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Abstract

We prove that the semiclassical Heisenberg pseudodifferential op-
erators form a filtered algebra.

1 Introduction

For any compact manifold M and Hermitian line bundle L → M with a
connection ∇, the space Ψm

Heis(L,∇) of Heisenberg semiclassical pseudod-
ifferential operator with order m has been defined in [1]. The principal
symbol σ(P ) of such an operator P is a smooth function of T ∗M which is a
polyhomogeneous symbol.

Write the curvature of ∇ as 1
iω with ω ∈ Ω2(M,R). Define the product

of symbols of T ∗M by

(f♯ωg)(x, ξ) =
[
e−

i
2
ωx(Dξ,Dη)f(x, ξ)g(x, η)

]
ξ=η

, ξ, η ∈ T ∗
xM.

The goal of this note is to prove the following result.

Theorem 1.1. For any P ∈ Ψm
Heis(L,∇) and Q ∈ Ψp

Heis(L,∇), (PkQk)

belongs to Ψm+p
Heis (L,∇) and its principal symbol is σ(P )♯ωσ(Q).

An important point is that we do not assume anything on ω, it doesn’t
have necessarily constant rank. The fact that ♯ω is a well-defined continuous
product of symbols, is already a nontrivial result. The proof is given in
Section 3, another proof was already given in [2]. In Section 4, we briefly
recall the definition of Heisenberg pseudodifferential operators and prove
Theorem 1.1.

Applications (not written yet) include:
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- Heisenberg Sobolev estimates

- Hermite algebras Ψ−∞
Heis(L,∇) and Toeplitz subalgebras

- functional calculus of Heisenberg elliptic operators

2 Symbols

Same definitions as in [1]: symbols, semiclassical pseudodifferential opera-
tors and residual class.

3 Isotropic algebras

Let A : Rn × Rn → R be bilinear antisymmetric and (ej) be the canonical
basis of Rn. Define the covariant derivative

∇A = d+ 1
2i

∑
j

A(x, ej)dxj (1)

acting on Rn
x. The curvature of ∇A is 1

iA, that is

[∇A
j ,∇A

k ] =
1
iA(ej , ek) (2)

where ∇A
j := ∇A

ej = ∂xj +
1
2iA(x, ej).

For any tempered distribution g ∈ S ′(Rn), we denote its Fourier trans-
form and inverse Fourier transform by ĝ and g∨,

ĝ(t) =

∫
e−itξg(ξ) dξ, g∨(ξ) = (2π)−nĝ(−ξ).

We define g(1i∇
A) as the operator S(Rn) → S ′(Rn) with Schwartz kernel

Kg(x, y) = (2π)−ne−
i
2
A(x,y)

∫
eiξ(x−y)g(ξ) dξ

= e−
i
2
A(x,y)g∨(x− y)

(3)

The reason for the notation g(1i∇
A) is that for g = ξj , g(

1
i∇

A) = 1
i∇

A
j and

more generally if g is the monomial ξj1 . . . ξjℓ then

g(1i∇
A) =

(−i)ℓ

ℓ!

∑
σ∈Σℓ

∇A
jσ(1)

. . .∇A
jσ(ℓ)

,
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cf [1, Proposition 6.2].
We will prove that the space of f(1i∇A) with f in the Schwartz class, is

an algebra and compute the corresponding product of functions. For any g,
h ∈ S(Rn), define g♯Ah ∈ S(Rn) by

(g♯Ah)(ξ) =
[
e−

i
2
A(Dξ,Dη)g(ξ)h(η)

]
ξ=η

. (4)

Here we use the standard notation: D = 1
i ∂ and for any real quadratic form

B of Rm and u ∈ S(Rm), v = eiB(D)u is the function of S(Rm) such that
its Fourier transform is v̂(ξ) = eiB(ξ)û(ξ). Observe that for A = 0, ♯A is the
pointwise multiplication of functions whereas for n even and A the standard
symplectic form, ♯A is the Weyl product.

Lemma 3.1. For every g, h ∈ S(Rn), we have∫
Rn

Kg(x, y)Kh(y, z) dy = Kf (x, z) (5)

where f = g♯Ah.

Proof. Since g and h are in the Schwartz class, Kg(x, y) and Kh(x, y) are in
O(⟨x− y⟩−∞). By Peetre inequality,

⟨x− y⟩−N ⟨y − z⟩−N−n−1 ⩽ C⟨x− z⟩−N ⟨y − z⟩−n−1.

Since
∫
⟨y − z⟩−n−1 dy =

∫
⟨y⟩−n−1dy is finite, we get that

K̃(x, z) :=

∫
Rn

Kg(x, y)Kh(y, z) dy (6)

is well-defined, continuous and in O(⟨x− z⟩−∞).

We claim that e
i
2
A(r,z)K̃(z + r, z) is independent of z. Indeed, inserting

the definitions of Kg and Kh in (6) and using the antisymmetry of A, we
have

e
i
2
A(r,z)K̃(z + r, z) =

∫
Rn

e−
i
2
A(r,y−z)g∨(z + r − y)h∨(y − z) dy

=

∫
Rn

e−
i
2
A(r,t)g∨(r − t)h∨(t) dt

(7)

by setting t = y − z. We recognize here a twisted convolution product.
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It remains to prove that the Fourier transform of (7) with respect to t
is equal to g♯Ah, that is∫

Rn

eiζ·re
i
2
A(r,z)K̃(z + r, z) dr = (g♯Ah)(ζ). (8)

The left-hand side of (8) is equal to

(2π)−2n

∫
R4n

e−iζ·r− i
2
A(r,t)ei(r−t)·ξg(ξ)eit·ηh(η) dr dt dξ dη

= (2π)−2n

∫
R4n

e−iζ·(s+t)− i
2
A(s,t)+is·ξ+it·ηg(ξ)h(η) ds dt dξ dη

by setting s = r − t. We recognize g♯Ah(ζ).

Theorem 3.2. Let m, p ∈ R. Then the product ♯A extends continuously
from Sm(Rn) × Sp(Rn) to Sm+p(Rn). More generally, for any N ∈ N, the
map sending g, h to the remainder

rN (g, h,A)(ξ) = (g♯Ah)(ξ)−
N∑
ℓ=0

(−i
2 )ℓ(ℓ!)−1

[
A(Dξ, Dη)

ℓ(g(ξ)h(η))
]
η=ξ

is continuous from Sm(Rn)× Sp(Rn) to Sm+p−2(N+1)(Rn).

In the case where A is non-degenerate, so that ♯A is the Moyal-Weyl
product, this is a well-known result, cf. [4, Section 23] or [3, Section 18.5]
for more general symbol classes. For a general A, this has been proved in [2,
Chapter 4]. It is possible to deduce the result from the Moyal-Weyl case by
decomposing Rn into kerA⊕S, but this does not lead to uniform estimates
with respect to A, which we need later. Since the result is fundamental in
the paper, we provide a proof.

Proof. As in [2, Chapter 4], we will use the following version of stationnary
phase lemma. Let q be a non degenerate quadratic form of Rd. Then for
any ℓ ∈ R, there exists C > 0 and M ∈ N such that for any a ∈ C∞

0 (Rd) we
have ∣∣∣∫

Rd

eiq(x)a(x) dx
∣∣∣ ⩽ C max

|α|⩽M
sup
x∈Rd

|∂αa(x)|⟨x⟩−ℓ. (9)

This is proved by integration by part by using that eiq = Leiq with L the
differential operator L = ⟨x⟩−2(1 − i

∑
j,k Bjkxj∂k) where B is the inverse

matrix of the matrix of q.
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We write g♯Ah on the form

(g♯Ah)(ζ) = (2π)−2n

∫
R4n

eiξ·s+iη·t− i
2
A(s,t)g(ζ + ξ)h(ζ + η) ds dt dξ dη (10)

and we will apply (9) with d = 4n and x = (s, t, ξ, η), ζ being considered
as a parameter. From now on, our proof differs from [2], which discusses
whether |ξ|+ |η| ⩽ 1

2(1 + |ζ|) or not.
Let f(ζ, ξ, η) := g(ζ+ξ)h(ζ+η) and γ ∈ Nn. Then the derivative ∂γζ f is a

linear combination with constant coefficients of the functions fα,β(ζ, ξ, η) :=
(∂αg)(ζ + ξ) (∂βh)(ζ + η) where α+ β = γ. Moreover,

|∂α′
ξ ∂

β′
η fα,β| = |(∂α+α′

g)(ζ + ξ) (∂β+β′
h)(ζ + η)|

⩽ C∥g∥m,M∥h∥p,M ⟨ζ + ξ⟩m−|α|−|α′|⟨ζ + η⟩p−|β|−|β′|

with M sufficiently large. Using ⟨ζ + ξ⟩−|α′| ⩽ 1, Peetre inequality

⟨ζ + ξ⟩m−|α| ⩽ C⟨ζ⟩m−|α|⟨ξ⟩|m|+|α| and ⟨ξ⟩ ⩽ ⟨ξ, η⟩

we get ⟨ζ + ξ⟩m−|α|−|α′| ⩽ C⟨ζ⟩m−|α|⟨ξ, η⟩|m|+|α|. By this and the similar
upper bound for ⟨ζ + η⟩p−|β|−|β′|, we get

|∂α′
ξ ∂

β′
η fα,β| ⩽ C∥g∥m,M∥h∥p,M ⟨ζ⟩m+p−|γ|⟨ξ, η⟩|m|+|p|+|γ| (11)

where C and M depend only on γ, α′ and β′. Therefore (9) implies that

|∂γ(g♯Ah)(ζ)| ⩽ C∥g∥m,M∥h∥p,M ⟨ζ⟩m+p−|γ|,

which shows that ♯A is continuous Sm(Rn)× Sp(Rn) → Sm+p(Rn).
To estimate the remainder rN , we first write it on an integral form similar

to (10). Observe that for polynomial functions P , Q on Rn, we have

(2π)−2n

∫
R4n

eiξ·s+iη·t− i
2
A(s,t)P (ξ)Q(η) ds dt dξ dη = (P♯AQ)(0)

where P♯AQ is given by the (finite) sum

(P♯AQ)(ζ) =
∞∑
ℓ=0

(−i
2 )ℓ(ℓ!)−1

[
A(Dξ, Dη)

ℓ(P (ξ)Q(η))
]
ξ=η=ζ

.

So if we replace in (10) the product g(ζ+ ξ)h(ζ+η) by its Taylor expansion
in (ξ, η) at the origin at order 2N + 1, that is∑

|α|+|β|⩽2N+1

1
α!(∂

αg)(ζ)ξα 1
β!(∂

βh)(ζ)ηβ, (12)
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we obtain the sum
∑N

ℓ=0(
−i
2 )ℓ(ℓ!)−1

[
A(Dξ, Dη)

ℓ(g(ξ)h(η))
]
ξ=η=ζ

. Here we

have used that for |α| ≠ |β|, (ζα♯Aζβ)(0) = 0 so the corresponding terms in
(12) do not contribute.

So the remainder we have to estimate is given by

rN (g, h,A)(ζ) = (2π)−2n

∫
R4n

eiξ·s+iη·t− i
2
A(s,t)ρN (ζ, ξ, η) ds dt dξ dη (13)

where ρN is the remainder of the Taylor expansion (12), that is

ρN (ζ, ξ, η) = 2(N + 1)
∑

|α|+|β|=2N+2

ξαηβ

α!β!
ρα,β(ζ, ξ, η)

with ρα,β(ζ, ξ, η) =

∫ 1

0
(1− τ)2N+1(∂αg)(ζ + τξ)(∂βh)(ζ + τη) dτ.

We can estimate the integrand by the same method that led to (11), and
using that ⟨τξ⟩ ⩽ ⟨ξ⟩ and ⟨τη⟩ ⩽ ⟨η⟩ for τ ∈ [0, 1], we obtain after integrating
with respect to τ that

ρα,β = O(⟨ζ⟩m+p−2(N+1)⟨ξ, η⟩|m|+|p|+2(N+1)).

We can estimate the derivatives similarly:

|∂γζ ∂
α′
ξ ∂

β′
η ρα,β| ⩽ ∥g∥m,M∥h∥p,M ⟨ζ⟩m+p−|γ|−2(N+1)⟨ξ, η⟩|m|+|p|+|γ|+2(N+1)

where C and M depend only of N , γ, α′ and β′. By (13) and (9), it follows
that

|∂γrN (g, h)(ζ)| ⩽ C∥g∥m,M∥h∥p,M ⟨ζ⟩m+p−(|γ|+2(N+1)),

which proves the second assertion.

Denote by An the space of antisymmetric real bilinear form of Rn.

Proposition 3.3. For any m, p ∈ R, the map from Sm(Rn) × Sp(Rn) to
Sm+p(An,Rn) sending (g, h) to (A, ξ) → (g♯Ah)(ξ) is well-defined and con-
tinuous.

We will actually show a better result (15).

Proof. For any f , g in the Schwartz class, it follows directly from the def-
inition (4) that (A, ζ) → f♯Ag(ζ) is smooth and we can even compute ex-
plicitely the A-derivatives as follows. For 1 ⩽ j < k ⩽ n, the derivative of

e−
i
2
A(ξ,η) with respect to Ajk = A(ej , ek) is

1
4i(ξjηk − ξkηj)e

− i
2
A(ξ,η) so that

∂(g♯Ah)

∂Ajk
= 1

4i((Djg)♯A(Dkh)− (Dkg)♯A(Djh)). (14)
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By Theorem 3.2, for any A ∈ An, m, p ∈ R and M ∈ N, there exists C > 0
and M ′ ∈ N such that

∥g♯Ah∥m+p,M ⩽ C∥g∥m,M ′∥h∥p,M ′ .

By the proof of Theorem 3.2, C and M ′ stay bounded when A stays in a
compact subset K of An. This implies by (14) that for any A ∈ K, ξ ∈ Rn

|∂γA∂
α
ζ (g♯Ah(ζ))| ⩽ C∥g∥m,M∥h∥p,M ⟨ζ⟩m+p−2|γ|−|α| (15)

with C andM depending only on γ, α and K. This is better than the result
we have to prove, because here we gain ⟨ζ⟩−2 for each A-derivative.

Proposition 3.3 has the following consequence. Consider a real vector
bundle E → M and a section A ∈ C∞(M,∧2E∗). Then the pointwise A-
product of symbols of E∗

(g♯Ah)(x, ·) = g(x, ·)♯A(x)h(x, ·), x ∈M (16)

is a continuous map Sm(M,E∗) × Sp(M,E∗) → Sm+p(M,E∗), (g, h) →
g♯Ah.

To end this section, we establish a preparatory lemma for the Heisenberg
composition. For any R > 0, denote by hR be the multiplication by R of Rn

and by h∗R the pull-back operator, so (h∗Rf)(x) = f(Rx). For any operator
Q of S(Rn), we denote by QR the operator h∗R ◦Q ◦ h∗R−1 of S(Rn). Let ρ,
χ ∈ C∞

0 (Rn) be such that supp ρ is contained in the interior of {χ = 1}. For
any functions g, h ∈ S(Rn), define

P (R, g, h) := ρ g(1i∇A)R (1− χ)h(1i∇A)R χ

where ρ and χ are identified with the multiplication operators by ρ and χ.
Notice that the Schwartz kernel of P (R, g, h) is smooth and supported in
(supp ρ)2.

Lemma 3.4. For any m, p ∈ R, N ∈ N and α ∈ N2n, there exists C > 0
and M ∈ N such that for any R > 0 and g, h ∈ S(Rn),

|∂αx,yP (R, g, h)(x, y)| ⩽ CR−N∥g∥m,M∥h∥p,M .

This result will be used later in the following form: for any compact
subset K of the interior of {χ = 1}, we have(

g(1i∇A)R χh(
1
i∇A)R

)
(x, y) = (g♯Ah)(

1
i∇A)R(x, y) +O∞(R−∞) (17)

with a O uniform for x, y ∈ K.
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Proof. For any m ∈ R and N ∈ N such that m− 2N < −n, we have

|x|2Ng∨(x) = (∆Ng)(x) = O(∥g∥m,2N )

with a O uniform in x. So

g(1i∇A)R(x, y) = Rng(1i∇A)(Rx,Ry) = O(Rn−2N |x− y|−2N∥g∥m,2N ).

The kernel of h(1i∇A)R satisfies the same bound.
On the support of ρ(x)(1−χ(y)), we have |x| ⩽ C and |x− y| ⩾ C−1 so

that |x− y|−2N = O(⟨y⟩−n) when 2N ⩾ n. So for N large enough,

ρ(x) g(1i∇A)R(x, y) (1− χ(y)) h(1i∇A)R(y, z) ρ(z)

= O(R2n−4N ⟨y⟩−2n∥g∥m,2N∥h∥p,2N )

which by integrating in y implies

P (R, g, h)(x, y) = O(R2n−4N∥g∥m,2N∥h∥p,2N ).

The estimates of the derivatives are similar.

4 Heisenberg pseudodifferential operators

Let L→M be a Hermitian line bundle with a connection ∇ preserving the
metric. Introduce a neighborhood V of the diagonal of M2 and a section
F ∈ C∞(V,L⊠ L) which is unitary (|F | = 1 on V ) and satisfies

F (x, x) = 1, ∇F (x, x) = 0, ∇Y ∇Y F (x, x) = 0, ∀x ∈M (18)

for any vector field Y of M2 having the form Y (x, y) = (X(x),−X(y)) with
X ∈ C∞(M,TM). In the first equation of (18), we identified Lx ⊗ Lx with
C through the Hermitian product of Lx. By [1, Lemma 3.1], such a section
exists and is unique up to multiplication by a function of the form exp(iφ)
where φ is a smooth real valued fonction defined on a neighborhood of the
diagonal which vanishes to third order along the diagonal.

For any m ∈ R, the space Ψm
Heis(L,∇) of semiclassical pseudodifferential

Heisenberg operators of order m consists of the operator families P = (Pk :
C∞(M,Lk) → C∞(M,Lk), k ∈ N) whose Schwartz kernels have the form

F k(x, Y )ϕ(x, y)K
k−

1
2
(x, y) +O∞(k−∞) (19)

where F ∈ C∞(V,L⊠L) satisfies the previous conditions, ϕ ∈ C∞
0 (V ) is equal

to 1 on a neighborhood of the diagonal and (Kh, h ∈ (0, 1]) us the Schwartz
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kernel family of a semiclassical pseudodifferential operators (Qh) ∈ Ψm
sc(M).

The symbol σ(P ) of P is by definition the symbol of (Qh).
The choice of F does not play any role. More precisely, by [1, Lemma 3.3],

for any F satisfying (18), for any P ∈ Ψm
Heis(L,∇), there exists Q ∈ Ψm

sc(M)
such that (19) holds. Moreover, if (19) holds for some F and Q, then
σ(P ) = σ(Q).

The curvature of ∇ has the form 1
iω with ω a real-valued closed 2-form

of M . Associated to ω is the product ♯ω of S∞(M,T ∗M) defined as in (16).

Theorem 4.1. For any P ∈ Ψm
Heis(L,∇) and Q ∈ Ψp

Heis(L,∇), (PkQk)

belongs to Ψm+p
Heis (L,∇) and its symbol is σ(PkQk) = σ(P )♯ωσ(Q).

The remainder of the section is devoted to the proof. First we we write
the result as a local statement (25), and then prove the symbol expansion
(26) and the remainder estimates (27).

A local statement

Let (Ui) be a finite open cover of M . We claim that it suffices to show
the result under the assumption that there exists i0 such that the Schwartz
kernel of P and Q are supported in compact set (independent of k) of U2

i0
.

Proof. Introduce a partion of unity (φi) subordinated to the cover (Ui).
Write PQ as the sum

∑
PφiQ. Let ψi ∈ C∞

0 (Ui) such that suppφi ⊂ {ψi =
1}. Then

PφiQ = (1− ψi)PφiQ+ ψiPφiQ(1− ψi) + ψiQφiQψi. (20)

Since supp(1 − ψi) × suppφi does not intersect the diagonal, (1 − ψi)Pφi

and φiQ(1 − ψi) are in the residual space k−∞Ψ−∞(L). By [1, Lemma
5.2], k−∞Ψ−∞(L) is a bilatereal ideal of ΨHeis(L,∇). So the two first
terms in the right-hand side of (20) are in k−∞Ψ−∞(L). Now ψiQφiPΨi is
the composition of ψiQφi with ψiPψi whose kernels are both supported in
(suppψi)

2.

Let us introduce a coordinate chart U, (xi) of M with a unitary section
t ∈ C∞(U,L). By the previous fact, we can assume that the kernels of P and
Q are supported in U2. We have ∇t = 1

i βidxi ⊗ t for some βi ∈ C∞(U,R).
Then the section

F (x, y) = eiβ(
x+y
2

)·(x−y)t(x)⊗ t(y)
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satisfies (18). So the Schwartz kernel of P has the form Pk(x, y)t
k(x)⊗ tk(y)

with

Pk(x, y) = eikβ(
x+y
2

)·(x−y)
(√k
2π

)n
∫
ei
√
k ξ·(x−y)a(k−

1
2 , x, y, ξ) dξ

where a ∈ Sm
sc (U

2,Rn) and is supported in K2 × Rn with K a compact
subset of U . Doing the change of variable ξ =

√
kη, we get

Pk(x, y) = eikβ(
x+y
2

)·(x−y)
( k

2π

)n
∫
eikη·(x−y)a(k−

1
2 , x, y, k

1
2 η)) dξ (21)

Qk is given by the same formula with a symbol b ∈ Sp
sc(U2,Rn) such that

supp b ⊂ K2 × R2n. The integral (21) being an oscillatory integral, it is
convenient to assume first that a and b are compactly supported in ξ as
well, and then to deduce the case for general symbols by a density argument.
Similarly, we can assume as well that a and b are independent of the small
parameter h.

Starting from (21), we obtain the following expression for the Schwartz
kernel of PkQk

(PkQk)(x, z) = eikβ(
x+z
2

)·(x−z)
( k

2π

)2n
Jk(fk)(x, z)

where Jk(fk) is defined as follows. First we have a phase

φ(x, y, z) = β(x+y
2 ) · (x− y) + β(y+z

2 ) · (y − z)− β(x+z
2 ) · (x− z) (22)

from which we define

fk(x, y, z, ξ, η) = eikφ(x,y,z)a(x, y, k
1
2 ξ)b(x, y, k

1
2 η) (23)

Finally, for any function f ∈ C∞
0 (U3 × R2n), we set

Jk(f)(x, z) =

∫
Rn×U×Rn

eik(ξ(x−y)+η(y−z))f(x, y, z, ξ, η)χ(y) dξdηdy (24)

Here χ ∈ C∞
0 (U) is chosen so that the interior of {χ = 1} contains K. So for

f = fk, we can remove it without modifying the integral but we will need it
later.

Our goal is to prove that for any a, b ∈ C∞
0 (U2 × Rn) supported in

K2 × R2n, for any N ∈ N, we have( k

2π

)n
Jk(fk)(x, z) =

N∑
ℓ=0

k−
ℓ
2

∫
Rn

eikξ·(x−z)cℓ(
1
2(x+ z), k

1
2 ξ)dξ

+ k−
1
2
(N+1)RN,k(x, z)

(25)

where cℓ ∈ S−∞(U,Rn) and RN,k ∈ C∞(U2) satisfy
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1. for any ℓ ∈ N,

cℓ(x, ·) =
∑

(α,β,α′,β′)∈Σℓ

λα
′,β′

α,β,ℓ(x)(∂
α
ξ ∂

α′
x,ya(x, x, ·))♯ω(x)(∂

β
ξ ∂

β′
x,yb(x, x, ·))

(26)

where Σℓ consists of (α, β, α′, β′) ∈ Nn × Nn × N2n × N2n such that

ℓ ⩽ |α| + |β| ⩽ 3ℓ and |α′| + |β′| ⩽ ℓ. The coefficients λα
′,β′

α,β,ℓ are
independent of a and b and belong to C∞(U).

Moreover, λ0,00,0,0 = 1 so that c0(x, ·) = a(x, x, ·)♯ω(x)b(x, x, ·)

2. for anyN ∈ N,m, p ∈ R and α ∈ N2n such that |α|+m+p < −n+N+1
there exists C > 0 and M ∈ N such that

k−|α||∂αx,zRN,k(x, z)| ⩽ C∥a∥m,M∥b∥p,M (27)

Let us explain the consistency between the formula (26) giving the co-
efficients cℓ and the bounds (27) satisfied by the remainder RN,k. For any

a ∈ C∞
0 (U2 × Rn), let Ik(a)(x, z) :=

∫
Rn e

ikξ·(x−z)a(x, z, k
1
2 ξ) dξ.

Lemma 4.2. For any α ∈ N2n and m ∈ R such that |α| +m ⩽ −n, there
exists C > 0 and M ∈ N such that for all x, z ∈ K, we have

k−|α||∂αx,zIk(a)(x, z)| ⩽ C∥a∥m,M .

Proof. If m < 0 and k ⩾ 1, then

|a(x, z, k
1
2 ξ)| ⩽ C∥a∥m,0⟨k

1
2 ξ⟩n ⩽ C∥a∥m,0⟨ξ⟩n.

So |Ik(a)(x, z)| ⩽ C∥a∥m,0

∫
Rn⟨ξ⟩n dξ and the integral is finite when m <

−n. The estimates for the derivatives are obtained by derivating under the
integral sign and applying the same method.

Now by theorem 3.2 and the fact that |α|+ |β| ⩾ ℓ when (α, β, α′, β′) ∈
Σℓ, the map sending (a, b) into cℓ extends continuously from Sm(U2,Rn)×
Sp(U2,Rn) to Sm+p−ℓ(U,Rn). So by Lemma 4.2, Ik(cℓ) satisfies the same
bounds (27) as RN,k, so that the expansion (25) is meaningful.

To deduce Theorem 4.1 from (25), introduce c(h, ·) ∈ Sm+p
sc (U × Rn)

having the expansion
∑

ℓ h
ℓcℓ, which is possible by Borel Lemma. Then by

(26), (27) and Lemma 4.2,( k

2π

)n
Jk(fk)(x, z) =

∫
Rn

eikξ·(x−z)c(k−
1
2 , 12(x+ z), k

1
2 ξ) dξ +O∞(k−∞)

In the sequel, we first explain how we obtain the formulas (26) for the
coefficients cℓ, and then we prove the remainder bounds (27).
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Proof of formulas (26)

The first step is to replace φ, a and b by their Taylor expansions along
the diagonal {x = y = z}. To do this, introduce the coordinate system
(xj , uj , vj) of U

3

xj =
1
2(xj + zj), uj = xj − yj , vj = yj − zj , j = 1, . . . , n

The diagonal is {u = v = 0}. Since the xj are independent of y, they
will not be affected during the integration. It could be possible to use xj
or zj instead of 1

2(xj + zj) and this would lead to the expansion (25) with
coefficients cℓ which are functions of xj (resp. zj) only. We have

xj = xj +
1
2(uj + vj), yj = xj +

1
2(−uj + vj), zj = xj − 1

2(uj + vj)

so that the vector field frame associated to (xj , uj , vj) is

∂uj =
1
2(∂xj −∂yj −∂zj ), ∂vj =

1
2(∂xj +∂yj −∂zj ), ∂xj =

1
2(∂xj +∂yj +∂zj )

For any function f ∈ C∞(U3), its Taylor expansion with respect to uj , vj at
u = v = 0 with the variables xj fixed is

f(x, y, z) =
∑

α,β∈Nn

|α|+|β|⩽N

(α!β!)−1(∂αu∂
β
v f)(x, x, x)u

αvβ + rN+1(x, y, z) (28)

with rN+1 in O(|u, v|N+1). Later, in the proof of the remainder bounds, we
will need the integral expression of the remainder

rN+1 = (N + 1)
∑

|α|+|β|=N+1

uαvβ

α!β!

∫ 1

0
(1− t)Ncα,β(t) dt,

cα,β(t) = (∂αu∂
β
v f)(x+ t

2(u+ v), x+ t
2(−u+ v), x− t

2(u+ v)).

(29)

Lemma 4.3. We have φ = φ2 + r with r(x, y, z) = O(|u, v|3) and

φ2(x, y, z) =
n∑

i,j=1

Aij(x)uivj , Aij(x) =
1
2(∂xiβj(x)− ∂xjβi(x)).

Proof. Writing φ(x, y, z) in terms of x, u and v, we get

φ(x, y, z) =β(x+ v
2 ) · u+ β(x− u

2 ) · v − β(x) · (u+ v)

=1
2(β

′(x)(v) · u− β′(x)(u) · v) +O(|u, v|3)

after the cancellation of the linear terms in u, v.
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For any function d ∈ C∞(U3 × R2n), define

d̃k(x, y, z, ξ, η) = d(x, y, z, k
1
2 ξ, k

1
2 η). (30)

The isotropic algebra product appears through the following Lemma.

Lemma 4.4. For any a0, b0 ∈ C∞
0 (U × Rn), we have with d(x, y, z, ξ, η) =

a0(x, ξ)b0(x, η) that( k

2π

)n
Jk(e

ikφ2 d̃k)(x, z) =

∫
Rn

eikξ·(x−z)c0(x, k
1
2 ξ) dξ + rk(a0, b0)(x, z)

where c0(x, ·) = a0(x, ·)♯A(x)b0(x, ·) and rk(a0, b0) = O∞(k−∞) on K2.

Proof. For R =
√
k and g ∈ C∞

0 (Rn), we have with the notations used for
Lemma 3.4 that

g(1i∇A)R(x, y) = e−
i
2
kA(x,y)

( k

2π

)n
∫
Rn

eikξ·(x−y)g(k
1
2 ξ) dξ (31)

So identifying U with an open set of Rn through the coordinates (xj) and
introducing h ∈ C∞

0 (Rn), we have for x, z ∈ U that(
g(1i∇A)R χh(

1
i∇A)R

)
(x, z) = e−

i
2
kA(x,z)

( k

2π

)2n
Jk(e

ikφA ẽk)(x, z) (32)

where e(x, y, z, ξ, η) = g(ξ)h(η) and

φA(x, y, z) = −1
2(A(x, y) +A(y, z)−A(x, z)) = −1

2A(x− y, y − z).

By (17), the left-hand side of (32) is equal to (g♯Ah)(
1
i∇A)R(x, z)+O∞(k−∞)

when x, z ∈ K. Applying (31) to g♯Ah instead of g, we get( k

2π

)n
Jk(e

ikφA ẽk)(x, z) =

∫
Rn

eikξ·(x−z)(g♯Ah)(k
1
2 ξ)dξ +O∞(k−∞). (33)

Observe now that φ2(x, y, z) = φA(x)(x, y, z). So to conclude it suffices to
apply (33) to A = A(s), g = a0(s, ·), h = b0(s, ·) for s ∈ U and to evaluate
the result at s = x.

Remark 4.5. With the same proof, we can estimate the remainder rk(a0, b0)
in terms of the semi-norms of a0, b0 by using Lemma 3.4 instead of (17).
We obtain that for any m, p ∈ R, α ∈ N2n and N ∈ N, there exists C > 0
and M ∈ N such that for any a0, b0 ∈ C∞

0 (U × Rn),

|∂αrk(a0, b0)(x, z)| ⩽ Ck−N∥a0∥m,M∥b0∥p,M

for any x, z ∈ K. This will be used later to prove (27).

13



To apply Lemma 4.4, we first write the Taylor expansions of a and b on
the form

a(x, y, ξ) =
∑

aα1,β1(x, ξ)u
α1vβ1 , b(y, z, η) =

∑
bα2,β2(x, η)u

α2vβ2 .

Then take their product and remove the monomials uαvβ by using the fol-
lowing identities

Jk(duj) = ik−1Jk(∂ξjd), Jk(dvj) = ik−1Jk(∂ηjd).

which hold for any d ∈ C∞
0 (U3 × R2n) and are simple integrations by part.

For d̃k given by (30), these identities write

Jk(d̃kuj) = ik−
1
2Jk(∂̃ξjdk), Jk(d̃kvj) = ik−

1
2Jk(∂̃ηjdk). (34)

So for d(x, y, z, ξ, η) = a(x, y, ξ) b(y, z, η)

Jk(e
ikφ2 d̃k) =

∞∑
ℓ=0

iℓk−
ℓ
2

∑
|α1|+|β1|+|α2|+|β2|=ℓ

Jk(e
ikφ2( ˜dα1,β1,α2,β2)k) (35)

with dα1,β1,α2,β2(x, y, z, ξ, η) = (∂α1+α2
ξ aα1,β1)(x, ξ)(∂

β1+β2
η aα2,β2)(x, η). Now

we can apply Lemma 4.4 to each term in the right-hand side of (35). The
estimates of the remainders when we truncate the infinite sum (35), will be
given later.

To handle the remainder in the phase r = φ − φ2, we expand exp(ikr)
and write

Jk(e
ikφd̃k) =

∞∑
ℓ′=0

(ik)ℓ
′

ℓ′!
Jk(e

ikφ2rℓ
′
d̃k). (36)

Here again, the control of the remainders are postponed to the next section.

Then we Taylor expand iℓ
′

ℓ′! r
ℓ′ =

∑
rℓ′,α3,β3(x)u

α3vβ3 , we multiply by the
Taylor expansion of a and b and follow the same method as before. We
claim that this lead to the formula (26) for the coefficients cℓ.

Indeed, observe that aα1,β1(x, ξ) (resp. bα2,β2(x, η)) is a linear combi-
nation with constant coefficients of the ∂α

′
x,ya(x, x, ξ) with |α′| = |α1 + β1|

(resp. ∂β
′

y,zb(x, x, η) with |β′| = |α2 + β2|). Then we consider the sum of the
products

aα1,β1u
α1vβ1bα2,β2u

α2vβ2kℓ
′
rℓ′,α3,β3u

α3vβ3

14



which after the integrations by parts gives

k−
ℓ
2 i|α+β|Jk(e

ikφ2( ˜∂αξ aα1,β1)k(
˜
∂βη bα2,β2)krℓ′,α3,β3(x))

with ℓ = −2ℓ′ + |α|+ |β|, α = α1 + α2 + α3 and β = β1 + β2 + β3. Then on
one hand, 0 ⩽ ℓ′ implies that ℓ ⩽ |α| + |β|. On the other hand, r vanishes
to third order along the diagonal, so 3ℓ′ ⩽ |α3 + β3| which is equivalent to
|α+ β|+ 2|α1 + β1 + α2 + β2| ⩽ 3ℓ. So we have that

ℓ ⩽ |α+ β| ⩽ 2ℓ and |α′ + β′| = |α1 + β1 + α2 + β2| ⩽ ℓ

the inequalities entering in the definition of Σℓ.

Proof of remainder bounds (27)

In the previous argument, we used two infinite expansions (35) and (36).
We need to truncate them and estimate the corresponding remainders. For
any d ∈ C∞

0 (U3 × R2n), define the remainders R′
N+1,k(d) and R

′′
N+1,k(d) in

C∞(Ux × Uz) such that

Jk(e
ikφd̃k) =Jk

(
eikφ2

∑N
ℓ=0

(ikr)ℓ

ℓ! d̃k
)
+ k−

1
2
(N+1)R′

N+1,k(d) (37)

Jk(e
ikφ2 d̃k) =

∑
|γ|+|δ|⩽N

(i)|γ|+|δ|

γ!δ!
k−

1
2
(|γ|+|δ|)Jk

(
eikφ2 ˜(∂γξ ∂

δ
ηdγ,δ)k

)
+ k−

1
2
(N+1)R′′

N+1,k(d)

(38)

where in the second equation dγ,δ(x, y, z, ξ, η) := (∂γu∂δvd)(x, x, x, ξ, η) for
γ, δ ∈ Nn. Introduce for any m, p ∈ R, the norm

∥d∥m,p = sup
(x,y,z)∈U3

(ξ,η)∈R2n

|d(x, y, z, ξ, η)|⟨ξ⟩−m⟨η⟩−p (39)

and for any M ∈ N

∥d∥m,p,M = max
β∈N3n,γ,δ∈Nn

|α|+|β|+|γ|⩽M

∥∂βx,y,z∂
γ
ξ ∂

δ
ηd ∥m−|γ|,p−|δ| (40)

Lemma 4.6. ∀m, p ∈ R, α ∈ N2n and N ∈ N, there exists C > 0 and
M ∈ N such that for every d ∈ C∞

0 (U3 × R2n), we have

1. if m+ p+ |α| ⩽ 3(N + 1)− 2n− 1, then

k−|α||∂αx,zR′
N+1(d)(x, z)| ⩽ Ck

1
2
(m++p+)∥d∥m,p,M
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2. if m+ p+ |α| ⩽ N − 2n− 1, then

k−|α||∂αx,zR′′
N+1(d)(x, z)| ⩽ Ck

1
2
(m++p+)∥d∥m,p,M

For the proof we need the following lemma.

Lemma 4.7. For any m, p ∈ R and α ∈ N2n such that m+p+|α| < −2n−1,
there exists C > 0 and M ∈ N such that for any c ∈ C∞

0 (U3×R2n), we have

k−|α||∂αx,zJk(c)(x, z)| ⩽ C max
β∈N3n, |β|⩽M

k−|β|∥∂βx,y,zc∥m,p

for any (x, z) ∈ K.

Proof. 1. Assume that m < −n and p < −n. Then

|Jk(c)(x, z)| ⩽ ∥c∥m,p

(∫
⟨ξ⟩m dξ

)(∫
⟨η⟩p dη

)(∫
ρ(y) dy

)
and the three integrals are finite.

2. Assume now that m + p < −2n − 1. So there exists q ∈ Z such
that m − q < −n and p + q < −n. We assume q ⩾ 0, otherwise the
argument is similar by exchanging ξ and η. We have by integration by
part that Jk(Lc) = Jk(c) where L

t = ⟨ξ − η⟩−2(1 + (ik)−1
∑

j(ηj − ξj)∂yj ).
Furthermore

|Lq(c)(x, y, z, ξ, η)| ⩽ ⟨ξ − η⟩−q⟨ξ⟩m⟨η⟩pmax
|γ|⩽q

k−|γ|∥∂γy c∥m,p

⩽ C⟨ξ⟩m−q⟨η⟩p+q max
|γ|⩽q

k−|γ|∥∂γy c∥m,p

and we conclude as in Part 1 that

|Jk(c)(x, z)| ⩽ Cmax
|γ|⩽q

k−|γ|∥∂γy c∥m,p. (41)

3. It remains to estimates the derivatives. Let α, β ∈ Nn be such that
m+ p+ |α|+ |β| < −2n− 1. Since

(ik)−1∂xjJk(c) = Jk((ξj + (ik)−1∂xj )c),

(ik)−1∂zjJk(c) = Jk((−ηj + (ik)−1∂zj )c).

we have k−|α|−|β|∂αx ∂
β
z Jk(c) = Jk(d) where d is a linear combination with

constant coefficients (depending only of α, β) of the functions

cα
′′,β′′

α′,β′ = ξα
′′
ηβ

′′
k−|α′|−|β′|∂α

′
x ∂

β′
z c, α′, α′′, β′, β′′ ∈ Nn
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where α′+α′′ = α and β′+β′′ = β. Then we apply (41) to the cα
′′,β′′

α′,β′ . Using
that m+ |α′′|+ p+ |β′′| ⩽ m+ p+ |α|+ |β| < −2n− 1 and

∥∂γy c
α′′,β′′

α′,β′ ∥m+|α′′|,p+|β′′| ⩽ Ck−|α′|−|β′|∥∂γy ∂α
′

x ∂
β′
z c∥m,p,

we obtain

k−|α|−|β||∂αx ∂βz Jk(c)(x, z)| ⩽ C max
α′, β′, γ∈Nn s.t.

α′⩽α, β′⩽β, |γ|⩽M

k−|α′|−|β′|−|γ|∥∂α′
x ∂

γ
y ∂

β′
z c∥m,p

for some M , which implies the Lemma.

Proof of Lemma 4.6. Let (fk, k ∈ N) be a family of C∞(U3) such that for
any α ∈ N3n, k−|α|∂αfk = O(1) on any compact subset of U3. For instance

we can choose fk = eikφ. Using Leibniz rule and ⟨k
1
2 ξ⟩m ⩽ k

1
2
m+⟨ξ⟩m for

any k ⩾ 1 and m ∈ R, we deduce from Lemma 4.7 that for any m, p ∈ R
and α ∈ N2n such that m+p+ |α| < −2n−1, there exists C > 0 andM ∈ N
such that for any d ∈ C∞

0 (U3 × R2n), we have

k−|α||∂αx,zJk(fkd̃k)(x, z)| ⩽ Ck
1
2
(m++p+) max

β∈N3n,
|β|⩽M

k−|β|∥∂βx,y,zd∥m,p (42)

for any (x, z) ∈ K.
Let us prove the estimate for R′

N+1,k. Applying Taylor formula to t ∈
[0, 1] → exp(ik(φ2 + tr)), we get

eikφ = eikφ2

N∑
ℓ=0

(ikr)ℓ

ℓ!
+ (kr)N+1fN,k, fN,k := iN+1

N !

∫ 1

0
(1− t)Neikφ2 dt

Derivating under the integral sign, we get k−|α|∂αx,y,zfN,k = O(1) for any

α ∈ N3n. Since rN+1 vanishes to order 3N + 3 along {u = v = 0}, we have

rN+1 =
∑

|γ|+|δ|=3N+3

uγvδµγ,δ, with µγ,δ ∈ C∞(U3).

Collecting together the previous formula, we obtain

R′
N+1,k(d) = k

3
2
(N+1)

∑
Jk(u

γvδµγ,δfN,kd̃k)

= i3(N+1)
∑

Jk(µγ,δfN,k∂̃
γ
ξ ∂

δ
ηdk

)
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where we have used (34) and the fact that |γ| + |δ| = 3N + 3, so that the

powers of k cancel. We conclude with (42) and ∥∂βx,y,z∂γξ ∂
δ
ηd∥m−|γ|,p−|δ| ⩽

∥d∥m,p,|β|+3N+3.
To prove the estimate for R′′

N+1,k, we write the Taylor expansion of d as
in (28)

d =
∑

|γ|+|δ|⩽N

uγvδ
dγ,δ
γ!δ!

+
∑

|γ|+|δ|=N+1

uγvδdN+1,γ,δ

The coefficients dN+1,γ,δ of the remainder are functions of (x, y, z, ξ, η) and
using the formula (29), we get

∥dN+1,γ,δ∥m,p,M ⩽ C∥d∥m,p,M+N+1 (43)

By using (34), it comes that

Jk(e
ikφ2uγvδd̃γ,δk) = i|γ|+|δ|k−

1
2
(|γ|+|δ|)Jk(e

ikφ2 ˜(∂γξ ∂
δ
ηdγ,δ)k

)

and similarly

Jk(e
ikφ2uγvδ ˜dN+1,γ,δk) = iN+1k−

1
2
(N+1)Jk(e

ikφ2 ˜(∂γξ ∂
δ
ηdN+1,γ,δ)k

)

Comparing with (38), we get

R′′
N+1,d(d) = iN+1

∑
|γ|+|δ|=N+1

Jk(e
ikφ2 ˜(∂γξ ∂

δ
ηdN+1,γ,δ)k

)

and we conclude with (42) and (43).
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