DISTRIBUTION OF CHERN-SIMONS INVARIANTS

JULIEN MARCHE

ABSTRACT. Let M be a 3-manifold with a finite set X (M) of conjugacy
classes of representations p : w1 (M) — SUz. We study here the distribu-
tion of the values of the Chern-Simons function CS : X(M) — R/27Z.
We observe in some examples that it resembles the distribution of qua-
dratic residues. In particular for specific sequences of 3-manifolds, the
invariants tends to become equidistributed on the circle with white noise
fluctuations of order | X (M)|~'/2. We prove that for a manifold with
toric boundary the Chern-Simons invariants of the Dehn fillings M,/
have the same behaviour when p and ¢ go to infinity and compute fluc-
tuations at first order.

1. INTRODUCTION

1.1. Distribution of quadratic residues. Let p be a prime number con-
gruent to 1 modulo 4. We consider the weighted counting measure on the
circle T = R/27Z defined by quadratic residues modulo p, that is:

121
Hp = *Z‘SM'
pk:o P

We investigate the limit of u, when p goes to infinity and to that purpose, we
. . . ; —1 .
consider its /-th momentum i.e Mf; = [e®du,(0) = %Zgzo exp(2imlk? /p).

We have ,uf) = 1if p|¢, and else by the Gauss sum formula, ,uf; = (ﬁ) % where

(g) is the Legendre symbol.

This shows that p, converges to the uniform measure po, whereas the
renormalized measure /p(f, — fioo) -that we call fluctuation- has /-th mo-
mentum +1 depending on the residue of [ modulo p and hence is a kind of
“white noise”.

1.2. Distribution of Chern-Simons invariants. On the other hand, such
Gauss sums appear naturally in the context of Chern-Simons invariants
of 3-manifolds. Consider an oriented and compact 3-manifold M and de-
fine its character variety as the set X (M) = Hom(m(M),SUz)/SUsy. In
what follows, we will confuse between representations and their conjugacy
classes. The Chern-Simons invariant may be viewed as a locally constant
map CS : X(M) — T. We refer to [3] for background on Chern-Simons
invariants and give here a quick definition for the convenience of the reader.
1
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Let v be the Haar measure of SUy normalised by v(SUs) = 27 and let
7 : M — M be the universal cover of M. There is an equivariant map
F : M — SU, in the sense that F(yz) = p(y)F(z) for all v € (M) and
x € M. The form F*v is invariant hence can be written F*v = m*vp. We set
CS(p) = [,; vr and claim that it is independent on the choice of equivariant
map F' modulo 2.

Definition 1.1. Let M be a 3-manifold whose character variety is finite.

We define its Chern-Simons measure as uy; = le\/m > dcs()-
pEX (M)

1.2.1. Lens spaces. For instance, if M = L(p, q) is a lens space, then 71 (M) =
Z/pZ and X (M) = {pn,n € Z/pZ} where p, maps the generator of Z/pZ to

2imn

a matrix with eigenvalues e » . We know from [3] that CS(p,) = 277%

where ¢¢* = 1 mod p. Hence, the Chern-Simons invariants of L(p, ¢) behave
exactly like quadratic residues when p goes to infinity.

1.2.2. Brieskorn spheres. To give a more complicated but still manageable
example, consider the Brieskorn sphere M = ¥(p1, p2, p3) where p1, p2, p3 are
distinct primes. This is a homology sphere whose irreducible representations
in SUy have the form py, n,n, Where 0 <ny < p1,0 <ng < p2,0 < nzg < ps.
From [3] we have

(n1peps + pinaps + p1pans)?
4dp1paps

Setting n = nipaps + p1nops + pi1pans, we observe that -due to Chinese
remainder theorem- n describes (Z/p1p2psZ)* when n; describes (Z/p;Z)*
for i = 1,2,3. Hence, we compute that the following ¢-th momentum:

CS(Pm,nz,ns) =27

1 p1p2p3—1 imtm2

E e 2r1p2p3 |

n=0

1

Fopipaps X (S(p1,p2,p3)| pe;M) p( (p))

p1P2pP3

Assuming /¢ is coprime with p = pipeps we get from [1] the following
estimates where €, = 1 is n = 1 mod 4 and ¢, =i if n = 3 mod 4:

2 ({2 if £ =0 mod 4

VP\ P
fy~ <0 if £ =2mod 4
144
2\/*;761 (B)  else.

Again we obtain that i, converges to the uniform measure when p goes to
infinity. The renormalised measure \/p(tp — fioo) have ¢-th momentum with

modulus equal to 1, %, 0, % depending on ¢ mod 4.

1.3. Dehn Fillings. The main question we address in this article is the
following: fix a manifold M with boundary OM = T x T. For any g € PLQ),

we denote by T, /, the curve on T? parametrised by (pt, qt) for t in T. We
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define the manifold M, , by Dehn filling i.e the result of gluing M with a
solid torus such that T, , bounds a disc.

We recall from [3] that in the case where M has boundary, there is a prin-
cipal T-bundle with connection L — X (9M) such that the Chern-Simons
invariant is a flat section of Res* L

CS

Res
—_—

X (M) X (OM)

where Res(p) = poi, and i : 9M — M is the inclusion.

We will denote by |df]| the natural density on X(T) =T/(0 ~ —0).

We also have X(T?) = T?/(z,y) ~ (—z,—y) and for any p,q the map
Res,/q X(T?) — X(Tp/q) is given by (z,y) — px + qy.

Moreover, for any g, ¢ >0 and 0 < k </, there are natural flat sections
CSI;Z of L' over the preimage Res;/{](”?f“). These sections are called Bohr-

Sommerfeld sections and they coincide for k& = 0 with CS*. See [3] or [2] for
a detailed description.

Theorem 1.2. Let M be a 3-manifold with OM = T? satisfying the hypoth-
esis of Section 2.2. Let p,q,r,s be integers satisfying ps — qr = 1 and for
any integer n, set p, = pn —r and g, = qn — s. Then setting

1 .
Mfz — Z ezZCS(p)

n
peX(MPn/Qn)
we get first
1
0 *
un:/ Res; ), |dO]| + O —
and for £ > 0

l
l _ L iy kj . . k)l 1
Fon = \/%Z > exp(~2imno; i CS(p) —iCSY(p) +O(-)

k=0 P,k/ Resr/s(p):ﬂ'§

Hence, we recover the behaviour that we observed for Lens spaces and
Brieskorn spheres. The measure converges to a uniform measure ji», and the
renormalised measure v/n(u, — piso) has an oscillating behaviour controlled
by representations in X (M) with rational angle along T, /.

1.4. Intersection of Legendrian subvarieties. We will prove Theorem
1.2 in the more general situation of curves immersed in a torus. Indeed, the
problem makes sense in an even more general setting that we present here.
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1.4.1. Prequantum bundles.

Definition 1.3. Let (M,w) be a symplectic manifold. A prequantum bun-
dle is a principal T-bundle with connection whose curvature is w.

It is well-known that the set of isomorphism classes of prequantum bundles
is homogeneous under H'(M, T) and non-empty if and only if w vanishes in
H?(M,T). Let us give three examples:

Example 1.4. (i) Take R?x T with A\ = df+ 5= (zdy —ydx). This gives
a prequantum bundle on R?. Dividing by the action of Z? given by

(1) (m,n) - (z,y,0) = (x + 2rm,y + 2mn, 0 + my — nx)

gives a prequantum bundle 7 : L — T2.

(ii) Any complex projective manifold M C P"(C) has such a structure by
restricting the tautological bundle whose curvature is the restriction
of the Fubini-Study metric.

(iii) The Chern-Simons bundle over the character variety of a surface.

In all these cases, there is a natural subgroup of the group of symplec-
tomorphisms of (M,w) which acts on the prequantum bundle. The group
SLa(Z) acts in the first case and the mapping class group in the third case.
In the second case, a group acting linearly on C"*! and preserving M will
give an example.

1.4.2. Legendrian submanifolds and their pairing. Consider a prequantum
bundle 7 : L — M where M has dimension 2n and denote by A € Q!(L) the
connection 1-form. By Legendrian immersion we will mean an immersion
i : N — L where N is a manifold of dimension n 4+ 1 such that i*A = 0.
This condition implies that ¢ is transverse to the fibres of m and hence
moi: N — M is a Lagrangian immersion.

Definition 1.5. (1) Given 43 : Ny — L and iy : No — L two Legren-
drian immersions, we will say that they are transverse if it is the
case of w0y and 7 o is.

(2) Given such transverse Legendrian immersions and an intersection
point, i.e. 1 € Ny and x9 € Ny such that 7(i1(z1)) = 7(i2(z2)) we
define their phase ¢(i1(x1),i2(x2)) as the element § € T such that
i2($2) = il(Il) + 0.

(3) The phase measure ¢(i1,72) is the measure on the circle defined by

(i1, iz) = > O(in (1), (2))

(i1 (x1))=m(i2(x2))

If M is a 3-manifold obtained as M = M; U My then, assuming transver-
sality, the Chern-Simons measure of M is given by s = ¢(CS1, CS2) where
CS; : X(M;) — L is the Chern-Simons invariant with values in the Chern-
Simons bundle.
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2. THE TORUS CASE

2.1. Immersed curves in the torus. Consider the pre quantum bundle
7w : L — T? given in the first item of Example 1.4. We consider a fixed
Legendrian immersion i : [a,b] — L and for any coprime integers p,q the
Legendrian immersion

ipjq : T = Lyipsq(t) = (pt, qt, 0).
Our aim here is to study the behaviour of ¢(i,1,/,,) when (p,q) — oo.
We first lift ¢ to an immersion I : [a,b] — R? x R of the form I(t) =
(z(t),y(t),0(t)). By assumption we have § = —5-(zy — yi). For instance,

lifting 4,,/, we get simply the map I,,,, : t — (pt, qt,0).

Let r,s be integers such that A = (5 Z) has determinant 1. Take

F4 : R? = R the function
1
Fa(z,y) = o (sz —ry)(qz — py)
A direct computation shows that this function satisfies (m,n).1,/,(t) =

(pt+2mm, gt + 2mn, F(pt+ 2mm, gt +2mn)). We obtain from it the following
formula:

(2) o (i, ip/q) = Z S0(t)—F(a(t)(1))-

a<t<b,qz(t)—py(t)€2nZ

If we put i = 7/, this formula becomes ¢(ig/1,1,/q) = Zﬁ;é 6, 2. This
p

measure is related to the usual Gauss sum in the sense that denoting by ¢*
an inverse of ¢ mod p we have:
) q* k’2
[ astion i) = Y expl2in®

kEZ/qZ

).

Suppose that p, = pn — r and ¢, = qgn — s. A Bézout matrix is given
by A, = };Z :Z ](3) Up to the action of SLg(Z), we can suppose that
p=s=1and ¢ =7 = 0 in which case Fy,(z,y) = —5=(z + ny). We get
from Equation (2) the following formula for uf, = 1 [ e®deg(i, ipn/—1)(0):

B et Y e 00+ 52 w0 ).
z(t)+ny(t)e2nZ
a<t<b
Taking ¢ = 0, we are simply counting the number of solutions of x(t) +
ny(t) € 2nZ for t € [a,b]. Assuming that y is monotonic, the number of
solutions for ¢ € [a, b] is asymptotic to |y(b) — y(a)|. Hence the asymptotic
density of intersection points is i*|dy| and we get
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b
nh_)m ud —/a i*|dyl|.

To treat the case £ > 0, we need the following version of the Poisson formula:

Lemma 2.1. If f,g : [a,b] — R are respectively C* and continuous and f
is piecewise monotonic, then if further f(a), f(b) ¢ 2nZ we have

S =g X [ e OOl

aStSb,f(t)E%TZ keZ

Applying it here, we get

:UJn 2 Z/ —ik(z+ny)+il(0+ 55 (z+ny)) ’ —|—y|dt
WkEZ a

We apply a stationary phase expansion in this integral, the phase being
® = —ky + ly?/2r and its derivative being ® = (—k + ly/m)j. We find
two types of critical points: the horizontal tangents y = 0 and the points of
rational height y = 71'%. We observe that when y = 0 the amplitude is O(%)
and hence these contributions can be neglected compared with the other
ones, where y = ﬂ'%.

We compute & = %92 + (=k+1ly/m)y = %gf and ® = ——. As & >0,
the stationary phase approximation gives

—in 221 '%+il9 + 0(1)
n

mze

In order to give the final result observe that the map ¢t — (t,w%, %)
k/¢

1/0°

We can sum up the discussion by stating the following proposition.

defines a flat section of L that we denote by i

Proposition 2.2. Let ¢ : T — L be a Legendrian immersion and suppose
that m o1 is transverse to iy, 1 for n large enough and to the circles of
equation y = € for & € Q.

Then writing i(t) = (z(t),y(t),0(t)) and p’ = %feiwdqb(i,ipn/_l)(ﬁ) we
have for all £ > 0:

EICES i trislo o) 4 o( L)
mn

keZ/zzz teT,y(t)=nk/¢

2.2. Application to Chern-Simons invariants. Let M be a 3-manifold
with OM = T x T. We assume that X (M) is at most 1-dimensional and that
the restriction map Res : X (M) — X (9M) is an immersion on the smooth
part and map the singular points to non-torsion points. Then we know that
Res(X(M)) is transverse to T/, for all but a finite number of p/q, see [4].
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Consider the projection map 7 : T2 — X (OM) which is a 2-fold ramified
covering. We may decompose X (M) as a union of segments [a;, b;] whose
extremities contain all singular points. The restriction map Res can be
lifted to T? and the Chern-Simons invariant may be viewed as a map CS :
[a;,b;] — L. Hence, we may apply it the results of Proposition 2.2 and
obtain Theorem 1.2.

We may comment that the flat sections i*e

1/0
induces through the quotient (z,%,60) ~ (—x,—y, —6) a flat section of L

that we denoted CSS;II

¢ : _ 7k
of L* over the line y = 77

. ~1 (mk
over the subvariety Res; /1(”7).

3. CHERN-SIMONS INVARIANTS OF COVERINGS

3.1. General setting. Beyond Dehn fillings, we can ask for the limit of the
Chern-Simons measure of any sequence of 3-manifolds. A natural class to
look at is the case of coverings of a same manifold M. Among that category,
one can restrict to the family of cyclic coverings. One can even specify the
problem to the following case.

Question: Let p: M — T be a fibration over the circle and M,, be the
pull-back of the self-covering of T given by z — 2". What is the asymptotic
behaviour of uay, ?

This problem can be formulated in the following way. Let ¥ be the fiber
of M and f € Mod(X) be its monodromy. Any representation p € X (M)
restricts to a representation Res(p) € X (X) invariant by the action f, of f
on X (X). Reciprocally, any irreducible representation p € X (X) fixed by f.
correspond to two irreducible representations in X (M).

The Chern-Simons invariant corresponding to a fixed point may be com-
puted in the following way: pick a path 7 : [0,1] — X (X) joining the trivial
representation to p and consider the closed path obtained by composing
v with f(7) in the opposite direction. Then its holonomy along L is the
Chern-Simons invariant of the corresponding representation.

Understanding the asymptotic behaviour of j5s, consists in understand-
ing the fixed points of f’ on X(X) and the distribution of Chern-Simons
invariants of these fixed points, a problem which seems to be out of reach
for the moment.

3.2. Torus bundles over the circle. In this elementary case, the compu-
tation can be done. Let A € SLy(Z) act on R?/Z2. Its fixed points form
a group G4 = {v € Q% Av = vmod Z?}/Z%. 1If Tr(A) # 2, which we
suppose from now, G4 is isomorphic to Coker(A — Id) and has cardinality
| det(A — Id)|.

Following the construction explained above, the phase isamap f: G4 —
Q/Z given by f([v]) = det(v, Av) mod Z. Hence, the measure we are trying
to understand is the following:
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1
= T aet( A — Tl J .
A | det(A —1d)] Z 27 det(v,Av)
veG 4

Consider the ¢-th moment ,ufﬁl of pa. It is a kind of Gauss sum that can
be computed explicitly. The map f is a quadratic form on G4 with values
in Q/Z. Its associated bilinear form is b(v, w) = det(v, Aw) + det(w, Av) =
det(v, (A — A Hw). As A+ A~ = Tr(A)Id and det(A4 — Id) = 2 — Tr(A)
we get b(v,w) = 2det(v, (A — Id)w) mod Z. Hence, if 2¢ is invertible in
G 4, then (b is non-degenerate and standard arguments (see [5] for instance)
show that |u4| = |det(A — Id)|~'/2. Hence we still get the same kind of
asymptotic behaviour for the Chern-Simons measure of the torus bundles
over the circle.
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