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Juin 2022

Let k be a field of characteristic 0, Γ be a finitely generated group and G be a
reductive affine algebraic group defined over k (see definitions below). The aim
of these notes is to study the corresponding character variety X(Γ, G) which is
by definition the algebraic quotient

X(Γ, G) = Hom(Γ, G)//G

where Hom(Γ, G) is the space of homomorphisms ρ : Γ → G and the action of
G is by conjugation: g.ρ = gρg−1.

We will give a precise definition along the notes and try to answer the fol-
lowing questions:

1. By construction X(Γ, G) is an affine variety, what is the algebra of regular
functions? Give generators and relations.

2. The character variety is not exactly the set of conjugacy classes of rep-
resentations, so what are its points? Can we find a favourite conjugacy
class of representations in each fiber of the quotient map π : Hom(Γ, G) →
X(Γ, G)?

3. What is the tangent space of X(Γ, G) at a point π(ρ)? When is it smooth?

We will illustrate these general questions with examples.

1 Preamble: conjugation classes of matrices

Before giving a general definition, consider the special case Γ = Z and G =
GLn(k). We clearly have Hom(Z,GLn(k)) = GLn(k) by the map ρ 7→ ρ(1).
The question reduces to understanding the algebraic quotient of GLn(k) acting
by conjugation on itself.

The algebra of regular functions on GLn(k) is simply

k[GLn] = k[Xij ,∆
−1] where i, j = 1, . . . , n and ∆ = det(Xij).

By definition the character variety X(Z,GLn(k)) = GLn(k)//GLn(k) is the
spectrum of the subalgebra of invariants

k[GLn//GLn] = k[GLn]
GLn .

The first question has the following answer:
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Proposition 1. There is an isomorphism of algebras

k[GLn]
GLn = k[c1, . . . , c

±1
n ]

where c0 = 1, c1 = Tr(X), . . . , cn = ∆ are the coefficients of the characteristic
polynomial of X = (Xij)i,j=1,...,n given by:

det(λId−X) =

n∑
i=0

cn−i(X)(−λ)i.

We can alternatively replace the generators c1, . . . , cn by ti = TrXi for i ∈ Z.
For that, we would like to find all the relations among the ti’s.

Let V = kn and consider the action of X ∈ End(V ) on V ⊗(n+1) given by
X(v0 ⊗ · · · ⊗ vn) = (Xv0) ⊗ · · · ⊗ (Xvn). We also define the representation
ρ : Sn+1 → GL(V ⊗(n+1)) by setting

ρ(σ)(v0 ⊗ · · · ⊗ vn) = vσ−1(0) ⊗ · · · ⊗ vσ−1(n)

and set Pn+1 =
∑

σ∈Sn+1
ϵ(σ)ρ(σ). As Pn+1 takes its values in Λn+1V = 0, it

vanishes identically, giving

Tr(Pn+1 ◦X) =
∑

σ∈Sn+1

ϵ(σ) Tr(ρ(σ) ◦X) = 0

Let l1(σ), . . . , ln+1(σ) denote the number of cycles of order 1, . . . , n+1 in σ. As
Tr(ρ(σ) ◦X) = Tr(X)l1(σ) · · ·Tr(Xn+1)ln+1(σ), we get

Proposition 2. The elements t1, . . . , tn+1 ∈ k[GLn]
GLn satisfy the Frobenius

formula: ∑
σ∈Sn+1

ϵ(σ)

n+1∏
k=1

t
lk(σ)
k = 0.

We will see later how to generalize this equation to find a generating system
of the ideal of relations. To complete the description, we need to invert the
determinant function cn = ∆, and before that, to express it in terms of traces.
To this aim, we observe that Pn ◦X is a rank 1 operator multiplied by det(X),
hence Tr(Pn ◦X) = det(X). Expanding this expression as above, we express ∆
as a polynomial in t1, . . . , tn as expected.

Let us answer now the second question: a k-point of GLn(k)//GLn(k) is a
polynomial χ ∈ k[λ] of degree n with unit leading coefficient and non vanishing
constant coefficient. Do there exist a matrix M ∈ GLn(k) such that χ =
det(λId−M), and is this matrix unique up to conjugation? The answer of the
first question is yes (take a companion matrix).

The answer of the second question is no, even if the field k is algebraically
closed. However in this case, there is up to conjugation a unique diagonalizable
matrix having χ as characteristic polynomial. We will see a generalization of
this fact later.
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2 The fundamental theorem of invariants

Consider now the general case of X(Γ,GLn(k)). By assumption, Γ is finitely
generated so that we can take a generating system γ1, . . . , γr. Denoting by Fr

the free group of rank r, the generating system gives a presentation of Γ of the
form 1 → R→ Fr → Γ → 1.

It is easy to describe the algebra A of functions on Hom(Γ,GLn(k)):

1. Take a polynomial algebra generated by indeterminatesX l
ij for l = 1, . . . , r

and i, j = 1, . . . , n. Form the matrix Xl = (X l
ij)i,j=1,...,n.

2. Invert det(Xl) for all l ∈ {1, . . . , r}.

3. For any word w = aϵ1i1 · · · a
ϵl
il
∈ R, take a matrix element of Xϵ1

i1
· · ·Xϵl

il
−Id

and take the quotient by the ideal generated by all these elements.

There is a tautological representation ρn : Γ → GLn(A) mapping γl to
Xl. It has the universal property that for any k-algebra B and representation
ρ : Γ → GLn(B), there is a unique algebra homomorphism ϕ : A→ B such that
ρ = ϕ ◦ ρn.

By definition, the ring k[X(Γ,GLn)] is the ring of invariants AGLn(k) where
g ∈ GLn(k) acts by conjugation on X1, . . . , Xr. Obvious invariants are given
for γ ∈ Γ by tγ = Tr ρn(γ) and ∆γ = det ρn(γ).

2.1 Generators

Our first theorem is the following:

Theorem 1. The elements tγ for γ ∈ Γ and ∆−1
γ generate k[X(Γ,GLn(k))].

As explained in the preamble, ∆γ is a polynomial in tγl for l = 1, . . . , n, so
up to a localization, the tγ ’s generate k[X(Γ,GLn)].

Consider first the following reduction: is obvious from the above construc-
tion that the surjection Fr → Γ induces a surjection k[Hom(Fr,GLn)] →
k[Hom(Γ,GLn)] hence it is sufficient to consider the case of the free group.
In more concrete terms, we would like to show that the tγ ,∆

−1
γ for γ ∈ Fr

generate k[GLr
n]

GLn(k).
The next reduction consists in replacing here GLn(k) by Mn(k), noticing

that the map k[Mn(k)] → k[GLn(k)] is the localization of the determinant.
Hence it is sufficient to show that k[Mn(k)

r]GLn(k) is generated by the tγ ’s.
We will deduce it from a standard theorem of representation theory, respon-

sible for the so-called Schur-Weyl duality.

Theorem 2. Let V be a k-vector space of dimension n and fix an integer m.
Recall that we defined a representation ρ : Sm → GL(V ⊗m). We set A =
Span{ρ(σ), σ ∈ Sm} ⊂ End(V ⊗m). We also set B = Span{g ⊗ · · · ⊗ g, g ∈
GLn(k)} ⊂ End(V ⊗m).

Then A is the centralizer of B and B is the centralizer of A. In formulas

A = EndB(V
⊗m) and B = EndA(V

⊗m).
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Proof of Theorem 1. Fix V a finite dimensional k-vector space and put W =
End(V ). Take P ∈ k[W r]GL(V ) : we can decompose it into homogeneous parts,
that is we write P =

∑
d Pd where d = (d1, . . . , dr) and Pd(λ1w1, . . . , λrwr) =

λd1
1 · · ·λdr

r P (w1, . . . , wr). As GL(V ) preserves this decomposition, we can sup-
pose that P is homogeneous of degree d.

We then polarize P with respect to all its variables, let us explain only
the case of one variable, that is suppose that P ∈ k[W ] has degree d. Then the
polarization of P is the multilinear form Ppol :W

d → k obtained as the multiple
of λ1 . . . λd in the expansion of P (λ1w1 + · · · + λdwd). We get back P by the
formula d!P (w) = Ppol(w, . . . , w).

Applying this GL(V )-equivariant construction to P ∈ k[W r] in each variable,
we get a multilinear invariant map Ppol :W

d1 × · · · ×W dr → k.
Writing |d| = d1 + · · ·+ dr, we get an element

P pol ∈ HomGL(V )(W
⊗|d|, k) ≃ (W⊗|d|)GL(V ).

The above isomorphism maps A1 ⊗ · · · ⊗ A|d| on the right to the multilinear

map (B1, . . . , B|d|) 7→
∏|d|

i=1 Tr(AiBi) (the trace gives a GL(V )-equivariant iso-
morphism W ≃ W ∗). Using the isomorphism End(V )⊗n ≃ End(V ⊗n) we have
finally P ∈ End(V ⊗n)GL(V ). Thanks to Theorem 2, it follows that Ppol is a
linear combination of elements of the form ρ(σ) for σ ∈ S|d|.

We leave to the reader verifing that the homogeneous function corresponding
to ρ(σ) by this procedure is

Pσ(w1, . . . , wr)d1! · · · dr! = Tr(Wi1 . . .Wik) Tr(Wj1 · · ·Wjl) · · ·Tr(Ws1 · · ·Wst)

where (i1, . . . , ik)(j1, . . . , jl) · · · (s1, . . . , st) is the decomposition of σ into cycles
and W = (w1, . . . , w1, . . . , wr, . . . , wr) where each wi is repeated di times. It is
easy to realize Pσ as a trace function and the theorem follows.

2.2 Relations

As for the case of matrices, the trace functions tγ are not algebraically indepen-
dent. The second fundamental theorem of invariants gives generators for the
ideal of invariants, also called syzygies.

Recall the Frobenius formula of Proposition 2: given ρ : Γ → GLn(k) and

γ0, . . . , γn ∈ Γ, we have Tr
(
Pn+1 ◦ (ρ(γ0)⊗ · · · ⊗ ρ(γn))

)
= 0.

Theorem 3. The ideal of relations among the trace functions tγ ∈ k[X(Γ,GLn)]
is generated by t1 − n and the elements∑

σ∈Sn+1

ϵ(σ)Tσ(γ0, . . . , γn)

where T (i1,...,ik) = tγi1 ···γik
and Tσ =

∏l
j=1 T

σj where σ = σ1 · · ·σl is the
decomposition of σ into cycles (including the trivial ones).
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For instance, if n = 2 we get that all relations are consequences of

tαtβtγ − tαtβγ − tβtαγ − tγtαβ + tαβγ + tαγβ = 0, α, β, γ ∈ Γ.

It is a good exercise to show these relations in the case of X(Γ,SL2(k)) reduce
to the relations t1 − 2 and the famous trace relation

tαβ + tαβ−1 = tαtβ for all α, β ∈ Γ. (1)

In order to give concrete applications of this kind of theorem, let us give two
illustrations in the case of SL2.

Corollary 1. The tangent space of X(Γ,SL2(k)) at the trivial character is given
by functions f : Γ → k satisfying the parallelogram identity for all α, β ∈ Γ

f(αβ) + f(αβ−1) = 2f(α) + 2f(β).

Proof. Put tγ = 2 + ϵf(γ) ∈ k[ϵ]/(ϵ2) and the trace equation becomes the
parallelogram identity.

Corollary 2. Let S be a closed oriented surface of genus g. For any iso-
topy class of subvariety γ ⊂ S without homotopically trivial component, put
tγ =

∏
tγi where γ1, . . . , γr are the connected components of γ. Then the trace

functions tγ form a linear basis of k[X(π1(S),SL2)].

Proof. By Theorem 1, the trace functions tγ generate k[X(π1(S),SL2)] as an
algebra. Using the trace equation (1), one can replace products by sums hence
the trace functions generate k[X(π1(S),SL2)] linearly.

Take now γ ∈ π1(S) and represent it by a curve on S with a minimal number
of intersection points. Applying the trace relation allows to reduce this number
inductively to 0. This corresponds to the generators of the corollary, the second
theorem of invariants show that they are linearly independent.

2.3 Other classical groups

Consider the groups SOn(k) ⊂ SLn(k) and Sp2n(k) ⊂ SL2n(k). We may
wonder if the character varieties X(Γ,SOn(k)) and X(Γ,Sp2n(k)) have a ring
of functions generated by trace functions, that is whether the natural map
k[X(Γ,SLn)] → k[X(Γ, G)] is surjective.

Proposition 3. The above map is surjective for G = SO(2n + 1) and G =
Sp(2n), not for G = SO(2n).

We refer to [?] for a proof. Let us just give an example of invariant function
for SO(2n) which is not expressible in terms of traces.

If A ∈ SO(2n) with n > 0, the function Q(A) = Pfaff(A − AT ) is an
invariant function which is not expressible as a polynomial in traces of powers

of A. Indeed, even for X(Z,SO(2)) = SO(2), Tr

(
a −b
b a

)l

∈ k[a, b2] whereas

Q(A) = −2b.
To complete the set of generators for SO(2n), it is sufficient to addQpol(γ1, . . . , γn)

for all γ1, . . . , γn ∈ Γ.

5



3 General properties of character varieties

3.1 Reductive linear algebraic groups

A linear algebraic group G over k is an affine k-variety endowed with a structure
of group such that the multiplication m : G × G and the inversion i : G →
G are regular. By the standard equivalence between affine algebraic varieties
and finitely generated k-algebras, it is equivalent to give a finitely generated
commutative algebra k[G] together with a coproduct m∗ : k[G] → k[G]⊗ k[G],
an antipode i∗ : k[G] → k[G] and a counit ϵ : k[G] → k (evaluation at 1G)
satisfying equations dual to the equations defining the group structure.

Let us give these formulas explicitly in the case of the additive group Ga

and the multiplicative group Gm.

1. In the case of Ga(k) = k, we have k[Ga] = k[t], m∗(t) = t ⊗ 1 + 1 ⊗ t,
i∗(t) = −t and ϵ(t) = 0.

2. In the case of Gm(k) = k∗, We have k[Gm] = k[t, t−1], m∗(t) = t ⊗ t,
i∗(t) = t−1 and ϵ(t) = 1.

Our main example is GLn for which we already gave a description of k[G].
Other examples include finite groups and Zariski-closed subgroups of GLn(k):
for instance the classical groups SLn(k),On(k),Sp2n(k) or the group Un(k) of
unipotent triangular matrices.

To simplify the following discussion, we will suppose that k = C. Then,
any linear algebraic group is a closed subgroup of GLn(C). When looking at
representations of G, we will restrict to morphisms of linear algebraic groups
ρ : G → GL(V ), that is regular group homomorphisms. We will say that a
representation is irreducible if V has no non-trivial G-stable subspace. It will
be called completely reducible if it is isomorphic to a direct sum of irreducible
ones.

Before discussing the reductivity assumption, we will explain the following
lemma concerning unipotent algebraic groups that is, isomorphic to a subgroup
of Un(C).

Lemma 1. Any non-zero finite dimensional representation of a unipotent group
contains non-zero fixed points.

Proof. Let V be a non-zero representation of a unipotent group G and take W
a smallest non-zero stable subspace, so that it is irreducible. As G is nilpotent,
it has a non-trivial center Z(G) and by Schur Lemma, g ∈ Z(G) acts on W by
multiplication by a scalar χ(g), yielding a group homomorphism χ : Z(G) → k∗.
As Z(G) ≃ kn, such a morphism must be trivial and the representation factors
through a map G/Z(G) → GL(W ). As G/Z(G) is again nilpotent, we can
repeat the argument until we find non-trivial fixed vectors.

Theorem 4. The following conditions for an affine algebraic group G over C
are equivalent.
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1. Any closed normal unipotent subgroup of G is trivial.

2. G has no closed normal subgroup isomorphic to C.

3. G, as a Lie group, has a compact subgroup K which is Zariski dense.

4. Every finite dimensional G-module is completely reducible.

We will say that G is reductive if it satisfies these equivalent properties. We
will not spend time on the proof of this theorem, let us comments some of its
steps.

Proof. 1. =⇒ 2. is obvious as C is unipotent.
2. =⇒ 3. Deep and difficult.
3. =⇒ 4. Let ρ : G → GL(V ) be a representation of G and µ be the

Haar measure on K. Let W be a G-invariant subspace of V and s : V → W a
retraction.

The linear map R(s) =
∫
K
ρ(g)sρ(g)−1dµ(g) is a K-equivariant retraction

of V onto W . By Zariski density of K in G, it is also G-invariant. Hence
W ′ = kerR(s) is a G-invariant complement. By induction on the dimension, it
follows that V is completely reducible.

4. =⇒ 1. Embed G into GL(V ) and take H a closed normal unipotent
subgroup of G. By Lemma 1, V H is non-trivial. As H is normal, V H is also
G-stable. By assumption on G there is a stable G-complement W . As this time
WH = 0, we get W = 0 by the same lemma. Hence H fixes V pointwise, which
implies that H is trivial as G ⊂ GL(V ).

3.2 Invariant theory of affine varieties

Let X be an affine complex variety and G be a reductive group acting on X
algebraically. It means that the action mapping Φ : G × X → X defined by
Φ(g, x) = gx is regular, induced by an algebra homomorphism

Φ∗ : k[X] → k[G]⊗ k[X].

This implies the following lemma.

Lemma 2. Consider the algebra k[G] as a representation of G given by (g.f)(x) =
f(g−1x). It is a union of finite dimensional G-invariant spaces on which G acts
algebraically.

Proof. For f ∈ k[X], we write

Φ∗(f)(g, x) = f(g.x) =
∑

ϕi(g)fi(x).

This formula implies that g.f =
∑

i ϕ(g
−1)fi, hence the translates of f span a

finite dimensional subspace of k[X], proving the lemma.
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Theorem 5. Let G act algebraically on an affine variety X. Then

1. The algebra k[X]G is finitely generated.

2. For any ideal I ⊂ k[X]G one has k[X]I ∩ k[X]G = I.

Proof. Denote by R : k[X] → k[X]G the unique G-equivariant projection. It
is called the Reynolds operator and can be defined for instance by taking a
compact subgroup K ⊂ G and putting

R(f) =

∫
g∈K

gf(g−1·)dµ(g).

This formula actually defines a polynomial function by Lemma 2 and shows that
R satisfies the extra equation R(fh) = R(f)h for any h ∈ k[X]G.

Let us admit the first point, which is a very famous theorem of Hilbert,
which motivated the notion of Noetherian ring, and show the second point.

Take an ideal I ⊂ k[X]G, one has clearly I ⊂ k[X]I ∩k[X]G. Reciprocally, if
f =

∑
i fihi ∈ k[X]I∩k[X]G one has f = R(f) =

∑
iR(fihi) =

∑
iR(fi)hi ∈ I,

proving the second point.

In the nineteenth century, the abstract notion of quotient did not exist.
Algebraic geometers defined the quotient of an affine variety X by a group G
by taking generators f1, . . . , fn of k[X]G and considering the image of the map
F = (f1, . . . , fn) : X → Cn. It is easy to see that this affine variety does not
depend on the choice of generators. The abstract definition

X//G = Spec k[X]G.

is almost equivalent. It avoids to choose generators and take into account mul-
tiplicities and non reduced subvarieties. For beginners, it is important to have
simple examples of algebraic quotients in mind, as those ones.

1. Let k[µn] = k[ξ]/(ξn − 1) be the algebraic group of roots of unity. It acts
on A1 by the formula ξ.t = ξt. Its algebra of functions is k[t]µn = k[tn].
Hence, the quotient map is π : A1 → A1 defined by π(t) = tn.

2. LetGm act on A2 by t.(x, y) = (tx, t−1y). Its algebra of invariant functions
is k[x, y]Gm = k[xy], yielding the quotient map π : A2 → A1 satisfying
π(x, y) = xy. This example is iconic, the fiber of 0 is not a single orbit,
but three of them: {(0, 0)}, k∗×{0}, {0}×k∗. Only one of them is closed.

The most important properties of affine quotients are summed up in the
following proposition.

Theorem 6. Let G be a reductive group acting on an affine variety X. Then

1. The map π : X → X//G is surjective.

2. If Z ⊂ X is closed and G-invariant, then π(Z) is closed and the map
π|Z : Z → π(Z) is the quotient map of Z by G.
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3. If Z1, Z2 are closed G-invariant subsets, then π(Z1)∩π(Z2) = π(Z1∩Z2).

4. For any x ∈ X//G, the fiber π−1(x) contains a unique closed orbit Ox.
Moreover π(z) = x if and only if Ox ⊂ Gz.

Proof. 1. Let x be a point ofX//G corresponding to a maximal ideal Ix ∈ k[X]G.
As k[X]Ix∩k[X]G = Ix by Theorem 5, the ideal k[X]Ix of k[X] is proper, hence
contained in a maximal ideal Iz, giving z ∈ π−1(x). The properties 2. and 3.
are easy consequences of Theorem 5, we skip them and refer for instance to [1].

4. Take a point z ∈ π−1(x) : then Gz ⊂ π−1(x). One can show that Gz is
open in Gz and its complement is a finite union of orbits of smaller dimension.
Repeating the process, we ultimately find a closed orbit in Gz ⊂ π−1(x). Sup-
pose we have two distinct closed orbits Gz1 and Gz2 in π−1(z). From the third
point, these closed G-invariant disjoint subsets should have disjoint images, a
contradiction. The last property has a similar proof.

We observe the importance of the closed orbits in invariant theory. There
is fortunately a very efficient criterium for determining whether the orbit of a
point is closed or not. Let us call a point x stable if Gx (the stabilizer of x) is
finite and Gx (the orbit of x) is closed.

Theorem 7 (Hilbert-Mumford). Let G be a reductive group acting on an affine
variety X and let x be a point of X. Let Ox be the unique closed orbit adher-
ent to Gx. Then there exists a 1-parameter subgroup λ : Gm → G such that
limt→0 λ(t)x exists and belong to Ox.

In particular, a point is stable if and only if for any non-trivial 1-parameter
subgroup λ : Gm → G, the limit limt 7→0 λ(t)x does not exist.

Proof. We admit the first point, see e.g. [1]. Suppose x is stable and suppose
that limt→0 λ(t)x = y. Then y ∈ Gx, say y = gx. As λ is a 1-parameter
subgroup one has λ(st)x = λ(s)λ(t)x. Letting t → 0 we get y = λ(s)y hence
x = g−1λ(s)gx. As Gx is finite, λ has to be trivial, showing that Gx is closed.

Reciprocally if x is such that limt→0 λ(t)x never exists, the first point implies
that Gx is closed. Moreover Gx has to be finite, unless it would contain a non
trivial 1-parameter subgroup which is impossible.

3.3 Invariant theory of character varieties

Let us apply the tools of the preceding section to the character varietyX(Γ,GLn(k)).
The main result is the following theorem showing that any fiber of the quotient
map Hom(Γ,GLn(k)) → X(Γ,GLn(k)) contains a unique conjugacy class of
completely reducible representations. Moreover, the fiber reduces to one orbit
of representations if and only if this representation is irreducible.

Theorem 8. Let ρ : Γ → GL(V ) be a representation. Then

1. GL(V )ρ is closed if and only if ρ is completely reducible.

2. ρ is stable for the action of PGL(V ) if and only if ρ is irreducible.
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Proof. Up to conjugation, any 1-parameter subgroup can be written in the form

λ(t) =

ta1 · · · 0
0 · · · 0
0 · · · tan

 a1 ≥ . . . ≥ an ∈ Z

We write {a1, . . . , an} = {w1, . . . , wr} where w1 > · · · > wr and call the wi’s the
weights of λ. We compute that (λ(t)ρ(γ)λ(t)−1)ij = tai−ajρ(γ)ij . This shows
that λ(t).ρ converges when t → 0 if and only if ρ(γ)ij = 0 whenever ai < aj .
This condition is equivalent to the fact that ρ preserves the flag F = (F1, . . . , Fr)
where Fl is generated by the first w1 + · · ·+ wl vectors.

Hence, by the above description, ρ is stable if and only if it does not preserve
a non-trivial flag, that is if and only if it is irreducible, proving the second point.

Let us show that GL(V )ρ closed implies ρ completely reducible. Let W be
a ρ-invariant subspace and take λ a 1-parameter subgroup which acts by t on
W and fixes a complement W ′. Then λ(t).ρ converges to a representation ρ′

which stabilizes W and W ′ As the orbit of ρ is closed, ρ′ is conjugated to ρ, and
the conjugating matrix sends W ′ to a ρ-invariant complement of W , hence ρ is
completely reducible.

Suppose now that ρ is completely reducible. Applying Theorem 7, it suffices
to show that for any 1-parameter subgroup λ such that λ(t).ρ converges to ρ′

when t → 0, ρ′ is conjugated to ρ. To simplify the proof, suppose that λ has
only two weights corresponding to a flag W ⊂ V so that one has

ρ =

(
ρ1 ∗
0 ρ2

)
, ρ′ = lim

t→0
λ(t).ρ =

(
ρ1 0
0 ρ2

)
.

This shows that there exists W ′ stabilized by ρ′ such that V =W ⊕W ′. As
ρ is completely reducible andW is G-stable, there exists a G-stable complement
W ′′, hence an element g ∈ GL(V ) acting trivially on W and V/W and mapping
W to W ′′. Conjugating ρ with g shows that ρ′ and ρ are conjugate, ending the
proof.

Let us give the example of X(Zr,GLn(k)). Any r-tuple of commuting ma-
trices can be simultaneously trigonalized: said differently, any representation
ρ : Zr → GLn(k) can be conjugated to take its values in the standard Borel
subgroup of upper-triangular matrices. Denote by T the sub-torus of diagonal
matrices. As shown above, the representation ρ is in the same orbit than the
representation ρ′ : Zr → T consisting in taking out the diagonal part of ρ.

This shows that the map X(Zr, T ) → X(Zr,GLn(k)) is surjective. More-
over, this map is invariant by the action of the Weyl group Sn = NGLn

(T )/T
yielding an isomorphism

X(Zr,GLn) = (T r)//Sn.
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3.4 The case of reductive groups

There is a generalization of this result replacing GLn(k) with any reductive
group G. We introduce the notions of irreducibility and completely reducibility
so that it works in the same way.

Definition 1. 1. A subgroup P ⊂ G is called parabolic if G/P it contains a
Borel subgroup (maximal closed connected solvable subgroup of G). It is
equivalent to the fact that G/P is a projective variety.

2. a Levi subgroup of P is a connected subgroup L such that P = Ru(P )⋊L
where Ru(P ) is the unipotent radical of P (maximal normal unipotent
subgroup). Such subgroups always exist and are reductive.

When G = GL(V ), parabolic subgroups are the stabilizers of flags. Levi
subgroup of the parabolic subgroup stabilizing F = (F1, . . . , Fr) correspond to
the stabilizer of a decomposition E = E1 ⊕ · · ·Er such that Fl = E1 ⊕ · · ·El for
all l ≤ r.

Definition 2. A subgroup H ⊂ G will be said

1. irreducible if it is not contained in any proper parabolic subgroup.

2. completely reducible if whenever H ⊂ P , there exists a Levi subgroup L ⊂
P such that H ⊂ L.

We observe that in this definition, H can be safely replaced with its Zariski
closure. Also, if ρ : Γ → G is a representation, we will say that ρ is IR/CR if
ρ(Γ) is IR/CR.

The somewhat technical definition of complete reducibility makes sense due
to the following characterization:

Theorem 9. A subgroup H ⊂ G is completely reducible if and only if its closure
H is reductive.

Any Lie group has an adjoint representation Ad : G→ GL(g). It is instruc-
tive to compare the properties of ρ and Ad ◦ρ.

Proposition 4. For any representation ρ : Γ → G, one has the following
implications:

ρ is irreducible +3 ρ is completely reducible

��
Ad ◦ρ is irreducible +3

KS

Ad ◦ρ is completely reducible

Proof. The horizontal implications come directly from the definition. Suppose
that ρ is CR: then ρ(Γ) is reductive. As the image of a reductive group is
reductive, it follows that Ad ◦ρ(Γ) is reductive and Ad ◦ρ is CR.
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Suppose now that Ad ◦ρ is irreducible and ρ is not. Let P ⊂ G be a strict
parabolic subgroup containing the image of ρ. Let U be the unipotent radical
of P and L be a Levi subgroup of P so that P = U ⋊ L.

By Lemma 1, gU is non zero. Writing for u ∈ U, l ∈ L, v ∈ gU

ul.v = ll−1ul.v = l.v as l−1ul ∈ U

we get lv ∈ gU , hence P stabilizes gU . As P acts irreducibly on g by hypothesis,
Schur Lemma implies that gU = g. Now, it is known that the kernel of Ad :
G→ GL(g) is the center Z(G) whose unipotent radical is trivial. Hence U = 1,
which is impossible since P ̸= G.

When G is semi-simple then Z(G) is finite and the adjoint map Ad : G →
GL(g) has finite kernel. A representation ρ : Γ → G is then Ad-irreducible if
and only if ρ(Γ) is Zariski-dense in G. Indeed, the Lie algebra of Ad ρ(Γ) is an
Ad ◦ρ-invariant subspace of g. Here is the generalization of Theorem 8 in the
context of general reductive groups. We refer to [6] for the proof.

Theorem 10. Let ρ : Γ → G be a homomorphism.

1. Gρ is closed if and only if ρ is completely reducible.

2. ρ is stable for the action of G/Z(G) if and only if it is irreducible.

3.5 The case of a non-algebraically closed field

Consider the character variety X(Γ,GLn(k)) where k is no longer algebraically
closed (but still has zero characteristic). A representation ρ : Γ → GLn(k) will
be said absolutely irreducible if it is irreducible when extended to GLn(k) where
k is an algebraic closure of k. Let us start with a useful lemma.

Lemma 3. The subset X irr(Γ,GLn(k)) of characters of irreducible representa-
tions is Zariski-open in X(Γ,GLn(k)).

Proof. This is true for any reductive group, but we give here a simple proof,
based on Burnside’s theorem on matrix algebras. This claims that (see [5]):

ρ : Γ → GLn(k) is absolutely irreducible ⇐⇒ Span{ρ(γ), γ ∈ Γ} = Mn(k).

For any subset I ⊂ Γ of cardinality n2, the determinant ∆I = det(Tr(ρ(γiγj)))i,j∈I

is non zero iff (ρ(γi))i∈I is a basis of Mn(k). As ∆I ∈ k[X(Γ,GLn)], the locus⋃
I⊂Γ{∆I ̸= 0} is open and equal to X irr(Γ,GLn(k)), proving the lemma.

Take now a point x ∈ X irr(Γ,GLn(k)). The preceding chapters implies that
changing the base field with k, one can construct a representation ρ : Γ →
GLn(k), unique up to conjugation, and mapping to x. This representation
satisfies that Tr ρ(γ) ∈ k for all γ ∈ Γ.

Question 1. Is it possible to conjugate ρ so that it takes its values in GLn(k)?
If not, what is the smallest extension of k in which ρ can be conjugated?
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There is a nice obstruction class X(Γ,GLn(k)) → Br(k) which measures it.
Recall that the Brauer group Br(k) of k is the group of equivalence classes of
central simple algebras over k. Given x and ρ as above, we may form

Ax = Spank{ρ(γ), γ ∈ Γ} ∈ Mn(k).

It is easy to see that Ax is a central simple k-algebra of dimension n2 and that it
only depends on x as an element of Br(k). It vanishes in Br(k) iff it is isomorphic
to Mn(k). Using Skolem-Noether theorem, this implies that x = π(ρ) for some
ρ : Γ → GLn(k).

Exercise 1. Take Γ = F2 = ⟨α, β⟩. Show that

k[X(F2,SL2(k))] = k[tα, tβ , tαβ ].

Let x ∈ X irr(F2,SL2(k)) be defined by the equations tα = tβ = tαβ = 1. Is it
the character of a representation with values in SL2(Q)? in SL2(R)?

4 Tangent space

The aim of this section is to compute the Zariski tangent space of X(Γ, G) at a
point [ρ] for G a complex reductive group. This tangent space is, in good cases,
isomorphic to a cohomology group H1(Γ,Ad ◦ρ): this cohomological interpre-
tation is responsible for many interesting properties of character varieties.

4.1 Cohomological interpretation of the tangent space

Let us briefly recall the definition of cohomology with twisted coefficients. Let
V be a representation of Γ : we write g.v for the action of g on v. We set
Cn(Γ, V ) = {f : Γn → V } and define d : Cn(Γ, V ) → Cn+1(Γ, V ) by the
formula

(df)(γ0, . . . , γn) = γ0.f(γ1, . . . , γn) +

n∑
i=1

(−1)if(γ0, . . . , γi−1γi, . . . , γn)

+ (−1)n+1f(γ0, . . . , γn−1).

We denote by H∗(Γ, V ) the cohomology of this complex. We easily check that
H0(Γ, V ) = V Γ, the space of invariants and H1(Γ, V ) = Z1(Γ, V )/B1(Γ, V )
where B1(Γ, V ) is the space of maps f : Γ → V of the form f(γ) = γ.v − v for
some v ∈ V and

Z1(Γ, V ) = {f : Γ → V, f(γ0γ1) = f(γ0) + γ0.f(γ1)}.

Let ρ : Γ → G be a homomorphism. Corresponding dually to ρ ∈ Hom(Γ, G),
there is an algebra morphism ϕρ : k[Hom(Γ, G)] → k. This follows from the
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universal property that we recall now. For any k-algebra B, there is a group
structure on G(B) = Homalg(k[G], B) such that

Homalg(k[Hom(Γ, G)], B) = Homgr(Γ, G(B)).

A Zariski tangent vector at ρ is an algebra morphism ϕϵ : k[Hom(Γ, G)] →
k[ϵ]/(ϵ2) which reduces to ϕρ modulo ϵ.

This shows that Tρ Hom(Γ, G) = {ρϵ : Γ → G(k[ϵ]/(ϵ2)), ρϵ = ρ mod ϵ}.
Setting f : Γ → g so that ρϵ(γ) = (1 + ϵf(γ))ρ(γ). We denote by Ad ◦ρ the

vector space g viewed as a Γ module by the formula γ.v = Ad(ρ(γ)).v.
A direct computation, left to the reader, shows that ρϵ is a group homo-

morphism if and only if f satisfies the cocycle condition defining Z1(Γ,Ad ◦ρ),
hence the following proposition holds.

Proposition 5. For any ρ : Γ → G there is a natural isomorphism

Tρ Hom(Γ, k) ≃ Z1(Γ,Ad ◦ρ).

In general, the differential Dρπ : Tρ Hom(Γ, G) → X(Γ, G) induces a linear
map Z1(Γ,Ad ◦ρ) → Tπ(ρ)X(Γ, G).

Define Cρ : G → Hom(Γ, G) by Cρ(g) = gρg−1: almost by definition of the
linear representation Ad : G→ GL(g), one has the commutative diagram:

g = T1G
DCρ //

≃
��

Tρ Hom(Γ, G)

≃
��

C0(Γ,Ad ◦ρ) d // C1(Γ,Ad ◦ρ)

As the composition π ◦ Cρ is constant, its differential vanishes. Hence Dρπ
induces a linear map

Φρ : H1(Γ,Ad ◦ρ) → T[ρ]X(Γ, G).

This is not injective nor surjective in general as shown by the following
exercise.

Exercise 2. Recall that X(F2,SL2(C)) = C3. Show that at the trivial repre-
sentation, the map Φ1 below vanishes:

H1(F2,Ad ◦ρ) = sl2(C)2
Φ1 // T1X(F2,SL2(C)) = C3.

Let us see two more favorable cases:

Theorem 11. Let ρ : Γ → G be a completely reducible homomorphism and
denote by Z(ρ) the centralizer of ρ.

1. If Z(ρ) = Z(G) then Φρ is an isomorphism.
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2. If ρ is a smooth point of Hom(Γ, G) then

T0(H
1(Γ,Ad ◦ρ)//Z(ρ)) ≃ T[ρ]X(Γ, G).

Proof. We prove only 1. and refer to [6] for a proof of the second point. Both
statements follow from Luna’s Slice theorem which applies anytime we have
a closed orbit in an affine variety. Replacing G by G/Z(G) we can suppose
that G acts freely at ρ. Luna’s theorem says that there exists a subvariety
S ⊂ Hom(Γ, G) containing ρ such that the map Φ : G × S → Hom(Γ, G)
sending (g, ρ) to g.ρ is etale, as the map π|S : S → X(Γ, G).

This implies that DΦ and Dπ|S are isomorphisms. Hence TρS is a comple-
ment of B1(Γ,Ad ◦ρ) in Z1(Γ,Ad ◦ρ), its projection on H1(Γ,Ad ◦ρ) induces
the isomorphism Φρ, proving the theorem.

4.2 Examples and applications

Let us say that a representation ρ : Γ → G is good if it is irreducible and
Z(ρ) = Z(G). We denote by z(G) the Lie algebra of Z(G). As shown above,
this condition ensures that we have H1(Γ,Ad ◦ρ) ≃ T[ρ]X(Γ, G).

Exercise 3. Show that for any ρ : Γ → G one has:

Ad ◦ρ is irreducible +3 ρ is good +3

��

ρ is irreducible

H0(Γ,Ad ◦ρ) = z(G)

Find counterexamples for the reverse implications.

4.2.1 Free groups

Suppose that Γ = Fr so that X(Fr, G) = Gr//G. As Fr = π1(Br) where Br is a
bouquet of r circles which is aspherical, one hasH∗(Fr,Ad ◦ρ) = H∗(Br,Ad ◦ρ).
In particular, these cohomology groups vanish in degree distinct from 0, 1 and
computing the twisted Euler characteristic gives

dimH0(Br,Ad ◦ρ)− dimH1(Br,Ad ◦ρ) = χ(Br) dim g = (1− r) dim g.

If ρ is good, we then have dimH1(Fr,Ad ◦ρ)−dim z(G) = dimT[ρ]X(Fr, G) =
(r − 1) dim g. We sum up this discussion in the following proposition:

Proposition 6. The open set Xgood(Fr, G) is smooth of dimension (r−1) dim g+
dim z(G).

Of course, this also follows from the fact that Xgood(Fr, G) is the quotient of
an open subset of Gr by a free and proper action of G/Z(G). One can show using
Reidemeister torsion that there is an algebraic volume form on Xgood(Fr, G),
natural in the sense that it is invariant by the action of Out(Fr) given by
[ϕ].[ρ] = [ρ ◦ ϕ−1], see [3].
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4.2.2 Surface groups

Suppose that Γ = π1(S) where S is a closed compact surface of genus g. As
above, S is aspherical, givingH∗(S,Ad ◦ρ) = H∗(Γ,Ad ◦ρ). If ρ : Γ → G is good
then H0(Γ,Ad ◦ρ) = z(G), and by Poincaré duality, H2(Γ,Ad ◦ρ) = z(G)∗.
Hence the argument of the previous proposition repeats.

Suppose moreover that g is endowed with an Ad-invariant non-degenerate
bilinear form B : g× g → k: it induces by cup-product a bilinear map

ωρ : H1(S,Ad ◦ρ)×H1(S,Ad ◦ρ) B(·⌣·)→ H2(S, k) ≃ k.

The following is a clebrated theorem of Goldman, see [2]:

Theorem 12. The open set Xgood(π1(S), G) is a smooth symplectic variety of
dimension (2g − 2) dim g+ 2dim z(G).

Again, this symplectic structure is natural in the sense that it is preserved
by the group Out(π1(S)) = Mod(S). Goldman also showed that this sym-
plectic structure is algebraic in the strong sense: there is a Poisson structure
on k[X(S,G)], i.e. a bilinear map (f, g) 7→ {f, g} satisfying the Leibnitz rule
and the Jacobi relation which induces the above symplectic structure on each
tangent space.

4.2.3 Deformation theory

Let ρ : Γ → G be good representation so that we haveH1(Γ,Ad ◦ρ) = T[ρ]X(Γ, G).
To determine if [ρ] is a smooth point of X(Γ, G) we can try to find a curve tan-
gent to [ρ] and whose first derivative is [f ] for f ∈ Z1(Γ,Ad ◦ρ). This curve can
be constructed by induction on n as a morphism

k[Hom(Γ, G)] → k[ϵ]/(ϵn)

which reduces to (1 + ϵf)ρ modulo ϵ2.
A simple computation shows that one can find g such that (1 + ϵf + ϵ2g)ρ

is a representation Γ → G(k[ϵ]/(ϵ3)) if and only if [f ⌣ f ] = 0 ∈ H2(Γ,Ad ◦ρ).
When this equation is solved, one faces an infinity of new equations lying again
in H2(Γ,Ad ◦ρ).

One deduces the following useful criterium:

Proposition 7. If ρ : Γ → G is a good morphism and H2(Γ,Ad ◦ρ) = 0, then
[ρ] is a smooth point of X(Γ, G).

4.2.4 An isolated non-reduced character

We construct here a family of examples of representations ρ : Γ → G such that
[ρ] is an isolated point of X(Γ, G) but H1(Γ,Ad ◦ρ) ̸= 0. These examples come
from [4].
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Let V be a free abelian group of rank r and σ : G → GL(V ) be a represen-
tation of a finite group G. We set Γ = V ⋊G and denote by i, L, s the obvious
maps shown in the diagram:

0
i // V // Γ

L
// G

s
vv // 0 .

We consider the representation ρ = σ ◦ L : Γ → GL(VC) and wish to prove that
it is rigid.

As σ is rigid as a representation of G, any deformation ρt of G has to be
trivial when restricted to G, hence we can by a conjugation ensure that ρt◦s = σ
for all t. Write ρt ◦ i = exp(ϕt) where ϕt : V → End(VC) is a path satisfying
ϕ0 = 0. As ρt is a morphism, we get for any g ∈ G, v ∈ V :

ϕt(σ(g)(v)) = σ(g)ϕt(v)σ(g)
−1.

Write ϕt = tϕ+ 1
2 t

2ψ + o(t2), the above properties imply at first order that
ϕ : V → End(VC) is linear and satisfies ϕ(σ(g)v) = σ(g)ϕ(v)σ(g)−1. Writing
v · w = ϕ(v)(w), this defines a G-invariant product on VC .

At second order we find

ψ(σ(g)v) = σ(g)ψ(v)σ(g)−1, [ϕ(v), ϕ(w)] = ψ(v + w)− ψ(v)− ψ(w).

The equality on the right is precisely the obstruction described in the previ-
ous section, taking values in H2(V,End(VC)) = Hom(Λ2V,End(VC)). We notice
that this equality relates an antisymmetric expression in (v, w) with a symmetric
one, hence both terms must vanish.

To obtain examples, we need to find representations σ : G → GL(V ) such
that there exists non-trivial invariant products · on VC satisfying u · (v · w) ̸=
v · (u · w) for some u, v, w ∈ V .

Such an example is obtained by taking V = {(x, y, z) ∈ Z3, x + y + z = 0}
with its natural S3 action. There is an isomorphism V = Z[j] where (23) acts
by z 7→ z and (123) by z 7→ jz. Up to a scalar the unique invariant product is
given by z · w = zw. We check that u · (v · w) = uvw ̸= vuw = v · (u · w).
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