l XEG/H 

Thus: 

(2) 
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00 

lAI = 2: IBjl· 
j=l 

(3) 

(The reader can convince hirnself that this is the case by drawing a «graph» of the 
function <p and observing that (3) is just a «Fubini Theorem»). (2) and (3) give: 

and so: 
00 

I: I: IBjl < 2 · 2c112(2: IBjl). 
sESus-1 jE!s j=l 

This means that there exists jo suchthat jo ~ ls for s E S us-I, i.e., IBj06sBj0 I < 
ISic112 1Bjol for every s Es u s-1. 

This provides us with the desired «almost invariant set». D 

The reader may observe that, just like in (3.1.5), the essential part of the 
proof is to show that if there are «almost invariant functions» then there are also 
«almost invariant subsets». (Compare also (4.2.4).) 

3.4 Solution of the Ruziewicz problern for sn, n 2: 4 

Finitely generated Kazhdan groups can be used also to answer the Ruziewicz 
problem. Let's recall that Ruziewicz asked whether every finitely additive rotation 
invariant measure on sn of total measure one, defined on all Lebesgue measurable 
sets, is equal to the Lebesgue measure. We saw that for S 1 the answer is negative. 
For n ~ 2, we have proved that such a measure is absolutely continuous with 
respect to Lebesgue measure. lt can therefore be used in a standard way to define 
an integral on L00 (Sn). So Ruziewicz's problern amounts to asking whether the 
Lebesgue integral is the only SO(n + 1) invariant mean on L00 (Sn). 

Proposition 3.4.1. Let r be a finitely generated subgroup of SO(n + 1). r acts 
on Sn and therefore on L 2 (Sn). Let p1 be this unitary representation and p be 
the restriction of p1 to the subspace LÖ(Sn) = {f E L2(Sn) I fsn fd).. = 0}. If p 
does not weakly contain the trivial representation, then the Lebesgue integral is 
the unique invariant mean on L 00 (Sn). 
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Proof Let 5 be a finite set of generators for r. Let X= L00 (Sn) and m EX* an 
invariant mean. Now X = (L 1 )* and hence m E (L 1 )**. L 1 is a weak* dense in 
(L 1 )** and since m is nonnegative on nonnegative functions and m(xsn) = 1, we 
can find a net {fc,J E L1 with J fad)..= 1, fa 2:0 and limfa = m in the weak* 
topo1ogy. Moreover, for every "( E S, "(m = m so lim('Yfa - fa) = 0 weakly in 
L 1 (since it does so in the weak* topology of (L 1 )**). The weak and the strong 
closures of convex sets are the same in L 1 ( cf. [Ru2, 3 .12]), so we can take convex 
combinations of the f~ - s to get a new net {gß} for which lim('Ygß- gß) = 0 
strongly in L 1 for every "( E S and also J gßd).. = 1, gß 2: 0 and limgß = m weak* 
in (L 1 )**. LetFß = Vfß; then Fß E L2(Sn) and II "!Fß-Fß lli2:S:II "(gß-gß IILt----+ 
0 for each "( E S. Thus we have II Fß IIL2= 1 and lim II "{Fß - Fß llu= 0 so 
they arealmostinvariant in L2(Sn). By our assumption on r, we deduce that Fß 
converges to Xsn (note that L2(Sn) = ~Xsn EBLÖ(Sn) and the projection of Fß into 
the right-hand side factor must go to zero by our assumption while the projection 
to ~Xsn is Xsn ). We deduce therefore that (1 stands for 1x5n ): 

II gß- 1 IILl = J IFJ- 1ld).. = J IFß- 1IIFß + 1ld).. 

:S:II Fß- 1 llull Fß + 1 llu:S: 211 Fß- 1 IIL2. 

Hence gß converges strongly in L 1 to Xsn, but also limgß = m weak* in (L 1 )**. 
This shows that m is just integration against Xsn, i.e., it is no more than the 
Lebesgue integral >... 0 

The above-mentioned result is due to Rosenblatt [Rol] and Del-Junco-Rosen­
blatt [DJR] (while the above simple proof is due to Losert and Rindler [LR]). From 
it Margulis [M2] and Sullivan [Su] deduced: 

Theorem 3.4.2. Lebesgue measure is the only finitely additive measure defined 
on alt Lebesgue measurable subsets of sn (n 2: 4) invariant under the action of 
SO(n + 1) and of total measure 1. 

Proof Let m be such a measure. We have to prove m = ).. where ).. is the Lebesgue 
measure. By (2.2.12) m is absolutely continuous with respect to A. By the standard 
way to define an integral using a given measure, m defines an invariant mean on 
L00 (Sn). To prove that m =).. it is sufficient to find a finitely generated group r 
which has property (T) and can be densely embedded in SO(n), n 2: 5. Once this 
is done, r does not have any invariant function in LÖ(Sn) (since its actionOll sn 
is ergodic) and therefore its representation on LÖ(Sn) cannot contain p0 weakly. 
By (3.4.1) this implies ).. = m. So the next propositionwill finish the proof. 

Proposition 3.4.3. For n 2: 5, SO(n) has a finitely generated dense subgroup 
with property (T). 
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Proof. Let r be an arithmetic group in 50(n- 2, 2) as constructed in Example 
(3.2.2C). Then r is constructed as a subgroup of 50(n- 2, 2) x 50(n), and since 
n-2 2: 3, it has property (T) by (3.2.4C). The projection ofr into 50(n), rr2(r), 
is dense. Otherwise, its closure G is a proper subgroup whose complexification 
Ge in the complexification 50(n, C) of 50(n) is a proper algebraic subgroup 
containing 1r2(r). But applying the Galois automotphism a (see (3.2.2C)) we 
get rr1 (r) (where rr1 is the projection of r into 50(n - 2, 2)) as a Iattice in 
50(n- 2, 2). By Borel's Density Theorem ([Zil]), 1r1 (r) is Zariski densein the 
complexification of 50(n- 2, 2), i.e., in q_(f). This implies that rr2(r) =a rr1 (r) 

is Zariski dense in a G ( C). It is therefore impossible that it is contained in a proper 
~ 

algebraic subgroup of 50(n, C) =a G(C). D 

The above proof follows Sullivan [Su]. Margulis [M2] used a different lattice: 
Let r = 50(n, Z[!]). Then it is a lattice in 50(n, Os) x 50(n) by (3.2.2B) and 
it has property (T) if n 2: 5 (see (3.2.4B)). Its projection to 50(n) is the desired 
group. Margulis also went ahead to prove: 

Theorem 3.4.4. Let G be any real compact simple Lie group which is not lo­
cally isomorphic to 50(n), n = 2, 3 or 4. Then G has a finitely generated dense 
Kazhdan subgroup. 

The theorem is of interest since in the proof of 3.4.1, there was nothing special 
about 50(n + 1) and 5n. In fact, one can prove (see [Wa, Theorem 10.11]): 

Theorem 3.4.5. Suppose a .finitely generated Kazhdan group r acts on X in a way 
that is measure-preserving and ergodic, where (X, .stl, m) is a non-atomic measure 
space and m(X) = 1. Then the rn-integral is the unique G-invariant mean on 
UJO(X). 

Theorems (3.4.4) and (3.4.5) together yield 

Corollary 3.4.6. Let G be a simple compact real Lie group which is not local/y 
isomorphic to 50(n), n = 2, 3,4. Then the Haar measure is the only G-invariant 
finitely additive measure defined on the Haar measurable sets and oftotal measure 
one. 

In this Corollary 50(2) should really be excluded, as we show in (2.2.11). 
On the other hand, the uniqueness of the Haar measure holds for 50(3) and 
50(4). Indeed, what one needs is not necessarily a group with property (T) to 
be dense in G. It suffices (see (3.4.1)) to have a finitely generated group r in G 
whose representation on L5(G) does not weakly contam the trivial representation. 
In Chapter 7 we will show that such r·s exist for G = 50(3) or 50(4). This 
will prove Corollary 3.4.6 for these groups as weil as answer affirmatively the 
Ruziewicz problern for 5n, n = 2 and 3. 

Still, in Theorem (3.4.4) the cases n = 2, 3, 4 are exceptional. This is clear 
for 50(2) since it is abelian. The rest of this section is devoted to prove this fact 
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for 50(3). From this, the case 50(4) follows since 50(4) is locally isomorphic 
to 50(3) x 50(3). lnstead of proving that 50(3) does not contain an infinite 
finitely generated group with property (T), it suffices to prove it for its double 
cover 5U(2). We, in fact, prove a stronger result. The following theorem is due to 
Zimmer [Zi2]. Webring a somewhat different proof. Another proof can be found 
in [HV]. 

Theorem 3.4.7./fr is afinitely generated Kazhdan subgroup of 8L2(C), then r 
isfinite.lnparticu/ar, 5U(2) (and hence also 50(n),n = 2,3,4) does not have 
a dense countable Kazhdan subgroup. 

The proof will be divided up to several propositions. Some of them are of 
independent interest. We are actually using in the proof some notions which are 
presented in more detail in Chapters 5 and 6. Some of the readers might prefer to 
skip the proof in the first reading. 

Let r be a finitely generated subgroup at 5Ln(C). So r c 5Ln(A) for 
some finitely generated subring A of IC (take A to be the subring generated by 
the entries of a finite set of generators of r). A homomorphism r.p from A to 
Ö - the algebraic closure of 0 - is called a specialization of A. By Hilbert's 
Nullstellensatz Theorem, these homomorphisms from A to Ö separate the points 
of A. Every such homomorphism induces a homomorphism, denoted also r.p from 
5Ln(A) to 5Ln(Ö). Moreover, the image indeed lies in 5Ln(k) for some finite 
extension k of 0. 

Proposition 3.4.8./jr is infinite and not abelian by finite, thenfor some special­
ization r.p, r.p(r) is also infinite. 

Proof If M is a finite subgroup of 5 Ln ( k) ~ 5 Ln ( C), then by a theorem of 
Jordan (cf. [Ral, 8.29]), there exists in Man abelian normal subgroup of index at 
most j(n). Let K be the intersection of all subgroups of r of index at most j(n). 
As r is finitely generated, K is of finite index in r. If for every r.p, r.p(r) is finite, 
then r.p([K,K]) = {1} for every r.p. Since the specializations separate the points of 
r, this yields that [K, K] = { 1} and r is abelian by finite, a contradiction. 0 

Proposition 3.4.9. Let r be a subgroup of 5Ln(k) for some number fie/d k. 
Assurne that for every embedding of k into a /ocal field k,"' the image of r in 
5Ln(kv) is precompact. Then r is finite. 

Proof Let I1P be the set of all valuations of k and A.k = TI 1 kv the adele ring of 
vECfi' 

k (see Chapter 6 below). Then 5Ln(k) is a discrete subgroup of 5Ln(Ak)· So, if 
the image of r in 5 Ln ( k V) is precompact for every V' the image of r in 5 Ln ( A.k) 
is precompact. So it is precompact and discrete. Hence, r is finite. 0 

The following proposition is due to Watatani [Wt] (see also Alperin [Alp] 
and more generally Adams and Spatzier [AS]). We give here a different proof. 
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Proposition 3.4.10. Let r be a group with property (T) acting on a locally finite 
tree X without inversions. Then r fixes a vertex of X. 

Proof Let Y be a minimal f-invariant subtree of X. Then we can assume that 
r s;; Aut(Y). As r is finitely generated, Y /f is finite (see Bass [Bss2]). Aut(Y) 
is a locally compact group with the usual topology. Let H be the closure of r. 
Since r has property (T), so does H. In particular H is unimodular (since the 
commutator quotient is compact). By Bass-Kulkarni ([BK, Theorem 4.7]) H has 
a uniform Y -lattice, i.e., a discrete subgroup L such that Y /L is finite. Such L 
is either finite or contains a non-trivial free subgroup on C generators ( C ~ 1) of 
finite index. The latter case is impossible since L also has property (T) as L is a 
cocompact lattice in H (3.1.8(ii)). Thus L is finite and His compact. This implies 
that H has a fixed vertex and hence also r. 0 

Proposition 3.4.11. Let r be a group with property (T), and F a local field. For 
every homomorphism of r into S Lz ( F), the image of r is precompact. 

Proof If F is a local non-archimedian field, then SLz(F) acts on its Bruhat-Tits 
tree (cf. Chapter 5 or [S1]), where the stabilizer of a vertex is a compact subgroup. 
By (3.4.10) it fixes a vertex. Hence the image of r is precompact. 

If F is archimedian then F = ~ or C. It suffices to consider C. So assume 
r ___, SLz(C). If it is not Zariski dense then it must have a solvable subgroup of 
finite index, which is impossible unless r is finite. So, r is Zariski dense. Hence 
its topological closure is either discrete or is a closed Lie subgroup whose real 
Lie algebra spans over C the Lie algebra 9'C2 (C). The first case, i.e., r discrete, 
is impossible unless r is finite: This is because if r is a lattice then it does not 
have property (T). A quick way to see that is to use (3.1.8) and to show that 
one lattice is not Kazhdan. Indeed, every finitely generated discrete subgroup of 
SLz(C) which is not cocompact contains a finite index subgroup which is mapped 
onto 7L (see Epstein [Ep] for an elegant short proof using Euler characteristic; see 
also [Lul]). So no discrete subgroup of SLz(C) has property (T) unless it is finite. 
This also implies that SLz(C) does not have (T) and so r is not dense there. 

The other possibility isthat a finite index subgroup of r is densein SLz (~) or 
in SU(2). The firstalternative is impossible since SLz(~) does not have property 
(T). The second one is the desired one. It means r is precompact. 0 

Remark 3.4.12. Zimmer [Zi2] gives a simple lemma that asserts that if <p : r ___, 
G is a homomorphism, r is Kazhdan, G is not Kazhdan and G satisfies the 
Howe-Moore property ([HM]), i.e., the matrix coefficients of unitary non-trivial 
irreducible representations of G vanish at infinity, then <p(f) is precompact. Since 
G = SLz(F) satisfies all these assumptions, Proposition 3.4.10 follows with a 
more uniform proof. 
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De la Harpe and Valette in [HV] prove this proposition while using Watata­
ni's result for the non-archimedian case and by proving an analogue of it for the 
hyperbolic case. Adams and Spatzier [AS] have proved an even stronger «fixed 
point property» for Kazhdan groups. 

Proof of Theorem 3.4.7. If r c SL2(C) is a finitely generated infinite Kazhdan 
subgroup then it is not abelian by finite, and so we can assume by (3.4.8) that r 
is in SL2 (k) for some number field k. By (3.4.11) the assumptions of (3."4.9) are 
satisfied and so r is finite. D 

3.5 Notes 

1. Property (T) was defined by Kazhdan in [Ka], who also proved Theorem 
3.1.15 above. Tobemore precise, Kazhdan announced it only for rank ?: 3, 
but it was very quickly realized by Wang [Wan1], Delaroche-Kirillov [DKi] 
and Vaserstein [Vs] that the same holds for rank ?: 2 and over every local 
field. Some of the IR-rank one real semi-simple Lie groups have property (T): 
Sp(n, 1) and F4, while the rest ofthem SO(n, 1) and SU(n, 1) do not. On the 
other band over non-archimedian local fields, no rank-one semi-simple group 
has property (T). The book of P. de la Harpe and A. Valette [HV] contains 
all this information and much more. Other clear expositians of property (T) 
are in Zimmer's book [Zil] and Margulis' [M7]. 

2. Kazhdan groups play the role of the other extreme to amenable groups. This 
can be seen from what we have proved, but better illustrations are the fol­
lowing two stronger results (which should be compared with our §2.2 and 
with Theorem (3.4.5)): 

Theorem. Let r be an infinite countable group. Then: 
(a) r is amenable if and only iffor every ergodic, measure-preserving action 
ojr on a non-atomic measure space (X,sl,m) with m(X) = 1, L00 (X,m) 
has more than one r -invariant mean. 
(b) r is Kazhdan if and only iffor every action as in (a), the rn-integral is 
the only r -invariant mean. 

The above theorem is included in the result of Rosenblatt [Ro1], A. Connes 
and B. Weiss [CW] and K. Schmidt [Sc2]. 

3. Margulis [Ml] gave the examples of expanders given herein (3.3.5), but, as 
was mentioned there, without estimating the expansion coefficient c. Gabber 
and Galil [GG] took different generators for SL2(Z) 1>< 1'.2 and got slightly 
different expanders for which they estimated the constants. Their expanders 
(plus some ideas in the construction of super-concentrators) led to (n, C = 
261.78)-superconcentrators. A series of papers elaborated on [GG] either by 
changing the generators or by improving some steps of the constructions: F. 
Chung reduced it to C = 261.5, Jimbo and Maruoka [JM] to C = 248, Alon­
Galil-Milman got C = 157.35 and then improved it in [AGM] to C = 122.74. 
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Finally, the «Ramanujan graphs» constructed by Lubotzky-Phillips-Samak 
[LPS2] give rise to (n, 64) superconcentrators (as explained in [Be]). This is 
close but not yet as good as the (n, 36)-superconcentrators which are known 
to exist by random consideration. 

4. It is interesting to mention here the paper of N.J. Kaiton and J.W. Roberts 
[KR], where a problern about measures is solved using expanders and con­
centrators. 

5. In [CLR] the authors related a property of approximation of compact operators 
on L 2 ( G) by sums of translations to the question whether p0 is contained 
weakly in LÖ(G). They were able, therefore, to apply property (T) to this 
problern in a similar way to §3.4. 

Similarly, Rosenblatt [Ro2] used the fact that Po is not weakly contained 
in LÖ(G) for any simple compact real Lie group (by (3.4.4) and also (7.2.1) 
below) to conclude that every left translation invariant linear form on 
Lp(G), l < p < oo, is continuous. This extends earlier results of Musters 
and Schmidt and of Bourgain. 

6. Property (T : R) introduced in (3.1.10) seems to be of some independent 
interest; see [LZ] for more details. It is shown there, for example, that if r 
is an irreducible lattice in a product G I x Gz where GI is Kazhdan (but not 
necessarily Gz), then r has property (T : F) where F is the family of finite­
dimensional unitary representations of r. In particular, the finite quotients of 
r form a family of expanders just as in (3.3.1), even though r does not have 
property (T). This does not give any interesting expanders from a computer 
science point of view, but it does carry some geometric information (see 
§4.2). 

7. The E mentioned in Definition (3.1.3) is sometimes referred to as the Kazdhan 
constant of G with respect to K. In our Definition (3.1.3) we required that E 

«works» only for irreducible non-trivial representation. lt implies, however, 
that there exists an E1 which works for every unitary representation which 
does not contain the trivial one. But E and E1 might be different as illustrated 
in [BDH]. 



4 The Laplacian and its Eigenvalues 

4.0 lntroduction 
Let M be a connected compact smooth Riemannian manifold, and let ß = 
- div(grad) its Laplacian operator of L 2(M). Its eigenvalues Ao = 0 < AI (M) $ 
Az(M) $ · · · form a discrete subset (with multiplicities) of IR+. 

As was exhibited in various ways, this spectrum reftects a lot of the geometry 
of M. We will be interested mainly in AI = AI (M) - the firstpositive eigenvalue. 
By results of Cheeger and Buser, AI reftects the «isoperimetric constant of M». 

In an analogous way one defines the Laplacian ß of a graph X. If X is 
k-regular, ß is simply equal to kl- 8, where 8 is the adjacency matrix of X. 
Here also we denote AI =AI (X). By analogaus results due to Dodziuk, Tanner, 
Alon and Milman, AI = AI (X) reftects the isoperimetric constant of X, i.e., the 
expansion factor of it. It tums out that the question of finding a family of k-regular 
expanders is equivalent to the question of finding graphs for which AI is uniformly 
bounded away from zero. 

This connection between manifolds and graphs gives more than just an anal­
ogy. A deep theorem of Setberg asserts that AI (r(m)\IHI) ;::: rlJ where IHI is 
the upper half-plane with the hyperbolic metric and r(m) = ker(SL 2 (Z) --+ 

SL2(Z/mZ)) are congruence subgroups of the modular group. (He conjectured 
that in fact AI(r(m)\IHI);::: ~). The Cayley graphs of SL2(Z)jr(m) with respect 
to appropriate generators of SLz(Z) can be presented as «discrete approxima­
tions» of the manifolds r(m)\IHI, and AI of these graphs can be evaluated using 
the above-mentioned result of Selberg. This leads to an explicit construction of 
expanders with an explicit expansion constant. 

Fora k-regular graph X, ß = kl- 8, so we can equivalently look at the 
eigenvalues of fJ. They control the speed of convergence of the random walk on X 
to the uniform distribution. To ensure fast convergence one wants the non-trivial 
eigenvalues of 8 to be as small as possible in absolute values. It tums out that for 
an infinite family of k-regular graphs, the best possible bound we can hope for 
is 2~. This leads to the important notion of a Ramanujan graph, i.e., a k­
regular graph X for which the eigenvalues A of 8 are either ±kor lAI $ 2~. 
Such graphs are very good expanders. Setberg Theorem does not give Ramanujan 
graphs - but it is a hint in the right direction, as will be evident in the next 
chapters. 

4.1 The geometric Laplacian 

In this section we survey briefty the geometric Laplacian and some basic results 
on its eigenvalues. Let M be a connected Riemannian manifold of dimension n 
(which we always assume to be without a boundary), i.e., M is a differentiahte 
manifold with a smooth choice of a positive definite inner product ( : , : )m on the 
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tangent space Tm for every point m of M. Let V= T;, be the dual of Tm, A(V) 
the exterior algebra of V, and Ak(V) the homogeneous elements of degree k. 
A k(M) = UmEM Ak (T;,) is the exterior k -bundle over M. A C00 -map from M 
to Ak (M) (resp: A * (M)) whose composition with the canonical projection is the 
identity map of M is called a k-form on M (resp: a form on M). The space of 
k-forrns will be denoted Ek(M), and E*(M) = LLoEk(M). E0(M) can be 
identified with C00 (M). The inner productOll T;, gives a canonical identification 
of T;, and Tm. This inner product can be extended to A(T;,) and by integration 
over the manifold also to an inner product on E*(M) (see [War]). More precisely, 
if a, ß E E k (M) then 

(a,ß)= LaA*ß 

where * is the Star Operation *:E k (M) ---+ En-k (M).) The Operator d : C00 (M) ---+ 

E1(M) given by (df)(X) = X(f) where X is a vector field on M can be also 
extended in a natural way to a map from Ek(M) ---+ Ek+1(M) and therefore 
defines d : E*(M) ---+ E*(M). Let 8 be its adjoint; in fact, 8 takes k-forms to 
(k -1)-forms and on k-forrns it is equal to (-l)n(k+I)+hd* where *, as before, 
is the star operation. We can now define the Laplacian (or the Laplace-Beltrami 
operator) as ~ = 8d + d8. 

Wegave the general definition for future reference (see (10.8.8)), but we will 
be interested here merely in its action Oll C00 (M) = E0 (M). Here {j = 0 so ~ = 
8d = - div od (or with the identification ofT;, with Tm and so df = grad(f), we 
can write ~ = - div o grad, which is the more standard definition) . .6. satisfies the 
condition that for any two functions f,g E C00 (M), JM f~g = JM(grad f, gradg). 
This can be also taken as a definition of ~-Tobe more specific, if f E C00 (M) then 
.6, on C00 (M) is a second-order differential Operator which in local Coordinates is 
given by: 

b.f = 2 t .!___ (thijv'lhi~) v1i . OXi . ax,· 
1=1 ]=! 

where (hi j) is the matrix defining the Riemannian metric, namely hi,j = ( cJk, Jh), 
(hij) is its inverse and lhl =I det(hij)l. 

For example, for ~n with the standard metric 

b.f =-t 02~ 
i=I ßxi 

while for the upper half-plane IHI = { x + iy I x, y E ~. y > 0} with the metric 
ds2 = ~(dx2 + dy2), one calculates: 

( 
()2 ()2) 

b.f = -yZ ßx2 + ßy2 · 
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A more intuitive description of ~ is given by the following formula: 

lim _!._ ( fs, f - f( )) - _!_~/( ) 
r---+0 r2 vol( S,) p - 2n p 

where M is a Riemannian manifold of dimension n, p E M, r > 0 and S, is the 
sphere of radius r around p. 

All these are equivalent forms of the Laplacian operator. We do not spend the 
time to show their equivalence, as we are mainly interested in its eigenvalues (in 
fact, only in the smallest positive one). This eigenvalue can be effectively studied 
using the Rayleigh quotient as we now explain. 

If M is a manifold without a boundary, then Green's Theorem says that 
JMg~f = JM(~g)f, which shows that ~ is self-adjoint. It is also positive since 

JM f(~f) = JM II grad /11 2 2: 0, and so its eigenvalues arereal and nonnegative. 
The harmonic functions are the eigenfunctions with respect to the zero eigenvalue. 
In case M is compact, the only harmonic functions are the constants. In addition, 
there exists an orthonormal basis {'Pi} i=o of L 2 ( M) consisting of eigenfunctions 
of ~. i.e., ~'Pi = Ai'Pi (the 'Pi are in C00 (M)) and f <Pi = 0 for i 2: 1. The 
sequence of eigenvalues {Ai} is a discrete subset of IR+. We can order them so 
that Ao = 0 < AI :::; A2 :::; · · ·. 
There might be a repetition, but each value can appear only finitely many times. 

Let At (M) = AI be the smallest positive eigenvalue. For our application 
AJ (M) is in fact the important notion rather than the Laplacian. If f E C00 (M) 
and f E L2(M), then f = "L.ai'Pi where ai = (cpi,f) = fMcp;fdm. Thus: 

We thus got an intrinsic characterization of AI (M) independent of ~. 

Proposition 4.1.1. Let M be a manifold (always without boundary). Then: 

AI(M) = inf{JM lldfii2Jf E coo(M) and { f = o} 
JMI/12 }M . 

Definition 4.1.2. Let M be an n-dimensional Riemannian compact manifold ( or of 
finite volume). Let E be a compact (n -1 )-dimensional submanifold which divides 
M into two disjoint submanifolds A and B. Let p,(E) be the area of E and >.(A) 
and A(B) the volumes of A and B, respectively. The Cheeger constant h(M) of 

M is defined as infE min(:C~!.A(B)) where E runs over all the possibilities for E as 
above. 

The following fundamental result is due to Cheeger [Cr]. 
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Theorem 4.1.3. (Cheeger's inequality) )q (M) :2: h2 ~M). 

Let M be an n-dimensional compact manifold and R(M) its Ricci curvature, 
e.g., R(lffin) = 0 and R(IHI) = -1 (see [Ber], [BGM] and [Ch] for the general 
definition). Then Buser [Bu2] proved a converse to Cheeger's Theorem which 
says: 

Theorem 4.1.4. If R(M) :2: -(n- 1)a2 for some a :2: 0 where n = dimM, then 
.A1 :::;: 2a(n- 1)h(M) + 10h2(M). 

So for hyperbolic surfaces (quotients of IHI by lattices of SL 2 (lffi)) we have: 
h(M) :2: fö (JIO-A1 + 1-1) (as we take n = 2 and a = 1). 

4.2 The combinatorial Laplacian 

In analogy to the geometric Laplacian, one can define a combinatorial Laplacian 
for graphs (and, in fact, also for general CW-complexes). 

Let X = (V, E) be a finite graph. Fix some arbitrary orientation on the edges 
of the graph. For e E E we denote by e- its origin and e+ its target. We can think 
of e as a «tangent vector» to X at the point e- pointing toward e+. L 2 ( E) can be 
therefore thought as the 1-forms of X, i.e., every w E L2(E) associates a number 
w(e) with every tangent vector. The operator d : L2(V) ---+ L2(E) is defined as 
df(e) = f(e+)- f(e-). lf lVI = n and lEI = m then the matrix of d with respect 
to the standard bases of L2 (V) and L2(E), respective1y, is an m x n matrix D 
indexed by the pairs (e, v) where v E V and e E E (after fixing some order on V 
and E) such that 

{ 
1 if v = e+ 

De,v = -1 if V = e-
0 otherwise. 

Let D* be the transpose of D. Then D* D is an n x n matrix. 

Definition 4.2.1. ß = D* D is called the Laplacian operator of the graph X. 

It is interesting to observe that while D depends on the orientation we put 
on X, ß does not. 

It follows from the definition that if f,g E L2 (V) then (f,ßg) = (df,dg). In 
fact, this property characterizes ß. 

The next proposition gives a different interpretation of the Laplacian: 

Proposition 4.2.2. Let X = (V, E) be a graph on n vertices, and 8 = 8x its 
adjacency matrix, i.e., the n x n matrix indexed by the pairs (u, v) E V x V and 
8u,v is equal to the number of edges between u and V. 

LetS be the diagonal n x n matrix indexed by V x V, where Sv,v = d(v) is 
the degree of the vertex V and Su,v = 0 if u -1 V. Then ß = S - 8. In particular, 
if X is k-regular, then ß = kl- 8. 
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Remark. As an operator on L2 (X) (i.e., L2(V)), .D. is an averaging operator: if 
f E L 2 (V) then 

.D.f(x) = L 8xy(f(x)- f(y)) = d(x)f(x)- L 8xyf(y). 
yEV yEV 

(Note that usually 8xy is either 0 or 1.) This formula serves as a definition for the 
Laplacian for every locally finite graph. 

Proof By the above it suffices to prove that (f, (S - 8)g) = (df, dg). It suffices, 
in fact, to prove it for real functions. 

(f, (S - 8)g) = L f(x) [d(x)g(x) - L 8xyg(y)l 
xEV yEV 

= L d(x)f(x)g(x) - L 8xyf(x)g(y). 
xEV x,yEV 

On the other band: 

(df,dg) = L(df(e)) · (dg(e)) 
eEE 

eEE 

eEE eEE 

= L d(x)f(x)g(x) - L 8xyf(x)g(y). D 
xEV x,yEV 

The proposition shows that .D. is self-adjoint and positive, so its eigenvalues 
are real and nonnegative. If X is finite, then zero is always an eigenvalue with 
the constant function as an eigenfunction (so the only «harmonic" functions are 
the constants). It is a simple eigenvalue if and only if X is connected (cf. [Bg]), 
which we will assume throughout. Let A1 (X) be the smallest positive eigenvalue. 
Then in analogy to (4.1.1) we have: 

Proposition 4.2.3. 

>.1 (X) = ffif { ~:::l~(~i:: f E L 2(V) and ~ f(x) = 0} 

. { lldfll2
1 2 } =mf lf1ii2 fEL 0 (V) . 
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Proof Since LÖ(X) = {f E L2(X)I 'Lxf(x) = 0} is orthogonal to the constants 
and ö. is self-adjoint, >. 1 (X) is the smallest eigenvalue of Ö. on LÖ(X). So 

.-\1 (X) = inf ( (ö.f, f)) = inf ( (df, df)) 
/ELÖ(X) (f, f) fELÖ(X) (f, f) . 

D 

The Cheeger constant of a graphwas already defined in (1.1.3) tobe: 

h(X) = inf IE (A, B) I 
A,B<:;;V min(IAI, IBI) 

where the infimum runs over all the possibilities to make a disjoint partition 
V= AU B, and E(A,B) is the set of edges connecting vertices in A to vertices 
in B. 

In analogy to Cheeger's inequality (4.1.3), Dodziuk [Do] and Alon [Al] 
proved the following (see also Dodziuk-Kendall [DK]): 

Proposition 4.2.4. Let X be a finite graph with d ( x) s:; m for every vertex x. Then 

)q (X) 2 h~?;l. 

Proof Let g E LÖ(V) be an eigenfunction of ö. with respect to ,\ = )q (X) and 
llgll = 1. So,\= (dg,dg). Let v+ = {v E Vlg(v) > 0} and 

f(v) = {g(v) v E V~ 
0 otherw1se. 

Since we can replace g by -g, we may assume that IV+ I:::; !lVI- Now 

(df,df) = L f(v) L Ovu(f(v)- f(u)) = L g(v) L Ovu(g(v)- f(u)) 
vEV uEV 

= L g(v) L Ovu(g(v)- g(u)) + L L Ovug(v)g(u). 
vEV+ u~tv+ 

Since the last sum in the right-hand side is not positive, we get: 

(df, df) S:: L g(v) L Ovu(g(v)- g(u)) = L g(v)ö.g(v) 
vEV+ uEV 

= .At(X) L i(v) = .At(X)(f,f). 
vEV+ 

Consider the expression A = LeEE IJ2(e+)- j2(e-)l. Clearly: 

A = L lf(x) + f(y)l·lf(x)- f(y)l 

S:: (L lf(x) + f(y)l2)! · (L lf(x)- f(y)l 2)! 

:::: v2(L:U2(x) + p(y)))!. \dt,anL 
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In 'fJJ2(x) + [2(y)) every vertex contributes as many times as its degree. Hence 

A ~ V2rii(f, f)t/2 (df, df) t/2 

and by (*), A ~ y'2m)q(X)(f,f). 
On the other hand, we can estimate A from below in terms of (f, f) as follows: 

Let ßo = 0 < ßt < · · · < ßr be the sequence of values of f union zero. Define 
L; = {x E Vlf(x) ~ ß;}. Recall that since IV+I ~ 11VI, for i > 0, IL;I ~ 11VI­
Now 

r 

A = L L L 8xy(P(x)- p(y)). 
i=t f(x)=ßi f(y)<ßi 

Note that Lo ::J L t ::J L2 ::J · · · ::J L, and if f(x) = ßi and x is connected by an 
edge to y with f(y) = ßi-j. then: 

(P(x)- p(y)) = ßr-ßr-j = (ßr-ßr-t)+(ßr-t-ßr-2)+· · ·+(ßr-j-t-ßf-j)· 

We can therefore write: 

r r 

A = L L ßr- ßr-t = L IBL;I(ßr- ßr-t) 
i=t eEäLi i=t 

where ßL; is the set of all edges connecting vertices in L; to vertices outside 
L;, i.e., ßL; = E(L;,X\L;) in the notation above. By the definition ofCheeger's 
constant IBL; I ~ h(X) · IL; I for i > 0, and thus 

r 

A ~ h(x) I: ILd(ßr- ßr-d 
i=t 

A vertex x is in L; \ L;+t if and only if f(x) = ß;. Thus the above gives: 
A ~ h(X)(g,g) ~ h(X)(f, f). Together with ( **) above, we deduce: At (X) ~ 
h2(X) 0 

2m • 
The reader may notice that once again as in (3.15) and (3.3.7) the proof 

amounts to say that existence of «almost invariant» functions implies existence of 
«almost invariant» sets. 

Similarly, in analogy to (4.1.4), Tanner [Ta] and Alon and Milman [AM] 
proved the following converse: 

Proposition 4.2.5. h(X) ~ At (X)/2. 
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Proof Let V = A U B be a disjoint union of two subsets of sizes a and b, 
respectively, a + b = n = lVI- Without loss of generality assume a :::; b. Let 

f(x) = { ~a 

Then f E LÖ(X), and hence 

if x E A 
if x E B. 

A (X)< lldfll 2 = n2 IE(A,B)I < 2 . IE(A,B)I_ 
I - 11/112 nab - a 

This is true for every such partition which shows that h(X) ~ -!A 1 (X). D 
Propositions (1.1.4), (4.2.4) and (4.2.5) indicate that the problern of finding 

expanders is essentially equivalent to bound Al from below. The following result 
shows that there is a Iimitation to the possibility of bounding A 1 for an infinite 
family of graphs. 

Proposition 4.2.6. (Aion-Boppana) Let Xn,k be a family of k-regular graphs 
where k is fixed and n is the number of vertices of Xn,k is going to infinity. Then: 

We will not prove this proposition here. Rather we will come back to (a slightly 
weaker version of) it in (4.5.5). Here we mention some extensions of this result: 

Theorem 4.2.7. (Greenberg [Gg]) Let X be an infinite connected graph and ;;;E 
the family of finite graphs covered by X. (Where here we mean that Y E ;;;E if Y is 
finite and there exists a group fy on X with fy \ X = Y .) Let cp be the spectral 
radius of the averaging operator 8 = 8x acting on L 2(X). Then for every E > 0 
there exists c = c(X,E), 0 < c < l, suchthat ifY E ;;;E with IYI = n, then at least 
cn of the eigenvalues A of 8y satisfy A ~ <.p - E. 

The theorem generalizes an unpublished result of Serre conceming the case 
X= Xk: the k-regular tree. 

Corollary 4.2.8. With the notations of (4.2 .7), fix an integer r ~ 0. Then 

lim inf p,,(Y) ~ cp 
IYI---+oo 

when p,0 (Y) > p,1 (Y) ~ p,z(Y) ~ · · · ~ tJn-1 (Y) denote the eigenvalues of 8y -
the adjacency matrix of Y. 

The last corollary is due to Burger [Bur4]. It is an analogue to a result of 
Cheng [Che] in the geometric context. As the spectral radius of 8xk is 2vlk"=l, 
(4.2.8) is a far-reaching generalization of (4.2.6). 
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4.3 Eigenvalues, isoperimetric inequalities and representations 

Keeping in mind (1.1.4), the results of the previous section, (4.2.4) and (4.2.5), 
we show that the question of finding families of k -regular expanders is essentially 
equivalent to presenting a family of k-regular graphs Xi for which >.1 (Xi) is 
bounded away from 0. We now show that, moreover, if our graphs are Cayley 
graphs of quotients of a fixed finitely generated group, this is also equivalent to a 
«relative property T». (We remark that a family of k-regular graphs, for k fixed 
and even, can always be presented as a family of Schreier graphs of quotients of 
some infinite group. This can be deduced from [AG]. So the situation we study 
in this section is quite general.) 

Before making the statement precise, let's define: 

Definition 4.3.1. Let r be a finitely generated group and :E = {Ni} a family 
of finite index normal subgroups of r. Let R = { r.p E f' I ker r.p contains Ni for 
some i}. We say that r has property ( r) with respect to the family :E if the 
trivial representation is isolated in the set R (i.e., r has property (T : R) in the 
terminology of (3.1.10)). We say that r has property ( r) if it has this property 
with respect to the family of allfinite index normal subgroups. 

Theorem 4.3.2. Let r be afinitely generated group generared by afinite symmetric 
set of generators 5. Let L = {Ni} be a family of finite indexnormal subgroups of 
r. Then the following conditions are equivalent: 

i. r has property (r) with respect to L (i.e., there exists an Er > 0 suchthat if 
(H, p) is a non-trivial unitary irreducible representation of r whose kerne! 
contains Nifor some i, thenfor every v EH with llvll = 1, there exists s ES 
such that llp(s)v- vll 2:: er). 

ii. There exists Ez > 0 such that all the C ayley graphs Xi = X (r /Ni, S) are 
([f: Ni], ISI,Ez)-expanders. 

m. There exists E3 > 0 suchthat h(Xi) 2:: E3. 

IV. There exists E4 > 0 suchthat Ar(Xi) 2:: E4. 

lf in addition r = Kr (M) for some compact Riemannian manifold M, and Mi 
are the finite sheeted coverings corresponding to the finite index subgroups 
Ni, then the above conditions are also equivalent to each of the following: 

v. There exists Es > 0 suchthat h(Mi) 2:: Es. 

vi. There exists E6 > 0 such that Ar (Mi) 2:: E6· 

Proof (i) ==? (ii) is just like the proof that property (T) gives expanders in propo­
sition (3.3.1). (See also Remark (3.3.4).) 

(ii) <=} (iii) is contained in (1.1.4). 

(iii) <=} (iv) is Doziuk-Alon's result (4.2.4) and Tanner-Alon-Milman (4.2.5). 
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To prove (iv) =? (i): Recall that if p factors through the finite quotient 
r /N;, then p appears in the right regular representation of r on the group al­
gebra C[rjN;] ~ L2(r/N;), and indeed p appears in L5(X;) since p is nontrivial. 
Moreover, if A is the element of the group algebra of r ( or r /N;) given by LsES s, 
then ß acts on L 2 (X;) = qr /Ni) as a multiplication from the right by k . e - A 
where e is the identity element of r and k = 151. By (iv), we have that for every 
f E L5(X;) with 11/11 = 1, llß/11 ~ c-4. Thinking of f as an element of qr /Ni), 
we have: 

E"4 :S llß/11 = II/ · ~)e- s)ll = II L f · (e- s)ll :S L II/ · (e- s)ll· 
sES 

Thisimpliesthatatleastforones E 5, T :S llf-(e-s)ll = llf-f-sll = 11/-R(s)fll· 
Here R(s) is the right regular representation of r on L5(r /N;). So c-1 = T works 
for R(s) andin particular for p. 

The equivalence of (v) and (vi) follows from (4.1.3) and (4.1.4). 

To prove that (v) implies (iii), we observe first that condition (iii) (as well as 
all other conditions) are independent of the choice of generators (yet the values of 
the c- s do depend on 5), so it suffices to prove (iii) for some set of generators. 

Let U be the universal coverlog space of M. Then r acts on U andM = Ujr. 
Fix a compact closed fundamental domain rz.f for r with «faces» C 1, ... , Cr. Then 
take "'( j E r such that "'( j ( rz.f) n rz.f = C j. lt is well known that 5 = {'Y j} generates 
r. Now every one of the finite sheeted coverings M; of M is also covered by U 
with 'Pi : U f---t Mi the coverlog map. Then rz.f; = 'Pi(rz.f) isafundamental domain 
for the action of r /N; on M;, and M; / (r /N;) = M. We claim that the Cayley 
graph X; = X (r /N;, 5) can be «drawn» in a natural way on M; as follows: The 
r /N;-translations of rz.f; will be the vertices of the graph, and two vertices are 
adjacent if and only if they have a common face. Now, any partition of the graph 
into two disjoint sets A and B induces a partition of the manifold into two subsets 
whose intersection (boundary) is the union of the faces corresponding to the edges 
E (A, B) - going from elements of A to elements of B. We can now conclude 
(since the volume of rz.f is fixed and the areas of the faces are bounded for all i) 
that a lower bound on h(M;) gives rise to a lower bound on h(X(r /N;), 5). (See 
also (4.4.3) below for a concrete computation.) 

The opposite direction ((iii) implies (v)) is more complicated; here one should 
show how an arbitrary hypersurface dividing the manifold Mi implies the same 
kind of division for the graph X;. For the proof of this, the reader is referred to 
Brooks [Br2] (see also [Brl]). 0 

Examples 4.3.3. 

A. Let r be a finitely generated Kazhdan group; then it has property (r) and 
hence all the properties of the theorem with respect to all the finite index 
normal subgroups. 
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B. If r is a finitely generated, residually finite (i.e., the intersection of the normal 
subgroups of finite index is trivial) amenable group then r has (T) if and only 
if r is finite. This follows from (3.3.7) and (4.3.2). 

C. Let F be the free group on two generators x and y, F = F(x,y). For every 
integer m, let 'Pm be the homomorphism from F onto the symrnetric group 
Sm. sending x to 'Y = (1, 2) and y to a = (1, 2, 3, ... , m). Let Nm be the 
kemel of 'Pm. We claim that F does not have property ( T) with respect to the 
family {Nm}. To see this, let Pm be the rn-dimensional representation of Sm 
(and hence of F) defined by: 

For V= (vi, 0 0 0 'Vm) E V= cm and ß E Sm. 

lt is weil known that the restriction of Pm to Vo = { v = ( Vt, ... , Vm) I L v; = 

} 27ri ( 1) 0 is an irreducible representation. Let "1 = em. Then v = 1, ry, ... , ",m-

is in Vo and llvll = y'rii. Now: 

lbv- vll = 11("7- 1,1- ry,O, ... ,0)11 = Vlll- 'fll----+0 
m->oo 

and 

So, limm ..... oo llaÖ~Ivll = 0. This proves that F does not have property (T) with 

respect to {Nm}. 

As a corollary we deduce that Xm = X (Sm, {"!, a}) - the Cayley graphs of 
Sm with respect to the generators T and a are not expanders. This can be 
proved directly by looking at the subset Am of Xm defined by: 

m 
Am= {ß E Smll ~ ß(l) ~ 2 }. 

Then T ·Am= Am and ia·1A.ß(ml ~ ~----+ > 0, which shows that Xm is 
m m----+oo 

not a family of expanders. 

In fact, in (8.1.6), we shall show that the diameter of Xm is O(m2) while 
it is easy to see that expanders should have logarithmic diameter (see also 
(7.3.11)), which in case of Sm should be O(logm!) = O(mlogm). 

1t is a very interesting openproblern to find (if possible) a set of k generators 
(k fixed) for every Sm which will make the symmetric groups into a family 
of expanders. (See also Problem (3.3.3) and Section 8.2.) 

D. Probably the most interesting example of a group r with a family of nor­
mal subgroups satisfying (T) is r= SL2 (l.) and Nm =r(m) =ker(SL2 (l.) 
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~-----+ SLzC~/m~). This follows from Selberg's Theorem, which we describe 
in the next section. Here we only mention that Selberg's Theorem has var­
ious extensions by Gelbart-Jacquet [GJ], Samak [Sal], Elstrodt-Gruenwald­
Mennicke [EGM], Li-Piatetski-Shapiro-Samak [LPSS] and Li [Li]. Allthese 
papers together imply that if r is an arithmetic group in a simple real Lie 
group, then r has property ( r) with respect to the farnily of congruence 
subgroups. 

E. Another relevant application of Selberg's Theorem is that the group r = 

SLz(~ [~ J) has property (r) but not property (T). The second Statement is 

clear since r is densein SLz(~). To prove the first: Let r1 = SLz(l.) <.......t r 
and SI a set of generators for rJ. Extend it to a set of generators for r. Now, 
by the affirmative SOlution to the congruence subgroup problern for r (see 
[S2]), every finite quotient of r factors through a congruence subgroup mod 

m (form prime top). But then the image of r1 in SLz(l. [~] jml. [~]) = 
SL2(l./ml.) is onto. Thus by Selberg's Theorem every finite quotient of r 
is an expander with respect to S1 and therefore also with respect to S. By 
theorem (4.3.2), r has property (r). 

The results of Gelbart-Jacquet [GJ] and Samak [Sal] give other such ex­
amples, e.g., if 0 is the ring of integers in a quadratic real number field (e.g., 
0 = l.[J2]) then SLz(O) has property (r) but not (T). 

In Lubotzky-Zimmer [LZ] it is proved that if r is an irreducible lattice in a 
non-trivial product of two non-compact locally compact groups G 1 x Gz where 
G1 is Kazhdan (but Gz is not), then r has property (r) (but not (T)). This can 
be used to give many examples of groups with property ( T) and not (T) without 
appealing to deep number theory as the previous examples do. 

4.4 Seiberg Theorem .\1 :2: {6 and expanders 

A case for which Theorem (4.3.2) can be applied is the group r = SLz(l.) due 
to a theorem of Seiberg [Sl]. This will enable us to get a few additional families 
of interesting expanders. 

Let r = SL2(l.). As a subgroup of G = SLz(~). it acts on the upper half-

plane IHI = {z = x+iy E lx,y E ~.y > 0} by: g(z) = ~~~~ when g = (: :) E 

G. The action of G preserves the hyperbolic metric of IHI, ds2 = "Jr(dx2 + df), 

and it, therefore, commutes with its Laplacian ~ = -f ( Jt2 + g;). Thus, if r' 
is any discrete subgroup of G, then ~ is weil defined on the quotient M = r' \ IHI 
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and it is the Laplacian of M. This is in particular true for subgroups of finite index 
of r. Such a subgroup is called a congruence subgroup if it contains 

r(m) = ker(SLz(Z) ~--> SLz(ZjmZ)) 

_ { (a b) Er a=d= I(modm)} 
- c d b=c=O(modm) 

for some m -=/= 0. 

Theorem 4.4.1. (Selberg [Se]) If r' is a congruence subgroup of r = SLz(Z), 
then AI (r' \ IHI) ~ ?6 . 

Seiberg conjectured that in fact AI (r' \ IHI) ~ ~. We will refer to it as « Seiberg 
conjecture». 

Theorem 4.4.2. 

1. Let p be a prime number and Iet r = ( ~~ ~) and'l/J = ( ~ ~) be the 

2 x 2 matrices in SLz(p). Then the Cayley graphs Xp =X(PSLz(p); { r, '1/J} ), 
when p runs over alt primes, form a family of expanders. 

n. Let Yp = {0, 1, 2, ... , p- 1, oo }. Connect every z E Yp to z ± 1 and to -~, 
then the resulting cubic graphs form a family of expanders. 

Proof i. This part follows from the implication (vi)=?(ii) in Theorem (4.3.2) and 
Theorem (4.4.1) (see Remark 5 in Section (4.6)). 

ii. This part follows from part (i) since Yp is a quotient of Xp by the action 

of the subgroup { ( ~ ~)} of SLz(p). 0 

The method of proof of Theorem (4.4.2) is in fact effective, and one can 
give a lower bound for AI (Xp) as for the expansion coefficients. In an early 
version of [LPS1] it was shown, for example, that AI (Yp) ~ 0.003. Here we 
will present some different examples which will illustrate how the transition from 
the geometric Cheeger constant of the manifold to the combinatorial Cheeger 
constant of the graphs (i.e., the implication (v)=?(iii) in Theorem (4.3.2)) can be 
done in an effective way. (The same remark applies to all the other implications 
of Theorem (4.3.2) and in particular to (vi)=?(iv)). 

Before doing this we mention that due to Jacquet-Langlands correspondence 
[JL], the Seiberg result is automatically valid for congruence subgroups of cocom­
pact arithmetic lattices in SLz(IR). (We will explain this point later in Chapter 6; 
see Theorem (6.3.4).) Let's takesuch a cocompact lattice, for example, the triangle 
group T = ( 4, 4, 4). More precisely, let D be a hyperbolic triangle in IHI of angles 
a = ß = 'Y = l and edges a, b and c, respectively (i.e., a is opposite a, etc.). Let 

A, B and C be the refiections with respect to a, band c, respectively. Twill be the 
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group generated by A, B and C and T the index two subgroup generated by AB, 
BC and CA. The last three are in PSLz(IR), and so T is a subgroup of PSL2 (JR). 
It is well known that T is a cocompact lattice (see [Be, Section 10.6]). 

By the results of Takeuchi [T], for the specific values a = ß = 'Y = i· and 
the group T is arithmetic. 

As mentioned above, if N is a congruence subgroup of T, then .A 1 (N \ 
IHI) ~ f6. Let M = MN be the manifold N \ IHI. Then M comes with a natural 

triangulation, by triangles of type ( i, i, i) . Define the dual graph of it to be the 
graph whose vertices are the triangles and where two vertices are adjacent if the 
corresponding triangles have a common face. Denote this graph by X(MN ). 

Theorem 4.4.3. When N runs over the congruence subgroups of T, then 
h(X(MN)) ~ 0.035. In particular these are ([T: N],3,0.01)-expanders. 

Proof We first note that the graph X(MN) is just the Cayley graphofT jN with 
respect to the three reflections as generators. So Theorem (4.3.2) and the fact that 
AJ (MN) ~ f6 imply that these are expanders. To compute the constants involved: 

Recall that Buser's Theorem (4.1.4) implies that h(M) ~ fo( yfi3!8- 1) >::::: 

0.0695. 

Now the area of the basictriangle (i, i, i) is V= 7r- (i + i + i) = i 
(see [Be, Theorem 7.13.1]). The second Cosine Rule ofhyperbolic geometry yields 

cosh(c) = cos~i~~~:ßosy (see [Be, Section 7.12]). For our case this says that 

cosh(c) = 1 + v'2 and so a = b = c >::::: 1.52. Now let A and B be disjoint sets 
of vertices of the graph which form a partition of it. Let A and B be the subsets 
of M such that A is the union of the triangles corresponding to the vertices in 
A (and similarly with B). The «hypersurface» separating A and B consists of the 
lines corresponding to the set of edges E (A, B) going from A toB on the graph. 
The length oftbis hypersurface is therefore 1.52IE(A,B)I, and the volume of Ais 

i lAI. Since h(M) ~ 0.0695, we deduce that l.SZ~~~,B)I ~ 0.0695. This implies 

that IE(I~IB)I ~ 0.035 and the theorem is proved. D 

One can go ahead and present the graphs in the last theorem in a more 
explicit way by computing the generators of T jN. But, we will not go to this 
trouble since we eventually will have much better expanders. The point of this 
section (and in particular Theorems (4.4.2) and (4.4.3)) is, however, to illustrate 

that unlike property (T), which gives expanders but without an estimation of the 
expansion coefficient, Selberg's Theorem comes with a number! This nurober is 

not so good since we lose when translating the bound on the geometric Laplacian 
to be a bound on the approximated graphs. This is the motivation to look for 
a situation similar to Selberg's, but where the «manifolds» are already graphs. 
This will be done in chapters 6 and 7. Before that, in Chapter 5, we shall try to 
understand Seiberg Theorem from a representation theoretic point of view and to 
understand how it stands with respect to property (T). 
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4.5 Random walks on k-regular graphs; Ramanujan graphs 

Let X be a k-regular graph (finite or infinite). Consider the random walk: on 
X in which every step consists of moving with probability t along one of the 
edges coming out of the vertex. This random walk: defines a Markov chain whose 
possible states are the vertices of X. The Markov chain defines an operator M : 
L 2 (X) t--t L 2(X) defined by (M f)(x) = t Ly~x f(y) where the sum runs over the 
neighbors of x (with multiplicity if needed). There is a clear connection between 
M and the Laplacian .6. of X. In this section we survey some of the known results 
on this random walk: and the eigenvalues of M and relate them to what interests 
us: the eigenvalues of .6.. 

An important special case is a Cayley graph X of a finitely generated group. 
The theory here was initiated by Kesten [Kel]. For proofs the reader is referred 
tothat paper as well as to the paper of Buck [Be], on which our exposition here 
is based. So M is defined as above. The spectrum of M, spec(M), is the set of all 
complex numbers >. such that M- >.I does not have an inverse with finite norm. (A 
norm of an operator T is as usual IITII = sup{ IITyiiiY E L2(X) and IIYII = 1}). 
The spectral radius of M is defined as p(M) = sup{ I .All >. E spec(M)} and it is 
equal to the norm of M. Clearly IIMII ::; 1. 

Proposition 4.5.1. Fix Xo EX (ca/l it the origin). Let rn be the probability ofthe 
random walk being at the origin at time n having started there at time 0. Then, 

IIMII = limsup(rn)lfn. 

IIMII is also equa/ to the reciproca/ of the radius of convergence of the return 
generating function R(z) = L~o rnzn. 

Proposition 4.5.2. Let X = Xk be the homogeneaus k-regular tree, and M as 

above; then IIMII = 2Vfl. 
Proof Fix the vertex Vo in X and a vertex Yo adjacent to xo. Let Q(z) be the 
first retum generating function, i.e., it is the power series whose zn coefficient, 
for n > 0, is the probability that the random walk: wanders back to the origin 
Xo for the first time at time n. Let T(z) be the generating function giving the 
probability of first reaching the origin Xo after a number of steps from the starting 
point Yo· Thus we have Q(z) = Ly~xo t · zT(z) = zT(z) and R(z) = t-Ö(z) 
(since R(z) = 1 + Q(z)R(z)). 

Starting at a point Yt, instead of Yo· at distance m from xo, the generating 
function is obtained by raising T to the power m. From the point Yo· there are 
k - 1 ways to go to a point twice removed from x0 , and only one way to go 
directly to Xo. Thus T satisfies the identity T(z) = f + YzT2(z). Solving for 

. ( k±y'kL4(k-l)z2 . . 
T we obtam: Tz) = 2(k-t)z . Notice that we canthink of the value of 
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T(z), for 0 ~ z ~ 1, as the probability of ever reaching xo, starting at Yo· given 
that we follow the random walk but also have the probability 1 - z of dying at 
each step. Now, since T(z) ~ 1 for 0 ~ z ~ 1, we must take only the minus sign 
above, as the other root will always be at least 1 when k ;?: 2. The numerator in 
the above expression has a zero of order 2 at the origin, considered as a function 
of a complex variable, so the radius of convergence of T is the distance to the 
branch point of the square root function. The branch point occurs at the zero of 
the discriminant, namely Zo = k /2~. Thus by the previous proposition and 

since R(z) = l-z~(z)' we deduce IIMII = 1ip. D 

For example, if F is a free group on free r generators, its Cayley graph is a 

2r-regular tree and the norm is therefore 2Y~~-I. Kesten ([Ke1], [Ke2]) proved: 

Theorem 4.5.3. Let r be a group and S = { a1, ... , a,, bt, ... , bt} a finite set of 
generators of r such that bt, ... , bt are of order 2 while a1, ... , a, are of order 
greater than 2. Let X= X(r; S) be the Cayley graph ojr with respect toS and 
M the operator of the random walk on X (i.e., M = 2,~1 8x). Then: 

1. r is amenable if and only if I IM II = 1. 

2. r is a free product of a free group on the r generators al' ... 'a, and the 
groups of order 2, (i.e., r = (at) * (az) * · · · * (a,) * (bt) * · · · * (bt)J if and 

only if IIMII = 24ffFl. (This happens if and only ifX is a (2r+t)-regu/ar 
tree). 

Proposition (4.5.2) has applications also to the study of M for finite k-regular 
graphs. The following proposition was announced by Alon-Boppana (cf. [Al]). 
Proofs are given in [Be] or [LPS2]. 

Proposition 4.5.4. Let X = Xn,k be a family of k-regu/ar graphs on n vertices, 
with n is going to infinity and fixed k. When X is a bipartite graph, write X = IUO 
where I is the input set and 0 is the output set; if X is not bipartite, write 
X=l=O. 

Now, Iet 

L6(Xn,k) = {tEL 2(Xn,k) L f(x) = L f(x) = 0} · 
xEO xEI 

Let N = M;: be the Markov chain operator restricted to L6(Xn,k)· Then 

.. 2~ 
hmmfiiMi:ll;?: k . 
n---+oo 
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Proof Let X be the infinite k-regular tree and M its random walk operator. If 
diameter(X) ~ 2r + l, choose vertices x1 and X2 in I of distance ~ 2r + l. Let 
B,(xi) be the ball of radius r around Xi, i = 1, 2. Then B,(xi) n B,(x2) = 0. 
Define the functions t5i = X{x;} and f = 61 - 62. Then f E La(V). If e is the 

origin of X, write t5e = X{e}· Now, if X covers X and X is homogeneous, it 
follows that for every r and for i = 1, 2 

IIM'(t5e)ll ~ IIM'(t5i)ll· 

Moreover, for ras above, IIM'(f)ll2 = IIM'(t5I)II2 + IIM'(t52)ll2 since IIM7(6i)ll 
is supportedOll Br(Xi) and Br(xi) n Br(x2) = 0. Putting this together: 

2IINII 27 ~ IINII 2r ·llfll 2 ~ IIN'(f)ll 2 = 11Mr(f)ll 2 

= IIM'(t5I)II 2 + IIMr(62)ll 2 ~ IIM'(t5e)ll 2· 

Thus IINII ~ 11Mr(t5e)lll/r2-1/2r. 

But we remernher that the right-hand side of the last inequality converges to 
IIMII when r ____, oo. We also note that when n ____, oo the diameter also goes to 

infinity (k is fixed!) and hence liminfll~ll ~ IIMII = ~· D 

Now, for a k-regular graph, M is nothing more than Jct5 where t5 is its 
adjacency matrix. 

Corollary 4.5.5. (Alon-Boppana) Let Xn,k be a family of k-regular connected 
graphs. Let 

>.(Xn,d = max{l .All>. is an eigenvalue of t5xn,k, >. -1- ±k }. 

Then liminfn__,oo >.(Xn,k) ~ 2JJC=l. 

For reasons to be clearer later, we make the following definition, following 
[LPSl, LPS2]: 

Definition 4.5.6. A k-regular graph X= Xn,k is called a Ramanujan graph iffor 
every eigenvalue >. ofthe adjacency matrix t5x either >.=±kor I.AI ~ 2JJC=l. 

Recall that for a k-regular graph X, k is always an eigenvalue. lt is the largest 
eigenvalue and of multiplicity one if X is connected. On the other hand, - k is 
an eigenvalue if and only if X is bi-partite. Thus Ramanujan graphs are those k­
regular graphs which satisfy the strongest asymptotic bound on their eigenvalues. 
Much of the rest of the notes will be devoted to an explicit construction of such 
graphs. We shall also put them in a more general perspective, explaining the 
connection between them and Ramanujan conjecture. 

In Proposition (3.3.1) we constructed expanders as quotient graphs of a group 
r with property (T). The next proposition shows that those expanders are not 
Ramanujan, except for possibly finitely many of them: 
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Proposition 4.5.7. Let r be a group generated by a set s of I! generators Xj' ... 'Xg 

such that the first s of them XI, ... , X5 (possibly s = 0) are of order 2. (So, the 
Cayley graph X(r; S) is a k = 2€- s regular graph.) 

Assurne there exists infinitely many finite index normal subgroups Ni of r 
such that Ni n S = 0 and X (r /Ni; S) are k -regular Ramanujan graphs. Then 
X(r; S) is the k-regular tree, and hence r is a free product of s cyclic groups of 
order 2 and a free group on €- s generators. In particular, r contains a finite 
index free group and hence it does not have property (T). 

Proof X = X(r; S) is a covering graph for all the finite Cayley graphs 
X (r /Ni; S). It follows from Corollary ( 4.2.8) that the norm of the random walk on 
Xis 2~. Thus, by Theorem (4.5.3), Xis a tree. This means that there is no 
dosed path in X, i.e., any reduced word inS is non-trivial in r. This is equivalent 
to say that r is the free product of the cydic groups r = (xJ) * (x2) * ... * (xc) 
where Xi is either of order 2 or of infinite order. The kemel of the homomorphism 
cp: r ___, 7l/27l with cp(xi) = 1 for i = 1, ... , l is a free subgroup of finite index 
(by the Kurosh subgroup theorem). This completes all parts of the proposition. D 

We will indeed construct Ramanujan graphs as quotients of a free group, 
but of course not all quotients of a free group are Ramanujan. They are even 
not expanders, as can be seen by looking at these quotients factoring through the 
commutator quotient, or more generally through any given amenable group (by 
Proposition (3.3.7)). 

We end up this section with an exotic property of Ramanujan graphs, which 
also indicate the naturality of this definition. 

Let X be a finite k -regu1ar graph, with k = q + 1. For every homotopy dass 
C of dosed paths, choose one of a minimal length denoted f!(C). A dass C is 
primitive if it is not a proper power of another dass in the fundamental group of 
X. Let 

Zx(s) = rr 
primitive dasses c 

Zx(s) is called the «Zeta function» of the graph X. The following proposition is 
due to Ihara [lh1] (see also Sunada [Sd] and Hashimoto [Ha]). 

Proposition 4.5.8. lf X is a k-regular graph, k = q + 1. Then 

where u = q-s, r = rank H 1 (X, 7!_) and 8 is the adjacency matrix of X. 

Corollary 4.5.9. Let X be a k-regular graph. Then X is a Ramanujan graph if 
and only if Zx(s) satisfies «the Riemann hypotheses», i.e., alt the poles of Zx(s) 
in 0 < Re(s) < 1 lie on the line Re(s) = i· 
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Proof Let cjJ(z) be the characteristic polynomial of 8x, i.e., cjJ(z) = det(zi- 8x). 

Then by (4.5.8), Zx(s)-1 = (1- u2 y-tuncjJ C+ffu2
), where n is the number 

l+qu2 2 z±vfz2 -4q 
of vertices of X. Let z = u then qu - zu + 1 = 0 and u = 2q . If 

z = ±(q + 1) then u = ±1, ±~ and Re(s) = 0 or Re(s) = 1. «X is Ramanujan» 

means that for any other z (s.t. cjJ(z) = 0), lzl ::; 2y'q so u = ±q-i (and Re(s) = !) 
· · · · · zu (l+qu2 )u U+qlul 2u or u 1s nonreaL Smce 8x 1s symmetnc, z 1s real, hence u = uu = u2 

is also real, and thus qlul 2 = 1, i.e., lul = q-112, i.e., Re(s) = !· D 

For more in this direction, see Sunada [Sd]. 

4.6 Notes 

1. The Laplacian operator on manifolds with various boundary conditions has 
received a lot of attention for its importance in various problems in physics, 
differential geometry and representation theory. In particular, many authors 
discussed the influence of bounds on its eigenvalues on the geometry of the 
manifolds and vice versa. The results of Cheeger and Buser mentioned in 
Section (4.1) are just two examples. More on this can be found in [Ber], [Ch] 
and [BGM]. It seems to be of interest to transfer more results of this type 
to graphs (cf. [Br4]). One can also attempt to interpret some graph theoretic 
properties for manifolds. A challenging example: the chromatic number of 
a graph is a graph theoretic invariant which is related to eigenvalues of the 
Laplacian (see [Ho]). Define the «chromatic number» of a manifold and relate 
it to its eigenvalues. 

2. Alon [Al] has a different version of (4.2.4) which gives a lower bound for 
>..1 (X) by means of the expansion of the graph which is independent of the 
degree. We preferred to give here Dodziuk's version since its proof follows 
closely Cheeger's proof for manifolds. The proof also illustrates how to prove 
that if every set has large boundary (or is moved «a lob> by the generators 
- in case this is a Cayley graph) then every function is moved «a lot» by 
the Laplacian. It is interesting to compare this with the proof of (3.1.5). An 
improvement of Dodziuk's version is given by Dodziuk and Kendall [KD], but 
this also uses Cheeger constant h(X) and not c(X) - the expansion constant. 
Various improvements of (4.2.4) can be found in Mohar [Moh]. 

3. Theorem (4.3.2) appears explicitly in [LZ], but as remarked also there, it 
is a corollary to the accumulation of the work of Cheeger, Buser, Dodziuk, 
Alon, Milman, Burger and last but not least, Brooks, who was the first to put 
all of this together. Burger [Bur3] gives a more precise connection between 
Property ( T) and )q . 

4. Some of the details of Example 4.3.3C were provided to us by George 
Glauberman and Jim Lewis. 
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5. In our discussion of Theorem 4.3.2 we assume compactness for simplicity. 
But it works more generally: for example, if r is a lattice of a semi-simple 
group G, the theorem is also true with M = X/f where Xis the symmetric 
space associated with r (cf. [Br2] and the references therein). In fact, we 
used (4.3.2) in the proof of (4.4.2) even though SL2(1L) is not cocompact. lt 
should be useful to formulate a more general theorem of this type, but we 
are not sure what are the natural general conditions. 

6. A similar approach to our Theorem (4.4.3) is in Buser's paper [Bu3]. 



5 The Representation Theory of PGL 2 

5.0 Introduction 

Let Goo = (PGL2(1R))0 = PSL2(1R), Gp = PGL2(0p) where Op denotes the 
field of p-adic numbers and G will denote either G00 or Gp. Similarly, let Koo = 
50(2)/{±1}, Kp = PGL2(Zp) and K is either Koo or Kp. By P we denote the 

group of upper triangular matrices in G, P = { ( ~ ~ ) E G}. 

by: 
Let Xs, s E C be the one-dimensional character of P, Xs : P -+ C*, defined 

( a b) -I d-lls Xs 0 d-a 

where lad- 11 is the usual absolute value in IR, and the p-adic absolute value 
lxl = p-v(x) in case of Op (v(x) denotes the valuation of x). By taking the induced 

G 
representation Ind(xs) = p5 , one obtains an representation of G. 1t tums out that 

p 

all irreducible unitary representations of G of class one (i.e., representations in 
which there exists a K-invariant vector) are obtained this way (after defining an 

appropriate inner product), for the following values of s E C: 

Namely, the «class one» part of the unitary dual of G is a union of two sets: 

The principal series = {itlt E IR} and the complementary series that is equal to 

{ s I - ~ ::::; s ::::; ~} in case of G 00 and to { s + ,~;~ I - ~ ::::; s ::::; ~ , n E Z} in the 
case of Gp. 

If Ps is such a representation, then there is an essentially unique K -invariant 
vector u, and the corresponding «matrix coefficient» cp5 (g) = (p5 (g)u, u) is a K­
spherical function. In particular, it is bi-K -invariant and induces a function on 
GjK. In case of G = Gp, G/K is a (p + 1)-regular tree tobe described in 
Section 5.3 and for G = G00 , G /K is the upper half-plane. The function 'Ps on 
G /K tums out to be an eigenfunction of the relevant Laplacian: In case of G00 , 

it is of ~ = -y'l (J:z + Jtr) with eigenvalue ..\(s) = i - s2. In the case of 

Gp, let 8 be the defined on the tree by: (8/)(x) = l:y~x f(y) (the sum isover 
vertices adjacent to x). (So, 8 = (p + 1 )l - ~ where ~ is the combinatorial 
Laplacian defined in Section 4.2.) This time the corresponding eigenvalue of 8 is: 

I 
..\(s) = p2 (~ + p-5 ). 

The connection between the representations and eigenvalues of the Laplacian 
(either ~ or 8) is also expressed in the following proposition: 

Proposition 5.0.1. Let r be a lattice in G. Then Ps appears as a subrepresentation 

ofL2(f\G) if and only if ..\(s) is an eigenvalue of ~ (resp: 8) on the surface (resp: 

graph) f\G/K. 
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Recall from Section 4.4 that Selberg's conjecture isthat ..\(s) ~ ! for congru­
ence subgroups of the modular group. This exactly amounts to saying that s = it, 
i.e., no complementary series representations occur in L 2(r\G00 ). The analog for 
Gp is: 

Proposition 5.0.2. Let G = Gp and r be a lattice in G. Then no representation 
from the complementary series occurs in L2(r\G) if and only if 

i.e., if and only if the graph r\G /K is a Ramanujan graph. 

The fact that indeed there are r's for which this Statement is valid (and 
hence will provide Ramanujan graphs) is a consequence of the validity of the 
classical Ramanujan-Peterson conjecture, however, this is shown in Chapters 6 
and 7. Meanwhile, in the sections of this chapter, we will describe and essentially 
prove the results mentioned in the introduction. We begin with a presentation of the 
unitary dual of G. Though this subject is weil known and is discussed in several 
books, we were unable to find a convenient reference for both cases Goo and Gp 
for readers who want to know only this and not more. We therefore present a 
virtually self-contained exposition, i.e., one which uses results from the Iiterature 
but only if they are easily accessible with proofs. We begin in Section 5.1 by 
establishing the connection between representations and spherical functions. Here 
we follow Chapter IV of Lang's book «5L2(~)». (The reader is encouraged to 
read its 14 pages in full - it is independent from the rest of the book.) Once 
we have this, we can present in Section 5.2 the representations of class one of 
PSL2(~) (i.e., the principal and complementary series; we ignore the discrete 
series which is not so important for our purposes). Herewe partially use notes of 
H. Furstenberg's lectures in a Hebrew University seminar in 1985. In Section 5.3 
we describe (following Serre [S1]) the tree associated with PGL2(Qp). and in 
Section 5.4 we use Section 5.3 to describe the principal and complementary series 
of representations of Gp. In Section 5.5 we discuss the connection between the 
eigenvalues of r\ G j K and the representations appearing in L 2 (r\ G). 

At that point the analogy between Selberg's conjecture and Ramanujan graphs 
becomes clear. 

5.1 Representations and spherical functions 

In this section, G will be one of the groups PSL2(~), GL2(~), PGL2(Qp) or 
GL2(0p), and K a maximal compact subgroup of G, i.e., K is either PS0(2), 
0(2), PGL2(Zp) or GL2(Zp), respectively. 

Let (H, p) be an irreducible unitary representation of G on a Hilbert space 
H and 0 # u E H any vector. In Chapter 3 we introduced the coefficient function 
<jJ: G ---+ C, <jJ(g) = (p(g)u, u). 
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Lemma 5.1.1. cjJ determines p, i.e., there is a unique irreducible representation 
with this cjJ as a coefficient function. 

Proof Given g E G, then p(g) is determined once we know (p(g)vi, Vz) for 
every VI, Vz in H. In fact, it suffices to know it on a dense subset of H. Such a 
dense subset is obtained by taking sums of the form VI = E Cip(gi)u, since p is 
irreducible. Now if Vz = E djp(gj)U, then 

and thus p(g) is determined. D 

If the vector u is K-invariant, i.e., p(k)u = u for every k E K, then the cor­
responding cjJ is bi-K-invariant, i.e., cp(kigkz) = cp(g) for every ki, kz E K, 
and g E G (since cp(kigkz) = (p(kigkz)u, u) = (p(g)p(kz)u, p(k}I )u) = 
(p(g)u, u) = cp(g)). 

Let C = Cc(G I IK) denote the set of bi-K-invariant (bi-invariant for short) 
functions on G with compact support. C is an algebra with respect to convolution 

h * fz(x) = k h (xg-I )fz(g)dg. 

Proposition 5.1.2. ( cf. [La], page 53) Ce (GI I K) is a commutative algebra. lf 
(H, p) is a unitary representation ofG, p induces a representation 75 ofthe algebra 
Cc(GI IK) by: 

75(/) = fc f(g)p(g)dg for f E C. 

Let HK denote the space of K-invariant vectors in H; then 75(/)(HK) ~HK 
and hence (HK, 75) is a representation of C. 

Proposition 5.1.3. (cf. [La], page 54) Assurne HK =I {0} and p is irreducible. 
Then, (HK, 75) is irreducible. 

From (5.1.2), (5.1.3) and Schur's Lemma one deduces: 

Proposition 5.1.4. (cf. [La], page 55) Let (H, p) be a unitary irreducible repre­
sentation of G; then dimHK = 1 or dimHK = 0. 

In the first case, dimHK = 1, we say that p is a representation of dass 
one. In what follows we will be interested only in such representations. G has 
representations with HK = {0}. (See [La] or [GGPS].) Such representations are 
«far away» from the trivial representation in the Fell topology of the unitary dual 
since they do not contain almostinvariant vectors: if v is c-invariant with respect 
to K (i.e., llp(k)v- vll < c for every k E K) and c < 1, then JK p(k)vdk is in 
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HK and it is nonzero- a contradiction. This shows that such representations are 
uniformly bounded away from the trivial representation. 

So, assume now that (H, p) is an irreducible unitary representation and 
dimHK = 1. Let u E HK with llull = 1 and r.p : G ____, C the function 
r.p(g) = (p(g)u, u). Note that r.p is bi-K -invariant. lt, in fact, satisfies also the 
other conditions of the following definition: 

Definition 5.1.5. A function f on G is called K-spherical (or spherical) if the 
following are satisfied: 

1. f is bi-invariant and continuous; 
2. f ( e) = 1 where e is the unit element of G; and 

3. f is an eigenfunction of Cc(G I IK) on the right, i.e., f * 'lj; = A.(f, 'lj;)f for 
'lj; E Cc(G I IK) and some complex number >..(f, 'lj;). 

Proposition 5.1.6. (cf. [La], page 61) r.p as above is a sphericalfunction. Moreover, 
r.p is also positive definite, i.e., for every X], ... ,Xn E G and a1, ... ,an E C we 
have: 

This is because: 

L r.p(xj 1xj)aiaj 2: 0. 
i,j 

L r.p(xj 1xj)a;aj = L(r.p(xj1xj)a;aju, u) 
i,j i,j 

In light ofLemma 5.1.1 and Proposition 5.1.6, the following is not surprising. 

Theorem 5.1.7. ([La], page 65) The above association (H, p) f---7 r.p is a bijection 
from the set of irreducible unitary representations of G having K -fixed vectors to 
the positive definite spherical functions on G. 

So, our goal in classifying the irreducible unitary representations of dass one 
will be first to find the spherical functions. Secondly, we will have to decide which 
of them are positive definite or equivalently come from unitary representations. 

The following proposition gives a useful method to find spherical functions: 

Proposition 5.1.8. Let P be a closed subgroup of G and assume G = P K. Let x 
be a character (i.e., a continuous homomorphism) x : P ----; C* which is trivial on 
P n K. Extend this to a function on G by setting x(p k) = x (p). Then x is a right 
eigenvector ofCc(GI IK), namely 

x * '1f;(x) = >..(x, '1f; )x(x), 

and a function f suchthat f(x) = JK x(kx)dk is K-spherical with eigenvalues 
>..(x,'l/J) = x * 'lj;(e) = >..(f,'lj;). 
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Proof This is proved in [La, Theorem 4, page 55] under the assumption that 
P n K = { 1}, but the proof works word by word for the somewhat more general 
case. [] 

Before turning to concrete examples we record the following easy property: 

Proposition 5.1.9. lf (H, cp) is an irreducible unitary representation, u E HK 
with llull = 1 and cp(g) = (p(g)u, u), then for every g E G, cp(g) is real and 
lcp(g)l :S cp(e) = 1. 

Proof First note that cp(g-1) = (p(g-1 )u, u) = (u, p(g)u) = cp(g). Second, in 
all possibilities of G one can write g-1 as kgk' for some k', k E K (check!); 
hence cp(g-1) = cp(g) and so cp(g) is real. Moreover, lcp(g) I = I (p(g)u, u) I ::; 
llp(g)(u)iillull = 1 (since p is unitary). [] 

5.2 Irreducihle representations of PSL2 (1R) and eigenvalues of the 
Laplacian 

In this section we specialize to the case G = PSLz(~) and K = PS0(2). The 
symmetric space GI K can be identified with the upper half-plane IHI = { x + 
iylx,y E ~.y > 0} via the action of Gon IHI, g(z) = ~~tS for g = ( ~ :) E G. 

So, the stabilizer of i E IHI is PS0(2). We introduced in Chapter 4 the Laplacian ß 

of IHI, which is defined as ß = -f ( fx2 + -ßir), and it commutes with the action 

of G. Another (isomorphic) model for GI K is the unit disc U = { z E Cllz I < 1} 
via the action 

( a b)( )= [(a+d)+(b-c)i]w+[(a-d)+(-b-c)i] 
c d w [(a- d) + (b + c)i]w + [(a + d) + ( -b + c)i]" 

Indeed, the transformation 

conjugates SLz(~) to SU(1, 1). This time K is the stabilizer of 0 and it acts on 
U by rotations. The Laplacian here gets the form of 

ß = -(1 -X - y2) - + -2 (az az) 
ax2 ay2 . 

lt will be convenient to keep in mind both models. 

A spherical ftmction cp being K -invariant from the right can be thought as a 
ftmction on IHI. Moreover, being K-invariant from the left as well, cp is constant 
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on K-orbits on IHI, or what is easier to imagine, a function on U which is constant 
on circles around 0, i.e., a «radial function». Thus r.p has the same derivative in all 
directions and one can also consider 1> as a function of one variable. From [La, 
Theorem 8, p. 199] it follows that every spherical function tp is an eigenfunction 
of the Laplacian with respect to some eigenvalue >. E C. Thinking of r.p as a 
function on U we have the following information: 

{ 
tlr.p = >.r.p as was just said 
r.p(O) = 1 since r.p(e) = 1 
r.p' ( 0) = 0 since r.p is radial. 

The equation tlr.p = Atp is a second-order differential equation, and with the 
two other conditions we can deduce from the fundamental theorem of differential 
equations that tp is uniquely determined. Let tp>. be, therefore, the unique spherical 
function satisfying tlr.p>. = Atp>. (,\ now is an arbitrary but fixed complex number). 

Now, if tp is positive definite, i.e., comes from a unitary representation, then 
we saw (Proposition 5.1.9) that tp is real and 0 is a maximum point, which implies 

that tp1 ( 0) = 0 and r.p" ( 0) < 0 so t:z tp I 0 = g; tp I 0 ::; 0. Thus if tp>. is also positive 

definite then >.r.p>.(O) = !:1( r.p>.) (0) = -(1- 02 - 02 ) ( t:z + g;) ( r.p )(0) ~ 0 (and 

in particular >. is real). We therefore conclude: 

Theorem 5.2.1. lf (H, p) is an irreducible unitary representation ofG = P SL2(~) 
of class one with an associated spherical function r.p, then tlr.p = ,\r.p for some 
nonnegative real number >.. For every >. ~ 0 there is a unique such spherical 
function tp>. satisfying !:1( tp>.) = Atp>.. 

Our next goal will be to show that indeed for every >. ~ 0, such a spheri­
cal function comes from a representation. To this end we use Proposition 5.1.8. 

Let P = { ( ~ a~I) E PSL2(~)}. From the Gram-Schmidt orthonormaliza­

tion theorem it follows that G = PK. Characters x on P are given by: Let 

t E C and Xt ( ~ a~I) = a21 . As a function on IHI, Xt gives: Xt(X + yi) = y 

since ( ~ a~i) (i) = a2i + ba, so ( ~ a~I) is associated with the point 

x + iy = ba + ia2. According to the procedure in Proposition 5.1.8, the function 

'Pt(z) = [ (k · Xt)(z)dk = [ Xt(kz)dk = [ imag (kz) 1dk 

is a spherical function. 

We want to find>.= >.(t), the corresponding eigenvalue of !:1, tltpt = >.(t)'Pt· 
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Let's compute: 

( rJZ a2) 
ß(xt) = -1]- 8x2 + 8y2 y 

= t(1- t)y = t(1- t)Xt· 

As ß commutes with the action of k: 

ß(<pt) = ß ([ (k · Xt)dk) = [ (k · ß(xt))dk 

= [ k. (t(1- t)xt)dk = t(1- t) [ kxtdk = t(1- t)<pt. 

The conditions >. is real and >. 2: 0 1ead to: 

Theorem 5.2.2. The spherical functions <pt as above, satisfying ß<pt = t(1- t)<pt 
and >. = t(1 - t) 2: 0, are from two sources: 

1. The principal series: t E {1 + irlr E IR} and then >. 2: i· 
2. The complementary series: t E [0, 1] and 0:::; >.:::; i· 

To get actual representations, we argue as follows (following [La, Chapter 
III]): Let 

Xs : P ----+ C* be the character 

( a b ) 2s 
Xs 0 a-I = a 

and let Ps = lnd~ (Xs). The discussion in [La, Chapter III, Section 3] shows that Ps 
has a K-fixed vector and the associated spherical function is <p s+! in the previous 

2 
notation. 

Moreover, if s = ir, then Xs is a unitary character, and hence Ps is also 
unitary. These observations and Theorem 5.2.2 almost complete the proof of the 
following: 

Theorem 5.2.3. The irreducible unitary representations of PSL2(1R) of class one 
(i.e., with K-invariant vector) are given by the following parameterization: 

1. The principal series: Ps for s E {irlr E IR} with spherical function 

1 2 1 <p 1 and >. = - - s > -
2+s 4 - 4 

2. The complementary series: Ps for - ~ :::; s :::; ~ with spherical function 

1 2 1 
<p! +s and 0 < >. = - - s < -. 

2 - 4 - 4 
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The part of the proof which is still missing is that indeed the representations 
of the complementary series really exist in the unitary dual. As it is presented 
now they are not unitary. But, it is known that by changing the inner product 
they can be unitarized. For details see [La] or [GGPS]. We should also mention 
that the above parameterization is redundant: the representations Ps and P-s are 
equivalent, as can be seen from the fact that A = ! - s2 and that A uniquely 
determines the spherical function and hence also the representation. 

Finally, we mention that all the principal series representations are boun­
ded away uniformly from the trivial representation in the Fell topology of the 
unitary dual. To see this, notice first (as in Section 5.1) that a K-almost-invariant­
vector for a compact set K containing K gives by averaging over K a K-almost­
invariant-vector which is K-invariant. But we said that the K-invariant vectors 
form a one-dimensional space generated, say, by u. So we have to check only the 
invariance properties of u. If g E G is fixed and g rJ. K, then llp(g)u - uil2 = 

2(1- (p(g)u,u)) = 2(1- tp(g)) where 'Pis the associated spherical function. So 
if p = Ps for s = ir, then 

'Pl+ir(g) = r imag (kg(i))!+ir dk. 
2 }K 

This last expression is bounded away from 1 independently of r. In fact, the pa­
rameterization of the class one unitary dual of G 00 as a subset of C reftects also 
the entire topology. In particular the complementary series goes to the trivial rep­
resentation (which is represented by p± !), and PSL2(iffi) does not have property 
(T) as was already proven in (3.1.9). This is also the only way for representa­
tions to converge to the trivial one, as we already have shown that those with no 
K -invariant vectors are also bounded away from the trivial representation. 

5.3 The tree associated with PGL2(Qp) 

In this section we present the «Symmetrie space» of PGL2(0p), which will be 
a (p + 1 )-regular tree X. Just like the upper half-plane IHI which is a quotient of 
G = PSL2(iffi) by its maximal compact subgroup K = PS0(2), Xis the quotient 
PGL2(0p)/PGL 2(Zp) (or more precisely: this coset space is the set of vertices 
of X). This tree is the Bruhat-Tits building associated with the p-adic Lie group 
PGL2(0p). but following [S1] we will give a more concrete construction of X. 

Let V = Op x Op be the two-dimensional vector space over the field of 
p-adic numbers. A Zp-lattice in V is a Zp-submodule L of V generated by two 
linearly independent vectors in V. The standard lattice Lo is the one generated 
by the standard basis e1 and e2, i.e., Lo = Zp x Zp. Two lattices L1 and L2 are 
said to be equivalent if there exists 0 -/=- a E Op such that L2 = aL I· We define 
a graph X as follows: lts set of vertices will be the set of equivalence classes 
of lattices. Two equivalence classes [LI] and [L2] are said tobe adjacent on the 
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graph if there are representatives Lj E [Li] such that L~ <:;:; L~ and [L~ : L~] = p. 
(This is a symmetric relation since pL~ is equivalent to L~ and pL~ <:;:; L~ with 
[L~ : pL~] = p.) This defines a structure of a graph. 

The group GL2(0p) acts transitively on the set of Zp-lattices and its center 
preserves equivalent dasses. Thus, PGL2(0p) acts transitively on the vertices of 
X. The stabilizer of the equivalence dass of the standard lattice Lo is PGL2(Zp). 
The set of vertices can be, therefore, identified with PGL2(0p)/PGL2(Zp). The 
action of G = PGL2(0p) dearly preserves the relation of adjacency and soG acts 
as a transitive group of automorphisms of X. This implies that X is a k -regular 
graph for some k. Checking the possible neighbors of the (equivalence dass of 
the) standard lattice, we easily see that Lo has exactly p + 1 sublattices of index 
p Uust as the number of the one dimensional subspaces of Lo/pLo C:o:' 1Fp x 1Fp, 
which is the number of points on the projective line over the finite field 1Fp of p 
elements). Thus X is a (p + 1)-regular graph. One way to present the neighbors 
of L0 is by looking at the matrices: 

A; = ( ~ ~ ) for i = 0, ... , p - 1 and Aoo = ( ~ ~) . 

Then Ao(Lo), ... , Ap-1 (Lo), A00 (Lo) are p+ 1 representatives ofthe p+ 1 vertices 
adjacent to the vertex [Lo]. 

X is indeed a connected tree. A proof is given in [S 1, p. 70]. A quick proof is 
the following: It suffices to show that there is a unique path from xo = [Lo] to any 
other vertex x. A representative L of x can be picked up inside Lo = Zp x Zp and, 
moreover, L can be chosen in such a way that L0 /L is a cydic group (otherwise 
replace L by p- 1 L). The existence and uniqueness of a path from Lo to L follows 
now from the existence and uniqueness of the Jordan-Hölder series in a finite 
cydic p-group. 

We identified X with G / K, so functions on X can be thought as right K­
invariant functions on G and vice versa. K acts on X = G /K by fixing x0 = [Lo] 
and acting transitively on the set of vertices of distance n from Lo (for every n). 
Hence, bi-K-invariant functions on G correspond to radial functions on X, i.e., 
functions f(x) in which f(x) depends only on the distance d(x, xo) from x to xo. 
The algebra Cc(G/ /K), introduced in Section 5.1, consists of functions of this 
type for which f(x) = 0 for almost all x. An example of such a function is the 

characteristic function 8 of the double coset K ( ~ ~) K. This function gives 

the value 1 to the vertices of distance 1 from Xo = [Lo] and 0 elsewhere. 8 defines 
an operator 8, called the Hecke operator on the functions on X, by: 

8(/) =8(t) =f*8. 

(In order that this definition, which uses convolution, will make sense, we think of 
8 and f as functions on G, bi-invariant and right-invariant respectively.) Spelling 
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out this definition to f as a function on X, 8(f) is the following: 

6(f) = I: t(y). 
d(y,x)=l 

So, 6 is (p+ I) times the averaging operator. Recall from Chapter 4 the definition 
of the combinatorial Laplacian Ll. So, 6 = (p + 1 )Id - Ll. (Sometimes, 6 itself is 
called the Laplacian.) 

In the next section we will use this information to find spherical functions 
and hence representations of G = PGLz(Op). 

5.4 Irreducihle representations of PGL2(0.p) and eigenvalues 
of the Hecke operator 

In this section we present the analog of Section 5.2 for G = PGLz(Op) instead 
of PSLz(IR). (The reason we work with PGLz(Op) and not PSLz(Op) is just 
a matter of convenience - the second does not act transitively on the tree - but 
everything can be done similarly for PSLz(Op).) We want to find the unitary 
irreducible representations of G of dass one (i.e., those with K-fixed vectors). By 
Section 5.1 this amounts to find the positive definite spherical functions. Just like 
in Section 5.2, every spherical function is an eigenfunction of the Laplacian (or 
equivalently the Hecke operator). Here this is even simpler. The function 8 defined 

in Section 5.3 (i.e., the characteristic function of the double coset K ( ~ ~) K) 

is in Ce (GI I K) so every spherical function cp is by Definition (see 5.1.5) an 
eigenfunction of convolving with 8 from the right, i.e., 6( cp) = )v.p for some 
>. E C. Such a spherical function cp (being bi-X-invariant) is, as explained in 
Section 5.3, given by a sequence of numbers ao = 1, ... , an, ... suchthat cp(x) = 
an if d ( x, Xo) = n. The equation 8 ( cp) = >.cp spells out as the following recursive 
relation: 

{ >.an =an- I + pan+l for n ;::: 1 
>.ao = (p + l)ai . 

We deduce that the sequence is uniquely determined by the eigenvalue >., and in 
.c • • • • l _ A _ A2-(p+l) 
1act 1t ts easy to compute 1t recurstve y, e.g., a1 - p+l, az- p(p+l) , etc. 

So for every >. we have a unique spherical function cpA. But, on those coming 
from unitary representations wehaveextra conditions (see (5.1.9)): cpA should be 
real and gets its maximum at e. From the equation a1 = p~I we deduce that 
>. should be real and 1>.1 :::; p + 1. Summarizing this we have (in analogy with 
Theorem (5.2.1)): 

Theorem 5.4.1./f(H, p) is an irreducible unitary representation ofG=PGLz(Op) 
of class one with an associated spherical function cp, then 6(cp) = >.cp for some 
real number >., 1>.1 :::; p + 1. For every such >. there is a unique spherical function 
cpA satisfying 6(cpA) = >.cpA. 
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Our next goa1 will be to show that indeed for every J>.J :s; p + 1 such a 
spherical function comes from a representation. To this end we use (5.1.8). 

LetP={(~ ~) EPGL2(0p)}.ThenG=PK,withPnK={(~ ~)I 
a,d E ?L;, b E ?Lp}· The characters Xt: P----> C given by: 

( a b) -I d-Jit Xt 0 d - a 

satisfy Xt(P n K) = 1. So by (5.1.8), 'Pt(x) = JK Xt(kx)dk is a K-spherical 
function (where Xt is extended to whole G by x(pk) = x(p)). 

To compute the associated eigenvalue >. = >.(t) of 8, it suffices to compute 
a 1 = 'Pt(XJ) for some vertex x 1 of distance one from xo = [Lo] and then >. = 

(p+ 1)a1. So, letg= (~ ~) and so, 

a1 ='Pt(~ ~) = Lxt(kg)dk 

= ~ p ~ 1 Xt ( ~ ~) + p ~ 1 Xt ( ~ ~) = p ~ 1 (p. p-t + pt). 
!=0 

Thus >. = >.(t) = pJ-t + pt. To ensure that >.will be real; first suppose that 
pt is real, in which case t is of the form r + ~~~~ where r is real between zero and 

one since J>.J :s; p + 1, and n is any integer. If pt is not real, then for pJ-t + pt 
to be real we must have that, if t = x + iy then: p1-xp-iY + pxpiY E IR and so 
pJ-x = pX, which implies X= i· So t = i + ir for r ER 

To summarize: 

Theorem 5.4.2. The spherical functions 'Pt as above such that 6 ('Pt) = (p1-t + 
pt)'Pt and >. = pJ-t +pt is real of absolute value :s; p+ 1 come from two sources: 

1. The principal series: t E {! + irJr E IR} and then J>.J :s; 2yp. 

2. The complementary series: t E {r + ~~~~ JO :s; r :s; 1, n E ?L} and then 

2yp :s; I .Al :s; p + 1. 

To get actual representations we argue as follows (following [La, Chapter 
III]) andin analogy to Section 5.2. Let Xs : P ----> C* be the character 

( a b ) - I d-Jis Xs 0 d-a 

and Iet Ps = Ind~ (xs). 
The discussion in [La, Chapter III, Section 3] shows that Ps has a K-fixed 

vector and that the associated spherical function is 'P s+ 1 in the previous notation. 
2 

Moreover, if s = ir, then Xs is a unitary character and so Ps is also unitary. 
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Theorem 5.4.3. The irreducible unitary representations o[PGL2(0p) of class one 
(i.e., with K-invariant vectors) are given by the following parametrization: 

1. The principal series: p5 for s E {irir ER} with spherical function 'Pl+s and 
2 

>. = p!-s + p!+s so i>.i ::; 2JP. 
2. The complementary series: p5 for s E [ -1, 1 J + 7L 1;: P, with spherical function 

I 
'Pl+s and A = p2(p-s + p), so 2JP::; i>-1::; p + 1. 

2 

The part of proof which is missing is again the unitarization of the comple­
mentary series. Forthissee [GGPS]. Just as for PSL2(~), there are repetitions in 
this parameterization, butthistime even more significant ones: s, -s and s+7L 1~;~ 
all give the same >. and hence the same spherical function and thus the same rep­
resentation. 

The principal series representations are also uniformly bounded away from the 

trivial representation since 'Pt ( ( ~ ~)) = P~ 1 ~ 1. (See the corresponding 

argument for PSL2(~).) Here it is not difficult to show that when >. - (p + 
1) or equivalently s - 1. the representations associated to P>. must go to the 
trivial representation since the corresponding spherical functions go uniformly on 
compact sets to the constant function 1. Hence PGL2(0p) does not have property 
(T). 

Note also that for s = 1 + Io~p (as weH as for s = 1 + (2n + 1) 1;;P) 
the corresponding representation is sg(g) (see [GGPS, p. 132]; this is the unique 
one-dimensional non-trivial representation of PGL2(0p) which is trivial on 
PGL2(1Lp); namely, the sign representation.) 

5.5 Spectral decomposition of r\G 
In the previous section we saw the close connection between representations and 
eigenvalues of the Laplacian (resp: the Hecke operator). If >. is such an eigenvalue 
(where >. ~ 0 in case of G00 and -(p + 1) ::; >.::; p + 1 in the case of Gp), we 
have a unique unitary representation p>. of G such that the corresponding spherical 
function <p>. sarisfies tl.<p>. = A<p>. (resp: b<p>. = A<p>.). Note that there are several 
values of s suchthat p5 = p>. (in fact, any s with >. = i - s2 in the case of Goo 

or >. = p! (p + p-5 ) in the case of Gp), but only one p>.. In this section we will 
prove the following theorem: 

Theorem 5.5.1 Let r be a lattice in Goo (resp: Gp). Then >. is an eigenvalue of 
the Laplacian tl. (resp: the Heckeoperator 6) acting on r\G /K if and only if p>. 
occurs as a subrepresentation of L 2 (r\ G). 
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Recall that we mentioned in Chapter 4 the conjecture of Seiberg that for con­
gruence subgroups r of PSL2(Z) in G = PSL2(~), AJ(r\G/K) :2: t· Theorems 
(5.2.3) and (5.5.1) now yield. 

Corollary 5.5.2. The Seiberg conjecture holds, i.e., AJ (r\G /K) :2: ;!, if and only if 
no complementary series representation is a subrepresentation of L 2 (r\ G) ( except 
of the trivial representation which corresponds to .Xo = 0). 

Now if r is a lattice in PGL2(0p), then GjK is a (p + 1)-regular tree 
and r\G/K is a (p + 1)-regular graph (in factafinite graph, since every lattice 
in PGL2(0p) is cocompact - see [S1, p. 84]). In Chapter 4 we called a k­
regular graph a Ramanujan graph if, with the exception of ±k, all eigenvalues of 
8 = ki- ß (ß = the combinatorial Laplacian) are of absolute value ~ 2.Jk=i. 
Specializing to our case k = p + 1 we have: 

Corollary 5.5.3. Ijr is a (cocompact) lattice in G = PGL2(0p) then r\G /K is a 
Ramanujan graph if and only if no complementary series representation occurs in 
L 2 (r\ G) ( except for the trivial one which corresponds to .X = p + 1, and possibly 
the sign representation sg(g) which corresponds to .X= -(p + 1)). 

Remark. The representation sg did not come up in PGL2(~) and does not ex­
ist for PSL2(~) since every one-dimensional representation of PGL2(~) (or 
PSL2(~)) which is trivial on K is trivial. This is not the case with Op since 
I0~/(0~)2 1 = 4 while I~* /(~*) 2 1 = 2, whence IPGL2(0p)/PSL2(0p)l = 4 
while IPGL2(~)/PSL2(~)I = 2. So, except for this inessential difference we see 
that the «Ramanujan graph property» is the precise analog of Selberg's conjec­
ture. In the next chapter we will see that indeed it holds for congruence subgroups 
of arithmetic groups in PGL2(0p). Thus, it will provide us with a source of 
Ramanujan graphs. 

Proof of Theorem 5.5.1. We begin with proving the theorem for Gp. 

Assurne A is an eigenvalue of 8 on r\ GI K with an eigenfunction f, with 
11/11 = 1. We consider f as a function of G which is left invariant under r (and 
hence in L 2 (r\ G)) and K -invariant from the right. f is therefore a K -invariant 
vector. To prove that the representation /· occurs in L 2 (r\ G), it suffices to com­
pute the K-spherical function associated with f, i.e., <p(g) = (p(g) · f, f), when p 
is the (right) action of Gon L2(r\G). 

Lemma 5.5.4. For every x,y E G, JK f(xky)dk = <p>.(y)f(x) where <p>. is the 
spherical function associated with the representation p>.. 
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Proof Let Fx(Y) = fK f(xky)dk; then Fx is a bi-K-invariant function (check!). 
We will show that it is also an eigenfunction of 8. Recall that 8 commutes with 
the action 1r of Gon functions on G /K given by 1r(g)[(y) = f(g- 1y)), and hence: 

8(Fx(Y)) = 8 (L1r(xk)- 1 f(y)dk) = l7r(xk)-1(8f)(y)dk 

= .A k7r(xkr- 1f(y)dk = -AFx(y). 

So, by the uniqueness of the spherical function with eigenvalue .A we deduce 
that Fx(Y) = Cxc./'(y) for some constant Cx. To compute Cx = Fx(I) we take: 
Fx(I) = JK f(xk)dk = JK f(x)dk = f(x) and the Iemma is proven. D 

We can now continue the proof of the theorem: To compute <p(g) = (p(g) f, f) 
= (p( k )p(g)f, f) we write: 

(p(g)f, /) = r f(xg)f(x)dx = r r f(xkg)f(kx)dkdx 
lr\G }K lr\G 

= r r f(xkg)dkf(x)dx = r <pA(g)f(x)f(x)dx 
lr\GJK lr\G 

= <pA(g)ll/11 2 = <pA(g). 

(The first equality is just the definition, the second is obtained by replacing x 
by xk and integrating over K, for the third recall that f is right K-invariant, and 
the fourth follows from Lemma 5.5.4.) So we have proved that <p = <p\ which 
proves that pA occurs in L2(f\G). 

This side of the proof works almost word by word also for the case of G 00 • 

Now assume pA occurs in L2 (f\G). Again we begin with G = Gp. 

Since pA occurs in L2(f\G) there isaK-invariant vector f, in the subspace 
on which G acts via pA. We want to prove that 8(/) = .Af. 

Since 8(/) = f * 8, i.e., convolution with a characteristic function of a subset 

of G (more specifically with the characteristic function of K ( ~ ~) K), 8(/) is 

at the same submodule of L2(f\G) as f. Moreover, it is also right-K-invariant and 
hence by (5.1.4), 8(/) = cf for some c. To prove that c = A we use the following 
general simple Lemma which is of independent interest. 

Lemma 5.5.5. Let (H, p) be an irreducible unitary representation of G of class 
one with associated spherical function <p. Let v be a K -invariant vector. Then for 
every g E G, JK p(kg)vdk = <p(g)v. 
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Proof JK p(kg)vdk is K-invariant and hence a multiple of v. To compute that 
scalar, let: (k p(kg)vdk, v) = k (p(g)v, p(k-1 )v)dk 

= k (p(g)v, v)dk = <p(g). 

The Iemma is, therefore, proven. 

For our case this implies that for every X and g in G, 

c/'(g)f(x) = L p(kg)f(x)dk = L f(xkg)dk. 

D 

Now, in order to compute the constant c, let g E G with f(g) -/=- 0, and assume 
that f(g) = 1. We remernher that f is defined on the tree G /K and as such 8(/)(g) 
is just the sum over the neighbors of g. So, 

8(/)(g) = ~f(y) = (p+ l) Lt (gk (~ ~)) dk 

= (p + 1)c/' ( ~ ~) f(g) = (p + 1) p ~ 1 = A. 

The third equality follows from Lemma 5.5.5 and the fourth one from the 

computation we made in Section 5.3 which shows that <p>. ( ~ ~) = p~J· This 

completes the proof of Theorem 5.5.1 for the case G = Gp. 

The proof for G = G00 is similar, but some remarks are in order. We start 
with the following lemma which gives a useful expression for the Laplacian in 
this case and is therefore of independent interest: 

Lemma 5.5.6. Let h be a C00 -function on D-ß, and gt = ( ~ ~) for t E [0, 1]. 

Then for every g E G, 

Proof Both expressions are «local». Moreover, it suffices to prove it in case h is 
an eigenfunction of the Laplacian 6., say .ö.(h) = ,\h for some ,\. 

A computation identical to Lemma 5.5.4 shows that for every x,y E G, 
JK h(xky)dk = <p>.(y)h(x). Hence 

-4 ·lim JKh(gkgt)dk -h(g) = -4 ·lim (<p>.(gt) -1) h( ). 
t-+0 t2 t-+0 t2 g 
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But now as <p>.(i) = 1 and (<p>.)'(i) = 0 (since i corresponds to the identity coset 

of G00 /K), the expression we obtain is (-4) · (rp>-r(i)h(g) = -2(<p>.)"(i)h(g). 

We know that ~(<p>.) = A.<p>. and also that (since <p>. is spherical) t:2 <p>.li = 

.? <p>.l i = - ! >... Hence -2 ( <p>.) 11 (i) = (-2) ( --l) = >.. and the Iemma is proved. 

One can now argue for the proof of Theorem 5.5.1 for G00 just as for Gp. The 
operator ~ was expressed as a Iimit of averaging operators. Thus if f E L 2 (r\ G) 
is K -invariant (and gives rise to the spherical function <p>.), ~(f) lies in the same 
submodule as f. Since f is essentially unique in the irreducible subrepresentation 
it generates, and ~(f) is also K-invariant, we conclude that ~(f) = cf for some 
constant c. 

To compute c: By Lemma 5.5.5, JK f(xkg)dk = <p>.(g)f(x) and so 

~(f)(g) = _4 . lim JK f(gkgt)dk- f(g) 
t-+0 t2 

= -4 ·lim cp>.(gt) -l f(g) = (-4) (<p>.)"(i) f(g) 
hO ~ 2 

->.. 
= (-4)"f:2f(g) = A.f(g), 

and the theorem is proven. D 



6 Spectral Decomposition of 
L 2(G(LD)\G(A\)) 

6.0 Introduction 

This chapter begins with a presentation of the adeles of the rational numbers. This 
locally compact ring A = IT' Op is a restricted product of all possible completions 
of Q - the field of rational numbers. When G is a real or p-adic algebraic group 
and r a congruence subgroup Strong Approximation results enable us to embed 
L2(f\G) into L2(G(Q)\G(A)) (see Section 6.3 for a precise formulation). The 
adeles in general and the spectral decomposition of L 2 ( G ( Q) \ G ( A)) in particular 
give a convenient way to state results on «all» spaces L 2 (f\ G) together. This way 
we will see, for example, that the Seiberg conjecture is a special case of a more 
general conjecture which asserts that no complementary series representations ap­
pear as local factors of subrepresentation of L2(PGL(O)\PGL2(A)). Another 
special case of this general conjecture is a theorem of Deligne (see (6.2.2)). This 
theorem, which is, in fact, a representation theoretic reformulation of Ramanujan 
Conjecture (known also as Petersson's conjecture), is extremely important to us. 
This is the theorem which is responsible for both the final solution of the Banach­
Ruziewicz problern and the construction of Ramanujan graphs. (To be precise we 
should say that both problems can be solved using some weaker results proved 
earlier by Rankin and Eichler, respectively, but Deligne's Theorem gives a unified 
approach as well as better results in the Ruziewicz problern (see Chapter 9).) 

The solution of these problems will be presented in Chapter 7. For it we 
will not need the spectral decomposition of L2(PGL2(0)\PGL(A)) but rather of 
L2(G'(O)\G'(A)) where G' is the group ofinvertible elements ofthe Hamiltonian 
quaternion algebra modulo its center (or any other definite quaternion algebra). 
Due to Jacquet-Langlands correspondence (6.2.1), Deligne's Theorem gives the 
desired informationalso about G'(A). 

In this chapter we bring merely a survey. A more detailed exposition from a 
broader prespective and with more proofs (or at least hints on proofs) is given at 
the end of the book in the Appendix, written by Jon Rogawski. 

6.1 Deligne's Theorem; adelic formulation 

In this section we introduce the language of adeles as a convenient way to state 
the theorem of Deligne (which is actually the solution to the classical Ramanujan 
conjecture- see the Appendix). 

On the field Q of rational numbers there are two types of valuations: archi­
median and non-archimedian. There is, essentially, a unique archimedian valuation 
- the standard absolute value v00 (a) = Iai. For each rational prime p, there is a 
p-adic valuation defined as follows: Fora E Q, set a = pvp(a)b, where b = !ff both 
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m and n are integers prime to p and vp(a) E 7L. Then define lalr = p-vp(a). 1t 
is weil known (see [BSh]) that the above examples cover all valuations of 0. A 
valuation defines a metric (by d(a, b) = Ia- bl) and the completions of 0 with 
respect to these valuations are respectively 0 00 = IR and Op - the field of p-adic 
numbers. We regard oo as the infinite prime, and Iet p run over all primes - the 
finite ones and the infinite one. 

Forafiniteprime p, we have in Op a compact opensubring 1Lp- the ring of 
p-adic integers which is characterized as 1Lp = {x E Op llxlr ~ 1 }. 

Definition 6.1.1. Let 

A = {a = ( ... ,ap, .. . ) E I1 Oplap E 1Lp for almost all p} 
p 

where «almost all» means <ifor a/1 but a finite set», and the product runs over a/1 
(finite and infinite) primes p = oo, 2, 3, 5, .... Ais a ring with the componentwise 
addition and multiplication. We put a topology on A by dec/aring IR x Z = 
IR x Ilpfinite 1Lp. with its Tychono.f product topo/ogy, to be an open subring o.f A. 
A is a /ocally compact ring called the Adele ring o.f 0. 

The field 0 can be embedded diagonally in A by a ~---+ (a, a, a, .. . ) for a E 0. 
It is not difficult to check that 0 is a discrete subring and that 0 + ( [0, 1] x Z) = A 
and so 0 is a cocompact lattice in A. (For more details on A, see [GGPS].) 

Let GLz(A) be the group of invertible 2 x 2 matrices over A. It can also be 
defined, as in (6.1.1), as a restricted direct product, i.e., 

GLz(A) ~ {g = (gp) E I1 GLz(Op)lgp E GLz(lLp) for almost all p}. 
p 

Similarly, for SLz(A), PGLz(A) = GLz(A)/Z where Z is its center, etc. Now, 
since 0 is a cocompact discrete subring of A, it behaves much as 7L inside IR. 
It is therefore not surprising that for many algebraic groups G defined over 0, 
G(O) is a lattice in G(A). So for example, SLz(O) (resp: PGLz(O)) is a lattice 
in SLz(A) (resp: PGLz(A)). (But GLz(O) is not of finite covolume in GLz(A), 
just like GLz(?L) is not in GLz(IR)). For the general result in this direction, see 
[MT]. 

Unitary irreducible representations p of G(A) (say G is SLz or PGLz) are 
always «completed» tensor products p = ®pp where Pp is an irreducible unitary 
representation of G(Op) (and Pp is of class one for almost all p) (see [GGPS, p. 
274]). Pp is called the p-factor (or the Iocal p-factor) of p. 

We are now in a position to state the following theorem of Deligne. In the 
Appendix one can see it in its more familiar form as a theorem estimating Fourier 
coefficients of modular cusp forms and the equivalence between the two forms is 
explained. For our applications here the following representation theoretic formu­
lation is more suitable. 
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Theorem 6.1.2. Let G = PGL2(A.), r = PGL2(0) and p = ®Pp an irre­
ducible (not one-dimensional) subrepresentation ofG in L2(r\G). Assurne p00 is 
a discrete series representation of PGL2(~) (i.e., p00 is a subrepresentation of 
L2(PGL2 (~))). Thenfor every finite p, Pp is not in the complementary series of 
representations of PGL2(0p). 

In [Vi2] M.F. Vigneras mentions a stronger conjecture: 

Conjecture 6.1.3. Let G, r, p be as in 6.1.2 - but without any assumption on 
p00 • Thenfor every p (finite or infinite) Pp is not in the complementary series. 

In Chapter 7 we will see how powerful Theorem 6.1.2 is. But to relate it to 
classical arithmetic problems and to our (not so classical ... ) graph and measure 
theoretic problems we need to relate it back to L2(r\G) where G is a real or 
p-adic Lie group and r is a lattice in G. The Strong Approximation Theorem is 
what enables us to do this. 

6.2 Quaternion algebras and groups 

In this section we bring the Jacquet-Langlands correspondence which enables us 
to extend Theorem 6.1.2 to a wider dass of groups. More specifically to groups 
of units of quatemion algebras. This machinery provides a method to transfer 
results on spectral decomposition of non-uniform lattices in PSL2(~) to uniform 
lattices as we did in Section 4.4. But even more important for us is the fact 
that the correspondence will enable us to deduce results on cocompact lattices in 
PGL2(0p). Webegin with some background on quaternion algebras. 

Let u and v be positive rational number, D = D(u, v) a four-dimensional 
algebra over Q with the basis 1, i, j and k subject to the relations 

·2 ·2 d k . . .. l =-U,J =-Van =lj=-Jl. 

So an element a E D is of the form a = Xo + x 1 i + x2j + X3 k whose conjugate is 
a = Xo- Xti- x2j- X3k and whose norm N(a) and trace Tr(a) are defined to 
be N(a) = aa = xö + uxi + vx~ + uvx~ and Tr(a) = a + a = 2xo. The norm is 
multiplicative N(aß) = N(a)N(ß). If IF is a field containing Q (e.g., ~ or Op) 
then DIF = IF 0o D is an IF-algebra. There are two possibilities: either DIF is a 
division algebra (i.e., every nonzero element a of DIF has an inverse: this happens 
iff N(a) =/- 0 for every a =/- 0 in which case a-1 = N(a)) or DIF ~ M2(IF), the 

algebra of 2 x 2 matrices over IF. In the first case we say that D ramifies or .does 
not split in IF, and that it splits or unramified in the second case. In that second 
case there is an isomorphism a: DIF---+ M2(1F) satisfying det(a(a)) = N(a) and 
Tra(a) = Tr(a) for every a E DIF. 

It is weil known (cf. [Vil, Chapter II]) that D(u, v) splits in Op (p ~ oo) 
if and only if the equation ux2 + vy2 - z2 = 0 has a non-trivial solution in Cp. 
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This happens for almost all p; the exceptional set of primes is of even cardinality. 
For example, the standard Hamiltonian quaternion algebra D = D(l, 1) ramifies 
only at p = 2, oo and splits at all the others. It is especially easy to present an 
isomorphism Dop ~ M2(0p) in case p = 1 (mod 4), where there is in Op a 

square root of -1, say c2 = -1. In this case a : Dop ~ M2 ( Op) is given by: 

a(Xo + X]i + X2j + X3k) = ( Xo + X]c X3 + X2E). 
-X3 + X2E Xo- X 1c 

This is an isomorphism as can be checked directly. More generally, if -u and -v 
are squares in IF, then the isomorphism between DIF and M2(1F) is given by: 

. . ( Xo + Fux1 Fv(x2 + Fux3)) 
a(xo + XJl + X2] + x3k) = r-;;( r-;; ) r-;; . 

y-V X2- y-UX3 Xo- y-UX] 

It is also known that the Q-quaternion algebra D is determined by the finite set 
S of (finite and infinite) primes for which D is ramified in Op iff p E S (cf. 
[Re]). The algebra Dis, therefore, sometimes denoted Ds, e.g., the Hamiltonian 
quaternions D(l, I) can also be denoted D{2,oo}· 

Let G1(1F) be the group of invertible elements of DIF modulo its center. So if 
D splits over IF then G1(1F) ~ PGL2(1F). For the Hamiltonian quaternions G1(~) ~ 
S U ( 2) / { ± 1} ~ S 0( 3). In fact, for those primes p for which D ramifies at Qp, 
G1(0p) is compact. As in Section 6.1, G1(Q) is a lattice in G1(A). 

We have by now all the notation to state the following theorem of Jacquet 
and Langlands: 

Theorem 6.2.1. ([JL] see [Ge, Theorems 10.1 and 10.2]) Let D = Ds be a 
quaternion algebra defined over Q and ramified at the set of primes S. Let G1 

be the algebraic group defined by G1(1F) = (IF 0o D)* /Z(IF 0o D)* where (: )* 
denotes the invertible elements and Z ( : ) the center. 

Let p1 = 0pP~ be an irreducible, not one-dimensional G1(A) subrepresen­

tation of L 2 ( G 1 ( Q) \ G 1 ( A)). Then there exists an irreducible subrepresentation 
p = 0Pp of L2(PGL2(0)\PGL2(A)) such that: 

l. ifp rt S, Pp = p~. 
2. if p E S, then Pp is a discrete series representation, i.e., isomorphic to a 

subrepresentation of PGL2(0p) acting on L2(PGL2(0p)). 

Note that if p rt S then D splits over Op so G1(0p) = PGL2(0p), and hence it 
is possible to write p~ in (i). 

Theorem 6.2.1 combined with (6.1.2) gives the following important corollary: 

Corollary 6.2.2. Let D be a definite quaternion algebra (i.e., an algebra which 
ramifies at 0 00 = R e.g., the standard Hamiltonian algebra). Let p1 = 0pP~ be 

an irreducible, not one-dimensional, subrepresentation ofL 2(G(O)\ G1(A)). Then 
for every prime p for which D splits (and so p~ is a representation of PGL2(0p)), 
p~ is not in the complementary series of representations of PG L2 ( Op). 
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6.3 The Strang Approximation Theorem and its applications 

In this section we apply the Strong Approximation Theorem (in the special cases 
relevant to us) to present the connection between G(Q)\G(A) and r(m&")\G(IR) 
or various other homogeneous spaces. This will enable us to apply the previous 
results of this chapter. Most of the applications will be given in the next chapter. 
Herewe merely present Selberg's Conjecture as a special case of Conjecture 6.1.3 
(complementary to Deligne's Theorem 6.1.2)0 

The main technical tool here is the Strong Approximation Theorem, which 
asserts that for a Q-algebraic group G (under suitable assumptions - simply 
connected and absolutely almost simple - see [Kn] and [Pr2]), G(Q)G(Qp) is 
dense in G(A) for every prime p for which G(Op) is not compact. Assurne 
G satisfies these hypotheses; then for every open subgroup K of G(A) we have: 
G(Q)G(Op)K = G(A)o For example, take p = oo and K = G(IR) x TI K~ where 

p<oo 

K~ is an open (finite index) subgroup of Kp = G(Zp) and K~ = Kp for almost all 
r 

p. More specifically, for 0 < N E 1' with prime decomposition N = TI pfi, take: 
i=l 

K;i = ker(G(Zp) ---> G(Zp/pfi&"p)) for i = 1, 0 0 0, r, 

K~ = Kp for p =/=Pi, KN = G(IR) x I1 K~ and K{;' = I1 K;o 
p<oo p<oo 

We then have: 
G(A) = G(Q)G(!R)K[;'o 

This yields: 
G(Q)\G(A)/Kf;' = r(N)\G(IR) 

where r(N) is the N-congruence subgroup off = G(Z), ioeo, r(N) =ker(G(Z) ___, 
G(Z/NZ)). (Note that f(N) = G(Q) nKN which is the reason why f(N) comes 
up in formula ( * ). See [GGPS, pp. 352-356] for more details.) Note also that in 
the left-hand side of (*) we divided G(Q)\G(A) by K[;' and not by KN. This 
leaves room for the action of G(IR), which is isomorphic to the G(IR) action on the 
right-hand sideo So we also have the following isomorphism of G(IR)-modules: 

L 2 (G(Q)\G(A)/Kf/) ~ L 2(r(N)\G(!R))o 

This shows that every G(IR)-submodule of L2(r(N)\G(!R)) is in fact a G(IR)­
submodule of L2(G(Q)\G(A)). 

Now the time comes to be more specializedo The assumption of the Strong 
Approximation Theorem applies to SL2, but it is not quite true for PGL2. Still, 
from the Strong Approximation Theorem for SL2 one can deduce the following 
for PGL2o 
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Proposition 6.3.1. In the notation above: H = PGLz(Q) · PGL2 (~) · K/1 is a 
finiteindexnormal open subgroup ofG = PGL2 (A). The map 

PGLz(O)\PGL2 (A)/~--+ G/H 

decomposes the left-hand side of ( **) into finitely many fibers. The principal one 

(i.e., the pre-image of lH) is canonically isomorphic to r(N)\PGL2 (~). where 

r(N) = ker(PGLz(l")--+ PGLz(l"jNJ")). 

Moreover, L2 (f(N)\PGLz(~)) is isomorphic as an PGLz(~)-module to a sub­

module of L2 (PGLz(O)\PGLz(A)/K{1). 

Proof Everything follows from the fact that H is a finite index normal subgroup 
of G. That fact follows from the Strong Approximation Theorem for SLz together 
with the decomposition of A* (= the invertible elements of A = the idele group 
of Q) as A* = Q* · ~* · I1p<oo 1";;. The details are left to the reader. D 

Proposition 6.3.2. Conjecture 6.1.3 implies Selberg's conjecture )q > ! ( see 
(4.4.1 )). 

Proof From (6.1.3) it would follow, using (6.3.1), that the complementary series 
representations of PGL2 (~) do not appear as subrepresentations of L2(r(N)\ 
PGLz(~)). From this, it follows that the complementary series representations of 
PSLz(~) do not appear in L2 (r(N)\PSLz(~)). The last assertion is equivalent 
to Selberg's conjecture by (5.5.2). D 

It is now clear how Deligne's Theorem 6.1.2 is related to Selberg's conjecture: 
They do not imply each other, but both are special cases of Conjecture 6.1.3. Note 
that Conjecture 6.1.3 is still stronger that the union of the two! 

We are now going to take another special case of the Strong Approximation 
Theorem, this time for quatemion groups similar to those discussed in Section 6.2. 

Let D be a definite quatemion algebra defined over Q (i.e., D does not split 
over ~ and so IR ®o D is a division algebra isomorphic to the real Hamiltonian 
quatemions). Let G' be the Q-algebraic group of the invertible elements of D 
modulo its center. So G'(IR) ~ 50(3). Let p be a finite prime for which Op ®o D 

splits (and so G(Op) ~ PGLz(Op)). By (3.2.2D), r = G' ( J" [~]) is a lattice in 

G' (IR) x G' (Op ). Let's denote r(N) = ker( G' ( J" [~]) --+ G' ( J" [~] /Nl" [~])) 
for (p, N) = 1. Also, as before, K/1 = IJp#<oo K€ where K€ = G'(&:c). for q N 

and C =f. p, and K~i = ker(G'(J"R;)--+ G'(l"c)t/iJ"e;)) when N = Tii=I Cfi. 

An argument similar to (6.3.1) (see also [Vil, p. 81]) gives: 
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Proposition 6.3.3. H = G'(Q) · G'(~) · G'(Op) · Kr/ is a finite index nor­
mal subgroup of G'(A). Also G'(Q)\H/K{j ~ r(N)\G'(~) x G'(Op). and 
L2 (r(N)\G'(~) · G'(Op)) is isomorphlc as a G'(~) x G'(Op)-module to a sub­
representation of L 2(PGL2(0)\G'(A)jK{j). 

To illustrate the way the results of this chapter are going to be applied in 
the next chapter, we sketch here a proof of the following, which has been already 
used in Theorem (4.4.3) without a proof. 

Theorem 6.3.4. Let D be an indefinite quaternion algebra such that Do is a 
division a/gebra but DIR~ M2(~) (see [GGPS, p. 116] for examples). Let G' be 
as before. Then: 

1. r = G'(Z) is a cocompact /attice in G'(~) = PGL2(~). 

2. For r(N) = ker(G'(.Z)----* G'(Z/NZ)), we have At(r(N)\D-11) ~ f6 . 

Proof 

1. This is a special case of (3.2.1). The fact that it is cocompact follows from 
a general criterion ([Gd], [MT]) which applies here since Do is a division 
algebra. For a direct proof see [GGPS, p. 117]. 

2. We already know from (5.5.1) that a question on eigenvalues A is indeed 
one on the irreducible subrepresentations of L2 (r(N)\PGL2(~)). Such an 
irreducible representation p can be «extended», using the Strong Approx­
imation Theorem (as in (6.3.3)), to an irreducible subrepresentation p' of 
L2(G'(O)\G'(A)). Now we have the Jacquet-Langlands correspondence 
(6.2.1). This corresponds to p' an irreducible subrepresentation p = ®pPp 
of L2(PGL2(0)\PGL2(A)) with Poo = p. Theinfinite factor Poo of such 
a representation is govemed by Selberg's Theorem At ~ f6 , which means 
that if p00 = p5 , then either s E i~ or s E ~ and lsl ::; ~ (see (5.2.3)). So 
the same representation theoretic restriction applies to L 2 (r(N)\PGL2(~)); 
hence At ~ 16 for these congruence subgroups as well. D 

6.4 Notes 

1. The general spirit of this chapter follows M.F. Vigneras' paper [Vi2]. The de­
tails follow Gelbart [Gel] and Gelfand-Graev-Piatetski-Shapiro [GGPS]. Both 
books contain much more information and details in this direction. In particu­
lar, Gelbart's book contains a proof of the Jacquet-Langlands correspondence 
(6.2.1). 

2. Deligne's Theorem (6.1.2) as explained in detail in the Appendix is an equiv­
alent form of the classical Ramanujan conjecture (or Peterson-Ramanujan 
conjecture as it is called in some books, or Petersson's conjecture in others). 
lt was proved by Deligne in two steps. At first ([Dll]) it was shown to follow 
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from Weil's conjectures and then in [Dl2] Weil's conjectures were proved. 
Before that some special cases were proved by Eiehier [Ei] by a reduction to 
Weil's Theorem ( «Riemann hypothesis for curves over finite fields» ). 

3. It would be more precise in the Statement of (6.1.2) (and some of the other 
results in this chapter) to use the term «cuspidal representation». We avoided 
making up this additional assumption (i) by talking about subrepresentations 
- so by this we mean, in particular, representations appearing in the discrete 
spectrum - and (ii) by assuming the representation is not one-dimensional. 
The reader should be aware that in more general groups the discrete spectrum 
is not only «cuspidal». Fortunately, we don't have to deal with it. But the 
generalization of the Peterson-Ramanujan Conjecture to other groups is not 
quite the same. (In any way it was shown that the naive generalizations are 
not true, see [BuS] and the references therein.) 

4. M.F. Vigneras' book [Vil] is a good source of information about quaternion 
algebras, their groups and the connection between the classical and the adelic 
formulation. 



7 Banach-Ruziewicz Problem for n 
Ramanujan Graphs 

7.0 lntroduction 

2, 3; 

In this chapter we (finally ... ) pick the fruits: We will prove Drinfeld's Theorem 
that the Lebesgue measure is the only finitely additive rotationally invariant mea­
sure defined on the Lebesgue measurable subsets of the sphere 5n for n = 2, 3. 
(For n ~ 4, this was proved in Chapter 3, while for n = 1, it is not true! See 
(2.2.11).) We will also construct, for every prime p, a family of (p + 1)-regular 
Ramanujan graphs (in particular, giving rise tothebest known expanders!). 

Both problems will be solved using the same group r ! Let's fix now the 
notations for the rest of the chapter: Let D = D(u, v) be adefinite quatemion 
algebra defined over Q, (i.e., u, v > 0, for example, the standard Hamiltonian 
quatemion algebra), G' is the Q-algebraic group of the invertible elements of 
D modulo the central ones, i.e., G' = D* /Z(D*). Let p be a finite prime for 
which D splits in Op (e.g., p is any odd prime in the case of the Hamiltonian 
quaternions) and r = G'(Z[~]). Then the diagonal embedding r - G'(IR) X 

G'(Op) ~ 50(3) x PGL2(0p) presents ras a cocompact lattice in the «mixed» 
Lie group G = 50(3) x PGL2(0p). If N is a positive integer prime top, say 

N = Tii=I efi, we denote r(N) = ker(G'(Z[~])---+ G'(Z[~]/NZ[~]) and r(N) 
is called the N -congruence subgroup of r. Bemg a finite index subgroup of r, it 
is also a cocompact lattice of G. The main result, from which the two solutions 
follow, is the following: 

Theorem 7.1.1. If p = p00 ®pp is an irreducible subrepresentation ofL2(r(N)\G) 
then Pp is not from the complementary series (unless it is one-dimensional). 

This theorem is proved in 7.1 using al1 the machinery we prepared in Chapter 
6. Then by looking at the projection of r into the real factor of G, we will prove 
Drinfeld's Theorem which is the affirmative solution to the Banach-Ruziewicz 
problern for n = 2, 3. The method is essential1y the method of Drinfeld but we 
use a different group (r instead of G'(Q)). This has the advantage of being 
«effective». (See more in Chapter 9.) lt was shown by Sarnak [Sa2] that this 
affirmative solution for n = 2, in fact, implies an affirmative solution for every 
n ~ 2 (and even an effective one), but we will not go into this here as we already 
proved it for n ~ 4 (though, in a «non-effective» way) and the case n = 3 can be 
deduced easily with the case n = 2. 

In 7.3 we use the same group r (or more precisely, its congruence subgroups 
r(N)) to construct Ramanujan graphs. This time we look at the projection ofr(N) 
into the p-adic factor PGL2(0p). The graphs are r(N)\PGL2(0p)/PGL2(Zp)· 
Theseare finite graphs since PGL2(0p)/PGL2(Zp) is a tree and r(N) is co­
compact in PGL2(0p). The construction here follows Lubotzky-Phillips-Sarnak 
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[LPS1, LPS2] and Margulis [M6]. Weshall also estimate some more combinato­
rial invariants of these graphs - such as girth, chromatic numbers and diameter. 
Finally, in 7 .4, we will give a «more explicit» presentation of them in some special 
cases. 

7.1 The spectral decomposition of G'(~[~])\G'(IR) x G'(Op) 

We continue here with the notations set up at the introduction of this chapter. 

Theorem 7.1.1. Let p = p00 ® Pp be a unitary irreducible representation of 
G = G'(IR) x G'(Op) appearing in L2(r(N)\G). Then Pp (which is an irreducible 
unitary representation of G'(Op) = PGLz(Op)) is not from the complementary 
series ofrepresentations of PGLz(Op) unless it is one-dimensional. 

Proof From the Strong Approximation Theorem it follows (see 6.3) that p can 
be extended to a representation p' of G'(A) appearing in L2(G'(O)\G'(A)) such 
that p' = ® p~ where p~ = Pp and P'oo = p00 • Now, by the Jacquet-Langlands 

e 
correspondence (6.2.1) there exists a subrepresentation p = ® h of L2(PGLz(O)\ 

e 
PGLz(A)) such that Pp = p~ = Pp and p00 is a discrete series representation of 
PGLz(IR). lt follows now from Deligne's Theorem (6.1.2) that Pr (and hence 
Pp) is not a complementary series representation (unless Pp. and hence also p, is 
one-dimensional). D 

7.2 The Banach-Ruziewicz problern for n = 2, 3 

We have shown in (3.4.1) that an affirmative solution to the Banach-Ruziewicz 
problern for 5n would follow once we present a finitely generated subgroup r of 
50(n+ I) whose representation on LÖ(5n) = {f E L2(5n) I J fd>. = 0} does not 
weakly contain the trivial representation. We now show that the group r = r(I) 
of Theorem 7.1.1 projected into G'(IR) ~ 50(3) satisfies this condition: 

Theorem 7.2.1. For n = 2, 3, Lebesgue measure is the on/y finitely additive, 
rotationally invariant measure of total measure one defined on the Lebesgue mea­
surable subsets of 5n. 

Proof In (2.2.12) it was proved that any such measure must be absolutely continu­
ous with respect to the Lebesgue measure and hence defines an invariant mean on 
L 00 ( 5 n). To prove that this invariant mean is the Lebesgue integral, it suffices by 
(3.4.1) to present a group r acting on 5n in such a way that its action on LÖ(5n) 
does not weakly contain the trivial representation Po· Let r = r(1) from (7.1.1), 
1r: r- 50(3) its projection to 50(3), 1f its representation on L2 (50(3)) and 
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?To is the restriction of 7T totheinvariant subspace L5(50(3)). lf the action of r 
on L5(52) weakly contains the trivial representation, then so does ?To. 

Denote Gp = G'(Olp), G00 = G'(lffi) = 50(3), r = G'(Z[~]) as before, 
embedded diagonally in Goo X Gp. f' is the projection of r to Gp. f' is a cocompact 
lattice in Gp since Goo is compact and r is a cocompact lattice in G00 x Gp. 
Denote V= L2(50(3)), and (V,?T) is the representation of r on V given by 
7T('y)(f)(x) = f('y- 1x) for X E 50(3), f E V and "( E f C:o:' f'. Let (H, a) be 

lnd~P (V, 1T ). 

Lemma 7.2.2. (H, a) C:o:' L2(f\G 00 x Gp) as Gp-representations, 

Proof By the definition of induced representation, H is the space of functions 
cp : Gp ____, V satisfying cp('yg) = ?T('y )cp(g) for "( E f', g E Gp and J II cp(g) 11 2< 

f'\Gp 
oo. So, if x E 50(3), cp satisfies (cp('yg))(x) = cp(g)('y-1x). With such a cp EH, 
we associate the function rp: G00 x Gp ____, C given by rp(goo,gp) = (cp(gp))(goo). 
lt is easy to checkthat rp E L 2(f\G00 x Gp). 

Conversely, with 'lj! E L 2(f\Goo xGp), we associate the function ijJ : Gp ____, V 
defined by: (ijJ(gp))(goo) = 'lj!(goo,gp). 

1t is not difficult to check that these maps define the desirable isomorphism. 
1t is a Gp-isomorphism when we keep in mind that Gp acts on H by a where: 
(a(ip)cp)(gp)(goo) = cp(gpip)(goo). D 

Now, recall from 3.1 that induction is a continuous map between the corre­
sponding unitary duals. Thus, if ?To weakly contains the trivial r -representation, 
then LÖ(f \ (G'(Iffi) x G'(Op))) weakly contains the trivial Gp-representation. lf 
Pp is a Gp-subrepresentation of L5(r \ G00 x Gp), then Iet H(pp) be the complete 
direct sum of all the Gp-subrepresentations isomorphic to Pp· This space is Goo 
invariant since G00 commutes with Gp. This means that if Pp appears as a Gp­
subrepresentation then there exists some representation of G00 , say p00 suchthat 
p00 ® Pp is a G00 x Gp subrepresentation of L 2 (r \ Goo xGP). By (7.1.1) this implies 
that Pp is not in the complementary series unless Pp is one-dimensional. Now if 
Pp is a one-dimensional representation, then it can not be the trivial representation 
since Pp lt does not (strongly) contain the trivial representation; so it must be the 
sg representation (see remark after Corollary (5.5.3)). This representation is also 
bounded away from the trivial representation, and the theorem is proved for n = 2. 

The above proof implies the theorem also for 53. One way to argue is that 
50(4) is locally isomorphic to 50(3) x 50(3) and we have found a dense group 
r of 50(3) whose representation in LÖ(50(3)) does not weakly contain the trivial 
representation. The same is therefore true for f X f in 50(3) X 50(3) and hence in 
50(4). Another approach is to prove Theorem 7.1.1 with 5U(2) instead of 50(3) 
- see Drinfeld [Drl] - and to use the fact that 5U(2), being homeomorphic to 
54 , acts on 54 transitively, so the same r which works for 5 U ( 2) works for 
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53 and 54 . Anyway, the theorem is now proved. Moreover, it proves also the 
assertion promised in 3.4: Even though K = 50(3) and K = 50(4) do not 
contain any infinite group with property (T), they do contain a subgroup r whose 
representation on L~(K) does not weakly contain the trivial representation. The 
Haar measure is, therefore, the only finitely additive invariant measure of K for 
those K's as weil! (But not for 50(2) ~5 1 !) D 

Before ending this section we mention that this affirmative solution for the 
Ruziewicz problern for n = 2 and 3 can also be deduced from Selberg's Theorem 
(4.4.1) (see also (5.5.2)) instead of (6.1.2). This will be done by choosing D tobe 
a quatemion algebra over a real quadratic extension k of 0. Pick D which splits 
at one infinite place and ramifies at the other. If 0 is the ring of integers of k, then 
r = G'(O) is a lattice in G'(kool) X G'(koo2) = PGLz(~) X 50(3) where G' = 
D* /Z(D*). Now, the Jacquet-Langlands Theorem (6.2.1) with Selberg's Theorem 
implies that the representation of r in L~(50(3)) does not weakly contain the 
trivial representation. This, as before, concludes the proof. 

7.3 Ramanujan graphs and their extremal properties 
Continuing with the notations set up at the beginning of the chapter, recall that 
the combinatorial Laplacian A of a k-regular graph X is A = kl- 8 where 
8 is the adjacency matrix, i.e., 8 : L2(X) -+ L2(X) is defined as (8/)(x) = 

E f(y)). 
{yld(y,x)=l} 

Theorem 7.3.1. Let r(N) be as before and f'(N) its projection into G'(Op) ~ 
PGL2(0p) under the map G'(IR) x G'(Op) -+ G'(Op)· Then 

X = f'(N)\PGL 2(0p)/PGLz(7l.p) 

is a finite (p + 1 )-regular graph satisfying: every eigenvalue .X of 8 = 8x is either 
±(p + 1) or I .XI ~ 2JP. So, X is a Ramanujan graph. 

Proof. First, note that X is indeed a graph since it is a quotient of the tree 
PGLz(Op)/PGLz(lLp) by the discrete group f'(N). lt is finite since f'(N) is 
cocompact in PGLz(Op) and so X is discrete and compact and hence finite. lt is 
(p + 1 )-regular since the tree is so (X might have multiple edges for small values 
ofN). 

To prove the assertion on .X, we use (5.5.3). By that corollary, it suffices to 
show that no complementary series representation occurs in L2(f'(N)'fGLz(Op)). 
If such a representation p occurs there, then Po ® p occurs as a subrepresentation 
of L2(r(N)\50(3) xPGLz(Op)) where Po is the trivial representation of 50(3). 
This contradicts Theorem 7 .1.1 and our theorem is therefore proven. D 

The rest of this section will be devoted to proving that the family of graphs 
X defined in Theorem (7.3.1) satisfy some more extremal properties. We begin 
with the girth. To this end we start with some Iemmas. 
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Lemma 7.3.2. Let g E SLz(Op) and X a vertex in the tree T = PGLz(Op)/ 
PGL2 (Zp)· Then d(gx,x) ~ -2vp(Tr(g)), where llp is the p-adic valuation and 
d(x,y) denotes the distance between two vertices X and y. 

Proof The action of GLz(Op) on the tree T preserves the distance between vertices 
and d(gx, x) = d(hgx, hx) = d(hgh- 1 (hx), hx) for any h E GLz(Op)· On the other 
hand, GL2 (Qp) acts on the vertices ofT transitively, and the trace of a matrix is 
preserved under conjugation. Therefore, substituting x by Xo - the standard lattice 
- (see 5.3) and g by hgh-1 where hx = Xo, we may assume x = Xo. So we have 
to show that for any g E SLz, d(gxo,xo) ~ -2vp(Tr(g)). 

For g = (a1 az) E GLz(Op) derrote w(g) = .!ßax { -vp(ai)}. From the 
a3 a4 z-1, ... ,4 

ultra-metric inequality, it follows that 

w(g) ~ -vp(a1 + a4) = -vp(Tr(g)). 

So, it suffices to prove: d(gxo, xo) ~ 2w(g). We will, in fact, prove equality: 

d(gxo, xo) = 2w(g). 

Let Y be the subset of all g E S Lz ( Op) for which ( *) holds. Since Vp is 
a non-archimedian valuation, w(gh) ~ w(g) + w(h) for any g,h E GLz(Op)· 
But w(h) = 0 for any h E GLz(Zp). Therefore, w(pgp') = w(g) for any g E 
GLz(Op) and p,p' E GLz(Zp)· On the other band, since GLz(Zp)(xo) = xo, 
d(pgp'xo,xo) = d(gxo,xo) for any g E GLz(Op) and p,p' E GLz(Zp)· Therefore 

( 
-1 0) 

Let 'Y = p 0 p . Then a direct computation shows that for any n ~ 0, 

dist('Ynxo,xo) = 2n and w('Yn) = n, so A+ = {'Yn I n ~ 0} is also in Y. By 
the Cartan decomposition, SLz(Op) = SLz(Zp) · A+ · SLz(Zp) (prove directly!). 
Hence, Y = SLz(Op) and the lemma is proven. 0 

Remark 7.3.3. (i) The lemma is not valid for all g E GLz(Op) simply because 
the scalars act trivially on T. 

(ii) lt is possible to show that the lemma cannot be improved in the following 
sense: For any g E SLz(Op) there exists a vertex x E T suchthat dist(gx,x) = 
max{O, -2vp(Tr(g))}. The details are left to the reader. 

Definition 7.3.4. lf X is a graph, the girth g(X) of X is the length of the shortest 
non-trivial closed path in X. 
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Lemma 7.3.5. Let T be a tree on which a group r acts freely (i.e., Vl =/:- 1 E r 
and x E T, !X =1- X) with quotient graph X. Then g(X) = min dist(rx, x). 

lhEf 
xET 

Proof Let x' E T and 1 =/:- "(1 E r be such that the minimum obtained is 
dist(r' x', x'). Then the path in T from x' to 1' x' gives a non-trivial closed 
path in X. Conversely, every closed path in X can be lifted up to a (non­
closed) path in T such that its endpoints are in the same orbit; this shows that 
g(X) ~ min dist(rx, x). D 

Before continuing we clear up a technical point by showing that for «many» 
N-s, f(N) satisfies both assumptions ofthe last two Iemmas, i.e., it is in P SL 2(0p) 
and it is torsion free, and so its action on the tree T = PGL2(0p)/PGL2(Zp) is 
a free action. 

Lemma 7.3.6. Let D = D(u, v) where u, v > 0 and assume that p is not a 
quadratic residue modN and Iet G' = D* /Z(D*) as before. Then r(N) = 
ker(G'(Z[~]) ----t G'(Z[~]/NZ[~])) is in PSL2(0p), it is torsionfree and hence a 
free group which acts .Jreely on T. 

Proof If 1 E f(l) then det(r) (when we consider 1 as an element of D(Z[~]) 

before factoring by the center) is an invertible element of Z[~] and det(r) = Ii > 
0 (since u, V > 0). det('y) is therefore in u = {pn I n E Z}. lf I E r(N) then 

det(r) = 1 (modN). We claim that det(r) E U2 = {p2n I n E Z}. Otherwise 
det(r) = p2r+! and so (pr+ 1 )2 = p (modN), which contradicts our assumption 

on p. So det(r) is a square in Z[~] and hence in Op, and so 1 E PSL2(0p). 

r(N) is also torsion free: Let q be a prime dividing N; then r(l) is embedded in 
G'(Zq) in such a way that f(N) <.......+ Lq = ker(G'(Zq) ____, G'(Zq/qZq)). Now, Lq is 
a torsion-free group. This can be deduced from the logarithmic map convergence 
on Lq. (See also [DDMS, Chapter 5]. An easy proof of the torsion freeness of 

f(N) in case two primes q1 and q2 divide N, is: Lq; is a pro-qi group so the only 
possible torsion in f(N) is qi-torsion. Since q1 =/:- q2 this means that there is no 
torsion.) 

Once we know that f(N) is torsion free, plus the fact that it is discrete in 

PGL2(0p), it follows that it acts freely on the tree T and hence is a free group 

(cf. [SI, p. 82]). D 

We are now ready to prove the following: 

Theorem 7.3.7. Using all notation and all assumptions above (so u, v > 0 and 

p is not quadratic residue modN), the girth g(X) of X = r(N)\PGL2(0p)/ 
PGL2 (Zp) is at least 4logp(N) - 4logp(2). 
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Proof By Lemma 7.3.5, g(X) can be estimated by dist(!'x, x) for every 'Y E r(N) 
and x E T. Lemma 7.3.2 (with the help of (7.3.6)) yields that we can estimate 
-2vp(Tr(!')) instead (where 'Y is replaced by a representative of it, called "(, in 
(Z[! ]0 D)* whose norm satisfies 'Yi = 1). 

p 71. 

Weil, 'Y = a + bi + cj + dk where a,b,c,d E Z[~], 1 = 'Yi = a2 + ub2 + 
vc2 + uvd2 , Tr(!') = 'Y + i = 2a and 'Y = 1 (modN), i.e., a = 1 (modN) and 
b = c = d = 0 (modN). Now, 2-Tr(!') = 2-2a = a2+ub2+vc2+uvd2+1-2a = 
(a- 1)2 + ub2 + vc2 + uvd2• Thus 2- Tr(!') is divisible (in Z[~]) by N 2. Write 

2- Tr(!') = ~ where (m,p) = 1 and m,e E Z. Since 'Y is not trivial in 

(Z[! ]0 D)* /Z((Z[! ]0 D)*), at least one of the scalars b, c or disnot zero. lt is p 71. p 71. 

impossible, therefore, that a = 1 (which would imply that ub2 + vc2 + uvd2 = 0, 
i.e., the quadratic form associated with D represents 0 non-trivially over Q; this 
is impossible by our assumption). So Tr(!') =1- 2 and hence m =1- 0. But, since 
a2 + ub2 + vc2 + uvd2 = 1 and we assume u, v > 0, we have Iai :<:::: 1. Therefore, 

INzlm I= 12- 2al :<:::: 4. 
p 

From this, we get pl ~ IN~ml ~ ~2 and hence e ~ logp(~2 ) = 2logp(N)-

2logp(2). Moreover, Tr(!') = 2- N;m = zpc-;::zm and (p,2pl- N 2m) = 1 so 
vp(Tr(!')) = -e. Lemma 7.3.2 now concludes the proof of the theorem. 0 

To appreciate the importance of the above theorem we add a few remarks: 

Remarks 7.3.8. (i) The number of vertices of the graph X in the theorem can 
be estimated in the following way: Let h = jr(l)\PGLz(Op)/PGLz(Zp)l. Since 
r = r( 1) is cocompact, h is finite. (In fact, h is a very interesting number from 
an arithmetic point of view. lt is the «dass number» of the quatemion algebra 
- see [Kn] and [Vi 1, p. 87].) Since r(1)jr(N) is a subgroup of G'(Z/NZ), 
[r(1): r(N)] :<:::: N 3 so lXI :<:::: hN3 • Hence, ifwe fix D (and hence h; moreover we 
can easily find D for which h = 1; see 7.4), then as N varies one obtains an infinite 
family of (p + 1)-regular graphs Xi with girth (Xi) ~ 1logp(IXI)- 4logp(2). 
(By a more careful analysis one can omit the 4logp(2) term, which is negligible 
anyway.) 

(ii) A simple counting argument shows that for a k-regular graph X, g(X) :<:::: 

(2 + o(1))logk_1(1XI) when lXI ---+ oo. Erdös and Sachs [ES] proved using 
random considerations that graphs with girth logk-t (lXI) exist. Thus the above 
(explicit!) graphs are better than those obtained by random methods! (For the 
case k = 3, Weiss [We] has previously proved that the graphs constructed by 
Biggs and Hoare in [BH] also satisfy g(x) ~ 1Iog2(1XI)). lt is still an open 
problern whether for a fixed k' an infinite family of k -regular graphs xi exist 
with lim sup Iog:~~~~Xd) > 1· (See [B 1 ,2,3] for more on this prob lern.) 
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(iii) Instead of making the assumption that p is not a quadratic residue mod N, 
we could replace r(N) by f1(N) = r(N) n PSL2(0p) and the proof would 

work word for word for the graphs X = f1(N)\T. Note that for groups r in 

PS L2 ( Op), r preserves the bi-partition of the tree. (Every tree is bi-partite by 

declaring two vertices to be «On the same side» if the distance between them is 

even. By the proof of Lemma (7.3.2), every element of PSL2(0p) preserves this 

partition.) Hence f\T is bi-partite. Bi-partite graphs can be colored by two colors 

(see Definition (7.3.10) below). Our next goal will be to get graphs with high 

chromatic number- so then it will be important that r(N) is not in PSL2(0p). 
We can still assert that girth (r1 (N)\T) ;::: 4logp(N)-4logp(2). If r 1 (N) i= r(N) 

then [r(N) : f1(N)] = 2, and so f1(N)\T isadouble cover of r(N)\T. From 

all this, it follows that if p is a quadratic residue mod N we still have the weaker 

result: girth (f(N)\PGL2(0p)/PGL2(Zp)) 2: 2logp(N)- 2logp(2). 

Lemma 7.3.9. Using the notation above, now assume that p -:/= 2 and p !.§_ a 

quadratic residue modN. Then X = r(N)\PGL2(0p)/PGL2(Zp) is not bi­
partite. 

Proof Xisbi-partite if and only if -(p + 1) is an eigenvalue of 8 the adjacency 

matrix of X. By (5.5.1) and the last paragraph of 5.4, this happens if and only if the 

representation sg of PGL2(0p) is a subrepresentation of L2(r(N)\PGL2(0p)). 

The representation sg is the non-trivial one-dimensional representation of 

PGL2(0p). which is trivial on the index two subgroup PSL2(0p) · PGL2(Zp) 
(recall that JPGL2(Qp)/PSL2(Qp)l = l0p/(Op)2 1 = 4). As p is a quadratic 

residue modN, r(N) contains elements 1 with det(T) = p2r+I for some r. (See 

the proof of Lemma 7.3.6.) Hence f(N) c PSL2(0p) · PGL2(Zp) and hence 
# 

r(N) · PSL2(0p) · PGL2(Zp) = PGL2(0p). This implies that sg cannot appear 

in L2(f(N)\T), and Xis, therefore, not bi-partite. D 

The results on the graphs discussed above can be applied to estimate some 

more combinatorial invariants which are related to eigenvalues. As a sample we 

will mention some. (For more combinatorial invariants related to eigenvalues, see 

[Bg] and [CDS].) 

Definition 7.3.10. Let X be a graph. 

(i) x(X) - the chromatic number of X is the smallest number of colors needed 
to color the vertices of X in such a way that adjacent vertices have different 

colors. 

(ii) Diam(X) - the diameter of X is max dist(x, y) when x and y run over the 

vertices of X. 

(iii) i(X) - the independence number of X is the maximal size of a subset of X 

with no two vertices in the subset adjacent to each other. 
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All these invariants can be related to eigenvalues in the following way: 

Let's set up some notation: for a connected k-regular graph on n vertices 
X = Xn,b the eigenvalues of 8, the adjacency matrix of X, are .Ao = k > 
.A, ~ ... ~ .An-I· Xisbi-partite iff An-I = -k. Let .A,(X) = .A, and .A(X) be 
defined as max{[.A,[, f.An-2[} if Xisbi-partite and max{[.A,[, f.An-I[} ifnot. So X 
is a Ramanujan graph if and only if .A(X) ::::; 2Jk=l. Finally, Rn is the natural 
logarithm. 

Proposition 7.3.11. /.Let X = Xn,k be a k-regular graph on n vertices. Then 

(i) x(X) ~ -.Xn~ 1 (X) + 1. 

(ii) Diam(X) < Pn(21XI) ) < ~. 
- p (k+~ - fn(.X(X)) 

n .X(X) 

(iii) i(X)::::; ~[X[. 
//. If X is a k-regular Ramanujan graph, then: 

(i) x(X) = 2 if X is bi-partite and x(X) ~ 2b + 1 if not. 

(ii) Diam(X) :S 2logk_ 1([X[) +logk_ 1(4). 

(iii) i(X) :S ~[X[. 

Proof I. (i) is due to Hoffman [Ho] (or follows from (iii) without the «1», since 

x(X) ~ i~~~) ). 

(ii) is proved in [LPS2, Theorem 5.1] or [Sa2, 3.2.6] (in somewhat weaker forms 
it is also proved in [AM] and [C2]). 

(iii) A proof provided by N. Alon is given in [LPS2, Proposition 5.2], and one 
due to Hoffman appears in Haemers [H]. 

Part II follows from Part I by simple substitutions. D 

Applying the last proposition to the graphs studied above provide the follow-
ing theorem, which summarizes the results of this section: 

Theorem 7.3.12. Let D = D(u, v) be adefinite quaternion algebra, (0 < u, v E Q 
and i2 = -u, f = -v and D ramifzes at oo). Let G' be the Q-algebraic group 
G = D* /Z(D*), p a prime for which D splits over Op, N an integer prime to 

p, r(N) = ker(G'(Z[~]) ----+ G'(Z[~]/NZ[~])) and T = PGL2(Qp)/PGL2(Zp) 

the (p + 1 )-regular tree. Let X = Xp,N be the (p + 1 )-regular finite graph X = 
r(N)\T. Then X is a Ramanujan graph with less than N 3 vertices. 

Moreover: I. If p is not a quadratic residue mod N, then: 

(i) X is bi-partite, x(X) = 2 and i(X) = 1;1. 

(ii) girth (X)~ 4logp(N)- 4logp(2) c:o:' ~ logp(X). 

(iii) Diam(X) :S 2logp([X[) + logp(4). 
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/1./fp is a quadratic residue modN, then 

(i) X is not bi-partite. 

(ii) i(X) ~ ~~ lXI. 
(iii) x(X) 2:: ~ + 1. 

(iv) girth (X) 2:: 2logPN- 2logp(2) ~ jlogp(N). 

(v) Diam(X) ~ 2logp(IXI) + logp(4). 

Some remarks are in order: The question of existence of graphs with large 
girth and large chromatic nurober was a long outstanding open problem. The 
difficulty comes from the fact that if X has large girth it «locally» looks like a tree, 
and a tree can always be colored by two colors. Erdös was the first one to prove 
the existence of such graphs using random methods (see [B1,2] for references and 
the history of the problem). Our explicit graphs have the stronger property of large 

girth and W arbitrarily small (this implies x(X) is arbitrarily large since clearly 

x(X) 2:: zm ). It was shown recently by Biggs [Bg2] that the lower bounds given 

in the theorem for the girth are tight. 

Regarding the diameter: It is a simple exercise to prove that for a k -regular 
graph Diam(X) 2:: logk-I (IXI)-2, but it is not known whether asymptotic equality 
is possible for infinitely many graphs. See [B 1, B2] for more information on this 
prob lern. 

The question of existence of k-regular Ramanujan graphs for most k is still 
open. In [Morl], M. Morgenstern considers the case where k is of the form 
k = po: + 1, where p a prime. For this case he uses global fields in characteristic 
p > 0 to construct graphs analogaus to those here. He uses the work of Drinfeld 
[Dr2], which is the characteristic p analogue of Ramanujan conjecture (see more 
in Theorem 7 .4.5 and in §8.4 ). But for k =/:. p0 + 1 nothing seems to be known. 
The first open case is k = 7. 

7.4 Explicit constructions 

The graphs studied above, X = XP·N, were explicit in the sense that we presented 
specific graphs and did not merely prove their existence. Still, their construction 
was not explicit since they were presented as quotients of an infinite tree by an 
infinite group. For various reasons (the main one being the applicability of these 
graphs as excellent expanders (by 4.2) which can serve as components of various 
communication networks (see 1.1)), it is desirable to have explicit constructions. 
This will be our main goal in this section. We follow the construction in Lubotzky­
Phillips-Samak [LPS 1, LPS2] but from a different point of view. 

We give the explicit construction for the case D = D( 1, 1) and p = 1 ( mod 4). 
Under these assumptions Dop splits, and the following is an explicit isomorphism 
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where c: E Op is an element satisfying c:2 = -1. 
4 

95 

Let 5' = {(xo,x1,Xz,x3) E 7l.. I Z:::xf = p}. By Jacobi's theorem (2.1.8), 
i=l 

15'1 = S(p + 1). Since p = 1 (mod4), for every (xi) ES' one of the Xi's is odd 
and the others are even. Let 5 be the subset 5 = {(xo,x1,Xz,x3) E 5' I Xo > 0 
and odd and Xi is even for i = 1,2,3}. Then 151 = p + 1. To each element 
(xo,x1,xz,X3) E 5 we associate the quatemion a = Xo + x1i + xzj + x3k, so 
aä = p. We denote also by 5 this set of p + 1 quatemions. 5 can be written 
as {a1, ... a5 , ä1, ... , ä 5 } where s = ~ since a E 5 iff ä E 5. Each one of 
the elements in 5 is invertible in D.:z'[l] (since aä = p), and so they give, after 

p 

projection modulo the center, elements in r = G'(7LlbD· The assumptions made 

on the Xi 's actually imply that 5 E f(2) - the congruence subgroup modulo 2. 
Now recall the group A(2) we considered in (2.1.11): a close look shows that 
it is exactly our f(2). (There we were interested in its embedding as a dense 
subgroup in G'(~) ~ 50(3); now we are interested in its embedding as a discrete 
subgroup in G'(Op) ~ PGLz(Op).) Therefore by (2.1.11), it is a free group on 

the s = ~ generators 0:1' ... ' O:s and Ö:i = aj I. Considering r ( 2) as a subgroup 
of PGLz(Op) (under the isomorphism u defined above), it is a cocompact lattice. 
In fact, we have the following 

Lemma 7.4.1. The action off(2) on the tree T = G/K = PGLz(Op)/PGLz(1Lp) 
is simply transitive. Hence G = f(2) · K, i.e., every g E G can be written in a 
unigue way as g = --y • k for some --y E r(2) and k E K. 

Proof Look at the standard lattice Lo ~ 1Lp x 1Lp in V = Op x Op (see 5.3). 
Since det( O:i) = p for every i = 1, ... , p + 1, O:i takes Lo to a sublattice of 
Lo of index p, i.e., to a neighbor of Xo = [Lo] as an element of the tree T. 
The vertices a1 (xo), ... , ap+l (xo) must be alldifferent since if ai(xo) = aj(x0 ) 

then aj1aj(xo) = xo, i.e., aj1aj is in the compact stabilizer of x0 and also 
in the discrete subgroup f(2) and hence is an element of finite order; but f(2) 
is free whence torsion free and so aj 1 a j = 1 and O:i = a j- This proves that 
a1 (xo), ... , ap+l (xo) are exactly all the p + 1 neighbors of x0 . lt is not difficult 
to deduce from this that the action of f(2) on T is transitive. 1t is a free action 
(i.e., no 1 =/= 'Y E f(2) has any fixed point) by the argument above. D 

From our discussion in the proof of the lemma we see that T can be identified 
with the Cayley graph of f(2) with respect to the set 5 of generators. This last 
observation is crucial for us: Let N = 2M where M is odd and N is prime 
to p. Then the congruence subgroup f(N) is a normal subgroup of r = f(1) 
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and in particular of r(2). The graph we are interested in is r(N)\T, but by the 
above identification it is indeed the Cayley graph of the quotient finite group 
r(N)\r(2) = r(2)jr(N) with respect to the set of generators 5. The only thing 
we were left with is recognizing the finite group r(2)jr(N). By its definition it is 
(isomorphic to) a subgroup of G'(7l../N7l..) ~ G'(7l../27l..) x G'(7l../M7l..). The image 
of r(2) in the first direct factor is trivial, so we can identify r(2)jr(N) with a 
subgroup of G' (7l../M7l..). This last group is isomorphic to PGLz (7l../M7l..). If -1 is 
a quadratic residue modM, it is also not difficult to give an explicit isomorphism. 

Lemma 7.4.2. The image ojr(2) in PGLz(7l../M7l..) contains PSLz(7l../M7l..). 

Proof Let H be the Q-algebraic group of the elements of D of norm 1. This 
group satisfies the assumptions of the Strong Approximation Theorem. (Indeed, 
H(C) ~ SLz(C) and so His simply connected as an algebraic group; seealso [Vi 
1, Theorem 4.3, p. 81].) Hence (see 6.3) H(Q) -H(Op) is densein H(A.). Dividing 
both sides by H(Op) we deduce that H(Q) is densein F = H(IR) · Il' H(Oe). 

polf!<oo 
Let K be the following compact open subgroup of F; K = H(IR) x Il Ke 

p#<oo 
when Kz = ker(H(7l..z) ____, H(7l..z/27l..z)) and Ke = H(7l..e) for every I! "l2,p. Then 
H(Q) n K is dense in K. A careful (but easy) check shows that H(Q) n K is 
equal to the congruence subgroup mod2 of the arithmetic group r 1 = H(7l..[~]). 
So r 1 (2) is dense in K and hence its projection is onto any finite quotient of 
K. In particular since K/H(IR) is the congruence subgroup mod2 of H( IT7l..e), 

Rolp 
K and hence r 1(2) is mapped epimorphically on H(7L/M7l..). This last group is 
isomorphic to 5Lz(7l../M7L) by our assumptions on M. 

The group His mapped into G' by dividing H by its center. The map H ____, G' 
is a subjective map as a map between algebraic groups (i.e., over C) but usually 
not for subrings or subfields of C. r 1 is mapped into r and the image is a subgroup 
of index 2. (Note that CXi E r are not in the image of r 1 since det( CXi) = p and p 
is not a square in 7l..[~].) Similarly, the image of r1 (2) is an index two subgroup 
in r(2). The projection rl(2) ____, r(2) ____, r(2)jr(N) ____, PGLz(7l..jM7l..) can be 
checked tobe the same as r 1 (2) ____, PGLz(7l..jM7l..) obtained before (through K). 

All this shows that the image of r(2) in PGLz(7l../M7l..) is a subgroup contain­
ing PSL 2 (7l../M7l..) as a subgroup of index:::; 2. The question whether it is equal to 
PSLz(7l../M7l..) depends on whether the images of the cri's are in PSLz(7l../M7l..). 
This will be the case if and only if det(cri) = p is a quadratic residue modM (or 
equivalently mod N = 2M). D 

To summarize we have the following theorem: 

Theorem 7.4.3. Let D = D(l, 1) be the Hamiltonian quaternion algebra, p = 
1 (mod4) a prime and N = 2M such that (M,2p) = 1, and assume that 
there exists c E 7l.. such that c2 = -1 (modM). To each of the p + 1 solu­
tions er = (xo,XI,xz,x3) of xö + xi + x~ + x~ = p where xo > 0 is odd 
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and Xt. Xz and X3 are even, associate the following matrix of PGLz(Z/MZ), 

a ~----+ ( xo+Xtc xz+X3c) (modM). Let L be the subgroup generated by 
-xz + X3c xo- Xtc 

the set S of those (p + 1) a's (note: S = s-t ). Then the Cayley graph of L 
with respect to S is isomorphic to r(N)\PGLz(Op)/PGLz(Zp) when r(N), as 
before, is the N-congruence subgroup of G'(Z[~]) and G' the algebraic group 

D* /Z(D*). 
Moreover, if p is a quadratic residue modN, then L = PSLz(ZjMZ) and 

the Cayley graph X(L; S) is a non-bi-partite Ramanujan graph satisfying all the 
claims ofTheorem (7.3.12), Part II. 

lfp is not a quadratic residue modN, then L contains P = PSLz(ZjMZ) 
as an index two subgroup, Sn P = rj1 and so X(L; S) is a bi-partite Ramanujan 
graph satisfying all the claims ofTheorem (7.3.12), Part I. 

Remarks 7.4.4. (i) Note that also from the explicit construction we see the di­
chotomy between the bi-partite case and the non-bi-partite case. Again this depends 
on p being a quadratic residue modN. 

(ii) The group L can be described precise1y also when p is not a quadratic 
residue modN: If M = q7 isaprimepower then L = PGLz(Zjq7 l.) (assuming 

dt dt+d2 
p is not a quadratic residue modq). In general write M = TI q? · TI q? 

i=l i=dt+l 
where { q1, .•. , qaJ are the prime factors of M for which p is not a quadratic 
residue and {qa1+t, ... ,qa1+a2 } are those for which p is quadratic residue. Then 
PGL2(Z/MZ)/PSL2(Z/MZ) ~ {±1}d1 x {±1}d2 in a natural way. L is the 
pre-image of the diagonal subgroup of { ±1 }d1 • One side of this bi-partite graph 
(in case d 1 > 0) is PSL2 (Z/MZ) the pre-image of (1, ... , 1), and the other side 
is the pre-image of ( -1, ... , -1, 1, ... , 1 ). 

(iii) For N = 2q, q is a prime, the graphs in (7 .4.3) are precise1y those of 
[LPS2]. It is, of course, also possib1e to extend the arguments in [LPS2] to the 
case of genera1 N. 

(iv) The computations of this section are made possib1e because the algebra 
of Hamiltonian quatemion has class number one (i.e., every ideal of the maximal 
order spanned over Z by 1, i, j and !(1 + i + j + k) is principal). This implies 

that r = G'(Z[~]) acts transitively on the tree T (cf. [Vi 1, p. 87]). We were 

able to find in r a congruence subgroup r(2) which still acts transitively, but 
moreover also freely. By picking generators of f(2) that take the base point xo 
(the standard lattice in Op x Op) to all of its neighbors, we were able to identify 
the tree with the Cayley graph of r(2). This is what makes f(N)\T a Cayley 
graph. It is possible to follow the same pattem for p = 3 (mod4). In fact, the 
computations made in [GVDP, Ch. IX, 1] present the appropriate generators for 
r(2). (This won't be a free group, rather a free product of infinite cyclic groups 
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and cyclic groups of order 2. The Cayley graph of such a group is, however, still 
a tree!) This procedure was carried out by Samak [Sa 3]. 

The case of p = 2 needs some more modifications: Here we should replace 
the algebra by one which splits ~ Oz and has class number one. D = D(2, 13) will 
do. Next, one should find a congruence subgroup which acts simply transitively 
on the tree. P. Chiu [Chi] carried out these computations. 

(v) We don't know whether this is a general fact that whenever r = r(l) of 
(7.3.1) acts transitively on the tree, there exists a (congruence) subgroup acting 
simply transitive on the tree. lt is not difficult to see that there is a finite index 
subgroup acting fixed point free, but it is not clear if such a subgroup can be 
found, in general, that still acts transitively. This does not seem to be the case for 
a general (non-arithmetic) lattice, and if it is true (as some examples suggest) for 
arithmetic lattices it might have an interesting arithmetic explanation. (The fact 
that r(2) works for the Hamiltonian quaternions and 2 is the only finite prime at 
which it rarnifies might be suggestive.) 

We end this section by bringing explicit constructions of k-regular Ramanujan 
graphs for k = q + 1 when q is an arbitrary prime power. These graphs were 
constructed by Morgenstern [Morl] by applying an analogue procedure to the one 
described here but replacing 0 by a global field of characteristic p > 0. The 
analogue of Ramanujan conjecture is a theorem of Drinfeld [Dr2]. 

Theorem 7.4.5. Let q be an odd prime power, c a non-square in 1Fq. Let g(x) E 
IFq[x] be irreducible of even degree d, and IF qd is represented as IFq[x]jg(x)IFq[x]. 
Let i E IF qd besuchthat e = c, and 

k = l, ... ,q+ 1 

where 'Yk. 8k E 1Fq. are all the q + 1 solutions in 1Fq for 8~c- "(~ = 1. 

(a) lf (gfu) = 1. 

Let ng be the Cayley graph of PSLz(IF qd) with respect to the generators (*). 
Then ng is a (q + 1)-regular Ramanujan graph, which is not bi-partite. 

(b) lf (g{x)) = -1. 

Let ng be the Cayley graph of PGLz(IF qd) with respect to the generators (*). 
Then ng is a (q + 1)-regular bi-partite Ramanujan graph. 

Theorem 7.4.6. Let q be apower of 2 and f(x) = x2 + x + c an irreducible 
polynomial in IFq[x]. Let g(x) E 1Fq[x] be irreducible of even degree d, and 1F qd is 
represented as 1Fq[x]jg(x)1Fq[x]. Let i E Fqd be a root of f(x), and 

( 1 'Yk +8ki) 
( 8 • 8) k=l, ... ,q+l 
'Yk + k! + k X 1 
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"YkJh E 1Fq. are al/ the q + 1 solutions in 1Fq for "'(~ + "Yk8k + 8~c- = 1. Let ng be 
the Cayley graph of PSL2(IF q'l) with respect to the generators (**). Then ng is a 
(q + 1)-regular Ramanujan graph, which is not bi-partite. 

The graphs presented in Theorems (7.4.5.-7.4.6.) also enjoy the other prop­
erfies (of girth, of chromatic number, etc.) as in Theorem (7.3.12). 

7.5 Notes 

1. The first Ramanujan graphs in the Iiterature seem to appear implicitly in 
the paper of Ihara [lh]. A matrix A is defined there which is indeed the 
adjacency matrix of r(l)\T. When varyiiJ.g the algebras (instead of varying 
the congruence subgroups) we get infinitely many Ramanujan graphs since 
the dass numbers of the quaternion algebras go to oo. These graphs seem 
to be very interesting from an arithmetic point of view, but it is probably 
impossible to compute them explicitly. They also do not seem to have the 
other properties described in (7.3.12). On the other band their zeta function 
(for the notion of zeta function of a graph, see 4.5 and [Ha]) is, up to trivial 
factors, a zeta function of a suitable curve over a finite field. Moreover, the 
statement that these graphs are Ramanujan follows at once from the Riemann 
hypothesis for curves over finite fields proved by Weil. See [lh] and [Ha] for 
more details. lt will be very interesting to relate some curves to r(N) \ T 
and to study their properties. 

2. The Ramanujan graphs constructed in this chapter give the best known ex­
panders. They, therefore, improve all the various networks using expanders 
(see 1.1) and in particular give the best explicit super-concentrators known. 
But, they still fall short from those known to exist by counting arguments 
(and those arealso not necessarily the best possible). It rnight be that indeed 
they are expanders as good as the random ones but we do not know to prove 
it. Pippenger (unpublished) considered these questions in detail. 1t is, how­
ever, still a challenge to come up with new methods to construct expanders 
and maybe some whose mathematics is less involved than the one presented 
in this book. 

3. An interesting combinatorial invariant of a graph which is also related to 
eigenvalues is the number of spanning trees of X, denoted K(X). By the 
Kirchhoff formula (see, for example, [Bl, Theorem 8, p. 40]) K(X) = 

n-1 
~ TI /-Li, where 1-L 1 , ... , /-Ln -1 are the nonzero eigenvalues of the Laplacian 

i=1 
of X. Let 

C(X) = K(X) ~, 7(k) = lim supC(Xn k) 
n---too ' 

and 
ß(k) = lim inf C(Xn k) 

n~oo ' 
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where the sup and inf are over the k-regular graphs with n vertices. It was 
(k l)k-1 

shown by Sarnak: [Sa3] that for k ~ 3, 'Y( k) = - and that the 
(k(k-2))1:-l 

Ramanujan graphs discussed in this chapter have 'Y( k) as their Iimit. So, this 
is another extremal property they have. 

lt is not directly related, but we cannot resist the temptation to mention a 

result of Alon [A3]: ß(k) ~ k - O(k (to~~~gl)\ This purely combinatorial 
result has (as observed by Sarnak: [Sa 3]) non-trivial arithmetic corollaries! lt 
gives an estimation of the class numbers of some interesting ftmction fields 
(see also [Ha]). 

What we have been doing in this chapter were applications of number theory 
to combinatorics. This last result is a first step in the opposite direction! The 
paper of Pays [Pa] also has a similar ftavor. 

4. lt was proved by J. Friedman [Frl] that a random k-regular graph is not far 
from being Ramanujan. In the notation above he proved that for a fixed even 
integer k, most k-regular graphs on n --t oo vertices have >. :::; 2v'1C=l + 
2log k + c for every eigenvalue >. which is not k, and where c is a constant. 
This was conjectured by Alon [Al], and a weak:er statement was proved 
before by Broder and Shamir [BS]. 

5. S. Mozes [Mz] used the Ramanujan graphs constructed in this chapter to 
construct «tilling systems» having zero entropy and mixing of all orders 
(with explicit quantitative estimates of the rate of mixing). 



8 Some More Discrete Mathematics 

8.0 Introduction 
This chapter is devoted to several results on graphs or groups which are related to 
the topics discussed above. We begin with an application to finite simple groups: 
Every finite simple non-abelian group G has a set S of at most seven generators 
with respect to which every element of G can be written as a word of length 
O(log IGI) with elements from s u s-1. This theorem is proved in Babai-Kantor­
Lubotzky [BKL] by finite group theoretic methods but with «unnatural» generators. 
lt tums out that Property (T) and Selberg's Theorem give similar results in special 
cases with «natural» generators. The use of these deep theorems seems at this point 
to be unavoidableo 

In the second section, we present a method from Diaconis-Shahshahani [DSh] 
to evaluate the eigenvalues of the adjacency matrix of a Cayley graph of a group 
G with respect to a full conjugacy dass as a set of generators. In [DSh] this is 
done for the symmetric group, but here, following a suggestion of Mo Ben-Or, we 
apply it for SL2 (q). The method works easily for any group G once the character 
tableis given. In SLz(q) we see that with respect to some conjugacy classes the 
graphs are Ramanujan graphso Similarly, some of the graphs presented by Chung 
in [C2] are Ramanujan graphs. In all these cases the Ramanujan graphs are of 
unbounded degree, so they cannot be considered as a solution to the problern of 
expanders discussed in Chapter 1. 

The same remark applies to some more graphs - the generalized N -gons -
which are discussed in 8.3. These graphs are very interesting, even though by a 
well-known result of Feit and Higman [FH] their existence is limited. Those that 
do exist give rise to Ramanujan graphs! An interesting observation due to Po de la 
Harpe is that the well-known Paley graphs are also Ramanujan graphs - but again 
of unbounded degree. 

A different interesting direction is described in 8.4: Here following Morgen­
stern ([Mor2], [Mor3]) we present «Ramanujan diagrams». Diagrams are graphs 
with weights which can be infinite but with finite total volumeo The theory of 
expanders, Laplacian, eigenvalues, etc. can be extended to themo Moreover, in 
analogue to what was described in Chapter 7, Ramanujan diagrams can be built 
up from lattices in PGLz ( IF ( ( t)) 0 But, this time noncompact lattices are used 
instead of cocompact. This notion of Ramanujan diagrams is not merely of the­
oretical interest; quite surprisingly they led to better bounded concentrators (see 
1.1.7)0 So the excitements of Ramanujan conjecture arenot yet overo 0 0 0 

8.1 The diameter of finite simple groups 

It was noticed by Alon and Milman in [AM] that some of the results described 
in the previous chapters have interesting corollaries in group theoryo More specif­
ically: 
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Proposition 8.1.1. Fix n E ~ with n ~ 2 and Iet F = 1Fp be the finite field with p 
elements. Let An and Bn be the matrices in SLn(F) acting on the standard basis 
{ei, ... , en} of Pas follows: An(ei) = e1 + e2 and An(ei) = eifor i =f. 1, while 
Bn(ei) = ei+l for 1 ~ i ~ n- 1 and Bn(en) = ( -l)n-Ie1. Then there exists a 
constant Cn independent of p such that every element of S Ln (p) can be written as 
a word of length at most Cn 1ogp using elements from the set S = {A;1, B;i=1 }. 

Proof The claim of the proposition simp1y says that the diameter of the Cay1ey 
graph X(SLn(p); S) is ~ Cn log(p). 

This is indeed the case: For n ~ 3 (and n is fixed!) these graphs form a 
family of expanders (3.3.2). It is easy to prove that a family of expanders has 
diameter O(log lXI). (An indirect way to see it is to use (4.2.4) and (7.3.11-ii).) 
The same conclusion holds for n = 2 by (4.4.2). D 

It is interesting to note that the case n ~ 3 is a corollary of Kazhdan Property 
(T) while n = 2 is a corollary of Selberg's theorem. We don't know an elementary 
proof for either case, nor do we know an effective way to present an element of the 
group as a short word using An and Bn. The case n = 2 is especially challenging. 

Problem 8.1.2 Does there exist a polynomial time alRorithm (polynomial in log p) 
1E=[ 

which expresses an element of SL2(p) (say ( 0 I )) as a short word (say less 

. 1 1 0 1 
than 1000 log p) m A = ( 0 1 ) and B = ( _1 0 )? 

This problern can be thought of as a non-commutative analogue of the discrete 
logarithm problem: there, one wants to express a given element x of 1Ft = GLt (IFp) 
as apower of a primitive element g, i.e., to find «log8(x)». In that problem, how­
ever, log8 ( x) is unique ( mod (p- I)), so there are no «long» or «short» expressions. 

Proposition (8.1.1) suggests another interesting question, which is how Cn 

varies with n. Since the order of SLn(P) is approximately pn2 - 1 and the diameter 
of a group G is at least log(IGI) (see the remarks at the end of 7.3), the best we 
can hope for is Cn = O(n2). We do not know if this is the case. 

Problem 8.1.3. Does there exist a constant C such that every element of SLn(P) 
can be written as a word of length ~ Cn2 log p in A;1 and B;i= 1? 

What we do know is that using a different set of generators, this is indeed pos­
sible. This follows from the following theorem of Babai-Kantor-Lubotzky [BKL], 
whose proof there uses some «unnatural» generators for S Ln (p) but ones for which 
the proof is elementary (i.e., without Kazhdan or Selburg) and the generators are 
«effective» (i.e., an algorithm for the short presentation is given). 

Theorem 8.1.4. There exists a constant C such that every finite simple non-abelian 
group G has a set S of seven generators such that diam( X ( G; S)) ~ C log( I GI), 
i.e., every element of G can be written as a product of elements of S U s-I of 
length ~ C log(IGI). 
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Before giving a (partial) proof for this theorem, we compare it with: 

Proposition 8.1.5. Let Gp = Cp the cyclic group of order p and S a set of k ele­
mentsgenerafing Gp. Then diam X(Gp; S) 2: !Pl/k. In particular, the conclusion 
of Theorem 8./ .4 does not hold for the family Gp. 

Proof If diameter X ( Gi S) = d then, since Gp is commutative, every g E Gp 
can be written as g = s 1 1 s~2 • • ·S~k where S = {st, ... ,sk} and la;l:::; d. Hence 
(2d + 1)k 2: IGpl· D 

From the proof one sees that what plays the main role is the «polynomial 
growth» of abelian groups. The proposition can be extended to families of finite 
nilpotent groups of bounded nilpotency dass. (Compare Bass [Bss1], Gromov 
[Gv] and [AB].) Families of solvable groups might have logarithmic diameter. For 
example, let Vn = C2 x ... x C2 the elementary abelian 2-group on n generators. 
The cyclic group Cn = (g) acts on it by a cyclic shift. Let G(n) be the semi­
direct product Vn ~ Cn. It is not difficult to checkthat S = {(1,0, ... ,O),g} 
generates G(n) in O(log(IG(n)l)) = O(log(2n · n)) = O(n) steps. This happens, 
even though the graphs X(G(n), S) arenot expanders by Proposition (3.3.7). (The 
groups G ( n) are all quotients of the metabelian free group on two generators which 
is amenable!) 

It would be interesting to formulate a general result which will describe 
conditions on families of groups to have ( or not have) logarithmic diameter. This 
property depends also on the choice of generators as the following important 
example shows: 

Proposition 8.1.6. Let Sn be the symmetric group of all permutations of { 1, ... , n} 
letters. 

(i) Let T = (1, 2) and u = (1, ... , n). Then there exist constants C1, C2 such 
that: 

(ii) There exists a two-generator set E of Sn for which diam X(Sn, E) 
= O(nlogn) = O(log ISnl). 

Proof (i) Every permutation is a product of at most 2n transpositions of type (1, i), 
2 :::; i :::; n. We will show that ( 1, i) can be written as a word of length 0( n) in r 
and u. Indeed: let '1/J = ru = (2,3, ... ,n), then (1,i) = '1/Ji-2 (1,2)'1/J-(i-2). This 
proves the right-hand side inequality with C2 = 4. To prove the lower bound: 
Given a permutation "f and a triple i < j < k of different integers between 
1 and n, (i, j, k) is said to be in a good position with respect to "f if either 
"t(i) < "((j) < "f( k) or "((j) < '"Y( k) < "t(i) or '"Y( k) < "((i) < "((j). It is 
easy to check that (i, j, k) is in a good position with respect to "f if and only 
if it is in a good position with respect to U"f. If (i, j, k) is in a bad position 
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with respect to 1 then it rnight be in a good position with respect to Tl only if 

{r(i),1(j),1(k)} = {1,2,t'} for some e. So multiplication by T can «mend» at 

most n triples. Now, for 1 = (1, n)(2, n- 1) · · · (i, n + 1- i) ... ([~], n- [~] + 1) 

all the ( ~ ) triples are bad, and so any word expressing 1 by T and a should 

include T at least ~ times. 

(ii) For simplicity of notation we assume n is even, and we will present three 

generators and not two as promised (for a full proof see [BKL]). 

Think of Sn as the group of permutations of { oo} U Z/(n- 1)2 = {0, 1, ... , 

n- 2,oo}. Consider the two permutations ßo: x---+ 2x(mod(n- 1)), and ß1 : 
x f---+ 2x + 1(mod(n- 1)). So, both fix oo. Any element t E Z/(n- 1)2 can 

m . 
be written t = L ai21 = (· · · (am · 2 + am-1)2 + · · ·)2 + ao where m = [log2 n] 

i=O 
and each ai E {0, 1 }. (The second equality is «Horner's rule».) Thus t = w(O) 
where w = ßa0 ••• ßam_,ßam· Now as in (i), if we take a = (O,oo) to prove 

that {a,ßo,ßd generate Sn in O(nlogn), it suffices to prove that for every 

t E {1, ... ,n- 2} the transposition (oo,t) can be written in O(logn) steps. 

Indeed, (oo,t) = w(O,oo)w-1, and we are done. D 

It is a beautiful result of J. Dixon [Dix] that «almost» every pair of elements 

of Sn generates either Sn or the alternating group An. It is an interesting problern 

to determine what is the diameter of Sn with respect to such a random pair of 

generators. 

We can now go back to the proof of (8.1.4). By the recent classification of 

the finite simple groups (cf. [Go]) we have to deal with An, groups of Lie type 

and 26 sporadic groups. 

The case of An was essentially covered once we did Sn (the details are left to 

the reader; see [BKL]). There are only finitely many sporadic groups, and each of 

them can be generated by two elements - so they can be ignored. For the groups 

of Lie type we will present the proof only for the family PSLn(p) (or SLn(p)) 
for p a prime. The general case can be treated in a similar way, but technically 

it is much more difficult and requires some knowledge of the structure of groups 

of Lie type, which we prefer not to assume. The rank one case also needs some 

special consideration- see [BKL]. 

Proposition 8.1.7. There exists a constant C suchthat SLn(P) has a set S ofthree 

generators with diamX(SLn(p);S):::; Cn2 logp. 

. (1 1) ( 0 1) Proof For SL 2(p) we can gtve 2 generators t = 0 1 and T = _ 1 0 

which generate it in O(logp) steps (8.1.1). By embedding SL2(p) at the left upper 

corner of SLn(p), they can be considered as elements of SLn(p). We add a third 

generator a = Bn, where Bn is the same Bn from Proposition 8.1.1. 
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By the Bruhat decomposition (see [Car]), G = BWB where B is the group 
of upper triangular matrices in G and W is the Weyl group generated by r and 
a. Indeed W ~ Sn and r and a correspond to r and a in Proposition (8.1.6.(i)), 
so they generate W in O(n2) steps, which for our purpose is fine! 

Now B = TU where T is the group of diagonal matrices of determinant one, 
and U the unipotent radical of B. We argue separately forT and U. 

Let"' E T, "'= (At A2 ) with .TI Ai= 1. Then: 
1=1 

An 

"(= 

n-1 

TI Aj 
i=l 

n-1 
(TI .>.;)-1 

i=l 

Hence 

"' E SL2(p) · aSL2(p)a-1 • a2SL2(p)a-2 ... an-2SL2(p)a-(n-2) 

= SL2(p) · a · SL2(p) · a · SL2(p) · a ... a · SL2(p)a-(n-2). 

The «price» of "' is therefore at most 0 ( n log p). 
Now, let "' E U. lt is known that U can be written as a product of the 

elementary subgroups Xi j in any order we wish. Here Xi j is the subgroup { 1 + 
aEij I a E 1Fp} where Eij is the matrix with 1 at entry (i,j) and 0 elsewhere. Then 

n n-i-1 
U = TI TI Xi,i+l+k· Thus 

i=l k=O 

where 

U = Y(aYa- 1 )(a2Ya-2) ... (an-lya-(n-l)) 

= YaYaYa ... aYa-(n-l) 

Y = X1,2 · (1/lXt,21/l-1) · (1f;2Xt,21/J-2) ... 1/Jn-2Xt,21/J-(n-2) 

= X1,2 ·1/J · X1,2 ·1/J · X1,2 · 'lj; ... 1/J • Xt,21/J-(n-2) 
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where 'lj; = ra is the e1ement of W corresponding to (2, 3, ... , n) in Sn. All 
this (and especially the wonderful cancellations occurring in the above products) 
shows that the price of 'Y EU is at most O{n2 logp) (since X1,2 ~ SL2(p)). The 
proposition is therefore proven. 0 

Remarks 8.1.8. 

(i) In the proof we used Selberg's Theorem to getan «efficient» two generators 
set for SLz(p). This is an overkill. It is possible to find by elementary means 

such a set (see [BKL]) but it is not as «nice» as t = ( ~ ~) and T = 
0 1 

( -1 0). 

(ii) Note that Proposition 8.1.7 does not answer Problem 8.1.3 since it gives a 
different set of generators. 

(iii) Unlike the case of Sn (8.1.6), we do not know any «bad» choice of generators 
for SLn(p). Again, the case of SLz(p) is of special interest. 

8.2 Characters and eigenvalues of finite groups 

In this section, let G be a finite group, S a symmetric subset of G, and X = 
X(G; S) the Cayley graph of G with respect to S. We will show, following 
Diaconis-Shahshahani [DSh], how the representation theory (more specifically, 
the character table) of G can be useful in evaluating eigenvalues of the adja­
cency matrix 8. This method is especially useful when S is a union of conjugacy 
classes. Following a suggestion of M. Ben-Or we apply it to the group SLz(q) 
to get Ramanujan graphs. This is an easy way to get Ramanujan graphs, but the 
graphs so obtained are of unbounded degree and so are not as useful as those in 
Chapter 7. Still, they are interesting and the point of view is also relevant for the 
understanding of the graphs of Chung [C2] to be discussed afterwards. 

A short excellent reference for representation theory of finite groups is Serre's 
book [S3]. Interesting applications of representation theory can be found in Dia­
conis [D]. 

The basic connection between characters and eigenvalues is the following 
(cf. [B] or [DSh]): 

Let 8 be as before; it acts on L 2(X). The latter can be identified with the group 
algebra C[G], when the convolution product in L 2(X) is replaced by the ordinary 
product of the group algebra. The matrix 8 can be thought of as an element of 
C[GJ, i.e., 8 = L: s. Then its action on C[G] is simply by multiplication from the 

sES 
right. 

r 
As is weH known, C[GJ as a right G-module is isomorphic to .EB d; v; when 

!=l 
(Vt, Pt), ... , {V,., Pr) are the r different irreducible representations of G and d; = 
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r 
dim V;. Moreover, as an algebra C[G] ~ E9 Mf. (C). The isomorphism is given by: 

i=I I 

a f---t (PI ( a), ... , Pr ( a)) where a E C[G] and Pi is extended in a linear way to a 
homomorphism Pi : C[G] -----+ End(V;) = Mdi(C). In particular, the multiplication 
by 8 from the right is indeed the direct sum of applying Pi ( 8) as multiplication 
from the right on Mdi ( C). 

Now, if S is a union of conjugacy classes, then it is not difficult to check (see 
also [S3, p. 50]) that 8 is in the center of C[G]. From Schur's Iemma it follows that 
for every i, Pi(8) is a central (i.e., a scalar matrix 1-Lil) in Mdi(C). So, its action 
on Mdi ( C) is by multiplication by that scalar /Li. The eigenvalues of the adjacency 
matrix 8 are, therefore, /LI, ... , 1-Lr with multiplicities di, ... , d~, respectively. It 
remains to compute the 1-Li-s. This is fairly easy if one knows the character table of 
G. The character table teils us what is Xi(s) = Tr(pt(s)) for every i = 1, ... , r and 
s E S. So: Tr(pt(8)) = Tr(pt(L_ s)) = '2: Tr(pi(s)) = '2: Xi(s). At the same 

sES sES sES 

time, by the discussion above Pi(8) =/Li[ and hence /Li= Tr(~i(ö)) =-}; L_ Xi(s). 
1 1 sES 

If S is precisely one conjugacy class then Xi(s) are all the same for s E S, 

and then /Li= Jjfxi(s). 
To summarize: 

Theorem 8.2.1. Let G be a finite group and S a symmetric union of conjugacy 
k 

classes ofG, S = .U Cj. Let X be the Cayley graph ofG with respect toS, and 
J=I 

8 the adjacency matrix of X. Let PI , ... , Pr be the irreducible representations of 
G and XI, ... , Xr the corresponding characters, i.e., Xi (g) = Tr(pi (g)) for g E G 
(r = the number of conjugacy classes of G ). 

Then the eigenvalues of 8 are /LI, ... , 1-Lr with multiplicities d[ = ( dim Pi )2 = 
xr(e) where e is the identity element of G and 

for i = 1, ... , r. /f S is a unique conjugacy class, then /Li= Jjfxi(S) = ISI ~i~;?, 
when x( C) means x( c) where c is one of the elements of the conjugacy class C. 

The theorem gives us a method to compute all the eigenvalues of Cayley 
graphs of groups provided the character table is known and the set of generators 
we are using is a union of conjugacy classes. The union should be symmetric, 
i.e., if the conjugacy class of s is in S then so is the conjugacy class of s-I. (Of 
course, in many cases s is conjugate to s-I.) Otherwise we get the eigenvalues of 
a directed graph and the eigenvalues are not necessarily real. 

For example, Iet G = SLz(q) where q = pn, p an odd prime. The following 
theorem quoted from [Dor, Theorem 38.1] describes, in full, the character table 
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of G. As an immediate corollary afterward we will deduce that some graphs are 
Ramanujan. 

Theorem 8.2.2. Let F be the finite field with q = pn elements, p an odd prime, 
and Iet v be a generator of the cyclic group F* = F - {0}. Denote 

1=(~ ~). 

C=C ~). 

z = ( ~1 ~1)' 

d = ( ~ ~) , a = ( ~ v~l) 
in G = SL(2,F). G contains an element b of order q + 1, and we fix such one 
element. 

F or any x E G, Iet ( x) denote the conjugacy class of G containing x. Then 
G has exactly q + 4 conjugacy classes (1), (z), (c), (d), (zc), (zd), (a), (a2 ), ... , 

(a(q- 3)12 ), (b), (b2 ), ... , (b(q-l)/2 ), satisfying 

X 1 z c d zc zd af bm 

l(x)l 1 1 ~(ql- 1) ~(ql- 1) ~(ql- 1) ~(q2-1) q(q+ 1) q(q- 1) 

for 1 5: e 5: (q- 3)/2, 1 5: m 5: (q- 1)/2. 

Denote c; = ( -1)(q-l)/2 . Let p E C be a primitive (q -1)-th root of 1, a E C 
a primitive (q + 1)-th root of 1. Then the complex character table of G is 

1 z c d af bm 

1c 1 1 I I 1 1 

1/J q q 0 0 I -I 

Xi q+1 (-l)i(q+1) 1 1 pif + p-if 0 

(}j q-1 (-1)i(q -I) -I -1 0 -(aim + a-im) 

~~ ~(q+ I) ~e:(q + 1) ~(I+ ,ftli) ~(1 - ,ftli) (-l)f 0 

6 ~(q + 1) ~e:(q + 1) 1 (1 - ,ftli) ~(I+ ,ftij) ( -1)f 0 

TJI !(q- 1) -!e:(q- 1) 1 (-I+ ,ftli) 1 ( -1 - ,ftli) 0 ( -i)m+l 

T/2 !(q- 1) -1e:(q-1) ~(-1- ,ftli) 1 (-I+ ,ftli) 0 (-l)m+I 

for 1 5: i 5: (q- 3)/2, 1 5: j 5: (q- 1)/2, 1 5: e 5: (q- 3)/2, 1 5: m 5: (q -1)/2. 

(The colurnns for the classes (zc) and (zd) are missing in this table. These 
values are obtained from the relations 

x(z) 
x(zc) = x( 1) x(c), 

for all irreducible characters x of G.) 

x(z) 
x(zd) = x( 1) x(d), 
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Corollary 8.2.3. (i) Let G = SLz(q), assume q = 1(mod4) and Iet S be the 

conjugacy class of ( ~ ~) in G. Then I SI = ! ( q2 - 1) and the eigenvalues of 

X(G; S) are: 

eigenvalues i(q2- 1) 0 i(q- 1) -1(q + 1) 1(1 + y'ii)(q- 1) 

multiplicities q2 !(q- 3)(q + 1)2 !(q- 1)3 i(q+1)2 

eigenvalues !(1 - y'ii)(q- 1) 1(-l+y'ii)(q+1) !(-1- y'ii)(q + 1) 

multiplicities !(q+1f i(q-1)2 i(q-1)2 

Since Xis a k-regular graphfor k = ISI = !(q2 - 1) and there are eigenvalues 
3 

of size ~ q 2, X is not a Ramanujan graph. 

(ii) Let G = SLz(q) and assume q = 3 (mod4). Let S be the union of the 

conjugacy class Ct of ( ~ ~) and C_t of ( ~1 ~). Then ISI = q2 - 1 and 

the eigenvalues of X = X(G; S) are: 

eigenvalues (q2 - 1) 0 q- l -(q + 1) 

multiplicities q2 1(q- 2)(q + 1)2 ~(q- 1)2. 

Since Xis a k-regular graphfor k = ISI = q2 - 1 and lq + 11::; 2~, X 
is a Ramanujan graph! 

(iii) Let G = SLz(q) and S the full conjugacy class of ( ~ 11~ 1 ) where v 

is as in Theorem 8.2.2, a generator for the group IF~. Then ISI = q(q+ 1) and the 
eigenvalues of X(G; S) are: 

eigenvalues "(q + 1) q + 1 0 -2q 

multiplicities 

eigenvalues For i = l, ... , (q- 3)/2 : (pi + p-i)q 

multiplicities For each i : (q + 1 )2 

where pisaprimitive ( - 1)-th root of 1. Since Xis k-regular for k = q(q + 1) 
and 2q::; 2 q(q + 1)- 1, Xis a Ramanujan graph! 

(iv) Let G = SLz(q), b a fixed element of SLz(q) of order q + 1 and S the 
conjugacy class ofb. Then S = q(q-1) and the eigenvalues ofX = X(G;S) are 

eigenvalues q(q- 1) -(q- 1) 0 2q 

multiplicities 

eigenvalues For j = 1, ... , !(q- 1): -(ai + a-i)q 

multiplicities For each j : (q - 1 )2 

where a isaprimitive ( + 1 )-th root of 1. Since X is k-regular for k = q(q- 1) 
and 2q 2 2 q(q- 1)- 1,X is not a Ramanujan graph. 
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Proof Everything follows from Theorem 8.2.1 by (tedious) calculations using the 
information in Theorem 8.2.2. We only remark that in cases (i), (üi) and (iv) 
the conjugacy class S is indeed symmetric: In case (i), we have 17 E IF q such 

that".,2=-1,hence (ri 17~1) (~ ~) ( 17~ 1 ~) = (~1 ~) andsothe 

. f ( 1 0) . . ( 1 0) (Tb" . h . (" ") d thi mverse o 1 1 1s conJugate to 1 1 . 1s 1s not t e case m n , an s 

is why we bad to take a second conjugacy class. Note that ( ~ ~) is conjugate 

to ( ~ 1 ~) since -1 and v both are not squares in 1Fq .) In case (iii) it is clear 

that ( ~ v~ 1 ) is conjugate to its inverse. Case (iv) (as well as (i) and (iii)) 

follows from the following fact: If s E G and for every character x of G, x(s) is 
real then s is conjugate to s-1• To prove this fact, note that x(s-1) = x(s) (cf. 
[S3, p. 10]) for every X· This implies that s and s-1 are in the same conjugacy 
class. [] 

This last corollary illustrates that once we have the character table of a group, 
we can compute in great detail the eigenvalues of its Cayley graphs with respect to 
unions of conjugacy classes. This applies in particular to any subset of an abelian 
group, since with abelian groups the character table is easily computable and every 
single element is a conjugacy class. (lndeed, Theorem 8.2.1 for abelian groups is 
no more than standard Fourier analysis.) The tricky point here is to find a clever 
way to choose the generators to ensure good bounds on the eigenvalues. Such a 
method was given by F. Chung [C2]. First, a generaleasy result: 

Proposition 8.2.4. Let G be the cyclic group 7Ljn7L of order n. Let S = 
{ a 1, ... , a k} be a symmetric subset of G and X = X ( G; S). Then the eigenvalues 

k 
of X are E f!1i where () ranges over all n-th roots of 1. 

i=1 

Proof Either use (8.2.1), recalling that every irreducible representation is one­
dimensional and given by 1 1-------+ ()' or note that the vectors ( 1' ()' 02 ' ... ' on-1) are 
eigenvectors. [] 

k 
To make I E f!1i I small for () =1- 1, we have to specify the ai - s in a special 

i=1 
way. Hereis Chung's method: 

Let p be a prime and n = p2 - 1. Identify the cyclic group 7Ljn7L with the 
multiplicative group of invertible elements of the finite field K = IF p2. This is 
done by adjoining to IF P a root w of an irreducible quadratic polynomial in IF p [x]. 
Now, take an element g E K* which generates K* and consider the p elements 
- - - - 1 
So= {w, w + 1, ... , w +p-1}. This is not a symmetric set. LetS =SoUS() . lt 
is not difficult to check that at most two elements in So have their inverses also in 
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50 , so IS I 2:: 2p- 2. Clearly, w + i can be expressedas (i for some ai. and these 
ai, 0 ~ i ~ p-l, form the subset So of 7Ljn7L. LetS= SoU(-So). ISI2:: 2p-2. 
The crucial point is the following theorem of N. Katz [Katl]: 

Theorem 8.2.5. Let 'ljJ be a non-trivial complex-valued multiplicative character 
defined on an extension field K of dimension t over a finite field F. Then for any 
x E K we have: I E '!j;(x + a)l ~ (t- l)JJFT. 

aEF 

Applying the theorem to the circumstances above we deduce for (} an n-th 
root of 1 and '!j;(g) = B: 

p-l 

I L '1/J(w +x)l =I L~il ~ v'P 
xEIFp i=O 

p-l p-l 
and hence I E ~i + E (}-a; I ~ 2JP. 

i=O i=O 

Since the graph X(7Ljn7L; S) is regular of degree k (where 2p- 2 ~ k ~ 2p), 
we deduce 

Theorem 8.2.6. When S is chosen as above, the graphs X(7Ljn7L; S) are Ramanu­
jan graphs. 

Moreover, F. Chung [C2] presents also other graphs which are similar to the 
above but arenot Cayley graphs: Look at G = 7Ljn7L and connect two elements 
x, y E G if x + y = ai for some ai E So (So and all notation as above). This is a 
symmetric relation! Such graphs are called «sum graphs». 

Lemma 8.2.7. The sum graph on G = 7Ljn7L, determined by the set T = 
k 

{ a1, ... , ak} (i.e., x, y E G are adjacent iff X+ y E T ), has eigenvalues ±I E ~i I 
i=l 

where (} ranges over all n-th roots of 1. 

k k 
Proof The eigenvectors are (1, (}, (}2, ... , (}n-l) + (E ~i)/1 E (}ai I· (1, (}-1, ... , 

i=l i=l 
o-(n-l)). 0 

Now Katz's Theorem 8.2.5 again irnplies that, if So is as above, then the sum 
graph of 7Ljn7L with respect to So is a p-regular graph with all its eigenvalues are 
~ JP. Hence 

Theorem 8.2.8. The sum graphs of G = 7Ljn7L with respect to So = { ao, ... , ap-l} 

as above are Ramanujan graphs. 
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We do not know a general theory to eva1uate eigenva1ues of sum graphs for 
non-abelian groups with respect to a subset T. lt would be interesting to find an 
analogue of Theorem 8.2.1 for this case. (In the non-abelian case the graph comes 
with a natural orientation, and we may or may not ignore this orientation.) 

Finally, we mentioned that in several cases the k-regular Ramanujan graphs 
presented in this chapter have eigenvalues .A with a bound on .A substantially better 
than 2v"7C="l. This is not a contradiction to the Alon-Boppana Theorem (4.5.5) 
since wehavesuch graphs only for finitely many values of n (given k). Thus, the 
graphs presented here do not form a family of expanders in the sense of Chapter 1. 
Still they show that for specific values (and hence in real world applications) one 
may expect graphs which have bounds on their eigenvalues which are substantially 
better than the Ramanujan bound. Similar remarks apply also for the graphs of 
the next section. 

8.3 Some more Ramanujan graphs (of unbounded degrees) 

In this section we mention three kinds of Ramanujan graphs. The degrees of these 
graphs are not bounded, yet they are very interesting graphs. 

The first family is the farnily of Paley graphs: 

Definition 8.3.1. Let K be a finite field of order q, with q = l(mod4). Define a 
graph X(q) whose vertices are the elements of K and where X is joined to y if 
x- y is a nonzero square in K. 

It was observed by P. de la Harpe that the Paley graphs are Ramanujan. 
Indeed, these graphs are known to be strongly regular. 

Definition 8.3.2. A k -regular graph X with n vertices is called a strongly regular 
graph with parameters (n, k, r1, r2) if any two adjacent vertices in X have exactly 
r 1 common neighbors and any two non-adjacent vertices in X have exactly r2 
common neighbors. 

1t is weil known and easy to see directly that the adjacency matrix 8 of a 
strongly regular graph X with paramet)!rs (n, k,r1,r2) satisfies 82 = (k- r2)I + 
(r1 - r2)8 + r2J where J is the n x n matrix whose all entries are equal to 1. The 
eigenvalues of X are therefore k (with multiplicity one if r2 > 0) and the two 
roots of f(x) = x2- (r1 - r2)x- (k- r2). Thus Xis a Ramanujan graph if and 
only if 3k - 4 + r2 ;::: 2h - r2lv"7C="l. Now, it is known that the Paley graphs 
X(q) are strongly regular (cf. [HP, §3.7]) with parameters (q, ~. ~. ~ ), and 
therefore we can deduce: 

Proposition 8.3.3. The Paley graphs X(q) are Ramanujan graphs. 

Another family of graphs with such a number theoretic flavor was defined by 
A. Terras: 
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Definition 8.3.4. Let IFq be a finite field of order q and Iet 8 E IFq a nonsquare. 
Fix an element a E 1Fp with a -1- 0,48. Define a graph Hq(8,a) in the following 
way: its vertices are the points of the finite upper half-plane {z = x + yvßlx, y E 
IFq,y -1- 0}. Two points z,w E Hq are connected by an edge ifd(z,w) = a where 

d(z,w) = 1:r;);-~~) , N(x + yvß) = x2 + 8y2 and Im(x + yvß) = y. 

In a series of papers (cf. [Te2], [CPTTV] and [ACPTTV] and the references 
therein), A. Terrasand her students studied the graphs Hq(8,a), which are usually 
called by abuse of the language « the finite upper half plane». They are ( q + 1)­
regular graphs. Terras conjectured that they are Ramanujan, and this was proved 
recently to be the case: 

Theorem 8.3.5. (N. Katz [Kat2]) The graphs Hq( 8, a) are ( q + 1 )-regular Ra­
manujan graphs. 

The third family of Ramanujan graphs we mention here are the «generalized 
N -gons». These objects are usually treated as incidence planes of points and line 
but can actually be thought as bi-partite graphs. The conditions on such an object 
to be a «generalized N -gons» are strong enough to give their eigenvalues even 
though their structure and classification are not known. The main result in this topic 
is a theorem of Feit and Higman which asserts that there are only finitely many 
N's for which a non-trivial generalized N -gon exists (i.e., N = 2, 3, 4, 6, 8, 12). 
We will see that some of these generalized N -gons give Ramanujan graphs, but the 
Feit-Higman Theorem eliminates any hope of getting infinitely many Ramanujan 
k-regular graphs (for a fixed k!) using this method. Stillthese graphs have very 
strong bounds on their eigenvalues and might be useful. 

We begin with presenting them by using mainly the language of graphs. We 
follow Feit-Higman [FH] and Tanner [Ta]. 

The generalized polygons are incidence structures consisting of points and 
lines. We will restriet our attention to those in which every point is incident to 
r + 1 lines and every line is incident to r + 1 points for some positive integer r. By 
identifying points with input vertices and lines with output vertices, a generalized 
N-gon defines a bi-partite graph X. 

Definition 8.3.6. A generalized N-gon is a bi-partite k = r + 1 regular graph X 
satisfying: 

(i) For all vertices x,y EX, dist(x,y) ~ N (i.e., diam(X) ~ N). 

(ii) lf dist(x, y) = h < N, then there exists a unique path of length h joining x 
and y (i.e., girth(X) 2: 2N). 

(iii) Given x E X, there exists a vertex y E X such that dist(x, y) = N. 



114 8 SOME MORE DISCRETE MATHEMATICS 

Example 8.3.7. 

(A) If r = 1 then X is just the standard 2N -gon. 

(B) If N = 2, then X is the complete bi-partite k-regular graph (i.e., every point 
being incident with every line). 

(C) If N ::::0: 3, there is at most one line incident with any two distinct points. For 

N = 3, there is exactly one line incident with any two distinct points, and 
X is a projective plane (or more precisely, the points versus lines graph of a 
projective plane). 

It was shown by Feit and Higman [FH] that the conditions of (8.3.6) suffice 

to determine the characteristic polynomial of M = At A when A is the incidence 
matrix of X, i.e., the matrix whose rows are indexed by the lines (outputs) of X 

and whose columns are indexed by the points (inputs) and which has 1 in the 

place ( e, f) if e is incident with f and 0 otherwise. In our standard notations the 

adjacency matrix 8 of X is equal to ( ~ ~t ) . Hence 82 = ( A~ A A~t ) . The 

method of Feit-Higman enables one to compute the eigenvalues of At A and hence 

of 82 . Thus, up to sign one can also compute the eigenvalues of 8. In [Ta], Tanner 

gives the list of eigenvalues of generalized N -gons for N = 3, 4, 6, 8. (By the 
Feit-Higman Theoremthese are the only interesting cases.) The list is as follows: 

N Eigenvalues of At A 

3 (s+1)2,s 
4 (s+1)(r+1),s+r,O 
6 (s + l)(r + 1), r + s + fo, r + s- fo, 0 
8 (s + 1)(r + 1), r + s + J2r5, r + s, r + s- J2r5, 0. 

In the above table we used the standard notation which allows the degree of the 
inputs to be s + 1 and the outputs r + 1. In the regular case, which is our main 

interest, we simply take r = s. (In this case (r = s), N = 8 cannot actually occur.) 

These are the eigenvalues for 82 • From it one can easily calculate (up to sign) 
the eigenvalues of 8. This is an easy calculation which is left to the reader. The 

outcome is a nice surprise! 

Theorem 8.3.8. Regular (i.e., r = s) generalized N-gons are Ramanujan bi-partite 

graphs. 

As mentioned above, the Feit-Higman Theorem puts a limit on the usefulness 

of this result. Still there are quite a few generalized N -gons (see [Ta], [FH] and 

the references therein). 

The discussion above calls attention to the following problem: 

Problem 8.3.9. Call a bi-partite graph X, a (r, s)-regular graph if the degree 

of alt the inputs is r + 1 and the degree of alt the outputs is s + 1. Define a 
Ramanujan (r, s )-regular graph (i.e., find the optimal bound on its eigenvalues). 
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Are generalized N-gons always Ramanujan? Find explicit constructions of (r, s)­
regular Ramanujan graphs. 

(The first two problems should not be too difficult (see [Ha] and [Gg]). 
The last one is probably a very difficult one. One may try to use the arithmetic 
quotient of the Bruhat-Tits tree associated with some rank-one semi-simple groups 
over local non-archimedian fields; cf. [BT]). 

Another suggestive remark was made by Bill Kantor: The generalized N -gons 
as bi-partite graphs are exactly rank 2 buildings with Weyl group D2N. Once again 
this calls attention to the possibility of the existence of «Ramanujan Buildings» 
or «Ramanujan complexes». At this point, it is not clear what should be the right 
definition of such an object. 

8.4 Ramanujan Diagrams 

The Ramanujan graphs constructed in Chapter 7 are quotients of type f\PGL2 (F) I 
K where F is a local non-archimedian field, K a maximal compact subgroup and 
r a cocompact lattice in PGL2(F). In case of char(F) = p > 0, PGL2(F) also has 
non-uniform lattices, i.e., discrete subgroups r for which r \ PGL2 (F) has a finite 
invariant measure but is not compact. In this case the quotient r \ PGL2 ( F) I K has 
in a natural way a structure of a «diagram», i.e., an infinite graph with weights for 
the vertices and edges such that the total volume/weight is finite. In [Mor 2] and 
[Mor 3], M. Morgenstern developed the theory of such diagrams: expanders, their 
Laplacian and eigenvalues, Ramanujan diagrams and their construction, etc. Beside 
the intrinsic interest in such object, there has been an unexpected reward: some 
finite subgraphs of the Ramanujan diagrams constructed, turn out to be excellent 
«bounded concentrators» (see Definition (1.1.7)). Thus they can apply to improve 
some network constructions. 

This section is devoted to a brief description of these exciting developments. 
Details and proofs can be found in [Mor 2] and [Mor 3]. 

Definition 8.4.1. A diagram is a triple D = (V, E, w) where Y = (V, E) is an 
undirected countable graph, w : V U E ---+ { * ln = 1, 2, 3, ... } is a weight function 
and for any e = ( u, V) E E, w(e) divides w(u) and w(v). 

ForA <:;;:: V, denote p,(A) = LuEA w(u). p, is the measure on D, and we 
assume that p,(V) < oo. Call B(u, v) = w(e)lw(u) the entering degree of e = (u, v) 
to u and call D k-regular if for every u E V, L(u,v)EE B(u, v) = k. 

Example 8.4.2. Let Xk be the k-regular tree, and G = Aut(Xk ). If k = pr + 1 = 
q + 1, p a prime, then H = PGL2(1Fq(( f))) is a subgroup of G, where 1Fq(( f )) is 
the Laurent power series in f over 1Fq. Let r be a non-uniform lattice in Gor in H. 
Note that H is cocompact in G and hence a lattice in H is automatically a lattice 
in G (but, of course, not vice versa). Let g = (r, r \ Xk) be the quotient graph 
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of groups (see [S1, §1.5]), i.e., the quotient graph r \ Xko where for every vertex 
X = r. X of the quotient graph we associate the stabilizer r X = { 'Y E r I 'Y( X) = X} 
and, similarly, re is associated to the edge e = r · e of r \ Xk. We now define a 
structure of a diagram on r \ Xk by: w(x) = 1/xl and w(e) = 1/.1 where notations 
are as above. As r is discrete, r X and r e are finite, and it is not difficult to see that 
w satisfies the required condition. Moreover, J.t(r \ Xk) = p,(r \ G) where {L is the 
Haar measure of G normalized so that {L(K) = 1 where K isamaximal compact 
subgroup of G, i.e., a stabilizer of one vertex. See [S1, p. 84] for more details. 
Few detailed examples of r \ Xq+l for r -arithmetic subgroups of PSL2 (IF q( (i))) 
are presented in [S1, 11.2]. For r = PSLz(IFq[t]) one gets a particularly simple 
picture: T = r \ Xq+I isoneinfinite half ray. 

T = •• --•--•~-----'•--••--

This ray can be lifted to the tree Xq+ 1 in such a way that An is represented by 
the lattice spanned by {tnei,ez} where {ei,ez} is the standard basis of IF((f))2. 
(See the description in 5.3 ofthe tree associated with PGLz(Op); a similar descrip­
tion applies to PGLz(IFq((i))); see [S1]). The stabilizer of An in r is therefore 
rn where: 

ro = PSLz(IFq) and for n 2: 1, 

rn = {( ~ ~)I a,d E 1Fq \ {0}, b E 1Fq[t] and deg(b):::; n}. 

We therefore have w(Ao) = IPSLz(IFq)l- 1 and w(An) = ((q-1)qn+I /cq)- 1 when 
cq = 2 if q is odd and cq = 1 if q is even. 

This diagram is especially simple. The other examples described in [S1] are 
not that simple, but all have a common feature: they are a union of a finite graph 
plus finitely many infinite rays (cusps). In [Lu2] it is shown that allnon-uniform 
lattices of H = PGL2(1Fq((f))) have that property. On the other band, examples 
given in [BL] show that this is not the case for arbitrary lattices in G = Aut(Xk). 
The corresponding diagrams can have an infinite homology, infinitely many cusps, 
etc. So general k -regular diagrams are quite wild! 

If D is a diagram then the inner product of functions on D is defined by: 

(f,g) = Ir f · gdJ.t = L f(v)g(v)w(v) 
D vEV 

and 11/11 and L2(D) are as usual. The adjacency operator 8 is defined by 8(f)(u) = 
L(u,v)EE O(u, v) · f(v). In this section we call 8 the Laplacian of D. 
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For simplicity of exposition, assume that D is k-regular and bi-partite, V= 
I U 0 and assume J.L(I) = J.L(O). Let L5(D) = {f E Lz(D) I 'EvEI f(v)w(v) = 
'EvEof(v)w(v) = 0} and .A(D) = supSpec(8IL~(D)), i.e., the norm ofthe oper-

ator 8 restricted to L5(D). 

One can define expanders in the context of diagrams in a natural way by 
taking the weight of a set and its boundary into consideration. Morgenstern [Mor2] 
did so and also developed the connection between this and .A(D) in analogy with 
Propositions 4.2.4 and 4.2.5. (lt should be mentioned, however, that this analogy 
is not Straightforward and in fact some open questions were left. We will not go 
into details here, referring the reader to [Mor2] for more.) He also showed the 
following analogue of (4.5.5): 

Proposition 8.4.3. Fora k-regular infinite diagram D, .A(D) 2: 2v"1C=l. 

Note that here we do not need an infinite family and that the result holds for 
any single infinite diagram. The following definition is therefore natural: 

Definition 8.4.4. An infinite k-regular diagram with .A(D) = 2v"1C=l is called a 
Ramanujan diagram. 

Example 8.4.5. Let r =SLz(IFp[t]) and D the quotient diagram of r \ Xp+1 
described in Example 8.4.2. Then D is a Ramanujan diagram. For a detailed 
explicit computation of the spectrum of 8 on D; see Efrat [Ef]. 

In [Dr2] Drinfeld proved the function field analogue of Ramanujan conjecture 
and Selberg's Theorem (compare Corollaries 5.5.2 and 5.5.3). From this Morgen­
stern deduced: 

Theorem 8.4.6. Let r' be a congruence subgroup ofr = PSLz(IFq[t)). The diagram 
r' \ Xq+ 1 = r' \ PGLz ( IF q ( ( t))) /PGLz ( IF q [ [ t]]) is a Ramanujan diagram. 

For example, if g = g(t) E 1Fq[t] is a polynomial of degree d 2: 2 and R = 
IFq[t]j(g(x)), r' = r(g(t)) = Ker(PSLz(IFq[t])- PSLz(R)) then Dg = r' \ Xq+1 
is a finite sheeted (ramified) cover of D = r \ Xq+1, where r = PSL2 (1Fq[t]). 
The latter is described in Example 8.4.2. For i = 0, 1, 2, ... , let Li be the set of 
vertices of Dg lying above Ai- call them the vertices of Ievel i. Then the vertices 
in Li are connected only with vertices from Li -1 and Li +I· The group r jr' acts 
transitively on Li and the set L; can be, therefore, identified with r jr;r', where 
r; is the stabilizer of Ai in r (see Example 8.4.2). This actually can be translated 
to a very explicit construction: Let R be represented by the polynomials of degree 
smaller than d, M = PSLz(R), MO= PSLz(IFq) and for i > 0: 

Mi={(~ :) EMia,dEIFq\{O},deg(b):::;i}. 
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Dg has the following description: The vertices Li of Ievel i are the elements of 
M/Mi for i = 0, 1, 2 ... , and an edge exists between xMi and yMi+l if and only 
if their intersection is not empty. From this description we see that for i 2:: d - 1, 

ILil = ILa-II and we have ILal cusps in Dg. 

Diagram Dg 

_ .. t--
,....... . 
~q+l : ~ . 
1 q:o-1) 1 

---
q~!--~------•. .... 

; q~J··············· 

······ 

·················· 

Now if we restriet our attention only to Ievels 0 and 1, we get a finite 
3d 

bi-partite graph (the weights here are all 1 ), with ILo I = ~ iJ! and IL 1l = 
~ I 
~( I) iJ! where iJ! is equal to rr,-_ 1 (1- ~) where Yi are as follows: write g(t) = 
q q- - q l 

Pi (t)a' · · · Ps(t)as where Pi(t) are irreducible of degree Yi (so L~=l am = d). 
Anyway L 1 is somewhat larger than Lo. Morgenstern noticed that applying the 
fact that Dg is Ramanujan to the expansion properties of the subgraph Lo U L1 

yields: 

Proposition 8.4.7./fq 2:: 5 then the subgraph LoUL1 ofDg is a (qz(:~i) iJ!, qh, q, 

~) -bounded concentrator (see Definition (1.1.7)). 

These bounded concentrators have some advantages over the one described 
in Chapter 1, e.g., homogenicity. They give rise to superconcentrators of density 
66. Proposition 8.4.7 does not hold for q = 2, but if one can prove it for q = 3 it 
would give superconcentrators of density 28. This would be better than what can 
be done by random methods! 



9 Distributing Points on the Sphere 

9.0 Introduction 
A problern of practical importance is that of generating a large number of random 
elements in a group. Of particular interest are the orthogonal groups SO(n + 1). 
A closely related problern is the one of placing a large number of points on the 
sphere sn in a uniform way. For a survey and many references see Sloane [SI] 
and Berger [Beg]. 

In this chapter, we present a solution for this problern for the case n = 2, 3. 
This is a method based on previous considerations andin particular on Deligne's 
Theorem (6.1.2). It has some remarkable properties which are impossible to be 
achieved for n = 1. Just like with the Banach-Ruziewitz problem, this is because 
of the amenability of S 1. For n ;:::: 4, on the other band, only weaker properties 
are known to exist. The problern is still widely open. 

The results presented in this chapter give a method to distfibute points on 
the sphere which is satisfactory from one point of view. There are many different 
criterions and methods depending on need. For information on other methods see 
the extensive bibliography of [CS]. The results here are due to Lubotzky-Phillips­
Sarnak [LPS3, LPS4]. The presentation, however, partially follows the exposition 
of those results by Colin de Verdiere [CV3]. 

9.1 Hecke operators of group action 

In this section we introduce «Hecke operator» 8s in the context of harmonic 
analysis of a compact space X, where S is a finite subset of isometfies of X. We 
relate the eigenvalues of 8s to the distfibution of the points Sxo for Xo EX. 

So Iet S = {ai, b1 = a:J 1, ... , ae, be = ae- 1} be a finite symmetfic subset of 
isometfies of X, and Iet for f E L2(X), (8sf)(x) = L f(rx). It is not difficult 

"/ES 
to check that the operator 8s is symmetric, of norm 2C and 8s ( 1) = 2C · 1 where 1 
is the constant function. The subspace L5(X) = {/ I J f = 0} is invariant under 
8s. Let 

1 
A(S) = 2C ll8s lq(x) II· 

So, 2C A(S) is the norm of 8s restficted to LÖ(X). 

The ultimate goal is to find a set S for which (Df)(x) = -1z L f(rx) -
'YES 

vollx) J fdf-1 is as small as possible in an appropriate norm. Once we achieve 

this goal, we can use the finite sum vo~X) L f(rx) as a good approximation for 
"/ES 

J fdf-1. Now, P f = vol(x) J fdf-1 is the projection of f to the space of constants, so 
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f-Pf E LÖ(X) and Df = iJ8s(f-Pf). So .A(S) = IIDII when we consider Das 

an operator for L2 (X) to L2 (X). Our goal is, therefore, to find S for which .A(S) 
is as small as possible. (So we are looking for optimal bounds in the L 2-norm, 
but eventually we also have estimation with the L 00 norm, i.e., for every point, 
and not just on the average in the L 2-norm, see (9.2.6) below.) 

Lemma 9.1.1. In the notations above, .A(S) < 1 if and only ifthe representation of 
the finitely generated group r = (S), generated by S, on LÖ(X) does not weakly 
contain the trivial representation. 

We omit the proof of this Iemma, which is analogous to the proof of Propo­
sitions 4.2.4 and 4.2.5 (compare also (4.3.2)). One can, in fact, think of X here as 
a graph in which every x E. Xis connected to 7(X) for every ')'ES. The graph 
is certainly not connected, so on the face of it (recalling that for a finite graph 
the trivial eigenvalue has multiplicity one if and only if the graph is connected) 
one does not expect .A(S) to be smaller than one. Still, there is a difference: The 
connected component of XE Xis the orbit rx when r = (S). So if one orbit is 
dense, 1 is not an eigenvalue of 8s on LÖ(X). It is still a difficult task to make 

sure that the norm of 8s on LÖ(X) is strictly less than 1. 

The Iemma gives: 

Proposition 9.1.2. Let r be a discrete amenable group acting on a compact space 
X and S ~ r a symmetric subset with 2i elements. Then .A(S) = 1. 

Proof The group generated by S is also amenable, and whenever an amenable 
group acts on X, its representation on LÖ(X) weakly contains the trivial represen­
tation (compare (3.1.5)). D 

On the other band: 

Proposition 9.1.3. /f r = (S) is a Kazhdan group acting ergodicly on X, then 
.A(S) < 1. 

Proof Because ofthe ergodicity, there is no r-invariant function in LÖ(X). By the 

definition of Kazhdan group (§3.1), its representation on LÖ(X) does not weakly 
contain the trivial representation. D 

Proposition 9.1.2 implies that for any finite subset S of 0(2) acting on the 
circle 5 1, .A(S) = 1. On the other band, just like the Ruziewicz problern and 
because of precisely the Same reasoning the Situation for 5n, n ~ 2 is different: 

Theorem 9.1.4. For every n ~ 2 there exists i = i(n) and c: = c(n) > 0 suchthat 
SO(n +I) has a symmetric finite subset S of order 2i for which .A(S) ~ 1- c:, 
where .A(S) is the norm of 8s on LÖ(Sn). 
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Proof In Lemma 3.4.3 we proved that SO(n), n 2: 5 contains a finitely generated 
subgroup r which has property (T). Taking S tobe a symmetric set of generators 
for r, proves the result for n 2: 4. 

For n = 2, 3 we have produced in the proof of Theorem 7.2.1, a finitely 
generated group (in fact a free group, at least for n = 2) of S 0( n + 1), which 
does not have property (T), but its action on LÖ(Sn) does not weakly contain the 
trivial representation. A set S of generators for r will do it here. 0 

In the next section we shall present a set S of 6 elements for which >.(S) = 
2VS. Moreover, Samak [Sa2] shows how, given a set of2C(n) elements in SO(n+ 
1) with >.(S) < 1 - E(n), one can find in an effective way a set S' of 4C(n) = 
2C(n + l) elements in SO(n + 2) with >.( S') < 1-E(n + 1 ). An openproblern is to 
find such sets with e and c independent of n. lt is quite likely that e can be made 
independent of n (by finding cocompact lattices in SO(n - 2, 2), for n ---+ oo, 
as in the proof of Proposition 3.4.3, with a bounded number of generators). On 
the other hand, it is an open problern whether using bounded e, c can be made 
independent of n. This interesting question might be related to the problem, posed 
in Example 4.3.3C of making all the symmetric groups Sm a family of k-regular 
expanders, simultaneously. 

9.2 Distributing points on S 2 ( and S 3) 

We first present a lower bound of how small >.(S) can be. We then, following 
[LPS1, LPS2], present a set of elements which achieves this optimal bound. 

Theorem 9.2.1. For every CE N and every symmetric subset of 50(3) of order 
2€ acting on X= S2, >.(S);::: 2v'~-I = v'2~-1· 

Proof See [LPS3, Theorem 1.3] or [CV3, Theorem A]. 

This theorem is an analogue of the bound (4.5.4) and (4.5.5) for graphs. Its 
proof actually also uses (4.5.3) with some information on spherical harmonics on 
52 . It seems likely that there should be a general result like (9.2.1) for much more 
general X. 

Our favorite group r, which was presented first under the name A(2) in 
(2.1.11) and have been used also in §7 .4 to achieve the optimal bound for graphs 
(Ramanujan graphs) is the one which will give the optimal >.(S) here. But first a 
definition: 

Definition 9.2.2. A symmetric subset S of size 2€ of 50(3) is called a Ramanujan 
set ifwith respect to its action on S2 , >.(5):::; V2~- 1 . 
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Theorem 9.2.3. Let p be a prime, p = 1(mod4). Let 

3 

5' = {a = (ao,a1,a2,a3) E Z4 12::>r = p,ao > 0 odd, 
i=O 

and ai even for i = 1, 2, 3}. 

To every a E 5' associate an a' E PGL2(C), 

a' is infact in PU(2), which is isomorphic to 50(3). The isomorphism 'P may be 

obtained by identifying ~3 with real quaternions oftheform {xi+Yi+zk l(x, y, z) E 

~3 } and letting a acting on it by conjugation. Let Ci = 'P(a'); then the set 

5 = {Ci I a E 5'} is a symmetric Ramanujan set of order p + 1 = 2e, i.e., 

A(5) ~ ~~· 

ProofThat 151 = p+ 1 follows from 2.1.8 (see also (2.1.11) and §7.4). To prove 
the Ramanujan bound, one argues in a way similar to the proof of (7.2.1). The 
current theorem can actually be considered as a quantitative version of (7 .2.1 ). D 

Example 9.2.4. Let p = 5 and so 5' = {al,a2,a3,Ci1,Ci2,Ci3} where a 1 = 

(1,2,0,0), a2 = (1,0,2,0) and a3 = (1,0,0,2) (and Ci is in the quaternionie 
sense, i.e., if a = (x,y,z,w) then Ci= (x,-y,-z,-w)). Then 5 = {a1, a 2, 

Ci3, Ci ! 1, Ci21, Ci_3 1} where Ci 1, Ci2 and a3 are rotations of arccos(- ~) about the 
X, Y,Z-axes, respectively (since (1 + 2i)j(l- 2i) = 3j + 4k, etc.). Theseare 
rotations of angle approximately 126°52' around the axes. 

It should be mentioned that most subsets of 50(3) arenot Ramanujan. The 
following theorem is proved in [LPS 1]: 

Theorem 9.2.5. For generic g_ = (g1, ... ,gc) E 50(3)c, the set 5 = {sT\ ... , 
gf1} is not a Ramanujan set. (By «generic» we mean that the compliment, i.e., 

the €-tuples which are Ramanujan, form a subset of the first category.) 

lt is interesting to compare this with J. Friedman's results ([Fr]), which show 

that most k-regular graphs are almost Ramanujan (and it is conjectured that they 
are indeed Ramanujan). They are, anyway, expanders by Proposition 1.2.1, while 

in the current situation it is an openproblern whether for generic 5, A(5) < 1 or 

A(5) = 1. 

Finally we bring some consequences which are of importance for numerical 
analysis: 

Forasubset 5 of 50(3) and NE N, let N 5 = {'y E 50(3) I 'Y is a word of 
length ~ N in 5}. 
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Theorem 9.2.6. lf5 is a Ramanujan subset of50(3), then >..(N 5) = O(logn/.Jri) 
when n =IN 51. 

Proof See [LPS3, Theorem 1.5] or [CV3, Theorem C]. D 
n 

The theorem implies that for every f E L 2(52), II ~ 2:: f('yjx)- 4~ J52 /IIL2 = 
j=l 

O(log n/ .Jri) when { 'Yj 11 ~ j ~ n} is the set of elements in N 5. 

When f is of somewhat special form one can also get bounds in L 00 , i.e., for 
every x E 52. 

Theorem 9.2.7. Suppose 5 is a Ramanujan subset of 50(3), D a domain in 52 

with a piecewise smooth boundary and Xo any point of 52, then: 

i!_#{j I "fjXo E D}- -4
1 Area(D)i = O(lognjn113), 

n rr 

where {'Yj I 1 ~ j ~ n} is the set of elements in N 5. 

Proof [LPS3, Theorem 2.7] or [CV3, Theorem D]. D 

Such a theorem is of practical importance: it gives an algorithm to compute 
numerically an area of a subset D of 52. This will be done by picking any point 
x0 of 52 and applying on it the words of length ~ N in the A ±1, ß±I and c±I 
of Example 9.2.4. The proportion of them which lie in D will be an estimation to 
the area of D where we also have an estimate of the rate of convergence of the 
algorithm. One of the significance properties of this algorithm is that one does not 
have to decide in advance on N (and n) but rather can stop the algorithm while it 
achieves the degree of precision needed. The design of the algorithm is not at all 
dependent on the number of points which are going to be sampled! 

Remark 9.2.8. lt is indeed proved in Theorem 9.2.3 that the set 5 constructed 
there satisfies the Ramanujan bound also with respect to its action on Lij(50(3)) 
and even on Lij(5U(2)) when 5 is considered as a subset of 5U(2) instead of 
50(3) (by replacing ö by a'). As 5U(2) is topologically the three-dimensional 
sphere, the results in this section gives also an effective method to distribute points 
on 53. 



10 Open Problems 

The results presented in this book solve some problems and at the same time 
open many others. In this chapter we will collect some of these and try along 
the way to give some indications of what we believe the questions which future 
research should face. We categorize the problems in accordance to the chapters of 
the book, but this is somewhat arbitrary as many of them are related to more than 
one chapter. 

10.1 Expanding graphs 

The results presented in this book do not give a complete satisfactory solution to 
the problern of expanders. The Ramanujan graphs are excellent expanders but not 
as good as what can be obtained by random methods. The best estimation of the 
expansion coefficient of Ramanujan graphs is due to Kabale [Kl], [K2], who also 
showed that his estimation isthebest possible if just abound on At is given. One 
should therefore ask: 

Problem 10.1.1. What is the best expansion coefficient one can obtain for an 
infinite family of k-regular graph? 

Pippenger has some results in this direction. For the next question one needs 
a real new idea: 

Problem 10.1.2. Find expanders which will achieve this bound. 

lt is also of interest: 

Problem 10.1.3. Find new methods to construct k -regular expanders for a fixed k. 

The problern of unbalanced expanders is also still widely open: 

Problem 10.1.4. Find an explicit construction of a bi-partite bi-regular graphs 
with vertex set V = I U 0 such that all edges go between I and 0, li I rv n2 , 

101 "' n, the degree of every vertex in I is bounded and such that for every A s:;; I 
of size:::; ~. löAI:::: lAI. 

There are various variants of this problern where random arguments ensure 
the existence of various types of graphs but explicit constructions are not known. 

10.2 The Banach-Ruziewicz Problem 

There are various interesting problems related with the Hausdorff-Banach-Tarski 
paradox. Those will not be mentioned here but rather refer the reader to Wagon 
[Wa]. We limit ourselves to one generalproblern and a special case of it: 
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Problem 10.2.1. For what compact groups K, the Haar measure J1, is the unique 

finitely additive K -invariant measure defined on the p,-measurable sets? 

lt was shown by Margulis [M2] and Drinfeld [Drl] (see Corollaries 3.4.6 and 
7 .2.2) that p, is the unique one when K is a non-abelian compact simple Lie group 
over ~. This is not the case for S0(2), which is amenable as a discrete group. 
An interesting special case is: 

00 

Problem 10.2.2. Let K = TI An where An is the alternating group on n elements. 
n=5 

Answer Problem (10.2.1) for this K. 

00 

The interest of this example is that TI An is not an amenable group as a 
n=5 

discrete group; in fact, it contains the free group on 2 generators. {This can be 

deduced from the fact that the free group is residually-{ An I n = 5, 6 ... }; see 
[Ma]). On the other band, it is shown in [LW] that K contains a finitely generated 
dense amenable group. Compare also with Problems (10.3.4) and (10.3.6) below 
and see Sarnak [Sa2, p. 58]. 

10.3 Kazhdan Property (T) and its applications 

Let r be a discrete group generated by a finite set of generators S, and let ( H, p) 
be a unitary representation of r. Derrote K (r, S, p) = inf max { II p( s )v - v II}. So, 

vEH sES 
llvll=l 

K(r, S, p) = 0 if and only if p weakly contains the trivial representation. The 
group r has Kazhdan Property (T) if and only if there exists c:(S) > 0 suchthat 
K (r, S, p) ~ E ( S) for every representation p of r which does not contain a nonzero 
r -fixed vector. The first question asks whether c: can be chosen independently of 

S. 

Problem 10.3.1. Let r be a discrete group with Kazhdan Property (T ). /s there 

an c: > 0 suchthat K(r, S, p) > E for every set of generators S ojf and every p 

which does not contain ( strongly) the trivial representation? 

A positive answer will be quite surprising, but we can not eliminate this 

possibility. There are only few estimates of the Kazdhan constants K(r, S, p) (see 

[Bur5] and [BDH]). 

A problern of similar flavor: 

Problem 10.3.2. Let { Gi} be a family of finite groups each with two systems of 

generators Si and S[ with ISil, IS[I ~ kfor every i. Assurne thefamily ofCayley 

graphs X(Gi; Si) forms afamily of expanders. ls the same true for X(Gi; S[)? 
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On the face of it the mora1 lesson of our discussions in Chapters 3 and 7 
is that the question of being expanders highly depends on the chosen generators. 
Though in [LW] some evidence is presented that Problem 10.3.2 might have an 
affirmative answer. Such an answer would be truly remarkable. 

A very interesting special case is: 

Problem 10.3.3. Is the family {SL2(p) I p prime } a family of expanders with 
respect to all choices of generators? Some computations made in [LaRo] suggest 
that this might be the case or at least with respect to random generators. At this 
point we even do not know that the diameter of SL2 (p) with respect to all ( or at 
least random) sets of generators is O(logp). Compare also /0.8. 

The following can be also considered as a special case of Problem 10.3.2, 
but it is of great interest by itself: 

Problem 10.3.4. Can the family of symmetric groups Sn be made a family of 
expanders using a bounded number of generators? 

Of course if Problem 10.3.2 has a positive solution, then Problem 10.3.4 has 
a negative one since we know that {Sn} is not a family of expanders with respect 
toT= (1, 2) and a = (1, 2, ... , n). See Example 4.3.3C. 

Recall that Alon and Roichman [AR] showed that every group is an expander 
with respect to O(log IG I) generators. In the case of Sn, we even do not know 
whether Sn gives a family of expanders using O(n) generators. 

A question of a similar ftavor: 

Problem 10.3.5. For a fixed prime p, can the family { SLn(P) I n = 2, 3 ... } be 
made into a family of expanders using a bounded number of generators? 

Note that for a fixed n and variable p the family {SLn(P)Ip prime} can be 
made into a family of expanders (by choosing generators of SLn(Z); see Example 
3.3.2 and Theorem 4.4.2i). As is shown in [LW], there is a difference between the 
farnily {SLn(P) In fixed, p varies} and {SLn(p) I p fixed, n varies}. For example, 
Tin SLn(P) contains a dense finitely generated amenable group, while TIP. SLn(P) 
does not. The latter contains (for n 2 3) a dense subgroup with Property lT). This 
is not known and probably not true for Tin SLn(p). lt was conjectured in [LW] 
that the following problern has a positive answer: 

Problem 10.3.6. Let K be a compact group. Assurne K contains two finitely gen­
erated dense subgroups A and B, such that A is amenable and B has Property 
(T). I s K necessarily finite? 

Compare also Problem 10.2.2 above and Problem 10.9.2 below. It seems that 
if one wants to try to give a negative answer to Problem 10.3.5 or a positive one 
to (10.2.2) and (10.9.2), then a new source of discrete subgroups with Property 
(T) is needed: Groups which are not lattices in semi-simple Lie groups. Finding 
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such new examp1es seems to need some tru1y new idea (see [CMS]). It is also not 

known whether groups like the mapping dass group of a surface of genus g ~ 2 
or Aut(Fn) (or Out (Fn)) for n ~ 3 have Property (T) (where Fn is the free group 
on n generators). These groups have a lot in common with arithmetic groups; still, 
Property (T) for them is out of reach at this point. 

10.4 The Laplacian and its eigenvalues 

Selberg's Theorem (4.4.1) is very inspiring: recall that r = SL2(Z) does not have 
the congruence subgroup property (i.e., it has a lot of finite index subgroups which 

do not contain f(m) = Ker(SL2(Z)--. SL2(ZjmZ)) for any m =/= 0). At the same 
time SL2(Z) does not have Property (T) with respect to the set of allfinite index 
normal subgroups. Still if we ignore the non-congruence subgroups and «pretend» 
as only congruence subgroups exist, Property ( T) holds with respect to them. 
Moreover, for SL2(Z[~]) the congruence subgroup property and (T) both hold. If 

k is any number field and () it~g of intege~, then SL2 ( ()) has the congruence 

subgroup property (i.e., Ker(SL2(!Ü)--. SL2(!D)) is finite) if and only if SL2(!D) 
has Property ( T). It is quite natural therefore to conjecture that this is the situation 
in general: 

Problem 10.4.1. Let k be a global field, S a finite set of primes of k (including 
all the archimedian ones) and !Üs the ring of 5-integers. Let G be a simply­

connected, semi-simple algebraic group defined over k !!!_d r = G~!Ds). Prove 

that r has the congruence subgroup property (i.e. Ker(G(üs) --. G(üs) is finite) 
if and only if r has Property ( T). 

One side of this problern would follow once Problem 10.6.1 below would be 
proved. The more interesting direction is the other one. It would show in particular 
that Property (T) implies the congruence subgroup property (and hence also super­
rigidity - see [BMS] and [Ra2]). lt is interesting to compare this conjecture with 
Rapinchuk's conjecture which was proved recently ([PR], [Lu3]). This conjecture 
asserts that some purely group theoretic condition - r = G(ös) is boundedly 

generated, i.e., a product of cyclic groups - implies the congruence subgroup 

property. 

As a first step toward proving Problem 10.4.1, it will be useful to prove some 

group theoretic properties of groups with Property ( T), e.g.: 

Problem 10.4.2. Let r be a group with Property ( T). Prove some non-trivial 

bounds on various asymptotic invariants of r, e.g., the rate of growth of d(H) 
with respect to the index of H in r (where H is a finite index subgroup of r and 
d(H) is its number of generators). Or estimate an(f) - the number of subgroups 
of r of index at most n ( see [LW] for the first steps in this direction and compare 
[Lu3]). 
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Problem 10.4.3. Let r be a group with Property ( T). Prove that the pro-p com­
pletion r 17 ojf is an analytic group over some notherian pro-p ring. See [DDMS] 
and [LuS]. 

In Section 4.5 we defined Ramanujan graphs, but only for the case of k­
regular graphs. The following problern is quite natural: 

Problem 10.4.4. Extend the definition of Ramanujan graphs to arbitrary graphs 
and prove results analogue to Corollary 4.5.5 and the other results in §4.5. A 
Ramanujan graph should be a graph which «imitates» the universal covering tree 
of it. Does every locally finite tree which covers some finite graph also cover a 
Ramanujan graph? infinitely many Ramanujan graphs? 

Recall that in [BK] a necessary and sufficient condition is given for a tree 
to cover a finite graph. Note that at this point it is not even clear whether the 
k-regular tree, when k - 1 is not a prime power, covers Ramanujan graphs. See 
Problem 10.7.3. The first steps in answering Problem 10.4.4.are given in [Gg]. 
See also [FfN], [FTP] and the references therein for harmonic analysis on trees. 
The case of immediate interest is (r, s )-bi-regular graphs. In this case there is even 
a reasonable chance to make an explicit constructions of Ramanujan graphs for 
some special values of r and s. This probably can be done by replacing SLz(Op) 
in Chapter 7, by other rank one groups whose associated Bruhat-Tits buildings are 
bi-regular (and not regular) trees. 

10.5 The representation theory of PGL2 

The material of Chapter 5 is a quite standard one. We have nothing to add in this 
direction. 

10.6 Spectral decomposition of L2 (G(Q) \ G(ßu)) 

Chapter 6 also only brings some results from the literature. However, we call the 
attention of the reader to Conjecture 6.1.3. there. This is a very difficult task. The 
following seems to be a more realistic goal: 

Problem 10.6.1. Let K be a local non-discrete field, G a simply-connected, (al­
most) simple algebraic group defined over K and r an arithmetic lattice in G(K). 
Assurne K-rank( G) = 1. Prove that f has Property ( T) with respect to the family 
of its congruence subgroup (see Definition (4.3.1 )). 
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This is a version of the analogue of Selberg's Theorem for all rank one 
groups. For the case K = lffi, this was already done by Elshodt, Omenwald and 
Mennicke [EGM], Li, Piatetski-Shapiro and Sarnak [LPSS] and Li [Li]. Also for 
G = SL2 this is known over all fields due to the work of Selberg, Deligne, Drinfeld 
and Jacquet-Langlands. But the other exarnples of rank one groups over non­
archimedian fields still need to be worked out. Doing this will give the following 
corollary: Let K, G and r be as above, without the assumption that G has rank one. 
Let S be a finite set of generators of r (such a set exists unless char( k) = p > 0 
and rank(G) = 1, see [Lu2]). Then the family {X(r jN; S) I N a congruence 
normal subgroup of r} is a family of expanders. 

lt is worth notice that this corollary would essentially include all the known 
methods to construct expanders (see [LW]). 

10.7 Banach-Ruziewicz problern for n = 2, 3; Ramanujan graphs 

Experience with Ramanujan graphs shows that they « tend» to have high girth-but 
in all cases this was proved by direct methods and not as a corollary to the bound 
on the eigenvalues. A (very) partial explanation to this is Proposition 4.5.7, but it 

merely implies that the girth can not be bounded in some circumstances. 

Problem 10.7.1. Clarify the connection between eigenvalues and girth. Do Ra­
manujan graphs necessarily have logarithmic girth? 

A question of independent interest is: 

Problem 10.7.2. Fix k and Iet 

{ girth(Xn k) } 
g(k) = limsup (,) I Xn,k is a k- regular graph with n vertices . 

logk-I n 

It is easy to see that g(k) :::::; 2, and Theorem 7.3.12 and the remark after Theorem 

7.4 .6 show that for k = C + 1 where C is a prime power, g( k) 2: 1· Give better upper 
or lower estimates? Here one does not necessarily need explicit constructions. 

Similarly, in the following question we do not ask for explicit constructions, 
though such one will be most desirable: 

Problem 10.7.3. /s it true thatfor every k 2: 3 there exist infinitely many k-regular 

Ramanujan graphs? 

Theorems 7.4.5 and 7.4.6 give a positive answer for every k = pr + 1 where 
p is a prime and r any positive integer. But nothing is known for other k's. The 

first open problern is k = 7. 

Problem 10.7.4. Are random k-regular graphs Ramanujan? see [BS], [Fr/] and 
[FKS] where it is proved that they are «almost» Ramanujan. 

Of course it will be of great interest to find more methods to construct k­
regular Ramanujan graphs for k fixed. 
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10.8 Some more discrete mathematics 
When discussing diameter of a family of finite groups with respect to a bounded 
set of generators, there are three different issues to be considered: best generators, 
random generators and worst case generatorso 

For the family of finite simple non-abelian groups Theorem 801.4 says that 
«best generators» indeed generate them in O(log IGI) steps. We can still ask: 

Problem 10.8.1. Can the number seven in Theorem 801.4 be dropped to two? 

It was shown by Kantor [Kan1,2] that this is indeed the case for many of the 
simple groups. 

Before passing to random generators, let us re-mention some problems on 
the generators we used in §8.1. 

Problem 10.8.2. Let {An, Bn} be the standard set of generators of SLn(Z) de­
scribed in Proposition 801010 Does there exist a constant C such that for every n 
and p, diamX(SLn(p); {An, Bn}) :S Cn2logp? 

It was observed [LW] that for a fixed p the family X(SLn(p), {An, Bn}) is not 
a family of expanderso It is a family of expanders for every fixed n, when p varies. 
This last fact implies, as Proposition 8.1.1 shows, that for a fixed n, the family 
X(SLn(p); {An, Bn}) has logarithmic diameter, but the proof is not effective, i.e., 
it does not give any hint how to represent a matrix in SLn (p) as a short word in 
An and Bn. This is even open for n = 2. 

Problem 10.8.3. Does there exist a polynomial time algorithm (polynomial in 

( 1 E=l.) logp) which expresses an element of SL2(p) (say 0 I ) as a short word 

1)? 0 0 

Note that if p > 2 and we allow to use a third generator C = ( ~ ! ) , 
then this can be done quite easilyo In fact the proof of Theorem 8.1.4 in [BKL] is 
effective. 

A baby-version of Problem 10.803 is: 

Problem 10.8.4. Let p be an odd prime and Y = 1Fp x 1Fp \ { (0, 0) }0 From (a, b) E Y 
we can move to either ( a ± b, b) or ( a, b ± a) 0 Find a sequence of moves of length 
O(logp) which takes (1,0) to (~,0)0 

Note that Selberg's Theorem implies that such a sequence exists. This can be 

deduced from Theorem 4.4.2 by replacing the generator r used there by ( ~ ~) 0 

As mentioned there, Seiberg 's Theorem, whose proof is based on some spectral 
analysis on some Riemann surfaces plus the Riemann hypothesis for finite fields, 
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is effective in the sense that the constant involved can be estimated. However, it 
gives no algorithm of how to find such a sequence of moves. It will be even more 
interesting if one can show that no such algorithm with (logp)0 (1) steps exists. 

The results of §8.1 give a solution for the problern of finding «best case gener­
ators». L. Babai has conjectured (cf. [BHKLS]) that even «worst case generators» 
of finite non-abelian groups are not that bad: 

Problem 10.8.5. (L. Babai) Prove that there exists a constant C such that if 
G is a finite non-abelian simple group and S a set of generators of G then 

diamX(G; S):::; Iog(IGI)c. 

This is open even for the family of symmetric groups. 

Very little is known about the diameters of Cayley graphs of a finite simple 
non-abelian group G with respect to k generators selected randomly. Recall that by 
Dixon [Dix] for the altemating groups, by Kantor-Lubotzky [KL] for the classical 
groups and by Liebeck-Shaler [LiS] for all the rest, almost every k-tuple (for k 2: 
2) generate G. Problem 10.8.5 might be somewhat easier for random generators. 

Problem 10.8.6. F or a fixed k 2: 2, prove that there exists a constant C such that 
diamX(G; S):::; log(IGI)c for almost all k-tuples S of elements ofG, where Gis 
any finite non-abelian simple group, and almost all means except of a set whose 

proportion to IGik is going to one when IGI is going to infinity. Is it even true 
that diamX ( G; S) :::; C log( I GI) for almost all S? 

Some results in this direction for the symmetric groups were proved by Babai 
and Hetyei [BaHe]. Nothing is known on this issue for the group {SL2(p) I p 
prime}. This is a very interesting test case, though one should keep in mind that 
it might behave differently for the family {SLn(2) In 2: 2}; see 10.3, [LW] and 
[GKS]. 

Passing to Section 8.2, we mention that the fact that we were able to compute 
so explicitly the eigenvalues of X(SL2(p); S) from the character table of SL2(p) 
is due to the fact that S was chosen to be a full conjugacy class. 

Problem 10.8.7 Find eigenvalues (or at least AJ) of Cayley graphs with respect 

to some «nice generators», e.g., Coxeter groups with the standard generators, 
SLn(P) with respect to elementary matrices, etc. 

Some results in this direction are given in [BDH] and [DG]. Roichman [Rn] 
obtained some powerful estimates on characters' values of the symmetric groups, 
which enabled him to estimate >. 1. Computational methods were developed in 

[LaRo] and the references therein. Finally we mention two problems extending 
the Ramanujan graphs in two directions: 

Problem 10.8.8. (Ramanujan complexes) Study the Laplacian of complexes ( see 
[Ch], [Ga]), define Ramanujan complexes and construct such. 
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Some work in this direction has been done for hyper-graphs ([FW], [Fr2] and 
[C3]). 

Problem 10.8.9. Ramanujan diagrams: 

(i) Morgenstern ([Mo2], [Mo3]) studied the diagram associated with the stan­
dard characteristic p modular group. Study the diagrams obtained from dif­
ferent curves (see [SI]). 

(ü) Prove Proposition 8.4.7 for q = 3 or 4. This will improve the known super­
concentrators. lt might be that once part (i) will be established, there will be 
other interesting finite subgraphs which might Iead to some more applications 
to computer science. 

10.9 Distributing points on the sphere 

U sing the same notations as in Chapter 9, we denote by S a finite symmetric 
set of cardinality 2€ of isometfies of a compact metric space X, e.g., X = sn 
the n-dimensional sphere, and 2€ · .A(S) is the norm of the operator (8sf)(x) = 
E,Es f('yx) acting on LÖ(X). 

Problem 10.9.1. ls there a fixed f E N and c: > 0 such that for every n ~ 2, there 
exists a symmetric set S(n) of2f elements of SO(n + 1) for which .A(S) < 1- c:? 

This problern is a continuous analogue of Problem 10.3.4 above. If there 
exists a discrete group r with Property (T) with dense representation Pn : r ---t 

SO(n+ 1) for every n, then the problern has an affirmative solution by (the proof 
ot) Proposition 9.1.3. However, all the known examples of discrete groups with 
Property (T) are lattices in some Lie groups. For all of them, super-rigidity results 
were proved which show that for a given r, such Pn exist for at most finitely 
many n's. The following is, however, open: 

Problem 10.9.2. Prove that K = I1n>4 SO(n + 1) contains no finitely generated 
dense subgroup with Property (T). -

A more detailed version of Problem 10.9.1 is: 

Problem 10.9.3. For n and f, estimate from above and below the following quan­
tity: 

inf{.A{S) I S a symmetric subset of SO(n + 1) 

of size 2f acting on the n - sphere}. 

Problem 10.9.4. What is .A{S) for a random choice of a symmetric set of elements 
of SO(n + 1)? Is it equal to 1 or smaller than 1? This is not known even for 
n = 2. 



Appendix: Modular forms, the Ramanujan 
conjecture and the Jacquet-Langlands 
correspondence 

Jonathan D. Rogawski1) 

The theory developed in Chapter 7 relies on a fundamental result (Theorem 7 .1.1) 
asserting that the space L2(f\50(3) x PGLz(Op)) decomposes as a direct sum 
of tempered, irreducible representations (see definition below). Here 50(3) is the 
compact Lie group of 3 x 3 orthogonal matrices of determinant one, and r is a 
discrete group defined by a definite quaternion algebra D over 0 which is split at 
p. The embedding of r in 50(3) X PGLz(Op) is defined by identifying 50(3) 
and PGLz(Op) with the groups of real and p-adic points of the projective group 
D*/0*. 

Although this temperedness result can be viewed as a combinatorial state­
ment about the action of the Heckeoperators on the Bruhat-Tits tree associated to 
PGLz(Op). it is not possible at present to prove it directly. Instead, it is deduced 
as a corollary of two other results. The first is the Ramanujan-Petersson conjec­
ture for holomorphic modular forms, proved by P. Deligne [D]. The second is 
the Jacquet-Langlands correspondence for cuspidal representations of GL(2) and 
multiplicative groups of quaternion algebras [JL]. The proofs of these two results 
involve essentially disjoint sets of techniques. Deligne's theorem is proved using 
the Riemann hypothesis for varieties over finite fields (also proved by Deligne) 
and thus relies on characteristic p algebraic geometry. By contrast, the Jacquet­
Langlands Theorem is analytic in nature. The main tool in its proof is the Seiberg 
trace formula. Furthermore, Deligne's Theorem is conveniently expressed in the 
classicallanguage of modular forms, while the Jacquet-Langlands correspondence 
requires the language of infinite-dimensional representation theory. The purpose 
of this appendix is to explain the Statements of the Deligne's Theorem and the 
Jacquet-Langlands correspondence, briefly outline their proofs, and explain how 
they combine to yield Theorem 7.1.1. The standard references [AA], [Co], [D3], 
[G] should be consulted for further details and related topics. I would like to thank 
Victor Tan for carefully reading the manuscript and suggesting several corrections. 

1) Partially supported by a grant from the NSF. 
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A.O Preliminaries 

In this section, we fix notation and review some basic facts. See [CF] for a general 
treatment of adeles and ideles and [GPPS], [G] for a discussion of adele groups. 

Throughout this appendix, p will denote a prime of 0 (the infinite prime 
p = oo is allowed). If p is finite, Op is the field of p-adic numbers and ~P is the 
ring of p-adic integers. For p = oo, 0 00 = R The absolute value on Op will be 
denoted by I lp· 

Let G denote the group GL(2) of invertible 2 x 2 matrices, and define the 
subgroups: 

The decomposition B = MN holds. The center of G is the group of scalar matrices 

Z={(~ ~)}· 
We shall use algebraic group notation. Thus, if H is one of the above groups and 
R is any ring, then H(R) is the group of R-valued points of H, i.e., the group of 
elements of H with entries from R. We will write Hp for H(Op)· 

For all p, Gp is a locally compact group under the topology inherited from 
the natural coordinate topology on the set of 2 x 2 matrices. For p = oo, G00 is 
a Lie group. For p < oo, Gp is totally disconnected, in the sense that there exists 
a basis for the open neighborhoods of the identity consisting of subgroups. Such 
a basis is given by the set of congruence subgroups 1 + pn M2 (~p) for n 2: 1. 

Let Kp be the following standardmaximal compact subgroup of Gp. If p < oo, 
Kp = GL(~p). For p = oo, let 

r(O) = ( co~ (} sin (} ) 
- smO cos(} 

and set 
Koo = {r(O) : (} E [0, 21r)}. 

The lwasawa decomposition 

holds for all p. 
As explained in Chapter 6, the adele ring A of 0 is the restricted direct 

product of the fields Op: 

A ~ { (ap) E I} o, 'a, E z, fo,.Wnost aU primes p < oo} . 
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Let At be the ring of finite adeles, defined as a restricted direct product as above 
but without the infinite factor R When convenient, we also identify At with the 
subring of elements (ap) E A suchthat a00 = 0. For any adele a, we write at for 
the finite part of a, i.e., the tuple obtained by dropping a00 • 

We view 0 as a subring of A relative to the diagonal embedding. Thus x E 0 
is identified with the adele ( x, x, ... ) . Let 

:z = l~7L/N = rr 1Lp. 
N p<oo 

The ring A has the stru<:.._ture of a locally compact topological ring for the topology 
relative to which ~ x 7L with its product topology is an open subring (cf. 6.1). 
The image of 0 in A is a discrete subgroup since 0 n ( -1, 1) x Z = { 0}. 
Furthermore, there is a surjective homomorphism of Z onto 7LjN with kemel NZ, 
and for all integers N we have the following decomposition (referred to as the 
Strong Approximation Theorem): 

A = 0 + (~ X NZ). 

It follows that 0\A = N7L\(~ x NZ) for all N and also that 0\A is compact. 
The idele group 0 is the group of invertible elements in A: 

I~ { (ap) EI} o; 'ap E z; fo' alm"'t all prime' p < oo}. 

The group Ot of finite ideles is the group of invertible elements in At. Note that 
Z* = Tir<oo 7LP. The idele group is a locally compact group for the topology 
relative to which ~* x Z* with its product topology is an open subgroup. The 
image of 0* in 0 is a discrete subgroup since 0* n ~+ x Z* = { 1}. Here ~+ 
is the multiplicative group of positive real numbers and 0* is identified with its 
image under the diagonal embedding. For X E 0, the absolute value is defined as 
the product of the local absolute values: 

lxl = rr lxlr· 
p 

The product is actually finite since ixlr = 1 for almost all p. Let 01 be the group 
of ideles x such that lxl = 1. The product formula asserts that 0* is contained 
in 01. It follows from the unique factorization into primes that 0 decomposes as a 
direct product 

0 = 0* ( ~~ X Z*) . (1.1) 
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In fact, for ~y idele x, define the rational number a = sgn(xoo) flp<oo lxpl· Then 

ax E lffi'f_ x ll.*. 
The adele group G(A) is the group of invertible 2 x 2 matrices with entries 

from Al: 

G(A) ~ { g ~ (&,) E l} G(Op): gp E G(Zp) fm almoot all p}. 
This is a locally compact group for the topology relative to which G(lffi) x 
flp<oo G(ll.p) with its product topology is an open subgroup. 

A Hecke character w is a continuous character of 0 which is trivial on Q*. 
Let Wp and Wf denote the restrictions of w to Q~ and lt, respectively. By (1.1), 

we may view w as a continuous character of lffi'f_ x Z*. For all s E C, x ___, lxl5 is 

a Hecke character which is trivial on Z*. On the other hand, if w' is a Dirichlet 
character, i.e., a character of (7l./N)*, then w' defines a Hecke character w which 
is trivial on lffi'f_ via the homomorphism «reduction modulo N»: 

Z* ___, (7l./N)*. 

Observe that with this definition, if (p,N) =I, then wp(p) = w'(p)- 1. lndeed, 

1 = w((p,p,p, .. . )) = wp(p)w((p,p, ... , l,p, ... ) 

= wp(p)w'(p), 

where a = (p,p, ... ,l,p, ... ) is the idele suchthat ap = 1 and ap = p for 
all primes C =f=. p. Every Hecke character w decomposes uniquely as a product 
w0 ( x) lx 15 , where wo is defined by a Dirichlet character. Note that Z (Al) is iso­
morphic to 0. We may therefore regard any Hecke character as a character of 
Z(O)\Z(A). 
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A.l Representation theory and modular forms 

A unitary representation of a topological group His a pair (1r, V), where Visa 
Hilbert space and 1r is a homomorphism from H to the group U(H) suchthat the 
map 

Hxv-v 
(h, v)- 1r(h)v 

is continuous. Sometimes, we write V1r for the space V, and at other time, we drop 
V from the notation and notate only the homomorphism 1r. 

If H is a unimodular locally compact group and H' is a closed unimodular 
subgroup of H, then there exists an H-invariant measure on the quotient space 
H'\H and we may define the Hilbert space L 2(H'\H). The group H acts unitarily 
on L2(H'\H) by right translation p: 

(p(h)<!J)(x) = <jJ(xh). 

In the theory of automorphic forms, we are interested in the representation 
of G(A) on L2(G(O)\G(A)). However, the quotient Z(O)\Z(A) is noncompact, 
and it is more convenient to consider a slightly different Hilbert space. Fix a 
unitary character 

w : Z(O)\Z(A) - C* 

and Iet L2(w) be the Hilbert space of functions </J on G(O)\G(A) such that 
<jJ(zg) = w(z)</J(g) and 

r I<P(g)l2 dg < 00 
jG(Q)Z(A)\G(A) 

where dg is a G(A)-invariant measure on G(O)Z(A)\G(A). Let Pw be the repre­
sentation on L 2 ( w) by right translation. We may assume, without loss of generality, 
that w is a Dirichlet character. Indeed, suppose that w' = wl 15 , and Iet Xs be the 

character Xs (g) = I det(g) I L Then Pw 0 Xs is isomorphic to Pw' via the map 
sending <jJ(g) E L2 (w) to <P(g)xs(g) in L2 (w'). 

The space of cusp forms 
The constant term of a function <jJ E L 2 ( w) is defined by 

</JN(g) = { </J(ng) dn. 
jN(Q)\N(A) 

The quotient N(Q)\N(A) is isomorphic to 0\A, hence compact, and thus the 
integral is defined for almost all g. The function </J is said tobe cuspidal if <!JN(g) = 
0 for almost all g E G(A). Since this condition is invariant under the right action 
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of G(A), the subspace LÖ(w) of all cuspidal functions is a closed G(A)-invariant 

subspace of L2 (w). 

Denote the restriction of Pw to LÖ(w) by p0:_,;. By a fundamental theorem of 

Gelfand and Piatetski-Shapiro ([GGPS], [La]), p0:.,; is completely reducible, that is 

p0:.,;~E9m(n)n. 

Here n ranges through a countable set of inequivalent irreducible unitary rep­

resentations of G, and the multiplicity m( n) of n is finite. The representations 

occurring with nonzero multiplicity in LÖ(w) for some w are called cuspidal rep­

resentations. The cuspidal representations are the primary object of study in the 

theory of automorphic forms. 

The following basic result is due to Jacquet and Langlands [JL]. 

Theorem 1.1. lf (n, V) is cuspidal, then m(n) = 1. 

In other words, if (n, V) is an irreducible unitary representation of G(A), then 

there is at most one isometric intertwining operator T: V---+ LÖ(w). Theorem 1.1 

is a consequence of a result in the representation theory of the local groups Gp. 

the uniqueness of the so-called Whittaker models (cf. article of I. Piatetski-Shapiro 

in [Co], Vol. 1). 

Congruence subgroups 
If r c SL2(Z) is a subgroup of finite index, we can consider the representation 

of SL2(~) by right translation on the Hilbert space L2 (f\SL2(~)). Let 

r(N) = ker (SL2(Z)---+ SL2(ZjN)), 

where the arrow is reduction modulo N. Recall that a subgroup r c SL2(Z) is 

said to be a congruence subgroup if it contains r(N) for some N. The spaces 

L2 (f\SL2 (~)) for r a congruence subgroup can be analyzed in terms ofthe adelic 

spaces L2 (w). Weshall illustrate with the Hecke subgroups fo(N). 

Let 

and set 

fo(N) = { ( ~ ~) E SL2(Z): c = OmodN} 

ft(N) = { ( ~ ~) E fo(N): a = d = 1 modN}. 

Then r 1 (N) isanormal subgroup of fo(N) and the quotient ft (N)\fo(N) acts 

Oll 

L2(N) = L2 (ft(N)\SL2(~)), 

with 'Y E r 0(N) acting by f(g)---+ f('Y- 1g). Since ft(N)\fo(N) is isomorphic 

to (Z/N)*, a Dirichlet character w' of (ll./N)* may be viewed as a character of 

fo(N) by the formula 

w' ( ( ~ ~)) = w'(d). 
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Let L~,(N) be the w'-eigenspace ofro(N) acting on L2(N). As described in 0, w' 
defines a Hecke character w, which we also view as a character of Z(Q)\Z(A). 
The group SL2(IR) acts on L2(w) since it is a subgroup of G00 • We now define 
an embedding 

which is equivariant for the action of SL2(IR) on both spaces. Set 

K = G(~) = I1 Kp. 
p<oo 

Reduction modulo N defines a surjective homomorphism 

K---+ GL2(ZjN). 

Let Ko(N) be the subgroup of elements k E K whose reduction modulo N is 
upper-triangular. The following decomposition holds 

G(A) = G(Q) (G~ X Ko(N)) (1.2) 

where G~ is the subgroup of elements with positive determinant [G]. Note that 
G~ = Z(IR)+SL2(IR) where Z(IR)+ is the subgroup of Z(IR) of scalar matrices 
with positive diagonal entries. For 

set Wf(kf) = w'(d') where d' is the image of d in (Z/N)*. For f E L~,(N), define 

4Jf('y(zrx>grx> X kf)) = Wf(kf)f(grx>) 

where 'Y E G(Q), z= E Z(IR)+, g= E SL2(IR), and kt E Ko(N). It follows from 
the equality 

ro(N) = G(Q) n (G~ x Ko(N)) 

that 4>t is well-defined. lndeed, if 6 E ro(N), then 

4>tb6(zoo6-;_}g= X ö"t kf) = Wf{O"j 1 kt)f(6-1g00 ) 

= Wf(kf)f(goo) 

= 4>f(Zoogoo X kf)· 

(1.3) 

The map f---+ 4>t defines the SL2(IR)-equivariant embedding L~(N)---+ L2(w). 

If N divides M, we may also view w' as character of (Z/M)*, and there is 
a natural inclusion 
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compatible with the inclusions of both spaces into L 2 ( w). The space L 2 ( w) is 
the closure of the union of the images of the spaces L~, (N). The advantage of 
L2(w) over the spaces L~,(N) isthat the former Hilbert space is equipped with 

an action of the large group G ( A), whereas L ~' ( N) is a representation space only 
for SL2(IR). 

A function f E L~, (N) is said tobe cuspidal if for all 8 E SL2(Z), 

[ f(8ng) dn = 0 
}N(IR)nb-1 r 1 (N)6\N(IR) 

for almost all g E SL2(1R). The space of cuspidal functions LÖw,(N) maps to 
LÖ(w). The theorem of Gelfand and Piatetski-Shapiro also holds in this setting: 

Here 1r ranges through a countable set of inequivalent irreducible unitary rep­
resentations of SL2(IR). The multiplicities m(1r) are finite, but not necessarily 
equal to one. The multiplicity one theorem (Theorem 1.1 above) holds only for 
representations of the big group G(A). 

Modular forms 
Now we will show how classical modular forms fit into the above framework. 
A (classical) holomorphic modular form of weight k with respect to ro(N) and 
Dirichlet character w' of Z/N (also called the nebentypus) is an analytic function 
f(z) on the upper half-plane 

D-ß = {z =X+ iy E C: y > 0} 

which sarisfies two conditions. First, the transformation law of weight k: 

f('y(z)) = w'(d)- 1 j('y,z)k f(z) for all 'Y E ro(N). (1.4) 

Here j ( 'Y, z) = cz + d is the so-called factor of automorphy and 

az+b (a b) 
'Y(z) = cz + d for 'Y = c d · 

We need to assume that w'(-1) = (-l)k; otherwise (1.4) forces f tobe 0. The 
second condition is the requirement of regularity at oo defined as follows. For 
8 E SL2(0), define 

/6(z) = f(8(z))j(8,z)-k. 

The cocycle relation 
j(gh,z) = j(g,h(z))j(h,z) 
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is easily verified, and it implies that fs satisfies the weight k transformation law 
(1.4) for the group 8-1 r 0(N)8. There exists a positive integer M suchthat 

and hence fs(z + M) = fs(z). Because of this periodicity, f may be viewed as a 
function of the variable q = e2rriz/M. The transformation z ---+ q maps IHl onto the 
punctured unit disc ~ * = { z E IC : 0 < lz I < 1}. Hence fs defines an analytic 
function on ~ *, and as such, it has a Laurent expansion in the variable q, 

fs(z) = Lanqn = Lane2rrinz/M. 
nEZ nEZ 

The numbers an are called the Fourier coefficients of fs. We say that f is regular 
at infinity if for all 8, the Fourier coefficients of fs satisfy an = 0 for n < 0. In 
other words, fs(q) is analytic at q = 0. If, in addition, ao = 0 for all 8, then f is 
said to be a cusp form. 

Let S k(N, w') be the space of cusp forms of weight k and nebentypus w', and 
let w be the Hecke character defined by w'. For f E Sk(N,w'), define a function 
1Jt Oll G(A) by 

where "( E G(Q), Z00 E Z(~R)+, goo E SLz(IR), and kt E Ko(N). It follows from 
(1.3) and the cocycle relation that 1Jt is a well-defined function on G(O)\G(A) 
and satisfies 1Jr(zg) = w(z)1Jr(g) for z E J:'(A). 

We now show that the cuspidality of f implies that 1Jt is cuspidal. Let 1J = 1Jt 
and Iet g = g00 x gf E G(A). Letz= g00 (i). By (1.2), G(Af) = G(Q)Ko(N) and 
hence there exists 8 E G(Q) suchthat kt = 8tgf lies in Ko(N). Then 

1Jt(goo X gf) = 1Jf(goo X 8t kf) = 1Jr(8oogoo X kf) 

= wr(kt )j(8goo, i)-k f(8(z)) 

= wr(kr)j(goo, i)-k fs(z). 

For some M E 1:', we have 

For n E N(A) and n' E N(MZ), we have 
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since ttn'gt k"t8tn'8"t kt belongs to Ko(N). By strong approximation, 

N(O)\N(A) = N"\(N(~) x N(MZ)), and thus 

1w(g) = r <jy(ng)dn = r <jy(noog)dnoo 
}N(O.)\N(A) }N"\N(IR) 

= Wf(kf )j(goo, i)-k foM f0(z + t)dt. 

This vanishes if fo is cuspidal. 

The function </Jt satisfies an additional transformation property. The subgroup 
K00 is the stabilizer in G of the point i E IHI. The relation 

together with (1.5) and the invariance of </Jt under Z(~). implies 

( a b) ( a + bi ) k 
1Yt(g -b a 

00
) = ja+ bil 1Yt(g). (1.6) 

The cuspidality of f also implies that </J is square-integrable. Observe that 
1</J(gW is right K00Ko(N)-invariant. By (1.2), 

f I</J(g)l2 dg = f I</J(goo)l2 dg~ 
jG(Q)Z(A)\G(A) Jr0 (N)\SL2 (1R)/Koo 

= r ij(goo, i)-k f(goo(i))l 2 dg~ 
lr0 (N)\SL2 (IR)/Koo 

for suitable normalization of measures. The G00-invariant measure on IHI 

SL2(~)/Koo is y-2dxdy. Since j(g00 ,i) = Im(g00 (i))-!, we see that 

f I</J(g)l2 dg = f lf(x + iy)l2ldx:y. 
}G(Q)Z(A)\G(A) lr0 (N)\ftß Y 

An elementary estimate [Shl] shows that for all 8 E SL2(0), there exists C > 
0 such that lf0(x + iy)l < Ce-Y as y ____, oo. By the well-known structure of 
fundamental domains for ro(N), this easily implies that 1Yt(g) is square-integrable. 

Examples of modular forms 
1. Let k ~ 4 and set 

Ek(z) = L (mz + n)-k. 
(m,n),.O(O,O) 
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Here (m, n) ranges overallinteger pairs other than (0, 0). The sum is absolutely 
convergent, and convergence is uniform for z in a compact subset of IHI. Hence 
E k ( z) is an analytic function of z. Direct calculation shows that E k satisfies the 
weight k transformation law (1.4) for the trivial character w' and the group SL2(Z). 
lt is not difficult to verify regularity at oo [Se]. 

2. Let Sk be the space of cusp forms for the group SL2(Z) and the trivial 
character w' . As shown in [Se], sk = {0} for k :::; 10. However, 512 is Olle­
dimensional, spanned by the cusp form 

~(z) = (21r)- 12 (60E4(z))3 - 27(140E3(z))4 = LT(n)qn. 
n2':1 

The second expression is the Fourier expansion of ~ with respect to the param­
eter q = e21riz. The Fourier coefficients T(n) define the so-called Ramanujan tau 
function. There is another well-known formula for ~: 

~(z) = q rr (1 - qn) = q- 24q + 252q3 + .... 
n2':1 

The Ramanujan Conjectures 
Ramanujan conjectured two fundamental properties of the tau function: 

(1) T(n) satisfies the multiplicative relations 

T(pn+l) = T(p)T(pn)- p11 T(pn-l) for p a prime, 

T(n)T(m) = T(mn) if (m, n) = 1; 

11 
(2) for all primes p, jT(p)i :::; 2p2. 
The first conjecture is essentially elementary. lt was proved by Mordeil using a 
special case of the so-called Hecke operators. 

We recall the definition of the Hecke operators and some basic facts (cf. 
[Shl], and also [Se]). Let p be a prime. For f E Sk(N,w'), define 

p-1 . 
Tpf(z) = w'(p)-1 pk-1 f(pz) + p-1 L f(z + J ), 

j=O p 

where the first term does not appear if p divides N. Then Tpf again belongs to 
Sk(N,w'), and Tp defines a linear operator on Sk(N,w'). The operators Tp for 
different primes commute with each other. Hence, there exists a basis of S k (N, w') 
relative to which the operators Tp act by upper-triangular matrices. It can be shown 
that Tp is diagonalizable for (p, N) = 1. A Hecke eigenform is a simultaneaus 
eigenfunction f for all of the operators Tp. 
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Let f be a Hecke eigenform and consider the Fourier expansion of f relative 
to the cusp oo, i.e. the expansion of f(z) in powers of q = e21l"iz. It is known that 
the first Fourier coefficient a1 is necessarily nonzero. We say that f is normalized 
if a 1 = 1. Assuming f normalized, we have 

f(z) = q + I>nqn, 
n>1 

and a simple calculation shows that the n-th Fourier coefficient a~ of Tp f is given 
by the formula 

I + '( )-1 k-1 ( ) an= anp w p p an/p 1.7 

(where an/p = 0 if p does not divide n and the second term on the right is zero if 
p divides N). In particular, a~ = ap and thus 

ap = Ap 

where Ap is the eigenvalue of f relative to Tp. i.e., Tp/ = >..pf· This yields the 
recursion relation 

(1.8) 

It is straightforward to check that Ramanujan's multiplicative relations for r(n) 
follow from (1.8) and hence are equivalent to the assertion that A is a Hecke 
eigenform. This latter assertion is an immediate consequence of the fact that the 
space of weight 12 cusp forms on SL2(Z) is one-dimensional [Se]. 

The Ramanujan-Petersson Conjecture 
The natural generalization of Ramanujan's conjecture on the size of r(p) is the 
so-called Ramanujan-Petersson (RP) conjecture. lt asserts that if f E S k (N, w') 
is a Hecke eigenform of weight k, then the eigenvalues Ap satisfy the inequality 

k-1 
IA.pl :::; 2p_z_ for (p,N) = 1. This was first proved in the special case of weight 

I 
k = 2. In this case, the inequality IA.pl :::; 2p2 follows from the Eichler-Shimura 
theory and the Riemann hypothesis for curves over finite fields. 

We briefly recall the statement of the Riemann hypothesis for curves. Suppose 
that X is a smooth projective curve of genus g over the finite field 1Fq. Then X 
is defined as the zero set in projective space pm of a collection of homogeneous 
polynomials {Fj(X1, ... ,Xm+1)} in (m + 1) variables. Let Nn be the number 
of points on X defined over IFqn, i.e., the number of solutions to the system 
F j ( x 1 , ... , Xm+ I) = 0 in projective space over IF qn. lt was first shown by F.K. 
Schmidt (1931) that Nn is given by a formula of a particularly simple type: there 
exist complex numbers a1, ... , a2g such that 

2g 

Nn = 1 + qn - L aj 
j=1 

(1.9) 
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for all n 2 1. This can be expressed as a statement about the rationality of the 
zeta function attached to X, defined by 

Equality (1.9) is equivalent to the formu1a 

The zeta function also satisfies a functional equation, which is equivalent to the 
assertion that the set of numbers aj is invariant under the transformation aj ---. 
q/aj. The Riemann hypothesis (RH), proved by A. Weil, asserts that iajl = q112• 

The name «Riemann hypothesis» is used in this context because the numbers a j 1 

are the zeroes of Z (T, X) and hence the zeroes of the analytic function Z ( q-s, X) 
have real part Re(s) = !-

In 1954, Eiehier [E] discovered the connection between the RP conjecture 
and the Riemann hypothesis. Let ap, ßp be the roots of the polynomial 

I I 
Then the equality I-Apl :S 2p2 is equivalent to iapi = lßpl = pz (since iapßpl = p). 
The RP conjecture in weight 2 would follow from Weil's Theorem (the Riemann 
hypothesis) if one could show that there is a curve over 1Fp such that ap and 
ßp appear among the aj's in (1.9). Eiehier showed that in the case of trivial 
w, the appropriate curve is the modular curve Xo(N) associated to ro(N). This 
is a projective algebraic curve defined over Q whose set of complex points is 
isomorphic to the compactification ofthe Riemann surface ro(N)\IHI. Since Xo(N) 
is defined over Q, the reduction modulo p of its defining equations yields a smooth 
projective algebraic curve over IF p for all p outside a finite set S. Eiehier showed 
that for p ~ S, the set of the inverse zeroes of the zeta function Z(T,Xo(N)jiFp) 
coincides with the set of numbers ap, ßp arising from weight two modular forms 
as above. Subsequently, lgusa showed that S is the set of primes dividing N. More 
general congruence subgroups were treated by Shimura ([Shl], [Dl], [Kn2]). 

The proof of RP for weights k > 2 is based on the Riemann hypothesis for 
higher-dimensional varieties. Suppose that X;o is a smooth projective variety over 
Q of dimension M with good reduction at p (i.e., when the equations defining 
X are reduced modulo p, they define a smooth projective variety over 1Fp). As 
before, let Nn be the number of points on X defined over IF q". Let b (j) be the 
jlh Betti number of X(C), i.e., the dimension of Hl(X(C), IR). As proved by 
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B. Dwork (1960) and A. Grothendieck, for 0 :::; i :::; 2M, there exist complex 
numbers ail, Oi2, ... , aib(i) suchthat for all n ~ 1, 

The numbers Oi j are the eigenv~ues of the Frobenius endomorphism acting on 
the t'-adic cohomology group Hi(X). The Riemann hypothesis for varieties over 
finite fields is the Statement 

i 
iaijl = q'i. 

We refer to [Ka] for an excellent discussion of Deligne's proof of the RH. 

The RP conjecture for Hecke eigenforms of weight k can be formulated as 
the Statement that the roots ap, ßp of 

(1.10) 

k-1 
satisfy iapi = lßpl = p-2-. This would follow if one could show that ap,ßp 
occur as Frobenius eigenvalues in HJ-1(X) for some smooth projective variety 
X. For k = 3, the natural variety to consider is the 2-dimensional fiber system 
of elliptic curves over fo(N)\D-ß. For k ~ 3, one uses the (k- 2)-nd symmetric 
power of this fiber system. This approach was suggested by Kuga and Shimura. 
The substantial obstacles to carrying it out, arising from the noncompactness of 
the fiber systems, were overcome by Deligne [01]. 

Theorem 1.2. (Deligne) Let f E Sk (N, w') and suppose Tpf = >.pf for (p, N) = 1. 
k-1 

Then i>.p I :::; 2p-2 . 

The Eichler-Shimura theory, giving the relation between zeta functions and 
modular forms, has undergone a significant development in the past thirty years. 
During the 1960s, Shimura created the theory of canonical models, thus laying 
the arithmetic foundations for a general theory of zeta functions of the so-called 
Shimura varieties attached to reductive groups. In the 1970s, Langlands introduced 
the machinery of infinite-dimensional representation theory to formulate general 
conjectures and a program for proving them using the trace formula. We refer to 
[BR] and the article of R. Kottwitz in [AA] for further information about these 
developments. 
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A.2 Classification of unitary representations 

In this section, we review the classification of irreducible unitary representations of 
Gp. Our motivation comes from the fact that the irreducible unitary representations 
of G(A) can be constructed as suitable tensor products 07rp of representations of 
the local groups Gp (see below). 

We have chosen to deal exclusively with unitary representations since these 
are the representations that arise in the decomposition of the spaces L 2 ( w). How­
ever, it is more standard and in many ways more natural to develop the theory in 
the category of admissible representations. For a discussion of admissible repre­
sentations, we refer to [Kn], [La] in the arehirneclean case and to [BZ] and Cartier's 
article in [Co] in the p-adic case. 

Throughout this section, ( 1r, V) will denote an irreducible, unitary repre­

sentation of Gp on a Hilbert space V. Let G; be a set of representatives for 
the equivalence classes of irreducible unitary representations of Gp. The one­
dimensional representations of Gp are easily described. They are characters of 
the form x(det(g)), where Xis a unitary character of o;. All other irreducible 
unitary representations of Gp are infinite-dimensional (if dim(V) is finite, the im­
age of 1r lies in a compact unitary group, but there do not exist any non-trivial 
finite-dimensional representations of SL2(0p) with compact image). 

Theinfinite-dimensional representations of Gp are divided into two types: 

( 1) representations induced from Bp; 

(2) square integrable representations. 

We recall that 1r is said to be square integrable (or to belong to the discrete 
series) if there exist vectors v, w E V1T suchthat the matrix coefficient (1r(g)v, w) 
is square integrable modulo the center: · 

{ l(rr(g)v,w)l2 dg<oo. 
lzp\Gp 

Here ( , ) is the inner product on V1r. 

Representations induced from Bp 
Let 

x: Bp--+ C* 

be a continuous character. Since Np is the commutator subgroup of Bp, x factors 
through the quotient Mp = Bp/Np, and thus we may identify x with a pair of 
characters (XI, X2) where Xj is a character of o;: 

x ( ( ~ ~)) = XI(a)x2(d). 

Let Vx be the Hilbert space of measurable functions 

f: Gp--+ C 
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suchthat 

(2.1) 

relative to the norm 

(2.2) 

Let ix denote the action of G on Vx by right translation. It can be shown that ix is 
I 

unitary if and only if x itself is a unitary character [La]. The factor I ;1 1 2 in (2.1) 
is included to make this Statement hold. Furthermore, we have the following basic 
theorem. 

Theorem 2.1. lf x is a unitary character, then Ux, Vx) is an irreducible unitary 
representation of G. 

When x is unitary, Ux, Vx) is said to belong to the unitary principal series. 
Certain non-unitary characters x also give rise to unitary representations. For these 
x. ix is unitarizable, in the sense that there exists a norm on a dense subspace 
'1 of Vx (different from the one defined by (2.2)) preserved by the action of G. 

The completion of ~ relative to the new norm is a Hilbert space on which G 
acts unitarily. Representations of this type are said to belong to the comp/ementary 
series. To describe them, write XI and X2 in the form 

where € j are unitary characters of 0; and a j E 11\t 

Theorem 2.2. Assurne that x is not unitary. Set a = a1 - az. Then Ux, Vx) is 
unitarizable if and only if the fol/owing conditions are satisfied: 

(i) Et = Ez 

(ii) a1 + az = 0 

(iü) 0 < Iai < 1. 

In the case of complementary series, we shall write Ux, Vx) to denote the 
unitarized representation. The next theorem describes all equivalences among prin­
cipal and complementary series. If x = (Xt, xz), let xw = (xz, xt). 

Theorem 2.3. Let x and x' be characters of Bp defining unitary principal series 
or complementary series. Then ix is equivalent to ix' if and only if x = x' or 
xw = x'. 
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Tempered representations 
A representation ( 1r, V) is said to be tempered if it is almost L 2 in the sense that 
there exist V, W E V1r such that 

r i(7r(g)v, w)l2+€ dg < 00 

lzp\Gp 

for all f > 0. lt is clear that a tempered representation is necessarily infinite­
dimensional. The next proposition describes the set of tempered representations 
ofG. 

Proposition 2.4. Let 1r be an infinite-dimensional, irreducible unitary representa­
tion of G. Then 1r is tempered if and only if 1r does not belong to the complementary 
series. 

Discrete series in the archimedean case 
Assurne p = oo. As above, let ( 1r, V) be an irreducible unitary representation of 
G00 • A vector v E V is said tobe K-finite if the set {1r(k)v: k E K} spans a 
finite-dimensional subspace. Let VO be the space of K -finite vectors. Then V0 is 
densein V. Let L(Goo) = M2(~) be the Lie algebra of G00 • The vectors v E VO 
are smooth in thesensethat for any element XE L(G00 ), the following derivative 
exists 

7r(X)v = dd 7r(etx)vl . 
t 1=0 

The space Vo is stable under the action of 1r(X). This defines a Lie algebra action 
L ( G 00 ) on V0 which extends by linearity to an action of the complexification 
L ( G 00 )c = L ( G 00 ) ® C. For proofs of these and other facts quoted below, see 
[Kn]. We are interested in the action of the element 

E- = ( 1. -i) 
-1 -1 

in L(Goo)c. 

The action of L ( G 00 )c can be made explicit in case V is a space of functions 
on G00 (or a coset space of G00 ) and G00 acts by right translation. Let LE­
denote the operator on functions corresponding to E-. Let cf> E VO and consider 
the restriction of cf> to G~. Every element g E G~ has a unique decomposition 

where y, t > 0. Relative to these coordinates, 

L - = -2i1le-2iO .!___ + ie-2iO .!___ 
E :r ßz {)() 

h 8 8 . 8 
w ere 'lJZ = ax + 'lJY· 
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Suppose that cjJ(g) is a function on G00 suchthat cjJ(gr(B)) = eik0cjJ(g). The 
restriction of cjJ to G t can be written in the form 

cP (( t 0) ( 1 x) ( VY 0 ) r(o)) = ykl2f(x + iy)eiko, o t o 1 o JY- 1 

where f(z) is a function on IHI. By direct calculation, we find 

(2.3) 

There is a series of square-integrable representations ( 7rk, Vk) for k ;:::: 2. We 
call 7rk the discrete series representation of weight k. These representations are 
characterized in the next proposition. 

Proposition 2.5. (1) There is a vector ek E Vb unique up to multiples, suchthat 

(a) 7rk ( ( ~b ! ) ) ek = ( 1 :!~~~ )kek 

(b) 7rk(E-)ek = 0. 

(2) lf (1r, V) is an irreducible unitary representation of G00 contammg a 
vector v E V satisfying (a) and (b), then 7r is unitarily equivalent to 7rk. 

(3) Every square-integrable representation of Goo is of the form 7rk ®X for 
some k ;:=:: 2 and some unitary character X of G00 • 

See [HT], [Kn], or [La] for an explicit construction of 7rk and for proof of 
the facts cited in this proposition. 

p-adic case 
Now assume p < oo. Square-integrable representations are generally much more 
difficult to construct in the p-adic case, apart from the special dass of Steinberg 
representations (called «Special representations» in [JL]). These admit a simple 
description as quotients of induced representations. For any character w of o;, let 
x be the character 

lt is an immediate consequence of the definitions that the function w(det(g)) 
belongs to Vx and spans a one-dimensional Gp-invariant subspace. Denote the 
quotient of Vx by this invariant subspace by St(w). Then St(w) is irreducible, 
unitarizable and square-integrable [Go]. 

Definition. An irreducible unitary representation ( 7r, V) of G is said to be su­

percuspidal if there exists a matrix coefficient of 1r whose support modulo Z is 
compact. 
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The Steinberg representations are not supercuspidal. The next result shows 
that the main task is to classify supercuspidal representations. 

Proposition 2.6. Let ( 1r, V) be a square-integrable representation of Gp (p < oo). 
Then either 1r is a Steinberg representation, or 7r is supercuspidal. 

The parametrization of the supercuspidal representations of Gp tums out 
to be remarkably subtle. Let Op be an algebraic closure of Op. and Iet r p = 
Gal( Op /Op) be the absolute Galois group of Op. The group r p acts on the residue 
field 1Fp of Op. and this yields a natural map 

rp-+ Gal(iFp/IFp) 

whose kemel is the inertia subgroup Jl. Let <I> E Gal(iFp/IFp) be the Frobenius 
automorphism <I> (x) = xP. The Weil group Wp is the subgroup of elements u E r p 
such that a is an integral power of <I>. The integral powers of <I> are dense in 
Gal(1Fp/1Fp), and thus Wp is a dense subgroup of rp. However, Wp is given the 
structure of a locally compact group by declaring that j and its open subgroups 
give a neighborhood basis for the identity. Let Rz be the set of equivalence classes 
of continuous, irreducible representations 

u: Wp-+ GLz(C). 

Let 52 be the set of (equivalence classes of) supercuspidal representations of 
Gp. The Langlands correspondence asserts that there is a natural correspondence 
between 

Rz f-+ Sz. 

The precise correspondence is stated in terms of the epsilon factor E( 1r) (a certain 
nonzero complex number) attached to each irreducible unitary representation of 
Gp by Jacquet and Langlands. lt is defined in terms of the Kirillov model for 1r 

[JL], [Go]. By a theorem of Langlands, it is also possible to associate an epsilon 
factor E( u) to each finite-dimensional, continuous representation of Wp [D2], [Ta]. 
Local dass field theory yields a canonical isomorphism w;b ~QP and therefore 
any character of QP may be regarded as a character of Wp. The objects 1r and u 
correspond under the Langlands correspondence if and only if 

E(7r 0 x) = E(u 0 x) 

for all characters X of QP. Here 1r 0 X denotes the twist of 1r by the character 
x(det(g)) of Gp. 

Various cases of the Langlands correspondence for GL(2) were verified by 
various authors (cf. [Tu]). The case p =I- 2 is already present in [JL]. The most 
difficult case is when F is a p-adic field of residual characteristic 2. This case was 
established in full generality by P. Kutzko. A Langlands correspondence is also 
conjectured for G L ( n) over any local field F. We refer to [Ku] for definitions and 
a description of what is known for general n. 
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Unramified representations 
Assurne p < oo. An irreducible unitary representation (n, V) is said tobe unram­
ified if there exists a nonzero vector Xp E V fixedunder Kp = GL2 (Zp)· 

A character of QP is unrarnified if its kemel contains ZP. We say that a 
character x = (XI, X2) of Bp is unramified if the Xj are unramified. lf x is 
unramified, then 

(2.4) 

1t follows from the lwasawa decomposition that ix contains a nonzero Kp-fixed 
vector if and only if x is unramified. Set 

fo(g) = lil!xt(Pral(a)X2(Prai(dl, where g= (~ ~) k 

is an lwasawa decomposition of g. This function is well-defined if x is unramified, 
andin this case, it spans the one-dimensional space of Kp-fixed vectors in Vx. 

Proposition 2.7. Suppose that 1r is an infinite-dimensional unramified unitary 
representation of G. Then there exists an unramified character x of B such that 
n~ix. In particular, the space of Kp-.fixed vectors is one-dimensional. 

The Hecke operator 
Let Cgc'(Gp) be the convolution algebra of smooth, compactly-supported functions 
f on Gp. When p < oo, f is said to be smooth if there exists an open compact 
subgroup J of Gp suchthat f(kgk') = f(g) for all k, k' E]. Let (n, V) be an 
irreducible unitary representation. For f E C~(Gp). we define an operator n(f) 
on V by the operator-valued integral 

n(f) = lc f(g)n(g) dg. 

This depends on a choice dg of Haar measure, which we regard as fixed, once and 
for all. lt follows immediately from this definition that if f is bi-invariant under 
an open compact subgroup J, then the image of n(f) is contained in the space of 
J -invariant vectors. 

Assurne now that p < oo. Let T~ E Cgc'(Gp) be the characteristic function of 
the double coset 

Kp ( ~ ~) Kp 

and set Tp = meas(Kp)- 1 T~. The operator n(Tp) maps V onto the space of Kp­
inv~ants. lt follows that if 1r = ix is unramified, then fo must be an eigenvector 

of Tp (since the space of Kp-invariants is one-dimensional): 

ix(Tp)(fo) = J-tp[o 

for some J-tp E C. 
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I 
Lemma 2.8. Jlp = pz (XI (p) + X2(p)). 

Proof Since fo(1) = 1, we have JLp = ixCfp)(fo)(1). By the theory of e1ementary 
divisors, there is a decomposition of the double coset as a union of single cosets 
([Se]) 

Since Kp fixes fo, 

as claimed. 

ix(fp)(fo)(1) = meas(Kp)-'1 (p 0 ) fo(g)dg 
Kp01Kp 

= fo ( ( ~ ~) ) + L fo ( ( ~ { ) ) 
o-:;1-:;p-I 

I I 

= P2 X2(P) + P2 XI (p) 

D 

Proposition 2.9. Let 1r = ix be a representation in either the unitary principal 
series or the complementary series. Then 

(a) 1r is in the unitary principal series if and only if IJLpl :::; 2-JP. 
(b) 1r is in the complementary series if and only if 2-JP < I JLp I < p + 1. 

Proof If 1r is in the complementary series, then XI (p) = pal2+it and X2(P) = 
p-a/2+it, where 0 < Iu I < 1. Hence 

1 
2 < lXI (p) + X2(P)I = pa/2 + P-a/2 < -JP + v'P. 

On the other band, if 1r is in the unitary principal series, then lXI (p)l = IX2(P)I = 1 
and hence IXI(P) + X2(P)I:::; 2. D 

Factorization 
It is a basic fact that every irreducible unitary representation of G ( A) factors as a 
«restricted» tensor product of representations of the groups Gp. To define restricted 
tensor products, for all primes p let (7rp, Vp) be a unitary representation of Gp such 
that 1r p is unramified for p outside a finite set S of primes ( containing the prime 
oo). For p ~ S, select a unit vector Xp E Vp fixed by Kp. Let Vo be the linear span 
oftheinfinite tensors 0Vp suchthat Vp = Xp for almost all p. Then G(A) acts on 
the tensors 0Vp componentwise and hence also on Vo by linearity. This action is 
unitary relative to the inner product 

110 Vpll = rr llvpll· 

Let 0 1Vp be the Hilbert space completion of Vo. We denote the representation of 
G(A) on 0'Vp by 07rp. 
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Theorem 2.10. ([F], [Go], [GGPS]) Let 7f be an irreducible unitary representation 
ofG(A.). Then there exist irreducible unitary representations 'Tfp/or all p, suchthat 
'Tfp is unramifiedfor almost al/ p < oo, and 7f is equivalent to @'Tfp. Furthermore, 
the local components 'Tfp are unique up to equivalence. 

According to this theorem, it mak:es sense to speak: ofthe local components 1rp 

for any irreducible unitary representation of G(A.). The following so-called «strong 
multiplicity one» theorem plays an important role in the theory of automorphic 
forms. 

Theorem 2.11. ([JL]) Let ( 7f, V) and ( 'Tf1 , V') be a cuspidal representation of 
G(A.). Suppose that 'Tfp~'Tf~jor almost al/ p. Then (7r, V)= (1r', V'). 

We have phrased the conclusion of this theorem in terms of equality ( 7f, V) = 
( 'Tf1, V') rather than equivalence of representations. This is because 7f and 'Tf1 are 
not merely equivalent- the subspaces V and V' of L5(w) coincide (as they must 
by Theorem (1.1)). 

Modular forms revisited 
Let f E S k (N, w') and let c/Jt be the associated function on G ( A.). The next lemma 
describes the relation between the classical Hecke operator Tp and the operator 

T~ for (p, N) = 1. Let p = Pw denote the action of G(A.) by right-translation on 
L2 (w). 

k -
Lemma 2.12. p2-1p(Tp)cPf = cPTpffor (p,N) = 1. 

Proof By the decomposition in the proof of Lemma 2.8, we have 

p(Tp)cPf(g) = cPf(g ( ~ ~) ) + L cPf(g ( ~ {) ). 
P O~j~p-l P 

The subscript p indicates that the adelic matrix has a component only in the Gp­
factor of G(A.). We may assume, without loss of generality, thatg = (g00 , 1, 1, ... ). 

Let 'Y = ( ~ p~ 1 ) E G(Q). If z = g00 (i), then 

cPf(g ( ~ ~) p) = cPf('Yg ( ~ ~) p) = c/Jtboogoo X 'Yp,oo) 

= cPf( ( 1 Jr-1) goo X 'Yp,oo) 

where 'Yp,oo is the adelic matrix whose component at oo and p is the identity and 
is 'Ye at the remaining primes f. Since w('YP,oo) = w'(p)-1, we have 
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by (1.5). Similarly <f>t(g ( ~ {) P) = p-4 j(g00 , i)-k f( 7 ). The lemma follows 

easily. 0 
We can now make the correspondence between cusp forms and represen­

tations. Recall that the Hecke operators Tp for (p, N) = 1 act diagonally on 
5 k(N, w') and mutually commute. Hence 5 k (N, w') has a basis of eigenfunctions 
for the operators {Tp}(p,N)=!· For f E 5k(N,w'), let V(f) be the closed subspace 

of L5(w) generated by <Pt under the action of G(A). 

Proposition 2.13. Let f E 5k(N,w'). Suppose that Tpf = >..pf for alt p suchthat 
(p, N) = 1. Then V (f) is an irreducible invariant subspace of L5 ( w). Let 1r be 
the representation of G(A) on V(f). Then 

(i) 7r 00 = 1fk 

(ii) lf (p, N) = 1, then 1fp is unramified and 1fp = ix where x is determined by 
the conditions 

k-1 
>..p = p-2 (XI(P) + X2(p)) 

wp(P) = XI (p)x2(p). 

In particular, the set of roots { ap, ßp} of (1.1 0) and the set of numbers 
k-1 k-1 

{p-2 X! (p), p-2 X2(p)} coincide. 

Furthermore, if f' isanother cusp form in 5k(N,w') suchthat Tpf' = >..~f' for 
(p, N) = 1, then V(f) = V(f') if and only if Ap = >..~ for almostalt p. 

Proof The representation V(f) is completely reducible since it is a subrepresenta­
tion of L5(w). Let W be an irreducible subrepresentation of V(f), and let T = @Tp 
be the representation of G(A) on W. Let <Pw be the orthogonal projection of <Pt 
onto W. Then LE- <Pw = 0 and 

( ( a b)) (a+bi)k 
<Pw g -b a oo = Ia + bil <Pw(g) 

since the projection commutes with the group and Lie algebra action and since 
these properties hold for <Pt (by (2.3) and (1.6)). Thus T 00 contains a vector satis­
fying conditions (a) and (b) ofProposition (2.5) and therefore T00 = 7rk. Similarly, 
<Pw is invariant under Kp for p not dividing N, and hence Tp is unramified. We 

- I k 
have Tp</>w = p -2 Ap</>w since this is true for <Pt and thus Tp = ix as in (ii). 
Since there is at most one cuspidal representation which satisfies (ii) by Theorem 
2.11, W must coincide with V. The last statement of the proposition follows for 
the same reason. 0 

Given a cuspidal representation ( 1r, V) such that 1r 00 is square-integrable, we 
can attach a Hecke eigenform to 1r in the following way. Twisting 1r by a one­
dimensional character if necessary, we may assume that 1r00 = 7rk for some k. 
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Let w be the central character of 1r. Let e00 be the vector in V00 which satisfies 
conditions (a) and (b) of Proposition 2.5. Let S be the set of primes such that 
7rp is ramified (i.e., not unramified) and for p rt S, let ep be a vector fixed by 
Kp. Relativetothis choice, we have 1r = ®7rp. By a result of W. Casselman (see 
[D3]), for each p E S, there is an integer c5(p) > 0 called the conductor of 7rp, and 
a so-called «new» vector Vp, unique up to multiples, such that 

for all (: ~) E G(;:lp) suchthat c = Omodp6(P). For p ES, let ep = Vp and 

let <jJ E V be the image of the tensor ®ep. Then <jJ is a cusp form which, by (2.3), 

corresponds to a holomorphic cusp form f E S k (N, w'), where N = TI ~(p). The 
cusp form f isaHecke eigenform. Suppose Tpf = >-.pf. By Proposition 2.9 and 
Proposition 2.13 (ü), the following are equivalent for (p,N) = 1: 

k-1 
(1) 1>-.pl ~ 2p-2 ; 

(2) 1r p is tempered. 

Condition (2) is the representation-theoretic interpretation of the RP conjec­
ture due to Satake [Sa]. We may therefore restate Theorem 1.2 in the following 
way. 

Theorem 2.14. Let 1r be a cuspidal representation of G(A) such that 1r00 is 
square-integrable. Then 7rp is tempered for allfinite primes p. 

It is conjectured more generally that if 1r is any cuspidal representation of 
GL(2), then no local component 7rp belongs to the complementary series. However, 
this conjecture is not known for 1r such that 1r 00 is not square-integrable. 
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A.3 Quaternion algebras 

We recall some standard facts about quaternion algebras (see [V] for details). A 
quaternion algebra over a field F is a simple algebra D with center F such that 
dimp(D) = 4. We say that D is split if it is isomorphic to the algebra Mz(F) 
of 2 x 2 matrices over F. If F = Op (or more generally, a local field), then up 
to isomorphism, there are only two quaternions algebras: the split algebra Mz(F) 
and a unique quaternion division algebra. 

If D is a quaternion algebra over 0, then the localization Dp = D ®o Op is 
a quaternion algebra over Op. We say_ that D is ramified at p if Dp is a division 
algebra. Set 

Sv= {p E S(O) : Dp is a division algebra}. 

The following theorem classifies quaternion algebras over 0 (a similar classifica­
tion holds over any number field). 

Theorem 3.1. (1) Let D be a quaternion algebra over 0. Then Sv isafinite set 
of even cardinality. 

(2) Let S be a finite set of primes such that Card(S) is even. Then up to 
isomorphism, there exists a unique quaternion algebra D over 0 suchthat Sv = S. 

Quaternion algebras can be constructed explicitly as follows. Let E jF be a 
separable quadratic extension. Denote the non-trivial Galois automorphism of E jF 
by a bar. Choose e E F and define D(E, e) as follows 

Then D(E, e) is a quaternion algebra, and D(E, e) is a division algebra if and only 
if e i. NE/F (E*). Indeed, there exists a non-zero X E D(E, e) suchthat det(x) = 0 
if and only if e E NEjF(E*), where NE/F is the norm map. If F = 0, Sv(E,~) is 
the set of primes p suchthat eisnot a norm from E ® Op. 

The unique quaternion division algebra over Op is isomorphic to D(E, e), 
where E is any quadratic extension E /Op and e E Op is any element which is not 
a norm from E. For p = oo, the unique quaternion division algebra is the algebra 
of Harniltonian quaternions (D(C, -1) gives an explicit presentation). Note that 
the set of diagonal elements in D(E, e) is isomorphic to E. In particular, every 
quadratic extension of Op embeds in each quaternion algebra over Op. 

To construct the global quaternion algebra D in part (2) of Theorem 3.1, let 
E /0 be a quadratic extension such that p remains prirne in E for all p E S and 
choose e E 0- NE;o(E) suchthat e is a local norm from E ® Op if and only if 
p ES. Suchelements are well-known to exist. Then D is isomorphic to D(E, e). 
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Theorem 3.2. Let D be a quaternion algebra over 0 and Iet E /0 be a quadratic 
extension. The following are equivalent: 

(1) E embeds in D. 

(2) Each p E Sv remains prime in E. 

(3) D is isomorphic to D(E, ~) for some ~ E F*. 

For the remainder of this section, we fix a quatemion division a1gebra D over 
0. Let G* denote D*, viewed as an a1gebraic group over 0 . Concrete1y, if F is 
any fie1d extension of 0, G*(F) = (D®oF)*. Thus G*(O) = D* and c; = o;. 
As before, G = GL(2). Let Z and Z* be the centers of G and G*, respectively. 
They are both isomorphic to 0* and we identify them with each other. 

Conjugacy classes 
Let E /0 be a quadratic extension. A 0-linear isomorphism E ---. 0 2 defines an 
action of E* on 0 2 (by mu1tiplication on E) and hence an embedding 

E* ---. G(O). 

lt is unique up to conjugacy. Furthermore, the images of two elements x, y E E * 
are conjugate if and only if x = y or x = O"f (y) where aE is the conjugation on 
E. An element "( E G ( 0) is called elliptic if it is the image of an element x E E * 
undersuch an embedding ("( is scalar if it is in the image of an element of F*). 

In the case of a quatemion division algebra, every element of G*(O) is in the 
image of some embedding E* ---. G*(O). However, an embedding E* ---. G*(O) 
for a particu1ar quadratic extension E exists if and only if E embeds in D. Such 
an embedding exists when the primes in Sv remain prime in E and in this case, 
the embedding is unique up to conjugacy. As in the case of GL(2), x,y E E* have 
conjugate images if and only if x = y or x = aE(y). 

We say that 'Y* E G*(O) corresponds to 'Y E G(O) if they are images of 
the same element x E E * for some embeddings E * ---. G * ( 0) and E * ---. G ( 0). 
Equivalently, 'Y* corresponds to 'Y if 'Y is semisimple (i.e., diagonalizable) and the 
sets of eigenvalues of 'Y and 'Y* coincide (to define the eigenvalues of an element 
in D, realize Das an algebra of matrices D(E, ~); the definition is independent of 
the representation). The correspondence defines an injection 

{conjugacy classes in G*(O)}---. {elliptic conjugacy classes in G(O)}. 

This correspondence is defined analogously for the groups c; and Gp. Since every 
quadratic extension of Op embeds in Dp. we obtain a bijection between the set of 
conjugacy classes in GP and the set of elliptic conjugacy classes in Gp. 
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Local correspondence 
Assurne that p E Sv. Then GP is compact modulo its center and the continuous, 
irreducible representations of GP are all finite-dimensional. The local Jacquet­
Langlands correspondence is a bijection between the square-integrable unitary 
representations of Gp and the irreducible, unitary representations of c;. 

To define the correspondence, we must recall the definition of the character 
of a unitary representation. It is known that the operator 

1r(f) = r j(g)1r(g) ag 
lcr 

is of trace class for all Cgo(Gp). By a fundamental theorem of Harish-Chandra, 
there exists a locally-integrable function X1r (g) on Gp called the character of 1r, 
suchthat 

Tr(1r(f)) = { f(g)x?r(g) dg. 
lcr 

An element g is called regular semisimple if it has distinct eigenvalues. The 
function X1r(g) is real-analytic (locally constant) on the dense subset of regu­
lar semisimple elements in Gp in the case p = oo (resp., p finite). Hence the value 
X1r(g) is well-defined for g regular semisimple. Furthermore, X1r determines 1r up 
to isomorphism. We now state the local Jacquet-Langlands correspondence. 

Theorem 3.3. There exists a bijection 1r* ----+ 1r between the set of irreducible 
unitary representations of c; and the set of square-integrable representations of 
Gp. It is uniquely characterized by the relation 

for all regular elements "f* E GP and 'Y E Gp such that "f* ----+ 'Y· 

Examples. There are two cases in which the local Jacquet-Langlands correspon­
dence is simple to describe. 

(1) Let p = oo. The value of the character of the square-integrable representation 
7rk of Gp is well-known [Kn], [La]. An elliptic regular element with eigenvalues 
z, z is conjugate to 

where z = a + bi. Wehave 

k- 2 2 k-i _ :zk-1 
X7rk ("!) = -(z:z)--2 -

z-z 

On the other band, G P is the group of Hamiltonian quatemions, which we identify 
with the group of matrices of the form 



162 APPENDIX 

with o:, ß E C. Let p~ be the «identity» two-dimensional representation of c;. Let 
Pk denote the ( k -1 )-st symmetric power of p~. Then p~ is the trivial representation 
and in general, Pk is an irreducible, k -dimensional representation. The element 

corresponds to 'Y defined above. The eigenvalues of 'Y* on Pk are zizj where 
i, j 2: 0 and i + j = k - 1. Therefore 

The representations Pk are irreducible but not unitary. Therefore, let Pk be 
k-1 

the twist deC -2- ® Pk for k > 1 and let Pl be the trivial representation. lt is easy 
to check that 

XPk-1 ('Y*) = -x11"k ('Y). 

Hence Pk-l corresponds to 7rk under the Jacquet-Langlands correspondence. In 
particular, the trivial representation Pl corresponds to the weight two discrete series 
representation 1r2. 

(2) Suppose that p < oo is finite and let 1r = S t ( w) where w is a character of F *. 
As described in A.2, there is an exact sequence 

0 ---+ wo det---+ Vx ---+ St(w) ---+ 0. 

Characters are additive on exact sequences, and hence 

X11" = Xix - Xwodet· 

The regular elliptic conjugacy classes do not intersect Bp. and by the formula for 
an induced character ([La]), Xix vanishes on the regular semisimple conjugacy 
classes that do not intersect Bp, i.e., on the regular elliptic conjugacy classes. 
This shows that x11"('Y) = -w(det('Y)) for 'Y regular elliptic, and hence that 1r 

corresponds to the one-dimensional representation w( det(g)) of G*. Note that 1r2 

is the analogue of the Steinberg representation for p = oo. 

The global correspondence 
As above, w denotes a Hecke character of 0, which we also view also as a character 
of Z(O)\Z(A). The center Z* of G* is isomorphic to Z and thus w is also viewed 
as a character of Z*(O)\Z*(A). Let Lz(w) be the Hilbert space of functions cP on 
G*(O)\G*(A) suchthat cP(zg) = w(z)cP(g) and 

r icP(g)i2 dg < oo, 
j G* (Q)Z* (A.)\G* (A.) 
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and let p* be the representation of G*(A) on L;(w) by right translation. The 
quotient space G*(Q)Z*(A)\G*(A) is compact, and this implies that L;(w) is 
completely reducible [GGPS] 

* ~ ffi ( *) * p ___, '\J7 m 7r 7r . 

Furthermore, the multiplicities m ( n*) are finite. 
A representation n* of G * ( A) is called discrete if it occurs in the de­

composition of p*. Let be the reduced norm on D: Nm(d) = det(i(d)) where 
i: D ___, Mz(E) is a two-dimensional representation of D. If x isaHecke charac­
ter of ~ such that x2 = w, then the function x o Nm(g) spans a one-dimensional 
invariant subspace of L; ( w). Every finite-dimensional discrete representation is of 
this form. 

If p ~ Sv, then Dp is isomorphic to Mz(Op) and we fix an isomorphism 
ip: G*(Qp) ___, G(Qp) which extends the identification of their centers. This iso­
morphism is not unique, but any two differ by an inner automorphism. Therefore, 
we may identify the equivalence classes of irreducible unitary representations of 
G*(Qp) with those of G(Qp)· We shall write n-p ___, Hp if n-p and Hp correspond 
in this way. Thus the map n-p ___, Hp is defined for all primes p. In the statement 
of the next theorem, we use the fact that unitary representations n* of G * ( A) 
are factorizable, with the restricted tensor product defined as in the case of G. 
The local components are uniquely deterrnined. The next theorem is the global 
Jacquet-Langlands correspondence. 

Theorem 3.4. ([JL]) Let n* be a discrete representation of G *. Assurne that n* is 
not one-dimensional. Let 1r = ®np, where n-p ___, Hp for all p. Then 1r is a cuspidal 
representation of G. Furthermore, the global map n* ___, 1r defines a bijection 
between the set of infinite-dimensional discrete representations of G * and the set 
of cuspidal representations 1r of G such that 1r p is square-integrable for all p E Sv. 

Let n* be a discrete, infinite-dimensional representation of G * ( A) and sup­
pose that n* ___, n. Then 1r is cuspidal by Theorem 3.4. If 1r 00 is square-integrable, 
then the RP conjecture holds for 1r by Deligne's Theorem. Since n-p = Hp for 
p ~ Sv, we obtain the following version of the RP conjecture for G*. Note that 
if p E Sv, then c; is compact modulo its center and hence all irreducible unitary 
representations are tempered. 

Theorem 3.5. Let n* be a discrete, infinite-dimensional representation of G * ( A). 
Suppose that n* ___, 1r and that 1r00 is square-integrable. Then n-p is tempered for 
allfinite primes p. 

Corollary 6.2.2 and Theorem 7.1.1 are special cases of Theorem 3.5. 
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A.4 The Seiberg trace formula 

Let 4> be a smooth function on G*(A) suchthat 

for all z E Z*(A). We assume that 4> decomposes as a product 

4>(g) = rr ifJp(gp) 
p 

where ifJp is smooth and compactly-supported modulo z; for all p, and for almost 
all p, ifJp is the unit in the algebra of bi-Kp-invariant functions on c;. i.e., ifJp is 
the characteristic function of G*(Zp) divided by its measure. 

We denote the representation of G * ( A) on L; ( w) by p*, dropping w from the 
notation, and define the operator p* ( 4>) 

p*(4>)f(g) = [ cp(h)f(gh) dh. 
lz•(A)\G*(A) 

This operator depends on the choice of Haar measure dg on Z*(A)\G*(A). It can 
be represented as an integral operator with kernel: 

p*(4>)f(g) = [ 4>(h)f(gh) dh = [ 4>(g-1h)f(h) dh 
lz•(A)\G*(A) lz•(A)\G*(A) 

= 1 ( I: 4>(g-1"(h)) t(h) dh 
Z*(A)G*(O)\G*(A) !EZ*(O)\G*(Q) 

= { K*(g,h)f(h) dh 
lz•(A)G*(O)\G*(A) 

where 

K*(g,h) = 
!EZ*(O)\G*(Q) 

Since p* ( cjJ) is an integral operator on a compact space defined by a smooth kernet, 
it is a trace dass operator whose trace is obtained by integration along the diagonal. 
This integral can be expressed as a sum over a set of representatives { 'Y} for the 
conjugacy classes in Z*(O)\G*(Q), by means of a standard manipulation due to 
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Selberg: 

Tr(p*(ifJ)) = { K*(g,g)dg 
}z*(A)G*(O.)\G*(A) 

= 1 I: ifl(g-~,g)dg 
Z* (A)G* (0.)\G*(ß..) !EZ* (0.)\G*(O.) 

=I: r ifJ(g-~,g)dg 
{!} Jz*(A)G~(O.)\G*(A) 

= L m, 1 ifJ(g-1/g) dg. 
{!} G,Y(A)\G*(A) 

Here G ~ is the centralizer of 1 and 

m1 = meas(Z*(A)G~(O)\G~(J\\)). 

For 1 E G*(A), define the orbital integral of ifJ at 1: 

where d g is a quotient measure determined by dg and a choice of measure on 
Z*(A)\G~(A). This yields the Seiberg trace formula ([GPPS]): 

Tr(p*(ifJ)) = L:Tr(1r*(1J)) = L m1 q>(r, ifJ) 
~* {I} 

An important property of q>(r, ifJ) isthat it is factorizable: if we define the local 
orbital integral 

then 
q>(/, ifJ) = IJ q>(r, iflv). 

V 

Seiberg Trace formula for GL(2) 
Now let G = GL(2). Let p be the representation of G(A) on the space L2(w). As 
before, we assume that ifJ = Ilp cf>p is a factorizable function on G(A) suchthat 
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for all z E Z(A). We again assume that cPp is smooth, compactly-supported modulo 
Zp for all p, and that for almost all p, cPp is the characteristic function of G(Zp). 
The operator p( cjJ) is represented by the integral operator with kemel 

K(g,h) = 
'}'EZ(O)\G(Q) 

The representation p is not completely reducible and in general, p( cjJ) is not a trace 
dass operator. However, the restriction of Po( cjJ) to the space of cusp forms is of 
trace dass. Furthermore, Po ( cjJ) is represented by a smooth kemel Ko (g, h) and 

Tr(Po(cP)) = { Ko(g,g)dg. 
Jz(A)G(O)\G(A) 

The Seiberg trace formula provides a useful expression for Tr(Po(cP)), but it is 
more complicated than in the compact quotient case. 

Our exposition (without proofs) of the Setberg trace follows the work of 
Jacquet-Langlands and Artbur [A], [JL] (cf. also [DL]). Instead of {J(), we shall 
work with the direct sum Pd of Po and the one-dimensional invariant subspaces in 
L2(w). These latter subspaces are spanned by the functions x(det(g)) where x is 
a Hecke character of 0* \0 such that x 2 = w. Thus, 

Pd = Po EB ( E9 X o det) . 

The trace formula has the form 

Tr(pd(cP)) = Ll(r, c/J)- L::Hx, c/J). 
{'Y} {x} 

Here { 1} is a set of representatives for the semisimple (i.e., diagonalizable) 
conjugacy dasses in Z\G, and {x} is a set of representatives for the pairs x = 
(Xt, xz) modulo the permutation (Xt, xz) ---+ (xz, xt). where Xt, Xz are Hecke 
characters of 0*\0 trivial on lffi+ suchthat XtX2 = w. 

The geometric terms 
These are the terms J ( 1, cjJ). There are three types of r to consider: regular elliptic, 
regular hyperbolic, and scalar. Recall that a semisimple element is called regular 
if it has distinct eigenvalues. A regular semisimple element is called elliptic if its 
eigenvalues generate a quadratic extension of 0 and hyperbolic otherwise. In the 
hyperbolic case, it is conjugate to a diagonal element in G. 

Elliptic regular terms 
The elliptic regular terms are the same as in the compact quotient case: 

J(r, cP) = m'Y<P(r, c/J), 

where m'Y = m(Z(A)G'Y(O)\G'Y(A)). 
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Regular hyperhoHe terms 
In this case, J ( 1, cjJ) is a weighted orbital integral. We may assume that 1 = 

( ~ ~) with a # b. Let M = G'Y be the diagonal subgroup. There is a map (not 

a homomorphism) 
H: G(A) ~IR 

defined as follows in terms of the lwasawa decomposition. If 

with n E N(A) and k E K, then 

1 Q 

H(g) = 2log l:al· 

It is Straightforward to checkthat H(g) is independent of the choice of lwasawa 
decomposition of g. Furthermore, H(g) is a sum of local terms 

H(g) = L,Hp(g) 
p 

where Hp(g) is the local function defined in the same way as H(g) using the 
p-adic absolute value. If det(g) = 1, one has the formulas 

( a b) { _len(c2 +d2 ) if p = oo 
Hp( c d ) = -ln (max{lcl, ldl}) if p < oo. 

It is immediate from the definition that 

H(mg) = H(m) + H(g) 

for all m E M ( A). In particular, the restriction of H to M ( A) is a homomorphism. 
Let 

M(A/ = {m E M(A): H(m) = 0}. 

Define the weight factor 

V(g) = H(g) + H(wg) 

where w = ( ~l ~). Then V(g) is a function on M(A)\G(A) since 

V(mg) = H(mg) + H(wmg) = H(m) + H(g) + H(wmw- 1) + H(wg) 
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and H(wmw-I) = -H(m). The weight factor also decomposes as a sum of local 
terms 

V(g) = L Vp(g). 
p 

Set 
m1 = m(Z(A)M\M(A)I ). 

Then 

J('y, </J) = m1 f </J(g-I'Yg)V(g) dg. 
jM(A)\G(A) 

This can be written as a sum of terms: 

Jb,<P) = m, 2: (rr 1 <Pw(g-I"(g)ag) 1 <Pv(g-I"(g)Vv(g)dg. 
v w#v Mb\Gw ~\Gv 

The sum is actually finite because almost all terms vanish. More precisely, if </Jp 
is the unit in the Heckealgebra and 'Y E Kp (this is the case for almost all p), then 
</Jp(g-I"(g) vanishes if g ~ ZpKp while Vp(g) is zero if g E ZpKp. 

The term J ('y, <P) for 'Y scalar is a bit more complicated and so we shallleave 
them for the end. 

The spectral terms 
Theseare the terms J(x, <P) with x =(XI, X2). We view x as a character of M(A): 

There are two cases to consider: the regular case XI -1- X2 and the singular case 

XI= X2· 

Regular spectral term 
Let S)(x) be the Hilbert space of measurable functions 

<p: N(A)\G(A) --> C 

suchthat <p(mg) = x(m)<p(m) formE M(A) and 

kl<p(k)l2 dk < 00. 

For >. E C, define an action h = h,x of G(A) on S)(x) by the recipe 

l>.(g)<p(x) = e-(>.+I)H(x)e(>.+I)H(xg)<p(xg). 

This is a realization of the representation induced from the character 

mn--> x(m)e>.H(m) 

of B(A). Thus, the family of representations 1>. are all realized on the same space. 
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lntertwining operators 
Let wx = {X2, XI). Define a meromorphic fami1y of intertwining operators 

M(A) = M(A, x) : ~(x) --+ ~(wx) 

for A E C as follows. For Re(A) > 1, M(A) is defined by an absolutely convergent 
integral 

M(A)cp(g) = e<A-l)H(x) r cp(wng)e(A+l)H(wng) dn. 
}N(A) 

We have a factorization 

M(A) = @Mv(A) 

where Mv { A) is the local analogue 

Mv(A)cp{g) = e(A-l)H(x) { cp(wng)e(A+l)H(wng) dn, 
}Nv 

in thesensethat if cp = TI cpv. then M(A)cp = IJMv(A)cpv. The next theorem is 
a basic result in the theory of Eisenstein series [L], [GJ]. 

Theorem 4.1. The operator M(A) has rneromorphic continuation to the entire 
complex plane. The following hold: 

(i) M{A) is holomorphic on the unitary line Re(A) = 0. 
(ii) M{ -A, wx)M(A, x) = id. 

The spectral term associated to x is 

l(x,~) = 2
1 [ Tr (M{-A)M'{A)h(~)) ldAJ. 
7r lRe(A)=O 

Here M'(A) is the derivative of the map M(A): 

, d 
M (A) = dA M(A, x) : ~(x) --+ ~(wx). 

The composition M( -A)M'(A) is an endomorphism of ~(x) since 

M( -A) = M( -A, wx) : ~(wx) --+ ~(x). 

lt is not an intertwining operator and hence J(x, ~) is not an invariant distribution 
(J(x, ~) need not equal J(x, ~) where ~(x) = ~(g- 1 xg)). 
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Normalized intertwining operators 
This description of J (x, cp) has the defect that it is not factorizable. The factor­
ization is lost in the process of analytically continuing M(.A) (much as the Euler 
product for the zeta function no Ionger holds to the left of Re( .X) = 1). Torecover 
the product formula, we define normalized intertwining operators Rp(.A). Fix a 

continuous additive '1/J : 0\A----+ C* and Iet x = X1Xz1· Set 

m (.X) = Lp(A, x) 
p Lp(1 +.X, X)Ep(A, x, '1/J) 

where Lp ( A, x) is the local L-factor and Ep (.X, X' '1/J) is the epsilon factor of Tate 's 
thesis [02]. Define Rp(.A) by the equality 

Mp(.A) = mp(.A)Rp(.A). 

lt can be shown that Rp(.A) is actually holomorphic in the half-plane Re(.X) > -1. 
The normalization is chosen so that if p is a finite prime such that Xp is unramified 
and '1/Jp has conductor zero, then 

Rp(.A)~~p = ~~Xp 

where ~~P is the normalized Kp-fixed vector in ~(Xp) defined by 

~~P(bk) = Xp(b). 

Hence if TIP ~P E ~(X) is a factorizable element (~p = ~~ for almost all p), 
then ® Rp(.A)~p is a well-defined factorizable element in ~(wx). Furthermore, 
the derivative satisfies 

R'(.X)~0 = 0 p Xp 
for almost all p. 

Globally, set 

R(.A) = QS)Rp(.A) 

L(.x, x) L(1- .x,x-1) 

m(.X) = L(1 +.X, X)E(A, x) = L(1 + A, x) . 

The second inequality follows from the global functional equation of Hecke L­
series. In particular, m( -.X)= m(.x)-1. Observe that @Rp(.A) is well-defined as a 
product in the region Re(.A) > -1. By the additivity of the logarithmic derivative, 

M( -.A)M'(.X) = m( -.X)R( -.X):).. (m(.X)R(A)) 

= m(-.X)R(-A) (m(A)R'(A) +m'(A)R(A)) 

= m(-.X)m'(.X) +R(-.A)R'(A). 
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Furthermore, 
R( ->..)R'(>..) = LRp( ->..)R~(>..). 

The infinite sum is well-defined as an operator because R~(>..)'Pp = 0 for almost 
all p as mentioned above. This allows us to write 

J(x, 1>) =-2
1 { m'((:)) Tr(I.x(cf>))ld>-.1 
7f lRe(.X)=O m A 

+ L -21 r Tr(I.x (cf>P))Tr(Rp( ->..)R~(>..)J.x(cl>p))ld>-.1 
p 7f }Re(.X)=O 

where cf>P = I1r,:p 1>1· The sum is again finite. In fact,Tr(Rp(->..)R~(>..)I.x(cl>p)) = 0 
whenever cf>p is the characteristic function of Kp divided by its measure (this is 
the case for almost all p). lndeed, the range of I.x ( cf>p) is then the one-dimensional 
space spanned by 'Pp and R~(>..)'Pp is independent of >.., so its derivative is zero. 

Singular terms 
Finally, we describe the terms J(r, 1>) for 1 central and J(x, 1>) for x singular. 

For 1 = ( ~ ~) , define a distribution locally and g1obally: 

If a i- b, then a change of variables shows that 

2 ! 
M I (a-b) 12 

<I> (r,cf>) = ab <I>(r,cf>). 

Let (o ( s) be the zeta function of Q and Iet 

(o(s) = ).._ 1 + >..0 + · · · 
s- 1 

be the Laurent expansion of (o ( s) at s = 1. 

Now assume a = b, so that 1 is a scalar. Then for 5 a sufficiently large set 
of places of Q (in particular, for p ~ 5, cf>p is the characteristic function of G (~p) 
divided by its measure ), we have 

J(r,cf>) = m'Ycf>(r) +as<I>M(r,cf>) 

+>..-IL<I>M(r,cf>P) (c 1(1) 111>(k-1 (~ ~) k)lnltldtdk) 
pES p Kp Op 
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where 
- "(;(1) 

as- >-o- Lt ~ 2(ij 
pES (p 

and (p(s) is the p-Euler factor of the Riemann zeta function. Thus (p(s) = (1 -
p-s)-1 for p < oo and ( 00 (s) = 7f-s/2r(s/2). 

Now let X = (Xt, xt) be a singular character. Then 

1 ~ m'(>.) 
J(x,c/J) = 4- -(') Tr(l;,(cp))ld>-1 

7f Re(.X)=O m " 

+ L 41 r Tr({x(cfJP))Tr(Rp( ->.)R~(>.)I.x(c/Jp))ld>-1 
p 7f }Re(.X)=O 

1 - 4rr(M(O)Io(c/J)). 

Observe that since x = wx, M(>.) maps SJ(x) to itself and hence 
Tr(M(O)Io(cfJ)) is defined. 

On the proof of the Jacquet-Langlands correspondence 
The proof uses the technique of «comparing trace formulas» introduced in [L] ( cf 
[GJ]). One shows that it is possible to define a correspondence of functions 

with the properties 

(1) m7 •fP('r*,</J*) = m7 fP('y,</J) if1* is aregularelementin G*(A) and1*----+ I· 

(2) fP('y, <P) = 0 if 1 is a regular semisimple element which does not correspond 
to any 1* E G*(A). 

The correspondence <P* ----+ <P is defined componentwise via a similar locally­
defined correspondence <P; ----+ cPp· For p tt Sv, we take </Jp = <P;. For p E So, </Jp 
is a function which satisfies 

cp = { fP('y*, c/J;) if 1* is regular and 1* ----+ 1 
( 1 ' </Jp) 0 if 1 is a regular hyperbolic element. 

The correspondence depends on how the measures used to define the orbital in­
tegrals on Gp and c; are normalized. To fix the normalization, it is best to use 
matehing Tamagawa measures on Gp and c; as defined in [JL] (cf. [GJ], p. 246). 
For 1* regular, we may identify G7p with G~.P and choose the Haar measures on 
the two groups to be the same under the identification. Then we obtain matchirig 
quotient measures on G7p \Gp and G~.P \Gp. With these choices, it can be shown 
that for scalar elements 1* E G;, 
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if "Y* ---+ "Y· Since So has even cardinality, we obtain globally 

c/J*("Y*) = cp("Y) 

for "Y E G(A) scalar. Globally, the Tamagawa measures satisfy 

Since the set So is non-empty and of even cardinality, there are at least two 
primes p such that cp ( "Y, c/Jp) = 0 for all regular hyperbolic elements. This forces the 
vanishing of many terms in the trace formula for G. For example, it is immediate 
that I ( "Y, cp) = 0 for all regular hyperbolic elements. It is not difficult to show that 
the singular term simplifies to I ( "Y, cp) = m1 cp( "Y) for "Y scalar. Furthermore, 

I(x, cfJ) = o 
for all x. This follows because Tr ( 1r ( c/Jp)) = 0 for all p E So and all principal 
series representations 1r. Indeed, Tr( rr( c/Jp)) can be expressed in terms of the regular 
hyperbolic orbital integrals [La]. We conclude that if cp corresponds to c/J*, then 

Tr(pa(cfJ)) = L:m,cp("Y,cjJ). 
{I} 

Observe also that if "Y is not a scalar, then cp ( "Y, cp) = 0 unless "Y is elliptic regular 
in Gp for all p E So. Thus cp("Y, cfJ) = 0 unless "Y lies in the image ofan embedding 
of E* in G, where E is a quadratic extension in which no primein So splits. The 
latter condition is necessary and sufficient for the existence of an embedding of 
E* into G*(Q), and thus "Y corresponds to some "Y* E G*(Q). It now follows that 

Tr (pa( cjJ)) = L m1 cp("Y, c/J) 

b} 

= L m,. cp("Y*' 4J) 
{-y*} 

= Tr(p* ( c/J*) ). 

This completes our sketch of the proof of the following theorem. 

Theorem 4.2. If c/J* ---+ cp, then 

L Tr(rr(cp)) = L Tr(rr*(cfJ*)) 

where 1r (resp. rr*) ranges over the discrete representations ofG(A) (resp. G*(A)). 

The Jacquet-Langlands correspondence can be deduced from this theorem 
using techniques introduced in [L]; see [GJ]. A slightly differentroutewas chosen 
in the original proof [JL]. 
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