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Abstract. We introduce the notions of overcommutation and over-
commutation length in groups, and show that these concepts are closely
related to representations of the fundamental groups of 3-manifold and
their Heegaard genus. We give many examples including translations in
the affine group of the line and provide upper bounds for the overcom-
mutation length in SL2, related to the Steinberg relation.

1. Introduction

We say that two commuting elements g, h in a group G overcommute if
their lifts g̃, h̃ in any central extension G̃ of G still commute. It is equivalent
to ask that some class associated to (g, h) in H2(G,Z) vanishes (see Section
2). By bordism arguments, it is also equivalent to ask that there exists a
connected and oriented 3-manifold M with torus boundary and a morphism
ρ : π1(M) → G mapping the generators of the fundamental group of the
boundary to g and h respectively. We will say that M is an overcommuting
manifold for (g, h).

This latter point of view was explained to us by Ghys some years ago
and proves the existence of 3-manifolds with specific properties, with the
following paradigmatic example.

Let k be a field containing 1
6 . Results of Steinberg of the sixties imply

that for any x ∈ k \ {0, 1}, the matrices(
x 0
0 x−1

)
and

(
(1− x) 0

0 (1− x)−1

)
overcommute in SL2(k), see [H16] Section 3 for a condensed exposition or
Section 5 of this article. The reader familiar with K-theory will relate this
fact to the Steinberg relation1 {x, 1−x} = 0. Taking for instance k = C(x),
one gets a 3-manifold M which may be seen as a topological counterpart
of the Steinberg relation. Although we will not need it in this article, its
defining property can be formulated in terms of the A-polynomial of M by
saying that it is divisible by L+M−1 in the notation of [CCGLS94]. Com-
puter experiments show that the complexity of the A-polynomials tends to
grow very quickly and we could not find an A-polynomial with this property
in the census of the 200 simplest 3-manifolds. In this article we will show

1More precisely 2{x, 1− x} = 0

1
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how such a 3-manifold can be effectively constructed and prove that its Hee-
gaard genus is less than 26. As far as we know, the motivation of Ghys was
to provide a kind of “topological proof” of the Steinberg relation, observ-
ing that all proofs of this fundamental relation in K-theory involve obscure
computations. Clearly, we do not fulfil his expectations as we construct an
obscure 3-manifold from a well-known and obscure proof of the Steinberg
relation. In the last section, we provide extra motivations for finding a nice
Ghys’ manifold.

Going back to the original problem, we can use the Hopf formula to refor-
mulate the overcommutation in terms of a presentation G = F/R where F
is a free group. Two commuting elements g, h in G overcommute if and only
if there are lifts g̃, h̃ in F such that [g̃, h̃] ∈ [F,R]. We define the overcom-
mutation length of the pair (g, h) as the minimal number of commutators in
[F,R] needed to write down such an expression and we denote it by ocl(g, h).
Surprisingly, this number does not depend on the presentation and may be
interpreted as a complexity of the overcommuting pair (g, h) reminiscent
of the commutator length, see for instance [C09]. Our first result is the
following:

Theorem 1.1. Given elements g, h ∈ G which overcommute, the number
ocl(g, h) + 1 is the minimal Heegaard genus of an overcommuting manifold
for (g, h).

Moreover, the proof is constructive in the sense that one can algorithmi-
cally produce a 3-manifold from an expression of [g̃, h̃] in [F,R] and vice-
versa.

We then study in detail the case of the affine group of transformations of
the form z 7→ az + b with a ∈ k∗ and b ∈ k. One can show that translations
overcommute and one can even find a manifold which is overcommuting for
all pairs of translations. However, these manifolds are not so easy to find.
They have the following nice interpretation:

Proposition 1.2. A 3-manifold is overcommuting for translations if and
only if there exists a morphism λ : π1(M) → k∗ (the linear part) mapping
the boundary to 1 and such that the natural map H1(∂M, kλ)→ H1(M,kλ)
vanishes.

The minimal Heegaard genus of such manifolds is 3, and it is achieved by
the complement of a knot in the 0-surgery over the stevedore knot 61.

Here, the notation kλ means the vector space k with γ ∈ π1(M) acting
by γ.x = λ(γ)x. Notice that λ has to be non trivial otherwise the state-
ment would contradict Poincaré duality. In particular, M cannot be a knot
complement in S3.

Finally, we study the case of SL2(k). Our first task is to replace this group
by its universal central extension St2(K) where commutation is equivalent
to overcommutation. The latter group was introduced by Steinberg in terms
of a presentation F/R: we denote by S ⊂ F the set of relations defined by



OVERCOMMUTING PAIRS IN GROUPS AND 3-MANIFOLDS BOUNDING THEM 3

Steinberg which normally generate R. For x ∈ R, we also denote by lS(x)
the minimal number of conjugates of elements of S ∪ S−1 needed to write
x. Contrary to ocl, this number strongly depends on the presentation, but
it is much easier to compute.

Our main result is then the following:

Theorem 1.3. Let k be a field containing 1
6 and

√
2 and let St2(k) = F/R

be the standard presentation of the Steinberg group. For any g, h ∈ F which
commute in St2(k) we have

ocl(g, h) ≤ 5lS([g, h]) + 2.

Said informally, the overcommutation length ocl(g, h) is controlled by the
number of relations needed to prove that g and h commute in St2(k). This
contraction property looks non trivial and is shared by most 1-relator groups
(see for instance Example 5.2).

To end this introduction, we observe that one can define a simplicial
volume ||[g, h]|| of an overcommuting pair in the following way. Let BG be
a classifying space for G and let f : S1 × S1 → BG be a continuous map
such that f∗ maps the generators of π1(S1×S1) to g and h respectively. For
ε > 0, consider the set Xε of singular 2-cycles x =

∑
i λiσi ∈ Z2(S1×S1,R)

representing the fundamental class [S1 × S1] and such that
∑

i |λi| ≤ ε. We
define

||f ||ε = inf
{∑

j

|µj |, y =
∑

µjσj ∈ C3(BG,R), ∂y ∈ f∗Xε

}
and set ||[g, h]|| = lim infε→0 ||f ||ε. This definition is directly inspired from
[T80], Chap. 6. It is easy to show that this is well-defined and that if
G = π1(M) and g, h are the generators of the fundamental group of the
boundary, then ||[g, h]|| coincides with the simplicial volume of M .

Moreover, the following immediate proposition shows that the simplicial
volume is a lower bound for the complexity of any overcommuting manifold.

Proposition 1.4. Let g, h ∈ G be an overcommuting pair. For any over-
commuting manifold M for (g, h) we have

||[g, h]|| ≤ ||M ||.

For the example of two translations in the affine group, we prove the
following proposition in Section 4.

Proposition 1.5. Let k be a field containing 1
6 . If t1 and t2 are two trans-

lations in the affine group Aff(k) then ||[t1, t2]|| = 0.

However, we have more questions than answers concerning this simplicial
volume. Natural questions include: is the simplicial volume of Ghys’ exam-
ple positive? Or does there always exists a 3-manifold where the inequality
of Proposition 1.4 is an equality? Having little to say about this for the
moment, this topic will not be expanded further in this article.
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Plan of the paper: In Section 2, we define carefully the notion of
overcommutation and give many examples. In Section 3, we define the
overcommutation length and prove Theorem 1.1. Section 4 is devoted to the
case of the affine group and Section 5 to SL2(k), where we prove Theorem 1.3.

Acknowledgements: We would like to thank É. Ghys for asking and
re-asking about the mysterious Steinberg manifold and J. Barge for his inter-
esting remarks. We also thank an anonymous referee for helpful comments
and suggestions.

2. Overcommuting pairs

In a group G, we write [g, h] = ghg−1h−1 for g, h ∈ G. We fix a classifying
space BG and recall that for any connected CW-complex X, homotopy
classes of maps f : X → BG are in bijection with morphisms f∗ : π1(X)→
G.

Hence, topologically, a group element g ∈ G lies in the commutator sub-
group [G,G] exactly if there exists a compact orientable surface S with
one boundary component and a continuous map from S to BG so that the
boundary ∂S is mapped to the loop corresponding to g.

We provide an analogous criterion for the torus in BG defined by a
pair (g, h) of commuting elements g, h ∈ G to bound a compact orientable 3-
manifold M with toric boundary. Precisely, the map φ∗ : Z2 → G given
by φ∗(m,n) = gmhn corresponds to a continuous map φ : S1 × S1 → BG.
Bounding means there exists a continuous map Φ : M → BG which ex-
tends φ : ∂M = S1×S1 → BG. The following proposition is a combination
of well-known arguments.

Proposition 2.1. Let G be a group and g, h be two commuting elements of
G. The following assertions are equivalent.

(i) In any central extension 1 → Z → G̃ → G → 1, any lifts g̃, h̃ ∈ G̃
of g and h respectively commute.

(ii) Define the morphism φ∗ : Z2 → G by φ(m,n) = gmhn. Then the
map

H2(Z2,Z)→ H2(G,Z)

induced by φ∗ vanishes.
(iii) Given an extension 1 → R → F → G → 1 where F is a free group

and lifts g̃, h̃ ∈ F of g and h respectively, we have [g̃, h̃] ∈ [F,R].
(iv) There exists a compact orientable 3-manifold M with ∂M = S1×S1

and a representation ρ : π1(M)→ G such that

g = ρ(m) and h = ρ(l)

where m and l are the homotopy classes of S1 × {1} and {1} × S1

respectively.

Observe that in the Properties (i) and (iii), the condition does not depend
on the chosen lifts.
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Definition 2.2. Let G be a group. If g, h ∈ G satisfy the equivalent prop-
erties in Proposition 2.1, we say that they overcommute. A manifold M
satisfying Property (iv) of Proposition 2.1 is called an overcommuting man-
ifold for the pair (g, h).

Proof of Proposition 2.1. The equivalence of (ii) and (iii) is the content of
the following Hopf formula: H2(G,Z) = R∩[F, F ]/[F,R] and φ∗([S

1×S1]) =

[g̃, h̃], where g̃ and h̃ are any lifts of g and h in F .
To prove (i) =⇒ (iii), observe that the sequence 1→ R/[F,R]→ F/[F,R]→

G→ 1 is a central extension. Hence given lifts g̃, h̃ of g and h in F , we must
have by property (i) that [g̃, h̃] vanishes in F/[F,R], hence the result.

Reciprocally, we observe that because F is free, there is a morphism Φ :
F → G̃ making the following diagram commutative:

1 // R //

��

F //

Φ
��

G //

Id
��

1

1 // Z // G̃ // G // 1

Take g̃, h̃ lifts of g, h in F so that Φ(g̃),Φ(h̃) are lifts of g, h in G̃. By

property (iii), one can write [g̃, h̃] =
∏k
i=1[fi, ri]

ni for fi ∈ F, ri ∈ R and ni ∈
Z. We get[Φ(g̃),Φ(h̃)] =

∏k
i=1[Φ(fi),Φ(ri)]

ni . This vanishes because Φ(ri) ∈
Z, which by assumption lies in the center of G̃.

To prove (iv) =⇒ (ii), we recall that H2(Z2,Z) = H2(S1 × S1,Z) is
generated by the fundamental class [S1×S1] and that the representation ρ :
π1(M) → G is induced by a map Φ : M → BG so that we have Φ∗([S

1 ×
S1]) = Φ∗([∂M ]). As we can write [∂M ] = ∂z where z ∈ C3(M) represents
the fundamental class of M relative to the boundary, we get Φ∗([S

1×S1] =
∂Φ∗z = 0 ∈ H2(BG,Z).

Reciprocally, we can use bordism groups and observe that Ω2(BG) =
H2(BG,Z) = H2(G,Z). Hence the vanishing of Φ∗([S

1 × S1]) implies the
existence of a 3-manifold M with ∂M = S1×S1 and an extension Φ : M →
BG of Φ : S1 × S1 → BG. We will give below an alternative and more
constructive proof in Theorem 3.4. �

By Proposition 2.1, examples of overcommuting pairs are given by the
elements m, l ∈ π1(M), where M is a compact oriented 3-manifold with
toric boundary and m, l are generators of π1(∂M). A reformulation of the
proposition states that these examples are universal in the sense that any
other example is the homomorphic image of a topological one. One can also
restrict to irreducible ones as any 3-manifold M with torus boundary can be
written M = M ′#M ′′ where M ′ is closed and M ′′ is irreducible with torus
boundary.

Remark 2.3. The group SL2(Z) acts on overcommuting pairs by monomial
transformations generated by (g, h) 7→ (g, gh) and (g, h) 7→ (gh, h). At the
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level of the overcommuting 3-manifold, it simply consists in reparametrizing
the boundary torus. In the sequel, we will freely use this action.

We end this section with some examples and constructions of overcom-
muting pairs (g, h).

Example 2.4. Suppose that g, h are two elements in a group G such
that h =

∏n
i=1[xi, yi] where x1, . . . , yn commute with g. Then g and h over-

commute for the following topological reason: let Σ be a surface with genus n
and 1 boundary component. One can define a morphism π1(Σ × S1) →
G by sending the class of S1 to g and the standard generators of π1(Σ)
to x1, y1, . . . , xn, yn. The manifold Σ × S1 has a toric boundary and is an
overcommuting manifold for the pair (g, h). An explicit example is given
by a pair of disjoint and non-separating Dehn twists on a surface of genus
g > 3.

Example 2.5. Suppose that g, h1, h2 are three elements ofG such that (g, h1)

and (g, h2) are overcommuting pairs. Then, in any central extension G̃ of G

one has g̃h̃1 = h̃1g̃ and g̃h̃2 = h̃2g̃. In particular, [g̃, h̃1h̃2] = 1 and (g, h1h2)
is an overcommuting pair by Property (i) of Proposition 2.1. This can
be obtained topologically from two overcommuting manifolds M1 and M2

for (g, h1) and (g, h2), respectively, by gluing them along the annulus embed-
ded in their boundary and mapping to g. In the case of knot complements,
this operation is equivalent to the connected sum.

Example 2.6. Let g, h be two elements of G and set gn = hngh−n. If g
and g1 commute, then g and g1g−1 overcommute as the following proof
shows. We choose a central extension G̃ of G and lifts g̃ and h̃ of g and h.
We set g̃n = h̃ng̃h̃−n. By assumption, there exists z in the center of G̃ such
that g̃1g̃ = zg̃g̃1. Conjugating this equation by h̃−1, we get g̃g̃−1 = zg̃−1g̃
and the result follows. The topological counterpart of this computation
is that the group 〈g, h|[g, hgh−1] = 1〉 is the fundamental group of a 3-
manifold with toric boundary, precisely the 0-surgery on one component of
the Whitehead link (which is Seifert fibered). We observe also that as its
abelianization is Z2, this is not a knot complement in S3.

Example 2.7. Let c ∈ G be a central element. It is easy to show that the
map G → H2(G,Z) mapping g to the class of the commuting pair (g, c) is
a morphism and hence defines a map H1(G,Z) → H2(G,Z). Elements in
the kernel of this map give interesting overcommuting pairs. For instance if
G = SL2(Z) we have H1(G,Z) = Z/12Z and H2(G,Z) = 0. Topologically,
the fundamental group of the trefoil knot surjects to SL2(Z) and maps the
longitude to the central element − Id.

Example 2.8. Let F2 be the group freely generated by two elements u and
v and let w be an element of F2. We consider the group Gw = 〈u, v|r〉 where
r = wuw−1v−1. We also define φ ∈ Aut(F2) by φ(u) = u−1 and φ(v) = v−1.
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Definition 2.9. Let us call the group Gw a two-bridge group if there exists
g ∈ G such that φ(r) = gr−1g−1.

As the notation suggests, the fundamental group of a two-bridge knot
complement is a two-bridge group. In general, we observe that two-bridge
groups have the following properties:

(1) H1(Gw,Z) = Z.
(2) Gw is normally generated by u (or v).
(3) H2(Gw,Z) = 0.
(4) The map φ induces an automorphism of Gw.
(5) The elements u and l = φ(w)−1w commute (hence overcommute).

It follows that there exists an overcommuting manifold M for (l, u), i.e. a
morphism ρ : π1(M) → Gw. It looks interesting to understand better this
map ρ. For instance, does it define epimorphisms between 2-bridge knot
groups as in [ORS08]?

3. Overcommutation length

For an element g ∈ [G,G], the commutator length cl(g) is the minimum
number of commutators needed to write g as a product of commutators.
Topologically, cl(g) is the minimal genus among compact surfaces with one
boundary component bounding g in a classifying space BG. We define an
analogue measure of the complexity of an overcommuting pair, the overcom-
mutation length.

Definition 3.1. Let (g, h) be an overcommuting pair of elements g, h ∈ G,
and let 1 → R → F → G → 1 be a presentation of G. We define the
overcommutation length ocl(g̃, h̃) of two lifts g̃ and h̃ of g and h, respectively,
to be

ocl(g̃, h̃) = min{k ∈ N, [g̃, h̃] =
k∏
i=1

[fi, ri]
±1 ∈ F},

where f1, . . . , fk ∈ F and r1, . . . , rk ∈ R. We also set ocl(g, h) = min ocl(g̃, h̃)

where the minimum is taken over all choices of lifts g̃ and h̃ of g and h.

Remark 3.2. We justify this definition by the following series of remarks:

(1) By Property (iii) of Proposition 2.1, the minimum in Definition 3.1
is finite.

(2) If g̃ and h̃ are lifts of g and h, any other lifts have the form g̃r and

h̃s for r, s ∈ R. We compute

[g̃r, h̃s] = g̃[r, h̃]g̃−1[g̃, h̃]h̃[g̃r, s]h̃−1 = [g̃rg̃−1, g̃h̃g̃−1][g̃, h̃][h̃g̃rh̃−1, h̃sh̃−1]

and conclude that ocl(g̃r, h̃s) ≤ ocl(g̃, h̃) + 2. In particular, the
overcommutation length does not depend strongly on the lifts.

(3) It does actually depend on the lift as shown by the following example:
take a ∈ F \R and r ∈ R \ {1}, then [a, a2] = 1 and [ar, a2] 6= 1.
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(4) The overcommutation length does not depend on the presentation
as if G = F ′/R′, there is a morphism φ : F → F ′ mapping R to

R′. Applying φ to the identity [g̃, h̃] =
∏k
i=1[fi, ri]

±1 shows that

ocl(φ(g̃), φ(h̃)) ≤ ocl(g̃, h̃) and the result follows.

In what follows we prove that ocl(g, h) + 1 equals the minimal Heegaard
genus among all overcommuting manifolds for the pair (g, h). Before stating
and proving this result, we recall the notion of Heegaard decompositions.

Let Hk+1 be a standard handlebody of genus k+1 ≥ 1 in R3, and let Σ =
∂Hk+1. We fix a standard system of generators a1, b1, . . . , ak+1, bk+1 ∈ π1(Σ)
such that b1, . . . , bk+1 bound embedded discs in Hk+1 and such that the re-
lation [a1, b1] · · · [ak+1, bk+1] = 1 holds in π1(Σ). We denote by T a standard
solid torus in Hk+1 such that the fundamental group of its boundary is gen-
erated by curves homotopic to a1 and b1 in Hk+1. We will identify ∂T with
the standard torus such that a1 and b1 correspond to m and l, respectively.

Definition 3.3. Let M be a compact oriented 3-manifold with bound-
ary ∂M = S1 × S1. A Heegaard decomposition of M of genus k + 1 ≥ 1 is
a homeomorphism

M ' (Hk+1 \ T ) ∪φ Hk+1

where φ ∈ Mod(Σ) is an element of the mapping class group of Σ and Hk+1

denotes a copy of the handlebody Hk+1 with opposite orientation. The
Heegaard genus of M is the minimal genus of a Heegaard decomposition
of M .

Theorem 3.4. Let G be a group and let (g, h) be a pair of overcommuting
elements g, h ∈ G. Then, ocl(g, h)+1 is the minimal Heegaard genus among
overcommuting manifolds M for the pair (g, h).

Proof. Let 1 → R → F → G → 1 be any presentation of the group G, and
let M be an overcommuting manifold for g and h with minimal Heegaard
genus k+1. One can writeM = (Hk+1\T )∪φHk+1 and the representation ρ :
π1(M)→ G satisfies ρ(a1) = g, ρ(b1) = h, ρ(bi) = 1 for 1 < i ≤ k + 1.

Set Fk+1 = π1(Hk+1) and observe that the inclusion Hk+1 →M induces
a surjection Fk+1 → π1(M). As Fk+1 is free, one can find a morphism ρ
making the following diagram commutative:

Fk+1
ρ //

��

F

p

��
π1(M)

ρ // G.

Consider now the composition π1(Σ)→ π1(Hk+1) = Fk+1 → F and denote

the images of the generators by ã1, b̃1, . . . , ãk+1, b̃k+1. We have by construc-

tion g = p(ã1) and h = p(b̃1). Furthermore, p(b̃i) = 1 and hence b̃i ∈ R

for 1 < i ≤ k+ 1. The equality
∏k+1
i=1 [ãi, b̃i] = 1 in F shows that one has the
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following identity which proves ocl(g, h) ≤ k:

[ã1, b̃1] = [ãk+1, b̃k+1]−1 · · · [ã2, b̃2]−1.

Suppose now that we have a presentation 1 → R → F → G → 1 and a
formula [g̃, h̃] = [f2, r2]ε2 · · · [fk+1, rk+1]εk+1 which holds in F . We recognize
here the equation satisfied by the generators of a surface group of genus k+1.
Up to changing the order of the factors and to exchanging fi and ri we can
rewrite it as

[g̃, h̃][f2, r2] · · · [fk+1, rk+1] = 1.

Hence, let Σ be the closed orientable surface of genus k + 1, and define
a morphism ρ̃ : π1(Σ) → F by setting ρ̃(a1) = g̃, ρ̃(b1) = h̃ and ρ̃(ai) =
fi, ρ̃(bi) = ri for 1 < i < k + 1. By Lemma 3.5, we may write ρ̃ = f ◦ i∗ ◦ φ,
where φ is an automorphism of π1(Σ), i∗ is induced by the inclusion Σ →
Hk+1 and f : π1(Hk+1) = Fk+1 → F is a morphism. Let φ : Σ → Σ be a
diffeomorphism of Σ fixing the base point and inducing the automorphism φ.
We set M = (Hk+1\T )∪φHk+1. By our construction, the representation ρ̃ :

π1(Σ) → F induces a representation ρ : π1(Hk+1 \ T ) → G. On the other
hand, such a representation extends to π1(M) if and only if ρ(φ−1(bi)) = 1
for all 1 ≤ i ≤ k + 1. In our case, this follows directly from the fact
that i∗(bi) = 1. We have shown that M is an overcommuting manifold for
the pair (g, h) and has a Heegaard decomposition of genus k+1. This finally
proves the theorem. �

Let us prove now Lemma 3.5. Although it is quite well-known (it is
very similar to Lemma 3.2 in [J69] for instance), we include a proof for
completeness.

Lemma 3.5. Let Σ be a surface bounding a standard handlebody Hk+1 and
let F be a free group. Then, any morphism ρ : π1(Σ) → F can be written
as ρ = f ◦ i∗ ◦ φ, where φ is an automorphism of π1(Σ) preserving the
orientation, i∗ : π1(Σ) → π1(Hk+1) is induced by the inclusion and f :
π1(Hk+1)→ F is a morphism.

Proof. One can suppose that F is isomorphic to π1(X) for some graph X.
Moreover, one can find simplicial structures on Σ and X and a simplicial
map h : Σ→ X such that ρ = h∗. Let E be the set of middles of the edges
of X. By transversality, h−1(E) is a collection of disjoint curves in Σ. Hence,
there exists a pants decomposition of Σ such that any connected component
of h−1(E) is parallel to a curve of the decomposition or homotopically trivial.
Let H be a handlebody bounding Σ such that any component of the pants
decomposition bounds a disc in H. Our construction ensures that ρ factors
through π1(H) which is free. To conclude, it remains to notice that any two
handlebodies bounding Σ are related by an element of the mapping class
group. �

Example 3.6. In view of the overcommutation length, the simplest exam-
ples of overcommuting pairs (g, h) are those with ocl(g, h) = 0. On one
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hand, they correspond to the unique 3-manifold M with toric boundary and
Heegaard genus 1, which is the solid torus. On the other hand, considering
a presentation G = F/R, they correspond to the case where the lifts g̃, h̃
already commute in F . This is only possible if they are powers of a same
element in F , and hence in G. To sum up, we have the equivalence

ocl(g, h) = 0 ⇐⇒ g = tn and h = tm for some t ∈ G and n,m ∈ Z.

Let us conclude this section with simple properties of the overcommuta-
tion length.

Proposition 3.7. Let G be a group and g, h be two overcommuting elements
in G;

(1) For any morphism φ : G→ H we have ocl(φ(g), φ(h)) ≤ ocl(g, h).
(2) If g overcommutes with h1, h2 ∈ G then ocl(g, h1h2) ≤ ocl(g, h1) +

ocl(g, h2) + 1.
(3) The following stable overcommutation length is well-defined:

socl(g, h) = lim
min(m,n)→∞

ocl(gm, hn)

mn
.

Proof. (1) Take two presentations G = F/R and H = F ′/R′. As F is free,
there exists a map Φ : F → F ′ inducing φ. We conclude as in the item (4)
of Remark 3.2.

(2) Take a presentation G = F/R and lifts g̃1, h̃1 (respectively g̃2, h̃2)
minimizing the overcommutation length of g, h1 (respectively g, h2). As

[g̃1, h̃1h̃2] = [g̃1, h̃1]h̃1[g̃1, h̃2]h̃−1
1 , we get ocl(g, h1h2) ≤ ocl(g, h1)+ocl(g̃1, h̃2).

As g̃1 and g̃2 differ by an element of R, we conclude as in the item (2) of

Remark 3.2 that ocl(g̃1, h̃2) ≤ ocl(g, h2) + 1 and the result follows.
(3) The existence of the limit follows from the subadditivity (with defect

1) in both variables by a multivariate Fekete’s lemma. �

The stable overcommutation length enjoys the same properties as the
overcommutation length like monotonicity and subadditivity in both vari-
ables (when defined).

Example 3.8. Let M be a 3-manifold with torus boundary and consider
a morphism φ : π1(M) → Z mapping m to 1 and l to 0. We set Mn to be
the cyclic cover of M corresponding to the subgroup φ−1(nZ). This is again
a 3-manifold with torus boundary and generators of π1(∂Mn) are mn and
l. We conclude that in π1(M), ocl(mn, l) is less than the Heegaard genus

g(Mn) of Mn and hence that socl(m, l) ≤ lim inf
n→∞

g(Mn)
n .

Taking for M a fibered manifold over the circle, we observe that the genus
of Mn is bounded from above, hence socl(m, l) = 0 in that case. In the same
way, the pairs of Example 2.4 have trivial socl as there is a self-covering of
Σ× S1 which has index n on the boundary.
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4. Overcommutation in the affine group

4.1. Translations overcommute. Let k be a field containing 1
6 and denote

by Aff(k) the group of affine transformations of k. This group fits into an
exact sequence

1→ k → Aff(k)→ k∗ → 1

where t ∈ k maps to the translation x(t) : z 7→ z + t. This sequence is split
as there is a section mapping u ∈ k∗ to the homothety h(u) : z 7→ uz.

We are interested here in the overcommutation of x(s) and x(t) for s, t ∈ k
and in their overcommutation length. Let us first prove that these elements
overcommute. For that, we consider the presentation

Aff(k) = 〈x(t), h(u), t ∈ k, u ∈ k∗ | x(t+ s) = x(t)x(s), h(uv) = h(u)h(v),

h(u)x(t)h(u)−1 = x(ut)〉.
Given s, t ∈ k, we can consider F (s, t) = [x(s), x(t)] ∈ H2(Aff(k),Z). This

expression is bilinear in s and t and, by conjugation with h(u), it satisfies
F (s, t) = F (us, ut). If u is an integer, we get (u2 − 1)F (s, t) = 0. Applying
this to u = 2, 3 we conclude that F (s, t) = 0.

The same argument would work if we replace s and t by formal variables,
that is if we consider x(s) and x(t) as translations in Aff(k[s, t]) which is the
group of transformations of the form z 7→ λz+P for λ ∈ k∗ and P ∈ k[s, t].
This suggests the following definition:

Definition 4.1. Given a field k containing 1
6 , we define the overcommuta-

tion length of translations as the constant ocl(x(s), x(t)) where x(s), x(t) ∈
Aff(k[s, t]). An overcommuting manifold for this pair will be called an over-
commuting manifold for translations (OCMT for short).

The proof given above can be translated into topological terms as in the
following proposition.

Proposition 4.2. There exists an OCMT which is obtained by gluing three
manifolds of the form Pi × S1 along their boundaries, where Pi are (genus
0) surfaces.

We observe that this proposition implies Proposition 1.5 because the sim-
plicial volume is additive under gluing along tori and the simplicial volume
of Pi × S1 vanishes.

Proof. The key point is to translate equalities into cobordisms: for instance
the equality F (s, t) = F (us, ut) can be viewed as a cobordism S1 × S1 ×
[0, 1] → BAff(k[s, t]) mapping {1} × {1} × {0, 1} to the base point and
the paths S1 × {1} × {0}, {1} × S1 × {0}, {1} × {1} × [0, 1] to paths rep-
resenting x(s), x(t), h(u) respectively. The boundary of this cobordism is
F (us, ut) − F (s, t), viewed in Ω2(BG) = H2(G,Z). In the same way, the
equality F (s, nt) = nF (s, t) can be obtained as the boundary of a map
S1 × Pn → BAff(k[s, t]) where Pn is a disc with n holes. The circle com-
ponent is sent to x(s), the boundary of the innermost circles of Pn are sent
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to x(t) whereas the outermost circle is sent to x(nt). Translate the equality
F (2s, 2t) = 4F (s, t): by gluing three P2 × S1, we bound 5 tori F (s, t), one
negative, four positive. Glue one positive side on one negative side to get
a manifold with three tori F (s, t) as boundary. Translate now the equal-
ity F (3s, 3t) = 9F (s, t): by gluing four P3 × S1, we bound 10 tori F (s, t),
one positive, 9 negative. Gluing the positive one on a negative one, we
get 8 negative F (s, t). By taking three copies of the first construction, we
get 9 positive F (s, t) that we glue with the 8 negative ones of the second
construction. This leaves one F (s, t) left and we are done. �

Notice that we used exactly 13 Pi × S1 for this construction, which will
probably not give the optimal overcommutation length. Hence in the next
section, we look for another strategy to obtain it.

4.2. OCMT and Poincaré duality with coefficients. The purpose of
this section is to translate the properties of an overcommuting manifold for
translations in terms of twisted (co)-homology. For a morphism λ : π1(M)→
k∗, we will denote by kλ the vector space k with the action of π1(M) given
by γ.x = λ(γ)x.

Lemma 4.3. An irreducible manifold M with torus boundary is an over-
commuting manifold for translations if and only if there exists a morphism
λ : π1(M)→ k∗ mapping π1(∂M) to 1 such that one of the following equiv-
alent conditions is verified:

(i) The map H1(M,kλ)→ H1(∂M, kλ) is surjective.

(ii) The map H1(∂M, kλ)→ H1(M,kλ) vanishes.

(iii) The map H1(∂M, kλ−1)→ H1(M,kλ−1) is injective.

Proof. The exact sequence of pairs, Poincaré duality and the universal co-
efficient theorem with twisted coefficients yield the following commutative
diagram where lines are exact:

H2(M,∂M, kλ) //

∼
��

H1(∂M, kλ) //

∼
��

H1(M,kλ)

∼
��

H1(M,kλ) //

∼
��

H1(∂M, kλ) //

∼
��

H2(M,∂M, kλ)

∼
��

H1(M,kλ−1)∗ // H1(∂M, kλ−1)∗ // H2(M,∂M, kλ−1)∗.

One reads on it the fact that the Properties (i),(ii),(iii) are equivalent.
Take a manifold with torus boundary and a representation ρ : π1(M) →

Aff(k[s, t]) mapping m and l to x(s) and x(t) respectively. Writing ρ(γ) :
z 7→ λ(γ)z+

∑
i,j≥0 ai,j(γ)sitj we observe that λ : π1(M)→ k∗ is a morphism
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mapping m and l to 1 whereas each coefficient ai,j : π1(M) → k is a λ-
cocycle, meaning that it satisfies

aij(γδ) = aij(γ) + λ(γ)aij(δ), ∀γ, δ ∈ π1(M).

This shows that aij may be viewed as an element of H1(π1(M), kλ) which
is isomorphic to H1(M,kλ) by the irreducibility assumption. We also have
a10(m) = 1, a10(l) = 0, a01(m) = 0, a01(l) = 1. This shows that the class of
a01 and a10 restrict to a basis of H1(∂M, kλ) ' H1(∂M, k), proving Property
(i).

Reciprocally, given λ and two cocycles a10, a01 ∈ Z1(π1(M), kλ) restrict-
ing to the standard basis on the boundary, one can set ρ(γ) : z 7→ λz +
a10(γ)s+a10(γ)t and observe that it satisfies all the required properties. �

4.3. OCMT and Alexander modules. The goal of this section is to ex-
hibit an overcommuting manifold for translations of Heegaard genus 3. To
this end, we restrict to a particular class of representations, where formu-
lating the property of being an overcommuting manifold for translations
becomes tangible. More precisely, we suppose in the sequel that λ is the
composition of a morphism φ : π1(M) → Z vanishing on π1(∂M) with the
morphism evu : Z → k∗ mapping 1 to u ∈ k∗. This allows to translate
the problem in terms of the Λ-module H1(M,Λ) where Λ = k[t±1] and

γ ∈ π1(M) acts by multiplication with tφ(γ).

Lemma 4.4. The manifold M is an OCMT for λ = evu ◦φ if and only if
the image of H1(∂M,Λ) lies in (t− u)H1(M,Λ). Moreover we have then:

(1) H1(M,Λ) is not cyclic.
(2) For any Dehn filling N of M , H1(N,Λ)/(t− u−1)H1(N,Λ) 6= 0.

Proof. Considering k as the module Λ/(t−u)Λ, one gets the following com-
mutative diagram where lines correspond to the universal coefficient theo-
rem:

0 // H1(∂M,Λ)⊗ k //

α

��

H1(∂M, kλ) //

β

��

Tor(H0(∂M,Λ), k)

��

// 0

0 // H1(M,Λ)⊗ k // H1(M,kλ) // Tor(H0(M,Λ), k) // 0.

As φ is trivial on π1(∂M), we have H∗(∂M,Λ) = H∗(∂M,Z) ⊗ Λ and
the upper right group vanishes. This shows that α vanishes if and only if
β vanishes, which is equivalent to being an OCMT by Lemma 4.3. The
equivalence follows. Let us consider now k = Λ/(t − u−1)Λ and the same
commutative diagram. By Lemma 4.3, the map β is injective implying that
the map α is also injective. Hence H1(M,Λ) ⊗ k is at least 2-dimensional
and the first property follows. For the second point, let γ be the curve on
∂M bounding a disc in N . By a Mayer-Vietoris argument we have that
H1(N,Λ) = H1(M)/Λγ where γ stands for the image of γ in H1(M,Λ).
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Look at the previous commutative diagram again for k = Λ/(t−u−1)Λ. We
observe that by the injectivity of β, the image of γ in H1(M,Λ)⊗k does not
generate this group. Hence H1(N, kλ−1) cannot be trivial and the conclusion
follows. �

This lemma says that if M is the complement of a knot K in a manifold
N where there exists φ : π1(N)→ Z such that H1(N,Λ) is a torsion module,
then the Alexander polynomial ∆ of N should satisfy ∆(u−1) = 0 otherwise
it would contradict Property (2) of Lemma 4.4. In particular ∆ cannot be
trivial. If u and u−1 were conjugated by an automorphism of k, the maps
H1(∂M, kλ) → H1(M,kλ) where λ = evu ◦φ and λ = evu−1 ◦φ should be
isomorphic. As one is zero and the other is injective, this is impossible: this
means that ∆ has to be reducible. More precisely, one can write ∆ = PQ
with P (u−1) = 0 and P (u) 6= 0. The simplest knot in S3 satisfying this
property is the stevedore knot 61 with u = 2.

In Figure 1, we give such a manifold by showing three surgery pictures of
it. The first one shows that the equivariant linking matrix of the link L∪K

in the complement of the unknot U is

(
2t− 5 + 2t−1 t− 2
t−1 − 2 0

)
. This proves

that H1(M,Λ) = ΛmL⊕ΛmK/ΛlL with lL = (2t−5+2t−1)mL+(t−1−2)mK

and lK = (t− 2)mL. These expressions show that mK and lK are divisible
by (t− 2), hence M is an OCMT.

The second figure is the nicest picture of M whereas the third one shows
that M is the complement of a knot in the 0-surgery over Stevedore’s knot.
One can also deduce from the last picture that the Heegaard genus of M is
at most 3.

U(0) U(0)

K K

KL(−1)L(−1) U(0)

Figure 1. A surgery presentation of an OCMT

In the following lemma we show that there is no overcommuting manifold
for translations of Heegaard genus 2. Together with our construction of
such a manifold of Heegaard genus 3, this proves the minimality statement
in Proposition 1.2.

Lemma 4.5. There is no overcommuting manifold for translations of Hee-
gaard genus 2.

Proof. Suppose that M is such a manifold. It is obtained by gluing a 2-
handle to a standard handlebody H2 along a curve γ ⊂ Σ2 = ∂H2. As M
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has torus boundary, γ is non-separating. As λ is trivial on the boundary
of M , it is trivial on Σ2 \ γ. We conclude that for δ in π1(Σ2) we have
λ(δ) = uγ·δ where · denotes the algebraic intersection number and u is in
k∗.

Consider then the map φ : H1(Σ2,Z) → Z given by φ(δ) = γ · δ. By the
preceding discussion, it should extend to H1(M,Z) as a non trivial map - this
means that γ is in the kernel of the inclusion map H1(Σ2,Z)→ H1(H2,Z).
This allows to consider coefficients in Λ and use the analysis of Lemma 4.4.
As φ is non trivial, we have H0(M,Λ) = H0(H2,Λ) = 0. By retracting
H2 on a wedge of two circles, we observe that the homology of H2 with

coefficients in Λ can be computed from a complex of the form Λ
∂← Λ2. The

map ∂ is necessarily surjective as H0(H2,Λ) = 0 and its kernel is isomorphic
to Λ. That is, H1(H2,Λ) is isomorphic to Λ.

From the exact sequence of the pair (M,H2), we get that H1(M,Λ) is
a quotient of H1(H2,Λ), hence it is cyclic. This contradicts Lemma 4.4 as
H1(M,Λ) cannot be cyclic if M were an OCMT. �

Remark 4.6. Assume
√

2 ∈ k. We can apply the results of this section
to the subgroup of upper triangular matrices in SL2(k) that are of the

form
(√

2
n √

2
−n
t

0
√

2
−n

)
, for t ∈ k and n ∈ Z. This subgroup is isomorphic

to the group of affine transformations of the the form z 7→ 2nz+ t, for t ∈ k
and n ∈ Z. The above example of an OCMT is constructed from the map
λ = ev2 ◦φ, so after specializing the variables s and t, the representation
indeed takes values in the affine transformations of the form z 7→ 2nz + t,
for t ∈ k and n ∈ Z.

5. Effective overcommutation

5.1. Contracting presentations.

Definition 5.1. Let 1 → R → F → G → 1 be a presentation of G and fix
a set S = {ri, i ∈ I} generating R normally.

(1) If x ∈ [F, F ], we define cl(x) = inf{k ∈ N, x =
∏k
i=1[fi, gi]}, where

fi, gi ∈ F .

(2) If x ∈ R, we define lS(x) = inf{k ∈ N, x =
∏k
j=1 fjr

±1
ij
f−1
j }, where

ij ∈ I, and fj ∈ F .

(3) If x ∈ [F,R], we define clR(x) = inf{k ∈ N, x =
∏k
i=1[fi, ri]

±1},
where fi ∈ F and ri ∈ R.

(4) We will say that the presentation is (C,C ′)-contracting if H2(G,Z) =
0 and for any x ∈ [F,R] = [F, F ] ∩R we have

clR(x) ≤ ClS(x) + C ′ cl(x).

Notice that the quantity lS(x) is sometimes called the area of the relation
x.
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Example 5.2. Let G = 〈a1, . . . , an|r〉 be a presentation such that the
abelianization of r is non-zero in Zn. Then it is (1/2, 0)-contracting.

Indeed, take x ∈ [F, F ] ∩ R and write x =
∏lS(x)
j=1 fjr

εjf−1
j . As x is a

product of commutators, its abelianization vanishes. As r is non-zero, this
implies

∑
j εj = 0 and we can write lS(x) = 2k. Consider two consecu-

tive terms with opposite signs such as frf−1gr−1g−1. We may write it
f [r, f−1g]f−1. Repeating the argument, we still find subwords of the form
frf−1xgr−1g−1 where x ∈ [F,R]. We replace it with f [r, f−1xg]f−1x which
creates one more commutator. This proves that clR(x) ≤ k as claimed.

We may consider the example of the torus knot of parameters (p, q) where
p and q are two coprime integers. Its presentation is G = 〈a, b|r〉 with r =
apb−q. The meridian ism = aubv where qu+pv = 1 and a longitude is ap. We
compute [m, l] = aubvapb−va−ua−p = aubvrbq−va−u−p = aubvrb−vr−1a−u.
This shows lS([m, l]) = 2 and clR([m, l]) = 1. This is coherent with the fact
that the tunnel number of the torus knot complement is 1, and hence its
Heegaard genus is 2.

5.2. Steinberg group. Let k be a field containing 1
6 . We define the Stein-

berg group St2(k) = F/R where F is the free group generated by the symbols
xα(t) where α = ±1 and t ∈ k. The subgroup R is normally generated by
r1
α(s, t) and r2

α(u, t) where

r1
α(s, t) = xα(s+ t)xα(s)−1xα(t)−1, s, t ∈ k
r2
α(u, t) = wα(u)xα(t)wα(u)−1x−α(u−2t), u ∈ k∗, t ∈ k

and where we have set wα(u) = xα(u)x−α(−u−1)xα(u). We will denote
below by S the set of all Steinberg relations. The main property of this
group is that it is the universal central extension of SL2(k). Explicitly, the
map π : St2(k)→ SL2(k) defined by

π(x1(t)) =

(
1 t
0 1

)
and π(x−1(t)) =

(
1 0
t 1

)
is surjective, its kernel is central and H1(St2(k),Z) = H2(St2(k),Z) = 0.

Let us recall the statement of Theorem 1.3 that we aim to prove now.

Theorem. If
√

2
6 ∈ k, the presentation of the Steinberg group is (5, 2)-

contracting.

Before starting the proof, we collect some well-known facts about the
Steinberg group, see [S68, M71].

Proposition 5.3. Set hα(u) = wα(u)wα(1)−1 and for any u, v ∈ k∗, c(u, v) =
hα(uv)hα(u)−1hα(v)−1. The following identities hold in St2(k):

(1) wα(u) = wα(−u)−1 = w−α(−u−1)
(2) hα(u)xα(t)hα(u)−1 = xα(u2t)
(3) hα(t) = h−α(t)−1

(4) wα(u)w−α(v)wα(u)−1 = wα(−u2t)
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(5) c(u, v) is central in St2(k).

5.3. Proof of Theorem 1.3. Fix a an integer which is distinct from 0, 1,−1
in k. By equation (2) of Proposition 5.3, we have for all α ∈ {±1} and t ∈ k
the equality

(1) xα(t) = [hα(a), xα(t/(a2 − 1))].

This shows that H1(St2(k),Z) vanishes and is a key ingredient in the proof
by the following argument. Let ψ : F → [F, F ] be the morphism mapping
xα(t) to [hα(a), xα(t/(a2−1))] and suppose that we found a constant C > 0
such that for all r ∈ S, ψ(r) ∈ [F,R] and clR(ψ(r)) ≤ C.

Then we pick x =
∏k
i=1[fi, gi] =

∏l
j=1 hjr

±1
j h−1

j ∈ [F, F ] ∩ R where

fi, gi, hj ∈ F and rj ∈ S so that k = cl(x) and l = lS(x). Applying ψ we

get on one hand ψ(x) =
∏l
j=1 ψ(hj)ψ(rj)

±1ψ(hj)
−1 and hence clR(ψ(x)) ≤

ClS(x).
On the other hand, we can bound clR(x) in terms of clR(ψ(x)) in the

following way. Write ψ(x) =
∏k
i=1[ψ(fi), ψ(gi)] and observe that for all

g ∈ F one has ψ(g) = gr(g) for some r(g) ∈ R by equation (1). The
formula of Remark 3.2 shows that [ψ(g), ψ(h)] = ξ[g, h]ξ′ where ξ and ξ′

denote single commutators in [F,R]. As for any x, f ∈ F and r ∈ R one
has x[f, r] = [xfx−1, xrx−1]x, one can also write [ψ(g), ψ(h)] = ξξ′′[g, h].
Applying this to each factor produces 2k commutators which can be moved
by applying the above trick. This implies that ψ(x)x−1 can be written
using 2k commutators in [F,R] and the conclusion follows. Observe that we
obtained along the way that H2(St2(k),Z) = 0.

We get finally clR(x) ≤ clR(ψ(x)) + 2k ≤ ClS(x) + 2 cl(x). Hence, the
presentation is (C, 2)-contracting. In order to prove the theorem it remains
to show the existence of C. We show below that we can take C = 5.

5.3.1. First Steinberg relation. To save space, we write h = hα(a), t′ =
t/(a2 − 1), s′ = s/(a2 − 1). We have by definition

ψ(r1
α(s, t)) = [h, xα(s′ + t′)][h, xα(s′)]−1[h, xα(t′)]−1.

In the sequel, ξ denotes an arbitrary single commutator in [F,R]: for in-
stance ξ2 is an arbitrary product of two commutators. As xα(s′ + t′) =
xα(s′)xα(t′) modulo R, we can write ψ(xα(s + t)) = [h, xα(s′)xα(t′)]ξ =
ξ[h, xα(s′)xα(t′)]. Hence,

ψ(r1
α(s, t)) = ξ[h, xα(s′)]xα(s′)[h, xα(t′)]xα(s′)−1[h, xα(s′)]−1[h, xα(t′)]−1

= ξ
[
[h, xα(s′)]xα(s′), [h, xα(t′)]

]
= ξ3

[
xα(

a2

a2 − 1
s), xα(t)

]
,

where in the last equality, we used Equation (1) in both arguments of the
commutator. Using Lemma 5.4 below, we finally get

clR(ψ(r1
α(s, t))) ≤ 5.

Lemma 5.4. [xα(s), xα(t)] = ξ2 for all s, t ∈ k.
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Proof. It suffices to give a proof for α = 1. Let U be the subset of St2(k)
that consists of all the elements of the form x1(t)h1(

√
2)n, where t ∈ k

and n ∈ Z. Using equation (2) of Proposition 5.3, one can directly see
that U is a subgroup of St2(k). Furthermore, the projection homomor-
phism π : St2(k) → SL2(k) sends the element x1(t)h1(

√
2)n to the ma-

trix
(√

2
n √

2
−n
t

0
√

2
−n

)
. It is apparent that π|U is an isomorphism onto its image,

so U is isomorphic to the subgroup of SL2(k) consisting of all matrices of the

form
(√

2
n √

2
−n
t

0
√

2
−n

)
, for t ∈ k and n ∈ Z. We now obtain the result by using

our example of an OCMT of Heegaard genus 3 from Section 4, compare with
Remark 4.6. �

5.3.2. Second Steinberg relation. We compute

ψ(r2
α(u, t)) = ψ(wα(u))[hα(a), xα(t′)]ψ(wα(u))−1[h−α(a), x−α(u−2t′)].

We can insert the conjugation by ψ(wα(u)) inside the commutator and ob-
serve that we have ψ(wα(u)) = wα(u) modulo R. Moreover,

wα(u)hα(a)wα(u)−1 (1)
= w−α(−u−1)wα(a)wα(−1)w−α(−u−1)−1

(4)
= w−α(−u−2a)w−α(u−2)=h−α(−u−2a)h−α(−u−2)−1

(5)
= h−α(a) mod Z(St2(k)).

Here, we wrote above the equal signs the the equations of Proposition 5.3
that we used. On the other hand we have in St2(k): wα(u)xα(t′)wα(u)−1 =
x−α(−u−2t′). Writing h = h−α(a), we have for some r ∈ R and c ∈ F
mapping into Z(St2(k)):

ψ(r2
α(u, t)) = [hc, x−α(−u−2t′)r][h, x−α(u−2t′)]

= h[c, x−α(−u−2t′)r]h−1[h, x−α(−u−2t′)r][h, x−α(u−2t′)].

We first treat the term [c, x−α(−u−2t′)r] = [c, [h, x−α(−u−2t′′)]]ξ. From the
Hall-Witt identity, we have for any x, y ∈ F :

[[x, y], x−1cx][[c, x], c−1yc][[y, c], y−1xy] = 1.

As c maps to the center, we have [c, x], [y, c] ∈ R and x−1cx = c mod R.
This proves [[x, y], c] = ξ3.

The remaining term gives [h, x−α(−u−2t′)r][h, x−α(u−2t′)] = ξ[h, x−1][h, x]
where x = x−α(u−2t′). As 1 = [h, x−1x] = [h, x−1]x−1[h, x]x, we get
[h, x−1][h, x] = [x−1, [h, x]−1]. But modulo R we have [h, x] = x−α(u−2t) =

xa
2−1. This finally gives [h, x−1][h, x] = ξ and clR(ψ(r2

α(u, t))) ≤ 5.

5.4. Application to Ghys’ example. Take k = Q(
√

2, u) and set v =
1 − u. It is a well-known consequence of the Steinberg relation c(u, v) = 0
that the elements hα(u) and hα(v) commute in St2(k). We follow the proof
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of Lemma 9.8 in [M71] by keeping track of the Steinberg relations that were
used. Replacing hα(u) by the equivalent ηα(u) = wα(u)w−α(1), this gives

[ηα(u), ηα(v)] = R1(u, v)wα(−uv)−1R2(u, v)R2(v, u)−1wα(−uv)R1(v, u)−1

where r3
α(u, t) = wα(u)xα(t)wα(−u)x−α(u−2t),

R1(u, v) = xα(−uv)−1r1
α(u2,−u)x−α(u−1)−1xα(−u)−1r3

α(−u, u2)

r1
α(−v,−u)xα(−u)x−α(u−1)xα(−uv) and

R2(u, v) = xα(−uv)r1
−α(u−1, v−1)xα(−uv)−1r1

α(−v, v2)wα(v)−1

r3
α(v, v2)wα(v).

This computation shows that the commutation of ηα(u) and ηα(v) uses 12
relations and Theorem 1.3 gives that ocl(ηα(u), ηα(v)) is at most 62 and
hence the Heegaard genus of Ghys’ example is at most 63.

One can also proceed in the following more clever way. Denoting η′α(u) =
R1(u, v)−1ηα(u)R1(u, v) we have

[η′α(u), η′α(v)] = wα(−uv)−1R2(u, v)R2(v, u)−1wα(−uv)R1(v, u)−1R1(u, v)

= ξR2(u, v)R2(v, u)−1R1(v, u)−1R1(u, v).

On one hand R1(v, u)−1R1(u, v) is equal to

ξ3r1
α(−u,−v)−1r3

α(−v, v2)−1r1
α(v2,−v)−1r1

α(u2,−u)r3
α(−u, u2)r1

α(−v,−u)

and R2(u, v)R2(v, u)−1 is equal to

ξ2r4
α(u, v)r1

α(−v, v2)r3
α(v, v2)r3

α(u, u2)−1r1
α(−u, u2)−1r4

α(v, u)−1,

where we have set r4
α(u, v) = xα(−uv)r1

−α(u−1, v−1)xα(−uv)−1.
We observe that relations come in pairs in this expression: we have for

instance r1
α(t, s)−1r1

α(s, t) = [xα(s), xα(t)] = ξ2. In the same way,

r3
α(s, t)r3

α(−s, t)−1 = wα(s)xα(t)wα(−s)wα(s)−1xα(t)−1wα(−s)−1

= wα(s)[xα(t), wα(−s)wα(s)−1][wα(−s), wα(s)−1]wα(s)−1.

As wα(−s) = wα(s)−1 modulo R, the second commutator can be replaced by
ξ. We observe moreover that wα(−s)wα(s)−1 maps to the center of St2(k),
hence by the same argument as in Subsection 5.3.2, we find r3

α(s, t)r3
α(−s, t)−1 =

ξ5. Finally, [η′α(u), η′α(v)] = ξ24R′2R
′
1 where R′2R

′
1 is an expression using 6

elements of R once and their inverse. By moving the 4 middle terms in R2

in the middle of R1 we get directly R′2R
′
1 = ξ and ocl(hα(u), hα(v)) ≤ 25.

Remark 5.5. We may generalise Ghys’ example to any A-polynomial in the
following way. Suppose that P ∈ Q[x, y] is an irreducible polynomial and set
k = Frac(Q[x, y]/(P )). By Matsumoto’s theorem, the elements hα(x) and
hα(y) commute in St2(k) (or their images in SL2(k) overcommute) if and
only if their commutator can be written in terms of the five Matsumoto’s
relations given for instance in [H16], Proposition 3.5. Among them, the
most complicated is c(u, (1 − u)v)c(u, v)−1 which for v = 1 is the one we
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dealt with in this section. Hence, in the general case, we can bound the
complexity of a manifold M such that P divides its A-polynomial by the
number of Matsumoto’s relations, but we do not make it explicit here.

We have discussed how Ghys’ manifolds provide a topological reason for
the Steinberg relation. Let us end this article by a discussion of other prop-
erties of Ghys’ manifolds, starting with a formal definition.

Definition 5.6. Let k be a field containing 1
6 . A Ghys’ manifold M over k

is an irreducible compact oriented 3-manifold with ∂M = S1 × S1 together
with a representation ρ : π1(M)→ SL2(k(x)) such that

ρ(m) =

(
x 0
0 x−1

)
and ρ(l) =

(
(1− x) 0

0 (1− x)−1

)
.

Notice that it is easy to satisfy the irreducibility condition by removing
prime factors of a non-irreducible example.

Proposition 5.7. Suppose that M is a Ghys’ manifold M over Q. Then

(1) If M does not contain closed incompressible surfaces, no Dehn filling
of M gives S3.

(2) If M is hyperbolic, the character variety of M has at least three
components.

(3) If M does not contain closed incompressible surfaces, the fundamen-
tal group of M acts on a CAT(0) cube complex via the representation
ρ.

Proof. (1) By standard Culler-Shalen theory (see [S02]), the condition that
M does not contain closed irreducible surfaces implies that the restriction
map r : X(M) → X(∂M) is proper. In particular, its image is a Zariski-
closed subset.

Let (p, q) be the slope of the surgery producing S3, assuming that p and q
are coprime. We have then M = S3 \ V (K) where V (K) denotes a tubular
neighborhood of some knot K in S3. Let (x, y) be a solution of the system
x + y = 1 and xpyq = 1. As r is proper, there exists a representation
ρ : π1(M) → SL2(Q) such that ρ(m) and ρ(l) have eigenvalues (x, x−1)
and (y, y−1) respectively. If x 6= ±1 or y 6= ±1, we can suppose that ρ(m)
and ρ(l) are diagonal. In particular, the curve γ with slope (p, q) in the
boundary of M satisfies ρ(γ) = 1. This means that ρ extends to S3 and
hence is trivial, contradicting the fact that x 6= ±1 or y 6= ±1.

We observe that the equation x + y = 1 forbids x = ±1 and y = ±1,
hence one of the coordinates has to vanish, which forces p = 0 or q = 0. Let
us suppose then by symmetry that p = 0 and q = 1: this means that the
variable x corresponds to the meridian of K and y to the longitude.

Let A(x, y) be the A-polynomial of M and suppose that A(−1, y) = 0
with y /∈ {−1, 0, 1}. Again as r is proper, there exists a representation
ρ : π1(M)→ SL2(Q) such that ρ(l) is diagonal with entries y, y−1. As ρ(m)
has eigenvalues −1 and commutes with ρ(l), ρ(m) = − Id. As m normally
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generates π1(M), this implies that ρ is central, contradicting the assumption
x 6= ±1. This gives A(−1, y) 6= 0. But as x+ y − 1 divides A(x, y), we have
A(−1, 2) = 0, which contradicts what we have just shown. This proves the
first point of the proposition.

(2) If M is hyperbolic, any representation ρ : π1(M) → SL2(Q) which
lifts the holonomy representation is parabolic at the boundary, meaning
that its parameters x, y satisfy x = ±1, y = ±1. For any such (x, y) we
have x + y 6= 1: this implies that the component of X(M) where this
representation lives is distinct from the one projecting to the curve x+y = 1.
Recalling that there is also a curve of abelian representations, we just have
proved that there are at least three disctinct components.

(3) We apologise that we only give a sketch of proof. A complete proof
would be too long and we don’t have applications in mind for the moment.
We hope that the interested reader will be able to fill in the details. Set
K = Q(x) and R = Q[x±1, (1 − x)±1] ⊂ K. The principal ideal domain
R is the intersection of all valuation rings in K corresponding to points
in P1(Q) different from 0, 1,∞. The first step is to show that for all γ ∈
π1(M),Tr ρ(γ) ∈ R. If this is not the case, there exists a valuation v (not
associated to 0, 1,∞) such that v(Tr(ρ(γ))) < 0. This means that γ acts
non-trivially on the Bass-Serre tree associated to this valuation. As this
valuation is trivial on the boundary of M , standard Culler-Shalen arguments
produce a closed incompressible surface, contradicting our assumptions. A
classical argument gives that one can suppose, up to conjugation, that ρ
takes its values in SL2(R).

Let us define an other “complementary” ring: O = {f ∈ K, v0(f) ≥
0, v1(f) ≥ 0, v∞(f) ≥ 0}, that is the ring of rational functions which do not
have a pole at 0, 1,∞. It is still a principal ideal domain and its ideals have
the form

Ia,b,c = {f ∈ K, v0(f) ≥ a, v1(f) ≥ b, v∞(f) ≥ c}.

Let us mimic the construction of the Bass-Serre tree: define a lattice as a
sub-O-module of K2 which generates K2 over K. Two lattices Λ,Λ′ are
said homothetic if there exists λ ∈ K× such that Λ′ = λΛ. Finally we
define X as the set of homothety classes of lattices. As in Bass-Serre theory,
we will say that two lattices are neighbours if up to homothety, we have
Λ′ ⊂ Λ and dim Λ/Λ′ = 1. In that case, there exists a basis e1, e2 such that
Λ = Oe1⊕Oe2 and Λ′ = Oe1⊕xOe2 where x ∈ O vanishes either at 0, 1 or
∞.

This gives three types of edges which form the corner of a cube. It is not
difficult to see that this endows X with the structure of a cube complex.
Gromov’s criterion applies and shows that this is a CAT(0) cube complex.
By construction, SL2(K) acts on it but SL2(R) has better properties: the
stabiliser of a vertex is the intersection SL2(O) ∩ SL2(R) = SL2(Q). Said
informally, the action of π1(M) on X will cut M into pieces separated by
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walls of three distinct types corresponding to the degeneration of the repre-
sentation at x = 0, 1 or ∞ and such that the representation on each piece is
independent of x. �
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