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Abstract

We compute the Kauffman skein module of the complement of
torus knots in S3. Precisely, we show that these modules are isomor-
phic to the algebra of Sl(2, C)-characters tensored with the ring of
Laurent polynomials.

Skein modules were introduced indenpendantly by V. Turaev in 1988 and
J. Przytycki in 1991 (see [TU88, HP92]) as a C[A±1]-module associated to
a 3-manifold M generated by banded links inside M with local relations
known as Kauffman relations, see for instance [HP92]. In the case of M =
S3 this construction reduces to the Jones polynomial and in the general
case, the evaluation of the skein module at roots of unity is known to fit
with the Topological Quantum Field Theory constructed in [BHMV]. At the
same time, skein modules were investigated for themselves. It was shown in
[TU, B97, PS00] that the skein modules of thickened surfaces Σ× [0, 1] were
non-commutative algebras quantizing in some sense the trace functions on the
Sl(2, C)-characters of Σ. D. Bullock proved in [B97] that the skein module of
M for A = −1 was a commutative algebra isomorphic up to nilpotents to the
algebra of trace functions on the Sl(2, C)-characters of M . Moreover, skein
modules were computed in [BL05, B94] for specific 3-manifolds as S2 × S1,
lens spaces, complement of (2, 2p + 1)-torus knots and twist knots. Except
for S2×S1, skein modules were shown to be free over C[A±1] and not to have
nilpotents when putting A = −1. Unfortunately we do not have a general
criterium for deciding when this should hold.

Some work of C. Frohman, R. Gelca and S. Garoufalidis [FGL02, G08]
showed a relation between skein modules and recurrence relations satisfied by
colored Jones polynomials. T. Q. T. Lê gave in [L06] an efficient description of
the skein module of the complement of two-bridge knots. These knots include
the previously known examples and the structure of their skein module were
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shown to play a role in the proof of the AJ-conjecture which relates the
family of colored Jones polynomials of a knot K to the Sl(2, C)-character
variety of its complement via the A-polynomial. This motivates our work
on the structure of skein modules of torus knots complements. We show the
following theorem where we denote by χ(M) the Sl(2, C)-character variety
of a manifold M , and by C[χ(M)] the algebra of regular functions on it.

Theorem 0.1. For all torus knots Tp,q, the Kauffman skein module of the
complement is isomorphic to C[A±1]⊗ C[χ(S3 \ Tp,q)]

In particular that the skein module is free and do not have nilpotents
when A = −1. Our proof uses standard tools of skein theory but has some
new ingredient: we introduce a filtration on the skein module coming from
the intersection number of a link with the separating annulus lying in the
complement of torus knots. We find a corresponding filtration in the char-
acter algebra and prove our assertion at the graded level. We hope that this
method will give some new informations on skein modules of 3-manifolds
containing incompressible surfaces.

After some settings and notations we prove in the first part some lemmas
on the relative skein module of a solid torus. This part contains the main
technical ingredient of the article. Then we describe the well-known character
algebra of torus knots and a degree on it. Finally, we define the filtration on
the skein module of torus knots and apply our previous results to compute
the associated graded spaces and prove our result.

1 Settings

Let M be an oriented 3-manifold with boundary (maybe empty). A banded
link in ∂M is by definition a collection l of oriented segments. A banded link
in M relative to l is an embedding of copies of S1× [0, 1] and [0, 1]× [0, 1] into
M such that the image of {0, 1} × [0, 1] coincides with l (with orientation).
We will call relative skein module and denote by S(M, l) the free C[A±1]-
module generated by isotopy classes of banded links modulo the Kauffman
relations (see [PS00]). Given a banded link L in S(M, l) homeomorhic to
S1 × [0, 1], we will denote by Ln the banded link obtained by replacing [0, 1]
by n disjoint subintervals.

Let S3 ⊂ C2 be defined by the equation |z|2 + |w|2 = 1. Let p, q be two
relatively prime integers: the torus knot Tp,q is the subset of S3 defined by
the equation zp = wq. The sphere S3 can be decomposed into two solid tori
T1 and T2 defined respectively by the inequations |z|p ≤ |w|q and |w|q ≤ |z|p.
These two solid tori intersect on a torus S containing the knot Tp,q. Let X
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be the complement in S3 of a small tubular neighborhood of Tp,q. We will
set X1 = X ∩ T1, X2 = X ∩ T2, R = X ∩ S.

2 Relative skein modules of solid tori

Fix a solid torus T = D2 × S1 and an integer p ≥ 1. Let l be the curve
parametrized by t 7→ (eit, eipt). For any integer k ≥ 0, we fix 2k real numbers
0 ≤ t1 < t2 < · · · < t2k < 2π and denote by S(T, 2k) the skein module of
T relative to the segments li = l(ti, ti + ε) for i ∈ {1, . . . , 2k} and ε small
enough. For simplicity we will refer to li as ”points” by taking ε arbitrarily
small.

We denote by S ′(T, 2k) the quotient of S(T, 2k) by the submodule gen-
erated by all banded tangles containing an arc parallel to l and joining two
end points consecutive in R/2πZ. We define an automorphism τ of S(T, 2k)
in the following way. By an isotopy, move li to li+1 for i < 2k and l2k to l1
by increasing the parameter t.

Lemma 2.1. The automorphism τ : S(T, 2k) → S(T, 2k) satisfies τ 2k = 1
and induces an automorphism of the quotient S ′(T, 2k).

Proof. Let γ be a banded tangle in S(T, 2k). Up to isotopy, we can suppose
that the intersection of γ with the thickened torus {|z| > 1 − ε} × S1 is a
collection of 2k segments s 7→ ((1−εs)eitj , (1−εs)eiptj) for s ∈ [0, 1]. After 2k
iterations of τ , the end points of γ come back to their initial position and the
2k segments have been replaced by s 7→ ((1− εs)ei(tj+2πs), (1− εs)eip(tj+2πs)).

There is an isotopy which send this tangle to the initial one. It consists
in sliding T along γ: precisely, the isotopy inside the torus {|z| < 1− ε}×S1

is given by the map Φs(z, w) = (e−2iπsz, e−2iπpsw). In the remaining part of
T foliated by tori {|z| = λ} we interpolate between the map given by Φs on
λ = 1 − ε and the identity on λ = 1. This shows that τ 2kγ is isotopic to γ
and so that τ 2k is the identity.

The second part of the lemma is clear as if γ contains an arc joining two
consecutive end points and parallel to l, then the same will be true for τγ.
Hence, τ factors through the quotient S ′(T, 2k).

We now give an explicit basis of S ′(T, 2k) with the description of τ on it.
We define e0

j ∈ S(T, 0) in the following way: let y be the banded link
{0}×S1 and identify l to a parallel copy of itself pushed into the solid torus.
Then, we set e0

j = lnym were j = pn + m and m < p. For k > 0 and
1 ≤ j ≤ p − 1, define ek

j as the union of k components constructed in the
following way. Consider the trivially framed curve {1} × S1, cut a small

3



Figure 1: The basis element e3
2

segment around (1, 1), push the remaining part inside T and cable it by k−1
parallel strands. We obtain an element in S(T, 2k− 2) whose end points are
numbered l2, . . . , l2k−1. We add to it the curve t 7→ (eit, eijt) pushed into T
with end points l1 and l2k. This defines the element ek

j , see Figure 2 for an
example. In the sequel we will modify it by multiplying it with a power of
A such that it satisfies the following lemma:

Lemma 2.2. For any k ∈ N, the elements ek
j form a basis of S ′(T, 2k) and

for k > 0, they satisfy the equation τek
j = ek

p−j.

Proof. As a first step, recall that T is homeomorphic to Σ × [0, 1] where
Σ is the annulus 1/2 ≤ |z| ≤ 1. We can suppose that the 2k end points
are on S1×{1/2}. A standard argument (see [PS00]) involving Reidemeister
theorem implies that S(T, 2k) is the free module generated by isotopy classes
of multicurves on Σ, that is submanifolds of dimension 1 whose boudary
coincide with the end points and without closed component bounding a disc.
Using this description, we see that most of the basis elements vanish in
S ′(T, 2k) because all curves in Σ joining two end points are either parallel to
the boundary or wind once around Σ. It follows that S ′(T, 2k) is generated
by the elements yn which by definition are formed by k arcs winding once
around Σ and n parallel copies of {|z| = 1/2} × {1/2}. We obtain in this
way a surjective map φ : Z[A±1, y] → S ′(T, 2k).

Let zn be the element of S(T, 2k) with k − 1 arcs winding once around
Σ and a boundary parallel arc between the last two end points. As this
element vanishes in S ′(T, 2k), the same is true for τ(zn). Moreover, these
vectors generate the kernel of φ because all the missing relations are presented
in this way.

We now invoque another standard result from skein theory: let γ be a
banded braid with n strands in [0, 1]3 joining X×{(1/2, 0)} to X×{(1/2, 1)}
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where X is a subset of [0, 1] with n elements. Let In be the submodule of
S([0, 1]3, 2n) generated by banded tangles containing boundary parallel arcs.
Then there exists k ∈ Z such that γ = Ak1n mod In where 1n is the trivial
tangle X ×{1/2}× [0, 1]. Applying this argument to the tangle τ(zn) which
is the closure of a braid with k − 1 + n + p generators, we find that it
decomposes as a polynomial in z of degree n + p− 1 with leading coefficient
invertible in Z[A±1]. Hence the quotient S ′(T, 2k) is free and generated by
zj for 0 ≤ j < p− 1.

Moreover, the elements ek
j are by construction closure of braids with k −

1 + j strands. There is a triangular change of basis with zj−1 which shows
that ek

j is also a basis of S ′(T, 2k). The same argument shows that e0
j is a

basis of S(T, 0) as it is the closure of a braid with j strands.
It remains to compute τek

j for positive k. Consider the ”exterior strand”
of ek

j which winds j times around T . If we apply τ , we move its right end
point along l in such a way that it winds p times around T and come to
the left position. Finally, this strand is a curve joining the two left positions
and winding p − j times around T . Up to isotopy, the tangles τek

j and ek
p−j

differ only in a neighborhood of the end points. They are closure of different
braids with 2k strands. The argument above shows that these two elements
are proportional up to a power of A, say τek

j = Aujek
p−j.

As τ 2k = 1, we find (Auj+up−j)k = 1 that is up−j = −uj. For j > p/2, we
replace ek

j with A−ujek
j such that the identity τek

j = ek
p−j holds for all j.

3 Character variety of torus knots

The decomposition of X into the subsets X1 and X2 gives a presentation of
π1(X) by Van Kampen theorem. The fundamental group of X1 is generated
by u : t 7→ (eit, 0) and the fundamental group of X2 is generated by v : t 7→
(0, eit). At the intersection, the annulus R has fundamental group generated
by w : t 7→ (eiqt,−eipt) assuming that q is even. The path w is homotopic
to uq and vp so that the fundamental group G = π1(X) is presented by
〈u, v|uq = vp〉.

3.1 Computation of the character variety

In this section, we describe the character variety of G denoted by χ(G), that
is the algebraic quotient Hom(G, Sl(2, C))//Sl(2, C). This algebraic variety
is well-known (see [Kl91]) but we give a full description as we need it for our
purposes.
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It is well known that the character variety of the free group with two
generators is isomorphic to C3 where the isomorphism sends a representation
ρ to the triple (x = Tr ρ(u), y = Tr ρ(v), z = Tr ρ(uv)). The surjection
〈u, v〉 → G gives an injection of χ(G) into C3 and we will identify χ(G) to
its image, an algebraic subset of C3.

The abelianization of G is isomorphic to Z it is generated by an element
[m] such that [u] = p[m] and [v] = q[m]. Hence, it is parametrized by the map
sending t to (u(t) = m(t)p, v(t) = m(t)q) where m(t) is a diagonal matrix
with entries t and 1/t. We obtain x = tp + t−p, y = tq + t−q, z = tp+q + t−p−q.
Setting s = t + t−1, we obtain that abelian characters form an affine curve
parametrized by s 7→ (Tp(s), Tq(s), Tp+q(s)) where Tn(t + t−1) = tn + t−n are
the Tchebychev polynomials.

Let ρ : G → Sl(2, C) be an irreducible representation. Then the matrix
ρ(u)q = ρ(v)p commutes with the image of ρ and hence is equal to ±1. Hence
there is a unique integer k ∈ [0, q] such that ekiπ/q is an eigenvalue of ρ(u). As
u cannot be equal to 1 or −1, k is in [1, q−1]. Again, there is a unique integer
l ∈ [1, p − 1] such that eliπ/p is an eigenvalue of ρ(v). The equation relating
u and v imply that k and l have the same parity. We denote by A the set of
admissible pairs (k, l): it follows from the discussion that the irreducible part
of the character variety χ(G) is included in

⋃
(k,l)∈A{cos(kπ/q), cos(lπ/p)}×

C.
Reciprocally, any element (x, y, z) in this subset correspond to a pair

of matrices (ρ(u), ρ(v)). As x = Tr ρ(u) = cos(kπ/q), we have necessarily
ρ(u)q = (−1)k, and on the other hand ρ(v)p = (−1)l. We conclude that
(x, y, z) corresponds to an element of χ(G). If this element is abelian, then
there is a basis such that ρ(u) and ρ(v) are diagonal with left upper en-
try equal respectively to eikπ/q and e±ilπ/p. Their product is then diagonal
and its trace is equal to cos(kπ/q ± lπ/p). This shows that in each line
{cos(kπ/q), cos(lπ/p)} × C, there are two abelian representations and the
remaining ones are irreducible.

We can conclude that χ(G) is a union of (p − 1)(q − 1)/2 disjoint affine
lines (irreducible part) and an other line (abelian part) meeting each of the
irreducible ones two times. Moreover, we have an explicit description of each
of these lines.

3.2 A filtration on the character algebra

For f in C[χ(G)], we set deg f = max(k,l)∈A degz f(cos(kπ/q), cos(lπ/p), z).
In other words, deg f is the maximal degree of the restriction of f to irre-
ducible components. A function f in C[χ(G)] has degree 0 if and only if it is
constant on irreducible components. Such a function can be explicitely given
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by the map g(t) = f(tp + t−p, tq + t−q, tp+q + t−p−q) which is a symetric poly-
nomial in t such that g(eiπ(k/p+l/q)) = g(eiπ(k/p−l/q)) for all k ∈ {1, . . . , p− 1}
and l ∈ {1, . . . , q − 1} with the same parity.

On the other hand, the map deg : C[χ(G)] → N defines a grading whose
graded space for d > 0 has dimension (p − 1)(q − 1)/2 and is isomorphic
to CA via the map sending f to the collection of highest coefficients of f
restricted to irreducible components of χ(G).

We remark that the filtration Fd associated to the degree is more natural
as it does not depend on a particular choice of coordinate: this filtration will
be given a geometric interpretation in the next section and will be our main
ingredient to prove the theorem.

4 A filtration on the skein module

Recall that the complement of the torus knot Tp,q is decomposed into two
parts X1 and X2 glued along an incompressible annulus R. Given a banded
link L in X, one can suppose up to isotopy that it is transverse to R. We
define its degree as half the geometric intersection number of L with R (which
is always an integer as R is separating). Using this notion, we define a
filtration of S(X) in the following way:

Fk(X) = span{L ∈ S(X), deg L ≤ k}.

Proposition 4.1. There is an isomorphism between F0 and F0⊗C[A±1] and
between Fk/Fk−1 and (Fk/Fk−1)⊗ C[A±1] for any k > 0.

Before entering into the proof, we remark that this proposition implies the
main theorem of the article. Indeed, if we take any basis of the graded spaces
Fk/Fk−1, the proposition give us a basis of Fk/Fk−1 as C[A±1]-module. By
lifting these elements to Fk for all k, we form a basis of S(X) which identifies
the skein module with C[χ(X)]⊗ C[A±1] and the proposition is proved.

Proof. Our strategy is to find elements generating the graduate space of (Fk).
By setting A = −1, we will show that they are independent in (Fk) which
will also prove that they are independant in (Fk).

We are forced to treat separately the cases k = 0 and k > 0.
An element of F0 is represented by a disjoint union of banded links in

S(X1) and S(X2). Using the basis e0
j of S(T, 0), we can present any element

of F0 as a tensor product e0
j1
⊗ e0

j2
∈ S(X1)⊗ S(X2). These elements can be

written ym1
1 ln1

1 ⊗ ym2
2 ln2

2 with m1 < p and m2 < q. But l1 and l2 are parallel
copies of Tp,q pushed into X1 and X2 which are isotopic to say l. Hence, the
family ym1

1 lnym2
2 generates F0 for n ≥ 0, m1 < p and m2 < q.
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Sending A to −1, these curves correspond up to sign to the following
elements of C[G]:

Tr(u)m1 Tr(uq)n Tr(v)m2 = xm1P nym2 where P = Tr(uq) = Tr(vp). These
functions belong to F0 as they are independant on z = Tr(uv). Moreover, in
the variable t, they read as (tpm1 + t−pm1)(tpq + t−pq)n(tqm2 + t−qm2). When
m1, m2, n take all their possible values, the degree of these polynomials take
distinct values. This shows that they are linearly independant on F0 and
hence on F0.

Let k be a positive integer. Any link L in Fk can be moved by an isotopy
such that the intersection points of L with R lie in a circle parallel to the
knot. In other words, the natural map φ : S(X1, 2k) ⊗ S(X2, 2k) → Fk is
surjective. Moreover, if the intersection of a link L with one side X1 contains
a trivial arc joining two consecutive boundary points, then we can push it by
an isotopy into X2 and reduce the degree by 1. This shows that φ induces
an other surjective map

φ : S ′(X1, 2k)⊗ S ′(X2, 2k) → Fk.

Next the operator τ acts on S ′(X1, 2k) by a fractional Dehn twist of order
1/2k. This implies that the link φ(τx⊗ τy) is isotopic to φ(x⊗ y). In other
words, we obtain a still surjective map

φ : S ′(X1, 2k)⊗ S ′(X2, 2k)/τ → F2k.

We now show that this map is an isomorphism by using the explicit basis
and computing the associated trace functions. Let ek

j1
⊗ ek

j2
be the basis of

S ′(X1, 2k)⊗ S ′(X2, 2k) given by Lemma 2.2. By the same lemma, this basis
satisfies τ(ek

j1
⊗ ek

j2
) = ek

p−j1
⊗ ek

q−j2
.

On the other hand, this basis correspond up to sign to the trace function
Tr(uv)k−1 Tr(uj1vj2). We need to compute the corresponding function in
Fk/Fk−1, that is we have to compute Tr(uivj) as a polynomial in x, y, z
which we do by the following trick using formal power series:

G =
∑
i,j

Tr(uivj)sitj = Tr((1− su)−1(1− tv)−1) =
Tr((1− su)(1− tv))

det(1− su) det(1− tv)
.

The last equality comes from the identity Tr(M−1) = Tr(M)/ det(M) for
any invertible 2× 2 matrix. Then we have det(1− su) = (1− sξ)(1− sξ−1)
and det(1− tv) = (1− tη)(1− tη−1) where ξ and η are eigenvalues of u and
v respectively.

We finally compute: G = 2−xt−ys+zst
(1−sξ)(1−sξ−1)(1−tη)(1−tη−1)

from which we deduce

that Tr(uivj) is a linear polynomial in z and that its leading coefficient is

8



(ξi−ξ−i)(ηj−ηj )
(ξ−ξ−1)(η−η−1)

. The proposition results from the following elementary linear
algebra lemma:

Lemma 4.2. The map C[xiyj]0<i<p,0<j<q/τ → CA sending xiyj to ((ξi −
ξ−i)(ηj − ηj))|ξ=eikπ/p,η=eilπ/q is an isomorphism where τ(xiyj) = xp−iyq−j.

Proof. The transformation Cp−1 → Cp−1 sending xi with 0 < i < p to
the vector (sin(πij/p))0<j<p is well known to be invertible (discrete Fourier
transform). Hence, there are unique elements Pk ∈ C[xi]0<i<p and Ql ∈
C[xj]0<j<q going to the vector δkδl ∈ CA. This shows that the map we
are considering is surjective and has to be an isomorphism for dimensional
reasons.

This proves finally the proposition as we have shown that the elements
ek

i ⊗ ek
j generate Fk/Fk−1 and are linearly independant on Fk/Fk−1 up to the

τ -ambiguity.
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