
A formula for the volume of two-bridge knots

Abstract

We give a closed formula for the volume of a two-bridge knot, more
precisely for its Bloch invariant. We obtain this formula without triangu-
lating the complement: instead, we derive it from the Hopf formula for
the second homology of the fundamental group of the complement and a
systematic use of Fox derivatives.

1 Introduction

Let p, q be two coprime odd integers satisfying 0 < q < p. We denote by
K(p, q) ⊂ S3 the two-bridge knot with parameter (p, q) and recall its main
properties, see [BZH].

1. The double cover of S3 ramified along K(p, q) is the lens space L(p, q).

2. The knots K(p, q) and K(p′, q′) are isotopic (up to orientation) if and only
if p′ = p and q′ = ±q±1 mod p.

3. The knot K(p, q) is hyperbolic if and only if q ̸= 1.

We define a sequence of signs εn by the formula εn = (−1)⌊nq/p⌋ and a
sequence of polynomials Pn, Qn ∈ Z[x] of respective degrees n and n− 1 by the
formula

Pn(x)

Qn(x)
= ε1x+

1

ε2x+
1

· · ·+
1

εnx

.

We denote by D : C → R the Bloch-Wigner dilogarithm: D(z) is the volume
of the ideal hyperbolic tetrahedron whose vertices in P1(C) = ∂H3 are ∞, 0, 1, z,
see [Z07]. Finally, we set ℓ = ℓ(p, q) to be the unique (odd) integer satisfying
0 < ℓ < 2p and congruent to −q−1 modulo 2p.

Theorem 1. Let 0 < q < p be as above and set Zp,q = {x ∈ C, Pp−1(x) = 0}.
For any x ∈ Zp,q and n > 0, we define zn = Pn(x)/Qn(x) and set z0 = ∞. The
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volume V (p, q) of S3 \K(p, q) is given by the following formula:

V (p, q) = max
x∈Zp,q

{ p−1
2∑

j=1

(
D
(zℓ−1z2p−2 − z2j−2z2p−2 + z2j−2zℓ−1

zℓ−1z2p−2 − z2jz2p−2 + z2jzℓ−1

)
+D

(z2j−2

z2j

)
+D

(z2j−2(z2p−2 − z2j)

z2j(z2p−2 − z2j−2)

)
+D

( (z2p−2 − z2j−2)(zℓ−1 − z2j)

(z2p−2 − z2j)(zℓ−1 − z2j−2)

))}
.

There is a Bloch group version of the theorem: indeed, suppose q > 1 and
let k be the trace field of K(p, q), which is generated by x2 for some root x of
Pp. There is a representation ρ : π1(S

3 \K(p, q)) → SL2(k) whose restriction to
the boundary is parabolic, defined by Riley in [R]. It defines a Bloch invariant
βp,q ∈ B(k) which recovers the volume: this invariant is given by the same
formula as in Theorem 1 without the max and with D(z) replaced by [z], see
Section 4.

As an illustration, we plot in Figure 1 all pairs ( qp , V (p, q)) for p < 50.

[∞, 3]

[3,∞, 2]

[1,∞, 2]
[2,∞]

[2,−∞]

[1,∞, 4]

[∞]

Figure 1: Volumes of two-bridge knots.

As a subset of R2, it has many accumulation points that we materialize using
black lines. Recall that writing p

q as a continued fraction

p

q
= a1 +

1

a2 +
1

· · ·+ 1
an

= [a1, . . . , an] for a1, . . . , an ∈ Z \ {0}

yields a diagram for K(p, q) in the Conway form given (for odd n) in Figure 2.
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Figure 2: Conway normal form

The number of twists is denoted by the integer |ai|, and the convention of
sign of ai differs depending on the parity of i. In the picture, all ai are positive.
Indeed, there is a unique continued fraction with positive entries yielding q/p
which provides an alternating diagram. Using Lackenby’s bound [L]

v3
n− 2

2
≤ Vol(p, q) ≤ 16v3(n− 1)

where v3 = D(eiπ/3), we know that V (p, q) is roughly proportional to the depth
of the positive continued fraction expressing p/q. In particular, it is unbounded.

Take any continued fraction of the form [a1, . . . , an], and suppose that the
integers ai1 , . . . , aik go to infinity for some 1 ≤ i1 < · · · < ik ≤ n. The cor-
responding knot converges to the complement of a hyperbolic link with k + 1
components, obtained by circling each of the twist regions of index i1, . . . , ik
with a trivial knot. The continued fraction also converges, which explains the
accumulation points observed in Figure 1: we parametrize them by writing ∞
in place of ai1 , . . . , aik . For instance, the line [∞] correspond to the fractions
n
1 for odd n, hence to the knots K(n, 1) which are torus knots, hence with
trivial volume. The line [1,∞, 2] correspond to 1 + 1

n+1/2 hence to the knots

K(2n+ 3, 2n+ 1) which are twist knots.
There are also accumulation points of accumulation points (and further)

but Lackenby’s bound show that they appear higher and higher in the picture.
It would be interesting to study the coarsest topology on Q making the map
q/p 7→ K(p, q) continuous.

Let us now comment on the technique of proof. It relies mainly on the
simple presentation of G = π1(S

3 \K(p, q)) and its parabolic representation as
described by Riley in [R]. The main trick is to avoid triangulating the comple-
ment: instead, we start in Section 2 from the Hopf formula expressing that the
“torus” made by the meridian and the longitude is a trivial class in H2(G,Z).
Using Fox calculus, we get in Section 3 an explicit 3-chain in the bar complex of
G bounding the peripheral torus. Then, it is a standard procedure to get from
this either the volume or the Bloch invariant. We explain this in Section 4 and
apply it in Section 5. This seemingly new technique is the main interest of the
article and can in principle be applied to other families of knots, for instance
pretzel knots.

Let us mention previous work on the same topic: in [G], the authors triangu-
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late the complement in order to prove the existence of a hyperbolic structure but
do not provide a “closed formula” for their volume: here we take for granted the
existence of the hyperbolic structure. In [HLMR], the authors provide a formula
for two-bridge knot orbifolds by deforming the representation of the complement
and using a Schläffli formula for the volume. Our techniques should apply to
their case but the trace field is more difficult to compute.

Acknowledgments: We thank Gregor Masbaum for thorough discussions
around this article and Pierre-Vincent Koseleff for his interest, his numerical
computations confirming our formulas and his sharing of Figure 2.

2 Commuting meridian and longitude

Let p, q be two coprime odd integers satisfying 0 < q < p. The fundamental
group G of the complement of the two-bridge knot K(p, q) admits the following
presentation where we have set εi = (−1)⌊iq/p⌋ (see [BZH]):

G = ⟨u, v|wu = vw⟩, w = uε1vε2 · · ·uεp−2vεp−1 .

Formally, this means that G = F/R where F is the free group generated by u
and v and R is the subgroup of F normally generated by r = wuw−1v−1. For
any word x in the letters u and v, we denote by x∗ the word obtained by writing
the letters in the reverse direction. This operation is an anti-involution in the
sense that it satisfies (xy)∗ = y∗x∗ and (x∗)∗ = x for any x, y ∈ F .

Recall that we defined ℓ to be the unique integer satisfying 0 < k < 2p and
k = −q−1 mod 2p.

Lemma 1. The following equality holds in F :

uw∗v−1(w∗)−1 = grg−1, where g = uε0vε1 . . . uεℓ−1vεℓ .

In particular, the anti-involution x 7→ x∗ induces an anti-involution on G.

Proof. Let us first comment how the first point implies the second. We compute
r∗ = v−1(w−1)∗uw∗: it is conjugated to uw∗v−1(w∗)−1, hence to r by the first
statement. This shows that r∗ belongs to R as we wanted.

To prove the first statement, we observe that the relation r is a sequence of
alternating u and v with powers given by the following sequence:

S : ε1, . . . , εp−1, 1,−εp−1, . . . ,−ε1,−1

whereas uw∗v−1(w∗)−1 corresponds to the sequence:

S′ : 1, εp−1, . . . , ε1,−1,−ε1, . . . ,−εp−1

The sequence εi has the symmetries: εi+p = −εi and ε−i = (−1)⌊−iq/p⌋ = −εi
if i ̸= 0 mod p. In particular the sequence ε1, . . . , εp−1 is palindromic. We also
observe that the sequence S′ is simply the sequence ε0, . . . , ε2p−1. The lemma
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is proven if one can show that the sequence S is obtained from S′ by an even
shift.

By definition of ℓ, there is an integer s such that ℓq = −1 + 2ps. It follows
that εℓ+i = (−1)⌊ℓq/p+iq/p⌋ = (−1)⌊iq/p−1/p⌋. If i is not divisible by p we have
εℓ+i = εi otherwise εℓ+i = −εi. This shows that starting S′ at the index ℓ+ 1,
one recovers S, which proves the lemma.

It is well-known that a longitude of K(p, q) is given by l = w∗w: using
Lemma 1, we can prove it from the presentation of G. We get precisely the
following formula:

Lemma 2. Set l = w∗w. We have in F the identity:

[l, u] = [w∗, r][r, g].

This formula says more: recall that the Hopf formula identifiesH2(G,Z) with
[F, F ] ∩ R/[F,R]. Here [l, u] represents a class in H2(G,Z) which apparently
vanishes. This fact is topologically obvious because this class corresponds to
the boundary torus under the isomorphism H2(G,Z) = H2(S

3 \K(p, q),Z) and
this torus bounds the fundamental class of S3 \K(p, q). It is also algebraically
clear because the presentation involves only one relation r whose abelianization
is non trivial. However, we will need the explicit formula given by the lemma,
that we prove now.

Proof. We compute:

[w∗w, u] = w∗wuw−1(w∗)−1u−1 = w∗rv(w∗)−1u−1

= [w∗, r]rw∗v(w∗)−1u−1 = [w∗, r][r, g]

This element belongs to [F,R], where F = ⟨u, v⟩ and R is the subgroup normally
generated by r, showing the lemma.

3 From the Hopf formula to the bar complex

We now compare explicitly the Hopf formula for H2(G,Z) with the definition
of the same group coming from the bar complex. This is a standard exercise,
see [B, Ex 4. p.46]: given a formula expressing the vanishing of some class in
H2(G,Z), it provides an explicit 3-chain that we will use to compute the volume
of the knot complement.

Recall the definition of the bar complex C∗(G). The abelian group Ck(G)
is freely generated by k-tuples [g1| · · · |gk] with g1, . . . , gk ∈ G. We extend this
notation by multilinearity, replacing gi by elements in Z[G]. We will need the
following formulas for the differential where ε : Z[G] → Z is the augmentation
map:

∂[g1] = 0, ∂[g1|g2] = ε(g2)[g1]− [g1g2] + ε(g1)[g2],

∂[g1|g2|g3] = ε(g1)[g2|g3]− [g1g2|g3] + [g1|g2g3]− ε(g3)[g1|g2].
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Suppose that G = F/R is a presentation where F is freely generated by
x1, . . . , xn. Following [B, Proposition 5.4, p.43], there is an exact sequence of
Z[G]-modules

0 // Rab
∂ //⊕n

i=1 Z[G]ei
∂ // Z[G]

ε // Z // 0.

Here Rab denotes the abelianization of R and the differentials are defined as
follows: ∂(fei) = f(xi − 1) and for r ∈ R we have:

∂r =

n∑
i=1

∂r

∂xi
ei

In this formula, for any f ∈ F , ∂f
∂xi

∈ Z[G] is the Fox derivative: it is defined

uniquely by the conditions
∂xj

∂xi
= δij and

∂(fg)

∂xi
=

∂f

∂xi
+ f

∂g

∂xi
.

This derivative, restricted to R is a group homomorphism, hence factors through
Rab. The fact that ∂

2 = 0 comes from the following fundamental formula, valid
for any f ∈ F :

f − 1 =
∑
i=1

∂r

∂xi
(xi − 1).

We may compare this to the bar complex as follows:

Rab
//

ϕ2

��

(Z[G]n) //

ϕ1

��

Z[G]

��
ϕ0

��
C3(G) // C2(G) // C1(G) // C0(G)

The map ϕ2 is given by ϕ2(f) =
∑n

i=1[
∂f
∂xi

|xi]. The map ϕ1 is given by
ϕ1(fei) = ε(f)[xi] and ϕ0 = ε. We leave to the reader checking that ϕ∗ is a
chain map. The maps ϕ1, ϕ0 are obviously G-invariant, not ϕ2. We have indeed
ϕ2(f.r)− ϕ2(r) = ϕ2(frf

−1)− ϕ2(r) = ϕ2([f, r]).
One computes

ϕ2([f, r]) =
∑
i

[
∂[f, r]

∂xi
|xi] =

∑
i

[(f − 1)
∂r

∂xi
|xi] = −

∑
i

∂[f | ∂r
∂xi

|xi]. (1)

This shows that taking the coinvariants of the first line, one has a morphism
of complexes inducing an isomorphism in homology, proving the Hopf formula.

R/[F,R] //

��

Fab
//

��

Z

��
C2(G)/∂C3(G) // C1(G) // C0(G)

This diagram is the key ingredient to prove the following proposition.
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Proposition 1. Let G be a group with presentation G = F/R where F is the
free group generated by x1, . . . , xn and suppose that the following equation holds
in F for some g, h, f1, . . . , fk ∈ F and r1, . . . , rk ∈ R:

[g, h] =

k∏
i=1

[fi, ri]. (2)

Then we have the equality [g|h− 1]− [h|g − 1] = ∂z in C2(G) where

z =

n∑
i=1

[g| ∂h
∂xi

|xi]− [h| ∂g
∂xi

|xi]−
k∑

j=1

n∑
i=1

[fj |
∂rj
∂xi

|xi].

Proof. We compute ϕ2 on both side of Equation (2). Applying equation (1) to
the right hand side gives directly the double sum of the proposition.

We can simplify the formula of ϕ2 in the case when it is applied to a pair of
commuting elements, as in the left hand side of Equation (2). Suppose g, h ∈ F
satisfy [g, h] ∈ R: then

ϕ2([g, h]) =

n∑
i=1

[(1− h)
∂g

∂xi
+ (g − 1)

∂h

∂xi
|xi].

As

∂

n∑
i=1

[g| ∂h
∂xi

|xi] =

n∑
i=1

[(1− g)
∂h

∂xi
|xi] +

n∑
i=1

[g| ∂h
∂xi

(xi − 1)]

we get

ϕ2([g, h]) + ∂t =

n∑
i=1

[g| ∂h
∂xi

(xi − 1)]−
n∑

i=1

[h| ∂g
∂xi

(xi − 1)] = [g|h− 1]− [h|g − 1].

where t =
∑n

i=1[g|
∂h
∂xi

|xi]−
∑n

i=1[h|
∂g
∂xi

|xi] and we used the fundamental formula
for g and h in the last equality. This finishes the proof of the proposition.

Let us apply this proposition to the case of G = π1(S
3 \K(p, q)). Using the

formula of Lemma 2, we have [l, u] = [w∗, r][g, r]−1 which gives:

ϕ2([w
∗w, u]) = ∂[g − w∗| ∂r

∂u
|u] + ∂[g − w∗|∂r

∂v
|v]

= ∂[g − w∗|(1− v)
∂w

∂u
+ w|u] + ∂[g − w∗|(1− v)

∂w

∂v
− 1|v].

We sum up the result in the following proposition.

Proposition 2. Let us write l = w∗w we have [l|u− 1]− [u|l − 1] = ∂z where

z = [g−w∗|(1−v)
∂w

∂u
+w|u]+[g−w∗|(1−v)

∂w

∂v
−1|v]+[l|1|u]−[u| ∂l

∂u
|u]−[u| ∂l

∂v
|v].
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4 From the bar complex to the volume

4.1 Volume of closed hyperbolic 3-manifolds

Let D be the Bloch-Wigner dilogarithm: D(z) is the volume of an ideal tetra-
hedron in H3 whose vertices have cross-ratio equal to z. It is known that given
∞ ∈ P1(C), the 3-cocycle

c(g1, g2, g3) = D([∞ : g1∞ : g1g2∞ : g1g2g3∞])

represents the volume class in H3(PSL2(C),R). This means that if M is a closed
hyperbolic 3-manifold with holonomy ρ : π1(M) → PSL2(C), then denoting by
f : M ≃ Bπ1(M) → BPSL2(C) a continuous map inducing ρ on fundamental
groups, we get:

Vol(M) =

∫
M

f∗c.

In the present article, we perform this computation inH3(π1(M),Z). Indeed,
knowing a 3-cycle zM representing [M ] in C3(π1(M)), one can simply compute
Vol(M) = ⟨c, ρ∗z⟩.

The situation here is slightly more involved due to the fact that M = S3 \
K(p, q) is not compact: it can be compactified into a 3-manifold M with toric
boundary such that the representation ρ : π1(M) → PGL2(k) takes values in a
subfield k of C and restricted to the boundary, takes its values in B, the Borel
subgroup of PGL2(k) stabilizing ∞.

In the next section, we take this difficulty into account. Morever, we replace
the volume with a finer invariant, called the Bloch invariant of M . For more
details, we refer to [NY].

4.2 Bloch group and Bloch invariant

Let C∗(P1(k)) be the complex where Cn(P1(k)) is freely generated by (n + 1)-
tuples of distinct elements in P1(k). An element [z0, . . . , zn] ∈ Cn(P1(k)) with
repeated terms will be considered to be 0. The differential is defined as usual
by ∂[z0, . . . , zn] =

∑n
i=0(−1)i[z0, . . . , ẑi, . . . , zn].

This complex is an acyclic complex of G-modules, where G = PGL2(k).
We denote by C∗(P1(k))G the complex of coinvariants: for instance C3(P1(k))G
is the free abelian group generated by [z] for z ∈ k \ {0, 1}. The element [z]
corresponds to the quadruple [∞, 0, 1, z] and the quadruple [z0, z1, z2, z3] to its
cross-ratio

[z0 : z1 : z2 : z3] =
(z0 − z2)(z1 − z3)

(z0 − z3)(z1 − z2)

By definition, the pre-Bloch group P(k) is the cokernel of the map ∂ :
C4(P1(k))G → C3(P1(k))G. Writing [∞, 0, 1, x, y] ∈ C4(P1(k)), we find that
P(k) has generators [z] for z ∈ k \ {0, 1} and relations

[x]− [y] + [
y

x
]− [

1− y

1− x
] + [

1− y−1

1− x−1
], x, y ∈ k \ {0, 1}.
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We define δ : P(k) → k∗⊗̃k∗ by δ([z]) = z ⊗ (1 − z) where k∗⊗̃k∗ = k∗ ⊗Z
k∗/(x ⊗ y + y ⊗ x). The Bloch group is defined by B(k) = ker δ. It fits in the
following exact sequence

0 // B(k) // P(k)
δ // k∗⊗̃k∗ // K2(k) // 0

We introduce the last term only for completeness: it comes from the presentation
of K2(k) given by Matsumoto’s theorem. There is a morphism of complexes

Φ :

{
C∗(G) → C∗(P1(k))

[g1| · · · |gk] 7→ [∞, g1∞, . . . , g1 · · · gk∞]

If we denote by B ⊂ G the Borel subgroup stabilizing∞, it defines a subcomplex
C∗(B) ⊂ C∗(G) on which Φ vanishes.

We get in this way an induced map Φ : H3(G,B) → P(k) where H∗(G,B)
denotes the homology of the quotient complex C∗(G)/C∗(B). By definition, the
Bloch invariant of a pair (M,ρ) where M is a 3-manifold with toric boundary
and ρ : π1(M) → G maps the boundary into B is

β(M,ρ) = Φ(f∗([M,∂M ]))

where f : (M,∂M) → (BG,BB) induces ρ.
We will use the following lemma whose proof can be found in [NY].

Lemma 3. Suppose that ρ : π1(M) → PSL2(k) is such that ρ(m) = ±
(
a ∗
0 a−1

)
and ρ(l) = ±

(
b ∗
0 b−1

)
. Then δβ(M,ρ) = a⊗̃b up to 2-torsion.

In particular, if ρ is parabolic on the boundary, then β(M,ρ) ∈ B(k) modulo
torsion.

5 An explicit formula in the Bloch group

We apply the construction of the preceding section to the case of two-bridge
knot complements. Let us identify the generators u, v of G = π1(S

3 \K(p, q))
with their image in SL2(C) by the holonomy representation. As u and v are
meridians, their image are parabolic hence up to conjugation, one can find x ∈ C
such that

u =

(
1 x
0 1

)
and v =

(
1 0
x 1

)
Given z ∈ P1(C) represented by (z, 1) ∈ C2, we find that u(z) = z + x and

v(z) = 1
x+ 1

z

. As wu = vw, we have w(∞) = v(w(∞)). As 0 is the unique fixed
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point of v, we get w(∞) = 0 or

ε1x+
1

ε2x+
1

· · ·+
1

εp−1x

= 0.

Converesely, if x satisfies the above equation and k ⊂ C is the number field
generated by x, then u, v ∈ SL2(k) satisfy the defining equation wu = vw.

Applying the formula of Proposition 2, we get a formula for the Bloch in-
variant of S3 \ K(p, q) endowed with the above representation. For short, we
denote this element by βp,q ∈ B(k).

As [z0, z1, z2, z3] = 0 if two of the zi’s coincide, there are a lot of simplifi-
cations in this formula: each term of the form [g1|g2|g3] is sent to [∞ : g1∞ :
g1g2∞ : g1g2g3∞] so that if any of g1, g2, g3 fixes ∞, the term vanishes. We
finally get only

βp,q = Φ([g − w∗|(1− v)
∂w

∂v
|v]).

Derivating ∂w
∂v we get (p − 1)/2 terms corresponding to the term vε2j for

j = 1, . . . , (p− 1)/2. If ε2j = 1, this term is uε1vε2 · · ·uε2j−1 and if ε2j = −1, it
gives −uε1vε2 · · ·uε2j−1v−1. Using the formula [z0 :z1 :z2 :z3] = −[z0 :z1 :z3 :z2]
and expanding, we get

βp,q =
∑
j

[∞, g∞, guε1 · · ·uε2j−1∞, guε1 · · ·uε2j−1vε2j∞]

−
∑
j

[∞, g∞, gvuε1 · · ·uε2j−1∞, gvuε1 · · ·uε2j−1vε2j∞]

−
∑
j

[∞, w∗∞, w∗uε1 · · ·uε2j−1∞, w∗uε1 · · ·uε2j−1vε2j∞]

+
∑
j

[∞, w∗∞, w∗vuε1 · · ·uε2j−1∞, w∗vuε1 · · ·uε2j−1vε2j∞]

To simplify this formula, we can apply g−1, (gv)−1, (w∗)−1, (w∗v)−1 to all
terms in each of the respective lines. We also observe that l = w∗w fixes ∞ so
that w∗(w(∞)) = w∗(0) = ∞ hence (w∗)−1(∞) = 0.

Write z0 = ∞ and for j ≥ 1

zj = ε1x+
1

ε2x+
1

· · ·+
1

εjx

so that uε1vε2 · · · vε2j∞ = z2j .

Recall that g = uε0vε1 · · · vεk and εℓ−i = ε−i = −εi provided that i is not
divisible by p. If ℓ < p, we get g = u−εℓv−εℓ−1 · · · v−ε2u−ε1v−1 hence

g−1∞ = vuε1vε2 · · ·uεℓ∞ = v(zℓ−1).
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If ℓ > p, recall from Lemma 1 that uε0vε1 · · · vε2p−1 = 1 which implies
g−1 = uε1vε2 · · · vε2p−1−ℓ . This finally gives g−1(∞) = z2p−1−ℓ.

A nice way to synchronize these two formulas is to notice that we also
have uε1 · · · vε2p = 1. Hence for even n < p: z2p−n = uε1 · · · vε2p−n∞ =
(uε2p−n+1 · · · vε2p)−1∞ = v−1uε1 · · ·uεn−1∞ = v−1(zn−2). This shows that the
formula for k > p is the same as for k < p and moreover, we get z2p−2 = v−1(∞).
Hence we can write in any case:

βp,q =
∑
j

(
[v(zℓ−1) :∞ :z2j−2 :z2j ]− [zℓ−1 :z2p−2 :z2j−2 :z2j ]− [0 :∞ :z2j−2 :z2j ]

+[0 :z2p−2 :z2j−2 :z2j ]
)

which can be reordered as follows:

βp,q =
∑
j

(
[v(zℓ−1) :∞ :z2j−2 :z2j ] + [∞ :0 :z2j−2 :z2j ] + [0 :z2p−2 :z2j−2 :z2j ]

+[z2p−2 :zℓ−1 :z2j−2 :z2j ]
)

Computing explicitly the cross-ratios, we get the formula of Theorem 1.

Remark 1. Consider the cases p = 2n + 1, q = 1 so that ℓ = 2p − 1 and
zℓ−1 = z2p−2. We observe that ε1 = · · · = εp−1 = 1 so that the family of
polynomials Pj is a variant of the Chebyshev polynomial. In particular, its
roots are 2i cos(πj/p) for j = 1, . . . , p − 1. In the last formula for βp,q, all
elements belong to the circle of imaginary numbers, so that their cross ratio is
real. This shows that the volume of these knots vanishes, as expected. One can
observe that their Bloch invariant also vanishes, as they belong to a totally real
number field whose Bloch group vanishes thanks to Borel’s theorem, see [NY].

6 A formula for ζk(2)?

This paragraph is of more speculative nature and asks whether one can compute
explicitely ζk(2) where k is the trace field of K(p, q) and ζk is the Dedekind zeta
function. For arithmetic varieties, the volume is known to be proportional to
ζk(2) where the proportionality factor depends on arithmetic invariants, see
[MR, Chapter 11]. Among two-bridge knots, only the figure-eight knot K(5, 3)
is arithmetic, yielding the well-known formula

V (5, 3) = 6Λ(π/3) = 3D(j) =
9
√
3

π2
ζQ(j)(2)

where Λ is the Lobatchevsky function and j = exp(2iπ/3).
In this case, one has Pp−1 = x4 − x2 + 1, z0 = ∞, z2 = x− 1/x = i, z4 = 0,

ℓ = 3. All terms in the formula vanish except two terms: [v(z2) : ∞ : z2 : z4] =
[(x − i)−1 : ∞ : i : 0] = [1 − x2] = [−j2] and [0 : z8 : z0 : z2] = [0 : −1/x : ∞ :

11



i] = [x−2] = [−j2]. Applying D and summing the terms yield the formula for
V (5, 3).

A more subtle example is given by the knot K(7, 3) (the knot 5.2 in Rolf-
sen’s table) whose volume is approximately 2, 82812208833078 and three times
the volume of the Weeks manifold, hence directly related to ζk(2) where k =
Q[t]/(t3 − t − 1). Precisely we have for t the complex root of t3 − t − 1 with
positive imaginary part

V (7, 3) = 6D(t) =
9(23)3/2

4π4
ζk(2).

We cannot expect that such formulas still hold for bigger values of p, however
it is known that ζk(2) can be expressed with products of values of D on algebraic
numbers, see [Z86].

Numerical experiments show that the trace fields of K(p, q) tend to have
class number equal to one and a lot of complex embeddings (in the case q > 1).
For instance in [M], the author proved that the number of real embeddings of k

is more than 1
2 |
∑p−1

j=1 εj |. Let O be the ring of integers of k: the number ζk(2) is

related to the volume of the quotient (H2)r1×(H3)r2/SL2(O) where d = r1+2r2
is the dimension of k over Q. The cusp corresponding to ∞ has stabilizer equal
to the Borel subgroup B ⊂ SL2(O), itself commensurable with the semi-direct
product O ⋊ O×. This means that, provided that the class number is equal
to 1, the corresponding fundamental class of the cusp in Hd(B,Z) vanishes in
Hd(SL2(O),Z). Finding an explicit (d + 1)-chain bounding it would yield a
formula for ζk(2) in the spirit of the present article. Of course, our techniques
should be adapted as they are available only in low dimensions.
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[M] J. Marché, Signatures of TQFTs and trace fields of two-bridge knots
arXiv:2309.03656

[NY] W. D. Neumann and J. Yang, Bloch invariants of hyperbolic 3-manifolds.
Duke Math. J. 96, No. 1, 29-59 (1999).

[R] R. Riley, Parabolic representations of knot groups. I. Proc. Lond. Math.
Soc., III. Ser. 24, 217-242 (1972).

[Z86] D. Zagier, Hyperbolic manifolds and special values of Dedekind zeta-
functions. Invent. Math., 83, 285-301 (1986).

[Z07] D. Zagier, The dilogarithm function. In Frontiers in number theory,
physics, and geometry. II, pages 3–65. Springer, Berlin, 2007.

13


