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Abstract

Given a compact surface Σ, we consider the representation space
M(Σ) = Hom(π1(Σ),SU(2))/ SU(2). We show that the trace functions
associated to multicurves on Σ are linearly independent as functions
on M(Σ). The proof relies on the Fourier decomposition of the trace
functions with respect to a torus action on M(Σ) associated to a pants
decomposition of Σ. Consequently the space of trace functions is iso-
morphic to the skein algebra at A = −1 of the thickened surface.

1 Introduction

Given a compact and oriented surface Σ, one define its representation space
as the quotient Hom(π1(Σ), G)/G. For G = Sl(2, C),SU(2),Sl(2, R), we ob-
tain three related and celebrated spaces. The first one is an algebraic variety
which classifies semi-stable complex bundles of rank 2 over Σ with trivial de-
terminant: it contains the two other ones. The second space is compact and
contains an open and dense subset supporting a natural symplectic form. Its
quantization provides a construction of a topological quantum field theory
(TQFT) which has interesting interactions with the topology of 3-manifolds.
Finally the last space contains as a connected component the Teichmüller
space, that is, the moduli space of hyperbolic structures on Σ.

The purpose of this article is to study a special class of functions on
these spaces called ”trace functions”. Given a 1-dimensional submanifold γ
of Σ and a representation ρ ∈ Hom(π1(Σ), G)/G one set

fγ,G([ρ]) =
∏

i

(− tr(ρ(ti)))
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where the ti’s represent the free homotopy classes of the components of γ.
Assume that the Euler characteristic of Σ is negative. We prove that the

functions fγ,G where γ runs over the isotopy classes of 1-submanifolds of Σ
without component bounding a disc are linearly independent as functions
on Hom(π1(Σ), G)/G for G = SU(2) or Sl(2, C). In the case G = Sl(2, C),
it follows that these functions form a basis of the coordinate ring of the
representation variety. Consequently the coordinate ring is isomorphic to
the skein algebra of Σ× [0, 1] at A = −1, cf. sections 1.1 and 1.2 for precise
statements.

D. Bullock showed in [Bul97] that the last assertion is equivalent to
proving that the skein algebra has no zero divisors. Bullock’s proof rely
on a delicate analysis of algebraic relations between trace functions which
started in [GM93]. Our strategy is completely different and somewhat sim-
pler: using a pants decomposition of the surface, we define on M(Σ) =
Hom(π1(Σ),SU(2))/ SU(2) an action of the torus TC where C is the set of
separating curves of the decomposition. Moreover, 1-dimensional submani-
folds of Σ are parametrized up to isotopy by their Dehn coordinates, which
is a system of parameters depending on the pants decomposition. Finally,
we compute the Fourier decomposition of the trace functions relatively to
the action of TC and show that one can recover the geometric intersection
number of two curves and more generally the full Dehn parameters of a mul-
ticurve via its Fourier decomposition. This allows us to prove our assertion.

Our motivation to study the trace functions is the quantization of the
representation space M(Σ). First, the space of trace functions is a Poisson
algebra, the Poisson bracket being defined with the symplectic structure of
Atiyah-Bott [AB83]. Hence the skein algebra at A = −1 inherits a Poisson
bracket. It appears that the skein algebra at A = e−i~/4 is a deformation
quantization of this Poisson algebra. This is a consequence of the Goldman
formula [Gol86] expressing the bracket of trace function, cf. [BFK99] and
[T94].

Not only do we have a formal quantization, but also a strict quantiza-
tion provided by the topological quantum field theory. Working with the
combinatorial version of TQFT [BHMV95] we associate to Σ a family of
Hilbert spaces Vk(Σ) and to each curve γ a family of operators (Opk(γ) :
Vk(Σ) → Vk(Σ)). Then it appears that the natural symbol of this family
of operators is the trace function of γ. Indeed, by [MN08] the asymptotic
behavior of Opk(γ) as the level k tends to infinity is controlled at first order
by the trace function. Furthermore the composition and the commutator
of operators corresponds to the product and Poisson bracket of the trace
functions. So the relation between the curve operators and the trace func-
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tions is similar to the one in microlocal analysis between operators and their
symbol. In this point of view, the interest of our result is to produce non-
vanishing trace functions and consequently non-vanishing curve operators.
This has non-trivial consequences like the asymptotic faithfulness of the
representation of the mapping class group on Vk(Σ) provided by TQFT, cf.
[And06, ?, MN08].

In the next parts of this introduction, we give precise statement of our
results (sections 1.1 and 1.2) and on the quantization of M(Σ) (sections 1.3
and 1.4). Note that we do not use skein modules and TQFT in the sequel of
the paper. The section 2 introduces the Dehn coordinates for multicurves on
a surface while section 3 describe torus actions on Hom(π1(Σ,SU(2))/ SU(2)
which are part of the action-angle coordinates of [JW94]. In Section 4, we
give the main ingredients for computing the Fourier coefficients of the trace
functions. Section 5 describes the applications of the preceding computa-
tions while Section 6 explains the isomorphism of the trace functions algebra
with the coordinate ring of the representation variety in Sl(2, C).

1.1 Results

Let G be the group SU(2) or Sl(2, C). Consider the space Hom(π,G)/G of
morphisms from a group π to G up to conjugation. For any t ∈ π, introduce
the function χt of Hom(π,G)/G defined by

χt([ρ]) = − tr(ρ(t)), ρ ∈ Hom(π,G)

Let us call a trace function any linear combination of the χt’s with complex
coefficients. Because of the relation

tr(a) tr(b) = tr(ab) + tr(a−1b), ∀ a, b ∈ G (1)

the space T (π,G) of trace functions is a subalgebra of the algebra of complex
valued functions of Hom(π,G)/G.

When π is of finite type, T (π,Sl(2, C)) is finitely generated and is the
coordinate ring of the Sl(2, C) character variety of π. The relation with the
usual definition is explained in part 6.

Assume now that π is the fundamental group of a manifold M . Let us
define a trace function fγ,G for any isotopy class γ of 1-dimensional compact
submanifold of M without arc components. Let t1, . . . , tn be the homotopy
classes of loops which are freely homotopic to the connected component of
a representant of γ and set

fγ,G = χt1 ...χtn
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Since the ti’s are well-defined up to conjugation and inversion, this product
only depends on the isotopy class γ.

We will use these definitions in two cases. First, M is a surface and γ an
isotopy class of multicurve, that is no component of γ bounds a disc. Second,
M is 3-dimensional, the 1-dimensional compact submanifolds without arc
component are then called the links of M .

Theorem 1.1. Let G be SU(2) or Sl(2, C) and π be the fundamental group
of a compact orientable surface Σ with boundary (possibly empty). Then the
trace functions fγ,G, where γ runs over the isotopy classes of multicurves of
Σ which do not meet the boundary, form a basis of T (π,G).

The fact that the trace functions (fγ,G) are a spanning set follows easily
from the relations (1). The proof that they are linearly independent is much
more delicate and is the content of theorem 5.3. Let j be the obvious map

Hom(π,SU(2))/ SU(2) → Hom(π,Sl(2, C))/ Sl(2, C).

By the previous theorem, j∗ maps T (π,Sl(2, C)) bijectively onto T (π,SU(2)).

1.2 The Kauffman module at A = −1

Let M be a 3-dimensional oriented compact manifold. The skein module of
M at A = −1 is defined as the complex vector space freely generated by the
set of isotopy classes of links of M quotiented by the relations of Figure 1
for A = −1.

We denote by K(M,−1) this vector space. As a consequence of the
relation (1), we have a well-defined map

K(M,−1) → T (π,G)

sending a link γ to fγ,G. Here π is the fundamental group of M .
Assume that M = Σ × [0, 1] where Σ is an orientable compact surface.

Then by identifying Σ with Σ × {1/2} ⊂ M , each multicurve of Σ defines
a link in M . By a consequence of the Reidemeister theorem, the family of
isotopy classes of multicurves of Σ is a basis of K(M,−1). As a corollary of
Theorem 1.1, we obtain the

Theorem 1.2. For any compact orientable surface Σ, the natural map

K(Σ× [0, 1],−1) → T (π,G)

is an isomorphism.
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Bullock proved in [Bul97] that the kernel of this map consists in the
nilradical of K(Σ × [0, 1],−1). Moreover, it is claimed without proof in
[PS00] that this nilradical is zero.

The skein module K(Σ× [0, 1],−1) is an algebra where the product γ · δ
is defined by stacking γ over δ. As a consequence of the relations (1) this
product is sent to the product of functions by the isomorphism of Theorem
1.2.

1.3 T (π, G) as a Poisson algebra

In this subsection and the next one, G is the group SU(2), Σ is a closed ori-
entable surface and π its fundamental group. The space M = Hom(π,G)/G
has a natural topology such that the trace functions are continuous. The
subset Ms consisting of classes of irreducible representations is open and
dense. By [AB83] and [Gol84], Ms is a symplectic manifold. Furthermore
Goldman in [Gol86] expressed the Poisson bracket of the trace functions
of two curves intersecting transversally as a trace function. Consequently,
T (π,G) is a Poisson subalgebra of C∞(Ms, C). The Poisson bracket appears
also naturally on the topological side in the following way.

Let us introduce the Kauffman module K(M,−ei~/4) of a 3-dimensional
compact oriented manifold. It is defined as the free C[[~]]-module generated
by the set of isotopy classes of banded links of M quotiented by the relations
of Figure 1 with A = −ei~/4.

= A +A−1

= (−A2 −A−2) ∅

Figure 1: Kauffman relations

One has a natural C-linear map from K(M,−ei~/4) to K(M,−1) sending
a linear combination

∑
ci(~)γi of banded links to

∑
ci(0)γ̃i, where γ̃i is the

core of γi. The kernel of this map is ~K(M,−ei~/4).
Assume now that M = Σ× [0, 1]. Using the isomorphism of theorem 1.2,

we obtain an exact sequence

0 → ~ K(M,−ei~/4) → K(M,−ei~/4) σ−→ T (π,G) → 0 (2)
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Furthermore the multiplication by ~ is a bijection

K(M,−ei~/4) → ~ K(M,−ei~/4) (3)

The injectiveness follows from the fact that K(M,−ei~/4) is free as a C[[~]]-
module, a basis being given by the family of isotopy classes of multicurves
of Σ.

Finally, K(M,−ei~/4) has a natural stacking product ∗ and a natural
involution − defined by conjugating coefficients and sending a banded link
γ to S(γ) where S : Σ× [0, 1] → Σ× [0, 1] is defined by S(x, t) = (x, 1− t).
One has f ∗ g = g ∗ f .

Theorem 1.3. Let G be the group SU(2), Σ a closed surface, π its funda-
mental group and M = Σ× [0, 1]. Then the Kauffman module K(M,−ei~/4)
with its product ∗ and involution − is a deformation of the Poisson algebra
T (π,G) in the sense that for any f, g ∈ K(M,−ei~/4) one has

σ(f ∗ g) = σ(f)σ(g), σ(f) = σ(f)

σ(~−1(f ∗ g − g ∗ f)) =
1
i
{σ(f), σ(g)}

where σ is defined in (2) and ~−1 is the inverse of the map (3).

The first equation follows from the fact that the isomorphism of theorem
1.2 is an algebra morphism. For the second equation, observe that the
classes in K(M,−ei~/4) of the multicurves of Σ are real and that their trace
functions are real too. Last formula on the commutator follows from the
Goldman formula expressing the Poisson bracket of two trace functions (see
[Gol86]). The Poisson bracket depends on the symplectic form which itself
depends on a choice of an invariant scalar product on the Lie algebra. We set
〈A,B〉 = tr(AB∗) for A,B ∈ su(2). The symplectic form on Hom(π,G)/G
we are dealing with is the symplectic reduction of the form ω(a, b) =

∫
Σ〈a∧b〉

for a, b ∈ Ω1(Σ, su(2)).

1.4 Topological Quantum Field Theory

Let C[A±1] be the ring of Laurent polynomials and K(M,A) be the C[A±1]-
module freely generated by the isotopy classes of banded links in M quo-
tiented by the relations of Figure 1.

By sending
∑

Pi(A)γi to
∑

Pi(−ei~/4)γi, one identifies the skein mod-
ule K(M,A) with a complex subalgebra of K(M,−ei~/4) preserved by the
involution −.
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For any integer k > 2, the topological quantum field theories (TQFT)
coming from Chern-Simons theory with gauge group SU(2) provides a com-
plex Hermitian space Vk(Σ) of finite dimension. In the geometric framework,
the integer k − 2 is called the level while in the combinatorial framework
constructed in [BHMV95], the authors use the parameter p = 2k. Following
them, one has a natural algebra morphism

K(M, ζk) → End(Vk(Σ))

where ζk = −eiπ/2k and K(M, ζk) := K(M,A)⊗A=ζk
C.

For any f ∈ K(M,A) and any k > 2, we denote by Opk(f) the corre-
sponding operator of Vk(Σ).

Theorem 1.4. For any f, g ∈ K(M,A), one has

Opk(f ∗ g) = Opk(f) Opk(g), Opk(f̄) = Opk(f)∗

and as k →∞

tr(Opk(f)) =
( k

4π2

)n
∫
Ms

σ(f)µ + O(kn−1)

where n is half the dimension of Ms and µ is the Liouville measure.

First part follows from the general properties of TQFT. The estimation
of the trace has been proved in [MN08]. A factor 4π2 appears due to the
different normalization of the symplectic form. This estimation gives some
information on the asymptotic behavior of Opk(f).

Define the normalized Hilbert-Schmidt norm of an operator T ∈ End(Vk(Σ))

‖T‖HS := (dim(Vk(Σ)))−1tr(TT ∗).

Then by theorem 1.3 and 1.4, for any f ∈ K(M,A), the Hilbert-Schmidt
norm of Opk(f) is estimated by the L2 norm of g = σ(f):

‖Opk(f)‖2
HS =

(
Vol(M)

)−1
∫
Ms

|g|2µ + O(k−1).

The space of sequences (Tk) ∈
∏

k>2 End(Vk(Σ)) with a bounded Hilbert-
Schmidt norm has a natural filtration O(0) ⊃ O(1) ⊃ O(2) ⊃ . . . where (Tk)
is in O(`) if ‖Tk‖HS 6 Ck−` for some C. It follows from theorems 1.3 and
1.4 that this filtration corresponds to the formal one:(

Opk(f)
)
k
∈ O(`) ⇔ f ∈ ~`K(M,−ei~/4),
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for any f ∈ K(M,A). In particular, if f 6= 0, Opk(f) does not vanish when
k is sufficiently large.

Using this last observation, one may deduce that the action on Vk(Σ) of
an homeomorphism of Σ provided by TQFT is asymptotically non trivial as
soon as the action of this homeomorphism on the Kauffman module is non
trivial, cf. [MN08] for details.

2 Dehn coordinates

Given Σ an oriented compact surface with boundary, we will call multicurve
a submanifold of Σ which do not meet the boundary and has no component
bounding a disc. The Dehn theorem classifies isotopy classes of multicurves
by decomposing them into simple pieces: in these simple pieces, we will
allow multicurves to meet the boundary transversally as we describe it now.

Let w be the arc of points in S1 whose angles are in [−π/8, π/8]. For
every m ∈ N we fix a subset Wm of size m in w invariant by complex
conjugation. Let A = S1 × [0, 1] be an annulus and introduce a family
A(m, t) of multicurves of A indexed by N × Z. If m is positive, A(m, t)
is the multicurve in A (unique up to isotopy) whose projection on [0, 1]
is a submersion, which intersects each boundary circle in Wm and whose
algebraic intersection with the curve {−1} × [0, 1] equals t (oriented from 0
to 1). An example is shown in the left hand side of Figure 2. In the case
where m = 0, A(m, t) consists of t parallel copies of the boundary.

Let T be the surface
{
z ∈ C, s.t. |z| ≤ 1 and |z ± 1

2 | > 1
4

}
. Choose

identifications of the boundary circles of T with S1 such that 1 ∈ S1 is
identified respectively with p1 = 1

4 , p2 = −1
4 and p3 = i. We call T the

standard pair of pants (or trinion). Let m1,m2,m3 be three non-negative
integers with even sum. Consider a multicurve as in the right hand side of
Figure 2 which intersects the boundary circles in Wm1 ,Wm2 ,Wm3 via the
identifications with S1. Denote it by C(m1,m2,m3).

Consider now a general surface Σ with negative Euler characteristic.
From the classification of surfaces, it appears that Σ is obtained by gluing
trinions on boundary components. We will call pant decomposition of Σ an
homeomorphism

Φ : Σ →
(⋃

i∈I

Ti ∪
⋃
j∈J

Aj

)
/ϕ

where the Ti’s are copies of T , the Aj ’s are copies of A and ϕ is a collection of
homeomorphisms reversing the orientation between boundary components
of the Ti’s and the Aj ’s. We ask that these homeomorphisms reduce to
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A(4, 2)

C(4, 5, 3)

C(3, 8, 1) C(7, 1, 2)

C(1, 3, 8)

Figure 2: Examples of elementary multicurves

either the identity or the complex conjugation via the identifications of the
boundary components with S1, so that they preserve the subsets Wn. We
also ask that each boundary component of a copy of T is glued to some copy
of A. In that way, the components of the boundary of Σ correspond to some
copies of A.

We associate to a pants decomposition of Σ the following graph G. Its
vertex set is I ∪ π0(∂Σ). Edges are indexed by J in such a way that the
edge associated to the annulus Aj connects the copies of T or the boundary
component of Σ to which it is attached. It happens that the vertices in I are
trivalent and the vertices in π0(∂Σ) are univalent. An edge is said internal
if it connects trivalent vertices, otherwise it is said external.

Consider now a surface with a pants decomposition with graph G. We
will call Dehn parameter a pair (m, t) where m is a map from the edges of
G to N and t is a map from the edges of G to Z satisfying the following
conditions:

- if j1, j2, j3 are three edges incoming to the same vertex, then mj1 +
mj2 + mj3 is even.

- for all edges j, if mj = 0 then tj ≥ 0.
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- all external edges j satisfy mj = 0.

Given such a Dehn parameter, one can construct a multicurve on Σ by
gluing elementary multicurves in the following way: define C(m, t) as the
union

⋃
i C(mi

1,m
i
2,m

i
3) ∪

⋃
j A(mj , tj)/ϕ. In this expression, mi

1,m
i
2,m

i
3

are the values of m at edges adjacent to i.
The classification theorem of Dehn is the following

Theorem 2.1. Let Σ be a surface with pants decomposition. The map send-
ing a Dehn parameter (m, t) to the multicurve C(m, t) is a bijection between
the set of Dehn parameters and the set of isotopy classes of multicurves in
Σ.

We refer to [FLP] for the proof. In the sequel we only need to know
that each multicurve of Σ is isotopic to some C(m, t). The fact that C(m, t)
is isotopic to C(m′, t′) only if m = m′ and t = t′ is a consequence of our
results.

3 Moduli spaces and torus actions

Let Σ be an oriented compact surface with boundary. Let M(Σ) be the set
of isomorphism classes of pairs (E, θ) where E is a flat Hermitian bundle
of rank 2 over Σ and θ is a flat unitary section of ∧2E. An isomorphism
between two pairs is an isomorphism of flat Hermitian bundles commuting
with the volume sections. The holonomy representation of the fundamental
group π induces an isomorphism

M(Σ) → Hom(π,SU(2))/ SU(2)

To any pants decomposition is associated a torus action on a dense open
subset of this moduli space together with a set of invariant functions which
separate the orbits.

Let C be a simple curve (embedded circle) of Σ. Choose an orientation
of C and a base point x ∈ C. Then for any (E, θ) ∈ M(Σ), the holonomy
at x of E|C is a unitary automorphism gx of Ex preserving θx. So the trace
of gx belongs to [−2, 2]. We set

aC(E, θ) := arccos
(

1
2tr (gx)

)
∈ [0, π].

This define a function aC on the moduli space M(Σ) which does not depend
on the choices of the base point and the orientation.
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Let us introduce a circle action on the subset of M(Σ) consisting of
bundles with a non-central holonomy along C. Let t ∈ T := R/Z. To define
t.(E, θ), we assume that C is oriented. Then E|C is the direct sum of two
subbundles E±, whose fibers are the eigenspaces of the holonomy along C
with eigenvalues exp(±iaC(E)). Let Rt be the automorphism of E|C which
acts on E± by multiplication by exp(±2iπt).

Next consider the surface Σ′ obtained from Σ by cutting out C. Denote
by π the projection from Σ′ to Σ. Let C+ and C− be the boundary com-
ponents of Σ′ such that π restricts to diffeomorphisms π± : C± → C and
which respectively preserves and reverses the orientation. Then t.(E, θ) is
the quotient of π∗E under the identification

u ∼ π∗−.Rt.(π∗+)−1(u), u ∈ π∗E|C+ = π∗+(E|C)

This definition does not depend on the orientation of C.
Let C be a set of simple disjoint curves. Then the corresponding actions

commute and we obtain an action of the torus TC on the set M◦(Σ) of
bundles with non-central holonomy along any curve of C . Assume that the
curves of C cut Σ into trinions. As in section 2 we define a graph G whose
edges are naturally indexed by J := C ∪ π0(∂Σ). Introduce the map

a : M(Σ) → RJ

whose coordinates are the aC ’s.

Theorem 3.1. The image of a is the polyhedron ∆ consisting of the (αj) ∈
RJ such that for any trivalent vertex v of G

|αi − αj | 6 αk 6 min(αi + αj , 2π − (αi + αj))

if i,j and k are the edges incident to v. The fibers of the restriction of a to
M◦(Σ) are the orbits of the action of TC . Furthermore the action is locally
free on the preimage of the interior of ∆.

This theorem has been proved in [JW94] under the assumption that Σ
has no boundary. There is no difficulty to generalize to the case where
∂Σ 6= ∅. One shows first the result for a pair of pants Σ, cf. proposition
3.1 of [JW94]. The general case follows by analyzing how one can paste flat
SU(2) bundles on the trinions cut out by C to a global bundle on Σ.

When Σ has no boundary, the open set of irreducible classes (E, θ) is
naturally a symplectic manifold, as we already mentioned it in section 1.3.
Then for any simple curve C, the function aC(E) is a moment of the circle
action corresponding to C, see [JW94] proposition 5.4.
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It is easily seen that ∆ has a non-empty interior. Furthermore the re-
strictions to Int(∆) of the functions

exp
(
i
∑
j∈J

`jaj

)
, (`j) ∈ ZJ

are linearly independent. This will be used in the proof of theorem 5.3.
The fact that ∆ has a non-empty interior will also ensure that some Fourier
coefficients do not vanish, cf. lemma 4.3.

4 Fourier decomposition

We are concern in this part on the Fourier decomposition on some trace
functions defined on the previous moduli spaces. Consider a disjoint union
Γ of unoriented circles and a map h : Γ → Σ. Then define the following
function on M(Σ)

Th(E, θ) =
∏

γ∈π0(Γ)

(−tr(gγ))

where gγ is the holonomy of E along γ. Let C be a finite family of disjoint
simple curves. Then for any k ∈ ZC , the k-th isotype of Th for the action of
the torus TC is the function

Πk(Th)(x) =
∫

TC
Th(t.x)e−2πi〈t,k〉 dt

The first step in the computation of Πk(Th) is to extend the definition of
Th(E, θ) to the case where Γ is a disjoint union of circles and closed intervals.

4.1 Generalized holonomy trace

Let us start with an algebraic preliminary. Consider a finite family (Vi)i∈I

of vector spaces. Let us define the tensor product ⊗i∈IVi assuming that the
Vi are odd superspaces. First, for any bijections σ and σ′ from {1, . . . , n} to
I, one has a commutation map

cσ,σ′ : Vσ(1) ⊗ . . .⊗ Vσ(n) → Vσ′(1) ⊗ . . .⊗ Vσ′(n)

sending v1⊗ . . .⊗ vn to (−1)ε(α)vα(1)⊗ . . .⊗ vα(n) where α = σ′ ◦σ−1. Since
cσ′,σ′′ ◦ cσ,σ′ = cσ,σ′′ , one can identify coherently these tensor products by
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taking the projective limit of this system, which defines the unordered tensor
product. More precisely, we define ⊗i∈IVi as the subspace of the product∏

σ∈bij({1,...,n},I)

(
Vσ(1) ⊗ . . .⊗ Vσ(n)

)
consisting of the families (vσ) such that cσ,σ′(vσ) = vσ′ .

Let E → Σ be a flat vector bundle of rank 2 and θ a non-vanishing
flat section of ∧2E. Observe that each fiber Ex has a complex symplectic
product ωx defined in such a way that for all u, v ∈ Ex,

u ∧ v = θx ⇒ ωx(u, v) = 1.

Consider a 1-dimensional compact manifold Γ and a continuous function
h : Γ → Σ. We will define the generalized holonomy trace of h as a vector

Th(E, θ) ∈
⊗
p∈∂Γ

Eh(p)

If Γ is an interval, we choose an orientation of it and denote by p and q the
source and target point of Γ. Then the holonomy along Γ is an homomor-
phism

A ∈ Hom(Eh(p), Eh(q)) ' Eh(q) ⊗ E∗
h(p).

Identifying Eh(p) with E∗
h(p) by the map sending u to ωh(p)(u, ·), we obtain

a vector A[ ∈ Eh(q) ⊗ Eh(p). We set

Th(E, θ) := A[.

The important point is that this definition does not depend of the orientation
if we use the previous identification between Eh(p)⊗Eh(q) and Eh(q)⊗Eh(p).
Indeed with this identification, we have that (A−1)[ = A[. This is easily
deduced from the fact that A is a linear symplectomorphism. If Γ is a circle,
we define Th(E, θ) as previously as the opposite of the trace of the holonomy
of h (the super-trace). Finally, if Γ has several components (Γi), we define
Th(E, θ) as the tensor product of the Th|Γi

(E, θ).
Now let h′ : Γ′ → Σ be a continuous map and p and q be two distinct

points in ∂Γ′ such that h′(p) = h′(q). Then by identifying p with q, we get
a compact 1-manifold Γ with a map h : Γ → Σ. It is easily checked that

Th(E, θ) = C(Th′(E, θ))
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where C is the contraction⊗
r∈∂Γ′

Eh(r) −→
⊗

r∈∂Γ′\{p,q}

Eh(r)

sending u⊗v⊗w to u.ω(v, w) if w ∈ Eh(p), v ∈ Eh(q) and u ∈
⊗

r∈∂Γ′\{p,q}
Eh(r).

4.2 The basic computation

In this part we consider the case of a single simple curve C of Σ with
its associated circle action. Let Γ be a finite disjoint union of circles and
h : Γ → Σ be a map intersecting C transversally.

Let Γ′ be the compact 1-manifold obtained by cutting out the points p
of Γ such that h(p) is on C and let h′ be the obvious map Γ′ → Σ. Then it
follows from the considerations of section 4.1 that Th(E, θ) is the contraction
of the generalized trace holonomy Th′(E, θ) by the linear map

C :
⊗

p∈∂Γ′

Eh′(p) → C

defined as follows. For any p ∈ h−1(C), let j1(p) and j2(p) be the corre-
sponding boundary points of Γ′, so that⊗

p∈∂Γ′

Eh′(p) =
⊗

p∈h−1(C)

E
⊗{j1(p),j2(p)}
h(p)

Then C is the map sending
⊗

p∈h−1(C)

(vp,1 ⊗ vp,2) to
∏

p∈h−1(C)

ωh(p)(vp,1, vp,2).

We will compute Πk(Th) in terms of these generalized holonomy traces.
Assume that C is oriented and pick (E, θ) such that its holonomy along C is
not central. For any p ∈ h−1(C), we choose two unitary eigenvectors ep

± ∈
Eh(p) of the holonomy along C with corresponding eigenvalues exp(±iaC(E))
and such that

θh(p) = ep
+ ∧ ep

−.

Assume also that j1(p) and j2(p) are chosen in such a way that the tangent
vector of Γ oriented from j1 to j2 followed with the oriented tangent vector
of C form a direct basis in Σ.

Lemma 4.1. Let k ∈ N. If k is bigger than the cardinal of h−1(C), then
Πk(Th) and Π−k(Th) vanish. If k is equal to the cardinal of h−1(C), then

Π±k(Th)(E, θ) = C±(Th′(E, θ)),
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with C± the linear map from
⊗

p∈h−1(C)

E
⊗{j1(p),j2(p)}
h(p) to C given by

C±
( ⊗
p∈h−1(C)

(vp,1 ⊗ vp,2)
)

=
∏

p∈h−1(C)

〈vp,1, e
p
±〉〈vp,2, e

p
∓〉

where the bracket denotes the scalar product. If C does not intersect h, C±
is the identity map.

Proof. Assume first that h−1(C) is reduced to a point. Then the proof is
based on the simple observation that

Th(t.(E, θ)) = Ct(Th′(E, θ)), ∀ t ∈ T (4)

where Ct is the linear map from E
⊗{j1(p),j2(p)}
h(p) to C given by

Ct(v1 ⊗ v2) = ωh(p)(Rtv1, v2)

with Rt the automorphism of EC entering in the definition of the circle
action. Next a straightforward computation leads to

ωh(p)(Rtv1, v2) = e2iπt〈v1, e
p
+〉〈v2, e

p
−〉+ e−2iπt〈v1, e

p
−〉〈v2, e

p
+〉

which proves the result, taking into account that the Hermitian product is
C-linear on the left. In the case where h−1(C) consists of several points, (4)
is still satisfied with the contraction

Ct

( ⊗
p∈h−1(C)

(vp,1 ⊗ vp,2)
)

=
∏

p∈h−1(C)

ωh(p)(Rtvp,1, vp,2).

Replacing each term in the product by the previous formula leads to the
result.

4.3 Fractional Dehn twist

Consider again a curve C on Σ and a map h : Γ → Σ which is transverse to
C in k points. One defines the fractional Dehn twist of h along C of order
`/k in the following way: let Γ′ be the 1-manifold Γ obtained by cutting
out the points p such that h(p) is on C. Let us orient C, then for any p in
P = C ∩ h(Γ), one defines two points j1(p) and j2(p) in ∂Γ′ with the same
convention as in the section 4.2. Moreover, the orientation of C provides P
with a cyclic order, so Z/kZ acts on P . One sets

Γ`/k = Γ′ ∪
∐
p∈P

[0, 1]p/ ∼

15



where we identify 0p with j1(p) and 1p with j2(p + `).
Choose a parameterization α : S1 → C respecting the orientation such

that P corresponds to the set of k-th roots of unity. We define the map
h`/k : Γ`/k → Σ as being equal to h on Γ′ and such that for all t ∈ [0, 1] and
p ∈ P one has

h`/k(tp) = α
(
exp(2iπ`

k tp).α−1(p)
)
.

The manifold Γ`/k and the map h`/k do not depend up to homotopy on the
orientation of C nor on the parameterization α.

Lemma 4.2. One has Π±k(Th`/k
) = (−1)`(k−1)e±i`aC Π±k(Th)

Proof. This is an easy application of the lemma 4.1 using the explicit descrip-
tion of the fractional Dehn twist above. More precisely, denote by H`/k the
restriction of h`/k to

∐k
i=1[0, 1]i and choose a parameterization α : S1 → C

as above. Given a bundle E in M(Σ) one can suppose that it is trivialized
on P in such a way that the holonomy from p to p + 1 is[

exp(2iπaC/k) 0
0 exp(−2iπaC/k)

]
.

Then H`/k and H0/k differ by the factor exp(2iπaC/k)k` and the sign of the
permutation sending x to x + ` in Z/kZ.

4.4 Non vanishing of some isotypes

Consider a pants decomposition of Σ in the sense of section 2 with graph
G. Let S1 × {1/2} be the core of the standard annulus S1 × [0, 1]. For each
internal edges of G, we consider the core of the corresponding annulus and
the circle action it generates. This defines a torus action of TC where C is
the set of internal edges.

Consider the multicurve C(m, t) with Dehn coordinates (m, t). By the
first part of Lemma 4.1, the k-th isotype of TC(m,t) vanishes if |kj | > mj for
some internal edge j.

Lemma 4.3. Let k ∈ ZC be such that |kj | = mj for all j ∈ C . Then the
function Πk(TC(m,t)) does not vanish on a−1(Int(∆)), where a is the map
introduced in section 3 and ∆ is the image of a.

Proof. By lemma 4.2, one may assume that t vanishes. One can compute
Πk(TC(m,0)) in exactly the same way as we did in section 4.2. The cut
manifold Γ′ is now a disjoint union of closed intervals with a map h′ : Γ′ → Σ.
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For any oriented curve C in C and point p of C, one considers a unitary
eigenvector e of Ep for the holonomy along C whose eigenvalue has positive
imaginary part. To any point p in ∂Γ′ such that h′(p) ∈ C, one associates
the vector ep

+ (resp. ep
−) corresponding to the orientation of C going to the

left from p (resp. to the right).
By generalizing lemma 4.1, one obtains that

Πk(Th)(E, θ) = Ck(Th′(E, θ)),

with Ck a linear map from
⊗

p∈∂Γ′ Eh′(p) to C of the form

Ck

(
⊗p∈∂Γ′vp

)
=

∏
p∈∂Γ′

〈vp, e
p
ε(k,p)〉 mod T

where ε(k, p) is the sign of kj if p belongs to j ∈ C . Since Th′(E, θ) is the
tensor product of the Th′|γ (E, θ) where γ runs overs the components of Γ′,
one can rewrite the previous product as

Πk(Th)(E, θ) =
∏

γ∈π0(Γ′)

Cγ
k (Th′|γ (E, θ)) mod T

with Cγ
k (vp ⊗ vq) = 〈vp, e

p
ε(k,p)〉〈vq, e

q
ε(k,q)〉 if the source and target of γ are p

and q.
To prove the lemma, it suffices to show that the factors Cγ

k (Th′|γ (E, θ))
do not vanish when a(E, θ) belongs to the interior of ∆. There are two
cases to consider, according to whether the endpoints of γ belong to the
same separating curve or to different ones, cf. for example C(2, 0, 0) and
C(1, 1, 0).

In the second case, consider the pair of pants containing γ and let
j1, j2 and j3 be the bounding curves with the induced orientation. As-
sume that the endpoints p and q of γ belongs to j1 and j2 respectively. If
Cγ

k (Th′|γ (E, θ)) vanishes, one deduces from the definition of Th′|γ (E, θ) that
the holonomy along the loop h′|γ sends the decomposition Cep

+ ⊕ Cep
− to

the decomposition Ceq
+ ⊕ Ceq

−, permuting possibly the summands. Choos-
ing p as a base point, one obtains that the holonomies along j1 and the
concatenation γ−1j2γ commute. Observe furthermore that j−1

3 is freely
isotopic to γ−1j2γj1. It follows that for some εi ∈ {1,−1}, the three eigen-
values exp(ε1iaj1(E)), exp(ε2iaj2(E)), exp(ε3iaj3(E)) have product equal to
1. This implies that

ε1aj1(E) + ε2aj2(E) + ε3aj3(E) ≡ 0 mod 2πZ
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This formula is only satisfied if a(E, θ) belongs to the boundary of ∆.
In the first case, h′|γ connects two points p and q of the same boundary

circle j1 by going around another boundary circle j2. Since the neighbor-
hoods of the endpoints of γ are on the same side of j1, the eigenvalues of ep

and eq are the same. Using this, one shows that if Cγ
k (Th′|γ (E, θ)) vanishes,

then the holonomy along a path joining j1 to j2 preserves the decomposition
into eigenspaces. In other words, we are again in the second case.

5 Consequences

5.1 Geometric intersection numbers

The geometric intersection number of two isotopy classes of multicurves ξ
and η is the minimal number of intersection points of a representant of ξ
with a representant of η.

If ξ has only one connected component, it generates a circle action on
the M(Σ). One may characterize the geometric intersection number of ξ
and η in terms of this action and the trace function of η.

Theorem 5.1. For any isotopy classes ξ and η of a curve and a multicurve
respectively, the geometric intersection number of ξ and η is the biggest k
such that the k-th isotype of the trace function of η with respect to the circle
action generated by ξ does not vanish.

Proof. If k is larger than the geometric intersection number, then the k-th
isotype vanishes by Lemma 4.1. Conversely, assume that ξ does not bound
a disc and is not parallel to a boundary component, otherwise the result is
trivially satisfied. Then there is a pants decomposition with a separating
curve C representing ξ. By Theorem 2.1, η may be represented by a Dehn
multicurve C(m, t). Then lemma 4.3 shows that the k-isotype of TC(m,t)

does not vanish if k is the number of intersection points of C(m, t) with
C.

The proof shows also that the intersection number is realized when the
representant of ξ is a curve of a pants decomposition and the representant
of η is one of the associated Dehn curves, a well-known result.

The following corollary has been proved in [Gol86]. Denote by Ms(Σ)
the subset of M(Σ) consisting of the irreducible bundles.

Corollary 5.2. Assume that Σ is closed so that Ms(Σ) is a symplectic
manifold. Let ξ be a curve and η a multicurve in Σ. Then the Poisson
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bracket of the trace functions of ξ and η vanishes if and only if ξ and η
admit non-intersecting representants.

This follows from the fact that the function arccos(−1
2Tξ) is a moment

of the circle action generated by ξ.

5.2 Independence of trace functions

One can now prove the following theorem:

Theorem 5.3. The functions Tξ, where ξ runs over isotopy classes of mul-
ticurves in Σ, are linearly independent.

Since the isomorphism between M(Σ) and Hom(π,SU(2))/ SU(2) iden-
tifies the function Tξ with the trace function f[ξ],SU(2), we deduce theorem
1.1 for the group SU(2). Consider the map j

Hom(π,SU(2))/ SU(2) → Hom(π,Sl(2, C))/ Sl(2, C)

Then j∗fγ,Sl(2,C) = fγ,SU(2). So the independence of the fγ,SU(2) implies
the independence of the fγ,Sl(2,C), which proves theorem 1.1 for the group
Sl(2, C).

Proof. Consider a pants decomposition of Σ with associated graph G and
the action of the torus TC as in section 4.4. Let J = C ∪ π0(Σ) be the
set of edges of G. By theorem 2.1, one may suppose that ξ runs over the
multicurves C(m, t) for admissible maps m : J → N and t : J → Z.

Let β be a vanishing linear combination of the Tξ’s. Let β =
∑

m βm be
its decomposition with respect to the multi-degree m. Write

βm =
∑

t

λm,tTC(m,t).

Consider an arbitrary order on J and the corresponding lexicographical
order on maps m. Let M be the maximal m with a non-vanishing family of
coefficients (λm,t)t. By lemma 4.1, for m < M one has ΠM (βm) = 0. Hence
ΠM (βM ) = ΠM (β) = 0. Furthermore, by lemma 4.2,

ΠM (βM ) =
∑

t

λM,tΠM (TC(M,t))

=
(∑

t

λM,t

∏
j∈J

ϕMj ,tj (aj)
)

ΠM (TC(M,0))
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where for any integers k, ` and real α,

ϕk,`(α) =

{
(−1)`(k−1) exp(i`α) if k 6= 0
(2 cos(α))` otherwise

By lemma 4.3, the function ΠM (TC(M,0)) does not vanish on a−1(Int∆).
Furthermore, by the remark after theorem 3.1, the functions∏

j∈J

ϕMj ,tj (aj)

where t runs over the maps J → Z such that (M, t) are Dehn coordinates,
are linearly independent over a−1(Int∆). So the coefficients λM,t vanish,
contradicting the maximality of M .

6 On the character variety

Denote by V the vector space C2 and by G the group Sl(2, C) ⊂ End(V ).
Let π be a finitely generated group. Choosing generators t1, . . . , tn of π,
we identify the set Hom(π,G) of morphisms with a closed algebraic sub-
set of (EndV )n by sending the morphism ρ to (ρ(t1), . . . , ρ(tn)). This
endows Hom(π,G) with a structure of affine variety. Its coordinate ring
C[Hom(π,G)] is the quotient of C[(EndV )n] by the ideal of polynomial
functions vanishing on Hom(π,G).

The action by conjugation of G on Hom(π,G) is regular. By Hilbert
theorem, the ring of invariant functions is finitely generated. By definition
C[Hom(π,G)]G is the coordinate ring of the character variety.

One may naturally identify this coordinate ring with a subspace of the
space of complex valued functions on the quotient Hom(π,G)/G. By the
following theorem, this subspace is the space T (π,G) of trace functions.

Theorem 6.1. The ring C[Hom(π,G)]G is generated as a vector space by
the functions χt

χt([ρ]) = − tr(ρ(t)), ρ ∈ Hom(π,G)

where t runs over π.

We provide an elementary proof of this well-known result.

Proof. Because of the trace relation (1), it suffices to prove that the ring of
regular invariant functions is generated by the χt’s as an algebra. Then by
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averaging the action of the compact subgroup SU(2) ⊂ G, we get that any
invariant regular function is represented by an invariant polynomial function
P ∈ C[(EndV )n]G.

The symplectic form of V induce an isomorphism between V and V ∗ and
consequently an isomorphism between EndV and End V ∗. By composing
with the transposition map, we define an equivariant isomorphism a → a∗

of End(V ). We will prove that C[(EndV )n]G is generated as an algebra by
the functions

(a1, . . . , an) → tr(w(a)) (5)

where w(a) runs over the words in the letters a1, a
∗
1, . . . , an, a∗n. Since the

elements of G satisfy a−1 = a∗, this will end the proof.
Let W = End(V ). For any n-tuple (d1, . . . , dn) of non negative integers,

the space of polynomials on W⊕n which are homogeneous of degree di on
the i-th variable is isomorphic with ⊗i Symdi(W ∗

i ). So

C[W⊕n] =
⊕
d∈Nn

⊗
i=1,...,n

Symdi(W ∗) ⊂
⊕
d∈Nn

⊗
i=1,...,n

(W ∗)⊗di =: E

A right inverse of this inclusion is the following map from E to C[W⊕n]⊗
i=1,...,n

(`1
i ⊗ . . .⊗ `di

i ) → P (a1, . . . , an) =
∏

i=1,...,n;
j=1,...,di

`j
i (ai)

Observe that the invariant subspace of E is sent onto C[W⊕n]G. Using again
the identification of V with V ∗, we have that W ' V ⊗ V ∗ ' V ∗ ⊗ V ∗. By
lemma 6.2, the invariant subspace of (V ∗)⊗2m ' (V ⊗2m)∗ is generated by
the maps

x1 ⊗ . . .⊗ x2m → ω(xσ(1), xσ(2)) . . . ω(xσ(2m−1), xσ(2m))

where σ runs over the permutation of {1, . . . , 2m}. We deduce the invariants
subspace of E and then that the functions (5) generate C[W⊕n]G.

Denote by Multn the space of multilinear maps from V ×n to C and by
Symn the subspace of symmetric maps. For any non-negative integer k 6 n
with the same parity as n, let Multn,k be the subspace of Multn generated
by the maps

P (xσ(1), . . . , xσ(k))ω(xσ(k+1), xσ(k+2)) . . . ω(xσ(n−1), xσ(n))

where σ ranges over the permutations of {1, . . . , n} and P over Symk. Recall
that the spaces Symn are the irreducible representations of G.
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Lemma 6.2. The decomposition into isotypical subspaces of Multn is

Multn =
⊕

06k6n,
k=n mod 2

Multn,k

Proof. Multn,k is clearly a subspace of the k-th isotypical component of
Multn. Since Multn is the direct sum of its isotypical components, we just
have to show that the spaces Multn,k generates Multn. This may be proved
by induction over n by using that any multilinear map symmetric with
respect to the (n− 1) first arguments is of the form

L(x1, . . . , xn) = M(x1, . . . , xn) +
n∑

i=1

ω(xi, xn)N(x1, . . . , x̂i, . . . xn−1)

with M ∈ Symn and N ∈ Symn−2. To show this last fact, observe that
the map sending (M,N) to L is an isomorphism from Symn⊕Symn−2 onto
the subspace of Multn consisting of maps symmetric in the (n − 1) first
arguments. Indeed, this morphism is injective by G-equivariance and we
conclude by counting dimensions.
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