DISTRIBUTION OF CHERN-SIMONS INVARIANTS

JULIEN MARCHÉ

Abstract

Let M be a 3 -manifold with a finite set $X(M)$ of conjugacy classes of representations $\rho: \pi_{1}(M) \rightarrow \mathrm{SU}_{2}$. We study here the distribution of the values of the Chern-Simons function CS : $X(M) \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$. We observe in some examples that it resembles the distribution of quadratic residues. In particular for specific sequences of 3-manifolds, the invariants tends to become equidistributed on the circle with white noise fluctuations of order $|X(M)|^{-1 / 2}$. We prove that for a manifold with toric boundary the Chern-Simons invariants of the Dehn fillings $M_{p / q}$ have the same behaviour when p and q go to infinity and compute fluctuations at first order.

1. Introduction

1.1. Distribution of quadratic residues. Let p be a prime number congruent to 1 modulo 4 . We consider the weighted counting measure on the circle $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$ defined by quadratic residues modulo p, that is:

$$
\mu_{p}=\frac{1}{p} \sum_{k=0}^{p-1} \delta_{\frac{2 \pi k^{2}}{p}}
$$

We investigate the limit of μ_{p} when p goes to infinity and to that purpose, we consider its ℓ-th momentum i.e $\mu_{p}^{\ell}=\int e^{i \ell \theta} d \mu_{p}(\theta)=\frac{1}{p} \sum_{k=0}^{p-1} \exp \left(2 i \pi \ell k^{2} / p\right)$. We have $\mu_{p}^{\ell}=1$ if $p \mid \ell$, and else by the Gauss sum formula, $\mu_{p}^{\ell}=\left(\frac{\ell}{p}\right) \frac{1}{\sqrt{p}}$ where $\left(\frac{\ell}{p}\right)$ is the Legendre symbol.

This shows that μ_{p} converges to the uniform measure μ_{∞} whereas the renormalized measure $\sqrt{p}\left(\mu_{p}-\mu_{\infty}\right)$-that we call fluctuation- has l-th momentum ± 1 depending on the residue of l modulo p and hence is a kind of "white noise".
1.2. Distribution of Chern-Simons invariants. On the other hand, such Gauss sums appear naturally in the context of Chern-Simons invariants of 3 -manifolds. Consider an oriented and compact 3 -manifold M and define its character variety as the set $X(M)=\operatorname{Hom}\left(\pi_{1}(M), \mathrm{SU}_{2}\right) / \mathrm{SU}_{2}$. In what follows, we will confuse between representations and their conjugacy classes. The Chern-Simons invariant may be viewed as a locally constant map CS : $X(M) \rightarrow \mathbb{T}$. We refer to [3] for background on Chern-Simons invariants and give here a quick definition for the convenience of the reader.

Let ν be the Haar measure of SU_{2} normalised by $\nu\left(\mathrm{SU}_{2}\right)=2 \pi$ and let $\pi: \tilde{M} \rightarrow M$ be the universal cover of M. There is an equivariant map $F: \tilde{M} \rightarrow \mathrm{SU}_{2}$ in the sense that $F(\gamma x)=\rho(\gamma) F(x)$ for all $\gamma \in \pi_{1}(M)$ and $x \in \tilde{M}$. The form $F^{*} \nu$ is invariant hence can be written $F^{*} \nu=\pi^{*} \nu_{F}$. We set $\operatorname{CS}(\rho)=\int_{M} \nu_{F}$ and claim that it is independent on the choice of equivariant map F modulo 2π.

Definition 1.1. Let M be a 3-manifold whose character variety is finite. We define its Chern-Simons measure as $\mu_{M}=\frac{1}{|X(M)|} \sum_{\rho \in X(M)} \delta_{\mathrm{CS}(\rho)}$.
1.2.1. Lens spaces. For instance, if $M=L(p, q)$ is a lens space, then $\pi_{1}(M)=$ $\mathbb{Z} / p \mathbb{Z}$ and $X(M)=\left\{\rho_{n}, n \in \mathbb{Z} / p \mathbb{Z}\right\}$ where ρ_{n} maps the generator of $\mathbb{Z} / p \mathbb{Z}$ to a matrix with eigenvalues $e^{ \pm \frac{2 i \pi n}{p}}$. We know from [3] that $\operatorname{CS}\left(\rho_{n}\right)=2 \pi \frac{q^{*} n^{2}}{p}$ where $q q^{*}=1 \bmod p$. Hence, the Chern-Simons invariants of $L(p, q)$ behave exactly like quadratic residues when p goes to infinity.
1.2.2. Brieskorn spheres. To give a more complicated but still manageable example, consider the Brieskorn sphere $M=\Sigma\left(p_{1}, p_{2}, p_{3}\right)$ where p_{1}, p_{2}, p_{3} are distinct primes. This is a homology sphere whose irreducible representations in SU_{2} have the form $\rho_{n_{1}, n_{2}, n_{3}}$ where $0<n_{1}<p_{1}, 0<n_{2}<p_{2}, 0<n_{3}<p_{3}$. From [3] we have

$$
\operatorname{CS}\left(\rho_{n_{1}, n_{2}, n_{3}}\right)=2 \pi \frac{\left(n_{1} p_{2} p_{3}+p_{1} n_{2} p_{3}+p_{1} p_{2} n_{3}\right)^{2}}{4 p_{1} p_{2} p_{3}}
$$

Setting $n=n_{1} p_{2} p_{3}+p_{1} n_{2} p_{3}+p_{1} p_{2} n_{3}$, we observe that -due to Chinese remainder theorem- n describes $\left(\mathbb{Z} / p_{1} p_{2} p_{3} \mathbb{Z}\right)^{\times}$when n_{i} describes $\left(\mathbb{Z} / p_{i} \mathbb{Z}\right)^{\times}$ for $i=1,2,3$. Hence, we compute that the following ℓ-th momentum:
$\mu_{p_{1} p_{2} p_{3}}^{\ell}=\frac{1}{\left|X\left(\Sigma\left(p_{1}, p_{2}, p_{3}\right)\right)\right|} \sum_{\rho \in X(M)} \exp (i \ell \operatorname{CS}(\rho)) \sim \frac{1}{p_{1} p_{2} p_{3}} \sum_{n=0}^{p_{1} p_{2} p_{3}-1} e^{\frac{i \pi \ell n^{2}}{2 p_{1} p_{2} p_{3}}}$.
Assuming ℓ is coprime with $p=p_{1} p_{2} p_{3}$ we get from [1] the following estimates where $\epsilon_{n}=1$ is $n=1 \bmod 4$ and $\epsilon_{n}=i$ if $n=3 \bmod 4$:

$$
\mu_{p}^{\ell} \sim\left\{\begin{array}{l}
\frac{\epsilon_{p}}{\sqrt{p}}\left(\frac{\ell / 4}{p}\right) \quad \text { if } \ell=0 \bmod 4 \\
0 \quad \text { if } \ell=2 \bmod 4 \\
\frac{1+i}{2 \sqrt{\bar{p} \epsilon_{l}}\left(\frac{p}{\ell}\right) \quad \text { else. }}
\end{array}\right.
$$

Again we obtain that μ_{p} converges to the uniform measure when p goes to infinity. The renormalised measure $\sqrt{p}\left(\mu_{p}-\mu_{\infty}\right)$ have ℓ-th momentum with modulus equal to $1, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}$ depending on $\ell \bmod 4$.
1.3. Dehn Fillings. The main question we address in this article is the following: fix a manifold M with boundary $\partial M=\mathbb{T} \times \mathbb{T}$. For any $\frac{p}{q} \in \mathbb{P}^{1}(\mathbb{Q})$, we denote by $\mathbb{T}_{p / q}$ the curve on \mathbb{T}^{2} parametrised by $(p t, q t)$ for t in \mathbb{T}. We
define the manifold $M_{p / q}$ by Dehn filling i.e the result of gluing M with a solid torus such that $\mathbb{T}_{p / q}$ bounds a disc.

We recall from [3] that in the case where M has boundary, there is a principal \mathbb{T}-bundle with connection $L \rightarrow X(\partial M)$ such that the Chern-Simons invariant is a flat section of $\operatorname{Res}^{*} L$

where $\operatorname{Res}(\rho)=\rho \circ i_{*}$ and $i: \partial M \rightarrow M$ is the inclusion.
We will denote by $|d \theta|$ the natural density on $X(\mathbb{T})=\mathbb{T} /(\theta \sim-\theta)$.
We also have $X\left(\mathbb{T}^{2}\right)=\mathbb{T}^{2} /(x, y) \sim(-x,-y)$ and for any p, q the map $\operatorname{Res}_{p / q}: X\left(\mathbb{T}^{2}\right) \rightarrow X\left(\mathbb{T}_{p / q}\right)$ is given by $(x, y) \mapsto p x+q y$.

Moreover, for any $\frac{p}{q}, \ell>0$ and $0 \leq k \leq \ell$, there are natural flat sections $\mathrm{CS}_{p / q}^{k / \ell}$ of L^{ℓ} over the preimage $\operatorname{Res}_{p / q}^{-1}\left(\frac{\pi k}{\ell}\right)$. These sections are called BohrSommerfeld sections and they coincide for $k=0$ with CS^{ℓ}. See [3] or [2] for a detailed description.

Theorem 1.2. Let M be a 3-manifold with $\partial M=\mathbb{T}^{2}$ satisfying the hypothesis of Section 2.2. Let p, q, r, s be integers satisfying $p s-q r=1$ and for any integer n, set $p_{n}=p n-r$ and $q_{n}=q n-s$. Then setting

$$
\mu_{n}^{\ell}=\frac{1}{n} \sum_{\rho \in X\left(M_{p_{n} / q_{n}}\right)} e^{i \ell \operatorname{CS}(\rho)}
$$

we get first

$$
\mu_{n}^{0}=\int_{X(M)} \operatorname{Res}_{r / s}^{*}|d \theta|+O\left(\frac{1}{n}\right)
$$

and for $\ell>0$
$\mu_{n}^{\ell}=\frac{1}{\sqrt{2 n}} \sum_{k=0}^{l} \sum_{\rho, k / \operatorname{Res}_{r / s}(\rho)=\pi \frac{k}{l}} \exp \left(-2 i \pi n \frac{k^{2}}{4 \ell}+i \ell \operatorname{CS}(\rho)-i \operatorname{CS}_{r / s}^{k / l}(\rho)\right)+O\left(\frac{1}{n}\right)$
Hence, we recover the behaviour that we observed for Lens spaces and Brieskorn spheres. The measure converges to a uniform measure μ_{∞} and the renormalised measure $\sqrt{n}\left(\mu_{n}-\mu_{\infty}\right)$ has an oscillating behaviour controlled by representations in $X(M)$ with rational angle along $\mathbb{T}_{r / s}$.
1.4. Intersection of Legendrian subvarieties. We will prove Theorem 1.2 in the more general situation of curves immersed in a torus. Indeed, the problem makes sense in an even more general setting that we present here.

1.4.1. Prequantum bundles.

Definition 1.3. Let (M, ω) be a symplectic manifold. A prequantum bundle is a principal \mathbb{T}-bundle with connection whose curvature is ω.

It is well-known that the set of isomorphism classes of prequantum bundles is homogeneous under $H^{1}(M, \mathbb{T})$ and non-empty if and only if ω vanishes in $H^{2}(M, \mathbb{T})$. Let us give three examples:
Example 1.4. (i) Take $\mathbb{R}^{2} \times \mathbb{T}$ with $\lambda=d \theta+\frac{1}{2 \pi}(x d y-y d x)$. This gives a prequantum bundle on \mathbb{R}^{2}. Dividing by the action of \mathbb{Z}^{2} given by

$$
\begin{equation*}
(m, n) \cdot(x, y, \theta)=(x+2 \pi m, y+2 \pi n, \theta+m y-n x) \tag{1}
\end{equation*}
$$ gives a prequantum bundle $\pi: L \rightarrow \mathbb{T}^{2}$.

(ii) Any complex projective manifold $M \subset \mathbb{P}^{n}(\mathbb{C})$ has such a structure by restricting the tautological bundle whose curvature is the restriction of the Fubini-Study metric.
(iii) The Chern-Simons bundle over the character variety of a surface.

In all these cases, there is a natural subgroup of the group of symplectomorphisms of (M, ω) which acts on the prequantum bundle. The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts in the first case and the mapping class group in the third case. In the second case, a group acting linearly on \mathbb{C}^{n+1} and preserving M will give an example.
1.4.2. Legendrian submanifolds and their pairing. Consider a prequantum bundle $\pi: L \rightarrow M$ where M has dimension $2 n$ and denote by $\lambda \in \Omega^{1}(L)$ the connection 1 -form. By Legendrian immersion we will mean an immersion $i: N \rightarrow L$ where N is a manifold of dimension $n+1$ such that $i^{*} \lambda=0$. This condition implies that i is transverse to the fibres of π and hence $\pi \circ i: N \rightarrow M$ is a Lagrangian immersion.

Definition 1.5. (1) Given $i_{1}: N_{1} \rightarrow L$ and $i_{2}: N_{2} \rightarrow L$ two Legrendrian immersions, we will say that they are transverse if it is the case of $\pi \circ i_{1}$ and $\pi \circ i_{2}$.
(2) Given such transverse Legendrian immersions and an intersection point, i.e. $x_{1} \in N_{1}$ and $x_{2} \in N_{2}$ such that $\pi\left(i_{1}\left(x_{1}\right)\right)=\pi\left(i_{2}\left(x_{2}\right)\right)$ we define their phase $\phi\left(i_{1}\left(x_{1}\right), i_{2}\left(x_{2}\right)\right)$ as the element $\theta \in \mathbb{T}$ such that $i_{2}\left(x_{2}\right)=i_{1}\left(x_{1}\right)+\theta$.
(3) The phase measure $\phi\left(i_{1}, i_{2}\right)$ is the measure on the circle defined by

$$
\phi\left(i_{1}, i_{2}\right)=\sum_{\pi\left(i_{1}\left(x_{1}\right)\right)=\pi\left(i_{2}\left(x_{2}\right)\right)} \delta_{\phi\left(i_{1}\left(x_{1}\right), i_{2}\left(x_{2}\right)\right)} .
$$

If M is a 3-manifold obtained as $M=M_{1} \cup M_{2}$ then, assuming transversality, the Chern-Simons measure of M is given by $\mu_{M}=\phi\left(\mathrm{CS}_{1}, \mathrm{CS}_{2}\right)$ where $\mathrm{CS}_{i}: X\left(M_{i}\right) \rightarrow L$ is the Chern-Simons invariant with values in the ChernSimons bundle.

2. The torus case

2.1. Immersed curves in the torus. Consider the pre quantum bundle $\pi: L \rightarrow \mathbb{T}^{2}$ given in the first item of Example 1.4. We consider a fixed Legendrian immersion $i:[a, b] \rightarrow L$ and for any coprime integers p, q the Legendrian immersion

$$
i_{p / q}: \mathbb{T} \rightarrow L, i_{p / q}(t)=(p t, q t, 0)
$$

Our aim here is to study the behaviour of $\phi\left(i, i_{p / q}\right)$ when $(p, q) \rightarrow \infty$.
We first lift i to an immersion $I:[a, b] \rightarrow \mathbb{R}^{2} \times \mathbb{R}$ of the form $I(t)=$ $(x(t), y(t), \theta(t))$. By assumption we have $\dot{\theta}=-\frac{1}{2 \pi}(x \dot{y}-y \dot{x})$. For instance, lifting $i_{p / q}$ we get simply the map $I_{p / q}: t \mapsto(p t, q t, 0)$.

Let r, s be integers such that $A=\left(\begin{array}{ll}p & r \\ q & s\end{array}\right)$ has determinant 1. Take $F_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ the function

$$
F_{A}(x, y)=\frac{1}{2 \pi}(s x-r y)(q x-p y)
$$

A direct computation shows that this function satisfies $(m, n) \cdot I_{p / q}(t)=$ $(p t+2 \pi m, q t+2 \pi n, F(p t+2 \pi m, q t+2 \pi n))$. We obtain from it the following formula:

$$
\begin{equation*}
\phi\left(i, i_{p / q}\right)=\sum_{a \leq t \leq b, q x(t)-p y(t) \in 2 \pi \mathbb{Z}} \delta_{\theta(t)-F(x(t), y(t))} \tag{2}
\end{equation*}
$$

If we put $i=i_{0 / 1}$ this formula becomes $\phi\left(i_{0 / 1}, i_{p / q}\right)=\sum_{k=0}^{p-1} \delta_{2 \pi \frac{r k^{2}}{p}}$. This measure is related to the usual Gauss sum in the sense that denoting by q^{*} an inverse of $q \bmod p$ we have:

$$
\int e^{i \theta} d \phi\left(i_{0 / 1}, i_{p / q}\right)(\theta)=\sum_{k \in \mathbb{Z} / q \mathbb{Z}} \exp \left(2 i \pi \frac{q^{*} k^{2}}{p}\right)
$$

Suppose that $p_{n}=p n-r$ and $q_{n}=q n-s$. A Bézout matrix is given by $A_{n}=\left(\begin{array}{ll}p n-r & p \\ q n-s & q\end{array}\right)$. Up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$, we can suppose that $p=s=1$ and $q=r=0$ in which case $F_{A_{n}}(x, y)=-\frac{y}{2 \pi}(x+n y)$. We get from Equation (2) the following formula for $\mu_{n}^{\ell}=\frac{1}{n} \int e^{i \ell \theta} d \phi\left(i, i_{p n /-1}\right)(\theta)$:

$$
\begin{equation*}
\mu_{n}^{\ell}=\frac{1}{n} \sum_{\substack{x(t)+n y(t) \in 2 \pi \mathbb{Z} \\ a \leq t \leq b}} \exp \left(i \ell\left(\theta(t)+\frac{y(t)}{2 \pi}(x(t)+n y(t))\right)\right) \tag{3}
\end{equation*}
$$

Taking $\ell=0$, we are simply counting the number of solutions of $x(t)+$ $n y(t) \in 2 \pi \mathbb{Z}$ for $t \in[a, b]$. Assuming that y is monotonic, the number of solutions for $t \in[a, b]$ is asymptotic to $|y(b)-y(a)|$. Hence the asymptotic density of intersection points is $i^{*}|d y|$ and we get

$$
\lim _{n \rightarrow \infty} \mu_{n}^{0}=\int_{a}^{b} i^{*}|d y|
$$

To treat the case $\ell>0$, we need the following version of the Poisson formula:
Lemma 2.1. If $f, g:[a, b] \rightarrow \mathbb{R}$ are respectively C^{1} and continuous and f is piecewise monotonic, then if further $f(a), f(b) \notin 2 \pi \mathbb{Z}$ we have

$$
\sum_{a \leq t \leq b, f(t) \in 2 \pi \mathbb{Z}} g(t)=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} \int_{a}^{b} e^{-i k f(t)}\left|f^{\prime}(t)\right| g(t) d t
$$

Applying it here, we get

$$
\mu_{n}^{\ell}=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} \int_{a}^{b} e^{-i k(x+n y)+i \ell\left(\theta+\frac{y}{2 \pi}(x+n y)\right)}\left|\frac{\dot{x}}{n}+\dot{y}\right| d t
$$

We apply a stationary phase expansion in this integral, the phase being $\Phi=-k y+l y^{2} / 2 \pi$ and its derivative being $\dot{\Phi}=(-k+l y / \pi) \dot{y}$. We find two types of critical points: the horizontal tangents $\dot{y}=0$ and the points of rational height $y=\pi \frac{k}{l}$. We observe that when $\dot{y}=0$ the amplitude is $O\left(\frac{1}{n}\right)$ and hence these contributions can be neglected compared with the other ones, where $y=\pi \frac{k}{l}$.

We compute $\ddot{\Phi}=\frac{l}{\pi} \dot{y}^{2}+(-k+l y / \pi) \ddot{y}=\frac{l}{\pi} \dot{y}^{2}$ and $\Phi=-\frac{\pi k^{2}}{2 l}$. As $\ddot{\Phi}>0$, the stationary phase approximation gives

$$
\mu_{n}^{l}=\frac{1}{\sqrt{2 n}} \sum_{y=\frac{\pi k}{l}} e^{-i n \frac{k^{2} \pi}{2 l}-i \frac{k x}{2}+i l \theta}+O\left(\frac{1}{n}\right)
$$

In order to give the final result, observe that the map $t \mapsto\left(t, \pi \frac{k}{l}, \frac{k t}{2}\right)$ defines a flat section of L^{ℓ} that we denote by $i_{1 / 0}^{k / \ell}$.

We can sum up the discussion by stating the following proposition.
Proposition 2.2. Let $i: \mathbb{T} \rightarrow L$ be a Legendrian immersion and suppose that $\pi \circ i$ is transverse to $i_{p n /-1}$ for n large enough and to the circles of equation $y=\pi \xi$ for $\xi \in \mathbb{Q}$.

Then writing $i(t)=(x(t), y(t), \theta(t))$ and $\mu_{n}^{\ell}=\frac{1}{n} \int e^{i \ell \theta} d \phi\left(i, i_{p n /-1}\right)(\theta)$ we have for all $\ell>0$:

$$
\mu_{n}^{\ell}=\frac{1}{\sqrt{2 n}} \sum_{k \in \mathbb{Z} / 2 \ell \mathbb{Z}} \sum_{t \in \mathbb{T}, y(t)=\pi k / \ell} e^{-i n \pi \frac{k^{2}}{2 \ell}+i \phi\left(i(t), i_{1 / 0}^{k / l}(x(t))\right)}+O\left(\frac{1}{n}\right)
$$

2.2. Application to Chern-Simons invariants. Let M be a 3 -manifold with $\partial M=\mathbb{T} \times \mathbb{T}$. We assume that $X(M)$ is at most 1 -dimensional and that the restriction map Res : $X(M) \rightarrow X(\partial M)$ is an immersion on the smooth part and map the singular points to non-torsion points. Then we know that $\operatorname{Res}(X(M))$ is transverse to $\mathbb{T}_{p / q}$ for all but a finite number of p / q, see [4].

Consider the projection map $\pi: \mathbb{T}^{2} \rightarrow X(\partial M)$ which is a 2 -fold ramified covering. We may decompose $X(M)$ as a union of segments $\left[a_{i}, b_{i}\right]$ whose extremities contain all singular points. The restriction map Res can be lifted to \mathbb{T}^{2} and the Chern-Simons invariant may be viewed as a map CS : $\left[a_{i}, b_{i}\right] \rightarrow L$. Hence, we may apply it the results of Proposition 2.2 and obtain Theorem 1.2.

We may comment that the flat sections $i_{1 / 0}^{k / \ell}$ of L^{ℓ} over the line $y=\frac{\pi k}{\ell}$ induces through the quotient $(x, y, \theta) \sim(-x,-y,-\theta)$ a flat section of L^{ℓ} that we denoted $\mathrm{CS}_{0 / 1}^{k / l}$ over the subvariety $\operatorname{Res}_{0 / 1}^{-1}\left(\frac{\pi k}{\ell}\right)$.

3. Chern-Simons invariants of coverings

3.1. General setting. Beyond Dehn fillings, we can ask for the limit of the Chern-Simons measure of any sequence of 3 -manifolds. A natural class to look at is the case of coverings of a same manifold M. Among that category, one can restrict to the family of cyclic coverings. One can even specify the problem to the following case.

Question: Let $p: M \rightarrow \mathbb{T}$ be a fibration over the circle and M_{n} be the pull-back of the self-covering of \mathbb{T} given by $z \mapsto z^{n}$. What is the asymptotic behaviour of $\mu_{M_{n}}$?

This problem can be formulated in the following way. Let Σ be the fiber of M and $f \in \operatorname{Mod}(\Sigma)$ be its monodromy. Any representation $\rho \in X(M)$ restricts to a representation $\operatorname{Res}(\rho) \in X(\Sigma)$ invariant by the action f_{*} of f on $X(\Sigma)$. Reciprocally, any irreducible representation $\rho \in X(\Sigma)$ fixed by f_{*} correspond to two irreducible representations in $X(M)$.

The Chern-Simons invariant corresponding to a fixed point may be computed in the following way: pick a path $\gamma:[0,1] \rightarrow X(\Sigma)$ joining the trivial representation to ρ and consider the closed path obtained by composing γ with $f(\gamma)$ in the opposite direction. Then its holonomy along L is the Chern-Simons invariant of the corresponding representation.

Understanding the asymptotic behaviour of $\mu_{M_{n}}$ consists in understanding the fixed points of f_{*}^{n} on $X(\Sigma)$ and the distribution of Chern-Simons invariants of these fixed points, a problem which seems to be out of reach for the moment.
3.2. Torus bundles over the circle. In this elementary case, the computation can be done. Let $A \in \mathrm{SL}_{2}(\mathbb{Z})$ act on $\mathbb{R}^{2} / \mathbb{Z}^{2}$. Its fixed points form a group $G_{A}=\left\{v \in \mathbb{Q}^{2}, A v=v \bmod \mathbb{Z}^{2}\right\} / \mathbb{Z}^{2}$. If $\operatorname{Tr}(A) \neq 2$, which we suppose from now, G_{A} is isomorphic to $\operatorname{Coker}(A-\mathrm{Id})$ and has cardinality $|\operatorname{det}(A-\mathrm{Id})|$.

Following the construction explained above, the phase is a map $f: G_{A} \rightarrow$ \mathbb{Q} / \mathbb{Z} given by $f([v])=\operatorname{det}(v, A v) \bmod \mathbb{Z}$. Hence, the measure we are trying to understand is the following:

$$
\mu_{A}=\frac{1}{|\operatorname{det}(A-\mathrm{Id})|} \sum_{v \in G_{A}} \delta_{2 \pi \operatorname{det}(v, A v)}
$$

Consider the ℓ-th moment μ_{A}^{ℓ} of μ_{A}. It is a kind of Gauss sum that can be computed explicitly. The map f is a quadratic form on G_{A} with values in \mathbb{Q} / \mathbb{Z}. Its associated bilinear form is $b(v, w)=\operatorname{det}(v, A w)+\operatorname{det}(w, A v)=$ $\operatorname{det}\left(v,\left(A-A^{-1}\right) w\right)$. As $A+A^{-1}=\operatorname{Tr}(A) \operatorname{Id}$ and $\operatorname{det}(A-\operatorname{Id})=2-\operatorname{Tr}(A)$ we get $b(v, w)=2 \operatorname{det}(v,(A-\mathrm{Id}) w) \bmod \mathbb{Z}$. Hence, if 2ℓ is invertible in G_{A}, then ℓb is non-degenerate and standard arguments (see [5] for instance) show that $\left|\mu_{A}^{\ell}\right|=|\operatorname{det}(A-\mathrm{Id})|^{-1 / 2}$. Hence we still get the same kind of asymptotic behaviour for the Chern-Simons measure of the torus bundles over the circle.

References

[1] B. C. Berndt, R. J. Evans and K. S. Williams Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts (1998).
[2] L. Charles and J. Marché, Knot asymptotics II, Witten conjecture and irreducible representations, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 323-361.
[3] P. Kirk and E. Klassen, Chern-Simons invariants of 3-manifolds and representation spaces of knot groups, Math.Ann. 287 (1990), 343-367.
[4] J. Marché and G. Maurin, Singular intersections of subgroups and character varieties, arXiv:1406.2862.
[5] V. Turaev, Reciprocity for Gauss sums on finite abelian groups, Math. Proc. Camb. Phil. Soc. 124 no. 2 (1998), 205-214.

Institut de Mathématiques de Jussieu - Paris Rive Gauche, Université Pierre et Marie Curie, 75252 Paris cédex 05, France

E-mail address: julien.marche@imj-prg.fr

