Character varieties and skein modules

Julien Marché
IMJ-PRG Université Pierre et Marie Curie

May 2015

Introduction

Given a finitely generated group Γ, its character variety will be informally the space

$$
X(\Gamma)=\operatorname{Hom}\left(\Gamma, \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})
$$

Character varieties have many applications including

Introduction

Given a finitely generated group Γ, its character variety will be informally the space

$$
X(\Gamma)=\operatorname{Hom}\left(\Gamma, \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})
$$

Character varieties have many applications including

- Geometrization in dimension 2: Teichmüller spaces of surfaces.

Introduction

Given a finitely generated group Γ, its character variety will be informally the space

$$
X(\Gamma)=\operatorname{Hom}\left(\Gamma, \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})
$$

Character varieties have many applications including

- Geometrization in dimension 2: Teichmüller spaces of surfaces.
- Geometrization in dimension 3: hyperbolic manifold have a "geometric representation" into $\mathrm{SL}_{2}(\mathbb{C})$.

Introduction

Given a finitely generated group Γ, its character variety will be informally the space

$$
X(\Gamma)=\operatorname{Hom}\left(\Gamma, \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})
$$

Character varieties have many applications including

- Geometrization in dimension 2: Teichmüller spaces of surfaces.
- Geometrization in dimension 3: hyperbolic manifold have a "geometric representation" into $\mathrm{SL}_{2}(\mathbb{C})$.
- 3-dimensional topology via "Culler-Shalen" theory: exceptional surgeries, Smith theorem, etc...

Introduction

Given a finitely generated group Γ, its character variety will be informally the space

$$
X(\Gamma)=\operatorname{Hom}\left(\Gamma, \mathrm{SL}_{2}(\mathbb{C})\right) / \mathrm{SL}_{2}(\mathbb{C})
$$

Character varieties have many applications including

- Geometrization in dimension 2: Teichmüller spaces of surfaces.
- Geometrization in dimension 3: hyperbolic manifold have a "geometric representation" into $\mathrm{SL}_{2}(\mathbb{C})$.
- 3-dimensional topology via "Culler-Shalen" theory: exceptional surgeries, Smith theorem, etc...
- Topological quantum field theory (Jones polynomials) is a "quantization" of character varieties.

Plan of the talk

First Part: Algebraic geometry of character varieties

- Construction as an algebraic quotient
- The skein module construction
- A theorem of K. Saito and its consequences
- Reidemeister torsion as a rational volume form

Plan of the talk

First Part: Algebraic geometry of character varieties

- Construction as an algebraic quotient
- The skein module construction
- A theorem of K. Saito and its consequences
- Reidemeister torsion as a rational volume form

Second part: Skein module at first order

- Symplectic structure of character varieties of surfaces
- Character varieties of 3-manifolds with boundary
- A conjecture on the skein module at first order
- Formal second derivative and self intersection

The structure of the character variety is that of a scheme. This non-naive point of view has the following motivations:

The structure of the character variety is that of a scheme. This non-naive point of view has the following motivations:

- Study unreduced points: the tangent space of a representation has a topological interpretation.

The structure of the character variety is that of a scheme. This non-naive point of view has the following motivations:

- Study unreduced points: the tangent space of a representation has a topological interpretation.
- Character varieties are "defined over \mathbb{Z} ". Its arithmetic properties should have relations with topology.

The structure of the character variety is that of a scheme. This non-naive point of view has the following motivations:

- Study unreduced points: the tangent space of a representation has a topological interpretation.
- Character varieties are "defined over \mathbb{Z} ". Its arithmetic properties should have relations with topology.
- The algebra defining the character variety has a topological interpretation (skein algebra).

The GIT quotient

Fix a ring k with characteristic 0 once for all and set

$$
A(\Gamma)=k\left[X_{i, j}^{\gamma}, i, j \in\{1,2\}, \gamma \in \Gamma\right] /\left(\operatorname{det}\left(X^{\gamma}\right)-1, X^{\gamma \delta}-X^{\gamma} X^{\delta}\right)
$$

This algebra defines the representation variety thanks to the following universal property for any k-algebra R :

$$
\operatorname{Hom}_{k-\mathrm{alg}}(A(\Gamma), R)=\operatorname{Hom}\left(\Gamma, \mathrm{SL}_{2}(R)\right)
$$

The GIT quotient

Fix a ring k with characteristic 0 once for all and set

$$
A(\Gamma)=k\left[X_{i, j}^{\gamma}, i, j \in\{1,2\}, \gamma \in \Gamma\right] /\left(\operatorname{det}\left(X^{\gamma}\right)-1, X^{\gamma \delta}-X^{\gamma} X^{\delta}\right)
$$

This algebra defines the representation variety thanks to the following universal property for any k-algebra R :

$$
\operatorname{Hom}_{k-\mathrm{alg}}(A(\Gamma), R)=\operatorname{Hom}\left(\Gamma, \mathrm{SL}_{2}(R)\right)
$$

Definition

Let $\mathrm{SL}_{2}(k)$ act on the space $\operatorname{Hom}\left(\Gamma, \mathrm{SL}_{2}\right)$ by conjugation. We define the character variety of Γ and denote by $X(\Gamma)$ the spectrum of the algebra $A(\Gamma)^{\mathrm{SL}_{2}}$ of invariants.

Standard arguments of Geometric Invariant theory implies the following theorem:

Theorem

If k is algebraically closed, there is a bijection between the following sets:

- The k-points of $X(\Gamma)$ or equivalently $\operatorname{Hom}_{k-\operatorname{alg}}\left(A(\Gamma)^{\mathrm{SL}_{2}}, k\right)$
- The closed orbits of $\mathrm{SL}_{2}(k)$ acting on $\operatorname{Hom}\left(\Gamma, \mathrm{SL}_{2}(k)\right)$
- The conjugacy classes of semi-simple representations of Γ into $\mathrm{SL}_{2}(k)$
- The characters of representations in $\operatorname{Hom}\left(\Gamma, \mathrm{SL}_{2}(k)\right)$.

The scheme structure is encoded in the algebra $A(\Gamma)^{\mathrm{SL}_{2}}$. What are generators and relations for this algebra?

The skein algebra

Definition
We define the skein character variety $X_{s}(\Gamma)$ as the spectrum of $B(\Gamma)=k\left[Y_{\gamma}, \gamma \in \Gamma\right] /\left(Y_{1}-2, Y_{\alpha \beta}+Y_{\alpha \beta^{-1}}-Y_{\alpha} Y_{\beta}\right.$ with $\left.\alpha, \beta \in \Gamma\right)$

The skein algebra

Definition

We define the skein character variety $X_{s}(\Gamma)$ as the spectrum of

$$
B(\Gamma)=k\left[Y_{\gamma}, \gamma \in \Gamma\right] /\left(Y_{1}-2, Y_{\alpha \beta}+Y_{\alpha \beta^{-1}}-Y_{\alpha} Y_{\beta} \text { with } \alpha, \beta \in \Gamma\right)
$$

- $B(\Gamma)$ is a finitely generated k-algebra.

The skein algebra

Definition

We define the skein character variety $X_{s}(\Gamma)$ as the spectrum of
$B(\Gamma)=k\left[Y_{\gamma}, \gamma \in \Gamma\right] /\left(Y_{1}-2, Y_{\alpha \beta}+Y_{\alpha \beta^{-1}}-Y_{\alpha} Y_{\beta}\right.$ with $\left.\alpha, \beta \in \Gamma\right)$

- $B(\Gamma)$ is a finitely generated k-algebra.
- Any representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ gives rise to an algebra morphism $\chi_{\rho}: B(\Gamma) \rightarrow k$ by the formula $\chi_{\rho}\left(Y_{\gamma}\right)=\operatorname{Tr} \rho(\gamma)$.

The skein algebra

Definition

We define the skein character variety $X_{s}(\Gamma)$ as the spectrum of

$$
B(\Gamma)=k\left[Y_{\gamma}, \gamma \in \Gamma\right] /\left(Y_{1}-2, Y_{\alpha \beta}+Y_{\alpha \beta^{-1}}-Y_{\alpha} Y_{\beta} \text { with } \alpha, \beta \in \Gamma\right)
$$

- $B(\Gamma)$ is a finitely generated k-algebra.
- Any representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ gives rise to an algebra morphism $\chi_{\rho}: B(\Gamma) \rightarrow k$ by the formula $\chi_{\rho}\left(Y_{\gamma}\right)=\operatorname{Tr} \rho(\gamma)$.

Remark

This is a consequence of the famous trace relation:

$$
\operatorname{Tr}(A B)+\operatorname{Tr}\left(A B^{-1}\right)=\operatorname{Tr}(A) \operatorname{Tr}(B) \quad \forall A, B \in \mathrm{SL}_{2}(k)
$$

The character of the tautological representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(A(\Gamma))$ defined by $\rho(\gamma)=X^{\gamma}$ gives a map

$$
\Phi: B(\Gamma) \rightarrow A(\Gamma)^{\mathrm{SL}_{2}}
$$

The character of the tautological representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(A(\Gamma))$ defined by $\rho(\gamma)=X^{\gamma}$ gives a map

$$
\Phi: B(\Gamma) \rightarrow A(\Gamma)^{\mathrm{SL}_{2}}
$$

Theorem (P,B-H, P-S)
The map Φ is an isomorphism.

The character of the tautological representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(A(\Gamma))$ defined by $\rho(\gamma)=X^{\gamma}$ gives a map

$$
\Phi: B(\Gamma) \rightarrow A(\Gamma)^{\mathrm{SL}_{2}}
$$

Theorem (P,B-H, P-S)
The map Φ is an isomorphism.

- Up to nilpotent elements in D. Bullock. Rings of $\mathrm{SL}_{2}(\mathbb{C})$-characters and the Kauffman bracket skein module. Comment. Math. Helv., 72, no.4, (1997), 521-542.

The character of the tautological representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(A(\Gamma))$ defined by $\rho(\gamma)=X^{\gamma}$ gives a map

$$
\Phi: B(\Gamma) \rightarrow A(\Gamma)^{\mathrm{SL}_{2}}
$$

Theorem (P,B-H, P-S)
The map Φ is an isomorphism.

- Up to nilpotent elements in D. Bullock. Rings of $\mathrm{SL}_{2}(\mathbb{C})$-characters and the Kauffman bracket skein module. Comment. Math. Helv., 72, no.4, (1997), 521-542.
- J. H. Przytycki and A. S. Sikora. On skein algebras and SL2(C)-character varieties. Topology, 39, (2000) citing

The character of the tautological representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(A(\Gamma))$ defined by $\rho(\gamma)=X^{\gamma}$ gives a map

$$
\Phi: B(\Gamma) \rightarrow A(\Gamma)^{\mathrm{SL}_{2}}
$$

Theorem (P,B-H, P-S)

The map Φ is an isomorphism.

- Up to nilpotent elements in D. Bullock. Rings of $\mathrm{SL}_{2}(\mathbb{C})$-characters and the Kauffman bracket skein module. Comment. Math. Helv., 72, no.4, (1997), 521-542.
- J. H. Przytycki and A. S. Sikora. On skein algebras and SL2(C)-character varieties. Topology, 39, (2000) citing
- G. W. Brumfiel and H.M. Hilden. SL_{2}-Representations of Finitely Presented Groups. Contemporary Mathematics, 187, American Mathematical Society, Providence (1995) citing

The character of the tautological representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(A(\Gamma))$ defined by $\rho(\gamma)=X^{\gamma}$ gives a map

$$
\Phi: B(\Gamma) \rightarrow A(\Gamma)^{\mathrm{SL}_{2}}
$$

Theorem (P,B-H, P-S)

The map Φ is an isomorphism.

- Up to nilpotent elements in D. Bullock. Rings of $\mathrm{SL}_{2}(\mathbb{C})$-characters and the Kauffman bracket skein module. Comment. Math. Helv., 72, no.4, (1997), 521-542.
- J. H. Przytycki and A. S. Sikora. On skein algebras and SL2(C)-character varieties. Topology, 39, (2000) citing
- G. W. Brumfiel and H.M. Hilden. SL_{2}-Representations of Finitely Presented Groups. Contemporary Mathematics, 187, American Mathematical Society, Providence (1995) citing
- C. Procesi. A formal inverse to the Cayley-Hamilton Theorem. Journal of algebra, 107, (1987), 63-74.

The Kauffman bracket

If M is an oriented compact 3-manifold (maybe with boundary), there is a topological interpretation of the algebra $B(\Gamma)$.
Let R be a ring and $t \in R^{\times}$be an invertible element. We define $S(M, t)$ as the free R-module generated by banded links in M quotiented by the relations

The Kauffman bracket

If M is an oriented compact 3-manifold (maybe with boundary), there is a topological interpretation of the algebra $B(\Gamma)$.
Let R be a ring and $t \in R^{\times}$be an invertible element. We define $S(M, t)$ as the free R-module generated by banded links in M quotiented by the relations

Proposition

If $R=k$ and $t=-1$ then $S(M,-1) \simeq B(\Gamma)$ (disjoint union product) where $\Gamma=\pi_{1}(M)$.

Let Σ be a surface (maybe with boundary) and L be a banded link in $M=\Sigma \times[0,1]$. By resolving crossings of the projection on Σ and removing trivial circles one get the following

Theorem
The skein module $S(M, t)$ is a free R-module generated by multicurves (embedded curves in Σ without trivial components).

Let Σ be a surface (maybe with boundary) and L be a banded link in $M=\Sigma \times[0,1]$. By resolving crossings of the projection on Σ and removing trivial circles one get the following

Theorem

The skein module $S(M, t)$ is a free R-module generated by multicurves (embedded curves in Σ without trivial components).

Application

One has $X\left(F_{2}\right)=\mathbb{A}^{3}$.

Proof.

Set $F_{2}=\langle a, b\rangle$ be the fundamental group of Σ, a disc with two holes. A multicurve is a disjoint union of copies of a, b and $a b$, hence $B\left(F_{2}\right)=k\left[Y_{a}, Y_{b}, Y_{a b}\right]$.

K. Saito's theorem

Lemma (Culler-Shalen)

A representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ is absolutely irreducible if and only if there exists $\alpha, \beta \in \Gamma$ such that $\operatorname{Tr} \rho[\alpha, \beta] \neq 2$.

Definition
Set $\Delta_{\alpha, \beta}=Y_{[\alpha, \beta]}-2=Y_{\alpha}^{2}+Y_{\beta}^{2}+Y_{\alpha \beta}^{2}-Y_{\alpha} Y_{\beta} Y_{\alpha \beta}-4$

K. Saito's theorem

Lemma (Culler-Shalen)

A representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ is absolutely irreducible if and only if there exists $\alpha, \beta \in \Gamma$ such that $\operatorname{Tr} \rho[\alpha, \beta] \neq 2$.

Definition
Set $\Delta_{\alpha, \beta}=Y_{[\alpha, \beta]}-2=Y_{\alpha}^{2}+Y_{\beta}^{2}+Y_{\alpha \beta}^{2}-Y_{\alpha} Y_{\beta} Y_{\alpha \beta}-4$

Theorem

Let R be a k-algebra, $\phi: B(\Gamma) \rightarrow R$ an algebra morphism, $\alpha, \beta \in \Gamma, A, B \in \mathrm{SL}_{2}(R)$ such that

- $\phi\left(\Delta_{\alpha, \beta}\right) \in R^{\times}$
- $\operatorname{Tr} A=\phi\left(Y_{\alpha}\right), \operatorname{Tr} B=\phi\left(Y_{\beta}\right)$ and $\operatorname{Tr}(A B)=\phi\left(Y_{\alpha \beta}\right)$.

Then, there exists a unique representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(R)$ such that $\rho(\alpha)=A, \rho(\beta)=B$ and $\operatorname{Tr} \rho(\gamma)=\phi\left(Y_{\gamma}\right)$ for all $\gamma \in \Gamma$.

Idea of the proof:

- Set $E_{1}=I d, E_{2}=A, E_{3}=B, E_{4}=A B$. Compute $\operatorname{det}\left(\operatorname{Tr}\left(E_{i} E_{j}\right)\right)=-\phi\left(\Delta_{\alpha, \beta}\right)^{2}$ and deduce that these matrices form a basis of $\mathrm{M}_{2}(R)$.

Idea of the proof:

- Set $E_{1}=I d, E_{2}=A, E_{3}=B, E_{4}=A B$. Compute $\operatorname{det}\left(\operatorname{Tr}\left(E_{i} E_{j}\right)\right)=-\phi\left(\Delta_{\alpha, \beta}\right)^{2}$ and deduce that these matrices form a basis of $\mathrm{M}_{2}(R)$.
- Given $\gamma \in \Gamma$, the traces $\operatorname{Tr}\left(\rho(\gamma) E_{i}\right)$ are prescribed by ϕ. Hence, one can write $\rho(\gamma)$ in the basis $\left(E_{i}\right)$.

Idea of the proof:

- Set $E_{1}=I d, E_{2}=A, E_{3}=B, E_{4}=A B$. Compute $\operatorname{det}\left(\operatorname{Tr}\left(E_{i} E_{j}\right)\right)=-\phi\left(\Delta_{\alpha, \beta}\right)^{2}$ and deduce that these matrices form a basis of $\mathrm{M}_{2}(R)$.
- Given $\gamma \in \Gamma$, the traces $\operatorname{Tr}\left(\rho(\gamma) E_{i}\right)$ are prescribed by ϕ. Hence, one can write $\rho(\gamma)$ in the basis $\left(E_{i}\right)$.
- Show that the formula obtained above is indeed a representation of Γ.

Idea of the proof:

- Set $E_{1}=I d, E_{2}=A, E_{3}=B, E_{4}=A B$. Compute $\operatorname{det}\left(\operatorname{Tr}\left(E_{i} E_{j}\right)\right)=-\phi\left(\Delta_{\alpha, \beta}\right)^{2}$ and deduce that these matrices form a basis of $\mathrm{M}_{2}(R)$.
- Given $\gamma \in \Gamma$, the traces $\operatorname{Tr}\left(\rho(\gamma) E_{i}\right)$ are prescribed by ϕ. Hence, one can write $\rho(\gamma)$ in the basis $\left(E_{i}\right)$.
- Show that the formula obtained above is indeed a representation of Γ.

Application
If k is algebraically closed, a point of $X_{s}(\Gamma)$ is the character of a representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$.

Idea of the proof:

- Set $E_{1}=I d, E_{2}=A, E_{3}=B, E_{4}=A B$. Compute $\operatorname{det}\left(\operatorname{Tr}\left(E_{i} E_{j}\right)\right)=-\phi\left(\Delta_{\alpha, \beta}\right)^{2}$ and deduce that these matrices form a basis of $\mathrm{M}_{2}(R)$.
- Given $\gamma \in \Gamma$, the traces $\operatorname{Tr}\left(\rho(\gamma) E_{i}\right)$ are prescribed by ϕ. Hence, one can write $\rho(\gamma)$ in the basis $\left(E_{i}\right)$.
- Show that the formula obtained above is indeed a representation of Γ.

Application
If k is algebraically closed, a point of $X_{s}(\Gamma)$ is the character of a representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$.

Proof.

Set $A=\left(\begin{array}{cc}\phi\left(Y_{\alpha}\right) & -1 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & u \\ -u^{-1} & \phi\left(Y_{\beta}\right)\end{array}\right)$ where
$u+u^{-1}=\phi\left(Y_{\alpha \beta}\right)$. Then apply Saito's theorem.

Brauer group

If k is arbitrary, one can solve the equation $u+u^{-1}=\phi\left(Y_{\alpha \beta}\right)$ only in a quadratic extension \hat{k} of k. The space

$$
M(\rho)=\operatorname{Span}_{k}\{\rho(\gamma), \gamma \in \Gamma\}
$$

is a central semi-simple k-algebra (indeed a quaternion algebra).

Brauer group

If k is arbitrary, one can solve the equation $u+u^{-1}=\phi\left(Y_{\alpha \beta}\right)$ only in a quadratic extension \hat{k} of k. The space

$$
M(\rho)=\operatorname{Span}_{k}\{\rho(\gamma), \gamma \in \Gamma\}
$$

is a central semi-simple k-algebra (indeed a quaternion algebra).
Proposition
Given an irreducible character $\phi: B(\Gamma) \rightarrow k$, there is a representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ with character ϕ iff $[M(\rho)]=0$ in the Brauer group $\operatorname{Br}(k)$.

Brauer group

If k is arbitrary, one can solve the equation $u+u^{-1}=\phi\left(Y_{\alpha \beta}\right)$ only in a quadratic extension \hat{k} of k. The space

$$
M(\rho)=\operatorname{Span}_{k}\{\rho(\gamma), \gamma \in \Gamma\}
$$

is a central semi-simple k-algebra (indeed a quaternion algebra).
Proposition
Given an irreducible character $\phi: B(\Gamma) \rightarrow k$, there is a representation $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ with character ϕ iff $[M(\rho)]=0$ in the Brauer group $\operatorname{Br}(k)$.

Example

There is a morphism $\phi: B\left(F_{2}\right) \rightarrow \mathbb{Q}$ given by $\phi\left(Y_{\alpha}\right)=\phi\left(Y_{\beta}\right)=\phi\left(Y_{\alpha \beta}\right)=1$. Is it a character of a representation $\rho: F_{2} \rightarrow \mathrm{SL}_{2}(\mathbb{Q})$?

Tangent space

Let $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ be a representation and $\chi_{\rho}: B(\Gamma) \rightarrow k$ be its character. One has by definition the following
$T_{\chi_{\rho}} X(\Gamma)=\left\{D: B(\Gamma) \rightarrow k, D(f g)=D(f) \chi_{\rho}(g)+\chi_{\rho}(f) D(g)\right\}$.
Theorem
If ρ is absolutely irreducible, the morphism $z \mapsto D$ where $D\left(Y_{\gamma}\right)=\operatorname{Tr}(\rho(\gamma) z(\gamma))$ from $H^{1}\left(\Gamma, \operatorname{Ad}_{\rho}\right)$ to $T_{\chi_{\rho}} X(\Gamma)$ is an isomorphism.

Tangent space

Let $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ be a representation and $\chi_{\rho}: B(\Gamma) \rightarrow k$ be its character. One has by definition the following
$T_{\chi_{\rho}} X(\Gamma)=\left\{D: B(\Gamma) \rightarrow k, D(f g)=D(f) \chi_{\rho}(g)+\chi_{\rho}(f) D(g)\right\}$.

Theorem

If ρ is absolutely irreducible, the morphism $z \mapsto D$ where $D\left(Y_{\gamma}\right)=\operatorname{Tr}(\rho(\gamma) z(\gamma))$ from $H^{1}\left(\Gamma, \operatorname{Ad}_{\rho}\right)$ to $T_{\chi_{\rho}} X(\Gamma)$ is an isomorphism.

Proof.

Construct the inverse map:

- from a derivation $D: B(\Gamma) \rightarrow k$ form the morphism

$$
\phi_{\epsilon}=\chi_{\rho}+\epsilon D: B(\Gamma) \rightarrow k[\epsilon] / \epsilon^{2} .
$$

Tangent space

Let $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ be a representation and $\chi_{\rho}: B(\Gamma) \rightarrow k$ be its
character. One has by definition the following
$T_{\chi_{\rho}} X(\Gamma)=\left\{D: B(\Gamma) \rightarrow k, D(f g)=D(f) \chi_{\rho}(g)+\chi_{\rho}(f) D(g)\right\}$.

Theorem

If ρ is absolutely irreducible, the morphism $z \mapsto D$ where
$D\left(Y_{\gamma}\right)=\operatorname{Tr}(\rho(\gamma) z(\gamma))$ from $H^{1}\left(\Gamma, \operatorname{Ad}_{\rho}\right)$ to $T_{\chi_{\rho}} X(\Gamma)$ is an isomorphism.

Proof.

Construct the inverse map:

- from a derivation $D: B(\Gamma) \rightarrow k$ form the morphism $\phi_{\epsilon}=\chi_{\rho}+\epsilon D: B(\Gamma) \rightarrow k[\epsilon] / \epsilon^{2}$.
- Invoke Saito's theorem to find a representation $\rho_{\epsilon}: \Gamma \rightarrow \mathrm{SL}_{2}\left(k[\epsilon] / \epsilon^{2}\right)$ with character ϕ_{ϵ}.

Tangent space

Let $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ be a representation and $\chi_{\rho}: B(\Gamma) \rightarrow k$ be its
character. One has by definition the following
$T_{\chi_{\rho}} X(\Gamma)=\left\{D: B(\Gamma) \rightarrow k, D(f g)=D(f) \chi_{\rho}(g)+\chi_{\rho}(f) D(g)\right\}$.

Theorem

If ρ is absolutely irreducible, the morphism $z \mapsto D$ where
$D\left(Y_{\gamma}\right)=\operatorname{Tr}(\rho(\gamma) z(\gamma))$ from $H^{1}\left(\Gamma, \operatorname{Ad}_{\rho}\right)$ to $T_{\chi_{\rho}} X(\Gamma)$ is an isomorphism.

Proof.

Construct the inverse map:

- from a derivation $D: B(\Gamma) \rightarrow k$ form the morphism

$$
\phi_{\epsilon}=\chi_{\rho}+\epsilon D: B(\Gamma) \rightarrow k[\epsilon] / \epsilon^{2} .
$$

- Invoke Saito's theorem to find a representation $\rho_{\epsilon}: \Gamma \rightarrow \mathrm{SL}_{2}\left(k[\epsilon] / \epsilon^{2}\right)$ with character ϕ_{ϵ}.
- Set $z(\gamma)=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \rho_{\epsilon}(\gamma) \rho^{-1}(\gamma)$.

Application

Let Γ be a finitely generated group and k be algebraically closed.
The following properties are equivalent.
(i) $X^{\mathrm{irr}}(\Gamma)$ is reduced of dimension 0
(ii) For all irreducible representations $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ one has $H^{1}\left(\Gamma, \operatorname{Ad}_{\rho}\right)=0$.

Application

Let Γ be a finitely generated group and k be algebraically closed.
The following properties are equivalent.
(i) $X^{\mathrm{irr}}(\Gamma)$ is reduced of dimension 0
(ii) For all irreducible representations $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ one has $H^{1}\left(\Gamma, \operatorname{Ad}_{\rho}\right)=0$.

Example

If ρ is trivial, the previous result does not hold.
However the tangent space of $X(\Gamma)$ at the trivial representation is the space of maps $f: \Gamma \rightarrow k$ satisfying the parallelogram identity for any $\gamma, \delta \in \Gamma$.

$$
f(\gamma \delta)+f\left(\gamma \delta^{-1}\right)=2 f(\gamma)+2 f(\delta)
$$

Tautological representations

Let Y be an irreducible component of $X(\Gamma)$ containing the character of an irreducible representation.
Question
Can we find a tautological representation i.e. $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k(Y))$ such that $\operatorname{Tr} \rho(\gamma)=Y_{\gamma}$?

Tautological representations

Let Y be an irreducible component of $X(\Gamma)$ containing the character of an irreducible representation.

Question

Can we find a tautological representation i.e. $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k(Y))$ such that $\operatorname{Tr} \rho(\gamma)=Y_{\gamma}$?

Answer

Let $B(\Gamma) \rightarrow k[Y]$ be the quotient map. There is an obstruction in $\operatorname{Br}(k(Y))$ for the existence of a tautological representation. If k is alg. closed and Y has dimension 1, then $\operatorname{Br}(k(Y))=0$.

Tautological representations

Let Y be an irreducible component of $X(\Gamma)$ containing the character of an irreducible representation.

Question

Can we find a tautological representation i.e. $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k(Y))$ such that $\operatorname{Tr} \rho(\gamma)=Y_{\gamma}$?

Answer

Let $B(\Gamma) \rightarrow k[Y]$ be the quotient map. There is an obstruction in $\operatorname{Br}(k(Y))$ for the existence of a tautological representation. If k is alg. closed and Y has dimension 1, then $\operatorname{Br}(k(Y))=0$.

Example

The trefoil knot has fundamental group $\Gamma=\left\langle u, v \mid u^{2}=v^{3}\right\rangle$. The representation $\rho(u)=\left(\begin{array}{cc}t & -1 \\ -1-t^{2} & -t\end{array}\right), \rho(v)=\left(\begin{array}{cc}\omega & 0 \\ 0 & -\omega^{2}\end{array}\right)$ is tautological where $\omega^{2}-\omega+1=0$.

Reidemeister torsion

Let Γ be the fundamental group of a 3-manifold M with boundary. Let Y be a component of $X(\Gamma)$ and $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k(Y))$ be a tautological representation.
The Reidemeister torsion of M is an element of

$$
\operatorname{det} H^{0}\left(\Gamma, \operatorname{Ad}_{\rho}\right) \otimes \operatorname{det} H^{1}(\Gamma, \operatorname{Ad} \rho)^{*} \otimes \operatorname{det} H^{2}\left(\Gamma, \operatorname{Ad}_{\rho}\right)
$$

Reidemeister torsion

Let Γ be the fundamental group of a 3-manifold M with boundary. Let Y be a component of $X(\Gamma)$ and $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k(Y))$ be a tautological representation.
The Reidemeister torsion of M is an element of

$$
\operatorname{det} H^{0}\left(\Gamma, \operatorname{Ad}_{\rho}\right) \otimes \operatorname{det} H^{1}(\Gamma, \operatorname{Ad} \rho)^{*} \otimes \operatorname{det} H^{2}\left(\Gamma, \operatorname{Ad}_{\rho}\right) .
$$

Proposition (Some technical assumptions omitted)

- $H^{1}\left(M, \operatorname{Ad}_{\rho}\right) \simeq \Omega_{k(Y) / k}^{1}$ that is rational differential forms on Y.
- $H^{2}\left(M, \operatorname{Ad}_{\rho}\right) \simeq H^{2}\left(\partial M, \operatorname{Ad}_{\rho}\right) \simeq H^{0}\left(\partial M, \operatorname{Ad}_{\rho}\right) *$.

Reidemeister torsion

Let Γ be the fundamental group of a 3-manifold M with boundary. Let Y be a component of $X(\Gamma)$ and $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k(Y))$ be a tautological representation.
The Reidemeister torsion of M is an element of

$$
\operatorname{det} H^{0}\left(\Gamma, \operatorname{Ad}_{\rho}\right) \otimes \operatorname{det} H^{1}(\Gamma, \operatorname{Ad} \rho)^{*} \otimes \operatorname{det} H^{2}\left(\Gamma, \operatorname{Ad}_{\rho}\right) .
$$

Proposition (Some technical assumptions omitted)

- $H^{1}\left(M, \operatorname{Ad}_{\rho}\right) \simeq \Omega_{k(Y) / k}^{1}$ that is rational differential forms on Y.
- $H^{2}\left(M, \operatorname{Ad}_{\rho}\right) \simeq H^{2}\left(\partial M, \operatorname{Ad}_{\rho}\right) \simeq H^{0}\left(\partial M, \operatorname{Ad}_{\rho}\right) *$.

Proposition

Choosing a natural basis for the latter space, one gets the following The Reidemeister torsion of M on Y, a d-dimensional component of $X(M)$ is a rational volume form on Y i.e. $\tau(M) \in \Omega_{k(Y) / k}^{d}$.

Example

Let M be a genus 2 handlebody.
Its fundamental group is $F_{2}=\langle a, b\rangle$ and its character variety is $B\left(F_{2}\right)=k[x, y, z]$ where $x=Y_{a}, y=Y_{b}, z=Y_{a b}$. Then

$$
\tau(M)=\frac{1}{2} d x \wedge d y \wedge d z
$$

Example

Let M be a genus 2 handlebody.
Its fundamental group is $F_{2}=\langle a, b\rangle$ and its character variety is $B\left(F_{2}\right)=k[x, y, z]$ where $x=Y_{a}, y=Y_{b}, z=Y_{a b}$. Then

$$
\tau(M)=\frac{1}{2} d x \wedge d y \wedge d z
$$

Example

Let N be the complement of the figure eight knot. Its fundamental group is $\Gamma=\left\langle t, a, b \mid t^{-1} a t=a b, t^{-1} b t=b a b\right\rangle$. One has:

$$
\tau(N)=-d Y_{a}-d Y_{b} .
$$

Example

Let M be a genus 2 handlebody.
Its fundamental group is $F_{2}=\langle a, b\rangle$ and its character variety is $B\left(F_{2}\right)=k[x, y, z]$ where $x=Y_{a}, y=Y_{b}, z=Y_{a b}$. Then

$$
\tau(M)=\frac{1}{2} d x \wedge d y \wedge d z
$$

Example

Let N be the complement of the figure eight knot. Its fundamental group is $\Gamma=\left\langle t, a, b \mid t^{-1} a t=a b, t^{-1} b t=b a b\right\rangle$. One has:

$$
\tau(N)=-d Y_{a}-d Y_{b}
$$

Question

- Study poles and residues of the torsion (including at ideal points).
- Find differential equations satisfied by the torsion (to follow).

Goldman Bracket

Let Σ be a closed surface. The Goldman bracket is a Poisson bracket $\{\cdot, \cdot\}: B(\Gamma) \otimes B(\Gamma) \rightarrow B(\Gamma)$ defined for simple curves γ, δ intersecting transversely by

$$
\left\{Y_{\gamma}, Y_{\delta}\right\}=\sum_{p \in \gamma \cap \delta} \epsilon_{p}\left(Y_{\gamma_{p} \cup \delta_{p}}-Y_{\gamma_{p} \cup \delta_{p}^{-1}}\right)
$$

It comes from an (algebraic) symplectic structure ω on $X(\Sigma)$. There are two other ways for introducing it

Goldman Bracket

Let Σ be a closed surface. The Goldman bracket is a Poisson bracket $\{\cdot, \cdot\}: B(\Gamma) \otimes B(\Gamma) \rightarrow B(\Gamma)$ defined for simple curves γ, δ intersecting transversely by

$$
\left\{Y_{\gamma}, Y_{\delta}\right\}=\sum_{p \in \gamma \cap \delta} \epsilon_{p}\left(Y_{\gamma_{p} \cup \delta_{p}}-Y_{\gamma_{p} \cup \delta_{p}^{-1}}\right)
$$

It comes from an (algebraic) symplectic structure ω on $X(\Sigma)$. There are two other ways for introducing it

- A cohomological one which will show that the form ω is non-degenerate.

Goldman Bracket

Let Σ be a closed surface. The Goldman bracket is a Poisson bracket $\{\cdot, \cdot\}: B(\Gamma) \otimes B(\Gamma) \rightarrow B(\Gamma)$ defined for simple curves γ, δ intersecting transversely by

$$
\left\{Y_{\gamma}, Y_{\delta}\right\}=\sum_{p \in \gamma \cap \delta} \epsilon_{p}\left(Y_{\gamma_{p} \cup \delta_{p}}-Y_{\gamma_{p} \cup \delta_{p}^{-1}}\right)
$$

It comes from an (algebraic) symplectic structure ω on $X(\Sigma)$. There are two other ways for introducing it

- A cohomological one which will show that the form ω is non-degenerate.
- A skein module approach which will show that ω is closed.

Twisted cohomology perspective

Set $\Gamma=\pi_{1}(\Sigma)$ and pick $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ irreducible. Then
$T_{\chi_{\rho}} X(\Gamma) \simeq H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right)$ and the cup product followed by the trace gives a non degenerate pairing:

$$
\omega_{\rho}: H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right) \otimes H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right) \rightarrow H^{2}(\Sigma, k) \simeq k
$$

This is related to the Goldman bracket by the formula

$$
\{f, g\}\left(\chi_{\rho}\right)=\left\langle\omega_{\rho}^{-1}, d f \wedge d g\right\rangle
$$

Twisted cohomology perspective

Set $\Gamma=\pi_{1}(\Sigma)$ and pick $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ irreducible. Then
$T_{\chi_{\rho}} X(\Gamma) \simeq H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right)$ and the cup product followed by the trace gives a non degenerate pairing:

$$
\omega_{\rho}: H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right) \otimes H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right) \rightarrow H^{2}(\Sigma, k) \simeq k
$$

This is related to the Goldman bracket by the formula

$$
\{f, g\}\left(\chi_{\rho}\right)=\left\langle\omega_{\rho}^{-1}, d f \wedge d g\right\rangle
$$

Remark

If M is a 3-manifold with boundary Σ and $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ is a representation, the natural map $H^{1}\left(M, \operatorname{Ad}_{\rho}\right) \rightarrow H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right)$ is the derivative of the restriction map $r: X(M) \rightarrow X(\Sigma)$.

Twisted cohomology perspective

Set $\Gamma=\pi_{1}(\Sigma)$ and pick $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ irreducible. Then $T_{\chi_{\rho}} X(\Gamma) \simeq H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right)$ and the cup product followed by the trace gives a non degenerate pairing:

$$
\omega_{\rho}: H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right) \otimes H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right) \rightarrow H^{2}(\Sigma, k) \simeq k
$$

This is related to the Goldman bracket by the formula

$$
\{f, g\}\left(\chi_{\rho}\right)=\left\langle\omega_{\rho}^{-1}, d f \wedge d g\right\rangle
$$

Remark

If M is a 3-manifold with boundary Σ and $\rho: \Gamma \rightarrow \mathrm{SL}_{2}(k)$ is a representation, the natural map $H^{1}\left(M, \operatorname{Ad}_{\rho}\right) \rightarrow H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right)$ is the derivative of the restriction map $r: X(M) \rightarrow X(\Sigma)$.

Theorem (Consequence of Poincaré duality)
The image of $D_{\rho} r: H^{1}\left(M, \operatorname{Ad}_{\rho}\right) \rightarrow H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right)$ is a Lagrangian subspace of $H^{1}\left(\Sigma, \operatorname{Ad}_{\rho}\right)$.

Skein module perspective

Let $M=\Sigma \times[0,1]$ and $R=k\left[t, t^{-1}\right]$. The skein module $S(M, t)$ has the structure of an associative algebra (stacking product): it becomes commutative when t goes to -1 .
Let $\epsilon: R \rightarrow k$ be the evaluation at -1 :

Skein module perspective

Let $M=\Sigma \times[0,1]$ and $R=k\left[t, t^{-1}\right]$. The skein module $S(M, t)$ has the structure of an associative algebra (stacking product): it becomes commutative when t goes to -1 .
Let $\epsilon: R \rightarrow k$ be the evaluation at -1 :
Theorem
For any $f, g \in S(M, t)$ one has $\epsilon\left(\frac{f g-g f}{t+1}\right)=\{\epsilon(f), \epsilon(g)\}$.

Skein module perspective

Let $M=\Sigma \times[0,1]$ and $R=k\left[t, t^{-1}\right]$. The skein module $S(M, t)$ has the structure of an associative algebra (stacking product): it becomes commutative when t goes to -1 .
Let $\epsilon: R \rightarrow k$ be the evaluation at -1 :
Theorem
For any $f, g \in S(M, t)$ one has $\epsilon\left(\frac{f g-g f}{t+1}\right)=\{\epsilon(f), \epsilon(g)\}$.

Definition

Let M be a 3 -manifold bounding Σ and denote by \mathfrak{p} the kernel of the map $S(\Sigma,-1) \rightarrow S(M,-1)$.
This ideal defines the variety $\overline{r(X(M))} \subset X(\Sigma)$.

Skein module perspective

Let $M=\Sigma \times[0,1]$ and $R=k\left[t, t^{-1}\right]$. The skein module $S(M, t)$ has the structure of an associative algebra (stacking product): it becomes commutative when t goes to -1 .
Let $\epsilon: R \rightarrow k$ be the evaluation at -1 :
Theorem
For any $f, g \in S(M, t)$ one has $\epsilon\left(\frac{f g-g f}{t+1}\right)=\{\epsilon(f), \epsilon(g)\}$.

Definition

Let M be a 3 -manifold bounding Σ and denote by \mathfrak{p} the kernel of the map $S(\Sigma,-1) \rightarrow S(M,-1)$.
This ideal defines the variety $\overline{r(X(M))} \subset X(\Sigma)$.

Proposition

The ideal \mathfrak{p} is Lagrangian in the sense that

$$
\forall f, g \in \mathfrak{p} \text { one has }\{f, g\} \in \mathfrak{p}
$$

The derived skein module

Definition

For a 3-manifold M, we call derived skein module and denote by $S^{\prime}(M,-1)$ the module $S(M, t)$ where we have set $R=k[\epsilon] /\left(\epsilon^{2}\right)$ and $t=-1+\epsilon$.

The derived skein module

Definition

For a 3-manifold M, we call derived skein module and denote by $S^{\prime}(M,-1)$ the module $S(M, t)$ where we have set $R=k[\epsilon] /\left(\epsilon^{2}\right)$ and $t=-1+\epsilon$.

Question
As $S(M,-1)$ represents the character variety $X\left(\pi_{1}(M)\right)$, what extra structure encodes $S^{\prime}(M,-1)$?

The derived skein module

Definition

For a 3-manifold M, we call derived skein module and denote by $S^{\prime}(M,-1)$ the module $S(M, t)$ where we have set $R=k[\epsilon] /\left(\epsilon^{2}\right)$ and $t=-1+\epsilon$.

Question
As $S(M,-1)$ represents the character variety $X\left(\pi_{1}(M)\right)$, what extra structure encodes $S^{\prime}(M,-1)$?

Example

If $M=\Sigma \times[0,1]$, using the basis given by multicurves, we get an isomorphism $S^{\prime}(M,-1) \simeq S(M,-1) \otimes k[\epsilon] /\left(\epsilon^{2}\right)$. The multiplication law reads

$$
\left(f+\epsilon f^{\prime}\right) \cdot\left(g+\epsilon g^{\prime}\right)=f g+\epsilon\left(f g^{\prime}+f^{\prime} g+\frac{1}{2}\{f, g\}\right)
$$

A conjecture on the derived skein module

Let M be a 3-manifold with boundary Σ and let $B \Sigma \simeq \Sigma \times[0,1]$ be a tubular neighborhood of Σ in M.
Let \mathfrak{p}^{\prime} be the kernel of the map induced by the inclusion $S^{\prime}(B \Sigma,-1) \rightarrow S^{\prime}(M,-1)$. An element of \mathfrak{p}^{\prime} reads $f+\epsilon f^{\prime}$ with $f \in \mathfrak{p}$.

A conjecture on the derived skein module

Let M be a 3-manifold with boundary Σ and let $B \Sigma \simeq \Sigma \times[0,1]$ be a tubular neighborhood of Σ in M.
Let \mathfrak{p}^{\prime} be the kernel of the map induced by the inclusion $S^{\prime}(B \Sigma,-1) \rightarrow S^{\prime}(M,-1)$. An element of \mathfrak{p}^{\prime} reads $f+\epsilon f^{\prime}$ with $f \in \mathfrak{p}$.

Definition

The quotient $R_{Y}=S(B \Sigma,-1) / \mathfrak{p}$ is the ring of functions on $Y=\overline{r(X(M))}$, a Lagrangian submanifold of $X(\Sigma)$. Given $f \in \mathfrak{p}$, the equation $\omega\left(X_{f}, \cdot\right)=d f$ defines a vector field X_{f} on Y called Hamiltonian vector field of f.

A conjecture on the derived skein module

Let M be a 3-manifold with boundary Σ and let $B \Sigma \simeq \Sigma \times[0,1]$ be a tubular neighborhood of Σ in M.
Let \mathfrak{p}^{\prime} be the kernel of the map induced by the inclusion $S^{\prime}(B \Sigma,-1) \rightarrow S^{\prime}(M,-1)$. An element of \mathfrak{p}^{\prime} reads $f+\epsilon f^{\prime}$ with $f \in \mathfrak{p}$.

Definition

The quotient $R_{Y}=S(B \Sigma,-1) / \mathfrak{p}$ is the ring of functions on $Y=\overline{r(X(M))}$, a Lagrangian submanifold of $X(\Sigma)$. Given $f \in \mathfrak{p}$, the equation $\omega\left(X_{f}, \cdot\right)=d f$ defines a vector field X_{f} on Y called Hamiltonian vector field of f.

Conjecture

- There is an algebraic operator P from vector fields on Y to functions on Y such that $f+\epsilon f^{\prime} \in \mathfrak{p}^{\prime} \Longleftrightarrow f^{\prime}=P\left(X_{f}\right)$.

A conjecture on the derived skein module

Let M be a 3-manifold with boundary Σ and let $B \Sigma \simeq \Sigma \times[0,1]$ be a tubular neighborhood of Σ in M.
Let \mathfrak{p}^{\prime} be the kernel of the map induced by the inclusion $S^{\prime}(B \Sigma,-1) \rightarrow S^{\prime}(M,-1)$. An element of \mathfrak{p}^{\prime} reads $f+\epsilon f^{\prime}$ with $f \in \mathfrak{p}$.

Definition

The quotient $R_{Y}=S(B \Sigma,-1) / \mathfrak{p}$ is the ring of functions on $Y=\overline{r(X(M))}$, a Lagrangian submanifold of $X(\Sigma)$. Given $f \in \mathfrak{p}$, the equation $\omega\left(X_{f}, \cdot\right)=d f$ defines a vector field X_{f} on Y called Hamiltonian vector field of f.

Conjecture

- There is an algebraic operator P from vector fields on Y to functions on Y such that $f+\epsilon f^{\prime} \in \mathfrak{p}^{\prime} \Longleftrightarrow f^{\prime}=P\left(X_{f}\right)$.
- This operator is determined by the Reidemeister torsion through the equation $P(X)=\operatorname{div}_{\tau}(X)=\frac{L_{X} \tau}{\tau}$.

Evidences

Example (The handlebody)

If H is a handlebody with boundary Σ and γ is a curve on Σ bounding a disc in H then $Y_{\gamma}-2 \in \mathfrak{p}^{\prime}$ by the first Kauffman relation.
Hence writing $f=X_{\gamma}-2$ we should have $P\left(X_{f}\right)=0$. However any representation $\rho: \pi_{1}(H) \rightarrow \mathrm{SL}_{2}(k)$ satisfies $\rho(\gamma)=I d$ hence $d f=\gamma \otimes \rho(\gamma)_{0}=0$. This implies that f vanishes identically on $\overline{X(H)}$ and $X_{f}=0$.

Evidences

Example (The handlebody)
If H is a handlebody with boundary Σ and γ is a curve on Σ bounding a disc in H then $Y_{\gamma}-2 \in \mathfrak{p}^{\prime}$ by the first Kauffman relation.
Hence writing $f=X_{\gamma}-2$ we should have $P\left(X_{f}\right)=0$. However any representation $\rho: \pi_{1}(H) \rightarrow \mathrm{SL}_{2}(k)$ satisfies $\rho(\gamma)=l d$ hence $d f=\gamma \otimes \rho(\gamma)_{0}=0$. This implies that f vanishes identically on $\overline{X(H)}$ and $X_{f}=0$.

Remark

The operator P should satisfy $P(f X)=f P(X)+X \cdot f$.
If $f+\epsilon f^{\prime} \in \mathfrak{p}^{\prime}$, and $g+\epsilon g^{\prime} \in S^{\prime}(B \Sigma,-1)$ then
$\left(f+\epsilon f^{\prime}\right) \cdot\left(g+\epsilon g^{\prime}\right) \in \mathfrak{p}^{\prime}$. Hence one should verify
$P\left(X_{f g}\right)=f g^{\prime}+f^{\prime} g+\frac{1}{2}\{f, g\}=P\left(X_{f}\right) g+X_{f} \cdot g \bmod \mathfrak{p}$.
But we check $X_{f g}=f X_{g}+g X_{f}=g X_{f} \bmod \mathfrak{p}$.

Motivations

The question comes from asymptotics of quantum invariants. Let K be a knot in S^{3} and $\left(J_{l}^{K}\right)$ be the sequence of colored Jones polynomials. We let L and M act on such sequences by the formulas

$$
(L f)_{l}=f_{l+1}, \quad(M f)_{n}=t^{2 n} f_{n}
$$

Motivations

The question comes from asymptotics of quantum invariants. Let K be a knot in S^{3} and $\left(J_{l}^{K}\right)$ be the sequence of colored Jones polynomials. We let L and M act on such sequences by the formulas

$$
(L f)_{l}=f_{l+1}, \quad(M f)_{n}=t^{2 n} f_{n}
$$

Theorem (q-holonomic Garoufalidis-Le)
There exists a non-commutative polynomial \mathcal{A} such that

$$
\mathcal{A}(t, L, M) J^{K}=0 .
$$

Motivations

The question comes from asymptotics of quantum invariants. Let K be a knot in S^{3} and $\left(J_{l}^{K}\right)$ be the sequence of colored Jones polynomials. We let L and M act on such sequences by the formulas

$$
(L f)_{l}=f_{l+1}, \quad(M f)_{n}=t^{2 n} f_{n} .
$$

Theorem (q-holonomic Garoufalidis-Le)
There exists a non-commutative polynomial \mathcal{A} such that

$$
\mathcal{A}(t, L, M) J^{K}=0 .
$$

Conjecture (AJ -conjecture)

Let \mathfrak{p} be the kernel of the inclusion $S(B \Sigma,-1) \rightarrow S\left(S^{3} \backslash K,-1\right)$. The set of polynomials $\mathcal{A}(-1, L, M)$ for \mathcal{A} annihilating the colored Jones polynomial generates \mathfrak{p}.

Proposition

Writing $t=-1+\epsilon+o(\epsilon)$, one has $\mathcal{A}=f+\epsilon f^{\prime}=o(\epsilon)$. The quantum polynomial \mathcal{A} annihilates J^{K} at first order iff $f+\epsilon f^{\prime} \in \mathfrak{p}^{\prime}$.

Proposition

Writing $t=-1+\epsilon+o(\epsilon)$, one has $\mathcal{A}=f+\epsilon f^{\prime}=o(\epsilon)$. The quantum polynomial \mathcal{A} annihilates J^{K} at first order iff $f+\epsilon f^{\prime} \in \mathfrak{p}^{\prime}$.

Remark

- The conjecture on the derived skein module states that the derived A-polynomial is related to the A-polynomial through the Reidemeister torsion.

Proposition

Writing $t=-1+\epsilon+o(\epsilon)$, one has $\mathcal{A}=f+\epsilon f^{\prime}=o(\epsilon)$. The quantum polynomial \mathcal{A} annihilates J^{K} at first order iff $f+\epsilon f^{\prime} \in \mathfrak{p}^{\prime}$.

Remark

- The conjecture on the derived skein module states that the derived A-polynomial is related to the A-polynomial through the Reidemeister torsion.
- Such formulas are already conjectured by S. Garoufalidis, S. Gukov and T. Dimofte. We give here a more precise form.

Proposition

Writing $t=-1+\epsilon+o(\epsilon)$, one has $\mathcal{A}=f+\epsilon f^{\prime}=o(\epsilon)$. The quantum polynomial \mathcal{A} annihilates J^{K} at first order iff $f+\epsilon f^{\prime} \in \mathfrak{p}^{\prime}$.

Remark

- The conjecture on the derived skein module states that the derived A-polynomial is related to the A-polynomial through the Reidemeister torsion.
- Such formulas are already conjectured by S. Garoufalidis, S. Gukov and T. Dimofte. We give here a more precise form.
- The relation between derived A-polynomial and torsion should shed some light on both invariants which are not fully understood.

The 2-jet of the holonomy function

Let M be a 3-manifold and γ be a knot in M. For a 1-form $\alpha \in \Omega^{1}\left(M, \mathrm{SL}_{2}(\mathbb{C})\right)$, its holonomy may be computed through

$$
\operatorname{Tr~Hol}_{\gamma} \alpha=\sum_{n \geq 0} \int_{0<t_{1}<\cdots<t_{n}<1} \operatorname{Tr}\left(\alpha\left(t_{1}\right) \cdots \alpha\left(t_{n}\right)\right)
$$

From which we get
$D_{\alpha} \operatorname{Tr} \operatorname{Hol}_{\gamma}(\beta)=\int_{\gamma} \operatorname{Tr} \beta \operatorname{Hol}_{\gamma}(\alpha)=\left\langle\beta, \gamma \otimes \rho(\gamma)_{0}\right\rangle$. Where $\gamma \otimes \rho(\gamma)_{0} \in C_{1}\left(M, \operatorname{Ad}_{\rho}\right)$ is a twisted cycle.
In the same way we have

$$
D_{\alpha}^{2} \operatorname{Tr} \operatorname{Hol}_{\gamma}\left(\beta_{1}, \beta_{2}\right)=\int_{\gamma \times \gamma} \operatorname{Tr}\left(\beta_{1} \operatorname{Hol}_{\gamma}(\alpha)^{\prime} \beta_{2} \operatorname{Hol}_{\gamma}(\alpha)^{\prime \prime}\right)
$$

We will interpret this formula with the help of a twisted 2-chain.

The formal second derivative

Let γ be a curve in M and γ^{+}be a parallel of γ.

The formal second derivative

Let γ be a curve in M and γ^{+}be a parallel of γ.
Definition
For a manifold N we denote by $C_{2} N$ the space N^{2} blown-up along the diagonal. We denote by $S N$ the preimage of the diagonal.

The formal second derivative

Let γ be a curve in M and γ^{+}be a parallel of γ.
Definition
For a manifold N we denote by $C_{2} N$ the space N^{2} blown-up along the diagonal. We denote by $S N$ the preimage of the diagonal.

Definition
Let $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}(k)$ be an irr. representation. We endow $C_{2} M$ with the coefficient system Bil_{ρ} of bilinear maps on $\mathrm{SL}_{2}(k)$.

The formal second derivative

Let γ be a curve in M and γ^{+}be a parallel of γ.
Definition
For a manifold N we denote by $C_{2} N$ the space N^{2} blown-up along the diagonal. We denote by $S N$ the preimage of the diagonal.

Definition
Let $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}(k)$ be an irr. representation. We endow $C_{2} M$ with the coefficient system Bil_{ρ} of bilinear maps on $\mathrm{SL}_{2}(k)$.

Definition

The $z_{2}(\gamma)$ is the twisted-two chain supported by $C_{2} \gamma$ which associates to $\xi \in\left(\mathrm{Ad}_{\rho}\right)_{x}$ and $\eta \in\left(\mathrm{Ad}_{\rho}\right)_{y}$ the element $\operatorname{Tr}(\xi A \eta B)$ where A (resp. B) is the holonomy of ρ from x to y (resp. from y to x).

Proposition

- One has $\partial z_{2} \gamma=\gamma \otimes \phi$ where $\phi(\xi, \eta)=\operatorname{Tr}(\rho(\gamma)[\xi, \eta])$. Hence $z_{2}(\gamma) \in \Lambda=H_{2}\left(C_{*}\left(C_{2} M, \operatorname{Bil}_{\rho}\right) / C_{*}\left(S M, \operatorname{Alt}_{\rho}\right)\right)$

Proposition

- One has $\partial z_{2} \gamma=\gamma \otimes \phi$ where $\phi(\xi, \eta)=\operatorname{Tr}(\rho(\gamma)[\xi, \eta])$. Hence $z_{2}(\gamma) \in \Lambda=H_{2}\left(C_{*}\left(C_{2} M, \operatorname{Bil}_{\rho}\right) / C_{*}\left(S M, \operatorname{Alt}_{\rho}\right)\right)$
- The map $\gamma \rightarrow k+\epsilon \Lambda$ given by $\gamma \mapsto-\operatorname{Tr} \rho(\gamma)+\epsilon z_{2}(\gamma)$ is a well-defined morphism.

Proposition

- One has $\partial z_{2} \gamma=\gamma \otimes \phi$ where $\phi(\xi, \eta)=\operatorname{Tr}(\rho(\gamma)[\xi, \eta])$. Hence $z_{2}(\gamma) \in \Lambda=H_{2}\left(C_{*}\left(C_{2} M, \operatorname{Bil}_{\rho}\right) / C_{*}\left(S M, \operatorname{Alt}_{\rho}\right)\right)$
- The map $\gamma \rightarrow k+\epsilon \Lambda$ given by $\gamma \mapsto-\operatorname{Tr} \rho(\gamma)+\epsilon z_{2}(\gamma)$ is a well-defined morphism.

Remark

- The cycle $z_{2}(\gamma)$ may be seen both like a formal second derivative of the trace function Y_{γ} and the "linking number" $\operatorname{Lk}\left(\gamma, \gamma^{+}\right)$.

Proposition

- One has $\partial z_{2} \gamma=\gamma \otimes \phi$ where $\phi(\xi, \eta)=\operatorname{Tr}(\rho(\gamma)[\xi, \eta])$. Hence $z_{2}(\gamma) \in \Lambda=H_{2}\left(C_{*}\left(C_{2} M, \operatorname{Bil}_{\rho}\right) / C_{*}\left(S M, \operatorname{Alt}_{\rho}\right)\right)$
- The map $\gamma \rightarrow k+\epsilon \Lambda$ given by $\gamma \mapsto-\operatorname{Tr} \rho(\gamma)+\epsilon z_{2}(\gamma)$ is a well-defined morphism.

Remark

- The cycle $z_{2}(\gamma)$ may be seen both like a formal second derivative of the trace function Y_{γ} and the "linking number" $\operatorname{Lk}\left(\gamma, \gamma^{+}\right)$.
- This construction proves half of the conjecture, i.e. the existence of the operator P.

Proposition

- One has $\partial z_{2} \gamma=\gamma \otimes \phi$ where $\phi(\xi, \eta)=\operatorname{Tr}(\rho(\gamma)[\xi, \eta])$. Hence $z_{2}(\gamma) \in \Lambda=H_{2}\left(C_{*}\left(C_{2} M, \operatorname{Bil}_{\rho}\right) / C_{*}\left(S M, \operatorname{Alt}_{\rho}\right)\right)$
- The map $\gamma \rightarrow k+\epsilon \Lambda$ given by $\gamma \mapsto-\operatorname{Tr} \rho(\gamma)+\epsilon z_{2}(\gamma)$ is a well-defined morphism.

Remark

- The cycle $z_{2}(\gamma)$ may be seen both like a formal second derivative of the trace function Y_{γ} and the "linking number" $\operatorname{Lk}\left(\gamma, \gamma^{+}\right)$.
- This construction proves half of the conjecture, i.e. the existence of the operator P.
- If M is closed and $H^{1}\left(M, \operatorname{Ad}_{\rho}\right)=0$ then $\Lambda \simeq k$, generated by the fiber of $S M \rightarrow M$. This gives an interpretation of the derived Kauffman bracket in that case.

