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Abstract

We prove that the semiclassical Heisenberg pseudodifferential op-
erators form a filtered algebra.

1 Introduction

For any compact manifold M and Hermitian line bundle L — M with a
connection V, the space Wi} . .(L,V) of Heisenberg semiclassical pseudod-
ifferential operator with order m has been defined in [1]. The principal
symbol o(P) of such an operator P is a smooth function of 7% M which is a
polyhomogeneous symbol.

Write the curvature of V as tw with w € Q?(M,R). Define the product
of symbols of T*M by

(ftu0)(@,€) = |73 (PP f(a, ) () & € TIM.

e=n’
The goal of this note is to prove the following result.

Theorem 1.1. For any P € VL, (L, V) and Q € 9§ . (L, V), (P.Qk)
belongs to \IJE;FSP(L, V) and its principal symbol is o(P)f,0(Q).

An important point is that we do not assume anything on w, it doesn’t
have necessarily constant rank. The fact that f,, is a well-defined continuous
product of symbols, is already a nontrivial result. The proof is given in
Section 3, another proof was already given in [2]. In Section 4, we briefly
recall the definition of Heisenberg pseudodifferential operators and prove
Theorem 1.1.

Applications (not written yet) include:



- Heisenberg Sobolev estimates
- Hermite algebras W;;o- (L, V) and Toeplitz subalgebras

- functional calculus of Heisenberg elliptic operators

2 Symbols

Same definitions as in [1]: symbols, semiclassical pseudodifferential opera-
tors and residual class.

3 Isotropic algebras

Let A : R" x R"™ — R be bilinear antisymmetric and (e;) be the canonical
basis of R™. Define the covariant derivative

VA=d+ £ Alz,e;)da; (1)
J

acting on R”. The curvature of V4 is %A, that is
[Vf7 V?] = %A(ejv ek:) (2)
where V;‘ = ij =0, + 5 A(w, ¢5).

For any tempered distribution g € &'(R™), we denote its Fourier trans-
form and inverse Fourier transform by g and ¢V,

90 = [ o e %O = 20 "5(-9)

We define g(%VA) as the operator S(R") — S'(R™) with Schwartz kernel

K,(z,y) = (2m) e~ #AE) / g (¢) de

— ef%A(z,y)g\%x N y)

(3)

The reason for the notation g(%VA) is that for g = &;, g(%VA) = %V;‘ and
more generally if g is the monomial &;, ...¢&;, then

Loy (=) A A
g(?v )= / Z vjo‘(l) "'vja(é)’

oEY,




cf [1, Proposition 6.2].
We will prove that the space of f (%V A) with f in the Schwartz class, is

an algebra and compute the corresponding product of functions. For any g,
h € S(R™), define gtah € S(R™) by

(92ah)(€) = |24 PP g(@h(m)| _ - (4)

Here we use the standard notation: D = %6 and for any real quadratic form
B of R™ and u € S(R™), v = €B(P)y is the function of S(R™) such that
its Fourier transform is (&) = e’BO7(€). Observe that for A = 0, #4 is the
pointwise multiplication of functions whereas for n even and A the standard
symplectic form, ff4 is the Weyl product.

Lemma 3.1. For every g,h € S(R™), we have
R Kg(xvy) Kh(yvz) dy:Kf(‘T?Z) (5)
where f = gliah.

Proof. Since g and h are in the Schwartz class, K4(z,y) and Kp(x,y) are in
O({x — y)~>°). By Peetre inequality,

(=) My -2 N Ol - Ny —

Since [(y —2)"""tdy = [(y)~" dy is finite, we get that

K(JZ‘,Z) = R Kg(xay)Kh(yaz) dy (6)
is well-defined, continuous and in O({z — 2z)~>).
We claim that 24 K (z + 7, 2) is independent of z. Indeed, inserting
the definitions of K, and K} in (6) and using the antisymmetry of A, we
have

AR (2 47, 2) = / "3V (2 o —y)hY (y — 2) dy
" (7)
_ / 6—§A(T,t)g\/ (’I" _ t)hv (t) dt

by setting t = y — z. We recognize here a twisted convolution product.



It remains to prove that the Fourier transform of (7) with respect to ¢
is equal to gfah, that is

[ TR e, 2) dr = (g2ah) ). 0
The left-hand side of (8) is equal to
(272 [ A€ ) dr it d
_ (27r)—2n /R4n €—i¢~(s+t)—gA(s,t)+is-§+it.ng(§)h(n) ds dt d dn

by setting s = r — t. We recognize gfah((). O

Theorem 3.2. Let m,p € R. Then the product §4 extends continuously
from S™(R™) x SP(R™) to S™TP(R™). More generally, for any N € N, the
map sending g, h to the remainder

N

r(g: b A)(E) = (g8ah)(€) = D (F) ()~ [A(De, D) (9(&)h(m)|

s n=¢

is continuous from S™(R™) x SP(R™) to STHP~2ANFTL(R"),

In the case where A is non-degenerate, so that f4 is the Moyal-Weyl
product, this is a well-known result, cf. [4, Section 23] or [3, Section 18.5]
for more general symbol classes. For a general A, this has been proved in [2,
Chapter 4]. It is possible to deduce the result from the Moyal-Weyl case by
decomposing R" into ker A @ S, but this does not lead to uniform estimates
with respect to A, which we need later. Since the result is fundamental in
the paper, we provide a proof.

Proof. As in [2, Chapter 4], we will use the following version of stationnary
phase lemma. Let ¢ be a non degenerate quadratic form of R¢. Then for
any £ € R, there exists C' > 0 and M € N such that for any a € C§°(R?) we
have

’/ 1@ g(z) dz| < C max sup |0%a(x)|(z) " (9)
R4

o] SM R

This is proved by integration by part by using that e = Le' with L the
differential operator L = (x)~2(1 — i)k BjkzjOk) where B is the inverse
matrix of the matrix of ¢.



We write gt ah on the form
(g8ah)(C) = (2m) " /R AN g(C 4 (¢ + ) dsdidgdy (10)

and we will apply (9) with d = 4n and = = (s,¢,&,7), ¢ being considered
as a parameter. From now on, our proof differs from [2], which discusses
whether €] + [n]| < 2(1 + [¢[) or not.

Let f(¢,&,n) :== g(C+&)h({+n) and v € N". Then the derivative 8Zf is a
linear combination with constant coefficients of the functions fo 5(¢,&,n) =
(0%g) (¢ + &) (9°h)(C + 1) where a + = 7. Moreover,

1080 fal = 1(0°T9)(¢ + ) (9T R)(C +m)]
< Cllgllmnt bl ar (¢ + €ym=lal=1al (¢ 4 pyp=181-15'

with M sufficiently large. Using (¢ + )71l < 1, Peetre inequality

(C+em el cogmlelgleiiel - and (€ < (€m)
we get (¢ 4 £)ym—lel=le’l < o(¢ym-lal(g p)lmitlel By this and the similar
upper bound for (¢ 4 )P~ 181171 we get

1080 fa6| < Cllgllmatlllllp,ar ()™ P7I(E, my PR (1)

where C' and M depend only on ~, o/ and 3’. Therefore (9) implies that

107 (98.40) ()] < Cllgllm, e[ Bllp,ar ()™ P11,

which shows that #4 is continuous S™(R") x SP(R") — S™TP(R").
To estimate the remainder ry, we first write it on an integral form similar
to (10). Observe that for polynomial functions P, @ on R", we have

(2720 [ S AO pYQLy) d dtds dn = (PEaQ)(0)

where P§AQ is given by the (finite) sum

[e.9]

(PEAQ)() = 3 (5 () [A(De, D) (POQM)] ., .-

=0

So if we replace in (10) the product g(¢+ &)h(¢ +n) by its Taylor expansion
in (¢,7n) at the origin at order 2N + 1, that is

Yo L@ Qe L@ h) O, (12)

lal-+]8]<2N+1



we obtain the sum Zé\f:o(%")g(ﬂ)*l [A(Dg,Dn)e(g(f)h(n))]gznzg. Here we

have used that for |a| # ||, (¢*#4¢”)(0) = 0 so the corresponding terms in
(12) do not contribute.
So the remainder we have to estimate is given by

rn(g.h A)(C) = (2m) " /R SIS ACD oy (€ ) dsdidgdy (13)

where py is the remainder of the Taylor expansion (12), that is

B
pN(CEm) =2(N+1) ) ilglpa,ﬁ(c,é,n)

la|+]B]=2N+2
1
with  pa,s(¢, &, n) = /0 (1 — 1) H0%g) (¢ + 7€)(0°Rh)(C + ) dT.

We can estimate the integrand by the same method that led to (11), and
using that (7€) < (£) and (rn) < (n) for 7 € [0, 1], we obtain after integrating
with respect to 7 that

Po,p = O(<C>M+p72(N+1)<§77]>|m|+\p|+2(N+1))'

We can estimate the derivatives similarly:
10208 05 pas| < l|gllm,allRllp,ar ()™ TP I2NHD (g gy ImlFIpIFI+2(N+D)

where C' and M depend only of N, v, o/ and 8’. By (13) and (9), it follows
that

10775 (9, 1)(Q)] < Cllgllm,ar | llp,ar (¢)" P~ HH2NFD),

which proves the second assertion. ]

Denote by A, the space of antisymmetric real bilinear form of R".

Proposition 3.3. For any m,p € R, the map from S™(R™) x SP(R") to
S™HP( A, R™) sending (g,h) to (A,€) — (giah)(€) is well-defined and con-

tinuous.

We will actually show a better result (15).

Proof. For any f, g in the Schwartz class, it follows directly from the def-
inition (4) that (A4,¢) — ffag(¢) is smooth and we can even compute ex-
plicitely the A-derivatives as follows. For 1 < j < k < n, the derivative of
e~ 246N with respect to A, = Alej,ep) is %i(gjnk — ﬁknj)efé“‘(&") so that

OURAN) _ 4 ((D,g)24(Dih) ~ (Dig)ea(D;1). 9

0A,



By Theorem 3.2, for any A € A,, m, p € R and M € N, there exists C > 0
and M’ € N such that

l98aPllm+p.ar < Cllgllm aal|Pllp.aar-

By the proof of Theorem 3.2, C' and M’ stay bounded when A stays in a
compact subset K of A,,. This implies by (14) that for any A € K, £ € R"

10302 (g8aP(C))] < Cllgllm, a1 Bllp,ar (¢)™ P20l (15)
with C and M depending only on -, o and K. This is better than the result
we have to prove, because here we gain (¢)~2 for each A-derivative. O

Proposition 3.3 has the following consequence. Consider a real vector
bundle E — M and a section A € C®°(M,A?E*). Then the pointwise A-
product of symbols of E*

(gﬁAh)(fL’, ) :g(l’, )ﬁA(z)h(‘r?)a reM (16)

is a continuous map S™(M, E*) x SP(M,E*) — S™*P(M,E*), (g,h) —
giah.

To end this section, we establish a preparatory lemma for the Heisenberg
composition. For any R > 0, denote by hr be the multiplication by R of R"
and by h}, the pull-back operator, so (h}f)(x) = f(Rx). For any operator
Q of S(R™), we denote by Qg the operator hj, o Q o hj,_, of S(R"). Let p,
X € C5°(R™) be such that supp p is contained in the interior of {x = 1}. For
any functions g, h € S(R™), define

P(R,g,h):==pg(3VA)r (1 —X)h(3VA)R X

where p and x are identified with the multiplication operators by p and y.
Notice that the Schwartz kernel of P(R,g,h) is smooth and supported in

(supp p)?.

Lemma 3.4. For any m,p € R, N € N and o € N?", there exists C > 0
and M € N such that for any R > 0 and g,h € S(R"™),

192, P(R, 9. ) (2. 9)] < CRN|lgllmt [l

This result will be used later in the following form: for any compact
subset K of the interior of {x = 1}, we have

(9(GVARX MGV AR) (2,y) = (98ah) (VA r(2,y) + Osc(R™®)  (17)

with a O uniform for z,y € K.



Proof. For any m € R and N € N such that m — 2N < —n, we have
j2*g" () = (AN g)(x) = O(llgllm,2n)
with a O uniform in z. So

9(iVa)r(z,y) = R"g(;Va)(Rz, Ry) = O(R" " |z — y|7*N|g|lm 2n)-

The kernel of h(3V ) satisfies the same bound.
On the support of p(z)(1— x(y)), we have |z| < C and |z —y| > C~! so
that |z — y|72Y = O({y)™™) when 2N > n. So for N large enough,

p(x) g($Va)r(z,y) (1 —x()) h($Va)r(y, 2) p(2)
= O(R*™ "N ()" gllm2n | hllp2n)

which by integrating in y implies
P(R,g,h)(z,y) = OB |g|lman[Allp2n)-

The estimates of the derivatives are similar. O

4 Heisenberg pseudodifferential operators

Let L — M be a Hermitian line bundle with a connection V preserving the
metric. Introduce a neighborhood V' of the diagonal of M 2 and a section
F € C>®(V,LX L) which is unitary (|F'| =1 on V') and satisfies

F(z,z)=1, VF(z,x)=0, VyVyF(zx,z)=0, VerelM (18)

for any vector field Y of M? having the form Y (z,y) = (X (), —X(y)) with
X € C®(M,TM). In the first equation of (18), we identified L, ® L, with
C through the Hermitian product of L,. By [1, Lemma 3.1], such a section
exists and is unique up to multiplication by a function of the form exp(iy)
where ¢ is a smooth real valued fonction defined on a neighborhood of the
diagonal which vanishes to third order along the diagonal.

For any m € R, the space Wi}.,.(L, V) of semiclassical pseudodifferential
Heisenberg operators of order m consists of the operator families P = (P, :
C>®(M, L*F) — C>®(M, L*), k € N) whose Schwartz kernels have the form

FH, V)b, 9) K (2,9) + Ose (k) (19)

where F € C*(V, LKL) satisfies the previous conditions, ¢ € C5°(V) is equal
to 1 on a neighborhood of the diagonal and (K}, h € (0, 1]) us the Schwartz



kernel family of a semiclassical pseudodifferential operators (Qp) € W5 (M).
The symbol o(P) of P is by definition the symbol of (Qp,).

The choice of F' does not play any role. More precisely, by [1, Lemma 3.3],
for any F satisfying (18), for any P € Wy, (L, V), there exists Q € WJ'(M)
such that (19) holds. Moreover, if (19) holds for some F' and @, then
o(P) = o(Q).

The curvature of V has the form %w with w a real-valued closed 2-form
of M. Associated to w is the product f,, of S°(M,T*M) defined as in (16).

Theorem 4.1. For any P € Vi, (L, V) and Q € V.. (L, V), (P:Qy)
belongs to \I'g;rf(L, V) and its symbol is o(PrQr) = o(P)4,0(Q).

The remainder of the section is devoted to the proof. First we we write
the result as a local statement (25), and then prove the symbol expansion
(26) and the remainder estimates (27).

A local statement

Let (U;) be a finite open cover of M. We claim that it suffices to show
the result under the assumption that there exists ig such that the Schwartz
kernel of P and @ are supported in compact set (independent of k) of UZ%.

Proof. Introduce a partion of unity (¢;) subordinated to the cover (U;).
Write PQ as the sum ) Py;Q. Let ¢; € C5°(U;) such that supp ¢; C {¢; =
1}. Then

PpiQ = (1 —13) PpiQ + i Po;Q(1 — ;) + Qi Qs (20)

Since supp(l — v;) x supp @; does not intersect the diagonal, (1 — ;) Py;
and ¢;Q(1 — v;) are in the residual space k~>*°¥~>°(L). By [l, Lemma
5.2], k~°W¥~>°(L) is a bilatereal ideal of Wyes(L,V). So the two first
terms in the right-hand side of (20) are in kU ~°(L). Now ¢;Q¢; P¥; is
the composition of ;Qp; with 1; P1; whose kernels are both supported in
(supp ;)2 O

Let us introduce a coordinate chart U, (x;) of M with a unitary section
t € C*(U, L). By the previous fact, we can assume that the kernels of P and
Q are supported in U%. We have Vt = %ﬂidm‘i ® t for some f; € C*°(U,R).
Then the section

F(z,y) = P29 2) @ 1(y)



satisfies (18). So the Schwartz kernel of P has the form Py (z,y)t*(x) ®fk(y)
with

P _ ikB(EL

where a € S7(U%,R") and is supported in K2 x R” with K a compact
subset of U. Doing the change of variable £ = vk, we get

Pelayy) = P @ ()" [t oy k) de @)
T

Qy is given by the same formula with a symbol b € SL.(U% R") such that
suppb C K? x R?™. The integral (21) being an oscillatory integral, it is
convenient to assume first that a and b are compactly supported in £ as
well, and then to deduce the case for general symbols by a density argument.
Similarly, we can assume as well that a and b are independent of the small
parameter h.

Starting from (21), we obtain the following expression for the Schwartz

kernel of P,Qy
. x4z k 2n
(PeQp)(z, 2) = eikA(*3 '(x_z)<?) Ik (fr) (2, 2)
T

where Ji(fx) is defined as follows. First we have a phase

p(r,y,2) = B(FY) - (& —y) + B(7) - (y — 2) = B(*F2) - (2 — 2)  (22)

from which we define

ful@,y, 2, €,m) = €M@V a(z,y, k2E)b(w, y, kan) (23)
Finally, for any function f € C§°(U? x R?"), we set

T(f) (@, 2) = / HEEI W) f (€ m(y) dedndy  (24)
R xUxR"

y)-(xy)<\/%)n/eiﬁ£-(xy)a(ké,x,yé) d§

Here x € C3°(U) is chosen so that the interior of {x = 1} contains K. So for
f = fx, we can remove it without modifying the integral but we will need it
later.
Our goal is to prove that for any a, b € C5°(U? x R"™) supported in
K? x R?" for any N € N, we have
k ) k 1 1

— ) Jx(fr)(z, 2) k™ / lérz)qfxﬂ—z,kzgdf
(27r Z (2 ) £2¢) (25)
+ l{:_E(N+1)RN7k(:E, 2)

where ¢y € S™°(U,R") and Ry € C*°(U?) satisfy

10



1. for any £ € N,

alw )= Y M@ 020 alw, x, ) ) (0L 07 b(x, @, )
(o,B,0/,B)EX,

(26)
where ¥, consists of (o, 3,0/, 8") € N* x N® x N?" x N?" such that
¢ < Jal + 18] < 3¢ and || + |B'| < €. The coefficients )\zlﬁﬁé are
independent of a and b and belong to C*°(U).

Moreover, )\8:870 =1 so that co(w, ) = a(z, 2, My @) b(T, 2, )

2. forany N € N, m,p € R and o € N?" such that |a|+m+p < —n+N+1
there exists C' > 0 and M € N such that

k102 Ry gi(, 2)| < Cllallmal[bllp,ar (27)

Let us explain the consistency between the formula (26) giving the co-
efficients ¢, and the bounds (27) satisfied by the remainder Ry . For any

a € CP(U? x R™), let Ix(a)(x,2) == [gn eikg'(x_z)a(x,z,k%g) d¢.

Lemma 4.2. For any o € N*® and m € R such that |a| + m < —n, there
exists C' > 0 and M € N such that for all x,z € K, we have

k105 Ik (a) (x, 2)| < Clalm,ar-
Proof. If m < 0 and k > 1, then
1 1l.n n
la(z, 2, k28)[ < Cllalmo(k2€)" < Cllallm,o(€)".

So [Iiy(a)(x, 2)| < Cllallmo Jga (€)™ d€ and the integral is finite when m <
—n. The estimates for the derivatives are obtained by derivating under the
integral sign and applying the same method. O

Now by theorem 3.2 and the fact that |a| + || = ¢ when (o, 8,/,5') €
¥¢, the map sending (a, b) into ¢, extends continuously from S™(U? R") x
SP(U2,R™) to S™tP~4(U,R™). So by Lemma 4.2, I;;(c/) satisfies the same
bounds (27) as Ry, so that the expansion (25) is meaningful.

To deduce Theorem 4.1 from (25), introduce c(h,-) € Sw (U x R™)
having the expansion ), htcy, which is possible by Borel Lemma. Then by
(26), (27) and Lemma 4.2,

(ﬁ)"Jk(fk)(x, 2) = / M@k Lo + 2), k2€) dE + Ono(k™)

2T n

In the sequel, we first explain how we obtain the formulas (26) for the
coefficients ¢y, and then we prove the remainder bounds (27).

11



Proof of formulas (26)

The first step is to replace ¢, a and b by their Taylor expansions along
the diagonal {z = y = z}. To do this, introduce the coordinate system
(Tj,uj,vj) of U?

= 1 . . ). e -
wj_f(‘r]+zj)7 U]—IL'J yj? v]_y] 2]7 ]_17"'7”

The diagonal is {u = v = 0}. Since the T; are independent of y, they
will not be affected during the integration. It could be possible to use z;
or z; instead of §(z; + z;) and this would lead to the expansion (25) with
coefficients ¢, which are functions of x; (resp. z;) only. We have

v =T+ 5(u +vy), y =T+ 3w +y), 2 =35 - 5w+ )

so that the vector field frame associated to (Z;,uj,v;) is

8uj = %(8%' —8yj—3zj), 8’%‘ = %(593].4-8%-—8,3]-)7 Oz, =

J

%(811' + 8113' + 8Zj )

For any function f € C>(U3), its Taylor expansion with respect to uj, v; at
u = v = 0 with the variables T; fixed is

f(xaya Z) = Z (a'ﬁ')_l(agagf)(f7f’f)uavﬁ +7“N+1(33,y, Z) (28)
a,FEN™
o]+ BI<N

with 41 in O(Ju, v|V*1). Later, in the proof of the remainder bounds, we
will need the integral expression of the remainder

a,,B 1
rypr = (N +1) 1= t)Vcqp(t) dt,
' |a|+|5|Z=N+1 OC'B' A (29)
o (1) = (50 F)T + S+ 0), 7+ B+ 0), 7 — $(u+v).

Lemma 4.3. We have ¢ = w9 + 1 with r(z,y,z) = O(‘U7U|3) and

513 Y, 2 Z Az] ulvjv Aij(w) = %(aﬂczﬁj(m) - a:rjﬁl(x))

3,j=1

Proof. Writing ¢(z,y, 2) in terms of T, u and v, we get

p(r,y,2) =BT+ 5) - u+BET—35) v—-PF=) (utv)
=3(8'(@)(v) - u— (@) (u) - v) + O([u, v])

after the cancellation of the linear terms in u, v. O

12



For any function d € C*®(U3 x R?"), define

~ 1.1

di(2,y,2,§,m) = d(2,y,2,k2&, k2n). (30)
The isotropic algebra product appears through the following Lemma.
Lemma 4.4. For any ag, by € C§°(U x R™), we have with d(z,y, z,§,1) =
aop(T, &)bo(Z,n) that

(£>an(eik¢QJk)(x7 Z) - / eikg.(w_Z)CO(Ta k%f) g + rk(CLOv bo)($, Z)

2w n
where ¢o(7, ) = ao(T, " )ia@)bo(T, ) and ri(ao,bo) = O (k™) on K2
Proof. For R = Vk and g € C§°(R™), we have with the notations used for
Lemma 3.4 that

sV aey) = B0 ()" [ eyl ac e
™ n

So identifying U with an open set of R™ through the coordinates (x;) and
introducing h € C3°(R"™), we have for z,z € U that

i k
(9AV )R X h(AV A)R) (2, 2) = e 2FA@2) (*

27
where e(z,y,z,£,m) = g(§)h(n) and
@A(l"y) Z) = _%(A(‘T’y) + A(y’ Z) - A(xvz)) = —%A(LL’ - Y Y- Z)'

By (17), the left-hand side of (32) is equal to (gfah)($V 4) r(2, 2)+Ouo (k™)
when x,z € K. Applying (31) to gfah instead of g, we get

2n .
) J(e*Pa8) (2, 2)  (32)

k\m ] = ikE-(x—2z 5 —00
(50) " ele™s8) () = [ e gan)(he)ds + Onlk™).  (33)
Observe now that @a(r,y,2) = Ya(z)(z,y,2). So to conclude it suffices to
apply (33) to A = A(s), g = ap(s,-), h = bo(s,-) for s € U and to evaluate
the result at s = 7. O

i

Remark 4.5. With the same proof, we can estimate the remainder r(ag, bo)
in terms of the semi-norms of ag, by by using Lemma 3.4 instead of (17).
We obtain that for any m, p € R, a € N*® and N € N, there exists C' > 0
and M € N such that for any ag, by € C5°(U x R"),

0%k (a0, bo) (z, 2)| < Ck™N|ao|lm,arlbollp,ar

for any x,z € K. This will be used later to prove (27). O
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To apply Lemma 4.4, we first write the Taylor expansions of @ and b on
the form

a(z,y,¢) = Zaalvﬁl (, g)ualvﬂl’ b(y,z,m) = Z bas,6, (T, n)u”vﬁ?.

Then take their product and remove the monomials u®v? by using the fol-
lowing identities

Ji(duj) = ik Ji(0g,d), Ji(dv;) = ik~ Ty (0, d).

which hold for any d € C3°(U 3 x R?") and are simple integrations by part.
For dj, given by (30), these identities write

Teldyuy) = ik 2 Jp(0g,dy),  Juldwvy) = ik~ 2040y d,).  (34)

So for d(z,y, 2,&,m) = a(x,y,£) b(y, 2,n)

o0
w(e®P2dy) =Y ik > Tk (day gy a0,8)K)  (35)
(=0 |t 4181+ || +|B2|=¢

with doqﬁhazﬁz (x,y,2,&m) = (8gl+a2aa1,ﬁ1)(fv 5)(851+62 aaz,ﬁz)(fa n). Now
we can apply Lemma 4.4 to each term in the right-hand side of (35). The
estimates of the remainders when we truncate the infinite sum (35), will be
given later.

To handle the remainder in the phase r = ¢ — 9, we expand exp(ikr)
and write

. ~ o 3 El . ) ~
Ji(eedy) = Z (Zjl? Jr(e®e2rt dy). (36)
r=0

Here again, the control of the remainders are postponed to the next section.
Then we Taylor expand ’,,r = 3 1008, (T)u3v% | we multiply by the
Taylor expansion of a and b and follow the same method as before. We
claim that this lead to the formula (26) for the coefficients cy.

Indeed, observe that aq, g, (Z,&) (resp. ba, s, (T,n)) is a linear combi-
nation with constant coefficients of the Ggya(f, T, &) with |[o/| = |ag + 5]
(resp. Gg,lzb(f, z,n) with |f'| = |az 4+ B2|). Then we consider the sum of the
products

aal,ﬂlualvﬂlbaz’BQUQQUﬁsz/Tg/ 5,850 sy
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which after the integrations by parts gives

—_—

vy / S z
k—ajlothl Ji (ezkm (8?%1,51 )k(agbazﬁz)kreuas,% (7))

with £ = =20/ + |a| + |B], « = a1 + a2 + a3 and § = B1 + B2 + 3. Then on
one hand, 0 < ¢ implies that £ < |a| + |8|. On the other hand, r vanishes
to third order along the diagonal, so 3¢’ < |ag + (3| which is equivalent to
la+ B| + 2|ar + 51 + ag + P2| < 3L. So we have that

(< la+ B <20 and o/ + B'| = |a1 + B1 + ag + Bo] <4

the inequalities entering in the definition of X,.

Proof of remainder bounds (27)

In the previous argument, we used two infinite expansions (35) and (36).
We need to truncate them and estimate the corresponding remainders. For
any d € C3°(U? x R?"), define the remainders Ry 1 (d) and RY,, 4(d) in
C>®(U, x U,) such that

iko 7 ; ikr)t 7 1
Tu(e™dy) =J (ezszé\fzo( ]2!) di ) +k ;(N—H)R;\Url,k(d) (37)

ks T @O s 518 7 (ks (57
Jk(e mdk) = Z Tk‘ 2\17 Jk(e 902(8& 8Ud775)k)
+pey O (38)

+ k(N Ni1x(d)

where in the second equation d,s(x,y,z,§,n) = (099%d)(z, T, T, &, 1) for
~,6 € N, Introduce for any m, p € R, the norm

dllmp=sup |d(z,y,2,&n)(E)"™(m)~" (39)
(w,y,2)€U3
(&m)er>™

and for any M € N

(40)

1)
”dHWJ%M = max n Hag,y,zagand ||m—\’y|,p—|6|

BEN3" ~ 5eN
oo+ B+ |yI<M

Lemma 4.6. Vm, p € R, a € N*® and N € N, there exists C > 0 and
M € N such that for every d € C°(U? x R?"), we have

1. ifm+p+|a <3(N+1)—2n—1, then

K102 Riv 11 (d) (x, 2)] < Ok 20 | d|| 1 ar
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2. ifm+p+|al <N —2n—1, then

K102 RY 1 (d) (x, 2)] < Ok 20 | d|| 1 ar

For the proof we need the following lemma.

Lemma 4.7. For anym, p € R and o € N?" such that m+p+|al < —2n—1,
there exists C > 0 and M € N such that for any c € C3°(U? x R*"), we have

—laljgo -1811198
N0 @) w2 <O max 0], g

for any (z,z) € K.

Proof. 1. Assume that m < —n and p < —n. Then

(@2 < el [ € ) ([ @7 an) ([ o) av)

and the three integrals are finite.

2. Assume now that m +p < —2n — 1. So there exists ¢ € Z such
that m —q¢ < —n and p+ ¢ < —n. We assume ¢ > 0, otherwise the
argument is similar by exchanging £ and 7. We have by integration by
part that Ji(Le) = Ji(c) where Lt = (¢ —n)~2(1 + (ik) ! > = &5)0y,).

Furthermore

IL9(e) (@, y, 2, &m)| < € —m) (&)™ ()" max k™[9] cllm,p

[v1<q
< CE™ )P max k™07 cllm.p
Iv1<q
and we conclude as in Part 1 that
Tk () (@, 2)| < Cmaxk™0)c|m,p- (41)

[vl<q

3. It remains to estimates the derivatives. Let a, 8 € N™ be such that
m+p+ |a| + 8] < —2n — 1. Since

(ik) 18y Tk (c) = JTx((&5 + (ik) ™'y )c),
(ik) 710z, I (c) = Ju((=n; + (ik) 7102, )e).

J

we have k_‘a|_‘ﬂ‘8§8§<}k(0) = Ji(d) where d is a linear combination with
constant coefficients (depending only of «, ) of the functions

"o "
Cz’,g _ ga//nﬁ//k_m I_lﬁl‘aglaz’BIC, O/,Oé”,,@l,ﬁ” c N"
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where o/ +a” = awand '+ 3" = . Then we apply (41) to thec, o Usmg
that m+ |&”| +p+ |f"| < m+p+|a| + 8] < —=2n —1 and

1075 a7 < ORI 11110708 0 ¢l
we obtain

k1180208 Jy(e) (2, 2) < © max k:"a""ﬁ""”'Hai‘lagaf":llm,p
o', B, yEN" s.t.
o'<a, BB, KM

for some M, which implies the Lemma. O

Proof of Lemma 4.6. Let (fx,k € N) be a family of C>(U3) such that for
any o € N3, g—lelge . = O(1) on any compact subset of U3. For instance
we can choose f; = e*%. Using Leibniz rule and (k%Qm < kam+ (&Y™ for
any k£ > 1 and m € R, we deduce from Lemma 4.7 that for any m, p € R
and o € N?" such that m+p+|a| < —2n—1, there exists C > 0 and M € N
such that for any d € C°(U? x R?"), we have

k02 k(i) (w, 2)| < CRE24) max kP02 dllm,  (42)
’ 6EN n
Bl<M

for any (z,z2) € K.
Let us prove the estimate for Rl 1k Applying Taylor formula to t €
[0,1] — exp(ik(p2 +tr)), we get

N .
. . kr)¢ . 1 .
ezkcp _ ezkgag 2 : (7’ ET) + (kT)N+1fN,]<;, fNJq — 11;7;;1 / (1 . t)Nezk<p2 dt
=0 0

Derivating under the integral sign, we get k1419 0%y fng = O(1) for any
a € N®". Since 7V*! vanishes to order 3N + 3 along {u = v = 0}, we have

pNH = Z TRRILITpS with 5 € C®(U?).
[v]+]8|=3N+3

Collecting together the previous formula, we obtain

Nk d) = k2D ST T @00l 5 fvd)

— 3N+ ZJk(u%afN,kagﬁédk)
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where we have used (34) and the fact that |y|+ |d] = 3N + 3, so that the
powers of k cancel. We conclude with (42) and |]8§,y720g82d|]m_|7|7p_|5‘ <

||de,p,|ﬁ|+3N+3'
To prove the estimate for R 41k We write the Taylor expansion of d as

in (28)
d
— vy d 7»6 vy 1
d= E u'v 7!5! + E u'v dN—i—l,'y,&
[y[|+]6]<N |v|+|8|=N+1

The coefficients dn41,4,5 of the remainder are functions of (z,y, 2,£,7) and
using the formula (29), we get
ldn+1,5.6llmpar < Clld|lmparen+1 (43)

By using (34), it comes that

—~—

TR 5 ) = I g, eikee (9T03d ) )

and similarly

. —_ — . _l .
Jk(elkwuvvst—ﬁ-l,y,ék) _ ,LN—H]€ 2(N+1)Jk(€zkgoz (82/8ng+1’%5)]€)
Comparing with (38), we get
Nera(d) =TT (€90 14,5),)
|v|+|8|=N+1

and we conclude with (42) and (43). O
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